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ABSTRACT 

Wilson, Haley Pace. M.S. Department of Psychology, Wright State University College of 

Science and Mathematics, 2016; Generalizability of Predictive Performance Optimizer 

Predictions Across Learning Task Type. 

 

 

 

 The purpose of my study is to understand the relationship of learning and 

forgetting rates estimated by a cognitive model at the level of the individual and overall 

task performance across similar learning tasks.  Cognitive computational models are 

formal representations of theories that enable better understanding and prediction of 

dynamic human behavior in complex environments (Adner, Polos, Ryall, & Sorenson, 

2009).  The Predictive Performance Optimizer (PPO) is a cognitive model and training 

aid based in learning theory that tracks quantitative performance data and also makes 

predictions for future performance.  It does so by estimating learning and decay rates for 

specific tasks and trainees.  In this study, I used three learning tasks to assess individual 

performance and the model’s potential to generalize parameters and retention interval 

predictions at the level of the individual and across similar-type tasks.  The similar-type 

tasks were memory recall tasks and the different-type task was a spatial learning task.  I 

hypothesized that the raw performance scores, PPO optimized parameter estimates, and 

PPO predictions for each individual would be similar for two learning tasks within the 

same type and different for the different type learning task.  Fifty-eight participants 

completed four training sessions, each consisting of the three tasks.  I used the PPO to 

assess performance on task, knowledge acquisition, learning, forgetting, and retention 
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over time.  Additionally, I tested PPO generalizability by assessing fit when PPO 

optimized parameters for one task were applied to another.  Results showed similarities in 

performance, PPO optimization trends, and predicted performance trends across similar 

task types, and differences for the different type task.  As hypothesized, the results for 

PPO parameter generalizability and overall performance predictions were less distinct.  

Outcomes of this study suggest potential differences in learning and retention based on 

task-type designation and potential generalizability of PPO by accounting for these 

differences.  This decreases the requirements for individual performance data on a 

specific task to determine training optimization scheduling.   
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Generalizability of Predictive Performance Optimizer Predictions Across Learning Task 

Type  

Introduction 

The objective of this research was to examine the consistency and generalizability 

of cognitive model parameters and predictions as well as individual performance based 

on type of task.  Training is used to ensure personnel have the knowledge, skills, and 

tools necessary to operate in their specified work environment (Goldstein & Ford, 2002).  

Further, because skills and knowledge are shown to decay over periods of nonuse, 

retraining is necessary to ensure that all trainees are able to maintain and demonstrate a 

proficient level of skills or knowledge retention at any given time (Arthur, Bennett, 

Stanush, & McNelly, 1998).  The importance of training and retraining will only continue 

to increase as modern technology expands the need for a skilled workforce (Arthur et al., 

1998).  This means that methods for enhanced efficiency of training programs and 

schedules will be increasingly important for the future workforce.   

 Efficient training programs provide a balance of proper resource allocation, such 

as time allocated to training, and adequate acquisition and retention of skills.  For 

example, it is imperative that medical personnel maintain proper skill levels in order to 

avoid the detrimental consequences of forgetting such as poor patient outcomes and 

malpractice lawsuits (Wallace, Abella, & Becker, 2013).  It is necessary to provide 

refresher training to medical personnel often enough to ensure skill maintenance over 
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time, while minimizing costs of training to the organization (e.g., time away from 

patients, cost of instructors, etc.).   

Current training schedules within most organizations are calendar driven and do 

not account for the empirical and theoretical underpinnings of learning and forgetting.  

Researchers at the United States Air Force Research Laboratory argue that performance-

based training schedules constructed around an individual’s learning and retention rates 

may surpass the effectiveness of calendar-based training schedules (Jastrzembski, Gluck, 

& Gunzelmann, 2006).  Specifically, such performance-based training systems would 

prescribe optimal training schedules based on individual learning needs.   

The Predictive Performance Optimizer (PPO) is a cognitive modeling tool, rooted 

in cognitive theory of learning, that estimates an individual’s learning and forgetting 

rates, predicts future performance on a specified task, and prescribes scheduling of 

training events based on historical and objective performance data (Jastrzembski, Gluck, 

& Rodgers, 2009).  One limitation of PPO is that outcomes and predictions are only valid 

for the specific task and task procedures assessed in the input.  Therefore, the predictions 

determined by PPO are not considered valid across different tasks.  Understanding 

variance in learning and retention accounted for by task-type distinction could have 

implications for performance predictions and optimal schedule prescriptions across tasks.   

In this study, I evaluated task performance as well as PPO optimized parameters 

and future performance predictions in one task and compared to results from other tasks.  

I also assessed PPO goodness of fit when optimized parameters from one task were 
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“transferred” to the other tasks.  Low model prediction error would suggest potential 

generalizability of PPO parameter optimization and prescribed retention intervals across 

similar types of tasks.  This finding would also suggest that type of task may be a 

valuable task descriptor for PPO task analysis, which could enhance the usability and 

generalizability of predictive performance across similar learning tasks.  Below I provide 

a brief review of the literature on computational models of learning, theories of learning 

acquisition and forgetting, and model generalizability as a background to the 

experimental method.  

Modeling Human Cognition 

Cognitive models are formal, mathematical representations of complex, dynamic 

theories of thought and cognition (Boden, 2008).  The models provide a framework to 

support precise, transparent, and consistent analysis and prediction of human behavior 

(Adner et al., 2009).  Models can be simulated, or run using a given set or a distribution 

of parameters, and used to enhance understanding, test and evaluate assumptions, or 

make predictions (Vancouver & Weinhardt, 2012).   

Computational Models of Learning 

Cognitive modeling can help illustrate learning and forgetting for an individual or 

a group of individuals based on underlying mechanics of cognitive thought processing.  

Cognitive models are able to account for learning nuances that span human learning, 

and/or individual differences in learning and retention (e.g., a person’s individual rate of 

learning and rate of forgetting).  This information can provide decision makers with 
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empirical evidence of the advantages and disadvantages of a particular training schedule 

and provide insight into learning forgetting tendencies (Jastrzembski et al., 2006).  A 

specified cognitive model of learning, applied uniformly in an organization and grounded 

in theory of human cognition, can be an invaluable tool for understanding and assessing 

training needs, methods, and schedules.  

Theories of Learning and Forgetting 

Humans are imperfect processors who forget or misremember things over time.  

Learning theories span decades of psychological research (e.g., Guthrie, 1952; Hull, 

1943; Skinner, 1938; Thorndike, 1923; Tulving & Pearlstone, 1966).  Cognitive theories 

of learning aim to assist understanding of the foundations of human learning to make 

predictions about human behavior (Soderstrom & Bjork, 2015).  Despite more than 100 

years of research on learning and forgetting, the mechanisms responsible for cognitive 

acquisition and degradation are not fully understood (Ebbinghaus, 1885; Cepeda, Pashler, 

Vul, Wixted, Rohrer, 2006).  However, there are several variables that consistently 

account for variability of learning and retention across individuals.  Such variables 

include practice, period of nonuse, spacing of training, type of task, task content, and 

individual differences (Arthur et al., 1998; Ericsson, Krampe & Tesch-Romer, 1993).   

Learning and Performance.  Soderstrom and Bjork (2015) define learning as 

“relatively permanent changes in behavior or knowledge that support long term retention 

and transfer” and performance as “temporary fluctuations in behavior or knowledge that 

can be observed and measured during or immediately after the acquisition process”.  
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Researchers have attempted to consider this distinction when evaluating skill acquisition 

and decay.  In a meta-analysis, Arthur, Bennett, Edens and Bell (2003) coded studies as 

evaluating the impact of training on learning, defined as typically paper-and-pencil or 

performance tests taking place outside of the work environment, or behavior, which they 

defined as measures of actual on-the-job performance.  They concluded that overall, 

training had a similar impact on learning (d = .63) and behavioral (d = .62) criteria.  

Arthur et al.’s (1998) evaluation of skill decay suggests that learning criteria (d = -1.07) 

tend to degrade more over time than behavioral criteria (d = -.78).  The researchers noted 

that training methods (including training environment and spacing), skill or task 

characteristic trained (task type), and evaluation criteria (learning versus performance), 

all relate to observable training outcomes (Arthur et al., 2003).  Variation in training 

schedules and methods should aim to enhance both learning and performance on task.  I 

expand on this finding and its implications in the cognitive model generalizability section 

of this paper. 

Common Learning Phenomena 

 Generally, change in performance and learning initially occurs rapidly then at a 

diminishing rate with further practice (see Doyon & Benali, 2005; Newell & 

Rosenbloom, 1981).  Factors that consistently affect learning and retention rates include 

amount of practice, elapsed time since practice, and the distribution of practice over time 

(Anderson, 1995).  It is important for a cognitive model of learning to account for these 

consistent factors while maintaining enough flexibility to also account for individual 
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differences in learning.   Although this is the normal pattern of learning, there are several 

training variables, including those described below, that affect learning patterns and 

learning retention post-training.  

Spacing of training events.  The spacing effect phenomenon reveals that 

distributed practice sessions lead to more stable and durable retention over time (Bahrick, 

1979).  Bahrick’s research has shown that task performance increases quickly, but 

retention rates decrease when training intervals are narrowly spaced.  Distributed training 

generally increases the amount of initial training required to achieve proficiency, but 

leads to substantial increases in retention rates over time (Bahrick, 1984).  The spacing 

effect has been replicated in several studies (e.g., Peterson, Wampler, Kirkpatrick, and 

Saltzman, 1962; Bahrick & Phelps, 1984; Anderson, Fincham, & Douglass, 1999) 

consisting of various spacing intervals, complexity of tasks, and severity of massed 

versus spaced learning scenarios.  A meta-analysis by Donovan and Radosevich (1999) 

quantitatively estimated that individuals in spaced practice conditions performed .46 

standard deviations higher than individuals in massed practice conditions.   

It is generally consistent across findings that spaced learning yields slower initial 

acquisition, but with lasting results and better long-term learning and retention.  Findings 

related to the spacing effect suggest that both the spacing of training events (i.e., 

interstudy intervals) and retention intervals affect final-test performance (see Cepeda et 

al., 2006; Delaney, Verkoeijen & Spirgel, 2010 for review).  Although the spacing of 
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training is held constant in my study, ability to track intervals between training sessions 

and retention intervals is an important quality of the model used for predictions.  

Overlearning.  Overlearning refers to training of a task that goes beyond the 

level needed to meet a level of proficiency (Arthur et al., 1998).  For example, if it was 

determined that the required proficiency was 80%, repetition and practicing beyond that 

threshold would be overlearning.  Driskell, Willis, and Copper (1992) conducted a meta-

analysis and reported that overall, individuals engaging in overlearning performed at a 

level .63 standard deviations higher than individuals who did not engage in overlearning.  

Further analyses indicated that these effects were larger for cognitive tasks (d = .75) than 

for physical tasks (d = .44).  Overlearning is considered one of the most important 

predictors of retention (Farr, 1987; Hurlock & Montague, 1982).  Although overlearning 

is not the focus of this study, potential for overlearning exists and could affect model 

predictions. 

Relearning.  In 1979, Bahrick introduced a concept known as successive 

relearning, that refers to the effect on learning outcomes and long-term retention when 

training events included a combination of retrieval practice and retraining over time. 

Bahrick’s study involved an initial learning session of a memory-recall paired associate 

task that participants completed until each pair had been correctly recalled.  In subsequent 

sessions, participants relearned the items (retrained until each word pair was correctly 

identified).  Findings showed a 56% and 83% increase in accuracy rates after two and 

five relearning sessions, respectively.  Similar studies using memory-recall tasks within 
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educational environments have shown substantial effects of successive relearning on 

retention (up to 68% one month post-training and 49% four months post-training, as 

compared with around 11% in a baseline control condition; Rawson & Dunlosky, 2011; 

Rawson & Dunlosky, 2012; Rawson, Dunlosky, & Sciarteli, 2013). 

Assessing retention using overall recall accuracy may reveal a desensitized 

measure of memory (Krinsky & Nelson, 1985).  Research has shown that performance 

scores may suffer due to knowledge or skill retention under the threshold of recall, but 

are not necessarily indicative of complete forgetting (Bahrick, 1967; Kornell, Bjork, & 

Garcia, 2011).  In this context, relearning partially forgotten items after a period of 

nonuse can be considerably faster compared to original learning (Bahrick, 1967; 

Ebbinghaus, 1885) or to the learning of a new set of similar items (MacLeod & Dunbar, 

1988; Nelson, 1978).  Additionally, an increased number of repetitions are required to 

reach criterion performance for new items compared to forgotten items that had been 

previously studied or tested (de Jonge, Tabbers, & Rikers, 2014).  The current study 

captures relearning through successive training events consisting of identical training 

material.  Thus, I expect to see effects of relearning within subsequent training sessions 

and for the cognitive model of learning to capture this type of learning nuance.   

Forgetting 

Generally, forgetting initially occurs rapidly during a period of nonuse, and then 

at a diminishing rate over time (Anderson & Schooler, 1991; Rubin & Wenzel, 1996; 

Wixted & Ebbesen, 1997).  In a meta-analysis of skill-decay, Arthur et al. (1998) 
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identified several factors related to skill decay, such as length of nonuse and the type of 

task,  that typically vary in training processes.   Researchers and practitioners often use 

the term skill decay to explain forgetting in a training environment.  The term decay 

describes the outcome or observed decrement in performance on learned knowledge or 

skills after a period of nonuse (Arthur et al., 1998).   

The period following training in which the skill or knowledge learned is not used 

is referred to as the nonuse interval.  Periods of nonuse occur in the workplace when 

individuals are not required to use the knowledge or skills acquired at initial training for 

extended periods of time.  The length of this period of nonuse can substantially affect 

measures of learning and performance over time.  For instance, research has shown that, 

due to memory consolidation processes, performance on psychomotor skills may 

significantly improve within hours post-training, such as 24 hours after the training 

session is complete (Dorfberger, Adi-Japha, & Karni, 2007; Savion-Lemieux, Bailey, & 

Penhune, 2009).  However, according to Bjork’s theory of disuse, long nonuse intervals 

typically reflect the opposite effect due to forgetting (Bjork & Bjork, 1992; Savion-

Lemieux & Penhune, 2005).  

 Arthur et al. (1998) estimated that the effect of the nonuse interval on skill decay 

effect size was d = -.51, with longer intervals leading to increased skill decay.  A recent 

meta-analysis by Wang, Day, Kowollik, Schuelke, and Hughes (2013) found similar 

effects, d = -.58.  A closer look at Wang et al.’s (2013) results indicate that periods of 

nonuse less than a day resulted in almost no loss of performance (d = -.08) while nonuse 
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that lasted from 1 to 7 days resulted in nearly a half a standard deviation decrease in 

performance (d = -.42). 

In contrast, some research has shown that situations indicative of forgetting (e.g., 

training delays, periods of nonuse, or variation of context, content, environment, or 

retrieval practice conditions) aid learning by creating desirable difficulties (Bjork, 1994; 

Bjork, 2013; Storm, Bjork & Bjork, 2005).  This phenomena can be explained by the 

suggestion that moderate difficulties in retrieval require active cognitive processes, which 

connect knowledge elements that already exists in long term memory to those needed to 

solve a particular problem (Soderstrom & Bjork, 2015).    

Retention varies as a function of learning and forgetting depending on several 

variables such as type of task, complexity of task, length of nonuse, and individual 

differences (Arthur et al., 2003).  Results from forgetting research show a need for a 

forgetting parameter in cognitive models.  Accounting for forgetting, in addition to 

learning, is necessary to ensure accurate and precise performance predictions based on an 

individual’s learning consistencies.  

Individual Differences in Learning 

Individual differences in learning and forgetting contribute to variance in task 

performance and learning between individuals or groups.  Several variables have been 

identified as important predictors of individual differences in learning and skill retention: 

general mental abilities, primary cognitive abilities (e.g., perceptual speed, processing 

speed, working memory capacity, reasoning ability, verbal ability, spatial ability), 
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cognitive controls, cognitive styles, learning styles, personality, motivation, and prior 

knowledge or experience (see Jonassen & Grabowski, 1993).  These are examples of 

individual variances that cognitive models may be able to capture by tracking and 

varying based on individual performance over time.  

Learning and memory research attributes between-subject variance in learning to 

initial level of knowledge, learning rate, and asymptotic performance (Meredith & Tisak, 

1990; Rast, 2011; Kutrz, Mogle, Sliwinski, & Hofer, 2012;  Rast & Zimprich, 2009).  

Additionally, a recent study by Bayliss and Jarrold (2015) demonstrated variance in 

individual forgetting rates explained by working memory performance over and above 

the variance explained by measures of individual processing rates and long-term memory 

storage capacity.  An individual with strong working memory skills and high cognitive 

ability (i.e., higher learning rates and lower forgetting rates) will likely retain knowledge 

for longer periods of time.  This individual would therefore require retraining less 

frequently than an individual with poor working memory skills or cognitive ability.  

Learning and retention rates affected by these types of individual variation drive the need 

for individually tailored training schedules, refresher training, and other interventions 

designed to ensure that skill retention is maintained over time.  The within-subject 

repeated measure design of the current study aimed to capture individual differences in 

learning in order to assess differences in learning, forgetting and retention based on task 

type.  
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 Modeling Individual Differences.   There are several approaches to modeling 

individual differences including evaluating the model against data aggregated across all 

subjects, from each subject separately, or groups of subjects (Ashby, Maddox, & Lee, 

1994; Lee & Webb, 2005; Nosofsky, 1986; Wixted & Ebbesen, 1997).  Lee and Webb 

(2005) describe an approach for applying the same computational model to individuals, 

while allowing the model’s parameters, which relate to the speed or effectiveness of 

cognitive processes, to vary across individuals.  Their findings showed superior 

predictive value, enhanced understanding, and ability to account for variation in 

individual differences through interpretable differences in model parameterization.  

Based on this finding, many models of learning now account for individual differences by 

fitting algorithm parameters to quantitative data for individual subjects (e.g., Predictive 

Performance Optimizer; Jastrzembski et al., 2006; Jastrzembski et al., 2009).   

Predictive Performance Optimizer 

To understand the utility of training schedules, content, and manipulations, as 

well as to predict future performance post-training, one must consider training outcomes 

in terms of acquisition, retention, and transfer (Arthur, Day, Bennett, Portrey, 2013).  One 

tool that attempts to assess the effectiveness of training is the Predictive Performance 

Optimizer (PPO), which “relates to predictive optimization of performance for a domain 

and, more particularly, to a cognitive tool aimed at tracking and predicting human 

performance for purposes of optimizing performance around a specified goal” 

(Jastrzembski, Rogers, Gluck, & Krusmark, 2013).  PPO is a cognitive tool that tracks 
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historical and objective performance data and training schedules to identify individual or 

group learning and decay regularities.  PPO output allows users to examine learning 

rates, forgetting rates, and projected future performances for individuals or groups.   

This empirical evidence can assist decisions regarding training schedules 

(Jastrzembski et al., 2006).  PPO validation across declarative and procedural knowledge 

and skills training makes it an appealing tool to assist optimization of training scheduling 

in expensive and complex areas, such as those relevant to the military, medicine, and 

education (Jastrzembski et al., 2009).  However, a limitation of the software is that PPO 

predictions are task input specific and apply only to the task and data obtained in the 

historical performance.  Thus, the performance predictions, though valid for the task used 

for model calibration, have not been assessed in terms of their ability to generalize to 

other similar tasks.  In other words, PPO software can make performance predictions for 

a wide variety of tasks when appropriate and specific input is provided, but the 

predictions and estimations of learning and decay may not generalize to similar training 

content or tasks.   

Predictive Performance Equation 

The Predictive Performance Equation (PPE) is the underlying mathematical 

model and theory of PPO.  Researchers designed the algorithm to capture effects of 

recency, frequency, and spacing of training as well as individual differences in learning 

and decay rates (Jastrzembski et al., 2006).  The model is derived from the general 

performance equation (see Anderson & Schunn, 2000 for a description of the general 
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performance equation) but includes an additional mechanism to capture the effects of 

spacing on retention.  The inclusion of a spacing effect term in the algorithm allows the 

model to account for massed or distributed training sessions, which affect learning and 

retention (Bahrick & Phelps, 1987; Jastrzembski et al., 2006; Walsh, Gluck, 

Gunzelmann, Jastrzembski, & Krusmark, in preparation).   

PPE contains a total of four free parameters.  These can be fit to the performance 

data for each participant, enabling individualized predictions and prescriptions.  Equation 

1 represents a general form of the PPE.  The Performance term is the level of 

performance.  The Practice term equals the amount of practice accumulated in training.  

Time is the period of nonuse, or time since practice occurred.  These terms account for 

the training program and schedule.  

Performance = Practicec  * Time-d                                                                

 (Equation 1) 

In this equation, c is the learning rate (fixed to 0.1), and d is the decay rate.  

Decay is calculated based on the distribution of practice over time, or lags, between 

successive practice opportunities. 

d = decay intercept + decay slope*(1/log(lags))                                                        

 (Equation 2) 

Larger lags reduce the value of decay expressed in Equation 2, and thus lead to 

better retention. The two free parameters in Equation 2, decay intercept and decay slope, 

correspond to an individual’s overall level of forgetting and their susceptibility to the 
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spacing effect, respectively.  The model’s output, Performance in Equation 1, is scaled to 

the actual performance scores recorded in a particular task using a logistic function. The 

logistic function includes two additional free parameters, a logistic intercept and a 

logistic slope. These affect how level of performance map onto the specific performance 

measure for a given task. 

The model’s four free parameters, decay slope, decay intercept, logistic slope, and 

logistic intercept, are estimated separately for each individual using their historical 

performance data.  This approach to parameter estimation allows for model calibrations 

and predictions based on individual differences that drive the individualized training 

recommendations or prescriptions of PPO output.  

PPO Process 

PPO input requires objective, quantitative, and historical training data for an 

individual, group, or team.  The tool then calibrates model parameters to the data, tracks 

learning and forgetting, predicts future task performance, and then prescribes optimal 

training schedules to sustain future performance (Jastrzembski et al., 2006).   Figure 1 

illustrates the process of PPO input and output.  The first step is to calibrate model 

parameters by fitting a learner’s training history.  Next, the PPE extrapolates a learner’s 

unique learning regularities to make precise, quantifiable predictions of performance at 

specific points in time.  Finally, analyses of predictions are tailored based on defined 

training regimens, objectives, or optimization goals. 
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PPO output is displayed in a visual and intuitive manner to allow decision makers 

to track predictions and produce recommendations for training.  Further, users can tailor 

output parameters to investigate future training requirements for an individual or to 

restructure training schedules to best meet training needs based on predictions.  For 

instance, if the main goal of a training intervention is to increase skill proficiency 

retention, decision makers can use the outcome of PPO to recommend a distributed 

training schedule that best supports this requirement.   

PPO outcomes enable decision makers to structure training based on individual 

need for refresher training as opposed to a one-size-fits-all training program.  The 

intentions of using PPO software for training prescriptions are to avoid overtraining or 

undertraining a given individual, thus improving training efficiency and reducing costs 

associated with a long-term training strategy without compromising performance.  Figure 

2 displays an example of PPO output data.  

Validation and Verification of PPE 

Since initial development of PPE, researchers of the Human Performance Wing at 

the Air Force Research Laboratory have extensively validated the model across a variety 

of domains and contexts.  To best capture precise and accurate predictions of future 

performance, a computational cognitive model must account for known effects of training 

variables on learning, forgetting and retention including amount of practice, number of 

re-learning sessions, spacing between practice or the scheduling structure of training, 

periods of nonuse, and individual differences.  PPE model predictions have been tested 
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and validated using data from many published studies in the areas of education and 

training.  In addition to evaluating the theoretical adequacy of the model, Walsh et al. (in 

preparation) assessed PPE’s applied potential; that is, its suitability for application in 

real-world training and education. 

Initial validation efforts involved simulation studies based on representative 

publications on learning and memory from the psychological literature.  These 

simulations showed that PPE could account for a wide range of training variables 

including the role of spacing on acquisition and retention (Bregman, 1967), the 

interaction between spacing and the length of the retention intervals (Cepeda, Vul, 

Rohrer, Wixted, & Pashler, 2008; Young, 1971), the interaction between spacing and the 

amount of practice (Cepeda et al., 2008; Pavlik & Anderson, 2005), relearning (Rawson, 

Dunlosky, 2013), and overlearning due to repetition (Begg & Green, 1988; Benjamin & 

Tullis, 2010).  PPE parameter estimates were largely consistent across experiments of 

varying content, amount of practice, spacing manipulations, and duration.  The 

simulations demonstrated the basic theoretical adequacy of PPE (Walsh et al., in 

preparation). 

Researchers also evaluated whether PPE could be applied beyond simple 

laboratory experiments and to increasingly complex scenarios more representative of 

military training and education.  Researchers demonstrated PPE’s ability to operate on 

educationally relevant time schedules ranging from days to years, make precise 

predictions of future performance and valid prescriptions of refresher training, and to 
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capture performance in a variety of tasks, contexts, performance measures and schedules 

(Walsh et al., in preparation).  Collectively, these simulations have demonstrated utility 

of PPE predictions in declarative, procedural, and hybrid contexts.  However a direct 

comparison of performance measures and PPE parameter estimates across task has yet to 

be assessed.  

Limitation of PPE 

A considerable limitation of PPE is the inability to generalize predictions to tasks 

outside of the specified input criteria.  The output is considered valid for the specific task, 

quantitative performance data and training methods used.  Therefore, performance 

predictions for a specific task are appropriate only to future performance for that exact 

task and training regimen.  This limitation inhibits the utility and generalizability of PPE 

because performance data is required for each learner, learning requirement, or other 

training variable of interest.   

Assumptions of PPE are that the collection and assessment of training scores are 

consistent across training sessions, as well as in its predictions of future performance.  

PPE models predicted outcomes but does not necessarily translate to understanding of the 

cognitive ability or general learning and decay rates of an individual.  Instead, predictions 

are specific to an individual’s performance on a specified task and for a specified 

measure of interest within that task.  A better understanding of the generalizability of 

PPE optimized parameters and individual differences in learning and retention 

performance as a function of task type is required to determine the potential 
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generalizability of PPE predictions across learning tasks.  The focus of this study is to 

begin evaluating of PPE’s ability to account for similarities and divergences in learning 

and retention as a function of task type (Arthur et al., 1998; Reber, 1989). 

Transfer and Model Generalizability 

Transfer of training refers to the transfer of knowledge and skills learned in the 

training environment to the work environment (Baldwin & Ford, 1988), or the 

generalization of training performance across various contexts (Schmidt & Bjork, 1992).  

Thorndike (1923) concluded that previously learned material only assists future learning 

to the extent that learning principles overlap, or contain elements identical to those 

involved in the learning acquisition.  Albeit, the extent of similarity between learning 

principles that is required is not fully understood.  Although it is impractical to say that 

an individual will be able to transfer learned material from one memory-recall task to 

another memory-recall task that they have not yet learned, it may be reasonable to test for 

similarities in learning trends at the level of the individual.  To assess this question, I will 

test performance and model predictions to determine if the type of task (e.g., memory-

recall task) accounts for a significant amount of variance individual learning and 

retention.   

Analogical transfer studies involve training of one task and assessing subsequent 

performance on a novel analogical task (Barnett & Ceci, 2002).  Results for stability and 

presence of learning transfer are mixed including evidence of transfer (e.g., Gick & 

Holyoak, 1980), lack of transfer (e.g., Reed, Ernst, & Banerji, 1974), negative transfer 
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(e.g., Woodworth & Schlosberg, 1954), overtransfer (e.g., Halpern, Hansen & Riefer, 

1990) and uncertain results (Brown, Kane, & Long, 1989).  Formal discipline transfer 

describes the hypothesis that transfer likelihood depends on the knowledge domain of the 

trained and tested skill, though validity in evaluations of this phenomenon are uncertain 

(Lehman, Lempert, & Nisbett, 1988).   

 Barnett and Ceci (2002) created a taxonomy of transferability to identify 

dimensions along which the likelihood of transfer varies: a) content or nature of the skill 

and performance change measures, and b) context, or distance between the trained skill 

and target skill based on the knowledge domain of the task, physical, temporal, functional 

or social context of the training, and modality of training.  The content factor can be 

broken down into three dimensions: specificity or generality of the learned skill, 

performance change measures, and memory demands of the tasks (Barnett & Ceci, 2002).  

Critical conditions for transfer, such as stability of learning within a learning domain, 

remain uncertain. 

Extensive research involving transfer of simple word-associative learning tasks 

and visuospatial learning tasks also demonstrates mixed reviews on stability of learning 

transfer (e.g., Conway, Kane, Bunting, Hambrick, Wilhelm, & Engle, 2005; Uttal, 

Meadow, Tipton, Hand, Alden, Warren, & Newcombe, 2013).  A recent study by Jaeggi, 

Buschkuehl, Shah and Jonides (2014) linked task specific spatial task performance to a 

general composite score representing five visuospatial reasoning measures, indicating a 

visuospatial reasoning ability that is not task specific.  The same procedures were used to 
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assess verbal-reasoning tasks, but reliability in performance measures were far less than 

that of the visuospatial tasks. 

It is important to consider the literature in training transfer when determining a 

theoretical possibility of PPE model generalizability.  Tying the principle of transfer to 

cognitive modeling, models gain weight when its principle predictions generalize to more 

complex, or different environments (Sanders, 1998).  The value, generalizability, and 

applicability of a cognitive model is determined by maximum goodness of fit (to 

quantitative data measurements) with minimal model complexity (Pitt, Myung, & Zhang, 

2002).  Validity of model predictions across tasks of the same type implies a greater 

sense of generalizability and substantially increases the utility of the model.  If the model, 

calibrated using performance data from one task, adequately predicted performance on 

another related task, it would suggest that the mental processes approximated by model 

parameter estimates were invariant within an individual and across related tasks.  Such 

model generalization would not be expected across unrelated tasks that evoked different 

mental processes, however, and perhaps inform how variables within the context affect 

learning.  In this study, I control variation of training context (all three tasks will be 

assessed in the same location, time, modality, etc.), to better understand the 

generalizations of performance based on task context and type to assess the extent to 

which type of task affects learning and retention, and model fits/prediction over time.     
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Task Characteristics 

The literature demonstrates that different types of knowledge and skills decay at 

different rates (e.g., Arthur et. al., 1998).  Understanding task type and the type of 

knowledge and/or skills that must be retained to competently perform a task to 

proficiency is necessary for training program and schedule design (MacLean & 

Cahillane, 2015).  Farina & Wheaton (1973) developed a task characteristic approach to 

classify tasks and improve generalization of research results about human performance.  

They found several correlations between major components of a task, which were 

identified and treated as categories and performance measures.  More recent findings 

demonstrated significant effects of task categorization on learning outcomes (Arthur et 

al., 1998; Arthur et al., 2003).  Results suggest that task type may be a useful quality of 

training and predictor of performance outcomes.  

Learning Domain.  Learning domains are typically designated into three 

categories of learning: cognitive, affective, and psychomotor (Bloom, Englehart, Furst, 

Hill, & Krathwohl, 1956).  The three domains of learning are divided into subsets and 

arranged hierarchically, ranked from simple to complex forms.  The affective domain 

pertains to feelings and emotions.   The psychomotor domain includes psychomotor 

behaviors, skills, or actions that include a physical-psychological interaction and can be 

measured in terms of quantitative values such as speed, precision, distance, or execution 

technique.  The cognitive domain pertains to thought processing and consists of six 
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subsets: knowledge, comprehension, application, analysis, synthesis, and evaluation 

(Bloom et al., 1956).   

Anderson and Krathwohl (2001) rearranged the cognitive domain taxonomy to 

illustrate the interaction of intellectual abilities and types of knowledge: remembering, 

understanding, applying, analyzing, evaluating, and creating.  Skills and abilities within 

the cognitive domain have a direct interaction with knowledge.  Types of knowledge 

were defined as factual knowledge, conceptual knowledge, procedural knowledge, and 

metacognitive knowledge (Anderson & Krathwohl, 2001).  The taxonomy approach to 

learning domains is indicative of the assumption that the abilities and skills develop and 

build upon each other through advancement from simple to complex forms of 

understanding (Bloom et al., 1956).   

The domain of the task being trained is related to both acquisition of the task and 

skill decay.  In a meta-analysis of the effectiveness of training in organizations 

researchers found that individuals learned psychomotor tasks (d = .80) more than they did 

cognitive tasks (d = .58) during training (Arthur et al., 2003).  Arthur et al. (1998) also 

reported that the level of skill decay was less for physical tasks (d = -.76) than for 

cognitive tasks (d = -1.18) across all retention levels.  In this study, I will focus on the 

cognitive domain and manipulate task type. 

 Type of Task.  The type of task, within a similar learning domain, is determined 

by other features of the task.  For example, declarative and procedural knowledge are 

associated with different learning algorithms, memory representations, and brain 
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networks (Ritter, Baxter, Kim, & Srinivasmurthy, 2013).  In this study I focus on three 

tasks from the cognitive domain.  Two are paired-associate, memory-recall tasks, and one 

is a cardinal direction, spatial learning task.  The two memory-recall tasks are intended to 

capture the same memory capabilities.  

 A cognitive task analysis is used to model the cognitive process that a learner 

adopts when he/she performs a certain task (Jonassen, Tessmer, & Hannum, 1999).  That 

is, the cognitive task analysis is an aid to identify and analyze cognitive processes that 

underlie performance of tasks in consideration of observable behavior (Carlisle, 1986).  

One categorical principle of a task analysis is a declarative knowledge versus procedural 

knowledge classification.  Declarative knowledge includes facts, or information about a 

task (i.e., explicit knowledge).  Procedural knowledge refers to knowing the actions 

required for the execution of a task and how to carry them out (i.e., tacit knowledge).  

Declarative knowledge is generally reliant on working memory, while procedural 

knowledge performance becomes increasingly automatic with time (Ritter et al., 2013).  

However, some learning nuances, such as the finding that additional practice increases 

performance at a diminishing rate over time, apply to learning acquisition of declarative 

knowledge and procedural skills (Ritter et al., 2013). 

 In the current study, two memory-recall tasks are used.  These tasks align with 

declarative memory and require use of working memory and memory storage and 

processing over time.  The cardinal direction task is a skill-based and procedural task that 

requires mental rotation cognitive processing.  It is less important that a person 
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performing this task remembers the location of each trial, but that they learn a strategy to 

perform the task.   

Current Study 

In tying the review of transfer of training and model generalizability to cognitive 

modeling of learning, the question becomes: if two tasks exist in the same task domain 

and type, can PPO parameter estimates generalize across the two tasks?  Determinations 

of stability of learning and retention based on type of task has implications for training 

predictions in education and training (e.g., Klausmeier, 1961), cognitive modeling (e.g., 

Singley & Anderson, 1989), and understanding of domain-specificity of expertise (e.g. 

Glaser, Chi, & Farr, 1988; Ericsson & Smith, 1991).  Despite the implications, there are 

currently no published studies on potential generalizability of PPO predictions across 

similar tasks.   

The underlying mathematical model of the system does not account for 

generalizability of an individual’s learning and retention rates or cognitive processes 

associated with task type. The purpose of this study is to understand the relationship of 

task performance, PPE parameter estimates, and PPO predictions across learning tasks to 

diversify applications of PPO.  Similarities or variance in PPO outcomes across tasks will 

inform the potential of PPO prediction generalizations across tasks.  I will assess 

performance and PPO measures for two similar type tasks (from the same learning 

domain) using two memory-recall tasks and one different type task (from a different 

learning domain) using a cardinal direction task.  I predict that all measures will be more 
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similar across the two similar type-tasks and more different when compared to different 

types of learning tasks.   

Hypotheses 

Hypothesis 1.  Raw individual performance measures will be similar between the two 

memory-recall tasks.  

Hypothesis 2a.  PPO optimized parameters of one memory-recall task will be positively 

correlated to PPO optimized parameters of the other memory-recall task, but there will be 

a weaker relationship to the predictions of the other task. 

Hypothesis 2b.  Optimized parameters from one memory-recall task, when applied to the 

other memory-recall task, will produce a similar goodness of fit.  

Hypothesis 3.  PPO predicted retention intervals will significantly correlate for the two 

memory-recall tasks, but not for the spatial learning task.   
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Method 

Participants and Design 

Participants were required to have normal/corrected vision and normal cognitive 

function to participate in this study.  Participants who expressed proficiency with the 

Japanese language were excluded from participation because Japanese-English word 

pairs were included in one of the memory-recall tasks.  A power analysis was conducted 

to determine a required sample size of about 50 students to have a power level of .80 for 

this within-subject, repeated measures design assuming a small to moderate effect size (f 

= .175) and moderate correlations between repeated measures (r = .50).  It should be 

noted that this required sample size decreases as the expected correlation between 

repeated measures is increased; .50 was set to provide a more conservative estimate.  

I recruited 83 participants from the Wright State University Psychology 

Department for this study. There were 35 males (42.2%) and 48 females (57.8%) between 

the ages of 18 and 36 years (M = 20.45, SD = 3.75).  A majority of the participants were 

recruited using the department’s human-subjects management system, SONA.  

Introductory psychology students earn credits on SONA to complete course requirements 

or earn extra credit.  Participants were required to sign up for all four, one hour sessions, 

to participate in this study.  Any participants signing up through SONA received one 

credit for each 30 minutes of participation, totaling 8 credits.  Participants not signed up 

through SONA were recruited via fliers within the department or via word of mouth.  As 
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an extra incentive to attend all four sessions, participants with four session completions 

were placed in a drawing for one of twelve $50 gift cards.   

There were several computer issues during data collection and the data of 23 

participants was corrupted.  Two individuals did not complete all four sessions.  Of the 

recruited participants, 58 completed all four sessions with uncorrupted data files. These 

participants were used in data analysis to minimize error variance.  This pool included 27 

males (46.6%) and 31 females (53.4%) ages 18-32 (M = 20.07, SD = 2.74).  Of these 

participants, 10.3% were left handed and 89.7% were right handed.  Participant ethnicity 

identification was as follows: 63.8% Caucasian, 22.4% African American, 5.2% Asian, 

6.9% Latin American, 1.7% Other. 

Procedure 

Participants were informed that the study required participation in four training 

sessions consisting of four learning tasks each: one session per day for three days and one 

session one week after their third training session.  The first three sessions comprised the 

learning acquisition phase, and the fourth session comprised the retention phase (see 

Figure 3).   

Participants were scheduled for all four sessions and were asked to schedule 

themselves for the same time in each session when possible.  This would result in a 24 

hour (+/- six hours) interval between the first three learning acquisition sessions and a 

one week, or 168 hour (+/- six hours), retention interval between sessions three and four.  

Prior to study enrollment, participants were asked to read the informed consent document 
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(ICD).  If they agreed to the terms, they were instructed to sign the ICD.  By agreeing to 

the ICD, participants agreed to the four-session time commitment required by the study.  

Once enrolled in the study, participants were asked to complete a demographics 

questionnaire and were provided with additional information and instructions for the four 

tasks. 

Each session consisted of four successive learning tasks: two memory-recall 

tasks, one spatial recognition task, and one procedural learning task.  The procedural 

learning task was not used for data analysis because of technical issues with the server for 

this task.  In general, session one lasted about one hour and each subsequent session was 

completed quicker.  Session four required approximately 30 minutes to complete.  All 

four tasks were run in succession using a MATLAB program on a standard desktop 

computer.  The study took place in a computer lab with eight computer work-stations 

consisting of a desk, computer tower, monitor, mouse and keyboard. Dividers were 

placed between each station to reduce distractions from other participants during the 

study.  

Input for the PPE consisted of participant data from all four sessions.  The PPE 

was able to account for close spacing intervals (in the acquisition phase) as well as a 

longer interval (between session 3 and 4, the retention interval) to better estimate 

individualized, optimized parameters of the model based on fluctuation in performance 

over time, and predict future performance on task. I will use these parameter estimates to 

compare tasks.  Overall performance on task, PPE optimized parameters and model fit, 
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and PPO prescribed retention intervals were evaluated and compared across the two 

memory-recall tasks and the spatial learning task.   

Session procedures.  Participants were asked to sign in and provided with 

instructions for the session (instructions remained the same for all four sessions).  Each 

session consisted of four learning tasks that appeared in a randomized order.  The next 

task began as soon as the previous task was complete.  Participants were instructed to sit 

at their assigned station, read the instructions on the screen and press the spacebar to start 

the task.  Figure 4 shows an example of an instruction screen that appeared on each 

workstation monitor.  Formatting of instructions was similar for all four tasks. 

After all four tasks were completed, the session ended and the participant was 

escorted out of the laboratory.  Participants were instructed not to practice the tasks 

during the time between sessions, though the novel nature of the tasks would make this 

difficult and highly improbable.  Participants received an appointment reminder email 

each evening before his or her scheduled return session. 

Session variation.  All four sessions were nearly identical although subsequent 

sessions were generally quicker as a result of learning through repetition of the task 

(practice).  For each of the four sessions, participants were required to complete four 

learning tasks at their computer.  During session one, the first trial for both memory-

recall tasks displayed the stimulus and response pair.  In subsequent trials, only the 

stimulus appeared, prompting the participant to recall and input the correct paired 

response.  The stimulus and response pair did not appear together on the screen in the 
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other sessions, except in the feedback following the response input.  In all sessions, the 

participant received feedback to their response as well as the correct response.  PPO data 

analysis occurred once participants completed all four sessions.   

Task Description 

Task 1.  Task 1 was a memory-recall task based on learning English-Japanese 

paired associates used by Pavlik & Anderson (2005).   Japanese was chosen to minimize 

the prior learning participants could bring to the task.  Translations are in English 

characters rather than Japanese symbols.  In the original use of the task, stimuli and 

responses were 104 Japanese–English associate word-pairs.  Only four-letter English 

words, and four-letter to seven-letter  Japanese translations, were used for this task 

(Pavlik & Anderson, 2005).  The modified version of the task used for this study 

consisted of 10 Japanese–English associate word-pairs each shown ten times throughout 

the session.  

For the first trial in session one, both stimulus and response of the word-pair were 

displayed centered on the screen, with the Japanese recognition word on top and the 

English recall word on bottom.  Each pairing remained onscreen for two seconds.  In all 

subsequent trials, the Japanese recognition word appeared and the participant was asked 

to respond with the English recall word as quickly and accurately as possible.  The typed 

answers were displayed on the screen directly below the stimulus word.  The stimulus 

word was shown for two seconds and the participant was allotted five seconds to respond.  

If the participant responded correctly, a green smiley face appeared on the screen, along 
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with the correct response.  An incorrect or failed response elicited a red face with a 

frown, along with the correct response displayed below to facilitate relearning.  The 

feedback and correct response remained on the screen for two seconds regardless of 

whether the participant responded correctly or incorrectly.  The participant was instructed 

to consider this feedback to aid future responses.  Participants who completed 126 trials 

of the Japanese-English task in the first session and 112 trials in each of the three 

subsequent sessions were included in the data analysis.  This discrepancy in trial numbers 

from Session 1 to the other three sessions was due to the simultaneous appearance of the 

Japanese stimulus and English word pair in the first session.  Performance and model fits 

were assessed based on accuracy scores. 

Task 2.  Task 2 was a memory-recall task, called the Digit-Droodle task, that 

used picture to number paired-associates.  The pictures used were a normative set of 

nonsensical images also known as “droodles” developed by Nishimoto, Ueda and 

Miyawaki (2010).  The droodle images were paired with a two-digit number for 

memorization and recall.  Digits and symbol pairings were chosen to eliminate prior 

learning confounds participants could bring to the task.  The original task consisted of 

196 droodles of similar complexity and distinction.  The version used for this study 

included 10 digit-droodle pairs.  When a pair was presented for the first time, the droodle 

(recognition stimulus) and corresponding number (recall response) appeared 

simultaneously on the computer monitor, with the droodle on top and the digit on the 

bottom.  Participants typed the number using a standard keyboard, and they received 
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positive feedback (Figure 4).  During each subsequent presentation, only the droodle 

appeared. Participants were instructed to try to recall the corresponding digit and to type 

it. After they responded (or after seven seconds passed), positive or negative feedback in 

the form of a smiling or frowning face appeared (same as the first task). The correct 

response appeared below the droodle.  Each pairing remained on screen for two seconds 

and the participant had five seconds to respond.  The feedback and correct response 

remained on the screen for two seconds regardless of whether the participant responded 

correctly or incorrectly.  Participants who completed 126 trials of the Digit-Droodle task 

in the first session and 112 trials in each of the three subsequent sessions were included in 

the data analysis, same as in the Japanese-English task. Performance and model fits were 

assessed based on accuracy scores. 

Task 3.  Task 3 was a cardinal direction (spatial) learning task (Gunzelmann, 

Anderson, & Douglass, 2004).   In this task, participants were shown a sequence of static 

image pairs that depicted a spatial relationship between a viewer and a target in two 

different frames of reference.  The left side of the screen represented a target field as 

viewed from an ego-oriented perspective with red circle representing the target.  The 

right side of the screen showed the target field from an allocentric orientation.  For each 

pair of images (a trial) participants were asked to determine the location of the target in 

the allocentrically oriented perpective based on the perspective depicted in the visual 

scene on the left.  Participants responded by pressing the corresponding key on a numeric 
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keypad.  After a response, participants received visual feedback. The task ended once the 

participant had responded correctly to each of the 64 image pairs.  

Participants who successfully completed all four sessions were included in the 

data analysis for the Cardinal Direction, spatial learning task.  This task consisted of a 

drop-out design in which each participant was required to complete all 64 configurations 

correctly before completing the task.  All 64 configurations were presented sequentially 

and then false responses were repeated until all configurations were answered correctly.  

This process allowed me to warn against and check for careless responding.  Performance 

was assessed based on accuracy for the first 64 responses in order to achieve a 

comparable measure of performance to the Japanese-English and Digit-Droodle tasks.  

The instructions for this task are shown in Figure 5 below.  

Measures 

Task performance.  Task performance was measured in terms of accuracy 

(percentage correct).   In the Cardinal Direction task, a correct response for each of the 64 

configurations was required in order for the participant to move on.  Because of this, 

accuracy for only the first 64 trials was evaluated.  The accuracy measures for each task 

act as an indicator of learning and enhanced performance over time and can be compared 

across all three tasks.  

PPE parameter estimates.  To calculate performance trajectories and predicted 

decay rates, the PPE produces four optimized parameters for each participant. These are 

the logistic function intercept, logistic function slope, decay intercept, and decay slope.  
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Parameters were compared across tasks. Additionally, optimized parameters from one 

task were applied to each of the other tasks (per individual) to determine generalizability 

of parameters across tasks. 

PPE fit.   I used mean standard error (MSE) and correlation (r) to evaluate model 

fit. The goodness of fit measures PPE’s parameter estimates in comparison to observed 

performance scores for each individual per task and were averaged across participants to 

provide an overall estimate of model fit. An r value of 1 and a MSE value of 0 would 

indicate that the model fit perfectly.  

PPO predictions.  For validation, PPO predictions for the fourth session were 

made from the first three sessions. PPO predictions of future performance were estimated 

per day for 365 days. I compared performance across tasks at 14, 30, 60, and 120 days 

post-training.  

Results 

Descriptive Statistics 

 Because PPO predictions require three inputs and I needed to assess the correct 

retention predictions for PPO against actual performance data, I removed data from the 

analysis for the 2  participants who failed to complete all four training sessions on time 

(+/- six hours).  I also removed data for the 23 participants who experienced technical 

problems with their computer as to ensure accurate performance measures.  Data was 

analyzed from 58 participants who successfully completed all trials and sessions for all 
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three tasks.  Means, standard deviations, and overall performance scores for all three 

tasks across all four sessions can be found in Table 1. 

Initial PPE Fit and Validation 

PPE model fit to performance data was validated for both same-type tasks and 

then assessed for fit within different-type task.  I assessed the adequacy of the model’s fit 

to actual performance data from the first three sessions (the knowledge acquisition 

phase), and the adequacy of its predictions during the fourth session (retention session).  

For both memory-recall tasks, high correlation and low MSE measures are seen in the 

acquisition phase (Sessions 1-3).  For the Japanese-English task, the metrics of fit for the 

knowledge acquisition phase were: r = .998, MSE = 4.85e-04; r = .986, MSE = 2.52e-04; 

r = .971, MSE = 1.27e-04.  For the Digit-Droodle task, the metrics of fit for the 

knowledge acquisition phase were: r = .997, MSE = 3.46e-04; r = .978, MSE = 4.56e-04; 

r = .965, MSE = 1.32e-04.  Model predictions for the retention phase, which data were 

not included during model calibration, were consistent with actual performance one week 

later for both tasks: r = .981, MSE = 6.30e-05 for the Japanese-English task and r = .995, 

MSE = 5.25e-04 for the Digit-Droodle task.   

For the Cardinal Direction task, the metrics of fit for the knowledge acquisition 

phase were: r = .66, MSE = .011; r = .16, MSE = .0016;  r = .00, MSE = .0019.  The 

model seemed to do better for Japanese-English and Digit-Droodle tasks.  This is likely 

because the PPE must predict some forgetting and there was little variance in accuracy 

scores at the individual level.  Although this negatively affected the correlations for this 
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task, the mean standard error between model fit and actual performance was low.  

Regardless of this trend, the model predicted performance for the retention phase with 

very little error, r = .05, MSE = .0016. 

It is important to note that model fit for the retention phase is computed within 

person across the session and averaged across participants. Another method of validating 

the PPE predictions is to correlate the predicted overall accuracy for the retention phase 

with participants actual overall accuracy in the retention phase. This resulted in 

correlations of .77 (p < .01), .59 (p < .01), and .66 (p < .01) for the Japanese-English, 

Digit-Droodle, and Cardinal Direction tasks, respectively. This provides validation data 

of the PPE predictions within the current study.  

Task Performance and Overall Model Fit 

 Japanese-English Task.  Figure 6 illustrates average accuracy for each session 

(see also Table 1).  Correcting for violations in sphericity with the Greenhouse-Geisser 

adjustment to degrees of freedom, results demonstrated learning over time, F (1.43,81.63) 

= 194.02, p < .01.  Accuracy increased in session 2, F(1,57) = 234.68, p < .01, and 

session 3, F(1,57) = 41.42, p < .01), from the previous session but plateaued between 

sessions 3 and 4 (performance ceiling), which demonstrated continued learning and 

potential overlearning. 

 I also assessed learning within sessions to determine learning trends between 

trials (or pair occurrences) within each session.  Figure 7 shows the average accuracy per 

trial for all four sessions in black and the PPE model fit to the observed performance data 
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in red.  In this case, model parameter values were estimated using data from all four 

sessions.  The first point in session one represents the average accuracy of responses (for 

the group of participants) when the stimulus word is presented for the first time and the 

participant is asked to recall its pair.  The second point within each curve represents the 

second time that each word pair appeared on the screen.  Subsequent points represent 

subsequent trials.   

The curves illustrate the average learning curve for the Japanese-English task.  

The curve demonstrates distinct learning rates within each session, the decay seen 

between sessions (e.g., lower intercept for trial 1 within session 2 than trial 10 at session 

1), and faster relearning in later sessions, all of which are accounted for in PPE model 

parameters and fit.  Overall, the model fits the data extremely well (r = .928, MSE = 

.006).  Four model parameters were optimized for each participant based on model fit.  

These parameters will be used when comparing participant performance and model 

generalizability below. 

Digit-Droodle task.  Figure 8 illustrates average accuracy for each session (see 

also Table 1). Correcting for violations in sphericity with the Greenhouse-Geisser 

adjustment to degrees of freedom, results demonstrated learning over time, F(1.36,77.34) 

= 131.74, p < .01.  Accuracy increased in session 2, F(1,57) = 130.39, p < .01, and 

session 3, F(1,57) = 68.16, p < .01), from the previous session but plateaued between 

sessions 3 and 4 (performance ceiling), which demonstrated continued learning and 

potential overlearning.   
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 As above, I assessed learning within sessions to determine learning rates between 

trials within each session.  In this task, there were ten stimulus pairs shown ten times per 

session.  Figure 9 shows the average accuracy per trial for all four sessions in black and 

the PPE model fit to the observed performance data in red.  As in the curves for the 

Japanese-English task, the curves within each session demonstrate the average learning 

curve for this task.  The model fits the data extremely well (r = .907, MSE = .005). 

Cardinal Direction task.  Figure 10 illustrates average accuracy for each session 

(see also Table 1). Correcting for violations in sphericity with the Greenhouse-Geisser 

adjustment to degrees of freedom, results demonstrated learning over time, F(1.21,69.06) 

= 131.74, p < .01.  Accuracy increased in session 2, F(1,57) = 130.39, p < .01, and 

session 3, F(1,57) = 68.16, p < .01, from the previous session but plateaued between 

sessions 3 and 4 (performance ceiling), which demonstrated continued learning and 

potential overlearning.  

As above, I assessed learning within sessions to determine learning rates between 

each of the 64 configurations, or trials within each session.  I assessed only the first 64 

configuration occurrences to determine a measure of accuracy for the first time each 

configuration was answered.  Figure 11 shows the average accuracy per configuration for 

all four sessions in black and the PPE model fit to the observed performance data in red.  

Notice that the observable accuracy scores (in black) appear substantially different than 

the trial scores for the Japanese-English or Digit-Droodle task.  This appearance of 

difference is likely superficial due to the difference in “trial” designation, but does not 
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necessarily represent difference in performance, which will be assessed in the task 

comparisons below.  In the two memory-recall tasks there are 10 trials, each consisting of 

10 word pairs.  In the spatial learning task one trial is one configuration, meaning that the 

observable data includes 64 trials instead of 112.  Regardless, the first point in session 

one represents the average accuracy of responses (for the group of participants) when the 

first configuration is shown, and the second point represents the second configuration.   

Although the black curves are less distinct or smooth in this task, the PPE is fit 

based on optimized parameters.  The model fits the data extremely well considering the 

distribution shown (r = .231, MSE = .067).  Next, I will discuss performance and PPO 

optimized parameter and retention predictions as compared across tasks. 

Comparing Across Tasks 

Raw Performance data.  Hypothesis 1, that raw individual performance 

measures will be similar between the two memory-recall tasks, was tested by computing 

the correlations between all 12 performance measures (three tasks with four sessions; see 

Table 1).  For Session 1, the two memory-recall tasks were significantly correlated (r = 

.42, p < .01), but the Cardinal Direction task was not significantly correlated with either 

the Japanese-English (r = .06, p = .66) or the Digit-Droodle (r = .14, p = .30) task.  For 

Session 2, the two memory-recall tasks were significantly correlated (r = .51, p < .01) but 

the Cardinal Direction task was not significantly correlated with either the Japanese-

English (r = .09, p = .50) or the Digit-Droodle (r = -.06, p = .65) task.  For Session 3 the 

two memory-recall tasks were significantly correlated (r = .40, p < .01) but the Cardinal 
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Direction task was not correlated with either the Japanese-English (r = .149, p = .27) or 

the Digit-Droodle (r = .06, p = .68) task.  For Session 4 the two memory-recall tasks were 

significantly correlated (r = .48, p < .01) but the Cardinal Direction task was not 

correlated with either the Japanese-English (r = .21, p = .11) or the Digit-Droodle (r = -

.06, p = .67) task. This pattern provides clear support for Hypothesis 1.  

I also analyzed performance scores using 3 x 4 repeated measures ANOVA to 

evaluate increases in performance across time and to determine if these increases were 

task specific.  Correcting for violations in sphericity with the Greenhouse-Geisser 

adjustment to degrees of freedom, there were main effects for Task, F(1.88, 107.12) = 

6.15, p < .01, and for Session number, F(1.27, 72.49) = 223.65, p < .01.  These effects are 

aligned with expectations that learning increased by Session (over time) and was task 

dependent.  Although Hypothesis 1 only focused on the level of performance, the effect 

of Task x Session interaction is most valuable to determining if changes in performance 

were similar across tasks.  This Task x Session interaction was significant, F(2.58, 

146.97) = 18.98, p < .01.  Within-subject contrasts indicated that both the Digit-Droodle 

task, F(1,57) = 8.13, p < .01, and the Cardinal Direction task, F(1,57) = 24.43, p < .01, 

showed significantly different increases from Session 1 to Session 2 than the Japanese-

English task.  Increases from Session 2 to Session 3 were not different between the 

Japanese-English task and the Digit-Droodle task, F(1,57) = .65, p = .42, but the Cardinal 

Direction task was significantly different than the Japanese-English task, F(1,57) = 17.13, 
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p < .01.  There were no significant differences in changes from Session 3 to Session 4 

between tasks.  Figure 12 shows this trend over time.  

 Consistency of parameter estimates.  Two methods were used to test the 

consistency of PPO optimized parameters. For the first method, Hypothesis 2a examined 

whether the PPO optimized parameters were correlated across tasks. This was tested by 

correlating the PPO optimized parameters from one task to the PPO optimized parameters 

to a different task for each individual. Results are presented in Tables 2 through 5.   

 Examining Tables 2 through 5, Hypothesis 2a was generally not supported. The 

parameters for logistic function intercept were significantly correlated for the similar 

tasks (r = .30, p < .05) but the logistic function intercepts for the Cardinal Direction task 

were not correlated with the logistic function intercepts for either the Japanese-English (r 

= -.06, p > .05) or the Digit-Droodle (r = .14, p > .05).  All others correlations were non-

significant. It should be noted that Hypothesis 2a is a potentially insensitive test of the 

PPO predictions. That is, parameters might show little consistency across individuals but 

still result in similar predictions as represented in Hypothesis 2b and Hypothesis 3.  

PPO fit with generalized parameters.  The second method of testing the 

consistency of PPO optimized parameters was reflected in Hypothesis 2b, that applying 

the optimized parameters from one task to another would result in similar fit indices. To 

test Hypothesis 2b I analyzed PPE fit when optimized parameters from one task are 

applied to the other two tasks.  This was tested by running the PPO with the data for one 
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task but specifying the optimized parameters from another task. Evaluations of model fit 

are presented in Tables 6 and 7.  

Figure 13 shows PPE fit when the parameters optimized for Japanese-English are 

applied to the Digit-Droodle and Cardinal Direction tasks.  Figures 14 and 15 illustrate 

the same relationship when PPE optimized parameters from the Digit-Droodle and 

Cardinal Direction tasks are applied to the other tasks (respectively).  There is an 

apparent overlap in PPE fit when the optimized parameters for the Japanese-English or 

the Digit-Droodle task are applied to each other.  There are also apparent differences in 

PPE curves when those parameters are applied to the Cardinal Direction task or the 

parameters optimized for the Cardinal Direction task are applied to either of the two 

memory-recall tasks. 

 As reported above and displayed in Tables 6 and 7, the optimized parameters fit 

best to the task that they were estimated from.  For example, when looking across the first 

row of both Tables 6 and 7, fit for the Japanese-English task decreased from the base 

model more when using the Cardinal Direction task parameters, r =.778, MSE = .087, 

than the Digit-Droodle parameters, r = .837, MSE = .029. Row two of both tables 

similarly shows that fit for the Digit-Droodle performance was better when estimated 

with the Japanese-English parameters than with the Cardinal Direction parameters. 

Although the pattern of these results appear to support Hypothesis 2b, they do not 

provide a statistical test of the hypothesis; this was evaluated by testing the difference 

between the r values with a Steiger (1980) Z test.  
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Results indicated that fit for the Japanese-English task was not significantly 

different when estimated with the Digit-Droodle parameters than with the Japanese-

English parameters, Z = 1.86, p =.06, but was significantly different when estimated with 

the Cardinal Direction parameters, Z = 3.43, p < .01. Fit for the Digit-Droodle task was 

not significantly worse when estimated with the Japanese-English parameters than with 

the Digit-Droodle parameters, Z = 1.44, p = .15, but was significantly different when 

estimated with the Cardinal Direction parameters, Z = 2.95, p < .01. These results support 

Hypothesis 2b and show that using parameters from the different memory recall tasks did 

not result in a significant change in r model values but that using parameters from the 

Cardinal Direction task resulted in significantly different r values for the memory recall 

tasks. 

PPO predicted performance 

Hypothesis 3, that PPO predicted retention performance will significantly 

correlate for the two memory-recall tasks, but not for the spatial learning task, was tested 

using correlations of  the predicted level of retention per individual and across tasks at 

fixed times in the future.   Figures 16, 17 and 18 show model calibration on the left, and 

PPO predicted performance of each participant (N = 58) for 365 days following training 

for the Japanese-English, Digit-Droodle, and Cardinal Direction task, respectively, on the 

right.  

 Because retention performance at the one-week retention interval was high (low 

forgetting rate associated with any of the three tasks), I looked at predicted performance 
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for 14, 30, 60, and 120 days post-training. Predicted performance levels and correlations 

across tasks are presented in Table 8. As hypothesized, predicted performance for the 

Japanese-English task was correlated with predicted performance for the Digit-Droodle 

task at 14 (r = .50, p < .05), 30 (r = .48, p < .05), 60 (r = .44, p < .05), and 120 (r = .40, p 

< .05) days post-training; however, predicted performance for the Japanese-English task 

was also correlated with predicted performance for the Cardinal Direction task at 14 (r = 

.30, p < .05), 30 (r = .32, p < .05), 60 (r = .35, p < .05), and 120 (r = .37, p < .05) days 

post-training. Predicted performance on the Digit-Droodle task was not correlated with 

predicted performance on the Cardinal Direction task at any post-training time point (r’s 

= .03, .04, .05, and .06 for 14, 30, 60, and 120 days post-training). These results partially 

support Hypothesis 3. 

Similar to the analysis conducted for Hypothesis 1, predicted retention data was 

analyzed with a 3 x 4 repeated measures ANOVA.  Correcting for violations in sphericity 

with the Greenhouse-Geisser adjustment to degrees of freedom, there were main effects 

for Task, F(1.524, 86.88) = 6.30, p < .01, and for days post-training, F(1.007, 57.38) = 

151.35, p < .01. These effects are aligned with expectations that retention is expected to 

decrease over time and that performance was task dependent.  Again, the Task x Days 

Post-Training interaction is the most valuable for determining if decreases in retention 

were similar across tasks.  This interaction was significant, F(1.725, 98.311) = 17.82, p < 

.01.  Within-subject contrasts indicated that both the Japanese-English task and Cardinal 

Direction task decreased at similar rates from 14 days post-training to 30 days post-
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training, F(1, 57) = .28, p = .59, from 30 days post-training to 60 days post-training, F(1, 

57) = .38, p = .54, and from 60 days post-training to 120 days post-training, F(1, 57) = 

.48, p = .49.  However, retention on the Digit-Droodle task decreased significantly faster 

than on the Japanese-English task at each point: F(1, 57) = 17.61, p < .01;  F(1, 57) = 

18.71, p < .01; F(1, 57) = 22.03, p < .01. Figure 19 shows this trend over time.  

Discussion 

The purpose of my study was to understand the relationship of task type 

designation, task performance, PPE optimized parameters and PPO predictions to better 

understand potential generalizability of PPO across tasks.  The underlying cognitive 

model of PPO tracks and predicts future performance for skills and knowledge retention 

based on historical performance data for a specific task and training structure.  In my 

study, I compared performance outcomes, optimized PPE parameters and PPO prescribed 

retention intervals across three tasks -- two of the same type (memory-recall) and one of a 

different type (spatial) -- to evaluate model generalizability. Generally, the results 

demonstrated significant similarities in raw individual performance, or accuracy scores, 

for tasks of the same type (the two memory-recall tasks), but not for the different type 

task (spatial task).  This trend was also consistent between all four training sessions, 

demonstrating that learning increased over time and was task type dependent.  Although 

model parameters did not directly correlate across similar tasks, the fit of the model from 

one memory-recall task to the other was far superior to the fit seen when parameters from 

one memory-recall task were applied to the spatial task and vice versa.  Finally, predicted 
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performance measures across all three tasks demonstrated mixed assessments of 

similarity based on task type.  Similarities of these measures within the same type task 

suggest that type of task may be a viable indicator of transfer and generalizability of PPO 

outcomes.  Specifically, these results raise issues relating to the effect of task type on 

learning acquisition and retention and the potential of modeling this type of learning 

phenomenon.  It is apparent that task type designation accounts for some, but not all, of 

the variance in learning outcomes.  This means that although this may be a valuable 

parameter for the PPO, and qualifier of task content, other variables of the task affect 

learning outcomes.  

Hypothesis Support 

 The results and analyses support my predictions for Hypothesis 1, Hypothesis 2b, 

and partially support Hypothesis 3.  In general, performance over time, optimized 

parameter fit across learning curves, and predicted future performance was similar 

between the two same-type tasks, Japanese-English and Digit-Droodle, and different for 

the different-type task, Cardinal Direction.  Raw performance data and changes in 

performance over time were significantly correlated within tasks of the same-type and 

different for the different-type task.  This finding suggests an underlying learning 

tendency based on task-type designation.   

Hypothesis 2a was likely not supported due to the nature of parameter variance.  

For each task, PPE optimizes fit with four free varying parameters based on observable 

and quantifiable performance history.  Maximum likelihood estimation is used to find the 
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very best fitting parameter values per individual and task.  Low correlations in this 

analysis may be a consequence of noise in parameter estimation, rather than lack of 

parameter generalizability.  It is possible for the variables to cancel each other out or vary 

in different ways.  For example, change in one parameter value (decay intercept) can be 

offset by a change in another parameter value (decay slope).  Hypothesis 2a tested the 

extent to which parameters from one model were consistent with another model, but 

Hypothesis 2b tested model fit when the optimized parameters of one test were applied to 

actual performance data of the other.  This may actually be a more reasonable measure of 

model generalizability.  Results for Hypothesis 2b showed that model fit with optimized 

parameters of similar-type task were significantly better than model fits parameters from 

the different-type task.  This finding implies potential generalizability of PPE fit as a 

function of task type designation. 

Hypothesis 3 was only partially supported because predicted performance for the 

Japanese-English task was correlated with predicted performance in both the similar type 

task and the different type task post-training.  However, the Digit-Droodle task predicted 

performance was not correlated with predicted performance for the different type task at 

any level of retention analysis.  Results showed that PPE, when calibrated using 

performance data from one memory-recall task, adequately predicted performance on 

another related task.  This finding suggests that the mental processes approximated by 

model parameter estimates were invariant within an individual and across related tasks.  

However, this suggestion would also imply that similar model generalization would not 
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be expected across different tasks that evoked different mental processes.  Results for 

Hypothesis 3 were mixed, thus additional research is needed to determine how variables 

within the context of the task affect learning. 

Theoretical and Practical Implications 

These results are consistent with meta-analytic results that show that task type 

designation accounts for some of the variance in learning and knowledge retention over 

time (Arthur et al., 2003; Arthur et al., 1998).  Adding to this past research, current 

results suggests the plausibility of generalizing performance predictions across similar 

tasks.  Further research is required to determine the importance of task type and task 

content in learning outcomes.  For example, although predictions between the two 

memory recall tasks were similar, examination of Figures 7 and 9 shows that 

performance on the Digit-Droodle task tended to drop more between session than the 

Japanese-English task but that relearning for the Digit-Droodle task occurred at a faster 

rate than the Japanese-English task. This is also observed in Figures 16 and 17 as 

predicted retention in the Digit-Droodle declines at a faster rate than in the Japanese-

English task. It is possible that a more fined grained distinction of task type, such as 

sensical or nonsensical pairs in memory recall tasks, may assist researchers and 

practitioners understand similarities in learning.     

The data from this study reveals several practical applications worthy of future 

study.  That task type designation accounts for a significant amount of the variance in 

performance and predicted performance on various tasks implies that task type is a 
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valuable component of training transfer.  This could lead to a better understanding of how 

people learn and how learning transfers across tasks or environments.  This type of 

pattern has implications for training managers and educators, suggesting that type of task 

should be considered when creating a training program.   

Findings from this study imply a potential for PPO generalizability and ability to 

make training and retention predictions and prescriptions for tasks outside of the specific 

input criterion.  Expanding this knowledge potentially increases the utility of PPO 

substantially.  Substantial research and validation studies are required to support this 

claim, however, this study provides a proof of concept that type of task, and potentially 

other task qualifiers, play a role in training transfer, and thus training prescription 

generalizability.  

With respect to the cognitive model, an increased ability to generalize results of 

PPO predictions can save money and time in organizational training contexts.  Rather 

than requiring three instances of historical performance on a given task, PPO could use 

performance from three similar tasks and output a general prediction for that type of task.  

PPO utility as a tool to aid scheduling of training for a wide variety of task types or 

cohorts increases substantially if optimized schedules and training plans/predictions can 

be generalized to a wider selection of inputs.  

Model generalizability also has potential utility in the realm of selection because 

it captures learning and forgetting nuances at the individual level.  A better understanding 

of learning and retention rates for an individuals based on type of task may help 
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employers match employees to a certain position based on fit of the individual's learning 

patterns and task requirements of the job.  This process could help aid training goals by 

capturing individualized patterns of learning and extending retention based on learning 

capabilities of an individual.  This would allow organizations to use a sample of behavior 

to select individuals who are likely to perform well in the job setting required by a certain 

position.  To apply PPO in this manner would require additional testing, validation, and 

understanding of the outcomes.  Further analysis of PPO utility and accuracy in this 

realm is necessary to avoid legal issues associated with selection tool validation.   

Limitations 

 As with all studies, there are several limitations that should be considered in the 

current study.  A limitation to the confidence in which I draw my results is the 

performance measures for each of the tasks. The two memory recall tasks are the same 

type of task, but also vary based on content.  The Japanese-English task contains sensical 

word pairs, while the Digit-Droodle task contains nonsensical droodle-number pairs.  

This difference could confound the findings and explain some of the variance in the 

results.  Additionally, as seen in Figures 10 and 11, ceiling effects were observed for the 

Cardinal Direction task. That is, once participants mastered the spatial orientation 

procedure, their overall level of accuracy was quite high, limiting variability in 

performance.  Reaction time is a more sensitive measure of performance for this task and 

could be used in future comparisons. 
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While a strength of the current study was that task performance was evaluated on 

four different days, the requirement for participants to return four times throughout the 

study also introduces limitations. First, this requirement increased the potential for 

participant attrition.  I conducted a power analysis to ensure that a large enough sample 

size was achieved regardless of data errors or participant attrition.  I accounted for 

attrition by using a large sample size and collecting data until the correct number of data 

points were achieved.  However, this could have resulted in the potential that participants 

who completed the study were different from participants who dropped out of the study; 

however, this is unlikely because most of the attrition occurred because of random 

computer problems (only 2 of the 25 participant attrition points were due to failure to 

show and attempt all four sessions). Second, ideally participants would have returned at 

the same time each day (session), but scheduling conflicts resulted in some variance in 

interval times (24 hours +/- 6 hours).  These potential differences in session time could 

account for some performance variability, but this is generally considered a minor source 

of variation. 

There were several computer issues throughout this study. Although data affected 

by these computer issues were removed from analysis, it is possible that some of the 

remaining data were impacted by computer errors such as slow processing, delays 

between trails, and frozen screens.  Finally, caution should be used in interpreting the 

Steiger Z tests used to provide an empirical test to Hypothesis 2b. Because the model fit 

is averaged across participants, the r values found in Table 6 are the averages across 
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participants. Steiger (1980) developed his test to compare two correlations from a single 

sample whereas my procedure is more analogous to comparing correlations from a meta-

analysis. Additionally, because of task differences, sample sizes for these r values varied 

between the two types of tasks. Within each participant there were only 40 data points for 

the memory recall tasks but 256 data points for the Cardinal Direction task. Because of 

this MSE values might be a better indicator of model fit.  

Future Research 

Given these results, more research is required to determine plausible contexts for 

PPO generalizability.  Task type may be a valuable designator, but likely in conjunction 

with other contextual factors such as task complexity and sensical or nonsensical pairs.  

Also, future studies should focus on other task types (e.g., declarative, cognitive, or 

psychomotor tasks).  Further analysis and validation of PPO is necessary to determine the 

utility of task type variation and the confidence with which PPO predictions generalize to 

other tasks.  PPO currently accounts for individual differences in learning by fitting free 

parameters within the model to each individual.  It would be interesting to see if an added 

parameter, reflecting task type designation, facilitated individualized training predictions 

and prescriptions or if task qualification could aid a theory of a priori parameter estimates 

that accounted for individual differences.  A measure of task type as a parameter of the 

PPE could enhance the utility of PPO across contexts.  Finally, it would be beneficial to 

perform a study in which scheduling of training is manipulated to determine if training 
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schedules can be optimized to improve learning acquisition and retention rates across 

various types of tasks. 

Conclusion 

The purpose of my study was to understand the relationship of task type 

designation and PPO prediction generalizability.   This study demonstrates potential 

generalizability of PPO across memory recall tasks.  Task type designation appears to 

account for some of the variance in individual learning rates and retention over time, but 

other task factors may also play an important role in this phenomenon.  Additional 

research is required to determine the appropriate weight of task type designation when 

making individualized predictions of performance.  
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Table 1 

Correlations Between Task per Session  

Tasks M SD 1 2 3 4 5 6 7 8 9 10 11 12 

1. JE S1 62.34 20.12 --            

2. JE S2 87.71 14.98 0.78* --           

3. JE S3 95.26 7.55 0.63* 0.89* --          

4. JE S4 95.76 6.83 0.63* 0.88* 0.92* --         

5. DD S1 69.45 19.62 0.42* 0.43* 0.31* 0.27* --        

6. DD S2 88.81 13.48 0.40* 0.51* 0.40* 0.38* 0.76* --       

7. DD S3 95.40 8.92 0.40* 0.54* 0.40* 0.41* 0.66* 0.93* --      

8. DD S5 95.31 7.14 0.40* 0.55* 0.41* 0.48* 0.58* 0.85* 0.91* --     

9. CD S1 81.03 20.76 0.06 0.02 0.07 -0.03 0.14 0.05 0.00 -0.08 --    

10. CD S2 93.56 9.02 -0.03 0.09 0.06 0.09 -0.07 -0.06 -0.04 -0.08 0.56* --   

11. CD S3 95.07 5.30 0.09 0.24 0.15 0.21 -0.02 -0.01 0.05 0.03 0.42* 0.80* --  

12. CD S4 94.80 5.85 0.10 0.26* 0.23 0.21 0.04 0.05 0.04 -0.06 0.42* 0.75* .73* -- 

Note. n = 58. JE represents the Japanese-English task, DD represents the Digit-Droodle task, and CD represents the Cardinal-

Direction task. S1 represents Session 1, S2 represents Session 2, S3 represents Session 3, and S4 represents Session 1. 

Correlations between tasks in the same session are in bold to facilitate comparison.  

* p < .05 (two-tailed).  

 

 



 

 

Table 2 

Correlations between PPO Logistic Function Intercept Parameter 

 1 2 3 

1. Japanese-English --   

2. Digit-Droodle    .30* --  

3. Cardinal Direction -.06 .14 -- 

Note. n = 58. *p < .05. 

 

 

 

  



 

 70 

 

Table 3 

Correlations between PPO Decay Intercept Parameter 

 1 2 3 

1. Japanese-English --   

2. Digit-Droodle .16 --  

3. Cardinal Direction -.011 -.003 -- 

Note. n = 58. *p < .05. 
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Table 4 

Correlations between PPO Decay Scalar Parameter 

 1 2 3 

1. Japanese-English --   

2. Digit-Droodle .20 --  

3. Cardinal Direction -.11 -.24 -- 

Note. n = 58. *p < .05. 
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Table 5 

Correlations between PPO Logistic Function Scalar Parameter 

 1 2 3 

1. Japanese-English --   

2. Digit-Droodle .19 --  

3. Cardinal Direction .16 .22 -- 

Note. n = 58. *p < .05. 

 

  



 

 73 

 

Table 6 

Correlations Between Task Performance and Model Fit Using 

Optimized Parameters from Other Tasks 

 Parameters  

Performance 1 2 3 

1. Japanese-English .928 .837 .778 

2. Digit-Droodle .826 .907 .749 

3. Cardinal Direction .152 .22 .234 

Note. n = 58. The bold represents when the model fits 

performance data using its own parameters. 
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Table 7 

Mean Squared Error Between Task Performance and Model Fit 

Using Optimized Parameters from Other Tasks 

 Parameters  

Performance 1 2 3  

1. Japanese-English .006 .029 .087  

2. Digit-Droodle .028 .005 .083  

3. Cardinal Direction .089 .089 .067  

Note. n = 58. The bold represents when the model fits performance 

data using its own parameters. 

 



 

Table 8 

Correlations Between Predicted Retention over Time 

Tasks M SD 1 2 3 4 5 6 7 8 9 10 11 12 

1. JE 14 90.57 12.63 --            

2. JE 30 88.97 13.85 .99* --           

3. JE 60 87.07 15.23 .99* .99* --          

4. JE 120 84.84 16.80 .97* .99* .99* --         

5. DD 14 86.75 13.94 .50* .50* .49* .47* --        

6. DD 30 83.63 15.58 .48* .48* .47* .45* .99* --       

7. DD 60 79.91 17.52 .45* .45* .44* .43* .96* .99* --      

8. DD 120 75.40 19.76 .41* .41* .41* .40* .92* .97* .99* --     

9. CD 14 79.87 21.01 .30* .32* .34* .37* .03 .03 .04 .04 --    

10. CD 30 78.40 22.11 .30* .32* .35* .37* .03 .04 .04 .05 .99* --   

11. CD 60 76.69 23.41 .30* .33* .35* .37* .04 .04 .05 .05 .99* .99* --  

12. CD 120 74.68 24.94 .30* .33* .35* .37* .04 .04 .05 .06 .99* .99* .99* -- 

Note. n = 58. JE represents the Japanese-English task, DD represents the Digit-Droodle task, and CD represents the Cardinal 

Direction task. 14, 30, 60, and 120 represents predicted retention that many days post-training. Correlations between tasks at the 

same time period post-training are in bold to facilitate comparison. 

* p < .05 (two-tailed).  
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Figures 
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Figure 1. General Process Outline for PPO (Jastrzembski et al., 2013) 
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Figure 2. PPO Output Display Example (Jastrzembski et al., 2013) 
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Figure 3. Demonstration of the experimental design structure 
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Figure 4. Instruction Screen for Task 2 
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Figure 5. Spatial orientation task directions 
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Figure 6. Japanese-English task: across session performance.  Average performance (N = 

58) in terms of accuracy for the Japanese-English paired associates task across all four 

sessions. 
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Figure 7. Japanese-English task: trial performance.  PPE model fit (red) compared to 

observed performance accuracy per trial (within session) (black) for the four training 

sessions. 
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Figure 8. Digit-Droodle task: across session performance.  Average performance (N = 

58) in terms of accuracy for the Digit-Droodle paired associate task across all four 

sessions. 
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Figure 9. Digit-Droodle task: trial performance. PPE model fit (red) compared to 

observed performance accuracy per trial (within session) (black) for the four training 

sessions. 
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Figure 10. Cardinal Direction task: across session performance.Average performance (N 

= 58) in terms of accuracy for the Cardinal Direction, spatial learning task across all four 

sessions. 
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Figure 11. Cardinal Direction task: trial performance. PPE model fit (red) compared to 

observed performance accuracy per trial (within session) (black) for the four training 

sessions. 

 

  



 

 88 

 

Figure 12. Mean differenes in increased performance per session per task 
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Figure 13. PPE fit when parameters optimized for the Japanese-English task are applied 

to the Digit-Droodle and Cardinal Direction tasks.  
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Figure 14.  PPE fit when parameters optimized for the Digit-Droodle task are applied to 

the Japanese-English and Cardinal Direction tasks.  

  



 

 91 

 
Figure 15. PPE fit when parameters optimized for the Cardinal Direction task are applied 

to the Japanese-English and Digit-Droodle tasks.  

  



 

 92 

 

Figure 16. PPO predicted performance for each participant (N = 58) from one to 365 days 

after training completion on the Japanese-English task. 
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Figure 17.  PPO predicted performance for each participant (N = 58) from one to 365 

days after training completion on the Digit-Droodle task. 
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Figure 18.  PPO predicted performance for each participant (N = 58) from one to 365 

days  after training completion on the Cardinal Direction task. 
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Figure 19. Predicted retention trends for each of the three learning tasks. 
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