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Somatic stimulation causes frontoparietal cortical
changes in neonates: a functional near-infrared
spectroscopy study
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Abstract. Palmar and plantar grasp are the foremost primitive neonatal reflexes and functions. Persistence of
these reflexes in infancy is a sign of evolving cerebral palsy. Our aims were to establish measurement feasibility
in a clinical setting and to characterize changes in oxyhemoglobin (HbO) and deoxyhemoglobin (HbD) concen-
tration in the bilateral frontoparietal cortex in unsedated neonates at the crib-side using functional near-infrared
spectroscopy (fNIRS). We hypothesized that bilateral concentration changes will occur upon somatic central and
peripheral somatic stimulation. Thirteen preterm neonates (five males) underwent time 1, and six (two males)
returned for time 2 (mean PMA ¼ 41.6 and 47.0 weeks, respectively). Signals from a total of 162 somatic stimuli
responses were measured. Response amplitude, duration, and latency were log-transformed and compared
between palmar, plantar, and oromotor stimuli using linear mixed models, adjusted for cap, electroencephalo-
gram abnormality, time (1 versus 2), and Sarnat score, if necessary. The oromotor stimulus resulted in a 50%
greater response than the palmar or plantar stimuli for HbO left and right hemisphere duration (p < 0.0001).
There were no other statistically significant differences between stimuli for any other outcome (p > 0.05).
Utilizing fNIRS in conjunction with occupational and physical therapy maneuvers is efficacious to study modi-
fiable and restorative neurophysiological mechanisms. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.NPh.4.1.011004]

Keywords: functional near-infrared spectroscopy; neonates; activation; somatic stimulation.

Paper 16012SSR received Mar. 1, 2016; accepted for publication May 2, 2016; published online Aug. 17, 2016.

1 Background
Prematurity adversely affects the developing neonatal brain and
is manifested by guarded neurodevelopmental outcomes1–3 and
behavioral and cognitive deficits.4–6 Occupational therapy in
these high-risk infants has been shown to improve the rate of
development in somatic tasks, such as sucking.7 However,
the acute effects of occupational therapies are not quantifiable,
and the effects of such therapies on the cerebral cortex are not
clear. Thus, functional measurements are required to enhance
our understanding of the sensory-motor effects of peripheral
somatic stimulation and to define cortical involvement.
Functional near-infrared spectroscopy (fNIRS) is a modality
that permits the study of functional brain responses in neonates.
Unlike magnetic resonance imaging (MRI), NIRS was recog-
nized to be useful at the bedside8–10 to monitor changes in cer-
ebral perfusion and oxygenation, particularly in sick infants who
have dynamic pathophysiology of the brain.11,12 Neonatal occu-
pational and physical therapies have evolved over time with
emphasis on sensory-motor integration and improvement in
motor functions. In the convalescing neonatal intensive care
unit (NICU) infant, commonly used approaches are passive

touch, containment (bundling in a blanket), and stimulation
of the palmar and plantar aspects of the palms and feet. The
effects of therapies on developmental changes in the brain
are not known, although the effects of somatic stimulation
with passive touch studies using functional magnetic resonance
imaging (fMRI) have been studied.13,14 However, fMRI studies
are not commonly feasible in NICU neonates, and it is difficult
to control the implementation of experimental paradigms. This
is largely due to the expense, need for transport, need for person-
nel with technical skills, movement artifacts, need for longi-
tudinal studies, and analytical difficulties owing to rapid
changes during maturation and growth. On the other hand,
implementing and repeating these studies using fNIRS can
prove advantageous, as these methods offer the ability to mon-
itor localized cerebral cortical activation by measuring changes
in the concentration of oxyhemoglobin (HbO) and deoxyhemo-
globin (HbD) in a portable, noninvasive manner at the cribside
regardless of the activity state and nature of pathophysiology.
These approaches using fNIRS in conjunction with occupational
and physical therapy maneuvers may be efficacious to study the
modifiable and restorative neurophysiological mechanisms. The
ability to monitor the brain noninvasively has made NIRS favor-
able for measuring cerebral oxygenation, quantifying cerebral

*Address all correspondence to: Nasser H. Kashou, E-mail: Nasser. Kashou@
wright.edu 2329-423X/2017/$25.00 © 2017 SPIE
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hemodynamics, i.e., cerebral blood flow and cerebral blood vol-
ume,15 and measuring other circulatory parameters.16 Therefore,
this study was undertaken specifically to elucidate functional
developmental processes in the newborn brain with reference
to the effects of somatic stimulation and to assess the feasibility
of NIRS in the clinical NICU setting.

1.1 Significance

Functions of the frontoparietal cerebral cortex involve multiple
interactions in producing a final behavior, and such interactions
involve afferent and efferent neural circuitry in addition to per-
fusion to the regions of interest. Importantly, cortical perception
is fundamental to the development of cognition,17 memory,18

defense reflexes,19 integration, and execution of final actions
that culminate in sensory-motor patterns manifesting as and
in addition to physiological and behavioral responses.20

Representation of palms, feet, and tongue is wider within the
frontoparietal cortex than in the vicinity of the precentral and
postcentral gyrus. Although the importance of the mentioned
functions from adult human brain studies is increasingly under-
stood using functional MRI studies, there remains a gap in the
understanding of such functions in the human neonate. This gap
in knowledge is largely due to the difficulties in keeping neo-
nates still in an unsedated state and the need to attend to these
neonates promptly in order to maintain cardiorespiratory stabil-
ity. Recently, fNIRS methods have been applied to study cer-
ebral cortical functions across the age spectrum.21–24 Thus, in
the current study, we characterized the physiological changes
in the neonatal brain following each of three somatosensory

stimulation methods: plantar (foot tapping), palmar (hand tap-
ping), and oromotor (pacifier).

Our main objective was to acquire NIRS in unsedated neo-
nates at the bedside and analyze changes in HbO and HbD con-
centrations in response to the applied somatic stimuli. Because
the bilateral frontoparietal region of interest is the main sensory-
motor association area, we hypothesized that significant HbO
and HbD concentration changes will occur in the regions of
interest within the brain associated with specific targeted
somatic stimulation. Additionally, we compared the effects of
plantar, palmar, and oromotor stimulation.

2 Methods

2.1 Participants

Participants were 13 neonates (five males) born at 39.3� 0.6
(mean� SE) weeks gestation age (GA) with mean postmenst-
rual age (PMA) of 41.6� 0.7 (mean� SE) weeks at time 1
studies. Six (two males) at mean PMA of 47.0� 1.1
(mean� SE) weeks came back for time 2 studies. All proce-
dures and protocols were approved by the Institutional
Research Review Board at Nationwide Children’s Hospital
Research Institute, Columbus, Ohio. Written informed consent
and HIPAA authorization were obtained from the parents prior
to the study. The 13 neonates had birth weight 3.4� 1.9 kg. The
frontooccipital circumference (FOC) at times 1 and 2 evalua-
tions was 34.5� 0.5 cm and 36.6� 0.8 cm, respectively
(Table 1). Continuous data were collected while neonates
went through variable intervals of sleep and wake states with
periods of applied stimuli with a total of 162 somatic stimuli
response measurements.

Table 1 Patient demographics. GA, gestational age in weeks; FOC, frontooccipital circumference in centimeters; and PMA, postmenstrual age in
weeks. T1, time 1 and T2, time 2. Patient 3 did not show any response.

Patient Gender
GA
(wks)

Birth
weight
(g)

Sarnat
score

electroencephalogram
(EEG)

abnormality

FOC
@ T1
(cm)

PMA
@ T1
(wks)

FOC
@ T2
(cm)

PMA
@ T2
(wks)

1 Boy 35.0 2101 III Y 30.5 37.9 na na

2 Girl 37.0 2225 II Y 33 39.1 na na

3 Girl 40.9 4601 III Y 35.6 44.4 na na

4 Boy 39.0 3700 II Y 36 40.0 na na

5 Girl 37.9 2764 I Y 32.5 40.0 34.6 44.0

6 Girl 39.3 3532 II Y 35.7 39.0 36 45.0

7 Boy 38.0 3501 II N 35.5 42.0 na na

8 Boy 40.9 3270 II Y 38.2 46.0 — 50.0

9 Girl 41.3 3650 II Y 35.5 43.0 na na

10 Boy 41.0 3855 II N 33 42.0 38.8 46.4

11 Girl 41.0 3500 II Y 35 41.9 na na

12 Girl 41.7 3420 II Y 35 44.9 37 50.7

13 Girl 38.4 3570 III Y 33.5 40.4 36.5 45.6

Mean 39.3 3361 2.2 34.5 41.6 36.6 47.0
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2.2 Study Methods

A continuous wave single-phase compact NIRScout imaging
system (NIRx Medical Technologies LLC)—with four 760
and 850 nm wavelength LED sources (power: >5 mW∕
wavelength) and eight Si photodiode detectors (sensitivity
and dynamic range: <1 pW, 90 dB)—was used to measure
changes in HbO and HbD. A noninvasive NIRS-EEG cap
encompassing the sources and detectors was placed onto the sur-
face of the neonate’s head by the neonatologist and comfortably
secured via elastic straps. The source-detector (channel) layout
covered the frontoparietal cortical regions [Fig. 1(a)]. The cap
size varied based on the neonate’s head circumference.

2.3 Experimental Protocol

Based on the infant’s head circumference at evaluation, the cor-
responding cap was fitted with the optical sources and detectors.
A neonatologist placed and adjusted the cap to ensure proper
positioning. Contact between the scalp and optodes was
assessed by calibrating the gain setting on the NIRx system
and physically adjusted, if needed. All studies were performed
in a neonatal nursery setting; as per NICU environment proto-
cols, the ambient temperature and light intensity were fairly
regulated during the study. The sources and detectors were
placed on the frontoparietal regions of the brain as determined
by the surface markings and discussion with neonatologist and
pediatric neuroradiologist and also further clarified based on an
MRI atlas25 and correlations between adult and infant
neuroanatomy.26 True sleep states were not discerned since con-
current polysomnography was not done.

The overall experimental paradigm included targeted
palmar (hand) and plantar (foot) stimulation applied to the
left and right sides using finger and foot tap [Fig. 1(b)].
The neonatologist performed these somatic stimuli, tapping
with a frequency of about 1 Hz. At least 30 s of baseline
was obtained before the stimulus was given. The stimulus
duration was varied from 10 to 30 s (mean of 15 s) with a
minimum of 30 s rest. In addition, oromotor stimulation (pac-
ifier) was provided at random intervals to soothe the subject
with at least 30 s of rest. Bilateral changes in HbO/HbD con-
centrations from baseline values in the frontoparietal cortical
region were analyzed. This included response effects of 162
(66 palmar, 75 plantar, and 21 oromotor) somatic stimuli mea-
sured from all patients.

2.4 Near-Infrared Spectroscopy Data Analysis

HbO and HbD concentration (μmol∕L) changes were deter-
mined and analyzed for potential trends [Fig. 1(c)]. The follow-
ing characteristics were defined to evaluate the feasibility of
NIRS: “Baseline” was defined as the rest period when the infant
was noted to be quiet and still before a stimulus was given. A
baseline value was obtained immediately before the onset of the
stimulus. “Response latency time” was defined as the time from
the onset of the stimulus to the beginning of the stimulus-
induced response. “Hemodynamic response (HDR)” was
defined as an increase in the HbO concentration level and a
decrease in the HbD concentration level in response to a
given stimulus. “Response duration” was defined as the time
from the onset of the stimulus-induced response to the time
the HbO/HbD concentrations returned to baseline normal levels.
Response duration and latency between each type of stimulus
were analyzed. Postprocessing was done using Homer2 and
code written in MATLAB (The Mathworks, Inc.).27

A three-step process was used to remove motion artifacts,
both quantitatively and qualitatively, due to the erratic nature
of the infants during the studies. Motion artifacts were deter-
mined both during the study and the signal analysis.
Undesired events such as crying or unwanted motion were
marked down during the study, and trials that contained these
issues were discarded and acquired again when the infant
was in a calm state. Motion artifacts were removed with the
wavelet filter using an interquartile range value of 0.1, after con-
verting the data to optical density.28 This was followed by a
bandpass filter from 0.02 to 0.75 Hz, and then the signal was
converted to hemoglobin concentration based on the modified
Beer–Lambert law (see Appendix). Finally, during signal analy-
sis of HDRs, any stimuli that showed motion artifacts (spike
noise or slow-moving drift of HbO and HbD) were removed
from the analysis.

Signals that were not skewed with motion artifacts and
showed HDR were selected from the data based on Homer2
and visual analysis. These signals were averaged across all
patients and zeroed by subtracting the mean of the values of
t < 0. The duration analyzed of each response was confined
to 45 s for every stimulus type. HDRs were then determined
by visually inspecting the averaged signals. The difference
between baseline and maximum value, latency, and response
duration was marked down for each channel that showed a
response.

Fig. 1 (a) Representation of source-detector (channel) layout utilized to cover frontoparietal cortex.
Yellow indicates sources and red indicates detectors. (b) The study design included oromotor (pacifier),
palmar, and plantar tapping for 15 s of stimulation and 30 s of rest interspersed randomly. (c) HDR def-
initions used in calculations.
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2.5 Statistical Analysis

The outcome variables were HbO and HbD concentration
changes (amplitude) between the baseline and the stimulus-
induced response, response duration, and response latency.
These outcomes were compared by response side (left or
right) between the three stimulus types: plantar, palmar, and oro-
motor. Comparisons were made using a linear mixed regression
model with a random infant effect to account for the serial cor-
relation due to repeated measures on the same individuals. Due
to non-normality of residuals, outcome variables were log-trans-
formed prior to testing for significant differences. This transfor-
mation is possible only on positive outcomes; the latency
outcome included some zeros, so 1 was added prior to transfor-
mation; amplitude for HbD included some negative values and
was on a very small scale, so the minimum value þ0.000001

was added prior to transformation.
We adjusted for cap (1 versus 2 versus 3), EEG abnormality

(yes/no), time (1 versus 2), and Sarnat score (I versus II versus
III) by including them in the model if their inclusion resulted in a
decrease in Akaike’s Information Criteria.29

The unadjusted regression model was

EQ-TARGET;temp:intralink-;sec2.5;63;514

Yij ¼ β0 þ β1IðStimulusij ¼ PalmarÞ
þ β2IðStimulusij ¼ PlantarÞ þ bi þ εij;

where Yij is the transformed outcome for the j’th response for
individual i, β0 is the mean outcome for the oromotor stimulus,
β1 is the difference in mean response between the palmar and
oromotor stimuli, β2 is the difference in mean response between
the plantar and oromotor stimuli, the difference in mean out-
come between palmar and plantar stimuli is represented as
β1 − β2, I (condition) is an indicator function that takes the
value 1 if the condition is true and 0 otherwise, bi (normally
distributed with mean 0) is the random infant effect representing
heterogeneity between infants and the inclusion of which

accounts for the nonindependent nature of the data (for a
given outcome, repeated measures on the same individual are
correlated), and ϵij (normally distributed with mean zero) is
the error term. Adjusted models included terms for the variable
being adjusted for.

Three extreme outliers were excluded from the analysis: a
value of 2.64 × 10−5 for HbO amplitude on the left response
side (the next largest value was 3.85 × 10−6), a value of −1.13 ×
10−5 for HbD amplitude on the left response side (the next most
negative value was −2.22 × 10−6), and a value of −3.17 × 10−6

for HbD amplitude on the right response side (the next most
negative value was −1.67 × 10−6. Removal of these outliers
did not impact our conclusions regarding the comparison of out-
comes between stimuli.

Significance of differences between stimuli was tested at the
α ¼ 0.05 level of significance. R version 3.1.230 was used for
statistical analysis.

3 Results
Of the 162 stimuli, 95 (37 palmar, 42 plantar, and 16 oromotor)
evoked responses in either left, right, or both hemispheres, and
one of the 13 patients did not show any responses. HDR ampli-
tude, latency, and duration for HbO following stimuli, including
the number of responses per hemisphere, are summarized in
Table 2. The HDR amplitude for HbD is also tabulated. The
typical HDRs (mean� SE) seen for palmar, plantar, and oromo-
tor stimuli are shown in Fig. 2.

There were significant differences between time 1 and time 2
for HbO latency (left hemisphere), between those with and with-
out an EEG abnormality for HbO response amplitude (right
hemisphere), and between caps for HbO duration (right hemi-
sphere). However, the significance of differences between
stimuli was not affected by adjustment for any covariate.

No significant differences in response amplitude of HbD and
HbO across all three stimuli, or between left and right
hemispheres, were seen (Fig. 3). No significant differences in

Table 2 Summary table of mean HDR amplitude, latency, and duration as a result of plantar, palmar, and oromotor stimuli in the left and right
hemisphere. No hemispheric differences were seen within stimuli. Oromotor response duration was significantly larger than that of plantar or
palmar.

Outcome Hemisphere

Stimulus

Plantar Palmar Oromotor

N Mean N Mean N Mean

HbO Amplitude Left 34 1.2 27 1.2 14 1.2

(μmol∕L) Right 36 1.1 30 1.4 13 1.3

Latency Left 34 2.6 28 2.3 14 2.4

(sec) Right 36 1.9 30 2.2 13 2.8

Durationa Left 34 23.4 28 22.4 14 36.7

(sec) Right 36 23.1 30 22.2 13 35.7

HbD Amplitude Left 34 −0.38 27 −0.27 14 −0.29

(μmol∕L) Right 36 −0.39 29 −0.34 13 −0.20

aFor duration, the response following the oromotor stimulus was significantly greater than the responses following plantar (p < 0.0001) and palmar
(p < 0.0001) for each response side.
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Fig. 3 HbD and HbO response amplitude (μmol∕L) for palmar, plantar, and oromotor stimuli. No signifi-
cant differences across all three stimuli and between left and right hemispheres were seen.

Fig. 4 HbO response latency (sec) for palmar, plantar, and oromotor stimuli. No significant differences in
response latency across all three stimuli and between left and right hemispheres were seen.

Fig. 2 The typical HDRs (mean� SE) seen for palmar, plantar, and oromotor stimuli (HbO—red, HbD—
blue). The y -axis indicates the concentration changes in μmol∕L.
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response latency across all three stimuli, or between left and
right hemispheres, were seen (Fig. 4). No significant differences
in response duration between left and right hemispheres were
seen (Fig. 5). However, the oromotor stimulus resulted in a
significantly greater response than the palmar or plantar
tapping stimulus (adjusted for cap) left hemisphere duration
[expð0.47Þ¼1.60×greater than palmar,p<0.0001;expð0.43Þ ¼
1.54 × greater than plantar, p < 0.0001], and right hemisphere
duration [expð0.44Þ ¼ 1.55 × greater than palmar, p < 0.0001;
expð0.39Þ ¼ 1.48 × greater than plantar, p < 0.0001] (Fig. 5).

4 Discussion
The salient findings of our study are: (1) as hypothesized, bilat-
eral responses were present and no significant hemispheric
differences in amplitude, latency, or duration were seen for
any stimulus, and (2) analysis of the response duration demon-
strated significant differences between the oromotor stimulus
and each of the palmar and plantar stimuli.

Tactile stimulation of infants has been shown to reduce
length of stay.31 By understanding the pathways and cortical
activation of these neonates during focused stimulation, targeted
focal areas can be determined that correlate to high activation
and help to reduce length of stay. Differences between efficient
and inefficient feeders have been illustrated for both nutritive
and non-nutritive sucking.32 Non-nutritive sucking and tactile
stimulation have also been shown to reduce length of stay
and improve neonates’ oral feeds.31,33,34 NIRS can help elucidate
the cortical readings and focal areas where these treatments
work. The neural pathway and coordination in regards to feed-
ing are not fully understood in neonates, so more functional
research is required. It was observed that both tactile and oro-
motor stimulation of certain regions has improved oral feeds
compared to no stimulation,34 but underlying cortical changes
were not obtained. Understanding the synaptic genesis at
these targeted cortical areas when provided with such stimula-
tion can help to uncover which treatments are most beneficial.

We have demonstrated the feasibility of using NIRS in the
neonatal setting; however, we recognize there is room for further
advances. For instance, some signals had to be discarded
because of motion artifacts. Hence, additional optimization is
possible from both the hardware and software perspectives.
Understanding what has worked in the past and what has not
is a crucial step in moving forward. Additional concerns with

NIRS are the signal-to-noise ratio (SNR) and signal quality,
and several studies35 approach these challenges differently.

There has been a variety of investigations on the use of NIRS
on neonates in both functional and clinical studies to determine
brain activation or cerebral oxygen consumption. To our knowl-
edge, ours is the first to investigate and compare responses to
palmar, plantar, and oromotor stimuli using NIRS. Numerous
NIRS studies deal with visual or voice recognition and how
the infant’s brain interprets these stimuli.36–43 Other researchers
have used NIRS in conjunction with other data collection instru-
ments in order to help characterize tissue oxygen saturation of
neonates with disorders.44–46 Also, NIRS can be applied to thera-
peutic neuromotor assessment techniques.47

Importantly, no sedation was used, which is a common prac-
tice during MRI infant studies.38 This allowed us to use stim-
ulations to determine cortical activation.36 NIRS can also be
used in conjunction with other data acquisition tools, which
can help validate and give more insight into the received
signals.44,48,49

4.1 Implications

Near-infrared spectroscopy is a promising field for bedside neo-
natal monitoring. Cortical changes in regions of specificity and
neural development can be analyzed. Understanding how the
maturation of the neonatal brain affects neural pathways can
clarify the usage of therapeutic techniques that promote cortical
activation.

1. Tactile stimulation has been used to provide physical
and occupational therapy in the clinical setting, but
understanding which brain areas are involved and
the reasons behind it are not fully understood.

2. Oral feeding plays an important role in infants’ feeding
abilities; thus, development of suck-swallow rhythms
is crucial. Non-nutritive sucking using pacifiers has
improved oral feeds and helped reduce length of
stay.33,34 How non-nutritive sucking contributes to
the neural pathway of feeding is not as fully under-
stood as is the swallow pathway in neonates.
Concurrent NIRS during oral stimulation can help elu-
cidate these issues.

Fig. 5 HbO response duration (sec) for palmar, plantar, and oromotor stimuli. The oromotor stimulus
resulted in a 50% greater response than the palmar or plantar stimuli (adjusted for cap) for HbO left
and right hemisphere duration p < 0.0001. No significant differences in response latency between
left and right hemispheres were seen.
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3. While, in this study, NIRS was used to analyze
somatic stimulation, it can be also be used in other
ways. By showing that results were obtained with
NIRS in the NICU setting, future studies that address
functional activity can benefit from the portability and
ease of use of this imaging modality in this setting.

4.2 Limitations and Future Directions

When studying high-risk infants, safety considerations are
essential. In addition to the comprehensive knowledge require-
ments of the NICU by the occupational therapist,50 training on
and understanding the NIRS setup would need to be considered.
Technical difficulties with NIRS appeared during the studies.
Motion artifacts, a problem when imaging infants,51 may bias
the results by masking the true changes in HbO and HbD.
These artifacts also affected the baseline data in some trials
and, in certain cases, caused the cap to loosen, which reduced
the total time for data acquisition. The motion artifacts that
remained in the usable data sets were mostly alleviated by
the wavelet and bandpass filter, but stimuli that still contained
motion artifacts were removed from the analysis. Research pro-
tocols need to be designed to keep the infant happy and calm in
order to reduce any unwanted motion or behavior that may arise
if the infant becomes agitated.51 Initially, some of our artifacts
were not specifically from the infant moving, rather from the
bed being disturbed inadvertently by the clinical staff. In this
case, simply informing them to be more cognizant of the sensi-
tivity of the system would improve data collection and use. In
addition, hair obstruction lowers the SNR because the source
light intensity is lowered by interactions with the hair,40,51

but is not a serious problem with neonates due to the sparse
amount of fine hair. Another major problem with NIRS research
is that there is no standard for baseline values of HbO and
HbD,46,52 which leads to a lack of reproducibility in
research.17 This is due, in part, to different hardware among
researchers.52 It is also due to the fact that every infant brain
is different because this human period is one of development,
so there is no standard model of an infant’s brain.51 The vari-
ability in these studies highlights this reproducibility problem
since there are different hardware systems and wavelengths
used to measure HbO and HbD. Furthermore, infants in different
studies were of different ages, which further causes variations
since the neuroanatomy is quickly developing as opposed to
a mature adult brain. The differences between controls and
patients are not known at this point in time, and will need to
be investigated. Future studies must consider the tradeoffs
between number of channels, patient comfort, and spatial and
time resolution. Also, larger sample sizes with more repeated
measurements will clarify intra- and intersubject variability.

5 Conclusion
The use of fNIRS at the bedside in unsedated neonates can prove
to be advantageous for studying newborn brain development.
Specifically, this modality can be used to assess the effectiveness
of certain therapies on the neurophysiological level and allow a
new perspective and methodology for future treatment. In this
study, no significant hemispheric difference was seen regarding
response amplitude, duration, and latency within stimuli.
However, response duration was greater for pacifier than foot
or hand tapping. To the best of our knowledge, this is the

first study to investigate palmar, plantar, and oromotor stimuli
on infants using NIRS.

Our study may assist with cribside monitoring and evaluation
of practices. Specifically, the NIRS modality can be utilized
to assess the effectiveness of certain therapies on the neuro-
physiological connectivity and integration of organ functions.
For example, integrating fNIRS with time-synchronized somatic
stimuli may permit assessment of occupational and physical
therapies on the infant’s regional brain activity, functional con-
nectivity changes, muscle memory, sensitivity, responsiveness,
and magnitude of responses. These assessment methods may
also be useful to determine the effects of maturation and neuro-
motor malfunction. Future studies utilizing concurrent swallow-
integrated EMG and pharyngo-esophageal manometry with
fNIRS may allow for brain connectivity mapping related to nor-
mal infant feeding and dysphagia-related conditions.

Particularly, we will be able to assess the duration and mag-
nitude of brain response during solitary and repetitive stimuli.
Prolonged activation implies prolonged neurophysiologic and
HDR on fNIRS. In those with neonatal stroke, it is important
to restore motor functions of skeletal muscles involved with spe-
cific tasks. The larger question is to test how different therapies
generate changes with acute and chronic functional connectivity.
This may form the basis of measuring neuroplasticity.

Appendix
To determine HbO and HbD concentrations, the modified Beer–
Lambert law is used.53

EQ-TARGET;temp:intralink-;e001;326;417I ¼ I0e−ε½C�L; (1)

EQ-TARGET;temp:intralink-;e002;326;386ΔOD ¼ − lnðIfinal∕IinitialÞ ¼ εΔCLB; (2)

where I is the detected light intensity, I0 is the incident intensity,
ε is the extinction coefficient, C is the concentration of the
chromophore, L is the optical path length, OD is the optical den-
sity, and B is the differential path-length factor.

This equation is further modified to give the change in con-
centration for HbO and HbD as

EQ-TARGET;temp:intralink-;e003;326;294Δ½HbD� ¼ ½f½ελ2HbOðΔODλ1∕Bλ1Þ�
− ½ελ1HbOðΔODλ2∕Bλ2Þ�g∕ðελ1HbDελ2HbO
− ελ2HbDε

λ1
HbOÞL�; (3)

EQ-TARGET;temp:intralink-;e004;326;227Δ½HbO� ¼ ½f½ελ1HbDðΔODλ2∕Bλ2Þ�
− ½ελ2HbD ðΔODλ1∕Bλ1Þ�g∕ðελ1HbDελ2HbO
− ελ2HbDε

λ1
HbOÞL�; (4)

where λ1 and λ2 are different wavelengths of near-infrared light.
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