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ABSTRACT
The browser and screen have been the main user interfaces of the
Web and mobile apps. The notification mechanism is an evolution
in the user interaction paradigm by keeping users updated with-
out checking applications. Conversational agents are posed to be
the next revolution in user interaction paradigms. However, with-
out intelligence on the triage of content served by the interaction
and content differentiation in applications, interaction paradigms
may still place the burden of information overload on users. In
this paper, we focus on the problem of intelligent identification of
actionable information in the content served by applications, and
in particular in productivity applications (such as email, chat, mes-
saging, social collaboration tools, etc.). We present eAssistant,
which offers a novel fine-grained action identification method in an
adaptive, personalizable, and online-trainable manner, and a cog-
nitive agent/API that uses action information and user-centric con-
versation characteristics to auto-triage user conversations. The in-
troduced method identifies individual actions and associated meta-
data; it is extensible in terms of the number of action classes; it
learns in an online and continuous manner via user interactions and
feedback, and it is personalizable to different users. We have eval-
uated the proposed method using real-world datasets. The results
show that the method achieves higher accuracy compared to tradi-
tional ways of formulating the problem, while exhibiting additional
desired properties of online, personalized, and adaptive learning. In
eAssistant, we introduce a multi-dimensional learning model
of conversations auto-triage, defined based on a user study and
NLP-based information extraction techniques, to auto-triage user
conversations on social collaboration and productivity tools.

∗The work has been done while the author has been a research
intern at IBM Almaden Research Center. All authors have made
significant equal contributions.
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1. INTRODUCTION
From the advent of the Web, the browser has been the key user

interface for consumption and interactions with Web application
systems [23]. Since then, Web browsers have evolved in different
directions including offering active mechanisms for user interac-
tion [10]. Application development for mobile shifted the focus
from Web applications to native mobile applications. Next, the no-
tification mechanism became a defacto method for delivering up-
dates to users, and reduced reliance on apps to the extent that some
called it a threat to the app concept, relevance, and usage [1]. Going
forward, conversational agents with advanced natural language and
voice dialog capabilities are posed to revolutionize the user inter-
face paradigm and become the default user interaction method for
applications [18]. Nevertheless, without intelligence of the con-
tent served by applications, neither of notification-based method
nor conversational agents may help with the issues of information
overload and productivity issues specifically for enterprise work-
ers [19], rather they may further contribute to overwhelming the
users and distort their interaction experience.

The key problem investigated in this paper is the intelligent iden-
tification of pieces of content which is of interest to a user (an
enterprise worker) across conversations channels on collaboration
tools (e.g., emails, chat, messaging, and enterprise social collabora-
tion tools) whether they are used through Web interfaces or mobile
apps. The goal is to auto-triage conversations (and therefore noti-
fications) that the user receives, thereby offering an intelligent and
cognitive user interface.

As a factor of the relevancy and of the interest of a piece of con-
tent to the user in an enterprise context, we focus on content that
contains statements calling on, suggesting, requesting, and making
commitments to the user of interest in natural language conversa-
tions, which we refer to as actionable statements. While there are
many classes of actionable statements, for the sake of the descrip-
tion of the proposed method in this paper, without loss of general-
ity, we focus on two generic classes of actionable statements, i.e.
requests and promises. A request is a statement that is asking for an
action to be taken by the receiver of the message in a conversation.
For instance, “Can you please send me the file by tomorrow?" is
an example of an explicit request. On the other hand, a promise is
a commitment made by the sender of the message to one or more
recipients (e.g., “I will send you the agreement documentation").



(a) (b)

Natural Language Sentence # of 
Promises

# of 
Requests

Actionable 
Statement

(1) As soon as her report is filed, we'll send it to your attention. 1 0 Yes

(2) Can you please share the deck as soon as you have the 
chance to review it?

0 1 Yes

(3) Please review the document and I will set up a meeting 
next week to go over any questions or concerns.

1 1 Yes

(4) I will know more on this question later today. 0 0 No

(5) We have compiled a list of financial and physical trades 
executed from  September 25 to September 27.

0 0 No

Figure 1: (a) A screenshot of an email (taken from the Enron email [12] corpus), in which a promise and a request are highlighted,
and (b) examples of statements with promises, requests or neither.

The identification of such actionable statements is important within
conversations as they allow for the auto-triage of conversations and
therefore function as a way to limit the number of notification up-
dates from Web applications, mobile apps, and social feeds. We
conducted a user study for conversation auto-triage that revealed
the problem of auto-triage is a multi-dimensional problem. Be-
yond understanding the content of conversations, it requires under-
standing the users (senders and receivers), aspects such as urgency,
action type, etc. In addition, the user study called for the method
to be personalizable, to continuously improve by learning from the
user feedback, and take into account the domain that the user is
operating in.

In this paper, we introduce a cognitive assistant framework called
eAssistant for learning different classes of actionable state-
ments in the context of human conversations in a personalized and
online manner. eAssistant uses information from actionable
statement identification along with other conversation information
such as sender(s)/receiver(s) and target user(s) and features extracted
from the content of conversations related to actions to provide an
auto-triage mechanism for conversations. We use the term cog-
nitive assistance to refer to offering an intelligent solution based
on artificial intelligence, natural language processing, and machine
learning for learning and identifying actionable statements and for
auto-triage of conversations carried out over various Web, mobile,
and social applications. Figure 1(a) shows an example of the ac-
tionable statement output of eAssistant identified in an email.
Figure 1(b) shows examples of three actionable statements and two
non-actionable statements in our email corpus.

The paper makes two major contributions. First, it presents a
novel method for learning actionable statements at a fine-grained
(action) level in natural language sentences through learning ac-
tion patterns that are formed using an order-preserving signature
of select tokens, PoS tags, combined with additional linguistic and
semantic role features [16] of each action verb. The introduced
method exhibits the following properties:

• The learned model is white-box, meaning that the model pre-
dictions can be explained by examining the learned action
patterns.

• The presented method is adaptive, meaning that the candi-
date feature set for forming action patterns can be expanded
as the learning continues over time.

• It is online, i.e. new action patterns can be learned in a con-
tinuous manner and learned instantly with new training sam-
ples through user feedback.

• The learned model can be personalized and customized. We
define a hierarchical, tree-like structure for organizing the

learned models in which the action patterns can be learned
at the global level, the top node of the tree, and at personal
levels positioned in the leaves. This structure allows for cus-
tomizing of the learned model for specific organizations, do-
mains, and individual users.

The next major contribution of the paper is defining a multi-
dimensional framework for the auto-triage of natural language con-
versations by conducting a systematic user study and offering the
eAssistant cognitive service, which takes into account the iden-
tified actionable statements, associated metadata such as timing,
subject, objects, and projected importance of the senders/receivers,
observed from past user conversations, to identify actionable con-
versations in a given conversation stream, specifically in emails,
chats, messaging applications, and social collaboration streams.
These set of features are used to formulate the problem as an adap-
tive and personalized classification problem, which uses a classi-
fier along with a rule-based classification model, which is auto-
generated and configured as the result of user feedback on the auto-
triage classes.

We have evaluated the actionable statement learning and identi-
fication method, and auto-triage using conversation data from real-
world settings. In particular, we have used conversations in the En-
ron Email Corpus [12] and a separate set of corporate email conver-
sations. We compare and contrast the result of our method with that
of a black-box classification method used for actionable sentence
identification, which shows that our approach achieves favorable
accuracy results. Additionally, it has the advantage of providing an
action-level, online, adaptive, and personalizable learned model.

The paper is organized as follows. First, we describe the problem
of actionable statement identification, followed by our proposed ac-
tionable learning and identification approach. Next, we present the
conversation auto-triage process. Then, we present the implemen-
tation details of eAssistant, the evaluation, and the compara-
tive analysis results. Finally, we discuss related work and conclude
with future directions.

2. ACTIONABLE STATEMENT IDENTIFI-
CATION PROBLEM

In general, actionable statements in conversation may be cate-
gorized into a number of classes depending on the context and do-
main, e.g. orders, needs, questions, commitments, etc. At the high-
est level of abstraction and without loss of generality, in this paper
we assume actionable statements are captured in the two classes
of Promises and Requests exchanged between human (knowledge)
workers in an enterprise context. Given two parties of people X and
Y and an action A, where |X|> 0 and |Y|> 0, we define a request
and a promise as follows.



I will schedule a meeting the week of February 22 to discuss.

Can you please share the deck as soon as you have the chance to review it?

Left context Action verb Right context

Left context Action verb Right context

Action Instance 
(promise)

Action Instance 
(request)

I will know more on this question later today.

Left 
context

Non-action verb Right context

No Action 
Instance

Figure 2: Action instances and action verbs.

(Request). Request R is a tuple R = (X,Y,A, T ), where X is
requesting (assigning) Action A to Y to perform, optionally by the
due date/time T .

In a conversation, the sender of a message is usually the requester
(assigner) for a request. And we define a promise as follows:

(Promise). Promise P is a tuple P = (X,Y,A, T ), where X is
committing to perform Action A for party Y , optionally by the due
date/time T .

Similarly, in a conversation, the sender of a message is usually
the committer of a promise. Note that depending on the action type
there may be additional parameters of interest to be extracted for
the given action from the text. For instance, for a “send file" action,
the desired parameter is “File Name" and “File Type", and for a
“calendar invite" action, additional parameters include a “List of
Required Participants, List of Optional Participants, Time of the
Event, Venue/Place, etc."

Let us illustrate the problem formulation with some examples
of actionable statements in human conversations, Figure 2 shows
two actionable statements and a sentence that does not contain any
action. We refer to an occurrence of an instance that belongs to one
of the two action classes in a natural language sentence (referred to
as sentence here onwards) as an action instance. In Figure 2, the
first two sentences contain a promise and a request, respectively,
and hence contain one action instance each. We consider an action
instance to be focused around a verb and its left and right context in
the sentence. An actionable statement is identified as a combination
of verbs and action patterns. In the sequel, an action pattern is
defined as a collection of a specific ordering of tokens and POS
tags, and other features derived from them that are related to the
verb. Let V be all the verbs, T be the list of all tokens except V ,
and G be the list of POS tags1 of T in a sentence S. An action
pattern AP in sentence S is defined as follows.

(Action pattern). An action pattern is a three-tuple item, AP =
(v, d, f), where v ∈ V and d is an ordered sequence of extracted
and constructed features f . f ∈ T ∪G.

When an action pattern specifies an action instance (i.e. posi-
tive action pattern for one of the classes of interest), the associated
verb is called an action verb. Note that the same tokens and tags
can appear in two action instances that belong to different classes
(e.g., one a promise and the other a request) for which the action
patterns differ from each other because the order of features are dif-
ferent). Hence, identifying/learning tokens and tags as individual
elements does not help to correctly identify action instances and the
respective action classes. In general, a sentence can have more than
one action pattern when it has more than one verb (i.e., more than
one action instance). For instance, consider the sentence “Please
review the document and I will set up a meeting next week." It has
two verbs (review and set up) that contribute to two different ac-
tion instances. The first is a request and the second is a promise.
It is important to recognize these two action instances separately

1Includes inferred or computed tags.

rather than identifying the whole sentence as an actionable state-
ment. This is one reason that we are interested in extracting and
learning patterns with respect to each verb. In doing so, we can
better assist users by tagging relevant action items for each action
instance in a sentence for efficient processing and information pre-
sentation (e.g., Figure 1 (a)). Given the above, the problem of ac-
tionable statement identification is defined as follows.

(Actionable statement identification). Given a sentence S, a
set of pre-defined action classes {c1, c2, ...ck} ∈ C, and a set of
action patterns {ap1, ap2, ...apn} ∈ AP in S, the problem of ac-
tionable statement identification is to correctly select class cj ∈ C
for each api ∈ AP .

3. ACTIONABLE STATEMENTS: LEARN-
ING AND IDENTIFICATION

First, we extract features from sentences focusing on each verb.
During learning, the proposed method learns action verbs and ac-
tion patterns. Learning action verbs is important as they are a major
discriminator in the identification of action instances (i.e., certain
verbs are not actionable in some domains). The learned model con-
sists of different types of action verbs (independent and enclosed)
and action patterns that specify valid actionable statement forms
for each action class. To predict whether each verb in a given sen-
tence defines an action instance in one of the supported classes, we
extract the set of features related to the verbs and use the learned
model (consisting of action verbs and action patterns models) to
predict the class of each verb in that sentence. The learned model
can be updated from continuous user feedback and training. Next,
we outline our approach in the actionable statement identification
process.

3.1 Feature Space Definition
We define a set of feature candidates related to each verb which

are used to learn various action patterns that identify action in-
stances. Feature candidates consist of POS tags, semantic role fea-
tures of the verb of interest [16, 5], and language token types, in-
cluding:

1. Pronoun (PRON) token, auxiliary (AUX) token, personal named
entities (NER).

2. Mood of the verb.

3. Whether the verb is an action verb (learned separately).

4. Whether the verb encloses other action verb/s.

5. The number of enclosed action verbs > 0.

6. The tense of the verb.

For the above features, and in particular in text parsing, part-of-
speech labeling, and dependency parsing, we rely on state-of-the-
art NLP parsers. In particular, we use IBM BigInsights SystemT [5]
which has an associated query language called AQL (Annotation
Query Language), which is used to get advanced text annotations,
including POS tags, semantic role labels, dependencies, etc. Us-
ing AQL, the tokens of pronoun, auxiliary, and the NER tag are
selected from the left context of the verb. If there are more than
one of these available in the left context, the closest one to the verb
is taken. The mood of a verb changes based on the place it appears
in the sentence and how it is used in conjunction with prepositions
(possible moods are: normal, imperative, infinitive, etc.). The no-
tion of an enclosed verb in the list of features above refers to a verb



is verb tagged as 
actionable?

yes no

enclosed verb

yes no

verb can be 
independent

verb is 
dependent

Verb Independent
send true
prepare true
like false
have             false
- - - - - -

Training: labeled Statement

Action Verb 
Learning

Adaptive & 
Online Pattern 

Learning

Actionable Statement
Class

Pattern-Based 
Prediction

is action verb

yes no

No

Pattern 
Construction

Filtering

Feedback

Prediction: Statement

Action 
verbs 
storage

Feature Extraction
POS, NLP Tags, Verbs And Dependency 

Extraction

Feature Extraction
POS, NLP Tags, Verbs And Dependency 

Extraction

Model

verbs All features All features

Figure 3: Learning and prediction of actionable statements.

that is not the dominating verb for the action instance but states
“what/how" actions for the action instance. For example, in the
sentence “Please schedule a meeting to discuss," the verb “discuss"
(enclosed verb) is enclosed by the verb “schedule." When a verb is
enclosing one or more verbs and at least one of them is an action
verb, then it has> 0 enclosed action verbs. Finally, the tense of the
verb is used as another feature (past-tense verbs do not specify an
action instance).

3.2 Learning Action Verbs and Action Patterns
The learning in the proposed approach consists of two impor-

tant components: (i) learning action verbs and (ii) learning action
patterns. Figure 3 depicts the learning process of actionable state-
ments.

3.2.1 Learning Action Verbs
Identifying a verb as an action verb or not is important. Recall

that not all verbs are considered actionable in certain work contexts
(domains), although they may appear in patterns that are identical
to those of action patterns. For example, consider the following
sentence fragments. Example 1: “I will rest"; example 2: “I will
meet." Both sentences have similar tokens except for the verbs,
but the first one is not considered an action instance because the
action described by the verb is not important for the work envi-
ronment. It should be noted that having an action verb in a sen-
tence is a necessary condition but not sufficient to make it an ac-
tionable statement (e.g., “You could schedule."). Therefore, action
verbs are learned from the training samples as follows. If a verb is
tagged as an action type and is independent (not enclosing verbs),
we record it as ‘<verb,true>’ (independent or singular). If the verb
encloses other verbs and is tagged as an action type, we record it
as ‘<verb,false>’ (dependent or compound). If there is a single
instance where a compound verb acts as singular, we update the
verb as singular. This helps the system to identify complex patterns
where the verb participates in defining an action but indirectly. For
example, in the sentence “I would like to schedule", “like" is a de-
pendent action verb. Algorithm, 1 shows the proposed method for
learning different forms and language constructs that action verbs
appear in.

Algorithm 1 Learning Action Verbs
1: input: String label, String verb, Set enclosed_verbs
2: output: updated verb Map
3: initialize or get existing Map<Verb, Boolean>
4: if label ∈ Type then
5: if |enclosed_verbs| > 0 then
6: if Map does not contain verb then
7: Map← <verb, false>
8: end if
9: else

10: Map← <verb, true>
11: end if
12: end if

Compound action verbs can be complex in statements and be
found through following a chain of enclosed verbs until a singular
action verb is reached. In case of compound verbs as “like", we
record that the verb “like" can appear in action instances in the
enclosed form. In the algorithm, if the label of the verb is of class
promise or request, and it is not enclosed with any other verb, then
we record the verb with the value “true" (line 10). That means, the
verb appeared in a positive sample for a class and does not depend
on another verb. If the labeled verb (to a class) encloses other verbs
and there is no record of the verb as an independent, singular form,
we record the verb with the value “false" (line 7). This means that
the verb cannot be used independently (alone) in action instances.
Note that we update an action verb as dependent if we have not ever
discovered it in an independent example (line 6).

3.2.2 Building and Learning Action Patterns
We first extract all available features among the candidate fea-

tures for a given action verb in a labeled sample, the patterns are
formed based on the observed order of tags and tokens in the state-
ment. In forming a pattern, the key decision point is how generic
and specific patterns could be defined. Very specific patterns (e.g.,
all token-level patterns for an actionable statement) lead to over fit-
ting and therefore low recall. On the other hand, learning at all
POS tag levels and other syntactic and semantic linguistic features
(such as verb mood, etc.) will lead to overgeneralized patterns and



therefore a low precision. We decided to form hybrid action pat-
terns in which a combination of tag-level and token-level features
and semantic (role label) features are present.

We define an action pattern as a set of features including a se-
quence of tokens, tags (including features 1-5), verb-centered fea-
tures (e.g, feature 6) and semantic features. During learning, the
proposed method takes an order-preserving combination of tokens
and tags (features 1-5) as one feature (called signature feature) as
they need to be considered together. We take the order of the tokens
and tags as they appear in the sentences for as feature 1 (e.g., the or-
der of tags and tokens of feature 1 for the verb in the phrase “John,
could you do it?" is “NER,could,you"). Our model accommodates
the addition of new features in training for all potential tokens and
tags on the left-hand side of the action verb since all such features
are considered candidate features in forming the signature feature 2.

We adapt a Winnow-based multi-class classifier for learning ac-
tion patterns. We make use of the SNOW [4] representation, which
is similar to a one-layer neural network but differs from how it
updates weights. The weight updating process is mistake-driven
and does both promotion and demotion of weights. The network
has target nodes and each input feature has weights associated with
each target node. We have the target nodes set as promise, request,
and other. A positive prediction means the algorithm predicts a tar-
get node (having the highest weight aggregation of features) and
negative prediction otherwise. Let t, α, and β be the target node,
promotion constant, and demotion constant, respectively. Promo-
tion and demotion parameters are positive constants, α > 1 and 0
< β < 1. Let At = {A1, .., Am} be the set of active features3 for a
given example linked to the target node t.

The algorithm promotes weights of the target node t as shown in
Equation 1 when it predicts negative, where

∑
i∈At

wt,i is not the
highest value and the provided label matches t.

∀i, wt,i = wt,i · α (1)

It demotes weights of the target node t as shown in Equation 2
when it predicts positive, where

∑
i∈At

wt,i is the highest among
the target nodes and the label does not match t.

∀i, wt,i = wt,i · β (2)

All the other weights remain unchanged, including those of fea-
tures that are not present in the current sample. In the prediction
stage, we take the highest aggregated weighted class as the pre-
diction (winner takes all). In rare but possible occasions of a tie,
we make the decision based on a separate support score (separately
maintained and explained later) to select either the promise or re-
quest classes.

3.3 Actionable Statements Identification
As Figure 3 depicts, our actionable statement identification (pre-

diction) is a two-step process. In the first step, we check whether
the verb has been learned as an action verb (either independent or
dependent) and in the second step, we perform the pattern matching-
based identification. This two-stage identification process helps our
approach to avoid having to keep track of every verb in the action
patterns, which would explode the number of action patterns it has
to learn. If the verb is an independent or dependent action verb, we
do the prediction by applying the SNOW algorithm. Otherwise, we
2Inclusion of other new features may require new model update
operations to be defined, outside of the set of candidate features for
inclusion in signature patterns
3features present in the in-hand statement that is being processed.

Personal 
model

Personal 
model

Personal 
model

Global Actionable Statement Model

Domain model
Domain model

. . .
. . .

Figure 4: Hierarchy of models for personalized and domain-
specific learning of actionable statements.

determine it is not an actionable statement. Note that our model is
able to learn the set of action verbs from the training samples (i.e.,
bootstrapped). In our implementation, we bootstrapped the dictio-
nary of action verbs with few hundreds of seed action verbs taken
from the domain and existing users of an enterprise email client,
which is expanding through the continuous learning process.

3.4 Domain-Specific and Personalized Model
Learning

Previous sections described how we build a single global model
of actionable statements from training data. In general, action verbs
and action patterns may differ from one industry domain or busi-
ness sector to another (such as healthcare vs. finance). Different
users may also consider certain statements actionable or not, de-
pending on their work environment and preferences. We describe a
framework for enabling the learning of domain-specific and person-
alized models for actionable statements. This is performed through
defining hierarchical and layered models for actionable statements,
e.g. with the three levels of global, domain-specific, and personal
models. Figure 4 shows an illustration of the hierarchy of models.

3.4.1 Learning personalized models
The personalized model learning is managed through the user

feedback mechanism. During initial training, the system is boot-
strapped with the global model which is learned using the set of ini-
tial training data (see Figure 3). If personalized learning is not en-
abled, all users feedback will be assessed and applied to the global
model. When it is enabled, the user feedback, which translates into
learning new action pattens (asc described in Section 3.2.2) to be
included or excluded from the model for the given user, is stored in
their personalized models. We define a personal feedback promo-
tion mechanism to surface actionable statement patterns for which
there are enough statistical support from different users.

The users feedback is collected in two forms: (i) incorrect ac-
tionable statement identification: flagging an identified action as
not being a request or a promise, and (ii) missing actionable state-
ments: flagging a statement (and thereby the verb within a state-
ment) as being a promise or request that is not captured. The
user feedback is assessed against the matching action pattern in the
model if it exists, and leads to the promotion or demotion operation
on the features weights. If not exist, new patterns are created and
added to personal models.

In order to track the support for user feedback, we define two
parameters associated with each action pattern: (1) a support score
s, which keeps track of the number of times that the same feedback
(existing pattern in the global model or a new pattern) has received
positive support from the users and (2) the list of users who have
supported the pattern. We apply a threshold γ on s for each pattern
to identify which model level they belong to. For a given action



pattern ap, when s(ap) < γ, the pattern will stay active only for
the users who support it. And, if s(ap) ≥ γ, it is promoted to the
higher-level model in the hierarchy (the global or domain-specific
model, depending on the configuration). If the feedback is to de-
mote a given pattern ap in the global model for which after de-
motion still s(ap) ≥ γ, it remains active in the global model, but it
would be recorded in the personal model of the user who demoted it
as an excluded pattern. This personalized model allows the user to
keep his/her personal patterns in his/her personalized model when
there is no system-wide or domain-wide agreement.

3.4.2 Learning domain-specific models
The learning of a domain-specific model can be done through a

training phase with samples labeled with the specific domain name.
This creates known domain models in the hierarchy. Domain mod-
els can also be adapted through user feedback by users who belong
to that domain. Domain configuration in the system is associated
with a domain support score threshold σ << γ. When domains are
enabled for a specific user, action patterns with a support score s
below σ are kept in personal models, if σ < s(ap) < γ it belongs
to a domain model, and if s(ap) ≥ γ the pattern is stored in the
global model.

3.4.3 Actionable statement identification in domain-
specific and personalized statement models

During the actionable statement identification process, priority
is given to patterns in the personal, then domain, and finally global
models. This enables considering personalized models and domain
models over the patterns in the global model. Note that every user
may not have a personal model (which occurs when they have not
provided any feedback or when their feedback is applied to patterns
on the global and domain levels).

4. CONVERSATION AUTO-TRIAGE
Human conversations are carried out with various social collab-

oration tools with Web or mobile application interfaces. Each new
update in a conversation thread (group chat session, text, email,
or social feed) can potentially create a notification for a user sub-
scribed to those conversations. The goal of conversation auto-triage
is to identify selected updates (messages) within conversation threads
that are of interest or importance, and therefore selectively create
notifications and increase the productivity of knowledge workers
by enabling them to focus on the most important conversations first.
In order to understand the criteria for the triage of conversations by
users, we organized two separate user studies; each started with a
survey and followed by a design workshop with the goal of iden-
tifying the criteria and prioritizing them through voting. The user
studies were divided into 60 internal enterprise employees and 53
external survey participants. The users had a diverse set of roles, in-
cluding knowledge workers, managers, business planners, project
managers, and administrative assistants, among others. The survey
questions were focused around their habits and behavior when deal-
ing with social collaboration tools from emails, chat, social media
and how they organize their work. The design workshop then pro-
ceeded with a select number of users from both groups representing
different enterrprise user roles with the agenda of finding and pri-
oritizing the most common factors for conversation prioritization.

The surveys and user studies led to the following top categories
of criteria: (1) the importance of the sender of an update (mes-
sage) for the receiver, (2) the existence of an ask (action) targeted
to the receiver, (3) the urgency of the action, and (4) a commit-
ment/promise made to the receiver. Based on the combination of
these factors, we defined 4 classes of priorities: (i) Act Now, (ii)

Read/Act Promptly, (iii) Act Later, and (iv) Others; with the fol-
lowing initial, default conditions: (i) Act Now: messages from im-
portant people which have an action with immediate timeline sig-
nal (e.g., by the end of the day); (ii) Read/Act Promptly: messages
from important people, or messages with an action for you with an
immediate timeline from any person; (iii) Act Later: any message
with an actionable statement not covered by the prior two cate-
gories, and messages with an explicit mention of the recipient but
no action; all the other update feeds would be classified to Other
priority class. Figure 5 shows an example of a Web-based email
interface in which the conversation auto-triage for emails has been
demonstrated.

Technically, we prepare the features needed for auto-triage as
follows. The first feature is the detection of people important to
the user: there is a list of important people maintained for a user.
This list is a dynamic list compiled from user interactions and con-
sidering organizational groups/projects and hierarchies. Also, de-
pending on the organization structure and collaboration tool, other
people are added. For example, the manager of the user is automat-
ically added to the list of important people. In the case of email, we
analyze the past interactions of the user with conversations in the
emails over a specified period of time (e.g., last month) and people
to whom the user has replied promptly after receipt are added to this
list. This list can also be supplemented externally if the collabora-
tion tools (e.g., email clients) provides their own list of important
people.

The other set of features are extracted from the metadata of the
message, e.g., From (sender), To/CC (receivers), Subject, Date/Time
of an email. The set of action-specific features are extracted from
the content of the message. We have developed an action informa-
tion extraction method to extract metadata attributes of an action
such as the intended target user (if explicitly mentioned), object,
etc. We also provide a template-based method for the identifica-
tion of certain types of action verb, e.g., Send/Share file/document,
and Calendar/Invite related requests. For such action types, we de-
fine templates that include parameters of interests to be extracted in
the form of rules written in AQL and an extensible dictionary as-
sociated to each parameter. The template-based extraction method
looks beyond immediate sentences that contain the action verb and
uses the following three techniques: (i) co-reference resolution, (ii)
looking for missing parameter values in the neighboring sentences,
and (iii) looking through the conversation threads on the same topic
(email chains).

Using the featured extracted from the content of metadata of a
conversation we trained an SVM classifier for the auto-triage of
conversations. The basic method is formulated as a traditional clas-
sification problem and the use of SVM classifier, we enable collect-
ing feedback on the classification on each conversation. We use the
user feedback in two ways: (i) consistency checking of the criteria
in the feedback with what the system is trained on. In some cases,
where the analysis may reveal a conflict in class labels for two or
more training instances with the same set of criteria but conflicting
class labels. This is used to do conflict resolution in the training
dataset. (ii) building personalized classification logic for features
that are not captured in the classification problem. When feedback
is on features that are not fed into the classifier (e.g., keywords
that the user considers important for her), it leads to the genera-
tion of personal rule-based classification model that is retained in
a personal layer. This personal auto-triage model is used to pro-
mote/demote the classes returned by the classifier, e.g. for conver-
sations that the user would like to be brought into her attentions or
those that are not.



Figure 5: eAssistant PoC for Email conversations
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Figure 6: Layered architecture overview of eAssistant.

5. IMPLEMENTATION AND EVALUATION
In this section, we present implementation details of eAssistant

including its layered architecture and evaluation results.

5.1 Implementation
eAssistant is implemented as a set of APIs that offer cogni-

tive assistance for actionable statement identification for both text
and rich conversations and conversation auto-triage on rich conver-
sations in emails (e.g., IBM Verse 4), chats, and social collabora-
tion tools (e.g., IBM Watson Workspace 5). An overview of the
layered architecture of eAssistant is shown in Figure 6. For
linguistic analysis, eAssistant uses SystemT [5] libraries (part
of the IBM BigInsights platform), as an advanced NLP parser, for
PoS tagging, named entity recognition (NER), semantic role label-
ing, and co-reference resolution. Semantic role labeling helps in
identifying the thematic and semantic role that each token plays re-
lated to a verb, including subject, object, mood, etc. [16]. PoS tags
and named entities are used as features in forming signature feature
of action patterns. Co-reference resolution facilitates linking sen-
tences, mainly related to human mentions/entities, and finding val-
ues of template parameters in the template-based action type. We
implemented our temporal signal identification by defining AQL
queries for mentions of time and dates as well as phrases like ASAP,
today, and EOD. The eAssistant functionalities are exposed

4http://www-03.ibm.com/software/products/en/
ibm-verse
5https://workspace.ibm.com/

through a set of REST APIs. The eAssistant APIs are used in
PoCs that integrate the functionalisties with email clients and also
offered seprately in a PoC tool with a Web interface that is using
AngularJS and Twitter Bootstrap. The eAssistant PoC is re-
leased as a pilot to select early adopter users.

5.2 Evaluation
We evaluated the proposed methods in eAssistant using a

publicly available email dataset, i.e. Enron [12] email corpus, and
a set of private corporate email data sets.

5.2.1 Dataset
To evaluate the actionable statements identification method, we

extracted sentences from an email set taken from the Enron Corpus
and other corporate email datasets. At the sentence level, there are
6,000 sentences in total in the dataset, consisting of 15,404 can-
didate action instances (with associated action verbs). To create a
golden training/test set, we had a handful of domain experts man-
ually tag each of these action candidates as either a promise, re-
quest, or neither. This dataset forms our human-labeled ground
truth which is used for initial training and testing of the system.

5.2.2 Experimental Setup
Actionable statement identification is a classification problem at

its core. To provide a basis for comparative analysis, while our ap-
proach is a white-box method, we experimented with formulating
the problem with the state-of-the-art black-box methods and in par-
ticular an SVM classifier (SVM linear kernel, liblinear from scikit-
learn library with the same set of features of ). Among the black-
box classifiers we experimented with for this problem, SVM per-
formed others. This observation is also consistent with that of our
prior work for using a black-box method in a similar context [11].

For evaluation, for both approaches of eAssistant and the SVM-
based approach, we trained and tested the them by splitting the data
into 70% for training and 30% for testing. The data set contained
15,404 action candidates from 6,000 sentences. The reported re-
sults below for both approaches are similar to that of a 10-fold
cross validation on the same sets, when experiments done for each
approach separately). In case of eAssistant, we used 1.5 and 0.8
for α and β, respectively (we performed a search within the space
of possible α and β, using a small separate train/test set and these
values led to best precision and recall). As metrics, we report on
precision, recall, and F1 measure as shown in Equations 3, 4, and
5, respectively.



Approach Precision Recall F1 measure
eAssistant 0.89 0.86 0.88
SVM 0.85 0.86 0.85

(a) Action verb level for three classes, trained on the same features

Approach Precision Recall F1 measure
eAssistant 0.86 0.80 0.83
SVM 0.86 0.83 0.84

(b) Sentence level for three classes, trained on different features

Table 1: Comparison of results. The three classes are promise,
request, and other.

Precision Recall F1 measure Support
Other 0.96 0.98 0.97 3847
Promise 0.84 0.80 0.82 209
Request 0.87 0.81 0.84 506

(a) eAssistant

Precision Recall F1 measure Support
Other 0.96 0.95 0.95 3874
Promise 0.87 0.86 0.86 206
Request 0.71 0.77 0.74 542

(b) SVM

Table 2: Precision, recall, and F1 breakdown at Action Class
levels for test set. Support is the number of items.

Precision =
# of correctly identified action instances

# of identified action instances
(3)

Recall =
# of correctly identified action instances

# of action instances
(4)

F1 = 2 · Precision · Recall
Precision + Recall

(5)

5.2.3 Result analysis
We designed two separate experiments: (i) actionable statement

identification at the verb-level. That is, we predict an actionable
statement class for a candidate action verb in the dataset. (ii) action-
able statement identification at the sentence-level. This is whether
each of approaches can identify sentences that actionable, i.e., con-
tain an actionable statement in them.

Table 1(a) reports the precision, recall, and F-measure for the
verb-level experiment. For the sentence level, to make the evalua-
tion setting stricter, we took sentences that have only one action in-
stance within them. There are 5,701 such sentences in our dataset.
For the SVM classifier, the frequent set of n-grams are used as fea-
tures for the sentence-based evaluation, and in particular using a
dictionary-based count of 1-2 grams and setting maxdf to 0.8. Ta-
ble 1(b) shows the results of the comparison.

As the results show, our pattern-based actionable sentence iden-
tification approach slightly outperformed SVM-based action iden-
tification in terms of precision for verb-level experiment, and their
precisions are comparable at the sentence-level. In terms of recall,
the performance of the two methods are the same at verb level,
while at the sentence level, SVM-based approach performs slightly
better arguably due to the fact that it is trained based on n-grams,
which allows it to capture and distinguish phrases that makes a

statement actionable. Table 2 shows the break-down of the per-
formance of the two methods at the individual action class level
for the verb-level action identification. As shown, eAssistant
method achieves better precision and recall at identifying requests
compared to the SVM-based approach, while it achieves compara-
ble results on the Promise and Other classes.

Beyond outperforming at the accuracy level, Table 3 compares
the two approaches on multiple dimensions. It shows the advan-
tages of eAssistantmethod compared to the black-box method.
In particular, for fine-grained action identification, the introduced
eAssistant method is superior by exhibiting properties such
as online learning, personalization, explainability (white-box), and
domain adaptiveness all of which come as its out-of-the-box bene-
fits.

Conversation auto-triage. We evaluated our our multi-dimensional
auto-triage classification method on a larger email dataset with more
than 26,000 emails. We annotated each of these emails using a rule-
based conversation prioritization, using the criteria defined by our
users in the workshop. Then, we conducted a similar 70% vs 30%
data split, and trained an SVM classifier for auto-triage. It achieved
82% precision, and 85% recall. We had a supervised evaluation
session with 4 users which provided us input on the auto-triage
results, and submitted feedback for creating a personal rule-based
auto-triage conditions for personalized conditions not captured by
the auto-triage logic (based on keywords and context of the con-
versations). When using these additional criteria through the rule-
based promotion of classes, the future emails covered by those
conditions, which are misclassified by the classifier are correctly
classified, which improves the overall prediction accuracy for each
users. The user-defined conditions are translated into AQL-based
rules that are applied as part of auto-triage pipeline.

5.2.4 Personalized learning and user feedback on ac-
tionable statement identification

We have used the eAssistant prototype in a pilot with 40+ users.
It receives user feedback in the form of classification corrections
and the highlighting missing (not captured) actions. In the eval-
uation period, we received more than 250 pieces of feedback for
missing action types and nearly 20 correction cases. The analysis
of the missing cases shows that more than 70% of the cases belong
to introduction of new actionable statement classes (a notable class
was “questions") that we have not covered in our base experiments,
which we added as a new actionable statement class in learning and
predictions. The remaining 30% of missing cases and the correc-
tions led to learning patterns that are kept in the personal models.
The benefit of this approach is the instant application of the feed-
back and a positive reward cycle for the user. The analysis of in-
correct cases identified a number of verbs identified as Requests in
short statements such as “find it attached" or “go for it" with an im-
perative verb and no left-hand context. Finding such cases led us to
improve our method to keep track of verbs that are exceptions from
a valid action patterns in the model (in this case for action pattern
for imperative verbs and no left-hand context), and the evaluation
of their right-hand side during prediction.

The actionable statement identification method described in the
paper is integrated into the pipeline of a set of internal collabora-
tion tools, and is under evaluation by alpha users. In particular, the
APIs exposed by eAsssistant is consumed by different collab-
oration applications (email, messaging and social connections, etc)
for actionable statement identification and made available to a large
experimental user base for their evaluation and feedback.



Approach Online Adaptable Explainable Domain-specific Personalizable
eAssistant Yes Yes Yes Yes Yes
Classifier-based approaches (e.g.,[11]) No No No No inherent support No inherent support

Table 3: The multi-dimensional comparison of eAssistant approach with a black-box approach for actionable statement identification

6. RELATED WORK
The problem of action characterization and identification in tex-

tual interactions among humans (and in particular over emails) has
been extensively studied (see [6] for a bibliography on this topic).
This includes introducing theories and concepts such as speech
acts [25], language action perspectives [26], frameworks for man-
ual identification and management of activities (e.g., [2, 14, 9, 15]),
activity modeling [21], learning and finding action items [20, 11,
22], and the classification and grouping of emails based on activi-
ties [17, 8, 13, 7, 24]. The contribution and novelty of the approach
presented in this paper lies in the fact that it investigates and makes
new contributions to the problem of learning and identifying action-
able statements (expressed in complex language patterns) in human
conversations in an adaptive, online, domain-aware, and personal-
ized manner. In particular, we cast the problem of the understand-
ing of work-focused human conversations into that of learning and
recognizing action patterns and actionable statements from input-
labeled samples, and introduce a method that is capable of continu-
ously adapting the learned model as new samples become available
and also based on feedback.

The approaches focusing on advanced email user interfaces for
manual activity management (e.g. [2, 14, 9, 15]) are not directly
comparable to our learning-based approach. We study the existing
work in three main categories: (i) manual tagging- and annotation-
based methods for identifying actions (e.g., those studied in [17,
13]), (ii) intelligent email systems leveraging machine learning [8,
13, 7, 24], and (iii) classification-based methods for action extrac-
tion from textual conversations [20, 11, 22]. The tools and tech-
niques in the first category are not related to the work presented in
this paper as they require human interaction in organizing the con-
tent. The second category of work (e.g., [8, 13, 7, 24]) offers ma-
chine learning methods to classify/identify emails with action state-
ments in them. These approach the problem either as a supervised
classification problem of whole email [13] or as an unsupervised
clustering problem of grouping all emails with the same activity
into the same cluster (e.g., [2]). These operate at the email level
and do not focus on detecting individual actionable statements as
we do in this paper. The last category of related work (e.g., [20, 11,
22] offers methods for the identification of actions in sentences as
a whole. These methods approach the problem as a classical classi-
fication problem in which features are also defined in advance and
updating the model requires re-training from the start. In addition,
these methods are unable to pinpoint individual actions and do not
identify multiple action instances within a sentence, if exists. Nev-
ertheless, to provide a comparative basis at the sentence level, we
did experiments to compare our approach with that of black box
approaches as reported in the evaluation.

In contrast to these approaches, as also depicted in Table 3, our
method: (i) is fine-grained in identification (identifies action in-
stances at the level of verbs compared to sentences), (ii) is adaptive
(based on feedback and the domain) and online (learns from feed-
back continuously), and (iii) can be personalized. Our proposed
method also outperforms the black-box, SVM model in experi-
ments and achieves comparable recall. Finally, we offer a novel,
multi-dimensional, and action-based conversation auto-triage method
that is a basis for offering cognitive assistance to improve the hu-

man user interaction experience in conversational agents and in
Web or mobile applications. In the literature, the problems of con-
versation, and in particular email classification [3] and email priori-
tization [27] have been studied. However, these approaches mainly
consider the textual content as a whole, and involved people, but
to the best of our knowledge none of them are considering action,
action metadata, and conversation characteristics.

7. CONCLUSION AND FUTURE WORK
In this paper, we investigated the problem of offering cogni-

tive assistance in work environment, and in particular on the prob-
lem of the identification of actionable statements and auto-triage
of human conversations. To the best of our knowledge, this is the
first work that introduces an adaptive, online, and personalizable
method for learning fine-grained actionable statements. We eval-
uated our implemented framework for its identification of action-
able statements and compared it against state-of-the-art machine
learning techniques. We showed that our approach is favorably
comparable to the state-of-the-art and it is adaptable and teachable
through feedback. The developed eAssistant prototype sys-
tem is piloted with a set of selected early adopter enterprise users.
As future work, we are investigating deep-learning based methods
for conversation auto-triage. We are also planning to integrate and
offer eAssistant as a cognitive conversational agent on top of
productivity and social collaboration tools.
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