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350 million people are suffering from clinical depression wworldwide. 

27 million Americans are diagnosed with clinical depression that is responsible for more than 330,000 suicides each year. 

Over 990% of people who commit suicide have been diagnosed with clinical depression or another diagnosable mental illness. 

According to the World Mental Health Survey conducted in 117 countries, about 55% of people reported having an episode of depression.  

Depression remains undiagnosed, untreated or under-treated phenomenon due to various reasons such as the denial of illness or the social stigma associated with it . 

Early recognition of depression symptoms and their treatment through timely intervention can pprevent the onset of major depression. 

A common global effort to manage depression involves detecting depression through survey-based methods via phone or online questionnaires . However, these studies suffer from under-representation, sampling biases and incom-
plete information. Additionally, large temporal gaps between data collection and dissemination of findings can delay administration of timely and appropriate remedial measures. 
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How well do tweets express clinical depression symptoms? 

Are there any underlying common themes among depressed individuals? Have some 
of these been overlooked by psychologists? And are they uniquely expressed or uti-
lized in social media by depressive people? 

How well can textual content in social media be harnessed to reliably capture clinical 
depression symptoms of Twitter users over time and build a proactive and automatic 
depression screening tool? 
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Recently, there has been a wealth of research on studying depression in several disciplines such as psychology, psychiatry, medicine, and sociolinguistics. Linguistic analysis of speech can be used to distinguish  depressed subjects from 
normal people. Park et al. [8] shows that depressed users use Twitter for emotional interaction and social awareness while the non-depressed ones use it for information consumption and sharing. Several  efforts have attempted to auto-
matically detect depression in social media content using machine learning.  
 

Nguyen et al. [9] leverage affective aspect, linguistic style and topics as features for detecting depressed communities. De Choudhury et al. [10] characterize depression based on factors such as language, emotion, style, ego-network, and 
user engagement. They utilize these distinguishing characteristics to build a classifier to predict the likelihood of depression in a post or in an individual.  

Related Works 

Twitter provides a rich source for studying people’s mood in order to detect depressive behaviors. 

We developed a novel technique to unobtrusively analyzes individual posts in social media to detect signs of  depression that can be utilized to build a proactive and automatic screening tool for early recognition of clinical depression. 

Leveraging clinical definition of depression, we build a depression lexicon that contains common depression symptoms determined by experts such as from the established clinical assessment questionnaires PHQ-9.   

We expanded the terms expressing the nine PHQ-9 depression symptoms categories using Urban Dictionary and Big Huge Thesaurus. 

The lexicon contains depression-related symptoms that are likely to appear in the tweets of individuals either having depressive-like symptoms or suffering from depression.  

A subset of highly informative seed terms are selected from this depression lexicon for crawling depression-related tweets. For each lexical term, we calculate its association with all of the variations of the term “depress” using Pointwise 
Mutual Information (PMI) and Chi-squared test  to quantify their correlation and thereby rank order them.  

We leverage Twitris, our social media analysis platform, to study language, sentiment, emotions, topics and people content-network of depressed individuals. 
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(Aim-1) Study and identify clinical depressive disorders using explicit and implicit expression of depression on social streams. 
(Aim-2) Build a reliable platform to automatically detect depressive behavior in social media that emulates and extends the functionality of PHQ-9 to monitor user depressive behaviors. 
(Aim-3) Evaluate our approach on self-reported profiles on social media.  

Research  Aims 

We demonstrated the potential of social media data for extracting clinical depression symptoms in individuals that can be leveraged to improve the current questionnaire driven diag-
nostic tools in its ability to glean clinical depression symptoms in a natural setting and in a continuous and unobtrusive manner.  

Our results reveals that there are significant differences in the topic preferences and word usage patterns of self-declared depressed group from random users in our dataset. 

This analysis framework could benefit future research on building a warning system which can predict the onset of major depression.  

Current clinical approaches is mainly focused on individuals; our findings can be utilized to automatically assess public health at community level for determining health risks behavior, 
suicidal tendency and help-seeking behavior. 
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