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Abstract 

Poornima Kotha Lakshmi Narayan Ph.D. Biomedical Sciences Ph.D. Program. 
Wright State University, 2014. The regulation of the eight-exon isoform of the 
Coxsackievirus and Adenovirus Receptor (CAREx8) and its biological relevance 

The airway epithelium poses a formidable barrier for the entry of pathogenic 

viruses due to the formation of tight junctions between adjacent epithelial cells. 

The coxsackievirus and adenovirus receptor (CAR), a member of the Ig 

superfamily of cell junction adhesion proteins, is the primary receptor for 

adenovirus entry and infection. As a result of alternative splicing, two 

transmembrane isoforms of CAR are generated. While the seven-exon isoform of 

CAR (CAREx7) is hidden on the basolateral surface of polarized epithelia, the eight-

exon isoform of CAR (CAREx8) localizes within the sub-apical region and at the air-

exposed apical surface. Apical localization of CAREx8 makes it accessible to 

invading adenovirus entering the lumen of the airway and able to facilitate viral 

entry into the epithelium. Previous studies have shown that Interleukin-8 (IL-8), a 

proinflammatory cytokine and a neutrophil chemoattractant, increases the 

susceptibility of the airway epithelium to adenoviral infection. I hypothesized that 

the apical CAREx8 protein expression level and localization are responsible for the 

susceptibility of a polarized epithelium to viral infection. Moreover, I hypothesized 

that CAREx8 expression is tightly regulated by mediators of IL-8 signaling and the 

endogenous function CAREx8 is to tether neutrophils at the apical surface of the 

polarized epithelium. Finally, I hypothesized that adenovirus
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has co-opted CAREx8 and neutrophil transmigration to enhance infection of the 

polarized epithelium.  

Consistent with these hypotheses, I demonstrate that IL-8 increases the 

expression and the apical localization of CAREx8 in polarized airway epithelial cells. 

In addition, IL-8 differentially activates AKT/S6K and inactivates GSK3β to 

augment the protein synthesis of CAREx8. Increased CAREx8 is able to mediate 

increased neutrophil binding at the apical surface of the epithelium that is 

completely abolished by competition with CAR-binding adenovirus fiber-knob. 

Finally, I also demonstrate that neutrophils adhering to the epithelial apical surface 

are able to promote adenoviral infection. Taken together, these data suggest that 

adenovirus has evolved to co-opt the host innate-immune response to the 

inflammation caused by molecules within inhaled droplets, pre-existing 

inflammation, or even adenovirus itself, in order to gain entry into the polarized 

epithelium by inducing the increased expression of endogenous apically localized 

CAREx8.  
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Chapter 1: Introduction: 

Our world is full of pathogens that prey on nutrient-rich organisms. All mammals, 

including humans, have evolved a complex set of innate barriers to prevent 

infection. The lung is one of the organs that comes into direct contact with the 

external environment and is a major portal of entry. The epithelium of the lung 

provides a first line of defense and is constantly exposed to inhaled pathogens that 

are normally cleared without causing inflammation or damage to the lung. 

However, there are times when susceptibility to infection is elevated. Much 

remains to be understood about factors that predispose us to the infection and how 

pathogens crack the epithelial barrier to gain entry into the host. 

1.1. Junctional adhesion complex (JAC)  

Epithelial cells line the mucosal surface of the airway. These are polarized cells 

with the apical surface facing the lumen of the airway tract and the basal surface 

facing the interstitium. One of the essential functions of the epithelium is to form a 

barrier thereby separating the harsh outside environment from the more fragile 

inside. Epithelial cells prevent the paracellular movement of inhaled particles into 

the interstitium. Likewise, it also prevents the loss of essential components into the 

airway lumen. This barrier function is accomplished by the JAC, which is 

composed of transmembrane and cytoplasmic tight junction proteins (TJ) and 

adherens junction (AJ) proteins (Figure 1A). Tight junction proteins are located at 
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the apico-lateral surface of the epithelial cells and form a zipper like structure that 

seals the space between the epithelial cells. Tight junction proteins include 

transmembrane proteins, cytoplasmic plaque proteins and cytoskeletal proteins 

[1]. Claudins are an example of tight junction transmembrane proteins that form 

homodimers with those on adjacent cells and form tight junction strands. Other 

transmembrane proteins including occludin and tricellulin are localized within or in 

close proximity to the tight junction strands. The cytoplasmic domains of both 

claudin and occludin bind to tight junction cytoplamic plaque proteins, which 

include: Zona occludin 1, 2 and 3 (ZO-1, ZO-2 and ZO-3) (Figure 1B) [2]. These 

are structurally related proteins that contain several functional domains (three PDZ 

domains, one SH3 domain and one GUK domain) through which they can interact 

with actin thereby linking the tight junctions to the actin cytoskeleton. In addition, 

tight junction proteins include junctional adhesion molecules (JAMs) and the 

coxsackievirus and adenovirus receptor (CAR), which belong to the 

immunoglobulin (Ig) superfamily of proteins. Although CAR is often classified as a 

tight junction protein, CAR is on the basolateral side of the tight junction and mainly 

overlaps with adherens junction proteins, such as epithelial cadherin (E-cadherin) 

[3, 4].  

Adherens junctions are found beneath the tight junction seal (Figure 1B). 

These junctions serve to hold adjacent epithelial cells together as opposed to 

completely sealing the space between cells. Adherens junction proteins are 

comprised of the cadherin family of transmembrane proteins, Ig-like proteins and 

cytoplasmic plaque proteins such as α/β/δ-catenins [1]. The extracellular domain 
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of E-cadherin possesses five repetitive sub-domains called the extracellular 

cadherin or the ‘EC’ domain [5]. It is through these sub-domains that cadherins 

form homophillic interactions with those on the adjacent cells in a calcium-

dependent manner. Treating the cells with calcium chelators, such as EDTA, 

disrupts the cadherin-cadherin interaction by removing calcium and allowing the 

junctions to fall apart. Subjacent to adherens junction are the desmosomal 

junctions, which aid in anchoring the neighboring cells. Similar to tight and 

adherens junction proteins, desmosomal junctions are also composed of 

transmembrane proteins and cytoplasmic plaque proteins. Transmembrane 

proteins include, JAM-C, desmoglein and desmocollin, while the plaque proteins 

include desmoplakin, plakophillin and γ-catenin. The cytoplasmic plaque proteins 

are connected to the intermediate filaments [1]. Therefore, the epithelial barrier 

integrity is maintained by the combination of these junctional proteins. Alteration in 

the expression and localization of these junctional proteins will tremendously 

impact the transepithelial resistance and permeability of the epithelial barrier.   
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       Adapted from Chin et al., 2007 

  

 

A B

TJ

Basal lamina

Lumen

Interstitium

AJ

Epithelial cell

Claudin

Occludin

CAR

E-cadherin

TJ

AJ

Figure 1: Schematic of polarized epithelial cells. The apical surface of the cells faces 

the air-exposed airway lumen and the basolateral (basal) surface faces the interstitium. 

The cells are held together by the junctional adhesion complex (JAC) which is composed 

of apico-lateral tight junction (TJ) and basolateral adherens junction (AJ) proteins. B. A 

schematic of epithelial cells showing the different components of TJ and AJ. TJ proteins 

include transmembrane proteins such as claudin and occludin and cytoplasmic 

scaffolding proteins such as zona occludins (ZO-1 and -2). The adherens junction 

proteins include transmembrane proteins such as coxsackievirus and adenovirus 

receptor (CAR) and E-cadherin.   
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1.2. Regulation of adhesion proteins:  

The expression and localization of various epithelial cell surface adhesion proteins 

are tightly regulated and are responsive to external stimuli, such as inflammation. 

For example, exposure of airway epithelial cells to tissue necrosis factor alpha 

(TNF-α) in combination with interferon gamma (IFN downregulates the gene 

expression and redistributes the tight junction proteins JAM and ZO-1 in airway 

epithelia. Likewise, in endothelial cells, gene expression and localization of CAR 

is downregulated in response to INF- and TNF-α. These cytokines also increase 

the permeability of both epithelial and the endothelial cells [6, 7]. As a result, the 

barrier integrity and the epithelial cell permeability is compromised by exposure to 

cytokines [7]. Tumor growth factor beta (TGF-β) and TNF-α negatively regulate the 

gene expression of occludin and claudin in testis. IFN- disrupts the epithelial 

barrier integrity by promoting macropinocytosis of the tight junction proteins 

occludin, claudin-1, and JAM-A [8, 9]. Intercellular adhesion molecule-1 (ICAM-1) 

relocates to the apical surface of intestinal epithelial cells in response to IFN- [10]. 

Interleukin-8 (IL-8), a proinflammatory cytokine relocalizes αvβ3 integrin and CAR 

at the epithelial apical surface. All these examples provide evidence for a profound 

effect of cytokines on the junctional proteins.  

1.3. Junctional proteins as viral receptors:  

The port of entry for many viruses has numerous barriers. When entering the 

respiratory tract, they first confront the mucus layer, above the apical surface of 

the epithelium that is constantly being swept out of the respiratory tract. Once 

through the mucus, the virus must find its receptor on the epithelium. While many 
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viruses utilize apical proteins as receptors for entry and infection (for example: 

influenza virus uses α 2-6 linked-sialic acid, rhinovirus uses ICAM-1), other viruses 

utilize junctional proteins as their primary receptor. For example: reovirus uses 

JAM-A [11], hepatitis C requires claudin and occludin [12], the measles virus 

depends on nectin-4, an AJ protein, as its primary receptor [13], and the coxsackie 

B virus along with most adenovirus serotypes utilize CAR as a primary receptor 

[14, 15]. The viruses that have adapted to utilize epithelial apical proteins as 

primary receptors are expected to find their receptors and bind to the apical surface 

of epithelial cells to initiate infection rather easily. However, if a virus has its primary 

receptor sequestered below the TJ, accessing the primary receptor to initiate an 

airborne infection appears to be more complicated and challenging. For a long 

time, it was believed that a mechanical break in the epithelial junctions was 

required to allow the virus to access its basolaterally localized primary receptor. 

Although this continues to serve as a potential mechanism for viral infection, recent 

studies have shown that viruses are astute in breaking into the intact epithelium. 

For example, Coxsackie B virus binds to DAF, an apical protein, which facilitates 

the translocation of the virus to the tight junction where it can interact with CAR 

and gain entry into the host cell [16]. Reovirus binds sialic acid at the apical surface 

which then mediates the binding of the virus to its primary receptor, JAM-A, 

allowing the virus to enter its host [17]. However, recent studies suggest that viral 

receptors once believed to be sequestered below the tight junctions might have 

alternatively spliced isoforms that can localize to the apical surface, facilitating the 

initial viral entry from the apical surface.  Our lab has shown that adenovirus binds 
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to an alternatively spliced version of CAR (CAREx8), which localizes to the apical 

surface, allowing adenovirus to gain entry into the airway epithelia from the air 

exposed apical surface [18-20].  

1.4. Adenovirus 

Adenovirus is a non-enveloped virus that is icosohedral in shape. Adenovirus is 

typically 80 nm in size and encloses a double stranded DNA genome. Over 50 

human adenovirus types have been identified and are categorized into groups A 

through G. Adenoviruses most commonly cause mild and self-limiting upper and 

lower respiratory tract infections. However, in military recruits, pediatric patients, 

and in immunocompromised individuals, adenoviruses can cause fatal respiratory 

distress. Apart from respiratory infections, adenovirus can also cause 

conjunctivitis, gastroenteritis, and cystitis [21]. The virion has 12 triangular faces 

and 12 vertices. While the triangular faces are composed of a total of 240 hexons, 

the vertices are composed of pentons. From each penton base arises a trimeric 

fiberknob (FK) [21-23]. In order to infect, adenovirus first attaches to the host cell 

by binding to its receptor on the target cell via FK. The FKs of all adenovirus 

species, except group B, bind and utilize CAR as their primary receptor [15, 21, 

23-27]. Several other important co-receptors, such as MHC class I [28], sialic acid 

[29], and coagulation factor X [30], have been described. Subsequently, the RGD 

motif on the Ad penton base binds to the αvβ3 or αvβ5 integrins, which function as 

co-receptors. Binding to these integrins activates downstream signaling, which 

facilitates clathrin-mediated endocytosis of the virus. Alternatively, the virus is also 

endocytosed through macropinocytosis or other non-clathrin mechanisms [31, 32].  
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After internalization, as the endosomes acidify, the Ad-FK dissociates from 

the capsid leading to a partial uncoating of the virus and release of protein VI. 

Protein VI aids in the lysis of the endosomal membrane and thereby facilitates viral 

escape into the cytoplasm [33]. Once in the cytoplasm, the virus interacts with 

dynein, a molecular motor protein, via the viral capsid protein, hexon, and is 

translocated along the microtubules to the microtubule organizing center (MTOC) 

near the nucleus [33]. From here the virus enters the nucleus via a mechanism 

that is not yet clearly understood.  

1.5. Coxsackie and adenovirus receptor (CAR):  

The first step for efficient infection by adenovirus is the attachment to the host cell 

and this is facilitated by the receptor on the host cell. As the name suggests, CAR 

was first identified as a receptor for both Coxsackie B viruses and most serotypes 

of adenovirus [15, 34-36]. It was shown that CAR is essential for the development 

of the heart, as knocking out CAR in mice proved embryonically lethal [37]. It was 

shown that CAR is required for the efficient development of both the heart and the 

lymphatic system [37, 38]. CAR is expressed in a variety of organs including the 

heart, brain, pancreas, lung, kidney, liver, small intestine, colon, and prostrate [37, 

39, 40]. In polarized epithelia CAR is important for the maintenance of the epithelial 

barrier integrity [4]  

CAR is a transmembrane protein that belongs to the immunoglobulin 

superfamily of proteins with two extracellular Ig-like domains. The most distal Ig-

like domain, D1, mediates homophilic adhesion between CAR proteins on adjacent 

cells, heterophilic adhesion with adenovirus fiber knob and junction-adhesion 
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molecule like protein (JAML) found on leukocytes, such as neutrophils, all at an 

overlapping interface [7, 41] (Figure 2). The binding affinities of the different CAR 

interaction are listed in Table 1. CAR binds to Ad FK with nearly a 1000 fold greater 

affinity than with CAR itself. Therefore, adenovirus FK can outcompete CAR-CAR 

interactions. This was evident from viral egress studies that demonstrated that 

once adenovirus has infected the airway epithelium, FK is released into the 

basolateral extracellular space and breaks the CAR-CAR interactions and 

epithelial tight junctions to allow the virus to escape to the apical surface [4].  

The gene for CAR, located on human chromosome 21 and named CXADR, 

consists of 8 separate exons. Alternative splicing of the exons results in 2 

transcripts that encode 2 transmembrane isoforms. Both of the protein isoforms 

have identical extracellular and transmembrane domains, differing only in the 

extreme cytoplasmic carboxy-termini. The most abundant isoform originates from 

the splicing of the first seven exons of CAR (CAREx7) (Figure 3A). CAREx7 localizes 

at the basolateral surface of polarized epithelial cells and is inaccessible to 

invading pathogens from the apical surface (Figure 3B) [4, 18-20, 42]. CAREx7 

plays a key role in the maintenance of the epithelial barrier integrity via the 

formation of homodimers between adjacent epithelial cells. This isoform is also 

responsible for adenovirus egress after viral infection. The intact airway epithelium 

is largely resistant to CAR-mediated adenoviral infection because the major 

isoform is sequestered beneath the tight junction. The alternate transmembrane 

isoform is derived from mRNA splicing within the seventh exon to the eighth exon 

(CAREx8). This splice event leads to a unique 13 aa c-terminus in CAREx8 that 
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replaces 26 aa unique to the c-terminus found in the CAREx7 isoform (Figure 3A). 

CAREx8 resides at the subapical/apical surface of the airway epithelium [18-20]. 

This apical localization creates a logical explanation as to how adenovirus infection 

can be initiated from the apical surface into intact epithelium [18]. It is important to 

understand the regulation of CAREx8 because any stimulus that either augments 

or decreases the levels of apically exposed CAREx8 is likely to be crucial for 

modulating the susceptibility of the airway to viral infection.  

The heterophilic interaction of CAR with JAML on leukocytes is important for 

neutrophil transepithelial migration during inflammation and infection (explained in 

detail in the next section).  
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Figure 2: Schematic showing different CAR interactions. A) CAR interaction with 

adenovirus fiber knob at the CAR D1 domain. B) Hemophilic CAR-CAR interaction occurs 

between adjacent epithelial cells to hold them together. C) Heterophilic CAR-JAML 

interaction occurs between epithelial cells and neutrophils. Note that all three interactions 

occur at the same overlapping interface on CAR 
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Figure 3: Transmembrane isoforms of CAR and their localization in polarized airway 

epithelia. A) Schematic of CAREx7 and CAREx8 that shows the extracellular region 

comprising the D1 and the D2 domains, the transmembrane region embedded into a lipid 

raft within the plasma membrane, and the C-terminus extending into the cytoplasm. The 

CAREx7 isoform has 26 aa that are unique to this isoform and CAREx8 has 13 unique aa 

due to alternative splicing from a cryptic splice site within the 7th exon of the gene for CAR, 

CXADR. B) Immunofluorescence staining of the two transmembrane isoforms of CAR 

(green) and Zo-1 (red) in primary airway epithelial cells.  CAREx7 (top panel) localizes at 

the basolateral surface and CAREx8 (bottom panel) localizes at the sub-apical and the 

apical surface (arrow). 
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1.6. Junctional adhesion molecule like (JAML) 

Moog-Lutz et al., 2003, discovered JAML, a novel member of JAM family of 

proteins [43]. JAML is a transmembrane protein with extracellular, 

transmembrane, and intracellular domains. JAML belongs to the immunoglobulin 

superfamily as it contains two extracellular immunogloubulin (Ig) like domains 

called the D1 (membrane distal) and the D2 (membrane proximal) domains. One 

of the intriguing features of JAML is that, unlike other JAMs, it is exclusively 

expressed on the surface of leukocytes including neutrophils, macrophages, 

monocytes, γδ T-cells, and to a lesser extent on other human T lymphocytes. 

JAML interacts with CAR on epithelial cells and therefore is also called AMICA-1 

(Adhesion molecule interacting with CAR antigen-1) [43-47]. The crystal structure 

of the JAML-CAR receptor-ligand pair reveals that the membrane distal D1 domain 

of JAML interacts with the membrane distal D1 domain of CAR [47].  

As mentioned earlier, CAR normally forms homodimers by binding to 

another CAR molecule on an adjacent cell. This interface where one CAR 

molecule binds to another CAR molecule overlaps with the binding sites of both 

adenovirus FK and JAML. One CAR molecule can only bind to one molecule of 

CAR, JAML, or adenovirus at any one time. About 16 of 18 CAR amino acid 

residues that are involved in JAML binding overlap with the adenovirus FK binding 

site. The binding affinities of heterophilic and homophilic CAR interactions are in 

the order of CAR-adenovirus FK > CAR-JAML > CAR-CAR [24, 47, 48] (Table 1). 

Therefore, binding to adenovirus fiber knob will inhibit CAR binding to JAML. 
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Table 1: Binding affinities of CAR-mediated interactions. 

 

  

Type of CAR interaction Binding affinity (KD) reference 

CAR-CAR  16 µM [24] 

CAR- JAML 5 µM [47] 

CAR- Ad fiber knob 14 nM [48] 
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1.7. Transepithelial migration:  

In addition to serving as a barrier to the paracellular movement of large and small 

molecules, JAC also regulates the migration of polymorphonuclear leukocytes 

(PMNs), including neutrophils, across the epithelium. Neutrophils are the first 

leukocytes to arrive at the site of infection. Therefore, neutrophil transepithelial 

migration is crucial for clearing pathogenic infection. Defective neutrophil 

transmigration is seen in diseases such as leukocyte adhesion deficiency type-1 

(LAD-1) and causes increased susceptibility to pathogens [49, 50]. In contrast, 

excessive and unregulated neutrophil infiltration can cause tissue damage and is 

the characteristic of a variety of inflammatory diseases such as inflammatory bowel 

disease in the gastrointestinal system, chronic obstructive pulmonary disease 

(COPD) and cystic fibrosis (CF) in the airway.  

 Upon stimulation, PMNs exit the vascular circulation, by migrating through 

the paracellular space found between adjacent endothelial cells (a process called 

transendothelial migration), and reach the connective tissue. PMNs further migrate 

through the paracellular space between the epithelial cells (transepithelial 

migration) before encountering the pathogen in the lumen of the airway. While 

PMN transmigration through the vascular endothelium has been extensively 

studied, transmigration through the epithelial barrier is not well understood. In 

addition, there are striking differences between the PMN transendothelial and 

transepithelial migration. For example: 1) Transendothelial migration occurs in the 

apical to basal direction, whereas transepithelial migration occurs from the basal 

surface to the apical surface. 2) The initial PMN-endothelial interaction occurs at 
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the endothelial apical surface. In contrast, the initial PMN-epithelial interaction 

occurs at the epithelial basal surface. 3) During transendothelial migration, PMNs 

migrate a relatively short distance, a few microns, as opposed to > 20 m distance 

migrated during transepithelial migration [10, 51]. 4) The adhesive interactions 

occurring during the transendothelial migration are quite different from those 

involved in transepithelial migration. For instance, PMN transendothelial migration 

is dependent on the PMN CD11b/CD18 and CD11a/CD18 protein interaction with 

the endothelial cell surface ICAM-1 protein. Although CD11b/CD18 is important for 

transepithelial migration, CD11a/CD18 has not been shown to be involved in 

transepithelial migration.  Moreover, upon stimulation with IFN-, ICAM-1 

expression is localized to the epithelial apical surface and therefore is not 

accessible for infiltrating neutrophils. Once migrated ICAM-1 can however mediate 

adhesion of transmigrated neutrophils to the apical surface [10, 52, 53].  

In vitro studies using model human epithelial cell lines have demonstrated 

that high-density PMN transepithelial migration disrupts the barrier integrity, 

whereas the low-density PMN migration does not [51, 54]. Low density PMN 

migration occurs during normal immune surveillance in a tightly regulated manner 

without compromising the barrier integrity. However, upon pathogenic invasion, 

intense PMN (including neutrophils) transmigration ensues. Epithelial cells sense 

the invading microbe through pathogen recognition and subsequently release a 

number of chemokines, which in turn recruit PMNs. During transepithelial 

migration, PMNs have to cross a relatively long paracellular path before they can 

reach the tight junction seal. In order to reach the apical surface, PMNs breach the 
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epithelial barrier either by loosening or disrupting the complex of junctional proteins 

supporting the epithelial barrier. The compromised junctional barrier is however, 

reformed upon the resolution of the infection. Our knowledge on neutrophil 

transepithelial migration is based on studies conducted in intestinal epithelia. 

There is currently a gap in the literature regarding this process in airway epithelia 

[51]. Although, some of the studies in the intestinal epithelium can be translated to 

the airway epithelium, one must recognize the important anatomical differences 

between these two systems. The upper airway is comprised of ciliated columnar 

epithelial cells, while the lower airway is comprised of squamous and cuboidal 

epithelial cells. On the other hand, the intestinal epithelia are non-ciliated cells and 

are modified into finger-like projections called microvilli. 

Neutrophil transepithelial migration is a complex process that involves 

multiple interactions between the neutrophil and epithelial cells (Figure 4) [1, 55] 

and is not well understood. The process of neutrophil transepithelial migration can 

be broadly divided into early events and late events. During the early events, the 

physical interaction between the neutrophils and the basal surface of the epithelial 

cells is sufficient to increase the permeability of the junctional barrier. This event 

occurs prior to neutrophil transmigration. The increase in permeability occurs as a 

result of signaling that, without grossly affecting the expression and the localization 

of the junctional proteins, contracts the actomyosin ring that encircles the 

cytoplasmic side of epithelial cells. During the late events, which are characterized 

by the actual migration of neutrophils, remodeling of the junctional proteins is 

observed. Thus, the physical interaction between the epithelial cells and the 
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infiltrating neutrophils is essential during both the early and late events of epithelial 

transmigration [54].  

Neutrophil transepithelial migration begins with the adhesion of the neutrophil 

proteins CD11b/CD18 to a yet unidentified ligand at the epithelial basal surface. 

There are differences between neutrophil migration in the gastrointestinal system 

and in the lung. For example, While, CD11b/CD18 is required for neutrophil 

transepithelial migration in the gastrointestinal system, this process can occur in 

the absence of CD11b/CD18 in lung epithelial tissue [1]. After initial attachment to 

the basal surface of the epithelium, neutrophils migrate through the paracellular 

space. This migration process is a stepwise process that involves various protein-

protein interactions, some of which are as follows: 1) activation of epithelial 

protease-activated receptors 1 and 2 (PAR 1 & 2) by a family of PMN membrane 

bound proteases called the serposidins [56]; 2) interaction between epithelial 

CD47 and the PMN-expressed signal regulatory protein α (SIRP-α) [1]; 3) epithelial 

JAM-C binding to CD11b on neutrophils [57]; 4) interaction between epithelial 

basolateral CAR with PMN-expressed JAM-L [44]. Ultimately, the migrating 

neutrophils arrive at the epithelial apical surface where they remain attached 

transiently (Figure 4).  

This attachment enables the PMNs to form a defensive barricade, achieve a 

critical concentration for maximal activity, and eradicate the invading pathogen. In 

order to enable PMN adhesion on the epithelial cell apical surface, PMNs should 

engage in an adhesive interaction with the epithelial cell. The interacting partners 

involved in this important step are now being recognized. For example DAF, a 
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glycosyl-phosphatidylinositol like protein, is important for detaching neutrophils 

from the apical surface. Blocking DAF diminishes the neutrophil transepithelial 

migration and promotes neutrophil accumulation at the apical surface [58]. 

Likewise, a variant of CD44 called CD44v6 was found to mediate detachment of 

neutrophils from the intestinal epithelial apical surface [59]. ICAM-1 has been 

shown to tether neutrophils at the apical-epithelial surface in both airway and 

gastrointestinal epithelial cell lines [10, 51, 52]. There is an apparent balance to 

neutrophil adhesion at the apical surface but how this is regulated and whether 

there are other major players is unknown.  

Numerous human pathologies correlate with the intensity of neutrophil 

migration and the duration of neutrophil retention within the tissue or luminal space 

[1, 60].  In particular, several airway diseases, such as CF and COPD, are 

associated with persistent neutrophils at the epithelial surface [61, 62]. The vast 

majority of studies and therapeutic approaches have targeted neutrophils to 

combat neutrophilia. However, this has a global effect and predisposes for the 

secondary infection. In contrast, tissue-targeted approaches may yield improved 

disease-specific therapeutics with fewer side effects. For example proteins 

expressed on the epithelial cell surface, which are involved in recruiting or retaining 

neutrophils can be targeted in case of airway inflammatory diseases. The fact that 

CAREx8 localizes at the apical surface of the epithelial cells and that  
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Figure 4 Schematic of the major steps of neutrophil transepithelial migration. 1. 

Migrating neutrophils attach to the basal surface of the epithelium via an interaction 

between neutrophil-CD11b/CD18 and epithelial ligand that is yet to be identified. 2. 

Attached neutrophils migrate through the paracellular space between the adjacent 

epithelial cells. Interaction between CAREx7 and JAML at the paracellular space is shown. 

3. Finally, the neutrophils crawl up to the apical surface where they remain attached. I 

hypothesize that CAREx8 mediated interaction is important for adhesion at the apical 

surface. 
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the extracellular domain of CAR can bind to JAML on the neutrophils, suggests 

that CAREx8 might be involved in adhering neutrophils at the apical surface of 

epithelia.  

1.8. Inflammatory diseases:  

Inflammatory diseases are characterized by dysregulated inflammation, 

which results in the uncontrolled recruitment of PMN to the epithelial cell surface. 

Common examples of inflammatory diseases include inflammatory bowel disease, 

which affects the gastrointestinal system, and COPD, asthma, and CF, all of which 

affect airway epithelial tissues. CF is an inflammatory disease that affects around 

30,000 individuals in the U.S. and 70,000 worldwide [63].  The disease ensues as 

a consequence of a mutation in the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene. The CFTR gene codes for a cAMP regulated chloride 

channel that is crucial for maintaining homeostasis by controlling the osmotic 

balance and movement of water across the epithelium. As a result of a genetic 

mutation, CFTR malfunctions, which results in the hyperabsorption of water and 

the dehydration of the mucus. The resulting jelly-like mucus is sticky and adheres 

to the epithelial cell surface causing reduced mucociliary clearance, airway 

obstruction, inflammation, and pathogenic invasion [63-65].  

CF lung is characterized by repeated infections (both bacterial and viral), 

increased inflammation and the excessive infiltration of neutrophils. Adenoviral 

infections are common in cystic fibrosis patients [66-68] and rank second in the 

respiratory viruses obtained from young CF patients [66]. Although some of the 

commonly detected viruses found in patients with cystic fibrosis (CF) include 
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rhinovirus, human corona virus and parainfluenza virus, these viruses do not 

contribute to the course of CF disease [67]. However, adenovirus infection is 

associated with deterioration of lung function in CF [68]. The predisposing factors 

that contribute for the high prevalence of viral infections in the patients with 

inflammatory disease is not well understood and is likely complex. The 

accumulation of neutrophils on the epithelial cell surface in inflammatory diseases 

causes considerable damage to the surrounding tissue [69]. All these facts suggest 

the importance of understanding the epithelial cell susceptibility to adenoviral 

infection in the presence of accumulated neutrophils.  

1.9. Cytokines regulate viral infection:  

The expression and localization of both apical and junctional adhesion proteins in 

epithelial cells are regulated by various factors including cytokines [53, 70, 71]. 

Cytokines are released by the epithelial cells themselves and by the resident 

macrophages [70, 71]. For example, TNF-α and IFN- induce ICAM-1 and 

subsequently enhance rhinovirus binding on airway epithelial cells [53]. Lutschg et 

al., 2010, demonstrated that IL-8 increases the airway epithelial cell susceptibility 

to adenoviral infection. They also demonstrated that IL-8 causes the translocation 

of αvβ3 integrin onto the apical surface of airway epithelia [71]. Integrins are 

adenovirus co-receptors that facilitate adenoviral entry into the cell by increased 

endocytosis and endosomal escape [25, 32]. However, CAR is the primary 

receptor that mediates efficient virus attachment, the crucial step that occurs prior 

to viral entry [15, 31, 72]. Even though, the cells that express integrins but not CAR 

are susceptible to adenovirus infection, addition of CAR increases infection by over 
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200-fold [73]. Since CAREx8 naturally localizes at the epithelial apical surface, it is 

likely that CAREx8 is downstream of IL-8 signaling.  Also, very little is known about 

the regulation of CAREx8. Understanding the regulation of CAREx8 is important 

because modulating the concentration CAREx8 at epithelial apical surface is 

predicted to have direct implications in epithelial cell susceptibility to adenoviral 

infection. Therefore, I hypothesized that IL-8 increases the expression and the 

apical localization of CAREx8 in polarized airway epithelial cells.  

 The endogenous biological function of CAREx8 is not known. It is predicted 

that CAREx8 is localized at the apical epithelial cell surface to carry out an important 

biological function for the host cell rather than serving as a viral receptor. As 

mentioned earlier, CAREx7 (basal CAR) has been shown to interact with JAML, on 

the surface of neutrophils. Since the region that binds to JAML is identical between 

the two transmembrane isoforms of CAR, we predict that CAREx8 can tether 

neutrophils to the apical surface. Thus I hypothesized that CAREx8 tethers 

infiltrating neutrophils at the airway epithelial apical surface. 

Epithelial cells serve as a platform for the infiltrating neutrophils to adhere 

during inflammation. This enables the neutrophils to accomplish close encounters 

with pathogens leading to subsequent eradication of the pathogen. However, 

under pathological conditions, such as in inflammatory diseases, the accumulated 

neutrophils cause damage to the epithelial tissue, leading to secondary infections 

including viral infections. Thus I hypothesized that that adhered neutrophils at 

the epithelial surface promotes adenoviral infection.   

 



23 
 

The overarching hypothesis of my thesis was that IL-8 increases the 

expression and the apical localization of CAREx8, that CAREx8 tethers 

infiltrating neutrophils at the apical surface of the airway and that the 

adhered neutrophils augment adenoviral infection.  

This overarching hypothesis was tested by 3 specific aims: 

Specific Aims: 

1) To test if IL-8 increases the expression and the apical localization of CAREx8 

in polarized airway epithelial cells and to determine the mechanism 

underlying this increase.  

2) To test if CAREx8 tethers infiltrating neutrophils at the epithelial apical 

surface 

3) To test if the neutrophils adhered at the epithelial apical surface augment 

adenoviral infection.  
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Chapter 2: Materials and Methods: 

2.1. Reagents 

Antibodies specific for CAR, 1605p (total CAR) and 5678 (CAREx8-specific) have 

previously been described [18, 20, 74]. Recombinant human IL-8 was purchased 

from Gold Biotechnologies, (St. Louis, MO). Anti-GSK3β, phosphospecific GSK3β-

S9, anti-ribosomal subunit S6 kinase (S6K), phosphospecific S6K, anti-AKT, and 

phosphospecific AKT antibodies were purchased from Cell Signaling (Beverly, 

MA); anti-β-actin and anti-E-cadherin antibodies were obtained from Life 

Technologies (Grand Island, NY). CMV-driven Myc-S6K plasmid was a kind gift 

from Dr. Julian-Gomez Cambronero (Wright State University). Horseradish 

peroxidase-labelled secondary antibodies were purchased from Jackson 

ImmunoResearch (West Grove, PA). Adenovirus serotype 5 encoding β-

galactosidase (Ad5-β-Gal) originated from the University of Iowa Gene Transfer 

Vector Core (Iowa City, IA). 

2.2. Cell culture 

The human airway epithelial cell line Calu-3 (ATCC HTB55) was cultured in RPMI 

1640 media containing L-glutamine and 25mM HEPES, supplemented with 10% 

fetal bovine serum and penicillin/streptomycin. Cultured primary human airway 

tracheal epithelial cells were a kind gift from Dr. Joseph Zabner       



25 
 

(University of Iowa Cells and Tissue Core) and were isolated from the lungs of 

deceased healthy donors. The primary cells were propagated as described [75]. 

Briefly, human primary airway epithelial cells were co-cultured with irradiated 3T3-

J2 feeder cells [76] in F-media (3:1(v/v) DMEM-F-12, 5% FBS, 0.4 µg/mL 

hydrocortisone, 5 µg/ml Insulin, 8.4 ng/ml cholera toxin, 10 ng/ml epidermal growth 

factor and 5 µM Y-27632 ROCK inhibitor). The cells were maintained at 37°C in a 

humidified incubator with 5% CO2. The epithelial cells were spilt when they 

reached approximately 80-90% confluency; splitting the epithelial cells involved 

the use of differential trypsinization to first detach and remove the 3T3-J2 cells, 

followed by a PBS wash and fresh trypsinization to detach human primary airway 

epithelial cells. The airway cells were then resuspended in fresh F-media for 

passaging or polarization.  

2.3. Cell polarization, TER, and conductance.  

Cell polarization can be achieved in different ways. It is well accepted that cells 

able to polarize will do so once reaching 100% confluence in standard tissue 

culture dishes or on glass coverslips [16, 42, 77, 78]. Epithelial polarization upon 

reaching 100% confluency has been demonstrated by differential localization of 

apical and basolateral proteins, the formation of tight junctions, the restriction in 

viral entry via basolateral receptors, such as CAR, and selective movement of 

small molecules or ions. For polarization on plastic or glass, Calu-3 cells seeded 

at 40% confluence in regular growth media reach 100% confluence over the next 

2-3 days. Experiments were performed at day 3 since cells allowed to continue to 

polarize become multi-layered. Primary human airway cells seeded at 60% 



26 
 

confluence were polarized in 1:1 v/v DMEM-F-12 supplemented with 2% ultroser 

G and penicillin/streptomycin, and routinely kept in culture as confluent epithelia 

for over 7-10 days before experiments were performed.  

While polarization under standard conditions has some advantages, such as a 

larger surface area, high optic resolution for microscopy, and lower expense, 

experiments that require access to the basolateral surface or determination of 

transepithelial resistance are not possible. In this case, cells polarized on 

semipermeable membranes, such as millicells (Millipore, Bedford, MA) with 0.4 µm 

pores for standard hyperpolarization experiments or 3 µm pores for transmigration 

studies, were grown at the air-liquid interface. Epithelia grown at the air-liquid 

interface actively pump fluid off of the apical surface resulting in a “dry” 

appearance, with only a few µl of airway surface liquid covering the epithelium. 

This appearance is a surrogate marker for polarization and can be disrupted by 

molecules that break the junctions [42]. The same media as indicated above was 

used to polarize epithelia grown at the air-liquid interface on millicells. Any media 

on the apical surface of the cells was removed every alternate day in order to 

establish and maintain an air-liquid interface. Epithelia were considered polarized 

when the apical surface appeared “dry” and the transepithelial resistance (TER) 

was above 600 Ω/cm2 [18, 79]. TER was measured using a millicell ERS meter 

with a chopstick electrode (Millipore, Bedford, MA), as previously described [42]. 

2.4. AdV-β-Gal infection and β-galactosidase assay.  

Based on the needs of the experiment, either Calu-3 or MDCK cells were infected 

with AdV-β-Gal at a multiplicity of infection (MOI) of 100 plaque forming units (pfu) 
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per cell, or MOI as indicated in the text, for 1 h at 37°C. Virus inoculums were 

removed and cells were washed 2 times with PBS and incubated for additional 24 

H prior to lysis. The protein concentration was determined by a Bio-Rad protein 

assay (Hercules, CA), and β-galactosidase expression was determined with a 

Galacto-Light Plus system (Applied Biosystems, Carlsbad, CA) as previously 

described [18]. 

2.5. Quantitation of viral entry 

Based on the needs of the experiment, either Calu-3 or MDCK cells were polarized 

on a 24-well dish. The polarized cells were then treated as indicated in the text, 

washed three times with 1X PBS, infected with Ad5-βGal at MOI 100 for 1 H, 

washed with PBS, and incubated at 37⁰C for 24 H. To determine viral entry based 

on viral genomes (Vg), total DNA was isolated from the cells using Qiagen DNeasy 

Blood and Tissue kit according to the manufacturer’s protocol and Vg was 

quantitated by quantitative PCR (qPCR) using SYBRG with low ROX (Qunata, 

Gaithersburg, MD) in Stratagene’s Real Time PCR system (Agilent Technologies, 

Santa Clara, CA) with primers for adenovirus-hexon gene, GAPDH, or MDCK 

actin, as previously described [20] and listed in Table 2.  

A control experiment was performed to confirm that Ad5-β-gal Vg reflects actual 

entry of the virus into the epithelial cells rather than just attachment to the epithelial 

cell surface. Epithelial cells that were infected with Ad5-β-Gal, as above for 24 H, 

were treated with (or without) trypsin for 20 min at 37°C to cleave any adherent 

virus on the cell surface [80]. Genomic DNA was isolated and qPCR analysis was 

performed as described above. No difference in Vg was observed between the 
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Ad5-β-Gal infected epithelia with or without trypsin treatment (Figure 5) suggesting 

that viral genomes were protected within the epithelial cells.   
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Table 2: List of primer sequences used for qPCR 

 

 

 

  

Primer Set Forward primer 5’ -> 3’ Reverse Primer 5’ ->  3’ 

Ad Hexon 
specific primer 

ACGCCTCGGAGTACCTG
AG 

GTGGGGTTTCTGAACTTGT 

CAREx8 
TCGGCAGTAATCATTCAT

CCCTGG 
ACTGTAATTCCATCAGTCT

TGTAAGGG 

CAREx7 
TCGGCAGTAATCATTCAT

CCCTGG 
ACTATAGACCCATCCTTGC

TCTGTG 

E-cadherin 
CCCAATAGATCTCCCTTC

ACAG 
CCACCTCTAAGGCCATCTT

TG 

GAPDH 
CACCCTGTTGCTGTAGCC

AAA 
CAACAGCGACACCCACTC

CT 

MDCK actin 
AAGATCTGGCACCACAC

CTTCTAC 
ATCTGGGTCATCTTCTCAC

GGTTG 

CAREx8 (stable 
MDCK-CAREx8) 

GTCCCTCCTTCAAATAAA
GCTG 

ACTGTAATTCCATCAGTCT
TGTAAGGG 

CAREx7 (stable 
MDCK-CAREx7) 

GTCCCTCCTTCAAATAAA
GCTG 

CGGATCCCTATACTATAGA
CCCATC 
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Figure 5: Quantitative PCR measurement of Ad5 viral genomes 24 hours post 

infection represents internalized DNA. MDCK cells were infected with Ad5-β-Gal for 1 

H. Post infection, the epithelial cells were incubated at 37°C for 24 H. Next the cells were 

either treated or untreated with trypsin at 37°C for 20 min to cleave off any virus adherent 

on the cell surface. Cells were washed and genomic DNA was isolated for qPCR analysis. 

No significant difference was observed between the trypsin treated and untreated 

conditions.   
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2.6. Western blot analysis 

Cells were seeded on a 6-well dish and grown to 100% confluency. The cells were 

then treated with the indicated amount of IL-8 for 4 H, unless otherwise stated. 

Post treatment, the cells were washed with ice-cold PBS, and lysed with lysis 

buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% Triton X-100, protease inhibitors (10 

mg/ml) leupeptin, aprotinin, pepstatin, and 1 mM phenyl-methylsulfonyl fluoride) 

by rocking at 4°C. Cells were scraped, sonicated with five pulses, and centrifuged 

at 14,000 g for 10 min at 4°C in a microcentrifuge. Protein concentration was 

determined with the Bio-Rad protein assay (Bio-Rad, Hercules, CA). Equal 

amounts of protein were subjected to 10% polyacrylamide gel electrophoresis. 

Gels were transferred to a polyvinylidene difluoride (PVDF) membrane (Millipore, 

Bedford, MA), blocked with 5% BSA, washed with TBST, and probed with 

appropriate primary antibodies  as described previously [18, 20, 74] and listed in 

Table 3. The secondary HRP conjugated antibodies were used at 1:3000 dilution. 
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Table 3: Primary antibodies and the dilution at which they were used. 

 

Antibody Dilutions used 

Total CAR (1605) 1:1000 

CAREx8 (5678p) 1:200 

E-cadherin 1:4000 

Actin 1:5000 

GSK3β and phospho-GSK3β-S9 1:1000 

AKT and phospho AKT 1:1000 

S6K and phospo-S6K 1:1000 

Myc 1:2000 

FLAG 1:2000 
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2.7. RNA extraction, cDNA synthesis, and quantitative PCR (qPCR) 

After the appropriate treatment of polarized cells with IL-8 for 4 H, total RNA was 

extracted with Trizol reagent, as per the manufacturer’s directions (Life 

Technologies, Grand Island, NY). RNA concentration was estimated at 260/280nm 

and 1 µg was used to generate cDNA (Quanta Bioscience cDNA Synthesis kit). 

The cDNA generated was used for qPCR to specifically quantitate CAREx7, 

CAREx8, E-cadherin, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

RNA levels. Details of the specific primers used to determine the levels of CAREx7, 

CAREx8, and GAPDH have been previously described [20] and listed in table 2. 

qPCR was performed using SYBR Green with low ROX (Quanta, Gaithersburg, 

MD) in Stratagene’s Real Time PCR System (Agilent Technologies, Santa Clara, 

CA). Abundance relative to GAPDH gene expression was calculated for each gene 

of interest and the expression of target genes was quantified via comparative delta 

delta Ct analysis by using Mx4000p software v5 for data analysis.  

2.8. Cell surface biotinylation  

Cell surface biotinylation was performed as previously described [18-20]. Briefly, 

after IL-8 treatment for 4 H, polarized cells were treated with 1 mg/ml Sulfo-NHS-

SS-biotin (Thermo Scientific, Rockford, IL) for 1 H at 4°C with rocking, washed with 

ice cold PBS, and then any remaining free Sulfo-NHS-SS-biotin quenched with ice 

cold 100 mM glycine for 20 min at 4°C. The cells were then washed three times 

with PBS including Ca2+ and Mg2+ (PBS +/+) and lysed with lysis buffer as 

described above. NeutrAvidin beads (Thermo Scientific, Rockford, IL) were added 

to the clarified cell lysate and incubated at 4°C for 2 H with rotation. The 
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NeutrAvidin beads were then collected by centrifugation at 1,000 g at 4°C for 3 min 

and washed three times with ice-cold wash buffer. The sulfo-NHS-SS-biotin-

labeled proteins were eluted from the NeutrAvidin beads with SDS-PAGE sample 

buffer at 65°C for 10 min. This was followed by SDS-PAGE and Western blotting 

using appropriate antibodies. 

2.9. Generation of MDCK stable cells 

To generate MDCK stable cells, the Lenti-X Tet-On advanced inducible expression 

system was used (Clontech. Cat no: 632162) according to the manufacturer’s 

protocol. First, the gene encoding FLAG-tagged human CAREx8 or FLAG-tagged 

human CAREx7 or mCherry (Clontech) was cloned into the pLVX-tight-puro vector 

using the infusion cloning kit (Clontech). pLVX-Tet-on advanced, as well as the 

pLVX-tight-puro plasmid, were then packaged separately into the lentivirus by 

transfecting the plasmids into the 293T packaging cell line along with the Lenti-X 

HTX packaging system using X-fect transfection reagents (Clontech). The Lenti-X 

HTX packaging system contains the plasmid mixture that expresses the necessary 

lentiviral packaging components such as Pol, Tat, Rev, and Gag proteins. The 

lentiviruses produced via this process were called either tet-on, CAREx8, CAREx7, 

or m-Cherry lentivirus. MDCK cells were first infected with the tet-on virus in the 

presence of a neomycin antibiotic drug that selects for tet-on transduced cells. The 

neomycin resistant clones were used for further selection. The selection process 

was carried out in a 96-well dish in order to obtain clones of single cells expressing 

the tet-on gene. The neomycin resistant clones obtained were serially diluted such 

that when seeded on a 96-well plate there was only one cell per well.  The wells 
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that had one positive cell each were selected and allowed to expand and replicate.  

Such clones were further screened for the stable expression of pLVX-tet-on, 

morphology similar to parental cells, and the ability to form an epithelium. This 

newly created MDCK cell line was named MDCK-tet-on cells. Next, the MDCK tet-

on cells were transduced with an additional pLVX-tight-puro lentivirus carrying our 

gene of interest in the presence of puromycin (a drug that selects for the pLVX-

tight-puro transduced cells). The resulting clones were selected and screened, as 

described above, for the stable expression of FLAG-CAREx8, FLAG-CAREx7, or 

mCherry. These new cell lines based on MDCK-tet-on were named MDCK-

CAREx8, MDCK-CAREx7, or MDCK-mCherry. They will also be collectively referred 

to as the MDCK stable cells. The MDCK stable cells were characterized for no 

obvious changes in transepithelial resistance (TER) or changes in the expression 

of the different junctional proteins (e.g. both CAR isoforms, ZO-1, E-cadherin) both 

by Western blot and immunocytochemistry prior to use in later experiments.  

2.10. Isolation of primary neutrophils  

To isolate primary neutrophils, 50 ml of blood was drawn from healthy donors in 

EDTA sprayed 10 ml vacutainers under IRB SC# 4765. The blood was equally 

distributed between two 50 ml conicals each containing 7.5 ml of 6% dextran 

prepared in a saline solution. After securely closing the lid, the tubes were inverted 

twice to allow thorough mixing. The tubes were then allowed to incubate at room 

temperature for 30 min. Next, the top phase was removed and transferred into 

another fresh 50 ml conical and centrifuged at 4000 rpm for 3 min at room 

temperature (the remaining bottom phase was bleached). After centrifugation the 
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pellet was gently resuspended in 1 ml of saline and then diluted with up to 35 ml 

of additional saline. To this, 8 ml of ficoll was added to the bottom of the tube using 

a sterile glass pasteur pipette. The mixture was then centrifuged at 740 x g at 40C 

for 15 min with the breaks turned off. After centrifugation, a white ring was visible 

in the interphase that contained monocytes and lymphocytes. This phase was 

aspirated along will the rest of the supernatant leaving the pellet found at the 

bottom of the centrifuged container (the pellet contains neutrophils). The pellet was 

resuspended in 1 ml of saline and placed on ice. To lyse the contaminating red 

blood cells, 20 ml of ice cold water was added to the resuspended pellet and mixed 

well by pipetting up and down twice. The tube was then placed on ice for no more 

than 40 seconds. Immediately after, 20 ml of ice cold 1.8% NaCl was added, mixed 

gently and centrifuged at 740 x g at 40C for 4 min. The supernatant was discarded 

and the pellet was resuspended in 1ml HBSS-/- (Hanks balanced salt solution 

without calcium and magnesium) followed by the addition of another 9 ml of HBSS-

/-. The neutrophil cell count was determined by using a hemocytometer.  

2.11. Purification of adenovirus fiber knob 

The plasmid encoding the His-tagged Ad5 FK protein was kindly provided by Dr. 

Glen Nemerow (The Scripps Research Institute). The Ad5 FK plasmid was  

transformed into Rosetta (BL21) Escherichia coli cells (EMD Chemicals, 

Gibbstown, NJ), which were grown in LB broth to an optical density of 0.75 at 

600nm (OD600),  induced with 0.3 mM isopropyl-D-1-thiogalactopyranoside 

(IPTG), and subsequently incubated for an additional 4 h at 32°C. The cells were 

then harvested by centrifugation, and the pellets were resuspended in bacterial 
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lysis buffer (5 mM Sodium ohosphate, 100 µM sodium orthovanidate, 300 µg/ml 

lysozyme, 10 mM imidazole, 1% triton-X 100, 20% glycerol and 2X protease 

inhibitor cocktail (Sigma-Aldrich)). The resuspended cells were sonicated on ice 

for 6 min with 30 s pulses and centrifuged at 14,000 X g at 4°C for 20 min. 2 ml of 

HisPur Ni-NTA superflow agarose (Thermo Scientific) was added and incubated 

at 4°C with rotation for 1.5 H to allow the His-tagged protein to bind to the resin. 

Next, the resin was centrifuged to remove the supernatant and the resin was 

washed thrice with the wash buffer (50 mM sodium phosphate pH 7.0, 10 mM 

imidazole). After washing, the resin was resuspended in the elution buffer (50 mM 

sodium phosphate, 500 mM NaCl and 300 mM imidazole), incubated for 5 min at 

4°C, and centrifuged.  After centrifugation, the supernatant was saved. This step 

was repeated 3-5 times. The elutes were pooled, concentrated, and dialyzed into 

a buffer containing 20 mM Tris and 100 mM NaCl. The protein concentration was 

measured using Bradford’s (BioRad) method according to the manufacturer’s 

protocol. Routinely ~10 g/ml concentration of the purified protein was obtained. 

2.12. Neutrophil adhesion assay 

MDCK-CAREx8, MDCK-CAREx7 and MDCK-mCherry cells were seeded on a 24-

well dish at 1X105 cells per well, a concentration that allows these cell lines to reach 

100% confluence by day 3. Once at 100% confluence and polarized, the cells were 

induced with increasing concentration of DOX (0 to 1000 ng/ml) for 24 H to allow 

the overexpression of FLAG-CAREx8, FLAG-CAREx7, or mCherry respectively. The 

following day, neutrophils were isolated from the peripheral blood of healthy donors 

and resuspended in HBSS-/-. The neutrophils were then stained with 1.5 µM 
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calcein green for 30 min at 37°C. The stained neutrophils were washed once with 

HBSS-/- and resuspended in HBSS+/+ (HBSS with calcium and magnesium). The 

required number of stained neutrophils were then added to the MDCK apical cell 

surface.  To block neutrophil adhesion, the epithelial cells were incubated with 

either purified Ad5 FK or purified control Ad type 3 FK (a group B adenovirus FK 

that does not bind CAR) for 10 min at room temperature prior to the addition of the 

neutrophils. After the addition of the neutrophils, the culture plates were spun down 

at 140 x g for 4 min with the breaks of the centrifuge turned off. The epithelial cells 

were then incubated for 15 min at 37°C to allow for neutrophil adhesion. Next, the 

epithelial cells were washed 3 times with HBSS+/+ to remove the unbound 

neutrophils. The bound neutrophils were imaged using fluorescence microscopy 

and the fluorescence intensity was quantitated using Metamorph software. 

Additionally, Calu-3 cells were seeded on the 24 well dish at 2 X 105 cells/well and 

allowed to reach confluency on the dish. On the day of the adhesion assay, these 

Calu-3 cells were treated with IL-8 (30 ng/ml) for 4 H. Post treatment, a neutrophil 

adhesion assay was performed as described above. 

2.13. Polarization of MDCK stable cells for transmigration assay 

To perform the neutrophil transmigration assay, the MDCK-stable cells were 

polarized on millicells in an inverted fashion. Millicells of 3µM pore size were 

purchased from Millipore (Cat no: PITP01250). First the Millicells were placed in a 

12-well dish in an upright fashion. 4.5 ml of media was added to the well (at this 

point the millicell will be fully submerged). Then, the millicells were inverted 

(membrane facing up) using a sterile glass pipette.  It was then necessary to make 
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sure that no air bubbles were trapped inside the millicell. Next, 1.7 ml of the media 

was removed from the 12-well dish (leaving the membrane of the millicell exposed 

to air). Slowly, the millicell was moved to the center of the well using the glass 

pipette. Now 1 X 105 of MDCK stable cells, resuspended in 80 ul of the media were 

added to the membrane. This set up was then incubated at 37°C for 72 H. Next, 

the TER of the cells was measured. To measure the TER, the millicells were 

transferred to a 24-well dish containing 600µl of HBSS+/+. 400µl of the HBSS+/+ 

was then added to the inside of the millicell (the equivalent of the basal surface). 

The cells were allowed to equilibrate by incubating at 37°C for 30 min. The TER 

was then measured and epithelia were considered polarized if the TER was at 

least 600 Ω/cm2.  After attaining appropriate TER, the millicells were transferred to 

24-well dish containing media with or without DOX (200 ng/ml) for additional 24 H 

in the upright direction. The media was added both on the apical and the 

basolateral surfaces. Next day, the neutrophil transmigration assay was 

performed. 

2.14. Neutrophil transmigration assay  

The setup used for the transmigration assay is shown in the model in (Figure 27). 

Briefly, to perform the neutrophil transmigration assay, the MDCK-stable cells that 

were polarized on millicells (3 µM pore) in an inverted fashion were used. Before 

performing the neutrophil transmigration assay, the MDCK-stable cells were 

washed once with HBSS+/+, allowed to equilibrate at 37°C for 30 min and were 

measured with a chopstick ohmmeter to determine the TER. The millicells were 

then transferred to a fresh 24-well dish that contained 500 µl of 100 nM fMLP 
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(formyl-methionyl-leucyl-phenylalanine, a neutrophil chemoattractant) in HBSS+/+ 

(i.e the fMLP containing HBSS+/+ is on the apical surface of the epithelial cells). 1 

X 106 neutrophils, fluorescently stained with calcein green and resuspended in 

HBSS+/+, were added to the basal surface of the epithelial cells (i.e. inside of the 

millicell cup) and allowed to transmigrate through the epithelium towards the apical 

surface for 60 min at 37°C. Post neutrophil transmigration, the neutrophils that 

successfully transmigrated to the bottom chamber were imaged under a 

fluorescent microscope and quantitated using MetaMorph software. 

2.15. Identifying neutrophils adhered to the epithelial apical surface 

After performing the neutrophil transmigration assay, the neutrophils that remained 

adhered to the epithelial apical surface were detached using the following protocol: 

First the millicells were transferred to a fresh 24-well dish that contained 500µl of 

HBSS+/+. The basal surface of the millicells were washed 3 times with HBSS+/+ 

in order to remove any neutrophils that failed to migrate into or through the 

epithelium. Next, the millicells were centrifuged at 50 X g for 5 min. The millicells 

were discarded and the neutrophils that detached from the epithelial apical surface 

were imaged under a fluorescent microscope and quantitated using MetaMorph 

software. 

2.16. Adenoviral transduction in the presence of neutrophils 

MDCK-CAREx8, MDCK-CAREx7 and MDCK-mCherry cells were either induced or 

mock-induced with DOX or diluent, respectively. A neutrophil adhesion assay was 

then performed as described earlier. Subsequently, the unbound neutrophils were 

washed off and the epithelial cells were infected with the indicated MOI of Ad5-β-
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Gal for 1 H. After 24 H of incubation the DNA was extracted and the viral genomes 

were quantitated to determine the fold change in viral entry. 

2.17. Statistical analysis  

All experiments were performed at least three times. Microsoft Excel and Graph 

Pad Prism V5 (La Jolla, CA) were used to perform statistical analyses. Significant 

differences were analyzed using one-way or two-way ANOVA tests, followed by T-

test to determine individual differences between control and experimental 

conditions. Results were considered to be statistically significant if a p<0.05 was 

obtained. 
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Chapter 3: IL-8 regulates the protein expression and the localization of 

CAREx8 via differential activation of AKT/S6K and inactivation of GSK3β 

Epithelial cells pose a formidable barrier to the invading pathogens including 

adenoviruses. Viruses have evolved to break the barrier using mechanisms that 

are just starting to be understood. Some viruses use the junctional proteins that 

are sequestered beneath the epithelial tight junctions, other utilize the apical 

proteins. Adenoviruses use CAR for entry into polarized epithelial cells. The 

alternatively spliced isoform, CAREx8, is able to localize at the apical surface. Thus 

adenovirus is provided with an opportunity to bind and enter the epithelial cells 

from the apical surface. Therefore, any changes in the levels of CAREx8 expression 

will have a direct implication for the susceptibility of a polarized epithelium to 

adenoviral infection. The expression and the localization of several epithelial 

junctional and apical proteins are regulated by proinflammatory cytokines. IL-8 has 

been shown to increase the apical localization of αvβ3 integrin and increase the 

susceptibility of a polarized epithelium to adenovirus infection. Therefore, I 

hypothesized that IL-8 increases the apical localization and expression of CAREx8 

in airway epithelial cells. This hypothesis was tested through three specific aims:  

3.1. To test if IL-8 increases CAREx8 expression and apical localization in the 

human airway epithelial Calu-3 cell line  
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3.2. To validate that IL-8 increases CAREx8 expression and apical localization 

in primary human airway epithelial cells.  

3.3. To determine the molecular mechanism underlying the IL-8 mediated 

increase in CAREx8 expression. 

 

3.1. IL-8 increases CAREx8 expression and apical localization in the human 

airway epithelial Calu-3 cell line. 

3.1.1. Rationale:  

Proinflammatory cytokines are released by the resident macrophages during viral 

infection in the lung. Previous studies have shown that IL-8, a proinflammatory 

cytokine and neutrophil chemoattractant, increases the airway susceptibility to 

adenoviral infection [71]. However, the mechanism underlying this increase in 

susceptibility remains unclear. IL-8 has been shown to relocalize integrins to the 

epithelial apical surface. Integrins are adenoviral co-receptors that aid in the steps 

of viral entry that occur after viral attachment to the host cell. Viral attachment on 

the epithelial cell surface is accomplished when the virus binds to its primary 

receptor. For most adenoviruses, CAR is the primary receptor. Lutschg et al., 2010 

[71] demonstrated that IL-8 increases the airway epithelial cell susceptibility to 

adenoviral infection. The focus of their study was integrins which are co-receptors 

for adenoviral entry. However, CAR is the primary receptor for adenoviral infection 

and they provided limited evidence that CAR localizes at the apical surface post 

IL-8 treatment. Moreover, this study did not differentiate between the two isoforms 

of CAR, CAREx7 (the basolateral isoform) and CAREx8 (the apical isoform). 
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Therefore, we hypothesized that IL-8 upregulates CAREx8 expression and apical 

localization in airway epithelial cells. To test this hypothesis we used Calu-3 cells  

an accepted model system for studies of human airway epithelia [81]. Although 

Calu-3 cells are derived from human lung adenocarcinoma [82], Calu-3 cells  are 

able to differentiate and polarize into an electrically tight epithelium that resembles 

the broncho-alveolar epithelium [81].  

3.1.2. Results:   

IL-8 increases airway epithelial cell susceptibility to adenoviral infection and 

CAREx8 protein expression.  

We first tested the effect of IL-8 on the susceptibility of Calu-3 airway epithelial 

cells to adenoviral infection.  Polarized Calu-3 epithelia were treated with 

increasing concentrations of IL-8 (ranging from 0 ng/ml to 100 ng /ml (0 – 12.5 

nM)) for 4 H, followed by apical infection with Ad5-βGal. Consistent with Lutschg 

et al., 2010, [71] quantitative PCR analysis showed that adenovirus entry was 

increased in response to IL-8 treatment in a dose-dependent manner (Figure 6). 

Viral entry reached its maximum at 3, 10 and 30 ng/ml of IL-8 with ~5-fold increase 

in viral genomes (Vg) when compared to 0 ng/ml IL-8. At 100 ng/ml, viral entry was 

decreased when compared to 30 ng/ml IL-8. Explanations for this could be that 

signaling is saturated or the cell is no longer able to respond to the higher 

concentration of IL-8 as a result of desensitization of the receptors,  receptor 

internalization, or receptor degradation.  

I then asked how IL-8 promotes adenoviral infection in these polarized cells. Since 

the primary receptor for Ad5 is CAR, we tested the expression of CAR in the 
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presence of IL-8. In particular, we examined the expression of the apical isoform 

of CAR, CAREx8. IL-8 treatment stimulated CAREx8 expression in a dose-

dependent manner with the maximal effect at a concentration of 30 ng/ml (Figure 

7). More intriguingly, the IL-8-mediated effect appeared to be CAREx8-specific. 

Analysis of total CAR, which is predominantly composed of the CAREx7 isoform [18, 

19], and E-cadherin (another junctional protein) did not show a significant change 

in protein expression (Figure 7). IL-8 had the maximal effect on CAREx8 expression 

between 4-12 H of treatment (Figure 8). Based on these data, further experiments 

were carried out with 30 ng/ml IL-8 for 4 H, at time point where the change in 

CAREx8 protein expression was obvious and amenable to experimental analysis.  

IL-8 stimulates apical CAREx8 protein localization.  

In order to determine whether IL-8 enhances the apical localization of CAREx8, we 

performed apical-surface biotinylation of polarized Calu-3 epithelia. IL-8 

significantly increased the apical localization of CAREx8 in polarized Calu-3 cells in 

a dose-dependent manner (Figure 9). In addition, actin, a negative control, was 

not detected with apical proteins. Together, the above data indicates that IL-8 

stimulates CAREx8 protein expression at the apical surface of airway epithelial cells 

and that the effect is dose-dependent.  
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Figure 6: IL-8 increases the susceptibility of polarized airway epithelia to 

adenovirus entry. The apical surface of polarized Calu-3 cells was treated with increasing 

concentrations of IL-8 for 4 H and then transduced with Ad5-β-Gal. Total genomic DNA 

was analyzed for the fold change in viral genomes (Vg) relative to GAPDH by qPCR. 

Statistical significance was evaluated using one-way ANOVA and Tukeys post hoc test, * 

P<.05.  
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Figure 7: IL-8 stimulates CAREx8 expression. A) Polarized Calu-3 epithelia were treated 

with increasing concentration of IL-8 for 4 H. Whole cell extracts were then analyzed by 

Western blot for the expression of CAREx8, total CAR, E-cadherin, and actin. B) Band 

intensity of CAREx8 relative to mock treated (0 ng/ml IL-8) (Average of 3 individual 

experiments). The reported values are mean and standard error of the mean (SEM), 

calculated from at least three independent experiments. Statistical significance was 

evaluated using one-way ANOVA and Bonferroni post hoc test. ** P<.01, ***P<0.001. 
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Figure 8: IL-8 has its maximal effect of CAREx8 expression between 4 and 12 H.  

Polarized Calu-3 epithelia were treated with 30 ng/ml IL-8 for varying lengths of time (0 

to 24 H). Post treatment, CAREx8 protein expression was analyzed by Western blot 

analysis   
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Figure 9: IL-8 stimulates enhanced localization of CAREx8 at the apical surface of 

polarized epithelia. Polarized Calu-3 cells were treated with increasing concentrations 

IL-8 for 4 H prior to apical surface biotinylation. Biotin-labeled proteins were pulled down 

using neutravidin beads and analyzed for the expression of CAREx8 by Western blot. As a 

control, the cytosolic protein actin was probed for in the total lysate (present) and after the 

apical-biotin/neutravidin pull down (absent). 

  

 
0 3 10 30

Actin 48

kDa

48CAREx8

Whole cell lysate

48Actin

Apical Protein

IL-8 (ng/ml) 100



50 
 

3.2. IL-8 increases CAREx8 expression and apical localization in primary 

human airway epithelial cells.  

3.2.1. Rationale:  

Although the Calu-3 cell line is an excellent model of an airway epithelium, this cell 

line is derived from human lung adenocarcinoma and immortalized [81, 82]. 

Therefore it is important to validate the IL-8-mediated effect on CAREx8 expression 

and localization in primary airway epithelial cells. In order to facilitate these studies, 

a new technique that allows the expansion of primary airway cells and subsequent 

differentiation into well-differentiated primary airway epithelia was used [75].  I 

hypothesized that IL-8 will augment the expression and the apical 

localization of CAREx8 in polarized primary airway epithelial cells obtained 

from the trachea of the healthy donors.  

3.2.2. Results: 

Primary human airway epithelial cells can be cultured indefinitely in the 

presence of 3T3-J2 feeder cells and ROCK inhibitor.  Primary airway epithelial 

cells from three different donors were successfully cultured in the presence of 

irradiated 3T3-J2 feeder cells and ROCK inhibitor, as described [75] (Figure 10). 

Upon removal of the feeder cells and the ROCK inhibitor the epithelial cells 

differentiated and polarized. Of the three donors tested, the cells from donor 2 were 

chosen because of their ability to form a highly polarized electrically-tight 

epithelium (TER reached nearly 2000 Ω/cm2). Moreover, the immunofluorescence 

staining revealed the expected localization of junctional proteins.  
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IL-8 augments CAREx8 protein expression and apical localization in primary 

human airway epithelial cells. To validate that IL-8 stimulates CAREx8 protein 

expression and apical localization as was observed with Calu-3 cells, the 

experiments in primary airway epithelial cells were repeated. Similar to Calu-3 

epithelia, apical treatment with 30 ng/ml IL-8 for 4 H resulted in a robust increase 

in CAREx8 protein expression (Figure 11A and B) and apical localization (Figure 

11C). As negative controls for apical surface biotinylation, intracellular actin and 

basolateral E-cadherin were investigated by Western blot. As expected, both were 

present in total lysate but absent from the apical surface. The epithelial barrier 

integrity in the presence of IL-8 was also tested. We observed that IL-8 treatment 

did not alter the TER of the polarized primary airway epithelial cells (Figure 12). 
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Figure 10: Primary airway epithelial cells co-cultured with the irradiated 3T3-J2 

cells. The bright field image shows the primary airway epithelial cells (arrow) growing in 

the presence of irradiated 3T3-J2 cells (arrowhead).  
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Figure 11: IL-8 stimulates CAREx8 expression and apical localization in polarized 

primary airway epithelial cells A) Whole cell extracts of polarized primary human airway 

epithelial cells mock treated (0 ng/ml IL-8) or treated with 30 ng/ml IL-8 were analyzed for 

the expression of CAREx8, E-cadherin, and actin. B) Band intensity of CAREx8 (30 ng/ml IL-

8) relative to mock treated (0 ng/ml IL-8) (Average of 3 individual experiments). C) 

Polarized primary airway epithelial cells were either mock (0 ng/ml IL-8) treated or treated 

with IL-8 at 30 ng/ml for 4 H. Post-treatment apical surface biotinylation was performed. 

Biotin-labeled proteins were pulled down using neutravidin beads and analyzed for the 

apical expression of CAREx8 and the negative control proteins actin and E-cadherin. The 

values reported are the mean and the standard error of the mean (SEM) of 3 individual 

experiments. Statistical significance was evaluated using student t-test, * P<.05.  
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Figure 12: IL-8 treatment does not affect the transepithelial resistance of polarized 

airway epithelia. Polarized primary airway epithelial cells were either mock treated (0 

ng/ml) or treated with IL-8 (30 ng/ml). TER measurements were taken pre- or post-

treatment. 
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3.3. The molecular mechanism underlying the IL-8 mediated increase in 

CAREx8 expression. 

3.3.1. Rationale:  

Protein expression can be regulated in multiple different ways. Two major 

mechanisms involve regulation at the transcriptional level (e.g. mRNA copy 

number) or at the translational level (e.g. the efficiency of converting mRNA to 

protein). I asked whether IL-8 regulates CAREx8 protein expression by one of these 

two mechanisms. Previous studies have shown that in response to IL-8, AKT is 

activated and causes activation of ribosomal S6 kinase (S6K). S6K in turn 

regulates protein synthesis by phosphorylating and activating ribosomal S6 

protein, a key component of active ribosomes [83]. Moreover, our lab has 

demonstrated that GSK3β negatively regulates CAREx8 expression [20]. GSK3β is 

a ubiquitously expressed serine/threonine kinase which plays a crucial role in 

various cellular processes including glucose metabolism, protein synthesis, cell 

motility, and proliferation. GSK3β negatively regulates transcription factors 

including TCF and LEF. Inhibition of GSK3β via phosphorylation at serine 9 

renders GSK3β inactive, which allows transcription factors to enter the cell nucleus 

and activate target-gene transcription [84]. GSK3β has also been shown to 

negatively regulate protein translation by inhibiting eukaryotic initiation factor 2B 

(eIF2B) by inducing phosphorylation at Ser 340. eIF2B is a guanine nucleotide 

exchange factor (GEF) for the small GTPase eIF2. When GSK3β is inhibited, 

eIF2B is activated as a result of dephosphorylation at Ser 340. Activated eIF2B 

further activates eIF2 (GTP coupled) by recruiting the initiator methonyl tRNA to 
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the mRNA and beginning translation [85-89]. I hypothesized that, in addition to 

activating AKT, IL-8 inactivates GSK3β to augment CAREx8 expression.  

3.3.2. Results: 

IL-8 regulation of CAREx8 expression is post transcriptional 

To understand the molecular mechanism underlying the IL-8 mediated increase in 

CAREx8 expression, I sought to first examine whether IL-8 stimulates CAREx8 

expression at the transcriptional and/or at the post transcriptional level. I first tested 

the hypothesis that the CAREx8 increase was via increased transcription. CAREx8-

specific mRNA levels were examined in IL-8 treated or untreated polarized primary 

airway epithelia. IL-8 treatment did not alter the mRNA levels of CAREx8, even at time 

points earlier than 4 H when a transcriptional increase would be expected in order to 

facilitate the protein increase observed by 4 H (Figure 13A). As expected, the mRNA levels 

of CAREx7 and E-cadherin also showed no significant change upon IL-8 treatment (Figure 

13A). In addition, CAREx8 mRNA levels did not change in IL-8-exposed Calu-3 epithelia 

(Figure 13B). These data suggest that IL-8 might stimulate CAREx8 protein synthesis 

without altering its mRNA levels. To further confirm this, the protein synthesis inhibitor, 

cycloheximide (CHX) was used. Remarkably, CHX abolished the IL-8-mediated increase 

in CAREx8 expression both in polarized Calu-3 (Figure 14A) and polarized primary airway 

epithelial cells (Figure 14B). Taken together, these data show that IL-8 stimulates de novo 

CAREx8 protein synthesis that does not require an increase in CAREx8 mRNA levels.  

IL-8 activates AKT and S6K to increase CAREx8 protein expression. 

Next, the roles of the previously mentioned signaling proteins were investigated in 

IL-8-mediated increased CAREx8 expression. Previous studies have shown that 

activation of AKT leads to the downstream activation of ribosomal S6 protein 
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kinase (S6K) [83]. In agreement, we observed a robust activation of AKT (pAKT-

T308) upon IL-8 treatment (Figure 15A). Moreover, inhibition of AKT using 

chemical inhibitor Ly294002 (30 µM) blocked the IL-8-mediated increase in CAREx8 

expression (Figure 15B) and attenuated adenovirus infection (Figure 15C). 

Likewise, we also observed that IL-8 stimulation caused an increase in the 

activated form of S6K, phospho-S6K T389 (Figure 16A). Inhibition of S6K using 

chemical inhibitor RO318220 (300 nM) blocked the IL-8 mediated increase in 

CAREx8 (Figure 16B) and completely blocked the increase in adenovirus infection 

(Figure 16C). Taken together these data show that upon stimulation of airway 

epithelial cells with IL-8, AKT and S6K are activated and both these signaling 

proteins regulate the expression of CAREx8 (Figure 21).  

Given the large effect of the S6K inhibitor on adenovirus infection and to further 

validate these results, we tested whether overexpression of S6K in Calu-3 (Figure 

17A) or COS7 cells (Figure 17B) had an effect on CAREx8 protein expression. 

Overexpression of S6K resulted in a robust increase in the CAREx8 expression both 

in Calu-3 cells and COS7 cells. These data indicate that both AKT and S6K play 

an important role in stimulating CAREx8 expression in response to IL-8 treatment. 
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Figure 13: IL-8 does not alter CAREx8 mRNA levels. A) Polarized primary airway 

epithelia cells were treated with IL-8 for varying lengths of time before RNA extraction and 

qPCR analysis were performed to quantitate the fold change in the gene expression of 

CAREx8, CAREx7 and E-cadherin relative to 0 H control. An average of 3 experiments is 

shown. B) Polarized Calu-3 cells were treated with increasing concentration of IL-8 for 4 

H before RNA extraction and qPCR analysis were performed to quantitate the fold change 

in the gene expression of CAREx8 and CAREx7 relative to untreated (0 ng/ml IL-8) control. 

The values reported are the mean and the standard error of the mean (S.E.M.) of 3 

individual experiments. No significant difference was detected by ANOVA. 
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Figure 14: IL-8 increases new CAREx8 protein synthesis. A) Polarized Calu-3 cells, or 

B) polarized primary airway epithelial cells were either untreated or treated with IL-8 

30ng/ml for 4 H in the absence or presence of cycloheximide (CHX). CAREx8 expression 

in cell lysates was analyzed by Western blot.  

 

  

 

Calu-3

Actin 48

kDaIL-8 30 ng/ml - + +
- - +CHX 10 ug/ml

48CAREx8

Primary airway epithelia

CAREx8 48

IL-8 30 ng/ml
CHX 10 ug/ml

-
-

+
-

+
+

48

kDa
Actin

-
+



60 
 

 

 

 

 

 

 

 

 

 

 

Figure 15: IL-8 stimulates activation of AKT and augments CAREx8 expression and 

adenoviral infection. A) Polarized Calu-3 epithelia were either untreated or treated with 

30 ng/ml IL-8 for 4 H. pAKT T308 is the activated form of AKT. B) Polarized Calu-3 

epithelia were either untreated or treated with IL-8 in the presence or absence of the AKT 

inhibitor Ly294002 (30 µM) for 4 H Quantitation of relative CAREx8 band intensity 

normalized to actin is shown below the blot. C) Polarized Calu-3 epithelia were either 

untreated or treated with IL-8 30 ng/ml in the presence or absence of AKT inhibitor 

Ly294002 (30 µM) for 4 H followed by infection with Ad5-βGal. Genomic DNA was isolated 

24 H post infection to determine the fold change in viral genomes (vg; viral entry) using 

qPCR. Statistical significance was evaluated using one-way ANOVA and Bonferroni post 

hoc test, ***P<.001.  
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Figure 16: IL-8 stimulates the activation of ribosomal S6 kinase (S6K) and augments 

CAREx8 expression and adenovirus infection. A) Polarized Calu-3 cells were either 

untreated or treated with IL-8 30 ng/ml for 4 H. Whole cell extracts were analyzed by 

Western blot for the expression of total S6K and pS6K T389, the activated form of S6K. 

B) Polarized Calu-3 cells were either untreated or treated with IL-8 30 ng/ml in the 

presence or absence of S6K inhibitor RO318220 (300 nM) for 4 H, Post treatment the 

whole cells extracts were analyzed by WB for CAREx8 expression or C) infected with Ad5-

βGal, followed by genomic DNA extraction and quantitation of the fold change in viral 

genomes (vg; viral entry) using qPCR. Statistical significance was evaluated using one-

way ANOVA and Bonferroni post hoc test, ***P<.001.  
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Figure 17: S6K augments CAREx8 protein expression. A) Polarized Calu-3 cells were 

either untreated or treated with IL-8 30 ng/ml and compared to polarized Calu-3 cells that 

were transfected with a Myc-tagged S6K plasmid. B) COS7 cells were either untransfected 

or transfected with Myc tagged S6K plasmid. Whole cell extracts were prepared form both 

Calu3 and COS7 cells and analyzed by Western blot for expression of myc-tagged S6K, 

CAREx8, and actin. 
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IL-8 signaling inactivates GSK3β which negatively regulates CAREx8 

expression.  

Our lab has previously shown that GSK3β negatively regulates CAREx8 expression 

[20]. Therefore, to further decipher the signaling downstream of IL-8-stimulation, 

the activity of GSK3β was investigated. IL-8 treatment of either Calu-3 cells (Figure 

18A) or primary airway epithelial cells (Figure 18B) resulted in an increase in the 

phosphorylated form of GSK3β at serine 9 (GSK3β-S9). Phosphorylation at S9 

inactivates GSK3β [90, 91]. To further validate the involvement of GSK3β, primary 

airway epithelial cells were treated for 4 H with SB415286 or LiCl which are known 

GSK3β inhibitors [92]. We observed that both GSK3β inhibitors increased CAREx8 

expression to a level similar to that observed with IL-8 treatment (Figure 19A) and 

increased airway epithelial cells susceptibility to adenoviral infection (Figure 19B). 

To our knowledge, this is the first time that IL-8 signaling has been shown to inhibit 

GSK3β. Taken together these data indicate that IL-8 regulates CAREx8 protein 

expression by inhibiting GSK3β.  

AKT/S6K and GSK3β increase CAREx8 through parallel pathways  

 The data above shows that inhibition of GSK3β and over expression of S6K 

each increase apical CAREx8 to a similar degree. To determine whether GSK3β- 

and S6K-mediated regulation of CAREx8 are within the same pathway, polarized 

Calu-3 cells were either untreated or treated with IL-8 30 ng/ml for 4 H in the 

presence GSK3β inhibitor (SB415286, 45 µM) or S6K inhibitor (RO318220, 300 

nM) or in a combination of both SB415286 and RO318220. I predicted that if S6K 

was a downstream target of GSK3β, inhibition of S6K would prohibit increased 



64 
 

CAREx8 protein levels when GSK3β was inhibited. However, a standard increase 

in CAREx8 protein levels (Figure 20) was observed indicating that the GSK3β and 

S6K pathways do not overlap.  
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Figure 18: IL-8 treatment results in the inactivation of GSK3β. A) Polarized Calu-3 

cells and B) polarized primary airway epithelial cells were treated with IL-8 30 ng/ml for 4 

H. The expression of GSK3β-S9 (inhibited form of GSK3β) was analyzed by Western blot. 

Protein expression of whole GSK3β and actin were also determined as controls. 
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Figure 19: GSK3β negatively regulates CAREx8 expression and adenoviral infection. 

A) Primary airway epithelial cells were treated with GSK3β inhibitors and CAREx8 

expression was analyzed by Western blot. B) Calu-3 cells were either untreated, treated 

with IL-8 30 ng/ml, or treated with the GSK3β inhibitor SB 415286 for 4 H, followed by 

infection with Ad5-β-Gal. The cells were analyzed 24 H post infection. Experiments were 

repeated at least 3 times; representative Western blot experiments are shown and 

quantified. Statistical significance was evaluated using one-way ANOVA and Bonferroni 

post hoc test, ***P<.001.  
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Figure 20: AKT/S6K and GSK3β increase CAREx8 through parallel pathways. 

Polarized Calu-3 cells were either untreated or treated with IL-8 30 ng/ml for 4 H in the 

presence GSK3β inhibitor (SB415286, 45 µM) or S6K inhibitor (RO318220, 300 nM) or in 

a combination of both SB415286 and RO318220. Whole cell lysates were analyzed by 

Western blot analysis for expression of CAREx8 and actin.  
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Figure 21: Schematic model of the pathway by which IL-8 stimulates an increase in 

CAREx8 protein expression summarizing results. 1) IL-8 binds to the IL-8 receptor 

(CXCR1/2). 2) AKT is activated and GSK3β is inhibited downstream of AKT. 3) Activation 

of AKT in turn activates S6K to increase CAREx8 protein expression. Inhibition of GSK3β 

relieves its inhibition of CAREx8 protein synthesis.  4) Both of these pathways stimulate 

CAREx8 protein synthesis, 5) which increases CAREx8 localization at the apical surface of 

the epithelial cell, and 6) augments adenoviral infection.  
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3.4. Discussion 

We show for the first time that IL-8 stimulates the expression of CAREx8 at the 

apical surface of the polarized airway epithelial cells without altering the mRNA 

levels for CAREx8 (Figures 7, 9, 11, 13 and 14). Consequently, this increases the 

susceptibility of the apical surface of the epithelium to adenovirus infection. We 

demonstrate a novel signaling cascade downstream of IL-8, wherein exposure of 

airway epithelial cells to IL-8 results in the inhibition of GSK3β (Figure 18). 

Additionally, we also observed that IL-8 treatment caused robust activation of AKT 

and S6K, which enhance CAREx8 protein levels leading to increased adenovirus 

infection (Figures 15, 16 and 17). The same mechanism is found in both Calu-3 

cells and well-differentiated primary airway epithelial cells. Primary airway epithelia 

are powerful models since they closely reflect an in vivo airway epithelium [93, 94]. 

These data elucidate a novel signaling mechanism underpinning the regulation of 

the “apical” adenovirus receptor, CAREx8, and bridge a gap in our knowledge of 

how host cytokines enhance viral entry from apical epithelial surfaces.  

Pathogens have developed multiple ways to break into host cells. Many 

pathogens like E. coli and H. pylori breach the epithelial barrier integrity before it 

can infect the cells [95]. Viruses, on the other hand, are sophisticated in that they 

often infect epithelial cells without causing much damage to the barrier integrity 

[16, 17]. For example, Coxsackie B virus binds to DAF which causes translocation 

of the virus to the tight junction where it can interact with CAR and gain entry into 

the cells [16]. Reovirus binds sialic acid at the apical surface which then, mediates 

binding of the virus to its receptor JAM-A in order to enter into the cells [17]. Many 
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inflammatory factors have been shown to modulate viral infections. For example, 

IL-26 increases adsorption of vesicular stomatitis virus onto target cells [96]. In 

fact, viral infections are quite common in inflammatory respiratory diseases such 

as COPD [97], cystic fibrosis [66, 98], and asthma [99]. Our work improves the 

understanding of the mechanisms behind the effect of cytokines on viral infection.  

The proinflammatory cytokine IL-8 belongs to CXCL family of cytokines and 

is one of the first cytokines released by a variety of host cells during a pathogenic 

insult. IL-8 is a neutrophil chemoattractant and modulates numerous cellular 

signaling proteins in a variety of cell types, including epithelial cells [100]. 

Cytokines regulate the expression of various cell surface proteins. For example, 

ICAM-1 is shown to localize at the intestinal epithelial apical surface in response 

to IFN [10]. IFN- also disrupts the epithelial barrier integrity by promoting 

macropinocytosis of tight junction proteins including occludin, claudin-1, and JAM-

A [8, 9]. Exposure of airway epithelial cells to TNF-α in combination with IFN- 

downregulates the expression and delocalizes tight junction proteins JAM and ZO-

1 in airway epithelia, and CAR in endothelial cells [6, 7]. For the first time, we show 

that the stimulation of polarized Calu-3 and primary airway cells with IL-8 augments 

the protein, but not the mRNA levels of CAREx8. Interestingly, the IL-8-mediated 

effect did not affect the expression of CAREx7 or E-cadherin, indicating that the 

regulation may be specific to CAREx8. IL-8 also has an acute effect that stimulates 

maximal CAREx8 expression between 4-12 H. There might be several reasons for 

the acute effect of IL-8 on CAREx8 expression. For example, CAREx8 might be 

crucial in mediating early innate immunological responses. Prolonged signaling 
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may lead to adverse immunological complications due to prolonged inflammation. 

It is also possible that IL-8-mediated signaling undergoes negative feedback to 

inhibit IL-8 signaling by downregulating the IL-8 receptor [101]. Future work will 

focus on these possibilities and the speculation that adenovirus entering into the 

lung on air-suspended droplets may take advantage of the temporary increase in 

apical CAREx8 to invade the epithelium. It is also demonstrated that IL-8 increases 

the CAREx8 protein expression without affecting its mRNA transcript levels. 

Moreover, blocking protein synthesis with CHX, blocked the IL-8-mediated effect 

suggesting that IL-8 signals protein synthesis of CAREx8. In the future, pulse-chase 

experiments using radiolabeled methionine will be more conclusive to prove the 

direct effect of IL-8 on CAREx8 protein synthesis. 

Further evidence indicates that IL-8 triggers activation of AKT and its 

proximal target, S6K (Figures 15 and 16). This is consistent with the previous 

studies demonstrating IL-8/AKT/S6K-mediated upregulation of cyclin D1 protein 

synthesis [83, 102]. Active S6K directly stimulates protein translation via 

phosphorylation of ribosomal S6 protein. S6K is also known to be activated by 

mTOR [102]. Interestingly, we did not observe an increase in the active form of 

mTOR, phospho-mTOR-S2448, when Calu-3 or primary airway epithelial cells 

were treated with IL-8 (data not shown). Whether alternative activated forms of 

mTOR, such as phospho-mTOR-S1261 [103], or other potential players, such as 

PDK1 [104], might be involved in S6K activation are currently under investigation.  

In addition, we demonstrate for the first time that IL-8 signaling results in the 

inhibition of GSK3β, as determined by the increase in phospho-GSK3β-S9 protein 
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(Figure 18). GSK3β is a ubiquitously expressed constitutively active 

serine/threonine kinase that regulates multiple signaling pathways, such as gene 

transcription, protein translation, cell-cycle regulation, and apoptosis [105]. Our 

data indicate that GSK3β negatively regulates CAREx8 expression and is consistent 

with our previous studies [20]. GSK3β is known to regulate protein translation by 

modulating the activity of eIF2B, a guanine nucleotide exchange factor for a protein 

translation initiation factor, eIF2 [85-87]. The results of this study, however, do not 

address the possibility of an indirect effect that may result from the inhibition of 

AKT/S6K or GSK3β, which is a limitation in this study. 

We propose a model through which the protein levels of CAREx8 are 

stimulated by IL-8 and this model summarizes our results (Figure 21). Treatment 

of airway epithelial cells with IL-8 results in the activation of AKT which has two 

differential downstream targets: 1) S6K, which is activated, and 2) GSK3β, which 

is inactivated [91, 106]. Both these signaling proteins culminate in augmenting de 

novo CAREx8 protein synthesis and in turn susceptibility to adenoviral infection. 

The reason why one external stimulus differentially activates two pathways is not 

clear. However this is not an uncommon phenomenon. For example, 

coxsackievirus binding at the apical surface of gut epithelial cells is shown to 

activate Abl and Fyn kinase differentially and both of these signaling proteins, and 

their respective pathways, are crucial for the efficient infection of polarized gut 

epithelial cells by group B coxsackieviruses [16].  

Why are CAREx8 levels increased at the apical epithelial cell surface in 

response to IL-8? I hypothesize that CAREx8 localizes at the apical surface of 
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epithelial cells to retain leukocytes, such as neutrophils, in the region of 

inflammation by interacting with the leukocyte-specific junctional adhesion 

molecule-like protein (JAML). The basolateral CAR-JAML interaction is for efficient 

neutrophil transmigration [43, 44]. Upregulated apical CAREx8 may retain infiltrating 

neutrophils in the region of inflammation and limiting distant, spurious 

inflammation. The following aim is focused on testing the hypothesis that CAREx8 

tethers neutrophils at the epithelial apical cell surface.  
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Chapter 4: CAREx8 tethers infiltrating neutrophils at the epithelial apical 

surface 

The data presented so far demonstrates that exposure of an airway epithelium to 

IL-8 stimulates CAREx8 protein levels in the cell and at the apical surface of the 

epithelium. Adenovirus is then able to take advantage of increased apical CAREx8 

to efficiently enter the airway epithelium. However, why would the cell increase 

CAREx8 levels in response to IL-8 stimulation if it might be detrimental for the cell? 

One possible answer to this question is that CAREx8 might be crucial for an innate 

function. It is well accepted that viruses have evolved to exploit essential proteins 

and cellular biology to enhance infection and survival of the virus. It is likely that 

invading adenovirus has simply taken advantage of an important physiological cell 

function in order to gain entry into the epithelium. By exploiting an evolutionary 

conserved physiological function, adenovirus has found a niche that the host has 

not eliminated through natural selection. We hypothesize that the endogenous 

function of CAREx8 in a polarized epithelium is to tether infiltrating 

neutrophils at the apical surface of polarized airway epithelial cells. 

This hypothesis was tested through three specific aims: 

4.1. To generate stable MDCK cells expressing inducible human CAREx8, 

human CAREx7, or m-Cherry. 
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4.2. To show that CAREx8 mediates neutrophil adhesion at the epithelial 

apical surface. 

4.3. To show that infiltrating neutrophils adhere to the apical surface in a 

CAREx8 dependent manner 

4.1. Generation of stable MDCK cells expressing inducible human CAREx8, 

or human CAREx8, or m-Cherry. 

 

4.1.1. Rationale:  

I hypothesized that CAREx8 mediates neutrophil adhesion at the epithelial cell 

surface. If this hypothesis is true, then increasing the cellular apical levels of 

CAREx8 will increase neutrophil adhesion at the apical cell surface. To test this, we 

developed MDCK cells that stably express human CAREx8 under the regulation of 

a doxycyclin (DOX) inducible promoter. This system enables the manipulation of 

the levels of CAREx8 expressed within an established epithelium. Additionally, 

control cells stably expressing either human CAREx7 or the red fluorescent protein, 

m-Cherry, were also developed.  

4.1.2. Results: 

Inducible MDCK stable cells expressing CAREx7or CAREx8, or mCherry 

MDCK cells were chosen because these cells are well characterized, grow fast, 

and most importantly, polarize rapidly into an epithelium with the expected 

distribution of cellular proteins. To generate MDCK stable cells, cells were first 

infected with lentivirus carrying the Tet-on gene that is required for inducible 

expression from the pLVX-tight-puro promoter. Clonal cell lines from single cells 
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were compared to the parental MDCK to identify the Tet-on cell line most similar 

to parental. This MDCK-Tet-on cell line was the parental cell line for creating the 

Dox-inducible pLVX-tight-puro cell lines carrying the gene encoding FLAG-tagged 

human CAREx7, or FLAG-tagged human CAREx8, or m-Cherry. Clones from single 

cells stably expressing Dox-inducible CAREx8, CAREx7 and mCherry were selected 

and expanded. These clones are from now on referred to as either MDCK-CAREx8, 

MDCK-CAREx7, or MDCK-mCherry cells.  The stable integration of CAREx8, 

CAREx7, or m-Cherry was confirmed using PCR (Figure 22). The primers used in 

the PCR analysis of DNA from these cells were specific to exogenous CAREx8 or 

CAREx7, respectively, and did not detect the endogenous gene.  To accomplish 

this specificity, the forward and the reverse primer used to detect exogenous 

CAREx7 overlapped the junction between exon 6 and exon 7 for the upstream 

primer while the downstream primer was in the CAREx7-specific sequence. PCR 

for CAREx8 used the same upstream primer but the downstream primer overlapped 

the splice site between exon 7 and exon 8.  Using such primers eliminates the 

possibility of detecting the endogenous CAREx7 or CAREx8 gene in which the exons 

are interspersed with long introns. Several clones positive for the exogenous 

expression of CAREx7, CAREx8, or mCherry respectively were expanded and 

subjected to further characterization.  

Characterization of MDCK- CAREx7, CAREx8 and mCherry 

The clones were chosen on the basis of their ability to form junctions, polarize into 

an epithelium and be infected by adenovirus. These properties of the MDCK stable 

cells in the absence of DOX was compared to the parental MDCK cell line. Of the 
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multiple different colonies and clones picked for gene, MDCK-CAREx8 clone #1, 

MDCK-CAREx7 clone #3, and MDCK-mCherry clone #1 were chosen after careful 

characterization and comparison with the parental MDCK (data not shown) in the 

absence of DOX. We analyzed the exogenous expression of CAREx8 and CAREx7 

in the presence of increasing concentration of DOX using WB analysis (Figure 

23A). We observed that with increasing concentration of DOX there was a dose-

dependent increase in the expression of FLAG-CAREx8 and CAREx7. In addition, 

apical surface-specific biotinylation was performed and we observed a dose-

dependent increase in the apical localization of CAREx8 (Figure 23B). In contrast, 

in the presence of DOX we observed little or no CAREx7 at the apical surface, as 

predicted.  

MDCK-CAREx8 shows an increased susceptibility to adenovirus infection.  

To characterize the susceptibility of the polarized MDCK stable cells to adenovirus 

infection, cells were polarized and infected with Ad5-β-Gal from the apical surface. 

Consistent with the WB, we observed a rapid dose-dependent increase in 

adenoviral entry for the MDCK-CAREx8 stable cell line followed by a plateau in viral 

transduction (Figure 23C) and viral genomes (Figure 23D).  This cell line had a 2-

8 fold increase in adenoviral entry, as measured by viral genomes, when compared 

to MDCK-CAREx7 and mCherry stable cells. This data strongly suggests that 

CAREx8 increased the polarized airway epithelial cell susceptibility to adenoviral 

infection. This property is attributed to the apical localization of CAREx8 since 

MDCK-CAREx7 did not show any significant difference when compared to the 

control MDCK-mCherry cells. These experiments confirmed the successful 
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development of MDCK stable cells that express DOX inducible FLAG-CAREx8, 

FLAG-CAREx7, and mCherry. These stable cell lines were critical for many of the 

remaining experiments in my thesis.   
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Figure 22: MDCK cells that have stably incorporated m-Cherry, CAREx7, or CAREx8 

exogenous tet-inducible genes. The DNA isolated from the MDCK-mCherry, MDCK-

CAREx7 and MDCK-CAREx8 cells was PCR amplified to determine the presence of stably 

incorporated mCherry, CAREx7 and CAREx8 DNA, respectively.  
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Figure 23: Doxycycline dose response in MDCK cells stably expressing DOX-

inducible CAREx8, CAREx7, or mCherry polarized epithelia. A) Increasing DOX 

increases CAREx8 or CAREx7 protein levels but not actin. B) Apical-surface selective 

biotinylation of CAREx8 and CAREx7 shows the presence of FLAG-tagged CAREx8 but not 

CAREx7. C) MDCK stable cells treated with increasing DOX shows a dose-dependent 

increase in apical Ad-β-Gal activity (which correlates with viral transduction) and D) viral 

genomes (Vg), (which correlates with the amount of viral entry). The dramatic increase is 

not seen in the MDCK-CAREx7 cells and the negative control MDCK-mCherry cells. 

Statistical significance was evaluated using one-way ANOVA *P<.05.  
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4.2. CAREx8 mediates neutrophil adhesion at the epithelial apical surface. 

4.2.1. Rationale:  

Unlike CAREx7, which localizes basolaterally, the CAREx8 isoform localizes apically 

in polarized airway epithelial cells. Zen et al., 2005 showed that blocking the 

basolateral CAR-JAML interaction reduces the rate of neutrophil transmigration by 

50% [44]. JAML has been shown to interact with CAR at its extracellular D1 

domain. The CAR D1 domain is identical between the CAREx7 and CAREx8 

isoforms. Therefore, I hypothesized that while CAREx7 is crucial for neutrophils 

migrating through the paracellular space, CAREx8 tethers neutrophils at the 

epithelial cell surface. Therefore, I further hypothesized that increasing CAREx8 

expression should promote neutrophil adhesion at the epithelial apical surface. 

The CAR-JAML interface overlaps with the region where CAR interacts with Ad 

FK. Thus, blocking CAR using Ad FK will further confirm CAREx8 mediated 

adhesion of neutrophils at the epithelial apical surface. As shown earlier, IL-8 

stimulates CAREx8 protein expression and apical localization. Therefore, we 

predicted that treatment of airway epithelial cells with IL-8 would stimulate 

neutrophil adhesion at the epithelial apical surface.  

4.2.2 Results:  

MDCK-CAREx8 tethers neutrophils at the epithelial apical surface.  

MDCK-CAREx8, CAREx7 and mCherry cells were polarized on a tissue culture dish 

and induced with increasing concentrations of DOX for 24 H to enable dose-

dependent increase in the expression of the exogenous genes. This was followed 

by a neutrophil adhesion assay using freshly isolated, fluorescently labelled 
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neutrophils from the peripheral blood of healthy donors. Increasing the CAREx8 

protein levels in MDCK-CAREx8 cells correlated directly with increased neutrophil 

adhesion on the epithelial cell surface in a dose-dependent manner (Figure 24). In 

contrast, the MDCK-CAREx7 and mCherry cells only showed a baseline neutrophil 

adhesion both in the presence and absence of DOX (Figure 24). This data 

suggests that MDCK-CAREx8 cells tether neutrophils at the epithelial cell surface.  

Neutrophil adhesion is CAREx8 mediated: 

It is hypothesized that MDCK-CAREx8 tethers neutrophils at the apical surface via 

CAREx8-mediated interaction. To directly test this hypothesis, the Ad5 FK was used 

to outcompete the putative interaction between epithelial apical CAREx8 and 

neutrophil JAML. Ad5 FK specifically binds to CAR to attach to the host cell and 

although the binding site overlaps the CAR-CAR and CAR-JAML binding sites, the 

CAR-FK affinity is 1000 and 500 times greater, respectively.  CAREx8 was first 

blocked with purified Ad5 FK in polarized MDCK-CAREx8 cells that were either not 

induced or induced with DOX for 24 H. Fluorescently-labeled neutrophils were 

added to the apical surface and allowed to bind in the presence or absence of Ad5 

FK for 15 min. In the presence of increasing Ad5 FK, there was a dose-dependent 

decrease in neutrophil adhesion (Figure 25). Moreover there was complete knock 

down of neutrophil adhesion at the highest Ad5 FK concentration (192 ug, nearly 

106 times greater Ad5 FK than the predicted number of CAR receptor on the 

epithelial cell surface of uninduced cells) that was used. In contrast, the neutrophil 

adhesion could not be blocked in the presence of Ad3 FK, a control group B Ad 

that does not bind to CAR as the primary receptor (Figure 24). The primary 
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receptor for Ad3 is desmoglein 2 [107]. These data strongly suggest that CAREx8 

tethers neutrophils at the apical epithelial cell surface. 

IL-8 treatment of primary airway epithelial cells allows increased neutrophil 

adhesion on the apical surface of the Calu-3 cells. 

I have previously shown that the treatment of both Calu-3 cells and primary airway 

epithelial cells with IL-8 stimulates CAREx8 at the epithelial apical surface with little 

or no effect on the basolateral CAREx7 protein levels. Thus, to confirm that IL-8-

induced CAREx8 mediates neutrophil adhesion, we performed neutrophil adhesion 

assays on Calu-3 cells treated with IL-8 for 4 H. We observed that IL-8 treatment 

resulted in a significant increase in neutrophil adhesion (Figure 26).  
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Figure 24: CAREx8 tethers neutrophils at the epithelial apical surface. Neutrophil 

adhesion assays were performed on DOX induced stable cells A) MDCK-CAREx8, B) 

MDCK-CAREx7, and C) MDCK-mCherry cells. Neutrophils (green) that adhered to the 

epithelial apical surface were imaged. Each panel is a representative image of the 

respective DOX concentrations used in this experiment.  
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Figure 25: CAREx8 tethers neutrophils at the epithelial apical cell surface. A) MDCK-

CAREx8 either uninduced or induced with DOX were treated with increasing concentrations 

of Ad5 FK (gray bars) or 640 ug/ml Ad3 FK (black bars). Neutrophil adhesion assays were 

performed with the freshly isolated, fluorescently labelled neutrophils. The adhered 

neutrophils were imaged and the fluorescence intensity was quantitated. Fold changes in 

the fluorescence intensity in comparison to uninduced and untreated controls are shown. 

Statistical significance was evaluated using one-way ANOVA and Bonferroni post hoc test. 

*P<.05, ** P<.01 and ***P<.001 
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Figure 26: IL-8 treatment in Calu-3 cells increases neutrophil adhesion. IL-8 

treatment in Calu-3 cells increases neutrophil adhesion. A) Calu-3 cells were either 

uninduced or induced with IL-8 30 ng/ml for 4 H. Post-treatment a neutrophil adhesion 

assay was performed. Bound neutrophils were imaged and B) quantitated using 

MetaMorph software. Statistical significance was evaluated using student t test, ***P<.001 
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4.3. Infiltrating neutrophils adhere to the apical surface in a CAREx8 

dependent manner 

4.3.1. Rationale:  

Section 4.2 indicates that CAREx8 is able to tether neutrophils at the epithelial cell 

surface. However, in vivo, the neutrophils migrate from the basal surface of the 

epithelium, through the paracellular space and finally to the apical surface. At the 

apical surface the neutrophils remain adhered before detaching into the lumen of 

the airway. Therefore, I asked whether CAREx8 can tether the infiltrating neutrophils 

that transmigrate through the epithelium space to the apical surface in a 

physiologically relevant polarized basal to apical surface model system. Based on 

the results above it is predicted that CAREx8 will adhere the infiltrating neutrophils 

at the epithelial apical surface. On the other hand, because CAREx7 is shown to be 

important for neutrophil transmigration [44], it is predicted that overexpressing 

CAREx7 will promote neutrophil transmigration across the epithelium CAREx7. It is 

also expected that induced mCherry cells will remain similar to baseline. 

4.3.2. Results: 

CAREx8 tethers infiltrating neutrophils at the epithelial cell surface.  

To determine the fate of infiltrating neutrophils in the presence of increased CAREx8 

concentrations, I performed a neutrophil transmigration assay (Figure 27). After 

allowing the neutrophils to migrate, 2 populations of cells were quantitated 1) 

neutrophils that completely transmigrated through the paracellular space and had 

entered the apical lumen (the outer well in the model system (Figure 27) and 2) 

neutrophils that remain adhered to the epithelial apical surface. I observed that 
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DOX treatment induced neutrophil adhesion at the apical surface of MDCK-CAREx8 

cells (Figure 28C). However there was no change in neutrophil transmigration 

(Figure 28D). In contrast, Dox treatment induced neutrophil transmigration across 

the polarized epithelium of MDCK-CAREx7 cells without affecting neutrophil 

adhesion on the apical surface (Figure 28F). Neutrophil adhesion at the epithelial 

apical surface was not affected in MDCK-CAREx7 cells (Figure 28E).  The MDCK-

mCherry cells that served as a negative control had baseline neutrophil adhesion 

and migration (Figure 28A and B). 
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Figure 27: A model showing the system used for neutrophil transepithelial 

migration. The system contains an outer well with a millicell placed inside. The epithelial 

cells are polarized in an inverted fashion such that the apical surface is facing the bottom 

of the outer well. Fluorescently labelled neutrophils are chemically (chemoattractant) 

driven to transmigrate from the basal to the apical surface. After transmigration, 

neutrophils that remain adhered to the epithelial cells and those that transmigrated to the 

bottom of the outer well were quantitated. 
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Figure 28: CAREx8 tethers infiltrating neutrophils at the apical surface of the 

polarized epithelium. Neutrophil transmigration assays were performed in a 

physiologically relevant manner (basal to apical surface) in (A, B) MDCK-mCherry, (C, D) 

MDCK-CAREx8 and (E, F) MDCK-CAREx7 cells that were either uninduced or induced with 

DOX. % neutrophil adhesion (A, C, E) and % neutrophil transmigration (B, D, F) were 

quantitated by measuring the fluorescent intensity using metamorph software. Statistical 

significance was evaluated using student t test, *P<.05, **P<.01 
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4.4. Discussion 

Upon pathogenic encounter, neutrophils are the first amongst the immune 

cells to arrive at the site of inflammation or infection. Neutrophils transmigrate 

through the endothelium into the interstitium and finally arrive at the airway lumen 

via transepithelial migration. Subsequently, via a combination of enzymatic and 

cytotoxic events, neutrophils aid in the clearance of pathogens. Therefore 

neutrophil transmigration is an important phenomenon in the innate immune 

response of the host. Deficiency in the neutrophil recruitment leads to several 

diseased conditions, such as LAD-1, and predisposal to infections  [49]. On the 

other hand, uncontrolled neutrophil transepithelial migration and accumulation at 

the mucosal surface of the airway or gut is a hallmark of inflammatory diseases. 

For example, the accumulation of neutrophils in the alveolar space and intestinal 

crypts is observed in cystic fibrosis and inflammatory bowel diseases, respectively. 

The severity of the inflammatory disease directly correlates with the extent of PMN 

accumulation. Based on the type of cytokine present, different leukocytes are 

recruited. Monocyte Chemotactic Protein (MCP1), Macrophage Inflammatory 

Protein 1 alpha (MIP1α), and Regulated on Activation, Normal T cell Expressed 

and Secreted (RANTES; aka CCL5) recruit monocytes, T cells, natural killer cells, 

and eosinophils [108]  The proinflammatory cytokine IL-8 recruits neutrophils 

preferentially [109].  

The process of neutrophil transepithelial migration compels the constant 

formation and destruction of interactions between the neutrophil and the 

epithelium. After extravasation from the blood vessel and migration through the 
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interstitial tissues, it begins with the adhesion of neutrophils to the epithelial basal 

surface, followed by migration through the paracellular pathway, ultimately arriving 

at the apical surface (Figure 4). The different proteins that are involved in 

neutrophil adhesion at the apical surface and the importance of these molecules 

are finally being identified. For example, proteins, such as CD44 and DAF, are 

crucial for the detachment of neutrophils into the gastrointestinal lumen [58, 59]. 

However, less is known about neutrophil adhesion and detachment in the airway.  

For the first time, a novel biological function for CAREx8 is described in this 

study. It has been shown that IL-8 augments apical CAREx8 expression in polarized 

airway epithelia (Figures 7, 9, 11). In addition, apically localized CAREx8 can tether 

neutrophils (Figure 24). This is supported by the finding, that blocking CAREx8 

using adenovirus type 5 FK completely inhibits neutrophil adhesion, underscoring 

the importance of CAREx8 in tethering neutrophils (Figure 25). Interestingly IL-8 

treatment of airway epithelia increased neutrophil adhesion (Figure 26). Since it is 

proven that IL-8 stimulates CAREx8 expression, it is very likely that IL-8 stimulated 

neutrophil adhesion might be via CAREx8.  Moreover, apical CAREx8 proves to be 

adhesive for infiltrating neutrophils, without grossly affecting neutrophil 

transmigration (Figure 28). It was also observed that CAREx7, which localizes at 

the basolateral surface of polarized epithelia, promotes neutrophil transmigration 

but not apical adhesion (Figure 28). This data is in agreement with the previous 

study that shows blocking basolateral CAR affects the rate of neutrophil 

transepithelial migration [44]. It is speculated that the difference in the function of 

the two isoforms of CAR is attributed to its localization within the epithelium. In 
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addition the fact that neutrophil transmigration is not affected in MDCK-CAREx8 

cells induced with DOX suggests that CAREx8 might not be involved in neutrophil 

transmigration.  

Considering these lines of evidence, it is envisioned that IL-8 secreted 

during a pathogenic intrusion sets off an innate immune response by recruiting 

neutrophils to the apical surface. At the same time, IL-8 also increases the 

expression and the apical localization of CAREx8, which serves to tether the 

recruited neutrophils. Adhesion of neutrophils to the epithelial apical surface could 

serve several essential biological functions such as: 1) To achieve the critical 

neutrophil concentration required for the efficient killing of invading pathogens; 2) 

To help maintain focused inflammation, thereby preventing unnecessary damage 

to the neighboring cells; 3) To form a defensive barricade that prevents further 

infection of the epithelium; and 4) To prevent neutrophils from being washed away 

into the airway lumen.  

Expression of ICAM-1 has been shown to be upregulated in response to 

IFN-γ and TNF-α in both airway [53] and gastrointestinal epithelium [10, 52]. Also, 

increased ICAM-1 expression is evident in CF [110] and inflamed intestinal 

mucosa [10]. ICAM-1 has been shown to tether neutrophils at the apical surface 

of both the airway [110] and the intestinal epithelium. However, blocking ICAM-1 

only partially reduced neutrophil adhesion suggesting the involvement of additional 

proteins [52, 110, 111]. Whether CAREx8 is involved in neutrophil tethering in the 

inflammatory diseases is yet to be determined. Uncontrolled secretion of 

proinflammatory cytokines, including IL-8 [110] and TNF-α, is evident in 
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inflammatory diseases. TNF-α, via activation of NFκB, is known to induce IL-8 

secretion [112]. Therefore, it is very likely that CAREx8 is involved in tethering 

neutrophils at the apical surface. In the future, it will be intriguing to determine how 

the expression of CAREx8 differs in pathological tissues from patients with CF 

compared to healthy tissue from the general population. 

Current therapeutic options for the treatment of chronic inflammation and 

neutrophilia in inflammatory diseases are largely ineffective [63, 110, 113-115]. A 

greater understanding of the mechanisms that govern neutrophilia is required in 

order to identify novel strategies and therapeutics for the treatment of excessive or 

prolonged neutrophil recruitment and retention. The vast majority of studies and 

therapeutic approaches have focused on neutrophils to combat neutrophilia. In 

contrast, tissue-targeted approaches may yield improved disease-specific 

therapeutics with fewer side effects. Therefore, there is a pressing need for the 

elucidation of various adhesive interacting partners and the mechanism underlying 

PMN retention at the epithelial apical surface. This will further enable the design 

of organ specific drugs for the treatment of inflammatory diseases. Thus, the 

findings of this study have direct implications in the development of interventions 

for the treatment of inflammatory diseases.   
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Chapter 5: Neutrophils tethered to the airway epithelial cell surface benefit 

adenovirus entry 

Background:  Currently there are no specific treatments for adenovirus infection 

and supportive care is insufficient. Particularly in military recruits, pediatric 

patients, and in immunocompromised individuals, adenovirus infection can cause 

fatal respiratory distress. Several studies have shown that for infants and adults 

with bronchitis and lower respiratory tract infections, adenovirus contributes to 

about 5-15% of total viral infections [116-120]. In a study conducted by Gem et al., 

adenovirus, detected either as a sole pathogen or in combination with other 

respiratory virus, accounts for nearly 20% of the viral infections in infants in urban 

areas, who are at a higher risk for wheezing illness and asthma [99].  

Although many contributing factors, such as demographic characteristics, 

environmental factors, and allergen exposure, may influence the development of 

asthma, exposure to viral pathogen is also a critical factor for the development of 

asthma. In particular adenovirus infection is of interest because early exposure to 

the virus can further the development of asthma [121]. The development and 

severity of COPD has also been associated with adenovirus infections [21, 122]. 

In CF, the factors that modulate viral infection remain elusive. CF is characterized 

by accumulation of neutrophils at the epithelial apical surface. The 
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accumulation of neutrophils is detrimental to the epithelium. The reactive oxygen 

species generated by the neutrophils injure the surrounding tissue [123]. 

Therefore, I hypothesized that neutrophils adhered at the epithelial apical surface 

will augment adenoviral infection.  

This hypothesis will be tested by 2 aims: 

5.1. To test if neutrophils tethered on the epithelial apical surface augment 

adenoviral infection 

5.2 To test if neutrophil adhesion alters transepithelial resistance 

5.1. Neutrophils tethered on the epithelial apical surface increase the 

susceptibility of the epithelium to adenoviral infection 

 

5.1.1. Rationale:  

In the previous aim I demonstrated that CAREx8 tethers neutrophils at the epithelial 

apical cell surface. In vivo this function of CAREx8 might be essential because the 

adhered neutrophils form a defense barricade at the apical surface that is very 

important in normal healthy individuals. However, under pathological conditions 

the neutrophils that have accumulated at the epithelial apical surface might cause 

damage to surrounding tissue as a result of the chemicals released by the 

neutrophils. Therefore it is hypothesized that adhered neutrophils at the apical 

surface of the epithelium will aid in adenoviral infection.  

5.1.2. Results: 

Tethered neutrophils augment viral entry in polarized epithelia. 
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In order to understand the contribution of neutrophils to viral infection, a neutrophil 

adhesion assay was performed with increasing concentrations of neutrophils (0 – 

1 X 107) on polarized uninduced or induced MDCK-CAREx8 cells. The unbound 

neutrophils were washed off and the epithelia (with neutrophils adhered on the 

apical surface) were infected with adenovirus for 1 H, washed, and returned to the 

incubator. 24 H post infection, cells were lysed and viral entry was quantitated 

using qPCR analysis for viral genomes (vg). Consistent with the hypothesis I 

observed a significant 2-3 fold increase in adenoviral entry when more adhered 

neutrophils were present (Figure 29). Adenoviral entry was increased by an 

additional 2-fold when this same neutrophil adhesion assay was performed on 

MDCK-CAREx8 cells treated with DOX (Figure 29). This latter effect is attributed to 

increase in CAREx8 that is induced upon DOX treatment.  

Next we used an alternate approach to test the hypothesis. A neutrophil adhesion 

assay was performed with one constant concentration of neutrophils on MDCK-

CAREx8 cells, which were either induced or not induced with DOX. Post neutrophil 

adhesion, these epithelial cells were infected with increasing MOI of Ad5-β-Gal 

(Figure 30). To determine the baseline infection, uninduced MDCK-CAREx8 cells 

having no neutrophils were infected with increasing Vg. Interestingly, we observed 

that in the presence of neutrophils there was a significant 3-10 fold increase in 

adenoviral entry that was further amplified by at least 3 fold in the presence of DOX 

(Figure 30). In the case of uninduced MDCK-CAREx7 (Figure 31) and mCherry cells 

(Figure 32) there was a significant increase in adenovirus entry in the presence of 

neutrophils as observed in the uninduced  
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Figure 29: Doxycycline induction promotes adenoviral infection in MDCK-CAREx8 

cells in the presence of adhered neutrophils. MDCK-CAREx8 cells were either 

uninduced (white bars) or induced (shaded bars) with DOX. A neutrophil adhesion assay 

was performed with increasing number of neutrophils as indicated in the figure. Post 

neutrophil adhesion, the MDCK-CAREx8 cells were infected with Ad5-β-Gal for 1 H. 24 H 

later, viral entry was determined by quantitating viral genomes (Vg) using qPCR analysis. 

Fold change in viral genome entry is shown. Statistical significance was evaluated using 

one way ANOVA and Dunnetts post hoc test, *P<.05, **P<.01, ***P<0.001.  
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Figure 30: Neutrophils adhered on the apical surface of the epithelial cells promote 

adenoviral entry. Adenovirus entry was quantitated by qPCR analysis in uninduced 

MDCK-CAREx8 cells (circle) and compared with uninduced MDCK-CAREx8 cells with 

adhering neutrophils (square) and DOX induced MDCK-CAREx8 cells with adhering 

neutrophils (triangle). Statistical significance was evaluated using one way ANOVA and 

Bonferroni post hoc test, *P<.05, **P<.01,  
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Figure 31: Neutrophils enhance adenovirus entry into polarized epithelia but 

CAREx7 does not. Adenovirus entry was quantitated by qPCR analysis in uninduced 

MDCK-CAREx7 cells (circle) and compared with uninduced MDCK-CAREx7 cells with 

adhering neutrophils (square) and DOX induced MDCK-CAREx7 cells with adhering 

neutrophils (triangle). DOX induced MDCK-CAREx7 cells with adhered neutrophils had 

the greatest adenovirus susceptibility  
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Figure 32: Neutrophils enhance adenovirus entry into polarized epithelia but 

mCherry and Dox treatment does not. Adenovirus entry was quantitated by qPCR 

analysis in uninduced MDCK-mCherry cells (circle) and compared with uninduced MDCK-

mCherry cells with adhering neutrophils (square) and DOX induced MDCK-mCherry cells 

with adhering neutrophils (triangle). DOX induced MDCK-mCherry cells with adhered 

neutrophils had the greatest adenovirus susceptibility. Statistical significance was 

evaluated using one way ANOVA and Bonferroni post hoc test, *P<.05, ***P<.001,  
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MDCK-CAREx8 cells, yet there was no significant difference in the presence of 

DOX. This data strongly suggests that neutrophils increase adenoviral entry and 

the presence of increased CAREx8, which results in increased neutrophil adhesion, 

is further amplified.  

5.2. Neutrophil adhesion does not decreases transepithelial resistance 

5.2.1. Rationale:  

The previous experiments do not indicate how neutrophils promote adenoviral 

infection. Previous studies have shown that neutrophil adhesion at the apical 

surface of the gut epithelium increased the epithelial cell paracellular permeability 

in order to promote neutrophil transmigration. There are two measures of epithelial 

permeability 1) the ability for a current to move through the epithelium, which can 

be measured by transepithelial resistance, and 2) the ability of small substances 

to migrate within the paracellular space through the tight junctions and between 

adjacent cells. Both of these measures frequently correlate, therefore, I first sought 

to determine the transepithelial resistance in the presence of apically adhered 

neutrophils.  

5.2.2. Results:  

Neutrophil adhesion at the epithelial apical surface does not decrease the 

transepithelial resistance   

Neutrophil adhesion assay was performed on polarized MDCK-CAREx8 cells that 

were either uninduced or induced with DOX. Polarized epithelia with bound 

neutrophils were submerged and TER measured. Interestingly, we did not observe 

a decrease in the transepithelial resistance when compared to MDCK- 



103 
 

 

 

 

 

 

 

 

 

Figure 33: Neutrophil adhesion does not decrease the transepithelial resistance of 

MDCK-CAREx8 cells. TER was measured in MDCK-CAREx8 cells that were not induced 

with or without neutrophils or DOX-induced MDCK-CAREx8 cells with tethered neutrophils 
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CAREx8 without apically adhered neutrophils (Figure 33). Although there was a 

trend towards increased TER, this was not significant by one-way ANOVA. 

5.3. Discussion:  

 In this study we have demonstrated a novel function for the apical 

adenoviral receptor, CAREx8. CAREx8 tethers the infiltrating neutrophils at the 

epithelial apical surface. Although neutrophils are critical for fighting invading 

pathogens, the importance of apically adhered neutrophils is not yet well 

established. It is speculated that under physiological conditions, the apically 

adhered neutrophils are crucial to enable a close encounter with, and ultimately 

eradication of, the pathogen. For example, it is known that a threshold number of 

neutrophils are required to eradicate bacteria [124, 125]. However, apical 

neutrophil adhesion may be detrimental under pathological conditions. 

Accumulation of neutrophils at the epithelial cell surface can cause adverse effects 

on the surrounding tissue.  These cells can release inflammatory cytokines which 

exacerbate the situation. In this study, I show yet another repercussion of 

accumulated neutrophils at the epithelial apical surface. I have demonstrated that 

neutrophils promote adenovirus entry into the airway epithelia, which is expected 

to further contribute to pathology (Figures 29 and 30). Taken together, our data 

suggests that the adenovirus may have evolved to co-opt the innate immune 

response of the host, which may have been initiated by the virus. In addition it is 

possible that under pathological conditions, such as CF, where excess neutrophils 

accumulate on the cell surface, the adenoviral entry may be further augmented. 

There could be several mechanisms by which the neutrophils might be promoting 
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viral infection. For example: 1) as shown with intestinal epithelial cells, it is possible 

that the apically adhered neutrophils, cause epithelial cell signaling which 

culminates in the loosening of the junctions to enable increased neutrophil 

recruitment. This is not likely given that there is no change in TER (Figure 32), 2) 

apically adhered neutrophils may themselves stimulate apical CAREx8 localization. 

While this would accommodate additional infiltrating neutrophils, adenovirus is 

able to take advantage of the additional receptors to enter the epithelium, 3) the 

apically adhered neutrophils may release inflammatory mediators that alter the 

fluid phase endocytosis that occurs at the apical surface. 4) Neutrophil-produced 

inflammatory mediators may alter epithelial barrier integrity. Future experiments 

will focus on elucidating the exact mechanism(s) behind enhance viral entry. 

Understanding this may lead to novel therapies to inhibit adenovirus infection or 

reduce the toxic effects of chronic inflammation.  

Rhinovirus, another viral respiratory pathogen, might be using a similar 

mechanism as adenovirus to enter into the host epithelial cell from the apical 

surface of epithelia.  Rhinovirus uses ICAM-1 to bind and enter airway epithelial 

cells. Similar to CAREx8, the apical expression and localization of ICAM-1 is 

regulated by TNF-α and IFN-γ. The expression of ICAM-1 is tightly regulated and 

usually kept very low. However, when the epithelium is exposed to TNF-α or IFN-

γ, ICAM-1 expression is augmented and focused at the apical surface where it can 

tether neutrophils. Rhinovirus that might have gained entry into airway can take 

advantage of this host response to enter the epithelium. Therefore, decoding the 
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mechanism of viral entry will help design novel interventions that may prevent the 

infections of other viruses, which currently have no specific treatments.  
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Chapter 6: Global Discussion 

CAR is the primary receptor for most adenovirus types. The apical isoform of CAR 

(CAREx8) is identical to the basolateral isoform of CAR (CAREx7) except for the C-

terminal 13 or 26 amino acids that are unique to CAREx8 or CAREx7, respectively. 

This seemingly minor difference in C-termini has a tremendous effect on the 

subcellular localization of the two isoforms. Understanding the molecular 

mechanism of apical CAREx8 regulation is important because both increasing and 

decreasing the concentration of apical viral receptor will have direct implications in 

the development of interventions for both augmenting adenoviral based vector 

entry and reducing susceptibility to wild type adenovirus in the event of an 

outbreak.  

IL-8 is a proinflammatory cytokine and neutrophil chemoattractant secreted 

at the time of pathogenic intrusion. IL-8 is secreted by the epithelium itself and by 

resident macrophages in the lung [126]. A polarized secretion of IL-8 at the 

epithelial apical surface generates the chemotactic gradient that facilitates 

neutrophil recruitment [127]. In this study, we show that IL-8 increases CAREx8 

expression and localization on the apical surface of Calu-3 cells as well as in 

primary human airway epithelia (Figures 7, 9 and 11). It is also demonstrated that 

IL-8, via differential activation of AKT/S6K (Figures 15 and 16) and inactivation of 

GSK3β (Figure 18), stimulates CAREx8 protein synthesis without altering mRNA 
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levels. While the pathway IL-8/AKT/S6K in CAR regulation is novel and exciting, 

the involvement of other signaling proteins in the pathway cannot be ruled out and 

is yet to be determined. This data suggested that CAREx8 might have a role in the 

host innate immune response. Therefore, I sought to determine the biological 

function of CAREx8. Neutrophils are typically found at the epithelial apical surface 

after the transmigrating through epithelial paracellular space. This is an essential 

step to obtain the critical neutrophil concentration required to clear invading 

pathogens and other pro-inflammatory molecules efficiently.  

Therefore, I hypothesized that apical CAREx8 tethers infiltrating neutrophils 

at the epithelial apical surface.  In agreement with the hypothesis, I was able to 

demonstrate that CAREx8 binds neutrophils at the apical surface (Figure 24). 

Moreover, CAREx8 adheres neutrophils infiltrating from the basolateral surface to 

the apical surface of the epithelium (Figure 28C and D). It was also demonstrated 

that IL-8 augments neutrophil adhesion coincident with stimulating CAREx8 apical 

localization (Figure 26). Additionally, previous studies have shown that CAREx7 

(basolateral CAR) interacts with neutrophil expressed JAML and that this 

interaction is important for the proper transmigration of neutrophils across the 

epithelium. In agreement with this, I have shown that overexpressing CAREx7 

stimulates neutrophil transmigration across the polarized epithelium (Figure 28E 

and F).  

Taken together, these data strongly suggest that a biological function of 

CAREx8 is to tether infiltrating neutrophils at the epithelial apical surface. The 

present study has found a novel function of CAREx8 as a mediator of the innate 
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immune response. While I found that this is an IL-8-mediated effect, it is also very 

likely that this might be a general mechanism used by other pro-inflammatory 

cytokines, such as IL-1 and IL-6, and opens a new area of research in the field.  

We next considered the fate of the invading adenovirus that may have 

gained entry into the airway. Adenovirus, via its protruding fiber knob, binds to CAR 

at the same extracellular region, which CAR uses to interact with JAML. Therefore 

I asked whether the apically bound neutrophils protect the epithelium from the 

invading adenovirus, or if invading adenovirus is able to outcompete the 

neutrophils for the extracellular binding site on CAREx8. Surprisingly, it was found 

that apically adhered neutrophils increased adenoviral entry (Figures 29 and 30).  

I first hypothesized that the neutrophils were destroying the tight junctions of the 

epithelium allowing the virus access to basolateral CAREx7. However, there was 

no drop in the transepithelial resistance of the polarized epithelium (Figure 33), an 

event that is required for the virus to access basolateral CAREx7. It could be 

possible that adhered neutrophil-mediated signaling at the apical surface 

stimulates CAREx8 apical localization, thus promoting infection. Therefore, it is 

important in the future to determine the exact mechanism of increased adenovirus 

entry.  

Taking all of these data together, it is envisioned that, IL-8 augments the 

expression of CAREx8 at the apical surface of the epithelia to tether the infiltrating 

neutrophils. However, if adenovirus happens to gain entry into the airway through 

a droplet, it can hijack the innate host immune response to gain entry into the cell 

by attaching to the CAREx8 recruited to the apical surface (Figure 34). Previously, 
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it was assumed that adenovirus must breach the barrier to access its primary 

receptor. My data provides a mechanism and an explanation as to how the virus 

might infect the intact epithelium without breaching the barrier. Under pathological 

conditions, like in the case of CF where resident bacterial biofilms constantly cause 

inflammation, this reaction might be amplified leading to secondary infection with 

the virus.  

A similar mechanism may be used by rhinovirus as well. Rhinovirus is the 

most common human cold virus. ICAM-1 is the primary receptor for rhinovirus 

[128]. The apical expression of ICAM-1 is induced by proinflammatory cytokines 

TNF-α and IFN-γ [10, 53]. ICAM-1 can tether neutrophils on the apical surface of 

both airway and intestinal epithelia [52, 110]. Different cytokines use different 

receptors to trigger cellular signaling cascades. Therefore, the kind of cytokine 

plays a critical role in the type of response initiated [129]. In the future it will be 

interesting to test if IL-8 has an effect on ICAM-1 and if TNF-α/IFN-γ can regulate 

the expression of CAREx8. It appears that both adenovirus and rhinovirus have 

evolved to take advantage of the innate immune response to other pathogens. 

CF is characterized by the accumulation of neutrophils at the mucus surface 

of the epithelium. Viral infections are one of the major causes for the exacerbation 

of CF and acute respiratory distress in CF patients [130]. My data suggests that 

the neutrophils accumulated at the apical surface favors adenoviral infection. Our 

study has generated a platform for understanding the mechanisms for viral 

infection in inflammatory diseases and could ultimately aid in the development of 

novel therapeutics for inflammatory diseases and to reduce viral-mediated 
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exacerbation of disease. Yet, there are many questions that remain to be 

answered, such as whether this scenario is observed in healthy individuals. If so, 

why do neutrophils promote adenoviral entry while they are for the protection of 

the host? One possible explanation could be that in vivo, the effect of IL-8 mediated 

increase in CAREx8 expression, localization, and adhesion of neutrophils is 

counteracted by other cytokines, or other factors, which are missing when using in 

vitro models. 

 Our lab is currently working on designing drugable peptides that can either 

increase or decrease the expression of CAREx8 at the apical surface of polarized 

epithelium. In future, we hope to test these peptides for their ability to augment or 

reduce the epithelial susceptibility to adenoviral infection and retain, recruit or 

release neutrophils, based on patient needs. 
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Figure 34: Schematic for the evolution of apical adenovirus infection 1) pathogenic 

invasion of the airway causes 2) both the resident macrophages and the epithelial cells to 

secrete IL-8. 3) IL-8 augments the protein synthesis and apical localization of CAREx8. 4) 

In addition, IL-8 also recruits neutrophils that transmigrate through the epithelium from the 

basal surface to the apical surface.  5) On the epithelial apical surface, the neutrophils 

adhere in a CAREx8 dependent manner.  6) At the same time, adenovirus that has gained 

entry into the airway can hijack the host innate immune response to gain entry into the 

host cell. TJ – Tight junction 
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