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Abstract 

 
Liu, Feiran. M.S.Egr, Department of Electrical Engineering, Wright State University, 

2015. “High Frequency Resolution Adaptive Thresholding Wideband Receiver 

system”. 

 

Fast Fourier transformation (FFT) is widely used in wideband digital receivers to 

detect multiple signals. To achieve high dynamic range, the receiver has to increase 

analog-to-digital (ADC) resolution bits, which requires significant computation time 

and therefore increases receiver time resolution. The other challenge of FFT approach 

is two signals with a small frequency difference (i.e., less than five FFT frequency bins 

in most cases) cannot be detected simultaneous. This thesis presents an adaptive 

thresholding wideband digital receiver to accurately detect two simultaneous high 

dynamic range signals even when they are close to one FFT frequency bin. The receiver 

can perform well for more than two input signals if the requirements for the receiver 

frequency resolution and dynamic range are reduced. The receiver design architecture 

and performance evaluation are presented. 
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 I. Introduction  

With the advanced development and pervasive application of communication 

products, wideband receivers play a much more important role in signal detection and 

tracking ever than before. 

The basic application of a modern wideband receiver is to detect the RF signals 

with the purpose of distinguishing and analyzing their sources [1]. Generally, signals 

are different in power and full of noise due to the different searching requirements and 

complex working environment. Present receivers are not only challenged by quickly 

intercepting through a very wide frequency band in real time with acceptable 

sensitivity [2], but also needed to detect multiple signals with a high frequency 

resolution and instantaneous dynamic range (IDR). Meanwhile, because there is no 

prior knowledge on the number of signals, the received signals could be ignored 

incautious, or the result from the receiver could even be false alarm after the normal 

receiver processing. In this case, new design architecture is presented to accurately 

detect incoming signals and also the frequency resolution. This thesis is focused on 

developing general signal detection algorithm and design components that are 

implemented and verified in Matlab simulation. The hardware implementation will be 

further studied and verified in the future. 

1.1 Fast Fourier Transform 

The discrete Fourier transform (DFT) is well known in the past decades because 

of its extensive use in wireless communication and digital signal processing. This 

mathematic algorithm could convert the original time-domain signal x (n) with a 
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length of total input data N to easily analyzed frequency-domain data X (k) by using 

the following Eq. (1. 1) directly 

 X (k) =  ∑ 𝑥 (𝑛)𝑁−1
𝑛=0 𝑒−𝑗 2𝜋𝑘𝑛/𝑁 , 0 ≤ 𝑘 ≤ 𝑁 − 1      (1. 1) 

Noticing that the N bit DFT requires almost N square times operation. Thus, 

implementation of DFT always produces intricate and abundant hardware usage. 

In the modern receiver design, a much more efficient, faster and easier for 

hardware implementation way to process digital signal, called fast Fourier transform 

(FFT), is increasingly taken the place of DFT which has fallible and complex 

computation procedure. There are amount of different FFT algorithms which can 

reduce the total operations, such as radix 2, higher radix [3], split radix [4] and mixed 

radix fast Fourier Transform [5]. The basic fast Fourier transform computational logic 

separates the N length data to two N/2 length data in every step. In the end of the 

computation, the same result with the DFT could be got in N*log (2*N) operations 

from FFT, which could be less than 1 percent of the number of operations of DFT.  

To analyze the unknown-frequency input signal x (n) by FFT, the Eq. (1. 1. 1) 

must be expressed as 

        X (k) =  ∑ 𝑥 (𝑛)𝑁−1
𝑛=0 𝑊𝑁

𝑘𝑛,   0 ≤ 𝑘 ≤ 𝑁 − 1        (1.1.2) 

𝑊𝑁
𝑘𝑛 = 𝑒−𝑗 2𝜋𝑛𝑘/𝑁                  (1.1.3) 

The 𝑊𝑁
𝑘𝑛 in the (1.1.2) and (1.1.3) is called the twiddle factor which is the key 

difficulty to compute the X (k) in DFT algorithm. In order to improve the efficiency 

of the calculation for this twiddle factor, Euler’s formula, expressed in Eq. (1.1.4), is 

used to rebuild the Eq. (1.2). 

𝑒𝑗 𝜃 = cos(𝜃) + 𝑗 sin(𝜃)                 (1.1.4) 
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After substituting the Euler’s formula to the Eq. (1.3), the new twiddle factor 

equation is 

𝑊𝑁
𝑛𝑘 = cos (

2𝜋𝑛𝑘

𝑁
) + 𝑗 sin(

2𝜋𝑛𝑘

𝑁
)             (1.1.5) 

From the Eq. (1.1.3), Eq. (1.1.4) and Eq. (1.15), the twiddle factor could be 

further analyzed to reduce the complexity of calculation.  

𝑊𝑁

𝑛(𝑘+
𝑁

2
)

= 𝑒−𝑗 2𝜋𝑛(𝑘+
𝑁

2
)/𝑁

                (1.1.6) 

𝑊𝑁

𝑛(𝑘+
𝑁

2
)

= 𝑒−𝑗 2𝜋𝑛𝑘𝑒−𝑗 𝜋𝑛              (1.1.7) 

𝑒−𝑗 𝜋𝑛 = cos(−𝜋𝑛) + 𝑗 𝑠𝑖𝑛(−𝜋𝑛) = −1       (1.1.8) 

Substituting the Eq. (1.1.8) into Eq. (1.1.7), the following formula could be 

easily achieved. 

𝑊𝑁

𝑛(𝑘+
𝑁

2
)

= −𝑒−𝑗 2𝜋𝑛𝑘/𝑁                (1.1.9) 

𝑊𝑁

𝑛(𝑘+
𝑁

2
)

= −𝑊𝑁
𝑛𝑘                  (1.1.10) 

Thus, the symmetric property of the twiddle factor is exhibited in Eq. (1.1.11). 

𝑊𝑁

𝑘+
𝑁

2 = −𝑊𝑁
𝑘                    (1.1.11) 

The periodic property of the twiddle factor also could be investigated by making 

k+N replace k in Eq. (1.1.3). Then the new equation is written as 

𝑊𝑁
𝑛(𝑘+𝑁)

= 𝑒−𝑗 2𝜋𝑛(𝑘+𝑁)/𝑁               (1.1.12) 

𝑊𝑁
𝑛(𝑘+𝑁)

= 𝑒−𝑗 2𝜋𝑛𝑘/𝑁𝑒−𝑗 2𝜋𝑛             (1.1.13) 

Similar to the symmetry of twiddle factor, the Eq. (1.1.4) could be written as the 

formula below. 

𝑒−𝑗 2𝜋𝑛 = cos(−2𝜋𝑛) + 𝑗 𝑠𝑖𝑛(−2𝜋𝑛) = 1      (1.1.14) 
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By substituting the Eq. (1.1.14) to Eq. (1.1.13), the periodic property of the 

twiddle factor is shown in the Eq. (1.1.15). 

𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘                      (1.1.15) 

There are two basic types of the FFT computation, the Decimation in Time (DIT) 

computation method and the Decimation in Frequency (DIF) computation method. 

The difference between DIT method and DIF method is the position of twiddle factor 

in the FFT procedure. The twiddle factor of DIT would be used at first, which is 

shown in Fig 1.1.1. As a comparison, the twiddle factor of DIF is computed at the end 

of the procedure, which is shown if Fig 1.1.2. 

 

Fig 1.1.1 Decimation in Time (DIT) method 

 
Fig 1.1.1 Decimation in Frequency (DIF) method 

Decimation in Time splits the input data x (n) to the odd terms and even terms, 

which could be expressed as x (0), x (2), x (4)…x (N-2) and x (1), x (3), x (5)…x (N-

1). Then the Eq. (1.1.2) could be written as  

X(k) = ∑ 𝑥(2𝑛)𝑊𝑁
2𝑛𝑘 + ∑ 𝑥(2𝑛 + 1)𝑊𝑁

(2𝑛+1)𝑘
𝑁

2
−1

𝑛=0

𝑁

2
−1

𝑛=0    (1.1.16) 
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Noticing the X (k) split in two N/2 point DFT in Eq. (1.1.16) which is called 

radix-2 FFT algorithm reduce the number of computation stages. Making use of 

symmetry and periodicity of twiddle factor with further separating the Eq. (1.1.16) to 

additional odd terms and even terms could decrease the total number of stages from 

N^2 to (N/2)*log2(N).  

The larger bit of the DFT has, the more computation stages are saved by the FFT 

algorithm. Fig 1.1.3 and Fig 1.1.4 show the figures of 16 bit DIT and DIF FFT 

algorithm. 

 

Fig 1.1.2 Decimation in Time (DIT) method for 16 points FFT 
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Fig 1.1.3 Decimation in Frequency (DIF) method for 16 points FFT 

FFT has a satisfying performance in rapidly analyzing and can determine 

frequencies of multiple signals so it is introduced in lots of digital receiver 

architecture designs, such as monobit receiver [6]. This research use the DIT 

algorithm which is implemented by Matlab. 

1.2 Hanning Window Function 

There are several well know restrictions for accuracy of FFT based receivers, 

such as jitter, large frequency which is out of the Nyquist zone and FFT resolution. 

Another property that always generates errors is the leakage due to the non-periodic 

data. Ideally, FFT computation algorithm considers the input signal is perfect 

periodic, which means, the input signal has a small and easy-identified main-lobe. 

Thus, the frequency of the input data could be located accurately.  
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Nevertheless, the sampled time domain data is disturbed by the noise or any 

other signals in the real world, then the FFT spectrum could be distorted and the result 

could be inaccurate. This phenomenon is called leakage of the FFT. When leakage 

happens, the energy of the input signal diffuses to a wider frequency range instead of 

the original narrow frequency range in the FFT spectrum, that is, the main-lobe of the 

signal is expanded. Fig 1.2.1 shows the comparison of the non-leakage spectrum and 

the spectrum with leakage. 

 

Fig 1.2.1 Comparison of the Non-leakage Spectrum and the Spectrum with Leakage 

The left two pictures of Fig 1.2.1 show the property of perfect periodic input 

signal, and the main-lobe is quite small and no leakage. On the other hand, the main-

lobe of the signal power density expands and becomes more dispersed in the right two 

graphs, which is the effect of leakage.  

In order to overcome the effect of leakage and get better result from FFT 

measurement, a window function must be applied to rectify the errors. The shape of a 

window is zero at the beginning and end of the whole power spectrum, and exist 
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particular shape in the middle. Fig 1.2.2 shows four frequently-used window 

functions. 

 

Fig 1.2.2 Frequently-used Window Functions 

Hanning window function, also called Hann function, is a reliable chose to 

reduce the leakage and reshape the signal power spectrum which has low aliasing. Fig 

1.2.3 shows the frequency response of the hanning window in FFT. 

 

Fig 1.2. 3 Hanning window frequency response in FFT 
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Although the FFT window functions could not erase leakage exhaustively, the 

reshaped leakage effectively helps people locate precise frequency. Fig 1.2.4 shows 

the difference between a non-periodic sine wave to windowed sine wave.  

 

Fig 1.2.4 Non-periodic Sine Wave with Leakage (left) and Reshaped Wave (right) 

In this thesis, the scale factor of 1024 is considered as the Hanning window 

function coefficients. The Hanning window is applied to the time domain data from 

the ADC by Matlab program, then the windowed data would be analyzed by FFT 

algorithm. 

1.3 Super-resolution Compensation 

With the advance of modern communication and sensing technology, detecting 

multiple signals simultaneously with good instantaneous dynamic range (IDR), high 

resolution and unexpected number of input signals becomes a non-ignorable 

requirement for wideband receiver design [7]. As discussed in section 1.2, the 

Hanning window function could suppressed the side-lobes, which indicates that the 
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receivable frequency resolution of the receiver is mainly determined by the main-lobe 

of the windowed signal, especially the wide main-lobe of the strongest signal when 

several inputs exist [8]. Fig 1.3.1 shows the frequency response in 1024-point FFT 

spectrum with two input signals.  

 

Fig 1.3.1 1024-point FFT Spectrum with Two Sine Wave Inputs 

The stronger signal has a frequency of 975 MHz, and the other one has a 

frequency of 540 MHz. Noticing the main-lobe of the strong signal is as large as 10 

bins away from the center bin. This, in turn, could mix up with the actual frequency of 

the small signal and generate false alarm which is undesired in the modern 

communication system. In this case, the super-resolution compensation method is 

applied to reduce the effect of the strong signal main-lobe and increase the possibility 

of accurately detecting the other signals. Fig 1.3.2 shows the flow of the super-

compensation method. 



  11 
 

 

Fig 1.3.2 Super-compensation Flow 

Ones the frequency f1 of the strongest signal is found, then the f1 frequency bin 

and other appropriate bins closed to the f1 bin would be removed from the FFT 

spectrum to expose the actual second frequency bin. If more signals exist, repeat 

compensation to locate the more frequency bins. Fig 1.3.3 shows the compensation 

result comparing to Fig 1.3.1. 



  12 
 

 

Fig 1.3.3 Compensation result of the two sine wave inputs 

In the Fig 1.3.3, the actual second frequency bin is totally exposed by applying 

the compensation method. By using this super-resolution compensation method, as 

many as five signals could be detected simultaneous with an acceptable IDR [9]. 

1.4 Fine Frequency Estimation 

Fine frequency estimation is an active way to speculate the accurate peak 

position from the frequency bins in FFT spectrum. By using the fine frequency 

estimation, the true frequency of the input signal could be extrapolated, and the 

limitation of the FFT frequency resolution is declined. Fig 1.4.1 shows an example of 

a FFT spectrum. 
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Fig 1.4.1 Frequency Response from FFT 

Where X0 is the peak of the data in the frequency domain and X1 is the higher 

amplitude of two adjacent frequency bins. The equations of fine frequency estimation 

from various window functions are different. For example, if Fig 1.4.1 applies a 

hanning window from 1024-point FFT, the fine frequency estimation could be 

calculated by the following equations. 

k =
2𝑋1−𝑋0

𝑋0+𝑋1
                        (1.4.1) 

F = (𝑘0 − 1 − 𝑘)2.5 MHz               (1.4.2) 

Where k0 is the index of the X0 and F is the adjusted frequency. 2.5 MHz is the 

resolution of the receiver in this thesis. 

If X1 is on the right side of the X0 as shown in Fig 1.4.2, the adjusted frequency 

F is expressed as Eq. (1.4.3). 
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Fig 1.4.2 Frequency Response from FFT (case 2) 

F = (𝑘0 − 1 + 𝑘)2.5 MHz               (1.4.3) 

In this thesis, the fine frequency estimation is introduced to the Hanning window 

with a different equation of the estimation, which is discussed in Chapter IV.  

1.5 Two Signals Detection 

As discussed in section 1.3, multiple signals detection capability is a critical 

evaluation index. The modern receivers still have a nice bit of challenge on 

performance of detecting multiple signals. Even the super-resolution compensation 

method is applied to the receiver system, which could highly improve the dynamic 

range and number of signals detection, the frequency resolution is still limited by the 

stronger signal due to its wide main-lobe. In case of the frequency of a weak signal 

closed to the frequency of a stronger signal, the frequency of the weaker signal would 

be removed by the super-resolution compensation method. Thus, the weaker could not 

be detected by the receiver system.  
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1.6 Motivation 

With the incoming age of artificial intelligence and big data, electronic devices 

would be more intelligent, diversity and complexity. Development of receiver systems 

is a challenge that cannot be neglected.  

In a FFT based receiver system, no matter how increase the point number of FFT 

or improve the performance of other components, signal resolution would always be 

limited by the main-lobe of the strong signal. In this case, a special block must be 

studied and applied to overcome this hard challenge.  

1.7 Objective 

The objective of this thesis is to implement a receiver system that can detect two 

signals which have close frequencies, then report the actual frequencies. The research 

about this thesis is simulated in the Matlab and Simulink.  

1.8 Thesis Organization 

The detailed organization of this thesis include: 

 Chapter 1 gives the introduction of basic definitions and knowledge of the 

receiver system. 

 Chapter 2 demonstrates the squarer and its function in the thesis. 

 Chapter 3 shows the adaptive threshold technique for the receiver system to 

avoid false alarm. 

 Chapter 4 discusses an algorithm to detect two signals and locate the actual 

frequency as precise as possible. Chapter 4 also shows the experimental 

result of this high frequency resolution wideband receiver system. 
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 Chapter 5 discusses the contribution of this research and future work to 

accomplish. 
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II. Squarer with Adaptive Gain 

2.1 Squarer 

Squarer is an irreplaceable hardware component in signal processing 

applications. It is widely used in multiplier, modulation, frequency division, filtering, 

vector quantization, image compression, pattern recognition, error correction, 

quantization, and signal power estimation [10]- [11], etc. 

As squarer circuit design technology advances in size and power, it has become a 

critical component in ultra wideband (UWB) receivers. Fig 2.1.1 shows a basic type 

of UWB receiver block diagram. A squarer circuit is placed after the low noise 

amplifier (LNA) and a tunable gain to amplify the input signal, followed by an 

integrator tends to detect the power of the amplified signal [12].  

 

Fig 2.1.1 UWB Receiver Block 

Another application of the squarer circuit is to double the frequency of input 

signal, which can be used in conjunction with FFT to accurately detect input signals 

and improve the dynamic range of the receiver [13]. Assume the input sinusoidal 

signal is expressed by the Eq. (2.1.1) with the amplitude -A, 
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The frequency ω, the phase angle θ and the additive white Gaussian noise (AWGN) 

n. 

S = Asin(ω𝑡 + 𝜃) + 𝑛                   (2.1.1) 

After the squarer, the output is expressed as 

S2 = (Asin(ωt + θ) + n)2                (2.1.2) 

S2 = 𝐴2sin (𝜔𝑡 + 𝜃)2 + 2𝑛Asin(ωt + θ) + 𝑛2    (2.1.3) 

Using the double-angle formula in Eq. (2.1.4), the squared signal can be expressed in 

Eq. (2.1.5), which includes frequency components of 2ω and ω. 

cos2x = 1 − 2𝑠𝑖𝑛2𝑥                   (2.1.4) 

𝑆2 = −
1

2
𝐴2 cos(2𝜔𝑡 + 2𝜃) + 2𝑛𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜃) + 𝑛2   (2.1.5) 

The two frequencies of the squared signal, 2ω and ω, can be located in the FFT 

spectrum. Fig 2.1.2 shows the basic blocks of a receiver system with squarer.  

 

Fig 2.1.2 Basic Blocks of a Receiver System with Squarer 

A 10-bit ADC used in this research is implemented by Simulink and has a 

dynamic range of -0.5V to 0.5V. This receiver system, after optimization for dynamic 

thresholding, can accurately locate f and 2f in a high dynamic range, which will be 

discussed in Chapter IV. Fig 2.1.3 and Fig 2.1.4 show the FFT responses of the non-

squared input signal and squared signal.  
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Fig 2.1.3 Non-squared Input Signal Frequency Response (f=390MHz) 

 

Fig 2.1.4 Squared Input Signal Frequency Response (2f=780MHz) 
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Note that the input frequency is 390 MHz, which is doubled to 780 MHz after 

the squared circuit in Fig 2.1.3. Since n is the white Gaussian noise, the second term 

2𝑛Asin(ωt + θ) in Eq. (2.1.5) is small and will not cause false alarm after the 

receiver signal detection threshold is properly determined. So, only the 2f of the 

squared signal is detected in this case.  

Considering two simultaneous signals 𝜔1 and 𝜔2, the input signal is expressed 

in Eq. (2.1.6). 

S = Asin(𝜔1𝑡 + 𝜃1) + Bsin(𝜔2𝑡 + 𝜃2) + 𝑛           (2.1.6) 

After the squarer, the output is expressed as 

S2 = (Asin(𝜔1𝑡 + 𝜃1) + Bsin(𝜔2𝑡 + 𝜃2) + 𝑛)2        (2.1.7) 

= 𝐴2sin(𝜔1𝑡 + 𝜃1)2 + 2𝐴Bsin(𝜔1𝑡 + 𝜃1)sin(𝜔2𝑡 + 𝜃2) + 𝐵2sin(𝜔2𝑡 +

𝜃2)2 + 2𝑛Asin(𝜔1𝑡 + 𝜃1) + 2𝑛Bsin(𝜔2𝑡 + 𝜃2) + 𝑛2      (2.1.8) 

The trigonometric sum and subtraction functions are expressed in Eq. (2.1.9) and Eq. 

(2.1.10). 

cos(x + y) = cos 𝑥 cos 𝑦 − sin 𝑥 sin 𝑦            (2.1.9) 

cos(x − y) = cos 𝑥 cos 𝑦 + sin 𝑥 sin 𝑦            (2.1.10) 

Eq. (2.1.11) is obtained after using the above two equations. 

cos(x − y) − cos(x + y) = 2 sin 𝑥 sin 𝑦           (2.1.11) 

From Eqs. (2.1.4) and (2.1.11), the equation of the squared signals is expressed as  

𝑆2 = −
1

2
𝐴2 cos(2𝜔1 + 2𝜃1) −

1

2
𝐵2 cos(2𝜔2 + 2𝜃2) 

+𝐴𝐵𝑐𝑜𝑠[(𝜔1 − 𝜔2)𝑡 + (𝜃1 − 𝜃2)] − 𝐴𝐵𝑐𝑜𝑠[(𝜔1 + 𝜔2)𝑡 + (𝜃1 + 𝜃2)] 

+2𝑛𝐴sin(𝜔1𝑡 + 𝜃1) + 2𝑛Bsin(𝜔2𝑡 + 𝜃2) + 𝑛2            (2.1.12) 
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The frequency components in the above equation are 2f1, 2f2, f1+f2, f1-f2, f1 and 

f2. As discussed in one signal case, 2𝑛𝐴sin(𝜔1𝑡 + 𝜃1) and 2𝑛Bsin(𝜔2𝑡 + 𝜃2) are 

small in comparison with other terms. Hence the total possible detectable frequency 

components after the squarer circuit could be 2f1, 2f2, f1+f2 and f1-f2. Figures 2.1.5 and 

2.1.6 give FFT spectrum examples of two input signals after the squarer circuit. 

 

Fig 2.1.5 Two Input Signals Frequency Response (f1= 200MHz, f2=500MHZ) 
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Fig 2.1.6 Squared Signals Frequency Response 

Two signals are detected in Fig 2.1.5 with the two frequencies reported, 2*108 

Hz (f1) and 5*108 Hz (f2). As shown in Fig. 2.1.6, the FFT spectrum of the squared 

signals reports four frequency components of 300 MHz (f2-f1), 400 MHz (2f1), 700 

MHz (f2+f1) and 1000 MHz (2f2), which are consistent to the expression for S2 shown 

in Eq. 2.1.12.  

In this research, a high frequency resolution and dynamic range adaptive 

thresholding wideband receiver system is presented. It can accurately detect two 

simultaneous high dynamic range signals close to one frequency bin. The receiver 

design architecture and performance evaluation are presented. Another example of the 

squared signals in frequency domain is given in Fig. 2.1.7 and 2.1.8.  
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Fig 2.1.7 Two Input Signals with Frequency of 600MHz and 900MHz 

 

Fig 2.1.8 Squared Signals with Frequency of 600MHz and 900MHz 
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2.2 Adaptive Gain 

Since the squared signal which has an amplitude 
1

2
𝐴2, as discussed in Section 

1.2, is much smaller than the original signal amplitude A when A << 1. The analog to 

digital converter (ADC) may not sample the squared signal accurately when an input 

signal amplitude is small and the squared amplitude 
1

2
𝐴2 is less than the 1-b 

resolution of ADC. Fig. 2.2.1 and 2.2.2 give an example of two weak signals in the 

frequency domain.  

 

Fig 2.2.1 Two Weak Signals Frequency Response 
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Fig 2.2.2 Squared Weak Signals Frequency Response 

Both the two weak signals have small amplitude of 2 mV, which are sampled by 

a 10 bit ADC with a dynamic range from -0.5V to 0.5V. However, the squared 

amplitude, as small as 4 μV, cannot be sampled properly. Thus, Fig. 2.2.2 FFT squared 

spectrum does not shown any peak frequency. 

In this case, a gain control amplifier is introduced to amplify the input signal 

before the signal is squared.  

2.2.1 Amplitude Detection 

It is worth noting that this amplifier gain is controllable because the amplitude 

summation of the input signals needs to be within the dynamic range of ADC. In order 

to set the controllable gain for different input amplitude, a peak detection block, 

detecting the amplitude value using the first several ADC sample data of incoming 

signals is introduced [14]. In this research, a 1024-point FFT is applied after the ADC 

block, thus, the peak detection block will detect the amplitude value of the first 1024 
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sampled data. After the amplitude evaluation, the amplifier gain is determined. 

Thereafter, the input signal will be amplified by the gain control amplifier before 

passing through the squarer circuit in the receiver system. Fig 2.2.3 shows the flow 

chart of adaptive gain control system.  

 

Fig 2.2.3 Flow Chart of Adaptive Gain Setting 
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2.2.2 Modulating Gain 

Since the input data is sampled by the 10-bit ADC, the amplitude value range is 

from 0 to 1023. Five different gain values are applied to achieve a good sensitivity 

and dynamic range in this receiver system. Each gain based on different range of 

amplitude is determined by an amplitude evaluation block. Fig. 2.2.4 shows the flow 

chart of amplitude evaluation and gain setting. 

 

Fig 2.2.4 Flow Chart of Amplitude Evaluation and Gain Setting 
 

After the first 1024 points input signal coming into the ADC, the peak amplitude 

is found before adjusting the amplifier gain. For example, two input signals in Fig. 

2.2.1 have a peak amplitude of 2 mV, the amplitude summation value of this two input 
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signals is 13 after being sampled by the ADC. Then according to the flow chart the 

gain is set to 1000. The frequency response of the squared signal after the gain control 

1000 amplifier is shown in Fig. 2.2.5. 

 

Fig 2.2.5 Amplified Squared Data in Frequency Domain (gain control = 1000) 
 

In Fig 2.2.5, the frequency summation (f1+f2), frequency subtraction (f2-f1), 

double frequency of f1 (f1
2) and double frequency of f2 (f2

2) are all located in the FFT 

spectrum. 
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III. Adaptive Threshold 

3.1 Threshold Setting for Non-squared Data 

In order to report a signal from a FFT based receiver system, the maximum 

frequency bin corresponding to the signal must be found. In addition, the amplitude of 

this frequency bin has to be above a threshold which is determined based on the noise 

distribution and false alarm [15]. Thus, thresholding technique is a critical component 

in the receiver design that can affect receiver detection probability, false alarm rate 

and sensitivity.  

In this research, the threshold for non-squared input data is determined by the 

noise Rayleigh distribution and false alarm rate of 10-7. AWGN is introduced to 

evaluate noise effect and determine the threshold. This standard deviation is 

determined by 1 bit resolution of the ADC. Fig 3.1.1 shows the flow chart of noise 

distribution evaluation.
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Fig 3.1.1 Noise Distribution Evaluation. 
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In the above evaluation flow, the total 10,240,000 sampled data points, which is 

10,000 frames of 1,024-point FFT, are collected and stored in frequency domain by 

using FFT. Theoretically, the distribution of white noise data in frequency domain is a 

Rayleigh distribution. The x-axis value within around 10-7 of the total area of the 

distribution figure from right to left is selected as the threshold, which gives a false 

alarm rate of 10-7 when there is no incoming signal except noise. Fig 3.1.2 shows the 

distribution form of white noise. 

 

Fig 3.1.2 AWGN Rayleigh Distribution 

By calculating the area of the distribution, the threshold is set to 85 Volts or 39 

dBm in frequency domain. Using this threshold value Table 3.1.1 shows the 
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sensitivity table for single signal detection. In this case, the receiver sensitivity is 

close to -10 dB of SNR where 90% detection rate is achieved. Table 3.1.1 shows the 

sensitivity for single signal detection. 

Table 3.1.1 Sensitivity of Single Signal 

SNR -11 -10.5 -10 -9.5 -9 -8.5 -8 

Detection 
Rate (%) 

80.3 84.57 92.34 96.76 98.94 100 100 

 
 

Fig 3.1.3 gives an example of one signal 1040 MHz of -10 dB SNR in frequency 

domain. The maximum amplitude in this figure is greater than the threshold of the 

non-squared data, thus, the frequency of this input signal is detected. 

 

Fig 3.1.3 Single Signal of -10 SNR in Frequency Domain. 
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Ideally, dual threshold can be applied to the non-squared input data to increase 

the dynamic range when there are multiple input signals to the receiver system [16]. 

In this research, dual thresholds technique for non-squared data is necessary to be 

applied after the practical simulation base on the threshold 39. Fig 3.1.4 shows an 

example of two signal inputs in frequency domain. 

 

Fig 3.1.4 Two Signals of 259.67MHz and 255.97 MHz in Frequency Domain. 

  

It is worth noting that the frequencies of the weak signal and strong signal are 

close to each other and a spur arises (i.e. 39.04 dB) which is above the threshold 39 

dB. In this case, dual threshold has to be applied. After practice simulation, setting the 

second threshold to 40 dB could avoid false alarm. 
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3.2 Adaptive Threshold for Squared Data 

Because multiple frequency peaks are to be detected for squared data in FFT 

spectrum as discussed in section 2.1, false alarms could occur due to multiple signal 

interference. Meanwhile, strong signals would generate wide main-lobes and side-

lobes and therefore, increase interferences so as to miss weak signal detection or 

cause false alarms. In this case, using the fixed threshold technique, the given receiver 

would not detect weak signals and thus, reduce two-signal dynamic range. Modern 

elaborate receiver system is required to be more accurate and have a high dynamic 

range, therefore, modulating and determining an optimal. 

The adaptive thresholding technique proposed in this research will resolve these 

problems.  

3.2.1 Threshold Measurement 

To set an appropriate threshold for the squared data, the noise floor must be 

measured.  

From the Eq. 2.1.12, magnitudes of 2f are 
1

2
A2 and 

1

2
B2, amplitude of f1-f2 and 

f1+f2 is AB. Generally, comparing to the 2f, the f1-f2 and f1+f2 are helpful in detecting 

input signals, which will be discussed in Chapter 4. Thus, making both f1-f2 and f1+f2 

detectable without causing false alarm is a key requirement for adaptive thresholding. 

Considering two high dynamic range signals, one strong (amplitude A) and one weak 

(amplitude B), if AxB is small then both f1-f2 and f1+f2 would be difficult to detect. So 

two high dynamic range signals are considered in adaptive thresholding technique. If 

the weak signal amplitude B is very small, then the amplitude of the double frequency 

of this weak signal (B2) is too small. Therefore, the double frequency signal cannot be 
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detected. Fig 3.2.1 gives an example for a strong signal and a weak signal in 

frequency domain. Fig 3.2.2 shows frequency response for the same data but be 

squared. 

 

Fig 3.2.1 Non-squared Strong and Weak inputs in Frequency Domain 
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Fig 3.2. 2 Squared Strong and Weak Inputs in Frequency Domain 

Suppose the frequency of the strong signal is f1 which is 452.5M Hz, and the 

frequency of weak signal is f2 which is 1.7*108 Hz. Then the 2f1 (902.5 MHz), f1-f2 

(282.5 MHz) and f1+f2 (620 MHz) are determined in the second FFT spectrum where 

the reported frequency of f1 is 451.5 MHz and f2 is 169.5 MHz. 

In order to achieve a dynamic range for this receiver system, the strong signal 

and weak signal must be swept from a wide range of amplitudes. By simulating in 

Matlab and Simulink, the weak signal should have at least -6.5 dB SNR to avoid false 

alarm, and the strong signal has to be at least 6.5 SNR to achieve a 90% signal 

detection for 2f1, 2f2, f1-f2 and f1+f2.  

The following tables based on 5 different gains for squared data, which is 

discussed in section 2.2.2, give the results of the simulation for different signal 
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amplitudes. Each case collects 102,400,000 (>108) points data to inspect the threshold 

for a false alarm rate of 10-7. 

Table 3.2.1 Thresholds for Squared Data with a Controllable Gain of 1000 

Weak Signal 

SNR 

Strong Signal 

SNR 

Maximum 

Amplitude for 

non-squared 
data after 

ADC 

Minimum 

Amplitude for 

non-squared 
data after 

ADC 

Mean 

Amplitude or 

non-squared 
data after 

ADC 

Detection 

Probability  
Threshold 

-7 6.5 15 10 12 84.83 51.7 

-6.5 6.5 15 10 12 90.97 51.8 

-6.5 7 16 10 13 
90.86 52.4 

93.49 52.1 

-6.5 7.5 16 10 13 
90.08 53 

93.74 52.6 

-6.5 8 17 10 13 
90.38 53.5 

96.45 52.6 

-6.5 8.5 17 11 14 
90.16 54 

96.06 53.2 

-6.5 9 18 11 14 
89.82 54.5 

95 53.9 

-6.5 9.5 18 12 15 
90.38 54.9 

94.52 54.4 

-6.5 10 18 12 15 
90.55 55.5 

96.22 54.7 

-6.5 10.5 19 12 16 
90.42 55.9 

96.63 55 

-6.5 11 19 12 16 
89.79 56.5 

95.44 55.8 

-6.5 11.5 20 14 17 
90 57 

97.17 55.9 

-6.5 12 21 14 17 
89.86 57.5 

95.97 56.7 

-6.5 12.5 21 15 18 
90.57 57.9 

94.73 57.4 

-6.5 13 22 15 19 
90.33 58.5 

96.81 57.5 

-6.5 14 24 16 20 
89.7 59.5 

97.5 58.2 

-6.5 15 26 17 22 
90.52 60.5 

96.93 59.5 

-6.5 16 28 19 24 
90.03 61.5 

97.45 60.3 
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-6.5 17 29 21 26 
90.28 62.5 

97.19 61.4 

-6.5 18 32 23 28 
90.5 63.5 

97.57 62.3 

-6.5 19 34 24 31 
90 64.5 

97.14 63.4 

-6.5 20 38 28 34 
90.2 65.5 

97.64 64.2 

-6.5 21 41 30 37 
90.29 66.5 

97.43 65.3 

-6.5 22 45 33 41 
90.3 67.3 

97 66 

  

Table 3.2.2 Thresholds for Squared Data with a Controllable Gain of 100 

Weak Signal 

SNR 

Strong Signal 

SNR 

Maximum 

Amplitude for 

non-squared 
data after 

ADC 

Minimum 

Amplitude for 

non-squared 
data after 

ADC 

Mean 

Amplitude or 

non-squared 
data after 

ADC 

Detection 

Probability  
Threshold 

-6.5 20 38 28 33 
90.2 45.7 

96 44.6 

-6.5 21 41 30 37 
90.13 47.1 

93.45 46.1 

-6.5 22 45 33 41 
90.23 47.5 

97.58 46.2 

-6.5 23 49 36 45 
90.47 48.4 

95.8 47.6 

-6.5 24 54 40 50 
90.57 49.4 

97.15 48 

-6.5 25 59 42 55 
90.68 50.4 

96.66 49.3 

-6.5 26 66 49 61 
90.6 51.4 

96.57 50.3 

-6.5 27 72 56 68 
90.37 52.4 

96.56 51.3 

-6.5 28 80 60 76 
90.47 53.4 

97 52.1 

-6.5 29 89 65 85 
90.67 54.4 

97.08 53 

-6.5 30 98 73 94 
90.54 55.4 

94.38 54.9 

-6.5 31 109 78 105 
90.67 56.4 

97.12 55 
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-6.5 32 122 92 117 
89.67 57.5 

96.38 56.4 

-6.5 33 136 97 131 
90.75 58.6 

96.58 57.4 

-6.5 34 150 117 146 
90.5 59.3 

97.15 58 

  

Table 3.2.3 Thresholds for Squared Data with a Controllable Gain of 10 

Weak Signal 

SNR 

Strong Signal 

SNR 

Maximum 

Amplitude for 

non-squared 
data after 

ADC 

Minimum 

Amplitude for 

non-squared 
data after 

ADC 

Mean 

Amplitude or 

non-squared 
data after 

ADC 

Detection 

Probability  
Threshold 

-6.5 33 136 97 131 
90 38.4 

95.26 37.7 

-6.5 34 150 117 146 
90.39 39.4 

95.66 38.6 

-6.5 35 168 124 164 
90.58 40.4 

96.55 39.4 

-6.5 36 188 140 183 
90.41 41.4 

95.3 40.7 

-6.5 37 209 159 205 
90.55 42.4 

96.49 41.4 

-6.5 38 233 178 229 
89.5 43.5 

94.54 42.9 

-6.5 39 261 198 257 
90.6 44.4 

97.26 43 

-6.5 40 292 226 287 
90.59 45.4 

96.71 44.3 

-6.5 41 327 253 322 
90.57 46.4 

97.14 45 

-6.5 42 365 272 360 
90.56 47.4 

97 46.1 

-6.5 43 409 310 404 
90.57 48.4 

95.76 47.6 
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Table 3.2.4 Thresholds for Squared Data with a Controllable Gain of 5 

Weak Signal 

SNR 

Strong Signal 

SNR 

Maximum 

Amplitude for 

non-squared 
data after 

ADC 

Minimum 

Amplitude for 

non-squared 
data after 

ADC 

Mean 

Amplitude or 

non-squared 
data after 

ADC 

Detection 

Probability  
Threshold 

-6.5 42 365 272 360 
90.1 41.5 

96.51 40.3 

-6.5 43 409 310 404 
90.02 42.4 

96.36 41.4 

-6.5 44 457 359 453 
90.15 43.4 

96.42 42.3 

-6.5 45 512 399 507 
90.29 44.4 

95.35 43.7 

-6.5 46 574 419 568 
89.84 45.4 

95.64 44.5 

-6.5 47 644 471 638 
90.01 46.4 

95.96 45.3 

  

Table 3.2. 5 Thresholds for Squared Data with a Controllable Gain of 1 

Weak Signal 

SNR 

Strong Signal 

SNR 

Maximum 

Amplitude for 
non-squared 

data after 

ADC 

Minimum 

Amplitude for 
non-squared 

data after 

ADC 

Mean 

Amplitude or 
non-squared 

data after 

ADC 

Detection 

Probability  
Threshold 

-6.5 48 719 556 715 82.65 33.8 

-6.5 49 806 613 802 89.34 34.3 

-6.5 50 903 670 899 89.53 35.3 

-6.5 51 1013 730 1008 63.27 37.6 

  

The weak signals is fixed where the strong signals have a SNR from 6.5 to 51 

dB. Each strong signal has two thresholds in the above tables. By using the first 

threshold, around 90% probability detection is achieved. By using the second 

threshold there is no false alarm. In order to get a high dynamic range, the second 

threshold would be used as the squared data threshold.  
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It is worthy noting that some strong signals such as 33 SNR, 34 SNR are both 

listed in Table 3.2.2 and Table 3.2.3 but have different thresholds. A reason of this is 

the inputs with same SNR could have different gain for squared data. For example, if 

the SNR of the amplitude summation of the input signals is 34, the amplitude for non-

squared data could be any value from 117 to 150 after sampling by ADC, so the gain 

evaluation block can adjust the amplifier gain to 1000 or 100 by comparing the 

amplitude with 123 which was set in Chapter II. Thus, the strong signal with 34 dB 

SNR are both tested and analyzed with the control gain of 1000 and 100.  

3.2.2 Threshold Modulation 

After the appropriate thresholds are obtained, a final threshold table is built to 

modulate the final threshold for squared data. To apply the adaptive threshold, the 

amplitude detection technique as discussed in section 2.2.1 is introduced to adjust the 

threshold corresponding to the threshold table. Fig 3.2.3 shows the flow chart for the 

threshold modulation.  
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Fig 3.2.3 Flow Chart for the Threshold Modulation 
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IV. Two Signals Detection 

4.1 Detecting the First Signal. 

The basic idea of detecting the first signal is using a 1,024 points FFT with a 

window function to transfer the data from time domain to frequency domain. When 

input signal coming into the receiver system, the data would be sampled by ADC and 

be stored in memory. Note that the DC effect is removed by subtracting the average 

value of the sampled data. Besides, in order to reduce the effect of side-lobe, window 

function is applied in the time domain before the FFT analysis. At last, the frequency 

bin which has a maximum amplitude and are above the threshold represent the 

strongest amplitude of input signals. Fig 4.1.1 shows the flow chart of the first signal 

detection and Fig 4.1.2 gives an example for FFT spectrum.
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Fig 4.1.1 Flow Chart for Detecting the First Signal
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Fig 4.1.2 Maximum Amplitude in Frequency Domain 
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4.2 Fine Frequency Estimation 

As discussed in section 1.4, fine frequency estimation can be applied to improve 

the frequency resolution. Two examples are given in Fig 4.2.1 and Fig 4.2.2. 

 

Fig 4.2.1 Right Side Fine Frequency Estimation 



  47 
 

 

Fig 4.2.2 Left Side Fine Frequency Estimation 

Based on the analysis of the Fig 4.2.1, the frequency of the first signal is located 

at 730 MHz, and the actual frequency of this signal is 730.93 MHz. Noticing the right 

bin has a higher amplitude than the left bin, Eq. (1.4.2) can be applied to estimate the 

actual frequency. Substitute 101.6 to X0 and 83.1 to X1, the adjusted frequency is 

calculated to be 730.87 MHz, which is closer to the actual frequency. Fig 4.2.2 can be 

estimated by Eq. (1.4.3) due to the left side bin has a higher amplitude than the right 

side bin, where the adjusted frequency is 248.84 MHz and the actual frequency is 

249.72 MHz. 
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4.3 Detecting the Second Signal 

Detecting the second signals with high dynamic range and high frequency 

resolution is quite a challenging in modern wideband digital receiver due to the effect 

of the main-lobe and side-lobe created by the strong signal. To solve the problem, a 

squarer circuit and an algorithm for determining the frequency of the second signal 

are discussed in this section. 

4.3.1 Determining the Existence of the Second Signal 

To detect multiple signals by FFT analysis, a compensation method has been 

presented to remove the main-lobe, side-lobes and spurs of the strong signal. Then the 

next maximum amplitude frequency bin is exposed. Fig 4.3.1 and Fig 4.3.2 give an 

example for the result of the compensation method. 

 

Fig 4.3.1 FFT Spectrum without Compensation 
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Fig 4.3.2 FFT Spectrum with Compensation 

From the above figures, it is worthy noting that there are as many as 20 

frequency bins in the main-lobe of the strong signal. The second signal in these 

frequency bins cannot be detected. In this research, 1024-point FFT and 2.56 GHz 

ADC are applied, and the 20 bins in frequency domain represent 50 MHz, which 

means, the second signal has to be 50 MHz away from the first signal. Fig 4.3.3 and 

Fig 4.3.4 show the second signal is 7.5 MHz away from the first signal. 
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Fig 4.3.3 Two Inputs with 7.8 MHz Frequency Difference without Compensation 

(f1=1183.9 MHz and f2=1176.1 MHz) 

 

Fig 4.3.4 Two Inputs with 7.8 MHz Frequency Difference with Compensation 

(f1=1183.9 MHz and f2=1176.1 MHz) 
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The actual frequencies of these two signals are 1183.9 MHz and 1176.1 MHz, 

and only the strong signal is detected. Thus, the compensation method cannot expose 

the second signal when two signals are close to each other.  

The FFT spectrum for squared signal provides more information about the 

second signal. Fig 4.3.5 shows the squared data in frequency domain. Because of the 

two facts, the frequency difference between the two signals, 7.5 MHz, is detected in 

Fig 4.3.5 and the first signal detected in Fig 4.3.3. Therefore, the second signal exists 

and the frequency subtraction from the first signal is 7.5 MHz. 

 

Fig 4.3.5 Squared Signals with Two Close Frequencies in Frequency Domain 

4.3.2 The Second Signal Detection 

After the second signal is verified, next is to find its frequency. As shown in Fig 

4.3.6, two local peak signals are located at 1175 MHz and 1185 MHz, about 6 
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frequency bins away, which is very close to the two signal subtraction 7.5 MHz, 5 

bins in Fig 4.3.5. Therefore, the second signal is detected and its frequency is 1175 

MHz. 

 

Fig 4.3. 6 Zooming in FFT Spectrum 

The frequency of the second signal (close to the first signal f1) may not be 

determined by the non-squared data when there is no local peak near f1 in non-squared 

FFT spectrum (see example in Fig 4.3.7 and Fig 4.3.8). Excluding the frequency bin 

for the frequency subtraction, another peak could be detected in the squared FFT 

spectrum. In this research, the first local peak P1 is a detectable local peak in the first 

10 bins of the squared FFT spectrum which represents two signals’ frequency 

subtraction. The second local peak P2 is the next peak in the rest of the frequency bins 

and the third local peak P3 is the maximum local peak near P2. In this case, if the 

frequency of the strong signal is f1 and the second signal is f2, then P2 is the location 
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of 2f1 or f1+f2. Since the f1 is already detected by FFT spectrum, then P2 must be f1+f2 

if it is not located at 2f1. In our experiments, when the P2 is more than 2 frequency 

bins away from 2f1, then f2 is fP2 -f1.  

 

Fig 4.3.7 244.49 MHz and 250.88 MHz Non-squared FFT Spectrum 
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Fig 4.3.8 244.49 MHz and 250.88 MHz Squared FFT Spectrum 

Another example of two input signals, 168.86 MHz and 161.92 MHz, is shown 

in Fig 4.3.9, where the second signal is not detected by the non-squared data. In this 

case, the squared signal in frequency domain is shown in Fig 4.3.10. It is evaluated to 

determine the second signal frequency by using the squared signal frequencies, i.e., f1-

f2, f1+f2, 2f1 and 2f2, as shown in the following equations. 

f1 + f2 = 2f1 − (f1 − f2)                  (4.3.1) 
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Fig 4.3.9 168.86 MHz and 161.92 MHz Non-squared FFT Spectrum 

 

Fig 4.3.10 168.86 MHz and 161.92 MHz Squared FFT Spectrum 

In Fig 4.3.10, the first local peak is 7.5 MHz, which verifies existence of the 

second signal and the frequency subtraction is 7.5 MHz. The next local peak is 337.5 
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MHz, which is 1 bin away from 340 MHz, double frequency of the strong signal. The 

third peak is 330 MHz, which is the frequency summation of the two signals. It is 

exactly 7.5 MHz away from 337.5 MHz. Evaluating all these data, the second signal 

frequency is determined to be 162.5 MHz by subtracting 7.5 MHz from the first signal 

frequency.  

If the strong signal is greater than 640 MHz, then its double frequency is greater 

than half of the frequency span of FFT, 1.28 GHZ. Fig 4.3.11 and Fig 4.3.12 give an 

example of this case. 

 

Fig 4.3.11 1029.2 MHz and 1036.2 MHz Non-squared FFT Spectrum 
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Fig 4.3.12 1029.2 MHz and 1036.2 MHz Squared FFT Spectrum 

In Fig 4.3.12, the 502.5 MHz also can represent 2058 MHz, the double frequency 

of the first signal 1029.2 MHz, by considering full frequency span of FFT. A local 495 

MHz is found, representing 2065 MHz as the frequency summation. So the second 

signal frequency is calculated as adding the frequency subtraction 7.5 MHz to the first 

signal frequency 1030 MHz, 1037.5 MHz. 

In special cases, the frequency summation 1 bin away from the double frequency 

of the first signal, is not detected because of signal interference and spur. Then, the 

double frequency of the second signal needs to be evaluated to help determine the 

second signal frequency, by Eq. 4.3.2, Fig 4.3.13 and Fig 4.3.14 

2𝑓2 = 2𝑓1 − 2(𝑓1 − 𝑓2)                    (4.3.2) 
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Fig 4.3.13 398.12 MHz and 404.76 MHz Non-squared FFT Spectrum 

 

Fig 4.3.14 398.12 MHz and 404.76 MHz Squared FFT Spectrum 
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Noticing the 810 MHz is 7.5*2 MHz away from the 795 MHz, thus, the 810 

MHz is double frequency of the second signal, which is 405 MHz. 

If the two signals are very close to each other, 1 to 2 frequency bins away, then, 

the above analysis approach faces challenge. When the frequency subtraction is less 

than 5 MHz, a method to detect the second signal is introduced. Fig 4.3.15 and Fig 

4.3.16 give an example when the two input signals are 2 bins away. The first signal 

frequency f1 is 225 MHz and the frequency subtraction is 5 MHz. The peak 447.5 

MHz is not exactly equal to 2f1, 450 MHz. Thus, the 447.5 MHz is considered as the 

frequency summation f1+f2, then the f2 is 447.5 MHz – 225 MHz=222.5 MHz and the 

actual second signal frequency is 220.06 MHz.  

 

Fig 4.3.15 220.06 MHz and 224.78 MHz Non-squared FFT Spectrum 
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Fig 4.3.16 220.06 MHz and 224.78 MHz Squared FFT Spectrum 

Another case of the second signal detection is shown in Fig 4.3.17 and Fig 

4.3.18. 

 

Fig 4.3.17 204.29 MHz and 207.36 MHz Non-squared FFT Spectrum 
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Fig 4.3.18 204.29 MHz and 207.36 MHz Squared FFT Spectrum 

In this example, the detected peak 415 MHz is exactly the double frequency of 

f1, 207.5 MHz, and the frequency subtraction is 2.5 MHz. The second signal 

frequency is calculated as 206.36 MHz using the fine frequency estimation. Since the 

left frequency bin of f1 has a higher amplitude than the left frequency bin of f1. The 

second signal frequency is set to f1-fsub which is 206.36-2.5=203.86 MHz. 

As shown in Fig 4.3.19, the right frequency bin of f1 has a higher amplitude than 

the left frequency bin of f1, then the second signal frequency is set to f1+fsub. 

4.4 Two Signals Detection Algorithm  

As discussed in Section 4.3, the conditions for two signals detection is 

complicate, and multiple cases are considered. In this Section, several special 
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definitions are used in Fig 4.4.1. A two signals detection flow chart is depicted in Fig 

4.4.2. The second signal frequency estimation flow chart is depicted in Fig 4.4.3. 

 

Fig 4.4.1 Spectrum for Special Definitions 
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Fig 4.4.2 Two Signals Detection Flow Chart 
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Fig 4.4.3 The Second Signal Frequency Evaluation 

4.5 Experimental Results  

Performance of two signals detection in the proposed receiver is evaluated by 

random signal frequency, phase and amplitudes with the weak signal SNR above -6.5. 

The frequency span of two signals is from 30 MHz to 1250 MHz. Table 4.1 

summarizes the second signal detection results of receiver with and without Squarer. 

10,000 simulation runs were conducted for every case listed in the table. Considering 

the second signal detection, the proposed receiver using Squarer improve 2% (200 of 
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10,000) cases with frequency accuracy < 2.5 MHz and about 0.2% (20 of 10,000) case 

with frequency accuracy < 5 MHz. 

Table 4.1 Performance of the Second Signal Detection 

Amplitude 

Summation 

(mV) 

The Second Signal Detection Probability 

Receiver w/o Squarer Receiver with Squarer 

Error<=2.5MHz  
False 

Alarm 
Error<=2.5MHz  2.5MHz<Error<=5MHz  

False 

Alarm 

2.9-17.4 0.9707 0 0.9948 0.0018 0 

13.8-69.3 0.9763 0 0.9977 0.0011 0 

61.7-195.4 0.972 0 0.997 0.0014 0 

174-309.5 0.973 0 0.9969 0.0018 0 

347.2-490.6 0.9754 0 0.997 0.0021 0 

  

Table 4.2 summarizes the second signal detection results of receiver with and 

without Squarer where the input signal frequencies are close to each other.
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Table 4.2 Fixed Range Amplitudes and Closed Frequencies 

Amplitude 

Summation 

(mV) 

The Second Signal Detection Probability 

Frequency Subtraction 1.25MHz-6.25MHz Frequency Subtraction 6.25MHz-16.25MHz 

False 

Alarm 

Receiver w/o 

Squarer 
Receiver with Squarer 

Ordinary 

Receiver 
Receiver with Squarer 

Error<=2.5MHz  Error<=2.5MHz  2.5MHz<Error<=5MHz  Error<=2.5MHz  Error<=2.5MHz  2.5MHz<Error<=5MHz  

2.9-17.4 0 0.743 0.1885 0.0318 0.9094 5.60E-04 0 

13.8-69.3 0 0.7276 0.1953 0.0304 0.9529 1.50E-04 0 

61.7-195.4 0 0.7343 0.1932 0.0299 0.9631 8.00E-05 0 

174-309.5 0 0.7641 0.1725 0.0297 0.979 2.00E-05 0 

347.2-490.6 0 0.7588 0.1791 0.0308 0.9939 1.00E-04 0 
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V. Conclusion 

Modern wideband receiver systems are demanded to detect multiple signals in a 

high dynamic range and frequency resolution environment. Conventional Fast Fourier 

Transform (FFT) based receivers have capability of detection multiple signals; 

however, a limitation is these detectable signals would have to be separated at least 

five frequency bins away from each other in FFT frequency spectrum. If two 

simultaneous signals are close within five frequency bins then the second signal is 

hidden in the main lobe of the strong one and cannot be detected. In this thesis, a high 

frequency resolution adaptive thresholding wideband receiver system is presented, 

which accurately detects two simultaneous high dynamic range signals close to one 

frequency bin. The receiver design architecture and performance evaluation are 

presented.  

Hardware implementation of this receiver system using FPGA and GPU will be 

studied in the future.  
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