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ABSTRACT

Gorham, LeRoy A., Ph.D., Engineering Ph.D. Program, Department of Electrical Engi-
neering, Wright State University, 2015. Large Scene SAR Image Formation.

With new advances in digital signal processing technology, Synthetic Aperture Radar

(SAR) systems are capable of collecting high resolution data over very large scenes. Well

known image formation algorithms such as the polar format algorithm (PFA) create image

artifacts in large images due to phase errors introduced by the algorithm. In this disserta-

tion, we analyze the nature of these artifacts by comparing PFA to an exact imaging algo-

rithm, the backprojection algorithm (BPA). First, we perform a novel phase error analysis

by decomposing the PFA phase errors into constant, linear, and quadratic terms for arbitrary

flight paths. Second, we utilize the expressions for PFA phase errors to accurately deter-

mine scene size limitations, with examples provided for linear and circular flight paths.

Third, we develop a novel adaptation of PFA which corrects a significant amount of the

phase errors, thereby greatly increasing the allowable scene size of the algorithm. These

results are demonstrated using both simulated and measured SAR data sets.
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Abbreviations and Symbols
Throughout this dissertation numerous abbreviations and symbols are used. While the

definitions can be found in surrounding text, this section provides a quick reference.

List of Abbreviations

AFRL Air Force Research Laboratory
BPA Backprojection Algorithm
CAT Computer-Aided Tomography
CZT Chirp z-Transform
DIFSAR Differential Interferometric Synthetic Aperture Radar
DBS Doppler Beam Sharpening
ERIM Environmental Research Institute of Michigan
FBPA Fast Backprojection Algorithm
FFT Fast Fourier Transform
FPFBPA Factorised Polar Format Backprojection Algorithm
FPGA Field Programmable Gate-Array
GPU Graphics Processing Units
HPC High Performance Computing
IFP Image Formation Processor
IFSAR Interferometric Synthetic Aperture Radar
LFM Linear Frequency Modulated
MAP Maximum-a-Posteriori
MTRC Motion Through Resolution Cells
NuFFT Non-uniform Fast Fourier Transform
PFA Polar Format Algorithm
PRF Pulse Repetition Frequency
QPE Quadratic Phase Error
RMA Range Migration Algorithm
SAR Synthetic Aperture Radar
SNR Signal-to-Noise Ratio
SVPF Space-Variant Post-Filtering
USFFT Unequally-Spaced Fast Fourier Transform

List of Symbols

A Constant that appears in phase terms
B Scattering coefficient of the target
fk Frequency of the kth sample within a pulse
(fx,fy) Spatial frequency in range and cross range, respectively
I(p̄) Matched filter response of the point target
k0 Center wavenumber (corresponding to center wavelength)
K Number of frequency samples per pulse
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La Length of synthetic aperture (linear flight path)
Np Number of pulses used to form SAR image
(Nx,Ny) Size of polar format grid in spatial frequency
p̄ Location of stationary point target
ra Distance from the antenna phase center to scene center
ra0 Distance from the center of the synthetic aperture to scene center
rp Distance from the antenna phase center to the target
rp0 Distance from the center of the synthetic aperture to the target
rmax Allowable scene radius for PFA
s(x, y) SAR image (no distortion, good focus)
s(x̃, fy) Range-compressed PFA image after defocus correction
s(x̃, ỹ) SAR image (distortion, good focus)
s̃(x, y) SAR image (no distortion, defocus)
s̃(x̃, fy) Defocused range-compressed PFA image
s̃(x̃, ỹ) SAR image (distortion, defocus)
S(fk, τn) Phase history data
S(fx, fy) Polar formatted phase history data
t Time during synthetic aperture, defined as t ∈ [−1, 1]
(x, y, z) Cartesian coordinates of stationary point target
(x̃, ỹ, z̃) Cartesian coordinates of stationary point target in distorted PFA image
x̂ x-coordinate of target location used in QPE correction
(xa, ya, za) Cartesian coordinates of antenna phase center
(x0
′, y0

′) Slant plane target location given notation of [1]
xa0 Ground range from scene center to antenna phase center
y0 Flight path offset (squinted flight path)
X1 Spatial frequency coordinate given notation of [1]
γ Antenna phase center location
∆R Differential range to the point target
∆R̂ Far-field approximation of differential range used by PFA
θa Elevation angle of antenna phase center
θs Squint angle of antenna phase center
λ Center wavelength of radar pulse
ρa Azimuth resolution
τn Time of the nth pulse
Φ Exact target phase
(Φ0,Φ1,Φ2) Exact constant, linear, and quadratic phase terms
Φ̂ Approximated target phase compensated by PFA
(Φ̂0,Φ̂1,Φ̂2) Approximated constant, linear, and quadratic phase terms
Φ̄ Residual target phase error after PFA
(Φ̄0,Φ̄1,Φ̄2) Residual constant, linear, and quadratic phase error terms
Φc QPE correction
Φr Residual QPE after fast correction algorithm
ψa Azimuth angle of antenna phase center
ψt Integration angle of synthetic aperture (circular flight path)
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Chapter 1

Introduction

Synthetic Aperture Radar (SAR) is a well-known remote sensing technique with applica-

tions in commercial, scientific and military communities. SAR provides several unique

capabilities, among them the ability to image at night as well as during the day, and the

ability to image through clouds and foliage depending on the wavelength [2]. A famous

use of SAR was the mapping of the entire planet Venus [3] in the early 1990s. Venus is

covered by a dense, opaque cloud layer, which does not allow imaging at optical wave-

lengths. Radar waveforms centered at 2.4 GHz were able to penetrate the clouds, and a

relatively simple image formation algorithm [4] was used as the SAR resolution was very

coarse (> 100 m).

It is generally accepted that the principles of SAR were first developed by Carl Wi-

ley of Goodyear Aircraft Corporation in June 1951 [5]. Early SAR systems used optical

processing [6] for image formation, and an excellent description of an optical processor is

provided by Dr. William Brown in 1969 [7]. Modern SAR systems utilize digital process-

ing [8], and take advantage of commercial advancements in processing power and storage.

A good example of this is the implementation of SAR processing on Graphics Processing

Units (GPU) [9] which were originally designed for the gaming industry.

SAR requires specialized algorithms, called Image Formation Processors (IFPs), to
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convert radar returns into images. A myriad of IFPs have been developed, and a thorough

review of SAR imaging algorithms is provided in Section 2.1.1. In this dissertation, we fo-

cus on two well-known IFP’s: Backprojection Algorithm (BPA) [10, 11] and Polar Format

Algorithm (PFA) [1,12]. In [13], BPA was derived from a matched filter, which maximizes

signal-to-noise ratio (SNR) [14], under ideal conditions (i.e., an isolated isotropic point

target in white Gaussian noise). BPA is ideal in that the algorithm does not introduce any

image artifacts due to phase errors. However, the algorithm is slow, requiringO(N3) oper-

ations [13] for anN×N pixel image with critical sampling. In contrast, PFA is significantly

faster than BPA, with the tradeoff that the matched filter is approximated, thus resulting in

image artifacts such as distortion and defocus for large scene sizes. PFA approximates the

curved wavefront of the radar wave propagation with a planar wavefront which allows the

use of Fast Fourier Transforms (FFTs) that result in a more efficient implementation on a

variety of processors. A typical PFA implementation requires O(N2 logN) operations for

an N ×N pixel SAR image.

1.1 Motivation

Wide area, staring SAR sensors [15–17] have been shown to offer unique exploitation

capabilities, such as the detection of slow moving targets [18] and improved vehicle iden-

tification [19–22]. However, these capabilities come at the cost of significantly increasing

the computational burden of the IFP. Wide area SAR images typically exceed the scene size

limitations of fast image formation algorithms, such as PFA, which result in image artifacts

such as distortion and defocus.

There are three approaches to solving the large image formation problem. One is the

use of exact algorithms like BPA in a High Performance Computing (HPC) environment [9,

23, 24]. BPA is an embarrassingly parallel algorithm, since the calculation of every pixel

is an independent process without any dependency on other pixels. This makes it relatively

2



easy to implement BPA in a parallel computing environment. However, there are many

logistical problems with this approach that require clever computer science techniques to

solve [25]. Through use of BPA, SAR images will have no phase error induced by the IFP,

resulting in images that have no distortion and are well focused.

A second approach is to use fast image formation algorithms (such as PFA) by first

dividing the image into small enough patches such that image artifacts are minimized. The

process of subdividing the image into patches before actually forming the image is called

Digital Spotlighting [26]. This approach is analyzed in detail in [27].

A third approach is to use fast image formation algorithms, but instead of creating

smaller image patches to minimize image artifacts, corrections are applied after image

formation [28]. If the flight path is known, the residual phase errors after image formation

are deterministic and appropriate correction filters can be constructed. However, in general,

these phase errors vary spatially across the image, and a brute force correction of each pixel

is more computationally expensive than BPA.

This dissertation improves upon the third approach by providing a faster algorithm for

applying these corrections. Specifically, a novel variant of PFA is developed that maximizes

the efficiency of the post-image corrections.

1.2 Contributions

This dissertation includes three significant contributions, culminating in a new computa-

tionally efficient image formation algorithm for circular flight paths that corrects for distor-

tion and defocus artifacts. The three contributions are detailed in the following subsections.

1.2.1 Improved PFA Phase Error Analysis

This disseration extends previous work in phase error analysis by using a novel technique

for decomposing PFA phase errors into constant, linear, and quadratic terms for arbitrary
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flight paths. A comprehensive literature review of phase error analysis is provided in Sec-

tion 2.1.2.

In order to analyze the image artifacts resulting from PFA in large scenes, the residual

phase error is analyzed based on the approximations used in PFA. One of the biggest drivers

of computational complexity in BPA is that the exact range is calculated for every pixel in

the image for every sensor position along the flight path. Typically, this range is calculated

using the Euclidean distance in the sensor coordinate system, and this range is used to

calculate the exact phase required to matched filter the SAR phase history data. In PFA, the

range is not explicitly calculated in this manner. Instead, a far-field approximation is used

which gives a linear estimate of the phase, and the matched filter is performed using 2-D

FFTs.

Using a Taylor Expansion in the image coordinates [29], it was shown that this linear

estimate of the phase is equivalent to an approximation of the range calculation. By ana-

lyzing the second order terms of the Taylor Expansion, the residual quadratic phase error

(QPE) was calculated for a linear flight path scenario. Other analyses [30, 31] performed

the Taylor Expansion in the frequency domain instead of image coordinates.

This dissertation extends the previous work [29] by performing the Taylor Expansion

in the temporal dimension along the flight path. This allows for more accurate isolation

of the constant, linear and quadratic phase error terms for any arbitrary flight path. The

Taylor Expansion is used to derive a closed-form analytic expression for constant, linear

and quadratic phase errors.

The PFA phase error analysis is described in detail in Chapter 3. This analysis is also

included in a journal paper [32] which was accepted for publication in 2015. Preliminary

results were also published in a 2013 letter [33].
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1.2.2 Derivation of Accurate Scene Size Limitations

The second significant contribution is the derivation of accurate scene size limitations for

arbitrary flight paths. A comprehensive literature review of previous work in this area is

provided in Section 2.1.3. A critical component of this derivation is that we include the

distortion correction of linear phase error as part of the QPE analysis. In Chapter 4, the

expression for the residual QPE is given as a function of both the actual target location

and the apparent (distorted) image location of the target. Including the impact of distortion

when determining the region of acceptable focus is a novel contribution. Earlier works [1,

12, 29, 30, 34, 35] provide only a maximum scene diameter or radius in their analysis. In

this dissertation, we determine regions of focus that are arbitrary in shape to account for all

areas in the image with acceptable image focus.

In this dissertation, we use the analytic expressions described in Section 1.2.1 to de-

rive accurate scene size limitations for arbitrary flight paths. First, the linear phase error

expressions are used to solve for the distortion in the PFA images. By equating the constant

and linear phase terms of BPA with the constant and linear phase terms of PFA, the exact

mapping between the 3-D scene into the 2-D image is derived. This expression accounts

not only for the distortion in the PFA images, but also for other SAR phenomenon such as

layover [36].

Second, the QPE expressions are used to solve for the defocus in the PFA images. The

difference between the quadratic phase terms of BPA and the quadratic phase terms of PFA

quantifies the defocus in the PFA image. We assume that the image is well focused if the

QPE is less than π/2 [29,34]. With these expressions, we derive a closed-form solution for

the region of the PFA image that is well focused. This solution is verified using point target

simulations for both a circular and a linear flight path.

The derivation of accurate scene size limitations is described in detail in Chapter 4.

This analysis is also included in a journal paper [32] which was accepted for publication in

2015.
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1.2.3 Fast PFA Corrections for a Circular Flight Path

The third significant contribution is the development of a fast algorithm that corrects for

distortion and defocus errors in PFA for a circular flight path. Since we have isolated the

linear and quadratic phase error terms for any arbitrary flight path, we can use these de-

terministic expressions to apply corrections to the PFA image. In general, these correction

terms can be applied via a complex multiplication in the phase history domain. However,

the appropriate corrections vary across the image in both dimensions, and a brute force

approach to applying the corrections is computationally expensive. Therefore, a fast algo-

rithm is desired to apply these corrections.

The developed fast algorithm works in two steps. First, the defocus is corrected, and

then the distortion is corrected. For the circular flight path, the QPE varies mostly with

the range to the scatterer and very little with the cross range distance in the distorted PFA

image coordinates. Therefore, a computationally efficient approach is to apply the same

QPE correction across an entire column of pixels before the azimuth FFT step in PFA. The

appropriate correction is calculated at the center pixel in every column (representing the

center of the image in azimuth). This simple correction adds comparatively few computa-

tions to the imaging process, and yet it corrects a significant amount of defocus, thereby

greatly increasing the focused scene size. The distortion correction is then applied by sim-

ply interpolating the distorted image to a warped grid which compensates for the constant

and linear phase error terms.

In Chapter 5, the new algorithm is described in detail. The algorithm is demonstrated

on point target simulations and a measured large scene dataset. Also, the increase in the

focused scene size and the computational efficiency of the algorithm are quantified. This

analysis is also included in a journal paper [37] which was submitted for publication to

IEEE AES in 2015. A comprehensive literature review of PFA correction algorithms is

provided in Section 2.1.4.

6



1.2.4 Published Papers Related to this Dissertation

As part of the research for this dissertation, several papers were written and submitted

for publication. Initial results were published in the SPIE Algorithms for SAR Imagery

Conference [13, 38–41]. In 2013, we published a paper [33] on the allowable scene sizes

for PFA imaging with postfiltering. In 2014, we published a paper [27] which presented

analysis of the computational cost of several SAR image formation algorithms with non-

linear flight trajectories.

Also in 2014, we wrote a paper [32] that has been accepted for publication which

includes the phase error analysis and scene size limitations. The majority of this paper

is included in Chapters 3 and 4. In 2015, we wrote a paper [37] that has been submitted

for publication which includes the fast correction algorithm for circular flight paths. The

content of this paper is included in Chapter 5.

1.3 Outline of Dissertation

In Chapter 2, we provide background material including a literature review and a descrip-

tion of the IFPs used in this dissertation, namely PFA and BPA. In Chapter 3, we present

the improved PFA phase error analysis for arbitrary flight paths. In Chapter 4, we describe

the derivation of accurate scene size limitations and give examples for linear and circular

flight paths. In Chapter 5, we use the results from the phase error analysis to develop an

improved fast algorithm for circular flight paths. Finally, in Chapter 6 we summarize the

dissertation and offer some thoughts regarding follow-on research in this area.

1.4 Notation

In this dissertation, we define a Cartesian coordinate system where the origin corresponds

to the center of the imaging scene. We also assume that the SAR operates in spotlight
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mode, with the origin as the motion compensation point. This means that every pulse

is compensated exactly for an ideal scatterer at scene center whose received signal has

constant phase [12].

We also use the imaging convention that the x-axis corresponds to the range dimen-

sion, the y-axis corresponds to the cross range dimension, and the z-axis is the vertical di-

mension. Any dataset can easily be transformed into these coordinates by a simple rotation.

For instance, the measured dataset [42] described in Section 2.5.2 uses an East-North-Up

convention. We simply rotate the coordinate system by the azimuth angle at the center of

the aperture. Note that this is flipped from [1], which defines the y-axis as range and the

x-axis as cross range.

The remainder of the notation is defined in Chapter 2. The image geometry and data

model is described in Section 2.2 and the linear and circular flight paths are defined in

Section 2.4.
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Chapter 2

Background

This chapter includes background that provides context for the research described in the

dissertation. Section 2.1 provides a thorough literature review. Section 2.2 describes the

image geometry and data models used in the dissertation. Section 2.3 describes the two IFP

algorithms used in this dissertation, namely PFA and BPA. Section 2.4 provides definitions

for the linear and circular flight paths, and also calculates some derivatives that will be

useful in the scene size limitation analysis. Finally, Section 2.5 describes the datasets used

in the dissertation.

2.1 Literature Review

There have been numerous books written on different aspects of SAR, and several of them

include significant content regarding image formation algorithms. A few popular books

are [1, 2, 12, 14, 43–49]. There have also been numerous survey papers written on various

subjects. Sherwin [50] provides a good history of the early developments in SAR, and

Brown [7] provides a good introduction to SAR in 1969. Elachi [51] wrote a very detailed

paper on spaceborne SAR systems in 1982. In 2000, Rosen [52] described SAR interfer-

ometry in detail. In 2013, Reigber [53] described recent advancements in SAR, especially

as they pertain to very high resolution imaging.
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2.1.1 Review of SAR Imaging Algorithms

Early SAR systems used rectangular range-Doppler processing to form images, which we

would now call unfocused SAR, or Doppler Beam Sharpening (DBS) [8]. Techniques

were developed [54] to account for defocusing due to target motion through resolution

cells (MTRC) [12], but this technique is only practical for coarse resolution imaging.

As radar technology improved (such as the advent of stretch processing [55]), finer

resolution imaging became more practical. Walker [34] related a new range-Doppler imag-

ing algorithm, which became known as PFA. PFA is described in detail in Section 2.3.2.

Doerry [56] wrote an extensive report for Sandia National Laboratories which covers the

basics of PFA with an emphasis on real-time implementations. In 2008, PFA was imple-

mented using the principle of chirp scaling [57], which used the properties of the linear

frequency modulated (LFM) signal to speed up the algorithm. In 2011, PFA was modi-

fied [58] such that the plane wave assumption was replaced by a spherical wave approxi-

mation, which leads to an increased scene size for spaceborne applications.

One aspect of PFA that required significant research was the polar interpolation pro-

cess. The theory for interpolating digital signals was described in detail by Crochiere and

Rabiner [59] in 1981. Munson [60] provided a comparison between 2-D interpolation and

separable 1-D interpolations, and he concluded that the 2-D interpolation yields only a

small performance improvement over the vastly computationally efficient 1-D interpola-

tions. The medical imaging community calls this process Gridding, and there have been

several papers published [61–64] attacking this problem. In 2007, a comparison between

radar and medical imaging PFA implementations was performed [39] which suggested that

the methods were similar in performance. In 2012, Doerry [65] published a comprehen-

sive paper describing the interpolation process and offered several possible solutions to the

problem. In 2014, a MATLAB implementation of PFA was published [66].

There have been a few approaches that avoid the interpolation step altogether. In

2005, the unequally-spaced FFT (USFFT) [67] was applied to PFA image formation. A
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novel approach to the problem was offered by Wang [68], where the authors derived a

specialized non-linear flight path whereby the polar interpolation is no longer necessary for

image formation. In 2014, Fan [69] used a fast Gaussian grid non-uniform FFT instead of

the polar interpolation with good results.

In 1983, Munson [11] applied tomographic processing that was used in medical imag-

ing such as Computer-Aided Tomography (CAT) to the SAR reconstruction problem. The

theory for reconstructing optical images from their projections was detailed by Mersereau

and Oppenheim [70] in 1974 and by Stark and Woods [71] in 1981. This led to the de-

velopment of BPA [10] in 1992. A distinct advantage of BPA is the ability to form SAR

images as phase history is collected, pulse by pulse, and to integrate newly obtained infor-

mation into the SAR image as it becomes available. BPA also allows for arbitrary imaging

grids. However, BPA is computationally expensive as it requires O(N3) operations for an

NxN SAR image. In 1995, Jakowatz [72] extended BPA to 3-D imaging. In 1997, Cetin

and Karl [73] formulated the tomographic imaging problem as a Maximum-a-Posteriori

(MAP) estimation problem, which offers enhanced noise suppression.

Despite its inherent flexibility, BPA was too computationally expensive for most appli-

cations. Therefore, several approaches were pursued to speed up the algorithm while retain-

ing the advantages of BPA. Most of these fast backprojection algorithms (FBPA) offer de-

creased computational complexities of O(N5/2) or O(N2 logN). In 1996, McCorkle [74]

introduced a quadtree FBPA, which factorizes the phase history data into subimages. In

1999, Yegulalp [75] introduced a fast algorithm which forms subimages on a Nyquist sam-

pled polar imaging grid using BPA (utilizing the fact that BPA can form images on any

arbitrary grid), interpolates the subimages onto the desired imaging grid, and coherently

sums the resultant images.

Another form of FBPA uses a technique called digital spotlighting [14,76–78], which

is a signal processing method that creates a subset of the phase history data corresponding to

a subset of the image. This version of FBPA uses digital spotlighting to break apart a large
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SAR phase history into a series of smaller SAR phase histories which are then processed

into images using BPA. This algorithm [27] essentially trades BPA computations with dig-

ital spotlighting computations. Since digital spotlighting has computational complexities

of O(N2) instead of O(N3), this algorithm is significantly faster. A Factorised Polar For-

mat BPA (FPFBPA) has also been developed [79] which further reduces the computation

complexity. Another version of FBPA integrates a geometrical autofocus algorithm [80]

for better image focus in the presence of navigation errors.

Parallel processing techniques have been applied to SAR image formation as far back

as 1990 [81]. In 2005, Buxa [82] showed a 150x speed-up of BPA using Field Pro-

grammable Gate-Array (FPGA) processors. Other implementations of BPA on FPGAs

have been shown [83, 84]. In 2006, the quadtree FBPA was implemented on varying par-

allel processors [38] and compared with standard BPA. Recently there have been several

implementations of SAR image processing on GPUs, including [23, 25, 85–87]. In 2012,

SAR image formation was implemented on a low power multi-core Digital Signal Proces-

sor from Texas Instruments [88].

One imaging algorithm not addressed in this dissertation is the Range Migration Algo-

rithm (RMA). RMA was first introduced to stripmap SAR by Rocco [89] and Cafforio [90]

using techniques first developed for seismic imaging. RMA was expanded to spotlight

mode SAR by Prati [91]. RMA does not make a far-field assumption as in PFA, and there-

fore distortion and defocus due to range curvature are not an issue. However, RMA pro-

cessing requires a higher along-track sampling than PFA [12], which leads to a significant

increase in the pulse repetition frequency (PRF) of the SAR system [27]. In 2014, an

interpolation-free version of RMA was introduced [92] and tested on simulated data. RMA

has also been implemented on FPGAs using the Non-uniform FFT (NuFFT) [93].

There have also been several papers [27, 94–100] that have compared imaging algo-

rithms using varying criteria.
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2.1.2 Phase Error Analysis of Imaging Algorithms

The use of Taylor series to analyze the phase errors in SAR imagery dates back to 1980,

when Walker [34] used a 2-D Taylor series in the image domain. A comprehensive phase

error analysis is given in Section 3.5 of [12], where a 2-D Taylor series expansion of the

signal phase is derived. The authors state that this approach was first developed in unpub-

lished analyses by J. Craig Dwyer at the Environmental Research Institute of Michigan

(ERIM). In Section 3.7 of [12], the Taylor series analysis is used to isolate distortion and

defocus due to range curvature. Fienup [101] extended this analysis for moving targets,

and also provided exceptional insight into the various phase terms that arise in the analysis.

In 1986, Zeoli [102] showed that a constant velocity error causes a QPE and provided

an analytic solution to the problem. Carrara [12] compared several different imaging algo-

rithms in terms of phase errors. In his 1999 Ph.D. thesis, Doren [30] performed an extensive

analysis on the planar wavefront assumption. This Taylor series was used in the frequency

(k-space) domain instead of the image domain, following the methodology developed by

Jakowatz [1].

In 2002, Fornaro [103] performed a phase error analysis on squinted data collected

in strip-map mode and looked to correct abberations appearing in interferometric (IFSAR)

and differential interferometric (DIFSAR) applications. In 2009, Xie [104] used a Taylor

Expansion to analyze the signal characteristics of missile-borne SAR.

2.1.3 Scene Size Limitations

Most of the papers and books cited in Section 2.1.2 used the phase error analysis to de-

termine scene size limitations. There is some discrepancy as to the acceptable level of

QPE in a well focused image. Some sources [29, 34] cite a π/2 error is acceptable while

others [1, 30] indicate a more stringent requirement of π/4.

In 2006, Doerry [35] published an extensive report for Sandia which utilized the anal-

ysis in [30] to derive scene diameter limits for a circular flight path, a linear flight path with
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no squint, and a linear flight path with squint. Another Sandia report [105] performed a

survey of the assumptions and approximations that limit the performance of PFA.

In a series of articles [106,107], Zhu looked at the scene size limit of PFA for moving

target imaging. Another paper [108] studied how image artifacts affect target classification

and developed an application-driven scene size limit.

2.1.4 Phase Error Correction Algorithms

In 1996, Berizzi [109] proposed an autofocus solution to correct for phase errors. The

authors sought to estimate a higher order polynomial approximation by optimzing image

contrast, but they did not state the computational cost of such an approach.

Doren and Jakowatz [28, 30, 110] derived a space-variant post-filtering (SVPF) algo-

rithm that corrects for the range curvature effects due to PFA. Preiss [111] extended this

work to show that IFSAR processing is possible using these post-filtered images. This

post-filtering approach does not change the PFA in any way; it simply provides an ad-hoc

method for correcting the images after image formation. In 2011 and 2012, Mao [112,113]

proposed a better filter for the SVPF which is robust to arbitrary flight paths. In 2014,

Peng [114] used the SVPF in a 3-D imaging application.

In 2004, Carrara [115] proposed changing PFA by utilizing a new along-track align-

ment and formatting system. This algorithm modifies the SAR phase history storage format

which ultimately removes range curvature effects from the final image. The authors showed

that this approach is mathmematically equivalent to RMA processing.

In 2009, Fortuny-Guasch [116] proposed the use of a pseudopolar format algorithm,

but this requires a linear flight path and is intended to work with stepped-frequency continu-

ous wave radar applications. In 2011, Liu [58] proposed an algorithm based on a spherical-

wave assumption rather than a planar-wave assumption. In 2015, Fan [117] proposed a

PFA based on the double Chirp z-Transform (CZT).

In 2012, Linnehan [118] provided an efficient means for mitigating the range curvature
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effects in PFA by breaking the image up into subimages and applying the phase corrections

to the phase history before PFA processing. In 2013, Horvath [33] extended the original

analysis by Rigling [29] by considering the scene size increase with the application of the

second order corrections provided by the Taylor Expansion.

2.2 Image Geometry and Data Model

This dissertation uses the same Cartesian coordinate system first defined in [29] and further

refined in [13]. The SAR sensor travels along an arbitrary flight path, and we define that

the antenna phase center has a location denoted by γ(t) such that

γ(t) = [xa(t), ya(t), za(t)]
T (2.1)

where t denotes the slow-time dimension during the imaging interval. We define all coor-

dinates with respect to the origin of the coordinate system, which corresponds to the SAR

motion compensation point. The distance from the antenna phase center to the origin is

denoted as

ra(t) = ‖γ(t)‖ =
√
x2
a(t) + y2

a(t) + z2
a(t). (2.2)

To simplify subsequent analysis without loss of generality, we define the synthetic aperture

to occur in the time interval t ∈ [−1, 1]. We also define a stationary target located at

p = [x, y, z]T . (2.3)

In general, this target can have any arbitrary motion, but in this dissertation, we will assume

that the target is stationary.

At periodic intervals, the radar transmits a pulse that reflects off scatterers in the scene

and some of the reflected energy is received by the radar. In a given synthetic aperture,

there are Np pulses used to form the image. The time of each pulse is denoted by the

15



sequence {τn|n = 1, 2, . . . Np}. Assuming dechirp-on-receive processing [55], the output

of the receiver at a given time τn can be viewed as a sequence of frequency samples over

the bandwidth of the received pulse, with a phase shift corresponding to the round-trip time

to the target. There areK frequency samples per pulse, and the associated frequency values

are represented by the sequence {fk|k = 1, 2, . . . K}.

We define the receiver output, S(fk, τn), of a single isotropic point target located at p

as

S(fk, τn) = B exp

(
−j4πfk∆R(τn)

c

)
, (2.4)

where B represents the scattering coefficient of the point target along with any gains and

phases from pulse transmission, propagation, and reception. The differential range of the

point target is represented by

∆R(τn) = rp(τn)− ra(τn) (2.5)

where ra is defined in (2.2) and rp is the distance between the sensor and the target p, given

by

rp(t) =

√
[x− xa(t)]2 + [y − ya(t)]2 + [z − za(t)]2. (2.6)

2.3 SAR Image Formation Algorithms

Digital image formation techniques generally fall into two categories. The first category

consists of exact image formation algorithms, which are derived from a matched filter [119]

or the projection slice theorem [11]. These approaches are typically implemented with

BPA [10], which is described thoroughly in Section 2.3.1.

The second category consists of fast image formation algorithms, which use approx-

imations to reduce the amount of computations required to form the image. Typically the
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quality of the images formed with fast algorithms is equivalent to the exact algorithms near

the center of the image, but image artifacts appear as you get further away from the center.

Therefore, fast algorithms are limited by the size of the artifact-free image. A popular fast

image formation algorithm is PFA [34], which makes use of the FFT [120] for efficient

computation. PFA is described throughly in Section 2.3.2.

2.3.1 Matched Filter and BPA

The material from this section was included in [13] and [32]. The most straightforward

method for forming a SAR image is to perform a matched filter. From (2.4), we can build

the matched filter for every pixel in the image. At every pixel location p, we assume an

isotropic scatterer with constant scattering coefficient, B. Therefore, the matched filter

response [119], which maximizes the SNR of estimates of B at location p, is given by

I(p) =
1

NpK

Np∑
n=1

K∑
k=1

S(fk, τn) exp

(
+j4πfk∆R(τn)

c

)
. (2.7)

To form an image using this method, (2.7) is applied for each pixel in the image.

This requires calculation of the differential range, ∆R(τn), for every pixel for every pulse.

The algorithm has a computational complexity of O(N4) for 2-D images, which makes

it impractical for most applications. However, (2.7) can be more efficiently implemented

using BPA.

BPA implements (2.7) to form images over a grid of pixel locations by utilizing an FFT

to perform the inner summation for a uniformly spaced set of differential ranges, which are

then interpolated to differential ranges corresponding to each pixel location. This requires

calculation of the differential range, ∆R(τn), for every pixel for every pulse. This algo-

rithm has a computational complexity of O(N3) for 2-D images, which is significantly

slower than PFA for most applications. However, the resulting image is completely free

of distortion and defocus, and we will use (2.7) as a reference to determine the scene size
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limitations of PFA. As previously mentioned in Section 2.1.1, the computational complex-

ity of BPA can be significantly reduced by implementing one of the FBPA implementa-

tions [38, 74, 75].

2.3.2 PFA

The standard implementation of PFA uses a 2-D FFT to form the SAR image efficiently.

In order to use this computationally efficient approach, a far-field assumption is made.

Rigling [29] showed that the PFA matched filter kernal is defined by an estimate of the

differential range, ∆R such that

∆R̂(t) =
−1

ra(t)
(xa(t)x̃+ ya(t)ỹ + za(t)z̃) (2.8)

where (x̃, ỹ, z̃) are the coordinates where a target at location (x, y, z) appears in the image.

This estimate of the differential range has the effect of approximating the curved wave-

front of propagation with a planar wavefront. Implementation of PFA is explained in detail

in many textbooks [1,12], so we will simply summarize the algorithm here. In order to use

a 2-D FFT to form an image, the data samples need to reside on a rectilinear grid in the

spatial frequency or wavenumber domain. In a typical spotlight SAR collection, the data is

collected on a polar grid, so an interpolation process is required to resample the data onto a

rectilinear grid. Assuming the data has been collected on a smooth grid, 1-D interpolation

filters can be used to efficiently resample the data to a rectilinear grid prior to matched

filtering, with minimal errors.

Figure 2.1 shows a block diagram of PFA. The incoming phase history is denoted

as S(fk, τn), which is defined in (2.4). This incoming phase history data is resampled

onto a rectilinear grid, first by interpolating in the fast-time (range) dimension and then by

interpolating in the slow-time (cross range) dimension. The resampled data is denoted as

S(fx, fy), where fx is the spatial frequency in the range dimension and fy is the spatial
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Phase History Data
S(fk, τn)

Fast Time Interpolation
S(fx, τn)

Slow Time Interpolation
S(fx, fy)

FFT in Range
s̃(x̃, fy)

FFT in Azimuth
s̃(x̃, ỹ)

SAR Image
s̃(x̃, ỹ)

Figure 2.1: PFA block diagram

frequency in the cross range dimension.

The image is then formed by performing a 2-D FFT, which is efficiently implemented

by a series of 1-D FFTs in range followed by a series of 1-D FFTs in azimuth. The result is a

SAR image which contains defocus and distortion errors due to the far-field approximation.

These errors are described in Chapters 3 and 4. The final image is denoted as s̃(x̃, ỹ), where

x̃ is the distorted range coordinate and ỹ is the distorted cross range coordinate. We denote

this image as s̃ since the image also contains defocus errors. Note that in this dissertation,

all images are formed in the ground plane.

2.4 Flight Path Definitions

In this dissertation, we analyze PFA phase errors for an arbitrary flight path. Then, we

utilize this approach to derive specific results for a circular flight path and a linear flight

path. Here, we define the geometry conventions and parameterizations of each flight path.

2.4.1 Circular Flight Path Definition

For a circular flight path, it is easier to redefine the flight path from (2.1) in spherical

coordinates. We define the azimuth angle as ψa and the elevation angle as θa of the antenna
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phase center with the following relationships:

xa(t) = ra(t) cos θa(t) cosψa(t)

ya(t) = ra(t) cos θa(t) sinψa(t) (2.9)

za(t) = ra(t) sin θa(t).

An ideal circular flight path has a constant elevation, so za and θa are assumed to be

constant. We also define the flight path to be centered at the origin of the coordinate system,

so the distance from the antenna phase center to the origin, ra, and the elevation angle, θa,

are also constants. We define another constant xa0 = ra cos θa, which is the ground range

from scene center to the antenna phase center.

We define the azimuth extent of the synthetic aperture by the difference between the

minimum and maximum azimuth angles, which we denote ψt. Since −1 ≤ t ≤ 1 is

the defined time interval of the synthetic aperture, −ψt/2 ≤ ψa(t) ≤ ψt/2 represents

the azimuth angles along the synthetic aperture. Therefore, ψa(t) = (ψt/2) · t. We can

now express the spherical coordinates as time-dependent quantities and compute their time

derivatives:

ra(t) = ra θa(t) = θa ψa(t) =
ψt
2
t

∂ra
∂t

= 0
∂θa
∂t

= 0
∂ψa
∂t

=
ψt
2

(2.10)

∂2ra
∂t2

= 0
∂2θa
∂t2

= 0
∂2ψa
∂t2

= 0.

We note that that a circular path can be parameterized by three variables: ψt, which is

the size of the synthetic aperture in radians, and two of the three constants ra, za and θa.

In the phase error analysis in Sections 3.3.2 and 4.2.1, we will need the first and second
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derivatives of the flight path defined in (2.9):

xa|t=0 = xa0 cosψa|t=0 = xa0

∂xa
∂t

∣∣∣∣
t=0

= −xa0 sinψa
ψt

2

∣∣
t=0

= 0 (2.11)

∂2xa
∂t2

∣∣∣∣
t=0

= −xa0 cosψa
ψ2
t

4

∣∣∣
t=0

= −xa0
ψ2
t

4

ya|t=0 = xa0 sinψa|t=0 = 0

∂ya
∂t

∣∣∣∣
t=0

= xa0 cosψa
ψt

2

∣∣
t=0

= xa0
ψt
2

(2.12)

∂2ya
∂t2

∣∣∣∣
t=0

= −xa0 sinψa
ψ2
t

4

∣∣∣
t=0

= 0

za|t=0 = ra sin θa

∂za
∂t

∣∣∣∣
t=0

= 0 (2.13)

∂2za
∂t2

∣∣∣∣
t=0

= 0.

2.4.2 Linear Flight Path Definition

For the linear flight path, we align the coordinate system such that the sensor flies in the

y-dimension. As in the circular case, we have a constant elevation, za, but here the x-

coordinate, xa, is also constant. We define the length of the synthetic aperture as La, where

−La/2 ≤ ya(t) ≤ La/2. Since −1 ≤ t ≤ 1 is the defined time interval of the synthetic

aperture,

ya(t) =
La
2
t. (2.14)

In this dissertation, we assume that the radar is collected broadside with no squinting

of the antenna. Thus, the flight path is centered at y = 0. As in the circular case, we
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continue by calculating the first and second derivatives of the flight path:

xa

∣∣∣∣
t=0

= xa

∂xa
∂t

∣∣∣∣
t=0

= 0 (2.15)

∂2xa
∂t2

∣∣∣∣
t=0

= 0

ya

∣∣∣∣
t=0

=
La
2
t

∣∣∣∣
t=0

= 0

∂ya
∂t

∣∣∣∣
t=0

=
La
2

∣∣∣∣
t=0

=
La
2

(2.16)

∂2ya
∂t2

∣∣∣∣
t=0

= 0

∣∣∣∣
t=0

= 0

za

∣∣∣∣
t=0

= za

∂za
∂t

∣∣∣∣
t=0

= 0 (2.17)

∂2za
∂t2

∣∣∣∣
t=0

= 0.

The above assumes a broadside collection, or zero squint. To consider at non broadside

collections, we modify (2.14) to include a constant offset, y0, such that

ya(t) =
La
2
t+ y0. (2.18)

Here, the squint angle, θs, is related to y0 and xa by a simple relationship,

y0 = xa tan θs. (2.19)
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The only change to (2.15), (2.16), and (2.17) when a squint angle is included is that

ya

∣∣∣∣
t=0

= y0. (2.20)

2.5 Description of SAR Datasets

In this section, we describe the simulated and measured datasets used in the experiments

performed for this dissertation.

2.5.1 Point Target Scene

Many of the concepts developed in this dissertation are illustrated using a point target sim-

ulation in MATLAB. Using the definitions from Section 2.2, we generate a grid of point

targets using (2.4) to create the simulated phase history data. In order to illustrate the ef-

fects of defocus and distortion caused by PFA, we generate point targets at a very short

range from the sensor to accentuate the image artifacts.

We generated a synthetic target scene with a grid of point targets spaced at 5-meter

intervals extending from -45 m to 45 m in both x and y directions. Figure 2.2 depicts the

locations of the targets in the scene. In this dissertation, we call this dataset the Point Target

Scene.

Figure 2.3 shows an image of the Point Target Scene formed using BPA described in

Section 2.3.1 with a circular flight path. Because BPA was used to form this image, there

are no artifacts in the image due to errors induced by the IFP. All of the targets appear at

the correct locations, so there is no distortion in the image.

However, since the simulated scene was set up at very short range, the appearance

of the point targets in the image varies significantly across the image. Each target has a

sidelobe pattern which looks like a cross that is aligned with range and cross range. This

cross pattern is horizontal and vertical at scene center, but it appears to rotate towards the
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Figure 2.2: Location of synthetic targets in the Point Target Scene

edges of the scene. This is due to range curvature induced by the short range of the sensor.

Also, the size of the point targets appear to change across the image. The size of the

target represents the radar resolution at that location. Targets closer to the radar (such as the

target at (x, y) = (45, 0) are elongated in the range dimension. This is due to the steeper

depression angle that occurs at the shorter ranges.

2.5.2 AFRL Dataset

This dissertation also utilizes a measured dataset provided by the Air Force Research Lab-

oratory (AFRL) [42]. The dataset was collected by a radar platform that was flying a nom-

inally circular flight path. Due to normal aircraft turbulence, an exact circular flight path is

not feasible, so a linear least squares fit was performed to determine the best fit to an ideal

circular flight path. The best fit is ra = 10.4994 km, θa = 44.341◦, and ψt = 3.322◦. This

ideal circular flight path has a mean squared error of 6.53 m with respect to the actual flight
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Figure 2.3: BPA image of Point Target Scene - Circular Flight Path

path. The desired image area is a large scene with dimensions of 6 km x 6 km. Despite

using a least squares circular fit to the actual flight path, our approach will be shown to be

nonetheless effective, and therefore realistically robust to realizable circular flight paths.

The dataset consists of 30,000 pulses with 21,232 complex samples per pulse. Using

all of the data results in image resolution of about one foot by one foot.

2.6 Chapter Summary

This chapter included several background items that provide context for the research de-

scribed in the dissertation. This includes a thorough literature review, a description of

the image geometry, and definitions and conventions used for the linear and circular flight

paths. It also describes the two IFP algorithms used in the dissertation, namely PFA and

BPA. Finally, we briefly described a method for creating a simulated dataset and described

one measured dataset that will be used in subsequent chapters.
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Chapter 3

Phase Error Analysis and Distortion

Correction for PFA

In this chapter, we present a novel method for analyzing phase errors in PFA. Here, we

expand upon previous analysis [29] by computing the Taylor Expansion in the data domain

as a function of slow time instead of in the image domain. This results in a more accurate

analysis as all constant, linear, and quadratic terms are identified. Also, we perform the

initial derivation using an arbitrary flight path, and then provide examples using circular

and linear flight paths.

In [29], a Taylor Expansion of the differential range was used to calculate the max-

imum radius of an image without defocus effects for a linear flight path. In that paper, a

second-order Taylor Expansion was calculated in the image domain and the terms contain-

ing QPE were analyzed to determine the maximum scene size. The result was a specified

maximum scene radius, implying a circular region of acceptable focus.

The remainder of this chapter is outlined as follows. Section 3.1 describes the novel

approach for analyzing the phase errors that arise from PFA. Section 3.2 describes the

Taylor Expansions of the differential range in detail for BPA and PFA. Section 3.3 uses the

constant and linear phase error terms derived in Sections 3.1 and 3.2 to accurately describe
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the distortion in PFA images. Analytic expressions for the distortion effect are derived

and illustrated for three types of flight paths: linear, circular, and linear with squint. This

analysis is also included in a journal paper [32] which was accepted for publication in 2015.

Preliminary results were also published in a 2013 letter [33].

3.1 Phase Error Analysis

Due to the nature of SAR imaging, the phase of the receiver output is more important [12]

than the magnitude. Phase errors lead to artifacts in the imagery, such as distortion and

defocus. In this section, we analyze the phase response from an ideal point target, which is

described in Section 2.2. (2.4) represents the receiver output of an ideal point target, so we

define the phase of the ideal point target as

Φ(t) =
−4π∆R(t)

λ
(3.1)

where λ is the center wavelength of the radar pulse.

We wish to decompose Φ(t) into separate components which are associated with spe-

cific effects on the resultant image. For instance, components of Φ(t) which have a linear

relationship with time result in a shift of the target in the image, due to the properties of

Fourier transform pairs where a phase ramp shifts a signal in time. Hence, we define

Φ(t) = Φ0 + Φ1t+ Φ2t
2 + . . . (3.2)

In this dissertation, we focus our attention on Φ0, Φ1 and Φ2. The constant and linear

terms, Φ0 and Φ1, determine the location of the target in the image. If the IFP introduces

errors in Φ0 or Φ1, targets will not appear in the image at the correct location. This phe-

nomenon is called distortion. The quadratic term, Φ2, determines the focus of the target in

the image. If the IFP introduces errors in Φ2, targets will appear smeared in cross-range.
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This phenomenon is called defocus. Cubic and higher order terms are ignored in this anal-

ysis as they do not directly contribute to image distortion or defocus. Cubic phase errors

cause the mainlobe to deform and to create asymmetrical sidelobes. Higher order terms

tend to impact the sidelobe region instead of the mainlobe [12].

In Section 2.1.2, we described several approaches in the literature to perform this

decomposition. Most previous analyses have performed a 2-D Taylor Expansion of Φ in

either the image domain or the phase history domain. Here, we will perform a 1-D Taylor

Expansion of Φ(t) in the time dimension. Since the only term in (3.1) that is dependent on

time is ∆R, we will perform a second order Taylor Expansion of the differential range, ∆R,

which is defined in (2.5). The Taylor Expansion for the differential range is defined [121]

as

∆R(t) ≈ ∆R|t=0 +
∂∆R

∂t

∣∣∣∣
t=0

t+
∂2∆R

∂t2

∣∣∣∣
t=0

t2

2
(3.3)

≈
(
rp|t=0 − ra|t=0

)
+

(
∂rp
∂t

∣∣∣∣
t=0

− ∂ra
∂t

∣∣∣∣
t=0

)
t+

(
∂2rp
∂t2

∣∣∣∣
t=0

− ∂2ra
∂t2

∣∣∣∣
t=0

)
t2

2

with the time dependency of rp(t) and ra(t) suppressed for compactness.

Substituting the expansion of ∆R from (3.3) into the expansion of Φ in (3.2) given the

phase definition of (3.1) gives the constant, linear, and quadratic components of the point

target phase response:

Φ0 =
−4π

λ
∆R|t=0 (3.4)

Φ1 =
−4π

λ

∂∆R

∂t

∣∣∣∣
t=0

(3.5)

Φ2 =
−2π

λ

∂2∆R

∂t2

∣∣∣∣
t=0

. (3.6)

In this dissertation, we define Φ as the exact target phase, Φ̂ as the approximated target
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phase compensated by PFA, and Φ̃ as the residual phase error after PFA such that

Φ̃ = Φ− Φ̂ (3.7)

Φ̃ = Φ̃0 + Φ̃1 + Φ̃2 (3.8)

where

Φ̃0 = Φ0 − Φ̂0 (3.9)

Φ̃1 = Φ1 − Φ̂1 (3.10)

Φ̃2 = Φ2 − Φ̂2. (3.11)

Correspondingly, we define ∆R as the exact differential range to the target and ∆R̂

as the approximated differential range for PFA, with time dependency suppressed for com-

pactness. From (2.8)

∆R̂ =
−1

ra
(xax̃+ yaỹ + zaz̃) (3.12)

where (x̃, ỹ, z̃) are the distorted coordinates where a target at location (x, y, z) appears in

the PFA image. This means that Φ̂0, Φ̂1, and Φ̂2 are represented in terms of the distorted

coordinates and not the actual coordinates of the target.

We can derive expressions for (x̃, ỹ, z̃) in terms of the actual coordinates, (x, y, z),

by setting Φ̃0 = 0 and Φ̃1 = 0. These expressions can then be used to resample the PFA

images to correct for distortion effects. In this disseration, we will assume that the image

plane is flat and corresponds to the ground plane, so we assume z̃ = 0.

These distortion corrections will then be used to solve for Φ̃2, which is the residual

QPE after PFA, in Chapter 4. It is also important to note that in general, the distortion

correction is independent of image resolution and therefore independent of the length of

the synthetic aperture.
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3.2 Taylor Series Expansions of Differential Range

In this section, we will perform the Taylor Expansion for the differential range, ∆R, with

respect to time. The differential range is the distance between the antenna phase center

and a target in the scene relative to the distance between the antenna phase center and

the center of the scene. Since we assume that the center of the scene is stationary (as in

spotlight SAR mode) and that the target location is stationary, the only parameter changing

with respect to time is the location of the antenna phase center, (xa, ya, za). Therefore, the

results of the Taylor Expansion will include (xa, ya, za) and their first two derivatives. In

Sections 3.3 and 4.2, we will consider the cases of linear and circular flight paths, where

many of the derivatives in the corresponding Taylor Expansion are zero, which simplifies

the expressions considerably.

3.2.1 Differential Range Expansion for BPA

In Section 2.3.1, we described BPA in detail. BPA performs an exact calculation of ∆R

for every pulse at every pixel location. Therefore, in this section we will perform a Taylor

Expansion of ∆R as defined in (3.3).

∆R(t) ≈
(
rp|t=0 − ra|t=0

)
+

(
∂rp
∂t

∣∣∣∣
t=0

− ∂ra
∂t

∣∣∣∣
t=0

)
t+

(
∂2rp
∂t2

∣∣∣∣
t=0

− ∂2ra
∂t2

∣∣∣∣
t=0

)
t2

2

where rp is defined in (2.6) to be

rp(t) =
√

(x− xa(t))2 + (y − ya(t))2 + (z − za(t))2 (3.13)

and ra is defined in (2.2) to be

ra(t) =
√
x2
a(t) + y2

a(t) + z2
a(t). (3.14)
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In (3.13) and (3.14), the dependence on t is explictly referenced but we drop those

references going forward in this analysis. Next, we calculate the first and second derivatives

of rp and ra:

∂rp
∂t

=
−1

rp

[
(x− xa)

∂xa
∂t

+ (y − ya)
∂ya
∂t

+ (z − za)
∂za
∂t

]
(3.15)

∂2rp
∂t2

=
−1

rp

[
(x− xa)

∂2xa
∂t2
−
(
∂xa
∂t

)2

+ (y − ya)
∂2ya
∂t2

−
(
∂ya
∂t

)2

+ (z − za)
∂2za
∂t2
−
(
∂za
∂t

)2

+

(
∂rp
∂t

)2
]

(3.16)

and

∂ra
∂t

=
1

ra

[
xa
∂xa
∂t

+ ya
∂ya
∂t

+ za
∂za
∂t

]
(3.17)

∂2ra
∂t2

=
1

ra

[
xa
∂2xa
∂t2

+

(
∂xa
∂t

)2

+ ya
∂2ya
∂t2

+

(
∂ya
∂t

)2

+ za
∂2za
∂t2

+

(
∂za
∂t

)2

−
(
∂ra
∂t

)2
]
. (3.18)

Therefore, the constant, linear, and quadatic components of the target phase for BPA

are:

Φ0 =
−4π

λ

(
rp|t=0 − ra|t=0

)
(3.19)

Φ1 =
−4π

λ

(
∂rp
∂t

∣∣∣∣
t=0

− ∂ra
∂t

∣∣∣∣
t=0

)
(3.20)

Φ2 =
−2π

λ

(
∂2rp
∂t2

∣∣∣∣
t=0

− ∂2ra
∂t2

∣∣∣∣
t=0

)
(3.21)

where the derivatives of ra are given in (3.17) and (3.18) and the derivatives of rp are given

in (3.15) and (3.16).
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3.2.2 Differential Range Expansion for PFA

PFA uses a 2-D FFT to efficiently apply the matched filter in SAR image formation, once

the phase history data has been resampled to an appropriate rectangular raster. In order

to use this computationally efficient approach, a far-field assumption is made. Earlier

works [29] analyzed PFA by performing a second-order Taylor Expansion [121] with re-

spect to the image coordinates x and y. Their results showed that the PFA matched filter

kernal is computed with an approximation of the differential range

∆R̂(t) =
−1

ra(t)
(xa(t)x̃+ ya(t)ỹ + za(t)z̃) (3.22)

where (x̃, ỹ, z̃) are the distorted coordinates where a target at location (x, y, z) appears in

the image. Note that we will be forming the image in the ground plane, so z̃ = 0, but we

will keep z̃ as a variable for now to maintain generality.

In the same manner as BPA in Section 3.2.1, we perform a second order Taylor Ex-

pansion of ∆R̂ with respect to slow time, t, yielding

∆R̂ = ∆R̂
∣∣∣
t=0

+
∂∆R̂

∂t

∣∣∣∣∣
t=0

t+
∂2∆R̂

∂t2

∣∣∣∣∣
t=0

t2

2
(3.23)

where

∂∆R̂

∂t
=

x̃

r2
a

(
xa
∂ra
∂t
− ra

∂xa
∂t

)
+
ỹ

r2
a

(
ya
∂ra
∂t
− ra

∂ya
∂t

)
+
z̃

r2
a

(
za
∂ra
∂t
− ra

∂za
∂t

)
(3.24)

∂2∆R̂

∂t2
=

x̃

r3
a

[
raxa

∂2ra
∂t2
− r2

a

∂2xa
∂t2
− 2xa

(
∂ra
∂t

)2

+ 2ra
∂ra
∂t

∂xa
∂t

]

+
ỹ

r3
a

[
raya

∂2ra
∂t2
− r2

a

∂2ya
∂t2
− 2ya

(
∂ra
∂t

)2

+ 2ra
∂ra
∂t

∂ya
∂t

]

+
z̃

r3
a

[
raza

∂2ra
∂t2
− r2

a

∂2za
∂t2
− 2za

(
∂ra
∂t

)2

+ 2ra
∂ra
∂t

∂za
∂t

]
. (3.25)
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Therefore, the constant, linear, and quadatic components of the target phase for PFA

are:

Φ̂0 =
−4π

λ
∆R̂
∣∣∣
t=0

(3.26)

Φ̂1 =
−4π

λ

∂∆R̂

∂t

∣∣∣∣∣
t=0

(3.27)

Φ̂2 =
−2π

λ

∂2∆R̂

∂t2

∣∣∣∣∣
t=0

(3.28)

where the derivatives of ∆R̂ are given in (3.24) and (3.25).

3.3 Distortion Correction for PFA

Previously, we noted that the target phase terms for PFA in Section 3.2.2 are a function

of the apparent target location (x̃, ỹ, z̃) instead of the actual target location (x, y, z). The

difference between the actual location of the target and its apparent location in the PFA

image is commonly reffered to as distortion. In order to correct for the distortion in the

image, we set Φ̃0 = 0 and Φ̃1 = 0, where Φ̃0 was defined in (3.9) and Φ̃1 was defined in

(3.10);

Φ̃0 = Φ0 − Φ̂0 = 0 (3.29)

Φ̃1 = Φ1 − Φ̂1 = 0 (3.30)

which implies that

Φ0 = Φ̂0 (3.31)

Φ1 = Φ̂1. (3.32)

Therefore, we substitute (3.19) and (3.20) from BPA and (3.26) and (3.27) from PFA
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into (3.31) and (3.32) yielding the following expressions:

rp|t=0 − ra|t=0 = ∆R̂
∣∣∣
t=0

(3.33)

∂rp
∂t

∣∣∣∣
t=0

− ∂ra
∂t

∣∣∣∣
t=0

=
∂∆R̂

∂t

∣∣∣∣∣
t=0

(3.34)

Equations (3.33) and (3.34) provide a concise mapping between the exact target lo-

cation, (x, y, z), and the apparent target location in the PFA image, (x̃, ỹ). In this form, it

is not intuitive that these expressions are useful; therefore, in the next few subsections, we

will derive the distortion effects for linear and circular flight paths and illustrate distortion

corrections using the Point Target Scene and the AFRL Dataset..

3.3.1 Distortion Correction for a Linear Flight Path

In Section 2.4.2, we defined a parameterization for a linear flight path and calculated the

first and second derivatives of the flight path given the antenna phase center at (xa, ya, za).

Substituting (2.15), (2.16), and (2.17) into (3.33) and (3.34) gives:

rp0 − ra0 = − 1

ra0

(xax̃+ zaz̃) (3.35)

− 1

rp0

(
y · La

2

)
=

ỹ

r2
a0

(
−ra0 ·

La
2

)
. (3.36)

Setting z̃ = 0 and solving for x̃ and ỹ gives the following expressions:

x̃ =
ra0

xa
(ra0 − rp0) (3.37)

ỹ =
ra0

rp0
y (3.38)
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where

rp0 =
√

(x− xa)2 + y2 + (z − za)2 (3.39)

ra0 =
√
x2
a + z2

a. (3.40)

To illustrate the distortion effect caused by PFA, we use the Point Target Scene de-

scribed in Section 2.5.1. The Point Target Scene was generated using a linear flight path

with a constant altitude of za = 75 m and a constant x-position of xa = 75 m. This yields

an elevation angle of θa = 45◦ at the center of the aperture measured with respect to the

scene center, (x, y, z) = (0, 0, 0). Note that the elevation angle of the antenna phase center

with respect to the scene center will not be constant along the linear synthetic aperture. The

integration angle was chosen to be θa = 0.15 radians, which corresponds to a cross-range

resolution of 0.1 m at X-band (with wavelength λ = 0.03 m). Figure 2.2 depicts the Point

Target Scene used in this experiment.

Next, we apply (3.37) and (3.38) to every point target in the scene, yielding the appar-

ent location of the targets in the PFA image. Figure 3.1 depicts the locations of the grid of

point targets in the distorted grid, indexed by x̃ and ỹ.

Figure 3.2 is the resulting SAR image using PFA. Note that the geometry of this small

scene was chosen to accentuate the defocus and distortion effects, which can easily be seen

in this image.

To perform the distortion correction after PFA, we lay out a rectangular grid in the

target coordinate space, regularly spaced in x and y. Then, we use (3.37) and (3.38) to

calculate the distorted location of every pixel in the grid. Since the PFA image is regularly

spaced in x̃ and ỹ, a 2-D interpolation to the distorted grid is required to correct the distor-

tion effects of PFA. Figure 3.3 is the resulting SAR image after the distortion correction is

applied. Note that the targets now appear in the correct location, although many targets are

defocused due to uncompensated QPE. The defocus will be addressed in Chapter 4.
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Figure 3.1: Location of synthetic targets in distorted imaging grid - Linear flight path
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Figure 3.2: PFA image of the Point Target Scene - Linear flight path

36



x (m) - Range
-60 -40 -20 0 20 40 60

y 
(m

) 
- 

C
ro

ss
 R

an
ge

-60

-40

-20

0

20

40

60

Figure 3.3: PFA image with distortion correction - Linear Flight Path

3.3.2 Distortion Correction for a Circular Flight Path

In Section 2.4.1, we defined a parameterization for a circular flight path and calculated the

first and second derivatives of the flight path given the antenna phase center at (xa, ya, za).

Substituting (2.11), (2.12), and (2.13) into (3.33) and (3.34) gives:

rp0 − ra = − 1

ra
(xa0x̃+ ra sin θaz̃) (3.41)

− 1

rp0

(
y · xa0

ψt
2

)
=

ỹ

r2
a

(
−ra · xa0

ψt
2

)
. (3.42)

Setting z̃ = 0 and solving for x̃ and ỹ gives the following expressions:

x̃ =
ra − rp0
cos θa

(3.43)

ỹ =
ra
rp0

y (3.44)
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Figure 3.4: Location of synthetic targets in distorted imaging grid - Circular flight path

where

rp0 =
√

(x− xa0)2 + y2 + (z − za)2 (3.45)

xa0 = ra cos θa. (3.46)

To illustrate the distortion effect caused by PFA given a circular flight path, we use

the Point Target Scene described in Section 2.5.1. The same synthetic target scene was

generated using a circular flight path with a constant altitude of za = 75 m and a constant

elevation angle of θa = 45◦ measured with respect to the scene center, (x, y, z) = (0, 0, 0).

The integration angle was chosen to be θa = 0.15 radians, which corresponds to a cross

range resolution of 0.1 m at X-band (with wavelength λ = 0.03m).

Next, we apply (3.43) and (3.44) to every point target in the scene, yielding the appar-

ent location of the targets in the PFA image. Figure 3.4 depicts the locations of a grid of

point targets in the distorted grid, indexed by x̃ and ỹ.

38



x̃ (m) - Range
-60 -40 -20 0 20 40 60

ỹ
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Figure 3.5: PFA image of the Point Target Scene - Circular flight path

Figure 3.5 is the resulting SAR image using PFA. Note again that the geometry of this

small scene was chosen to accentuate the defocus and distortion effects, which can easily

be seen in this image.

Finally, we perform the distortion correction after PFA in the same manner as with the

linear flight path. We use (3.43) and (3.44) to calculate the distorted location of every pixel

in the grid. Since the PFA image is regularly spaced in x̃ and ỹ, a 2-D interpolation to the

distorted grid is required to correct the distortion effects of PFA. Figure 3.6 is the resulting

SAR image after the distortion correction is applied. Again, the targets now appear in the

correct location, although many targets are defocused due to uncompensated QPE. The

defocus will be addressed in Chapter 4.

For investigation of circular flight paths, we also use the AFRL Dataset described in

Section 2.5.2. Using the best fit of the actual flight path to a circular flight path (ra =

10.4994 km, θa = 44.341◦, and ψt = 3.322◦), we use (3.43) and (3.44) to calculate the
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Figure 3.6: PFA image with distortion correction - Circular Flight Path

distortion correction. Figure 3.7 shows the original PFA image while Figure 3.8 shows the

same image with the distortion correction applied. Comparing both images, it is clear that

the runways and roads in the original image are significantly distorted compared with the

corrected image.

3.3.3 Distortion Correction for a Linear Flight Path with Squint

The distortion correction applies equally well to squinted geometries. For a linear flight

path with squint, an additional parameter is added to the parameterization of the flight

path: y0. This change is defined in (2.18). Substituting (2.15), (2.16), and (2.17) into (3.33)
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Figure 3.7: PFA image of the AFRL Dataset - Circular Flight Path
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Figure 3.8: PFA image with distortion correction - AFRL Dataset
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and (3.34) using the modification in (2.20) gives:

rp0 − ra0 = − 1

ra0

(xax̃+ y0ỹ + zaz̃) (3.47)

− 1

rp0

[
(y − y0) · La

2

]
− 1

ra0

(
y0 ·

La
2

)
=
y0La
2r3

a0

(xax̃+ y0ỹ + zaz̃) +
ỹ

r2
a0

(
−ra0 ·

La
2

)
.

(3.48)

Setting z̃ = 0 and solving for x̃ and ỹ gives the following expressions:

x̃ =
ra0

xa
(ra0 − rp0)− y0

xa
ỹ (3.49)

ỹ =
ra0

rp0
y − y0

rp0ra0

(ra0 − rp0)2 (3.50)

where

rp0 =
√

(x− xa)2 + (y − y0)2 + (z − za)2 (3.51)

ra0 =
√
x2
a + y2

0 + z2
a. (3.52)

As with the linear and circular flight path cases, we illustrate the distortion effect on

squinted geometries using the Point Target Scene. The same scene was generated using

a linear flight path with a constant altitude of za = 75 m and a constant x-position of

xa = 75 m, but here we add a squint angle of θs = 45◦, which means the linear offset in

the y-dimension is y0 = 45 m.

Next, we apply (3.49) and (3.50) to every point target in the scene, yielding the appar-

ent location of the targets in the PFA image. Figure 3.9 depicts the locations of a grid of

point targets in the distorted grid, indexed by x̃ and ỹ.

Figure 3.10 is the resulting SAR image using PFA. Note again that the geometry of

this small scene was chosen to accentuate the defocus and distortion effects, which can

easily be seen in this image.

Finally, we perform the distortion correction after PFA in the same manner as the
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Figure 3.9: Location of synthetic targets in distorted imaging grid - Linear flight path with
squint
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Figure 3.10: PFA image of the Point Target Scene - Linear flight path with squint
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Figure 3.11: PFA image with distortion correction - Linear Flight Path with squint

linear flight path case. We use (3.49) and (3.50) to calculate the distorted location of every

pixel in the grid. Since the PFA image is regularly spaced in x̃ and ỹ, a 2-D interpolation

to the distorted grid is required to correct the distortion effects of PFA. Figure 3.11 is

the resulting SAR image after the distortion correction is applied. Again, the targets now

appear in the correct location, although many targets are defocused due to uncompensated

QPE. The defocus will be addressed in Chapter 4.

3.4 Chapter Summary

In this chapter, we described a novel approach for analyzing phase errors in PFA. We also

derived Taylor Expansions of the differential range for both BPA and PFA. Finally, we

derived a general distortion correction for PFA and applied it for three types of flight paths:

linear, circular, and linear with squint. The QPE derived here will be analyzed in detail in

the next section of the dissertation, Chapter 4.
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Chapter 4

QPE Analysis and Scene Size

Limitations for PFA

In this chapter, we present a novel method for analyzing QPE in PFA. In Chapter 3, we

presented a novel method for decomposing the constant, linear, and quadratic phase error

terms in PFA. We also showed how the constant and linear terms can be used to derive

analytic expressions for the distortion in a PFA image. Here, we build upon that analysis

by utilizing the quadratic phase terms to derive analytic expressions for the defocus in PFA.

The important distinction between this analysis and previous results from the literature

is that we take into account the distortion as part of the defocus analysis. The quadratic

phase terms for BPA are in target coordinates (x, y, z) while the quadratic phase terms for

PFA are in the distorted image coordinates (x̃, ỹ). By substituting expressions for (x̃, ỹ) in

terms of (x, y, z), accurate analytical expressions are derived for the residual QPE after

PFA. This is a substantial departure from earlier analyses that neglected the impact of

distortion when determining the region of acceptable focus.

These analytical expressions are then used to determine accurate scene size limita-

tions for PFA. By analyzing contours of acceptable QPE (e.g. π/2 or π/4), the allowable

scene size is easily determined, and results are notably different from earlier publications
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which typically described circular regions of acceptable focus. In this dissertation, we de-

termine regions of focus that are arbitrary in shape to account for all areas in the image

with acceptable image focus.

The remainder of this chapter is outlined as follows. Section 4.1 continues the phase

error analysis from Chapter 3 by analyzing the quadratic components of the image phase.

Section 4.2 describes the allowable QPE for a well focused image and derives scene size

limitations for circular and linear flight paths. The QPE and scene size limitations are

illustrated using the Point Target Scene from Section 2.5.1 and with the large scene AFRL

Dataset. Finally, Section 4.3 provides a comparison between the results of this dissertation

with previously published analyses. Most of the material from this chapter was originally

published in [32] which was accepted for publication in 2015.

4.1 Residual QPE for PFA

In Section 3.1, we described our decomposition of image phase into constant, linear, and

quadratic components. In Section 3.3, the constant and linear phase error terms, Φ̃0 and Φ̃1

respectively, were analyzed, resulting in analytical expressions for PFA image distortion.

Here, we concentrate on the quadratic phase terms. The residual QPE, denoted by Φ̃2, was

defined in (3.11) and repeated here,

Φ̃2 = Φ2 − Φ̂2 (4.1)

where Φ2 is defined in (3.21) and Φ̂2 is defined in (3.28). The expressions for Φ2 and Φ̂2

are repeated here for convenience:

Φ2 =
−2π

λ

(
∂2rp
∂t2

∣∣∣∣
t=0

− ∂2ra
∂t2

∣∣∣∣
t=0

)
(4.2)

Φ̂2 =
−2π

λ

∂2∆R̂

∂t2

∣∣∣∣∣
t=0

(4.3)
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Note these expressions are dependent on the second derivative with respect to time of the

differential range for BPA and PFA. The second derivative of the range from the antenna

to the target, rp, is given in (3.16), and the second derivative of the range from the antenna

to scene center, ra, is given in (3.18). Finally, the second derivative of the approximated

differential range by PFA, ∆R̂, is given in (3.25).

Remember that ∆R̂ is given in terms of (x̃, ỹ), so we will apply the distortion correc-

tions from Chapter 3 given in (3.33) and (3.34).

In general, the QPE expressions are complicated, but they simplify nicely for some

classes of ideal flight paths. In Section 4.2, we examine the QPE for a circular flight path

and a linear flight path.

4.2 Scene Size Limitations for PFA

Residual QPE in a SAR image appears as smearing in the cross range dimension, and it

significantly affects image interpretation. The total (or center-to-edge) quadratic phase is

computed as the difference between the quadratic phase at the center of the aperture (t = 0)

and one edge of the aperture (t = 1). Since we defined the synthetic aperture to occur in

the time interval t ∈ [−1, 1] in Section 2.2, the quadratic phase is simply the Φ2 term in our

decomposition.

Therefore, we will assume that the image is well focused if the quadratic phase com-

pensated in PFA is within π/2 of Φ̃2 [29,34], although some sources indicate a more strin-

gent requirement of π/4 [111]. A target at location (x, y, z) will be well focused if the

residual QPE, Φ̃2, is less than π/2, ∣∣∣Φ̃2

∣∣∣ < π

2
. (4.4)

The expression in (4.4) is the general form for acceptable image focus. Again, note

that the ∆R̂ term is given in distorted image coordinates, so application of the distortion

correction is necessary to derive an accurate scene size limitation.
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In Sections 4.2.1 and 4.2.2, we look at the two special cases of circular and linear

flight paths.

4.2.1 QPE and Scene Size Limitations for a Circular Flight Path

Here we take the derivatives of (xa, ya, za) calculated in Section 2.4.1 and use the QPE

expressions derived in Chapter 3 to find the residual QPE after PFA. First, we substitute

(2.11), (2.12), and (2.13) into the second derivatives found in (3.16) and (3.18):

∂2rp
∂t2

∣∣∣∣
t=0

=
xa0ψ

2
t

4rp0

(
x− y2xa0

r2
p0

)
(4.5)

∂2ra
∂t2

∣∣∣∣
t=0

= 0 (4.6)

where

rp0 =
√

(x− xa0)2 + y2 + (z − za)2. (4.7)

The expression rp0 represents the distance between a target at (x, y, z) and the center of the

antenna aperture at t = 0.

Next we substitute (4.5) and (4.6) into (4.2) to derive Φ2:

Φ2 =
−ψ2

t πxa0

2λrp0

(
x− y2xa0

r2
p0

)
Φ2 = A

(
x

rp0
− y2xa0

r3
p0

)
(4.8)

where A is dependent only on the parameters of the circular flight path and the wavelength

of the signal; thus, A is constant with respect to target position,

A =
−ψ2

t πxa0

2λ
. (4.9)

The expression in (4.8) represents the total amount of quadratic phase in BPA. Now,

we substitute the circular flight path expressions from (2.11), (2.12), and (2.13) into (3.25)
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to determine quadratic components of the differential range for PFA. For the circular case,

this simplifies to:
∂2∆R̂

∂t2

∣∣∣∣∣
t=0

= x̃ cos θa
ψ2
t

4
. (4.10)

Substituting (4.10) into (4.3) gives

Φ̂2 =
−π
λ
x̃ cos θa

ψ2
t

2

Φ̂2 = A
x̃

ra
. (4.11)

Here (4.11) is given as a function of the distorted coordinate, x̃. We want to express Φ̂2

as a function of the actual target coordinates, so we apply the distortion correction by

substituting (3.43) into (4.11) which yields

Φ̂2 = A
ra − rp0
xa0

. (4.12)

Therefore, by substituting (4.8) and (4.12) into (4.1), the residual QPE from the PFA is

given as

Φ̃2 = A

(
x

rp0
− y2xa0

r3
p0

− x̃

ra

)
. (4.13)

Φ̃2 = A

(
x

rp0
− y2xa0

r3
p0

+
rp0 − ra
xa0

)
. (4.14)

Substituting (4.14) into (4.4) gives the criteria for a well focused target given a circular

flight path, ∣∣∣∣A( x

rp0
− y2xa0

r3
p0

+
rp0 − ra
xa0

)∣∣∣∣ < π

2
. (4.15)

A target at scene center is perfectly focused since Φ̃2 = 0 at scene center. There also

exists a region around the scene center where targets are well focused, denoted by the set of

(x, y, z) locations where (4.15) is satisfied, a significant departure from earlier predictions

based on spatial analysis that omitted the effects of distortion.
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Figure 4.1: Residual QPE after PFA - Circular flight path

Point Target Scene - Circular Flight Path

To illustrate the effects of defocus, we continue with the Point Target Scene first developed

in Section 2.5.1. Figure 2.2 depicts the locations of a grid of point targets which appear

distorted and defocused in the PFA image in Figure 3.5. After applying the distortion

correction, the targets appear in the correct location in Figure 3.6; however, targets near the

edges of the scene show significant defocus.

Next, we use (4.14) to plot the residual QPE in terms of the actual target coordinates;

this is displayed in Figure 4.1. The region of focus is denoted by the contour lines near

the center of the image, where the residual phase error is minimal. The inner contour line

denotes an error of π/4 while the outer contour line denotes an error of π/2.

Figure 4.2 shows the same PFA image as in Figure 3.5 with the distortion correction

applied; here the contour lines of focus are displayed as well. These contour lines are con-

sistent with the pattern of degraded point responses in the image and are notably different

from the circular regions of focus determined in earlier works.
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Figure 4.2: PFA image with distortion correction - Circular flight path

AFRL Dataset

We can illustrate the defocus effect better using the large scene AFRL Dataset described in

Section 2.5.2. Using the parameters for the flight path given in Section 2.5.2, the residual

QPE was calculated using (4.14) and the result is displayed in Figure 4.3. As expected, the

center of the image has a residual QPE of 0, which represents perfect focus. Two contour

lines are shown, the inner line corresponding to a maximum QPE of π/4 and the outer line

corresponding to a maximum error of π/2. In this scenario, only 7.8% of the desired image

area is within the π/4 contour and only 11.5% of the desired image area is within the π/2

contour. This means that most of the image is unacceptably defocused and distorted.

We also include the QPE plot in the distorted PFA image coordinates in Figure 4.4.

This shows the residual QPE before the distortion correction is applied. The result shown

in distorted coordinates demonstrates that the residual QPE is mostly a function of x̃ (the

distorted range coordinate), and that an efficient algorithm can correct the defocus for a
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Figure 4.3: Residual QPE after PFA - AFRL Dataset

significant portion of the image. This novel defocus correction algorithm is described in

Chapter 5.

4.2.2 QPE and Scene Size Limitations for a Linear Flight Path

As in the circular case, we use the derivatives of the flight path calculated in Section 2.4.2

to find the residual QPE after PFA for the linear case. First we take the derivatives of

(xa, ya, za) found in (2.15), (2.16), and (2.17) and substitute them into the second deriva-

tives found in (3.16) and (3.18):

∂2rp
∂t2

∣∣∣∣
t=0

=
L2
a

4

(
1

rp0
− y2

r3
p0

)
(4.16)

∂2ra
∂t2

∣∣∣∣
t=0

=
L2
a

4

1

ra0

(4.17)
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Figure 4.4: Residual QPE after PFA in distorted coordinates - AFRL Dataset

where

rp0 =
√

(x− xa)2 + y2 + (z − za)2 (4.18)

ra0 =
√
x2
a + z2

a. (4.19)

As in the circular case, the expression rp0 represents the distance between a target at

(x, y, z) and the center of the antenna aperture at t = 0. Here we also calculate ra0,

which represents the distance between the center of the scene and the center of the antenna

aperture at t = 0; note that ra is not constant throughout the imaging aperture, unlike the

circular flight path.
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Next we substitute (4.18) and (4.19) into (4.2) to derive Φ2:

Φ2 =
−L2

aπ

2λ

(
1

rp0
− 1

ra0

− y2

r3
p0

)
Φ2 = A

(
1

rp0
− 1

ra0

− y2

r3
p0

)
(4.20)

where A is again a constant with respect to target position,

A =
−L2

aπ

2λ
. (4.21)

The expression in (4.20) represents the total amount of quadratic phase in BPA. Now,

we substitute the linear flight path expressions from (2.15), (2.16), and (2.17) into (3.25) to

determine quadratic components of the differential range for PFA. For the linear case, this

simplifies to
∂2∆R̂

∂t2

∣∣∣∣
t=0

=
L2
a

4r3
a0

(xax̃+ zaz̃). (4.22)

Substituting (4.22) into (4.3) and setting z̃ = 0 gives

Φ̂2 =
−π
λ

L2
a

2r3
a0

xax̃

Φ̂2 = A
xa
r3
a0

x̃. (4.23)

Again (4.23) is given as a function of the distorted coordinate, x̃. We want to express

Φ̂2 as a function of the actual target coordinates, so we apply the distortion correction by

substituting (3.37) into (4.11) which yields

Φ̂2 = A
1

r2
a0

(ra0 − rp0)

Φ̂2 = A

(
1

ra0

− rp0
r2
a0

)
. (4.24)
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Substituting (4.20) and (4.24) into (4.1), the residual QPE from the PFA is given as

Φ̃2 = A

(
1

rp0
− 2

ra0

− y2

r3
p0

+
rp0
r2
a0

)
. (4.25)

Substituting (4.25) into (4.4) gives the criteria for a well focused target given a linear flight

path, ∣∣∣∣A( 1

rp0
− 2

ra0

− y2

r3
p0

+
rp0
r2
a0

)∣∣∣∣ < π

2
. (4.26)

As with the circular flight path case, a target at scene center is perfectly focused since

Φ̃2 = 0 at scene center. There also exists a region around the scene center where targets

are well focused, denoted by the set of (x, y, z) locations where (4.26) is satisfied; this

represents a significant departure from earlier predictions based on spatial analysis that

omitted the effects of distortion.

Point Target Scene - Linear Flight Path

As with the circular case, we continue with the Point Target Scene first developed in Sec-

tion 2.5.1. Figure 2.2 depicts the locations of a grid of point targets which appear distorted

and defocused in the PFA image in Figure 3.2. After applying the distortion correction, the

targets appear in the correct location in Figure 3.3; however, targets near the edges of the

scene show significant defocus.

Next, we use (4.25) to plot the residual QPE in terms of the actual target coordinates.

This is displayed in Figure 4.5. The region of focus is denoted by the contour lines near

the center of the image, where the residual phase error is minimal. The inner contour line

denotes an error of π/4 while the outer contour line denotes an error of π/2.

Figure 4.6 shows the same PFA image as in Figure 3.2 with the distortion correction

applied; here the contour lines of focus are displayed as well. These contour lines are con-

sistent with the pattern of degraded point responses in the image and are notably different

from the circular regions of focus determined in earlier works.
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Figure 4.5: Residual QPE after PFA - Linear flight path

x (m) - Range
-60 -40 -20 0 20 40 60

y 
(m

) 
- 

C
ro

ss
 R

an
ge

-60

-40

-20

0

20

40

60

Figure 4.6: PFA image with distortion correction - Linear flight path
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4.3 Comparison with Past Published Results

There are several references in the literature that describe scene size limitations for PFA

given a linear flight path. In [12], the allowable scene radius, rmax, is quantified as

rmax = 2ρa

√
ra
λ

(4.27)

where ρa is the cross range resolution, which is defined as

ρa =
ra0λ

2La
(4.28)

for the special case of broadside imaging with a linear flight path. The authors of [29]

and [34] derive a similar expression. These references all cite π/2 as allowable QPE.

In [1], the authors use a tighter phase error requirement of π/4, and their scene size limit is

rmax = ρa

√
2ra
λ

(4.29)

which is consistent with the other results if π/4 is assumed to be the allowable QPE.

Figure 4.7 shows (4.27) and (4.29) plotted along with the scene size limits derived in

this dissertation given a circular flight path. Figure 4.8 shows the same comparison for the

linear flight path. Here, (4.27) (derived from a π/2 QPE limit) is the outer dotted line while

(4.29) (derived from a π/4 QPE limit) is the inner dotted line. Note that these estimates

are extremely conservative compared with the limits derived in this paper. For instance,

the point target at (x, y) = (10, 40) in the circular case (Figure 4.7) is very well focused

and is included in the allowable region from this dissertation, but it is well outside the

allowable region from (4.27) and (4.29). In the linear case (Figure 4.8), the point target at

(x, y) = (−40, 45) is also very well focused.

Therefore, in this dissertation, we determine regions of focus that are arbitrary in shape

to account for all areas in the image with acceptable image focus.
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Figure 4.7: Comparison with previously published results - Circular flight path
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Figure 4.8: Comparison with previously published results - Linear flight path
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These previous scene size limitations were all derived by analyzing the QPE terms

without incorporating the accompanying distortion effects. They also assumed a linear

flight path, which results in a planar collection geometry in the frequency space. However,

if we look at the QPE term from [1] and apply the distortion correction, we arrive at a

similar result as (4.25). (B.22) in [1] is the QPE requirement (in the notation of [1]):

Φ̃2 =
x

′2
0 − y

′2
0

2r0k0

X
′2
1 ≤

π

4
(4.30)

According to [1], X ′
1 = π/ρa, and k0 = 4π/λ. Also, x0

′ and y0
′ denote the target location

in the slant plane, and r0 denotes the range to scene center. Note that in [1], y is range and

x is cross range, and in this dissertation we use the opposite notation where x is range and

y is cross range. If we also account for image distortion, then

x0
′ = ỹ (4.31)

x0
′ =

ra0

rp0
y (4.32)

and

y0
′ = x̃

xa
ra0

(4.33)

y0
′ = ra0 − rp0. (4.34)

Substituting all these expressions into (4.30) gives

Φ̃2 = A

(
1

rp0
− 2

ra0

− y2

r3
p0

+
rp0
r2
a0

)
(4.35)

which exactly matches (4.25).
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4.4 Chapter Summary

In this chapter, we described a novel approach for analyzing QPE in PFA. Analytic ex-

pressions were derived for the QPE for linear and circular flight paths, and the allowable

scene size was determined for a well focused image. The QPE and scene size limitations

were illustrated using point target simulations and for the large scene AFRL dataset. Fi-

nally, a comparison between results from this chapter and previously published works was

presented.

The results derived here for the circular case will be used in the next section of the

dissertation, where we derive an efficient correction algorithm, in Chapter 5.
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Chapter 5

Fast PFA Correction Algorithm for

Circular Flight Path

In this chapter, we present a novel algorithm which efficiently corrects a substantial amount

of defocused regions in SAR imagery given circular flight paths. In Section 4.2.1, we

derived the QPE for the circular case. For the large scene data example, we plotted the QPE

in Figure 4.3 in image coordinates, and also plotted the QPE in Figure 4.4 in the distorted

image coordinates. It appears from Figure 4.4 that a column of pixels in the distorted image

coordinates has relatively constant QPE. Therefore, in this chapter we will investigate the

feasibility of using a single QPE correction for an entire column of pixels in the distorted

image coordinates. Such an approach would be computationally efficient as the correction

would simply be applied as a complex multiplication in the range compressed image. For

the unique case of a circular geometry, one may avoid the costly processing of spatially-

varying post filtering [28, 30, 31]. Distortion due to QPE is corrected in the image domain

after azimuth compression within PFA.

The remainder of this chapter is outlined as follows. Section 5.1 describes the new

algorithm in detail. Section 5.2 analyzes the amount of QPE that is corrected in the new

algorithm, and derives the residual QPE and scene size limitations for the AFRL Dataset.
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Section 5.3.1 illustrates the new algorithm using the Point Target Scene. Section 5.3.2

shows the application of the new algorithm to the large scene AFRL Dataset, greatly in-

creasing the focused scene size of the image. Finally, Section 5.4 details the computational

requirements of the new algorithm and compares the computational efficiency with legacy

algorithms. Most of the material from this chapter has been submitted for publication [37].

5.1 PFA Correction Algorithm Description

In Section 4.2.1, we derived the QPE terms for a circular flight path. In general, we can use

these deterministic expressions as corrections which can be applied by a complex multiply

in the phase history domain. However, these corrections vary across the undistorted image

in both dimensions, and a brute force approach to applying the corrections is computation-

ally expensive.

Since the distortion can be corrected by simply interpolating the image to a warped

grid, we can use any of the available fast resampling algorithms [67–69, 122]. Here we

focus on fast corrections for the QPE. For a circular flight path, the QPE varies predom-

inantly with the range to the target and very little with the cross range distance in the

distorted image coordinates, as seen in Figure 4.4. Therefore, we propose an algorithm

where a single QPE correction is applied to an entire range gate of pixels before the az-

imuth FFT step in the PFA. This new correction permits defocus to be corrected with a

simple series of range-dependent phase corrections, after range compression (i.e., FFTs)

and before azimuth compression. This adds comparitively few computations to the pro-

cess, and it corrects a significant amount of defocus, greatly increasing the focused scene

size.

Figure 5.1 shows a block diagram of the new algorithm. The additional steps to PFA

are depicted in brown. As in PFA, the incoming phase history, S(fk, τn), is resampled

onto a rectilinear grid, resulting in S(fx, fy). We then perform the 1-D FFTs in range,
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Defocus Correction
s(x̃, ỹ)

FFT in Azimuth
s(x̃, ỹ)

Distortion Correction
s(x, y)

SAR Image

Figure 5.1: PFA correction algorithm block diagram

yielding a range-compressed image denoted as s̃(x̃, fy). It is here that we apply the defocus

correction, which is dependent only on x̃. The correction is computed from (4.13), such

that

Φc(x̃) = −Φ̃2(x̃, y = 0) (5.1)

= −A
(
x

rp0
− x̃

ra

)
(5.2)

Using (3.43), which is the distortion correction for the circular case derived in Section 3.3.2,

we can solve for x in terms of x̃ for the special case of y = 0,

x = x̃ cos θa + (xa0 − ra). (5.3)

Substituting (5.3) into (5.2) gives the QPE correction as a function of x̃,

Φc(x̃) = −A
(
x̃ cos θa + (xa0 − ra)

rp0
− x̃

ra

)
. (5.4)

where from (3.43),

rp0 = ra − x̃ cos θa. (5.5)
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Substituting (5.5) into (5.4) yields

Φc(x̃) = A

(
1 +

x̃

ra
− xa0

ra − x̃ cos θa

)
(5.6)

The correction is applied simply as

s(x̃, fy) = s̃(x̃, fy)e
jΦc(x̃)t2 (5.7)

where the time interval t ∈ [−1, 1] corresponds to the extent of fy. Next we apply the same

series of 1-D FFTs in azimuth, which results in a focused, but still distorted SAR image,

denoted as s(x̃, ỹ). Finally, we apply the distortion correction by resampling s(x̃, ỹ) into

s(x, y) by using (3.43) and (3.44), resulting in the final corrected image.

5.2 Phase Error Analysis of Defocus Corrections

To illustrate the effectiveness of this new algorithm, we now analyze the resultant residual

phase errors. For a given pixel in the image (x, y), the defocus correction is

Φc = −A
(
x̂

rp0
− x̃

ra

)
(5.8)

where x̂ is the x coordinate at the y = 0 pixel that maps onto x̃ in (3.43). Solving for x̂ in

terms of x and y gives

x̂ = xa0 −
√

(x− xa0)2 + y2. (5.9)

The correction, Φc, is applied to all pixels at a constant x̃, or to the arc of pixels in

(x, y) which correspond to a given x̃. Therefore, the residual QPE after corrections is Φr,
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which is given as

Φr = Φ̃2 + Φc (5.10)

= A

(
x

rp0
− x̃

ra
− y2xa0

r3
p0

)
− A

(
x̂

rp0
− x̃

ra

)
(5.11)

= A

(
x− x̂
rp0

− y2xa0

r3
p0

)
(5.12)

using (4.13) and (5.8). Note that at y = 0, x̂ = x and Φr = 0. Therefore, all pixels in the

center row of the image (corresponding to y = 0) are perfectly focused.

5.3 PFA Correction Algorithm Applications

Here we demonstrate the fast PFA correction algorithm on the two datasets: the Point

Target Scene and the AFRL Dataset.

5.3.1 Point Target Scene

To illustrate the effects of defocus, we continue here with the Point Target Scene first de-

veloped in Section 2.5.1. Figure 2.2 depicts the locations of a grid of point targets which

appear distorted and defocused in the PFA image in Figure 3.5. After applying the distor-

tion correction, the targets appear in the correct location in Figure 3.6, but targets near the

edges of the scene show significant defocus.

Here we apply the defocus correction as described in Section 5.1. The final image

is displayed in Figure 5.2. The same contour lines of focus are again displayed, and they

are again consistent with the pattern of degraded point responses in the corrected image. In

this case, only the point targets in the upper right and lower right corners display significant

defocus. The right part of the imaging region is closer to the sensor, so it is expected to

have reduced focus at those extreme angles.

Figure 5.3 shows the residual QPE after the new correction algorithm is applied.
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Figure 5.2: Point Target Scene with PFA correction algorithm
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Figure 5.3: Residual QPE with PFA correction algorithm
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Figure 5.4: PFA Image with distortion correction - AFRL Dataset

5.3.2 AFRL Dataset

In this section, we will apply the new correction algorithm to the AFRL Dataset. In Sec-

tion 3.3.2 we applied the circular distortion correction to the dataset. Figure 3.7 shows the

original PFA image while Figure 3.8 shows the same image with the distortion correction

applied. However, there is signficant defocus in the image. Figure 4.3 shows the residual

QPE for the AFRL Dataset before corrections are applied.

Figure 5.4 again shows the PFA image with distortion correction applied, but we also

add the contour lines of focus. From Section 4.2.1, only 11.5% of the image pixels are

within the π/2 contour while 7.8% of the image pixels are within the π/4 contour.

It is unclear from the image that there is significant defocus in the image, so two

regions are selected for closer examination. These regions are denoted by a yellow box and

a red box. The yellow box depicts a region of the image that shows good focus while the
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Figure 5.5: PFA Image - AFRL Dataset - Yellow Zoom Region

red box depicts a region of the image that shows poor focus. Figure 5.5 shows the yellow

region zoomed in to clearly display the focused image. Figure 5.6 shows the red region

zoomed in to clearly display the defocused part of the image.

Next, we apply the new algorithm described in Section 5.1 and the results are dis-

played in Figure 5.7. The same contour lines of focus are again displayed. The focused

region of the image is significantly increased; 72.1% of the image pixels are within the π/4

contour (compared to 7.8% before corrections) and 85.0% of the image pixels are within

the π/2 contour (compared to 11.5% before corrections). Figure 5.8 shows the residual

QPE after the new algorithm.

Again we examine the two zoomed in regions. The yellow region is displayed in

Figure 5.9, and this region is still well focused. The red region is displayed in Figure 5.10

and the impact of improved focus is readily apparent in the increased image contrast of the

selected region.
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Figure 5.6: PFA Image - AFRL Dataset - Red Zoom Region
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Figure 5.7: AFRL Dataset with PFA correction algorithm
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Figure 5.8: Residual QPE after defocus correction - AFRL Dataset
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Figure 5.9: AFRL Dataset with PFA correction algorithm - Yellow Zoom Region
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Figure 5.10: AFRL Dataset with PFA correction algorithm - Red Zoom Region

5.4 Computational Requirements for New Algorithm

In [27], the authors compared the computational complexity of different imaging algo-

rithms in combination with a recursive spotlighting approach. Here, we will add our new

algorithm to the comparisons. We start by defining the size of the input phase history to

have Np pulses, or slow time samples, each with K range gates, or fast time samples. In

the two interpolation steps of PFA, we will interpolate to a slightly larger grid, Nx x Ny,

which is chosen such that the FFT steps will perform efficiently. Ideally, Nx and Ny should

have values that are powers of two.

The interpolations require 175 computations per output sample, so the “fast time”

interpolation uses 175NpNx operations and the “slow time” interpolation uses 175NyNx

operations. We assume that a length-N FFT requires 5N log2N computations, so the 1-D

FFTs in range use 5NyNx log2Nx computations (since there are Ny FFTs of length Nx)

and the 1-D FFTs in azimuth use 5NxNy log2Ny computations (since there are Nx FFTs of
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length Ny).

The correction algorithm adds two additional computation steps. The first is the de-

focus correction, which is implemented by a complex multiplication of every sample with

the calculated phase correction. Since a complex multiplication requires six operations,

this step uses 6NyNx computations. The second is a resampling of the final image, which

includes the distortion correction, and we conservatively assume that this step will have

the same requirements as the other interpolations, namely 175 computations per output

sample in each direction, yielding 350NxNy computations. Other resampling algorithms

may have fewer computations, such as the bilinear interpolation which requires about 100

computations for every complex output sample.

The AFRL Dataset has K = 21232 and Np = 30000 input samples, and values of

Nx = 24576 and Ny = 36864 were chosen for efficient FFT computation. Using the above

assumptions, we estimate that the original PFA image uses 422.4 GFlops of computations.

The defocus corrections add 5.4 GFlops and the distortion correction adds 317.1 GFlops,

so the total corrected algorithm requires 744.9 GFlops.

In comparison, the spotlighted PFA described in [27] requires 1,725.8 GFlops while

the spotlighted BPA described in the same paper requires 5,597 GFlops for this dataset,

using equations derived in [27]. Therefore, the new algorithm requires only 43.2% of the

computations of the spotlighted PFA algorithm and only 13.3% of the computations of

the spotlighted BPA, while yielding a distortion-free image with 85% of the pixels well

focused.

5.5 Chapter Summary

In this chapter, we derived and demonstrated a new fast algorithm for forming large scene

SAR images with a circular flight path. We utilized previous derivations of linear and QPEs

to derive corrections for the PFA image. A single QPE correction is applied between the
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range FFT step and the azimuth FFT step of PFA, resulting in a significantly larger focused

scene size. Also, a distortion correction is applied utilizing a 2-D interpolation, yielding a

distortion free image.

This algorithm was demonstrated using the Point Target Scene and also the large scene

measured AFRL dataset. Finally, the computational requirements of the new algorithm

were described and compared with other algorithms.
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Chapter 6

Closing Remarks

In this chapter, we provide a summary of the unique contributions of this dissertation,

discuss expected impacts, and provide some thoughts about future research in this area.

6.1 Summary of Contributions

This dissertation includes three significant contributions, culminating in a new computa-

tionally efficient image formation algorithm for circular flight paths that corrects for distor-

tion and defocus artifacts.

First, we employ a new method for phase error analysis by using a Taylor Expansion

in the temporal dimension. This allows for more accurate isolation of the constant, linear

and quadratic phase error terms for any arbitrary flight path. The Taylor Expansion is used

to derive closed-form analytic expressions for constant, linear and quadratic phase errors.

Second, we use this phase error analysis to accurately determine scene size limitations

for PFA. By including the distortion correction as part of the QPE analysis, the resulting

scene size limitations are notably different from the circular regions of focus determined in

earlier works. In particular, we determined regions of focus that are arbitrary in shape to

include all areas in the image with acceptable focus.

Finally, we derived a new fast algorithm which corrects for both distortion and defocus
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for a circular flight path. The algorithm adds two processing steps to PFA, but it adds

compartively few computations to the overall imaging process while correcting a significant

amount of defocus, and therefore greatly increasing the focused scene size. This algorithm

is demonstrated on point target simulations and a measured large scene dataset.

6.2 Expected Impact

This dissertation provides a novel way of analyzing phase errors in PFA images. Providing

accurate isolation of constant, linear, and quadratic phase errors allows for the development

of accurate distortion corrections and efficient defocus correction algorithms. In particular,

a fast algorithm for implementing defocus corrections for circular flight paths is presented.

This fast algorithm results in a significant increase in allowable scene size, enabling

the collection of larger SAR scenes with modest increases in computational complexity.

In particular, this fast algorithm applicable to circular flight paths will benefit wide area,

staring SAR sensors which offer unique exploitation capabilities over these larger SAR

scenes.

6.3 Future Research

The phase error analysis presented here provides a good theoretical foundation for future

research in PFA correction algorithms. For instance, this analysis was used to derive a

correction algorithm for a linear flight path with squinted geometries [123].

In the future, correction algorithms can be derived for other types of flight paths such

as quadratic and elliptical flight paths, and also numerous types of squinted geometries.

The phase error analysis can also be extended to bi-static SAR operations.
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