Wright State University

CORE Scholar

Psychology Faculty Publications

Psychology

2016

Statistical Analyses of the Resilience Function

Joseph W. Houpt

Wright State University - Main Campus, joseph.houpt@wright.edu

Daniel R. Little

Follow this and additional works at: https://corescholar.libraries.wright.edu/psychology

Part of the Cognition and Perception Commons, Cognitive Psychology Commons, and the Quantitative Psychology Commons

Repository Citation

Houpt, J. W., & Little, D. R. (2016). Statistical Analyses of the Resilience Function. *Behavior Research Methods*.

https://corescholar.libraries.wright.edu/psychology/437

This Article is brought to you for free and open access by the Psychology at CORE Scholar. It has been accepted for inclusion in Psychology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

Statistical Analyses of the Resilience Function

Joseph W. Houpt

Wright State University, Dayton, OH, USA

Daniel R. Little

The University of Melbourne, Melbourne, Australia

Author Note

- Joseph W. Houpt, Department of Psychology, Wright State University. Daniel R.
- 8 Little, School of Psychological Sciences, The University of Melbourne.
- This work was supported by AFOSR Grant FA9550-13-1-0087 and ARC Discovery
- 10 Project Grant DP120103120.

6

- 11 Correspondence regarding this article should be addressed to Joseph Houpt,
- Department of Psychology, Wright State University, Dayton, Ohio 45435. E-mail:
- з joseph.houpt@wright.edu

25

Abstract

The extent to which distracting information influences decisions can be informative about 15 the nature of the underlying cognitive and perceptual processes. In a recent paper, a 16 response time based measure for quantifying the degree of interference (or facilitation) from distracting information termed resilience was introduced. Despite using a statistical 18 measure, the analysis was limited to qualitative comparisons between different model 19 predictions. In this paper, we demonstrate how statistical procedures from workload 20 capacity analysis can be applied to the new resilience functions. In particular, we present 21 an approach to null-hypothesis testing of resilience functions and a method based on functional principal components analysis for analyzing differences in the functional form of the resilience functions across participants and conditions.

Keywords: Response Time, Information Processing, Statistics, Conflict

26

Statistical Analyses of the Resilience Function

27 Introduction

```
Understanding the time course of decision making and behavior requires that we are
28
   able to make accurate inferences about how information is processed and integrated.
   Modern approaches to studying information processing aim to differentiate several general
   properties of information processing systems. These properties can be categorized as
31
   follows: (1) Is information processed in sequence or simultaneously (i.e., in a serial or
   parallel architecture)? (2) Does the decision stop only after processing all of the
33
   information or can the decision terminate prior to that point (i.e., an exhaustive or
34
   self-terminating stopping rule)? (3) Is information processed independently or is there an
35
   interaction between processing channels? and (4) How does the processing efficiency
   change with increasing workload (i.e., the workload capacity of information processing)?
37
         In this paper, we focus on a recently defined metric for resilience: How information
38
   processing systems deal with conflicting information (Little, Eidels, Fific, & Wang, 2015,
   2016); that is, information from multiple sources which provides evidence for contrasting
   responses, actions, or decisions. Resilience, as demonstrated in Little et al. (2015, 2016)
   and summarized below, is affected by a combination of the four basic properties. For
42
   example, the presence of additional information, whether conflicting or not, affects
   workload (attribute 4 from the previous paragraph). If information is processed
   dependently, then contrasting information can inhibit processing (attribute 3). These
   influences and the influences of architecture (attribute 1) and stopping rule (attribute 2)
   are discussed in detail later.
         Like the list of information processing attributes above, the initial investigation of
48
   conflict relied on qualitative contrasts between a functional measure of resilience, R(t),
   derived by Little et al. (2015). The goal of this paper is to introduce a set of quantitative
50
   tools for the quantitative assessment of the resilience function and the closely related
51
   conflict contrast function. We begin by demonstrating an approach to estimating these
```

functions that has desirable statistical qualities. Next, we derive a null-hypothesis
significance test for comparing resilience and conflict contrast functions to baseline models.
Finally, we demonstrate an approach to formal exploratory analysis of the resilience and
conflict contrast functions based on functional principal components analysis (fPCA;
Ramsay & Silverman, 2005).

The main focus of these analyses is correct response times. The analysis of the error response times is complex; with multiple sources of error, one must consider how each source of information might fail. In some cases, failure of a local process may lead to an error response, whereas in other cases the system may be robust enough to protect itself against failure of any local process. Each of these situations needs to be carefully considered for each processing architecture. Townsend and Altieri (2012) presented such an extension for capacity, and it is possible that an extension might be possible for resilience. However, this is beyond the scope of the present paper.

Houpt and colleagues (Houpt & Townsend, 2012; Houpt, Blaha, McIntire, Havig, & 66 Townsend, 2013) recently introduced statistical tests for a measure of workload capacity termed the capacity coefficient, C(t), and Burns, Houpt, Townsend, and Endres (2013) demonstrated the use of fPCA for comparing among multiple C(t) functions. The resilience function is based on similar functions of observed response times as the capacity coefficient; hence, the same statistical procedures can be leveraged for resilience analysis. The main distinction between the resilience function and the capacity coefficient is the experimental conditions used to obtain the response times that are used in the measure. The resilience function compares response times with congruent information to response times with incongruent information whereas the capacity coefficient compares response times with congruent information to the sources of information in isolation. Little et al. (2015) show that with conflicting information, the resilience function reflects the speed of processing of the conflicting information. On its own, this measure allows only limited inference about 78 processing architecture, but by contrasting conflicting information of different salience, one

can gain substantial information about the underlying processing architecture. Hence, the statistical tools that are introduced here are developed to allow for testing not only resilience but also the difference between resiliency functions, $R_{diff}(t)$ and conflict contrast function.

We first describe the definition and motivation for the resilience and resiliency difference functions and then introduce the statistical tools necessary for testing the various qualitative contrasts between these functions.

87 Resilience and Resiliency Difference Functions

Consider the question of whether a bat is a mammal or a bird? Although, the answer 88 to this question should be obvious, the fact that bats share some similarity with birds makes this question harder than related questions which do not contain any conflict between biological properties and similarity. For example, is a robin a mammal or a bird? Many basic psychological tasks share an analogous conflict between two sources of information (see Figure 1). In the categorization task that we use in this paper, a stimulus might contain multiple features some of which satisfy rules for one category and others which satisfy rules for a different category (Allen & Brooks, 1991; Folstein, Van Petten, & Rose, 2008; Nosofsky, 1991; Nosofsky & Little, 2010). In all of these tasks, the response times (RTs) for the *incongruent* trials, which contain conflicting information, are slower 97 than than the RTs for the *congruent* trials, which do not contain conflict information. 98 However, simply finding the RT difference between responses to congruent and incongruent stimuli only allows for limited inference about processing. Our approach is to outline the 100 conditions of congruency and incongruency that allow for strong inferences to be made 101 about information processing. Namely, the resilience analysis demonstrates that varying 102 the salience of the conflicting information allows for a contrast that can differentiate several 103 important theoretical models. ¹. 104

¹This approach is similar to how initial RT difference approaches to analyzing redundancy gains were extended using more theoretical methods including capacity (Miller, 1982; Townsend & Nozawa, 1995).

A schematic of a categorization task which contains the type of conflict considered 105 here is shown in Figure 2. In this task, observers must categorize the nine stimuli, which are 106 created by orthogonally combining the three values on each dimension, into two categories 107 that are defined by an "L-shaped" category. The category formed by the four stimuli in the 108 top-right corner are defined by a conjunctive rule, and this category is consequently termed 109 the AND category. That is, an item's membership in this category requires that it have a 110 value on Dimension 1 greater than the value indicated by the vertical bound and a value 111 on Dimension 2 greater than the value indicated by the horizontal bound. By contrast, the 112 remaining stimuli are defined by a disjunctive rule applied to both dimensions. A decision 113 about this category can be made by noting that an item has a value on Dimension 1 less than the value indicated by the vertical bound or a value on Dimension 2 less than the horizontal bound. This category is consequently termed the OR category.

The four stimuli in the AND category are coded by whether they have either low or 117 high discriminability from the other category (i.e., as defined by distance from the category boundary). In a series of studies, Little and colleagues showed how these stimuli could be used to diagnose whether the processing of both stimulus dimensions occurred either in a 120 serial or parallel fashion or, as a third alternative, pooled into a single processing channel 121 (Blunden, Wang, Griffiths, & Little, 2015; Fific, Little, & Nosofsky, 2010; Little, Nosofsky, 122 & Denton, 2011; Little & Lewandowsky, 2012; Little, Nosofsky, Donkin, & Denton, 2013; 123 Moneer, Wang, & Little, in press). In the present paper, however, we focus on the items 124 which belong to the OR category. 125

The OR category items are coded according to whether their component parts satisfy
the disjunctive rule for the OR category, in which case the first dimension is coded A and
the second dimension is coded B (see Figure 2). Alternatively, one of the components of an
OR category stimulus might satisfy only one of the disjunctive rules for the OR category;
the other component, however, satisfies the rule for the AND category. We label these
items with an X or a Y according to whether they satisfy the vertical or the horizontal rule

for the AND category, respectively. Consequently, for most of the OR category items, there is a conflict or incongruency between the dimensions with one dimension providing evidence for the OR category and the other dimension providing evidence for the AND category.

This experimental design can be used an analogue for many tasks which contain 135 conflicting information. Like the conflicting contrast category members (e.g., AY or XB), 136 many tasks contain incongruent conditions that contain stimuli satisfying only one 137 response rule. For example, in the Simon task (Proctor & Vu, 2006; Simon & Rudell, 138 1967), the location of the cue, which is irrelevant to the response, can be in conflict with 139 the identity of that cue. The color satisfies the rule for determining the left-hand response 140 but the location does not (see Figure 1, panel A). In the classic Stroop task (Stroop, 1935), 141 the incongruent stimuli (e.g., the word "red" presented in GREEN) contain one source of 142 information which provides evidence for the correct response (i.e., the color GREEN) and 143 another providing evidence for an incorrect response (the word "red"). The color provides the correct response, but the word itself provides evidence for an incorrect response (see Figure 1, panel B). In a flanker task, the central target might cue a right hand response but incongruent flankers provide a cue toward an erroneous left hand response (see Figure 1, panel C) The processing of the distracting flankers interferes with responding and slows RT (Eriksen & Eriksen, 1974). Finally, in visual search, a target can share features 149 with distractors (Duncan & Humphreys, 1989; see Figure 1, panel D). The unique features 150 signal that an item is a target, but the shared features provide evidence against this 151 decision. Although each of these tasks involve different processes (e.g., with regard to 152 attentional processes; Chajut, Schupak, & Algom, 2009; Shalev & Algom, 2000), the logical 153 structure of conflict in these tasks is similar. 154

Little et al. (2015) showed how one could apply the capacity coefficient function to
the compare performance on the congruent target, AB, to performance on the pair of
incongruent stimuli, e.g., AY and XB (see Figure 2), that satisfy only one of the
disjunctive rules. The capacity coefficient was designed to evaluate the effect of increasing

the workload of an information processing by comparing the processing of redundant (i.e., 159 congruent) signals, e.g., AB, to the processing of each of those signals presented in 160 isolation, A and B. When applied to the question of workload, under some basic 161 assumptions (especially assuming independence between the processing channels), there are 162 strong links between the observed capacity and the underlying processing architecture. For 163 instance, unlimited-capacity, independent, parallel, (UCIP) self-terminating models, which 164 predict that processing can terminate as soon as a target is detected predict that the time 165 to process the redundant target should equal the minimum time derived from each of the 166 single targets presented alone. In particular, for a UCIP model, $\log (S_{AB}(t)) = -\log (S_A(t) \times S_B(t))$, or in terms of the cumulative hazard function $(H(t) = -\log[S(t)]), H_{AB}(t) = H_A(t) + H_B(t)$. The capacity coefficient function (Equation 1) compares observed performance with redundant targets to the performance predicted by a UCIP model (i.e., $-\log(S_A(t) \times S_B(t))$).

$$C\left(t\right) = \frac{-\log\left(S_{AB}\left(t\right)\right)}{-\log\left(S_{A}\left(t\right) \times S_{B}\left(t\right)\right)} = \frac{H_{AB}\left(t\right)}{H_{A}\left(t\right) + H_{B}\left(t\right)} \tag{1}$$

Consequently, a UCIP model predicts a capacity function of 1 across all t. If we assume that the processing time of the redundant target is unaffected by the presence or absence of a second signal, an assumption termed context invariance (cf. Miller, 1982; Townsend & Eidels, 2011), then serial self-terminating and serial exhaustive models predict capacity functions less than 1 (i.e., limited capacity; Townsend & Nozawa, 1995). By contrast, coactive models that pool information together predict capacity functions that are greater 177 than 1 (i.e., supercapacity; Townsend & Nozawa, 1995; Townsend & Wenger, 2004). 178 Parallel models with non-independent, interactive channels may predict capacity functions 179 which are less than or greater than one depending on whether the interaction is inhibitory 180 or facilitatory, respectively (Eidels, Houpt, Altieri, Pei, & Townsend, 2011; Townsend & 181 Wenger, 2004). 182

Resilience. The same function can be applied to the present case where there is
again a redundant target, AB, but in which the "single targets" are not presented alone but
in the presence of conflicting information, AY and XB. Under these conditions, Little et al.
(2015) showed that the function does not reflect changes in workload, but instead captures
how quickly the conflicting information is processed relative to the target information. We
term this function resilience, R(t), to capture the idea that the function tells us something
about how the system copes with conflicting information (see Equation 2).

$$R(t) = \frac{-\log(S_{AB}(t))}{-\log(S_{AY}(t) \times S_{XB}(t))} = \frac{H_{AB}(t)}{H_{AY}(t) + H_{XB}(t)}$$
(2)

For example, consider the case in which the stimulus AX is processed in an independent parallel self-terminating fashion. The decision time (for correct decisions) is still determined by the time taken to process dimension A (and likewise, the processing XB only depends 192 on B under the UCIP model); consequently, the derived minimum time and consequently 193 the value of, R(t), remains unchanged under the assumption of UCIP processing. For R(t), 194 the UCIP model can again take on the role of a baseline model for comparison. If the 195 dimensions are processed in a serial fashion, then the distracting information when AY is 196 presented has some probability of being processed before the target information, hence 197 slowing the overall processing time relative to A alone and increasing H_{AY} , or the 198 distracting information when XB is present has some probability of being processed first 199 and H_{XB} increases. This implies that the denominator in Equation 2 will be smaller than 200 predicted by the UCIP and results in an R(t) function which is greater than 1. However, 20 because the redundant targets do not benefit from statistical facilitation, as with a UCIP 202 model, the numerator will also be smaller, indicating R(t) could also be less than 1. 203 More generally, if the target information is processed *faster* when distractor 204 information is present, then the derived minimum time might be faster than the redundant 205 target processing time, resulting in an R(t) function which is less than 1. If the target 206 information is processed slower when distractor information is present, then the derived 207

minimum time might be slower than the redundant target processing time, resulting in R(t) > 1. With conflicting or distracting information present in the single target stimuli, the link between architecture and the value of the function is less clear cut than for the capacity coefficient.

Resiliency Difference Function. The ambiguity in how resilience reflects 212 architecture can be resolved by noting that the discriminability or strength of the 213 conflicting information determines the effect of the conflict on the derived minimum time. 214 In a UCIP model, there is no effect of the conflicting information, but in a serial, 215 self-terminating model, faster-processed conflict information results in a faster derived 216 minimum time than slower processed conflict information. The category space in Figure 2 217 effectively manipulates the discriminability of the conflict information by varying the 218 distance from the boundary for items along both the horizontal boundary (e.g., AY_L and AY_H) and the vertical boundary (e.g., X_LB and X_HB ; see Ashby & Gott, 1988; Fific et al., 220 2010). The change in the derived minimum time with the discriminability of the distracting item implies that, under the assumption that the discriminability manipulation 222 is effective, that the resiliency functions will be ordered for a serial model with the $R_H(t)$ 223 function being lower than the $R_L(t)$ function. By contrast, a coactive model predicts the 224 opposite ordering: The stronger the evidence for the AND category, the slower the derived 225 minimum time. Consequently, for a coactive model, the $R_H(t)$ should be larger than the 226 $R_L(t)$ function because of the slowed derived minimum time. These relations are shown in 227 Figure 3 (top panel). 228 229

This ordering of resiliency functions suggests that the difference between the resilience function computed from the high and low conflict items can provide a diagnostic of the underlying processing architecture. Little et al. (2015) introduced the resilience difference function, $R_{diff}(t)$, as follows:

$$R_{diff}(t) = R_H(t) - R_L(t) = \frac{H_{AB}(t)}{H_{AY_H}(t) + H_{X_HB}(t)} - \frac{H_{AB}(t)}{H_{AY_L}(t) + H_{X_LB}(t)}.$$
 (3)

The predictions of this function are shown in Figure 3 (bottom panel).

A large set of different models can be differentiated based on the value of the $R_{diff}(t)$ 234 function. Consequently, this function can be added to a growing set of theoretical and 235 methodological tools, termed Systems Factorial Technology, which includes, among others, 236 the capacity coefficient (Townsend & Nozawa, 1995), the single-target capacity function 237 (Blaha & Townsend, 2014), the mean interaction contrast, and survivor interaction 238 contrasts (which can be applied to, for example, the factorial combination of discriminabilities in the AND category; Townsend & Nozawa, 1995). Following Houpt and Townsend (2010, 2012), the goal of the remainder of this paper is to introduce methods for providing significance tests for the resilience and resilience difference functions. 242 Little et al. (2016) presented an alternative form of the resilience difference function 243 known as the conflict contrast function, CCF(t). This function takes advantage of the fact 244 that the ordering of the derived minimum time is preserved even without considering the 245 double target, AB. Consequently, a simple contrast of the RTs for the high and low conflict 246 stimuli can be computed as follows:

$$CCF(t) = [H_{AY_L}(t) - H_{AY_H}(t)] + [H_{X_LB}(t) - H_{X_HB}(t)]$$
(4)

This function has the benefit of predicting the same qualitative distinctions between the models as shown in Figure 3 (bottom panels) but allows for the application of the contrast to tasks where it may not be natural to include a double target (e.g., in the Simon task, see Figure 1, the incongruent and neutral stimuli can be used as the high and low salience conflict items, respectively). In the following, we also provide the relevant statistics for the CCF(t) function.

254 Estimation

The first step in developing a hypothesis test for the resilience difference function and the conflict contrast function is to determine the appropriate estimator. One approach

would be to bin the observed response times to estimate the probabilities, then sum them
to estimate the survivor function, and finally take the natural log to estimate each term
(cf. Wenger & Townsend, 2000). Alternatively, we can use the fact that the negative log of
the survivor function is equal to the cumulative hazard function, which is in turn the
integral of the density divided by the survivor function,

$$-\log S(t) = H(t) = \int_0^t \frac{f(s)}{S(s)} \, ds.$$
 (5)

To estimate the survivor function for correct response times we can use one minus the empirical cumulative distribution function (ECDF), a well established estimator (e.g., Parzen, 1962). The basic idea of the ECDF is to estimate the probability that a response time occurs at or before a given time by the proportion of observed correct response times that were faster than that time. Formally,

$$\hat{S}(t) = 1 - \hat{F}(t) = 1 - \frac{1}{n} \sum_{i=1}^{n} I(T_i \le t) = \frac{1}{n} \sum_{i=1}^{n} I(T_i > t).$$

Here, n is the total number of observed correct response times used to estimate the ECDF, T_i is one of the observed correct response times, and $I(\cdot)$ is an indicator function which is 1 if the argument is true and zero otherwise.

The next step is to estimate the density. This simplest approach is to use $\hat{f}(t) = 1/n$ whenever t is equal to an observed correct response time and $\hat{f}(t) = 0$ for all other times,

$$\hat{f}(t) = \begin{cases} 1/n & \text{if } t = T_i \text{ for some } i \\ 0 & \text{otherwise.} \end{cases}$$

With this estimator of the density, the integral in Equation 5 becomes a sum over all of the times s < t at which there was a correct response,

$$\hat{H}(t) = \sum_{T_i < t} \frac{1/n}{\hat{S}(T_i)} = \sum_{T_i} \frac{1}{\sum_{j=1}^n I(T_j > T_i)}.$$
 (6)

Equation 6 is known as the empirical cumulative hazard function (ECH). The ECH could be used in Equations 2, 3 and 4, however if there are incorrect responses or cases in which

the participant does not respond in time the ECH will be biased. One approach used used
by (Houpt et al., 2013) is to mitigate that bias by treating time-outs and incorrect response
times as censoring, e.g., assuming that if the participant had more time or if they had not
already made an incorrect response, they would eventually choose the correct response.

This leads to a generalization of the ECH known as the Nelson-Aalen estimator of the
cumulative hazard function (NAH, Andersen, Borgan, Gill, & Keiding, 1993; Aalen,
Borgan, & Gjessing, 2008).

The NAH is essentially the same as the ECH, but with the sum in the estimated survivor function, \hat{S} replaced with a sum over *all* response times instead of only correct response times. To clean up the notation a bit, we use bold notation for a set of times with a subscript indicating if there is a bound on that set, e.g., $\mathbf{T}_{\leq t}$ is the set of response times less than or equal to t. If we wish to indicate only correct response times, we use the superscript c, e.g., $\mathbf{T}_{\geq t}^c$ are the correct response times that occurred after t. This allows us to write the NAH as,

$$\hat{H}(t) = \sum_{s \in \mathbf{T}_{ s)}.$$
(7)

The NAH has a number of useful statistical properties (for details, see Andersen et al., 1993; Aalen et al., 2008). It is an unbiased estimator of the true cumulative hazard function.² Furthermore, the variance of the difference between the NAH and the true cumulative hazard function is straightforward to calculate. Using Y(s) for $\sum_{r \in \mathbf{T}} I(r > s)$ i,

$$\hat{\sigma}_H^2(t) = \sum_{s \in \mathbf{T}_{\leq t}^c} \frac{1}{Y^2(s)}.$$

Also, the NAH is a uniformly consistent estimator of the true cumulative hazard function, and the difference between the NAH and the true cumulative hazard function converges in distribution to a zero mean Gaussian process.

Another particularly useful fact is that finite linear combinations of uncorrelated

NAHs are again unbiased, uniformly consistent, and the difference between the estimate of Technically, this statement and the variance statement are only true for t up to the time the last observed response occurs.

297

313

the linear combination and the true linear combination is a mean zero Gaussian process 295 with variance (with arbitrary coefficients a_m), 296

$$\operatorname{Var}\left(\sum_{i=1}^{m} a_{m} \hat{H}_{m}(t)\right) = \sum_{i=1}^{m} a_{i}^{2} \hat{\sigma}_{H_{i}}^{2}(t). \tag{8}$$

Null-hypothesis Testing

With a well-defined estimator for terms in the resilience, we can focus on hypothesis 298 testing. Like Houpt and Townsend (2012), we will stick to differences of cumulative hazard functions for hypothesis tests rather than ratios. In particular, that means instead of 300 testing R(t) = 1, we test if the difference between the numerator and denominator of R(t)30 is zero. Of course if the ratio between the numerator and denominator is 1 then the difference is zero. We will also focus on null-hypothesis tests for the CCF rather than on 303 the resiliency difference function. 304 A null-hypothesis test may not always be appropriate for analyzing resilience 305 functions for many of the same reasons null-hypothesis tests are avoided in other contexts. 306 In particular, these tests treat the null-hypothesis differently than other alternatives so the 307 outcome of a null-hypothesis test should not be interpreted as a model comparison. Like all 308

other null-hypothesis tests, these tests can not offer evidence in favor of the null. If one is 309 interested in model comparison questions, particularly in relative evidence for the null 310 model, the semiparametric Bayesian analysis proposed by Houpt, MacEachern, Peruggia, 311 Townsend, and Van Zandt (2016) offers promise, although its application to resilience 312 analyses are beyond the scope of this paper.

The Resilience Function

Our first step is to encode the null hypothesis of UCIP processing into a statement 315 about the estimators. Under the UCIP model, the processing time survivor function should 316 be the same for A(B) regardless of the context, i.e., $S_{AY}(t) = S_A(t)$ ($S_{XB}(t) = S_B(t)$. 317 Additionally, if the elements are processed in parallel, then $S_{AB}(t) = S_A(t)S_B(t)$. By taking 318

the negative natural logarithm of both sides, we get,

$$H_{AB}(t) = -\log(S_{AB}(t)) = -\log(S_A(t)) - \log(S_B(t)) = H_A(t) + H_B(t).$$

Replacing H(t) with its estimator, we arrive at the null hypothesis in terms of observable quantities:

H0:
$$\hat{H}_{AB}(t) - \hat{H}_{AY}(t) - \hat{H}_{XB}(t) = 0.$$
 (9)

From the previous section, we know that the limit distribution of each of the terms
on the left hand side, and hence their linear combination, is Gaussian. Thus, to get a test
statistic distribution, we only need to determine the mean and variance. Because the NAH
is an unbiased estimator, under the null hypothesis the expected value of Equation 9 is
zero for all t. Because the data used to estimate each term in Equation 9 is independent,
we can use Equation 8 to determine the variance,

$$\operatorname{Var}\left[\hat{H}_{AB}(t) - \hat{H}_{AY}(t) - \hat{H}_{XB}(t)\right] = \operatorname{Var}\left[\hat{H}_{AB}(t)\right] + \operatorname{Var}\left[\hat{H}_{AY}(t)\right] + \operatorname{Var}\left[\hat{H}_{XB}(t)\right].$$

This allows us to calculate a statistic for any fixed time³ t that, under the null-hypothesis, has a standard normal distribution,

$$R' = \frac{\hat{H}_{AB}(t) - \hat{H}_{AY}(t) - \hat{H}_{XB}(t)}{\sqrt{\operatorname{Var}\left[\hat{H}_{AB}(t)\right] + \operatorname{Var}\left[\hat{H}_{AY}(t)\right] + \operatorname{Var}\left[\hat{H}_{XB}(t)\right]}} \xrightarrow{d} \mathcal{N}(0, 1).$$

For testing cases when the entire resilience function is expected to be either above, equal to, or below one for all t, a single test at the largest possible response time (t_m) is most sensible because it uses the largest amount of data. For this reason, in all of the null-hypothesis testing reported below, we use a single z-test at the maximum possible time.

³Or any time that is chosen based only on information up to that time (formally, any *stopping time*; see Houpt & Townsend, 2012 for details).

33 The Conflict Contrast Function

Here again we use the UCIP first-terminating model as the null hypothesis. In terms of the estimated cumulative hazard functions,

H0:
$$\left[\hat{H}_{AY_H}(t) - \hat{H}_{AY_L}(t)\right] + \left[\hat{H}_{X_HB}(t) - \hat{H}_{X_LB}(t)\right] = 0.$$

Again, the limit distribution of each term is Gaussian and the estimators are unbiased and consistent so the limit of the distribution has mean 0. The estimate of the variance is unbiased and consistent, so dividing the difference by the sum of the variances results in limit distribution with unit variance. Together, this implies that, under the null hypothesis,

$$CC' = \frac{\left[\hat{H}_{AY_H}(t) - \hat{H}_{AY_L}(t)\right] + \left[\hat{H}_{X_HB}(t) - \hat{H}_{X_LB}(t)\right]}{\sqrt{\operatorname{Var}\left[\hat{H}_{AY_H}(t)\right] + \operatorname{Var}\left[\hat{H}_{AY_L}(t)\right] + \operatorname{Var}\left[\hat{H}_{X_HB}(t)\right] + \operatorname{Var}\left[\hat{H}_{X_LB}(t)\right]}} \xrightarrow{d} \mathcal{N}(0, 1).$$

Weighting Functions

349

Following Aalen et al. (2008), Houpt and Townsend (2012) also demonstrated the possibility of using weighting functions with the hypothesis test to emphasize different regions of time. One such weighting function is the Harrington-Fleming function,

$$L(t) = S_{KM}(t)^{\rho} \frac{Y_{AB}(t) \left[Y_{AY}(t) + Y_{XB}(t) \right]}{Y_{AB}(t) + Y_{AY}(t) + Y_{XB}(t)}.$$

Here, S(t) is left-continuous version of the Kaplan-Meier estimate of the survivor function for the pooled response times, $\hat{S}_{\text{KM}}(t) = \prod_{t_i < t} (|\mathbf{T}_{>t_i}| - 1) / (|\mathbf{T}_{>t_i}|)$. With $\Delta N(s)$ indicating the number of correct responses times that occurred at time s,

$$S(t) = \prod_{s \in \mathbf{T}_{c,t}^c} \left(1 - \frac{\Delta N(s)}{Y_{AB}(s) + Y_{AY}(s) + Y_{XB}(s)} \right).$$

The parameter ρ can be chosen to emphasize lower response times more (larger ρ) or less (smaller ρ).

When the weighting function is used, the numerator of R' is replaced with,

$$\sum_{s \in \mathbf{T}_{\leq t}^{AB,c}} \frac{L(s)}{Y_{AB}(s)} - \sum_{s \in \mathbf{T}_{\leq t}^{AY,c}} \frac{L(s)}{Y_{AY}(s)} - \sum_{s \in \mathbf{T}_{\leq t}^{XB,c}} \frac{L(s)}{Y_{XB}(s)}.$$

The denominator of R' is replaced with,

$$\sqrt{\sum_{s \in \mathbf{T}_{\leq t}^{AB,c}} \frac{L(s)}{Y_{AB}^2(s)} + \sum_{s \in \mathbf{T}_{\leq t}^{AY,c}} \frac{L(s)}{Y_{AY}^2(s)} + \sum_{s \in \mathbf{T}_{\leq t}^{XB,c}} \frac{L(s)}{Y_{XB}^2(s)}}.$$

Hence, we define the resilience statistic with a weighting function as,

$$R = \frac{\sum_{s \in \mathbf{T}_{\leq t_m}^{AB,c}} \frac{L(s)}{Y_{AB}(s)} - \sum_{s \in \mathbf{T}_{\leq t_m}^{AY,c}} \frac{L(s)}{Y_{AY}(s)} - \sum_{s \in \mathbf{T}_{\leq t_m}^{XB,c}} \frac{L(s)}{Y_{XB}(s)}}{\sqrt{\sum_{s \in \mathbf{T}_{\leq t_m}^{AB,c}} \frac{L(s)}{Y_{AB}^2(s)} + \sum_{s \in \mathbf{T}_{\leq t_m}^{AY,c}} \frac{L(s)}{Y_{AY}^2(s)} + \sum_{s \in \mathbf{T}_{\leq t_m}^{XB,c}} \frac{L(s)}{Y_{XB}^2(s)}}}.$$
(10)

An analogous weighting function for the CCF is given by

$$L_C(t) = S(t)^{\rho} \frac{[Y_{AY_H}(t) + Y_{X_HB}(t)][Y_{AY_L}(t) + Y_{X_LB}(t)]}{Y_{AY_H}(t) + Y_{XB_H}(t) + Y_{AY_L}(t) + Y_{XB_L}(t)}.$$

The numerator of CC' is replaced with,

352

$$\left[\sum_{s \in \mathbf{T}_{\leq t}^{AY_{H},c}} \frac{L_{C}(s)}{Y_{AY_{H}}(s)} - \sum_{s \in \mathbf{T}_{\leq t}^{AY_{L},c}} \frac{L_{C}(s)}{Y_{AY_{L}}(s)} \right] + \left[\sum_{s \in \mathbf{T}_{\leq t}^{X_{H}B,c}} \frac{L_{C}(s)}{Y_{X_{H}B}(s)} - \sum_{s \in \mathbf{T}_{\leq t}^{X_{L}B,c}} \frac{L_{C}(s)}{Y_{X_{L}B}(s)} \right].$$

The denominator of CC' is replaced with,

$$\sqrt{\sum_{s \in \mathbf{T}_{< t}^{AY_H,c}} \frac{L_C(s)}{Y_{AY_H}^2(s)} + \sum_{s \in \mathbf{T}_{< t}^{AY_L,c}} \frac{L_C(s)}{Y_{AY_L}^2(s)} + \sum_{s \in \mathbf{T}_{< t}^{X_HB,c}} \frac{L_C(s)}{Y_{X_HB}^2(s)} + \sum_{s \in \mathbf{T}_{< t}^{X_LB,c}} \frac{L_C(s)}{Y_{X_LB}^2(s)}}.$$

Likewise, we define the conflict-contrast statistic as,

$$CC = \frac{\left[\sum_{s \in \mathbf{T}_{\leq t}^{AY_{H},c}} \frac{L_{C}(s)}{Y_{AY_{H}}(s)} - \sum_{s \in \mathbf{T}_{\leq t}^{AY_{L},c}} \frac{L_{C}(s)}{Y_{AY_{L}}(s)}\right] + \left[\sum_{s \in \mathbf{T}_{\leq t}^{X_{H}B,c}} \frac{L_{C}(s)}{Y_{X_{H}B}(s)} - \sum_{s \in \mathbf{T}_{\leq t}^{X_{L}B,c}} \frac{L_{C}(s)}{Y_{X_{L}B}(s)}\right]}{\sqrt{\sum_{s \in \mathbf{T}_{\leq t}^{AY_{H},c}} \frac{L_{C}(s)}{Y_{AY_{H}}^{2}}(s)} + \sum_{s \in \mathbf{T}_{\leq t}^{AY_{L},c}} \frac{L_{C}(s)}{Y_{AY_{L}}^{2}}(s)} + \sum_{s \in \mathbf{T}_{\leq t}^{X_{H}B,c}} \frac{L_{C}(s)}{Y_{X_{H}B}^{2}(s)} + \sum_{s \in \mathbf{T}_{\leq t}^{X_{L}B,c}} \frac{L_{C}(s)}{Y_{X_{L}B}^{2}(s)}}}{(11)}$$

Because L(t) and $L_C(t)$ are non-negative, measurable processes, the limit distribution of the statistics are unchanged, so $R \xrightarrow{d} \mathcal{N}(0,1)$ and $CC \xrightarrow{d} \mathcal{N}(0,1)$ (cf. Aalen et al., 2008, Chapter 3).

359 Simulation Study

In this section we explore performance of the R and CC statistics on simulated data sets for which we know the ground truth. First, we will examine the extent to which reasonably sized samples from model which predicts null effects are represented by derived statistics. In particular, we will test whether the Type I error rates are approximately 0.05 for α at that level (which we use for all simulations below). Second, we will examine the statistical power for two types of effects: the categorical effect of having a model other than the null (i.e., not parallel ST) and the ratio scale effect of moderating the rate of processing when distractors are present in a parallel ST model.

Following Houpt and Townsend (2012), we simulated data assuming the underlying 368 processing time distributions were exponential. Additionally, we tested the statistics on 369 data generated from the Linear Ballistic Accumulator Model (LBA, Brown & Heathcote, 370 2008). This allowed us to explore the power with more realistic response time distributions 371 as well as explore the effect of higher error rates. Each simulated dataset consisted of 1000 372 samples. For each simulated data set, we tested power with five different levels of ρ ranging 373 from zero (corresponding to a log-rank test) to one (corresponding to Wilcoxon test, cf. 374 Aalen et al., 2008, p. 107). 375

In theory it is possible to achieve arbitrary precision on estimates of the effects of number of trials, rate factor, model type and ρ , however in practice we are limited by the resources available for running simulations. Although 1000 samples per combination of factors allows for quite high precision, we also applied Bayesian linear regression models to quantify the evidence in favor of, or against, an effect of the factors of interest (cf. Rouder & Morey, 2012).

Exponential Model R. For the exponential model, each correct subprocess completion time was sampled from an exponential distribution with rate 0.69 for the targets and 0.93 for the contrast stimuli. For each combination of parallel/serial and exhaustive/first-terminating, the simulated subprocess completion times were combined using the appropriate rule (e.g., the minimum of the subprocess completion times for parallel, first-terminating processing of the redundant targets). We calculated the resilience statistic for each model using $\rho = \{0, .2, .4, .6, .8, 1\}$ and the number of trials per

distribution ranging from 10 to 150 in increments of 10.

First, as a confirmation that distribution of R converges to a Gaussian relatively quickly, we found that the rate of significant findings for the two-tailed test of R for the parallel, self-terminating for all ρ and all numbers of trials at between 0.030 and 0.067 percent of the generated samples. There was no evidence that increases either in ρ or the number of trials led to increases or decreases in the rate of significance for R (BF= 0.729 and BF= 1.05 respectively).

For the parallel, exhaustive model, the rate of significance increased from 0.32 with 10 trials and reached asymptote of nearly 1.0 around 80 trials. Averaged across the number of trials, ρ had nearly no effect. A Bayes factor test comparing linear models of main effect of number of trials and ρ as well as an interaction indicated only the number of trials as an important factor (BF= 51.0 over the next best, which included an interaction and both main effects).

With the data generated from a serial, self-terminating model, the Bayes factor test again indicated only the number of trials as an important factor (BF= 2849 over the next best model). The rate of significance increased linearly from 0.067 with 10 trials to 0.55 with 150 trials.

The Bayes factor test also indicated only the number of trials as an important factor for the serial-exhaustive data (BF= 51.7 over the next best model). Like the parallel-exhaustive data, the rate of significance rose from .33 with 10 trials to an asymptote of nearly 1.0 with 80 trials.

To test the effect of distractor interference, we also simulated a decreasing rate of processing in each of the channels when they were used together in a parallel, self-terminating model. There was no effect of ρ so the following results are averaged across values of ρ . For small levels of interference (90% efficiency), power increased linearly but only reached 0.15 by 150 trials. As interference increased, the rate of increase in power as a function of number of trials increased and became less linear due to the upper bound of

perfect power. For only 10 trials power was good for the highest levels of interference (0.77 with 30% efficiency). To achieve power higher than 0.8 for moderate interference (70% efficiency), at least 110 trials were needed.

Across all of the simulations, the number of trials had a clear effect on the power, 419 with 80 trials per distribution being sufficient for nearly perfect power for parallel and serial 420 exhaustive models, and 110 trials sufficient to detect moderate distractor interference, but 421 more than 150 trial necessary for good power on a serial first-terminating model. There was 422 no indication of an effect of ρ , which may in part be due to the fact exponential random 423 variables have a flat hazard function across time (recall that ρ differentially weights earlier 424 versus later response times in calculating R), although only the parallel, first-terminating 425 model maintains the flat hazard rate when the two sub-processes are combined. 426

Exponential Model CC. For the CC, we tested a range of increases in rates from low to high speed (five levels from 1.2 times to 2.0 times the rate) in addition to testing the effects of varying architecture, stopping-rule, ρ and number of trials.

Across all simulations with the parallel self-terminating model, the 0.048 of the simulation runs were significant. There was evidence for an effect of increasing the number of trials leading to a small increase $(3.14 \times 10^{-05} \text{ per trial}; 95\%$ HPD =[1.63 × 10⁻⁰⁵, 4.65 × 10⁻⁰⁵]) in the number of simulation runs that were significant

HPD = $[1.63 \times 10^{-05}, 4.65 \times 10^{-05}]$) in the number of simulation runs that were significant
(BF = 5.42 over the next best model, which included rate as a factor as well).

In the parallel exhaustive data, there was evidence for an interaction between rate and number of trials (the increase in power as a function of number of trials increased faster with higher rates) and all of the main effects (BF = 3.73 over the next best model which also included a ρ by rate interaction). Power increased as a function of rate (0.68 per unit, HDI = [0.65, 0.72]), ρ (0.045 per unit, HDI = [0.020, 0.072]) and number of trials (0.0045 per trial, HDI = [0.0042, 0.0047]).

For the serial first-terminating data, all of the two-way interactions were included in the best model, along with main effects, but not the three-way interaction (BF = 7.37 over the next best model, which dropped the ρ by rate interaction). Like the parallel exhaustive data, the power increased as a function of number of trials increased faster with higher rates. The larger ρ was, the lower the increase in power as a function of number of trials and as a function of the rate factor. Overall, increases in ρ led to decreases in power (-0.029, HDI = [-0.046, -0.012]) while increases in the rate (0.35, HDI = [0.33, 0.37]) and number of trials (0.0023, HDI = [0.0021, 0.0024]) led to increases in power.

The most likely model for the serial-exhaustive data was the same as for the parallel exhaustive data, an interaction between the rate and number of trials and all three main effects (BF = 3.73 over the next best model which added a ρ by rate interaction). The interaction between rate and number of trials had the same qualitative effect as it did for the exhaustive data, an increase in the rate led to a larger increase in power per trial. An increase in rate increased power (0.68, HDI = [0.65, 0.71]) as did an increase in the number of trials (0.0045, HDI = [0.0042, 0.0047]) and ρ (0.046, HDI = [0.019, 0.072]).

The statistic had decent power when the rate of processing in a parallel self-terminating model that was affected by the distractors. For large changes in rate (i.e., the rate with distractors was less than 50% or more than 200% of the processing rate without distractors) approximately 40 trials per condition were sufficient to achieve 0.8 power. For moderate changes in rate due to the presence of a distractor (i.e., the rate was between 60% and 70% or 140% and 160%) approximately 120 trials per condition were necessary to achieve a power of 0.80. For smaller changes (80% or 125%) power was approximately 0.50 even with 150 trials per distribution.

LBA Model R. To explore the power for R and CC in data that looks more like
human response times, and particularly does not have a flat hazard function across time,
we also simulated data from the Linear Ballistic Accumulator model (Brown & Heathcote,
2008). We used 0.69 as the mean accumulation rate parameters for the targets, 0.93 as the
mean accumulation rate for the contrast stimuli, 0.1 for the standard deviation of the
accumulation rate, 0 for the base time and 0.5 for both the incorrect and correct thresholds.

The rate of significance for the parallel self-terminating model was low, ranging 470 between 0.035 and 0.073 across all numbers of trials and values of ρ . The parallel, 471 exhaustive model was significant on nearly every run with 10 trials; only non-significant 3 472 times out of 6000 runs across all ρ values and was significant on every run for 20 or more 473 trials. There was no room for the ρ to have any effect due to the high rate of significance. 474 The serial first-terminating model was significant on only 0.080 of the runs with 10 trials 475 but increased to 0.93 with 150 trials and there was no effect of ρ . Like the parallel, 476 exhaustive model, the power was quite high with only 10 trials, 0.996 and there were no 477 non-significant runs with 20 or more trials. In the coactive model, power ranged from 0.23 478 with 10 trials to perfect performance, reaching 0.99 by 90 trials per distribution. Again, 479 there was no effect of ρ . 480

The power to detect that the rate of processing in a parallel self-terminating model was affected by the distractors was nearly identical to that found with the exponential simulation. For large changes in rate 40 trials or fewer per condition were sufficient to achieve 0.8 power. For moderate changes in rate due to the presence of a distractor, approximately 120 trials per condition were necessary to achieve a power of 0.80. For smaller changes, power was approximately 0.50 even with 150 trials per distribution.

The power of the resilience test for the LBA data was generally quite good. Only 10 trials per distribution were sufficient for nearly perfect power for parallel and serial exhaustive models, and 40 were trials sufficient to detect high levels of distractor interference. The coactive model had lower power, needing 90 or more trials per distribution to reach power of essentially 1 and performance was worst with the serial frist-terminating which only reached 0.93 with 150 trials. Despite the LBA having non-constant hazard rate, there was still no indication of an meaningful effect of ρ .

Exponential Model CC. For the CC, we tested a range of increases in rates from low to high speed (five levels from 1.2 times to 2.0 times the rate) in addition to testing the effects of varying architecture, stopping-rule, ρ and number of trials.

519

Across all simulations with the parallel self-terminating model, the 0.056 of the simulation runs were significant. The rate of significance was stable across all levels of ρ , numbers of trials and rate increase factor.

In the parallel exhaustive data, there was an increase in the power with an increase in number of trials (from 0.16 to 0.86 averaged across ρ and rate factor) and with an increase in the rate factor (from 0.24 to .90 averaged across the other factors). Additionally, the increase in power as a function of number of trials increased faster with higher rates. There was no evidence of an effect of ρ .

LBA Model CC. For the serial first-terminating data, ρ did have an effect: lower ρ values led to higher power and faster increases in power as a function of the other variables with $\rho = 0$ giving the best performance. With $\rho = 0$, the power was 0.15 with 10 trials increasing to 0.88 with 150 average across rate factor. Increased rate also increased power, from 0.58 to 0.88 across the levels tested and averaged across number of trials, although it had little additional benefit beyond 1.6. There was again an interaction in that power increased faster across trials with larger rate factors, up to 1.6.

The serial exhaustive data indicated an effect of increasing the number of trials, from 0.32 to 1.0 by 100 trials, and rate factor, from 0.77 to 0.94 for 1.6 and above, but not ρ .

Increasing the rate factor again increased the rate at which increasing trials increased power, up to the rate factor of 1.6 after which there was no difference.

The coactive model was easily distinguished with a power of 0.75 with the lowest rate factor and 10 trials and 0.98 and above for the rest of the simulated conditions. There was no evidence of an effect of ρ .

fPCA of the Resilience Function

In some cases, it may be useful to examine the overall shape of a resilience function or conflict contrast function, particularly as it varies across individuals or tasks (for example, the simulated results in Figure 3 indicate that shape may vary with processing strategy). Recently, Burns et al. (2013) demonstrated the use of functional principle
components analysis (fPCA) for extracting important features of the capacity coefficient
function. Like the capacity coefficient statistics, we can also adapt the fPCA approach for
both resilience and conflict contrast functions.

527 Summary of fPCA approach

548

The main idea of functional principle components analysis is exactly the same as the 528 more familiar principle components analysis. Each datum is represented as a linear 529 combination of bases, where the bases are chosen such that variation across data along the 530 first basis is maximized, then each subsequent basis is chosen such that variation is 531 maximized subject to the constraint that the basis is orthogonal to all previously chosen 532 basis. The distinctive feature of fPCA compared to standard PCA is that the bases are 533 functions (or infinite dimensional vectors) rather than finite length vectors. Ramsay and 534 coauthors have a series of books on functional data analysis, including fPCA, for the 535 interested reader (Ramsay & Silverman, 2005; Ramsay, Hooker, & Graves, 2009). 536 The basic procedure is first subtract the mean function (averaged across individuals, 537 conditions, etc.; not averaged across time) from each of the collected functions. Next, to 538 find the basis along which the most variation across sample functions occurs, we solve for 539 the weighting function $\xi_1(t)$ that maximizes $\sum_i (\xi_1(t)x_i(t) dt)^2$ subject to $\int \xi_1^2(t) dt = 1$, 540 where $x_i(t)$ are the resilience (or conflict contrast) functions. The subsequent basis 541 functions are found in a similar manner, ξ_j is chosen to maximize $\sum_i (\xi_j(t)x_i(t) \ dt)^2$ subject 542 to $\int \xi_j^2(t) dt = 1$ and the orthogonality constraint, $\int \xi_j(t) \xi_k(t) dt = 0$ for all k < i. In 543 practice, the optimization can be over a finite dimensional basis space, such as a b-spline 544 basis, using standard constrained optimization functions. Alternatively, one could represent the full functional as by evaluating each sample at a finite vector of times then use standard PCA techniques.

In theory, one can veridically represent the full variation across the functional data by

560

561

using as many bases function as there are samples. Normally, fPCA is used to extract just the dimensions on which there is the most variation, so only the first few bases are calculated. For example, all of the resilience functions from an experiment can be represented in the fPCA space as, $R_i(t) = \sum_j f_i^{(j)} \xi_j$ where $f_i^{(j)}$ is the factor score for the *i*th resilience function on the *j*th basis. To represent the resilience functions with a low dimensional (e.g., *n* dimensional) basis, one simply may use the first *n* principle functions,

$$R_i(t) \approx \sum_{j=1}^n f_i^{(j)} \xi_j.$$

Now each resilience function can be represented by the n-dimensional vector $f_i = \left(f_i^{(1)}, f_i^{(2)}, \dots f_i^{(n)}\right).$ Note that, once this reduced dimensional vector space is used to
represent the data, any rigid transformation of the space represents the data equally well,
so it is common practice to choose a particular rotation, such as varimax, to represent the
data for further analysis (cf. Ramsay & Silverman, 2005, Ch. 8).

Application to empirical data

Little et al. (2011, Experiment 1) measured RTs from four observers for each item in

the categorization design shown in Figure 2. The stimuli in this experiment were schematic 562 lamps which varied in the width of the base (dimension 1) and the curvature of the top 563 piece (dimension 2). The lamps also varied randomly on their design and lamp shade; 564 however, these dimensions were not relevant for the task. Using visual analysis of the SIC 565 (cf. Townsend & Nozawa, 1995) coupled with statistical tests of the mean RTs patterns and parametric modeling, Little et al. (2011) inferred that observers in this task processed 567 the base and top of the lamps in a serial, self-terminating manner. 568 Little et al. (2013, Experiment 1) also measured RTs from four observers for each of 569 the items in the design shown in Figure 2. In this experiment, the stimuli were small 570 Munsell color squares (hue 5R) varying in saturation and brightness. Using the same set of 571 tools, the authors concluded that the best model of the RT data was a coactive processing 572 architecture. The finding that the lamp dimensions were processed in a serial, 573

self-terminating manner and that the brightness and saturation dimensions were processed in a coactive manner corresponds nicely to the long-standing distinction between separable and integral dimensions (Fific, Nosofsky, & Townsend, 2008; Garner, 1974).

Because the OR category items in this task (with the exception of item AB, see Figure 2) satisfy the decision rule for the OR category on one of the dimensions but satisfy the decision rule for the AND category on the other dimension, there is a conflict between the two dimensions. For example, for item AY_H , the curvature of the top piece is below the boundary on dimension 2, but the base of the lamp is wider than the value indicated by the boundary on dimension 1. Consequently, for this stimulus, the base provides strong evidence for the AND category, which, for this stimulus, is the incorrect response.

In each of these stimuli, two dimensions are always present, which precludes the use 584 of the workload capacity measure. However, because the values of this incorrect dimension 585 are varied in their discriminability (e.g., from AY_H to AY_L and from X_HB to X_LB), the 586 resilience difference function and conflict contrast function can be used to provide further 587 evidence about the processing architecture. Little et al. (2016) reported that the CCF(t) 588 functions for each observer were negative indicating support for the serial, self-terminating 589 model. Likewise, Little et al. (2016) reported that the CCF(t) functions for each observer 590 were positive indicating coactivity. Here we apply the CC statistic developed above, along 591 with the relevant SIC statistics (see Houpt & Townsend, 2010; Houpt et al., 2013), which 592 have not been reported previously. We also applied the Kolmolgorov-Smirnoff test of 593 stochastic dominance (Houpt et al., 2013) to test whether the AND category data meet the 594 assumption of selective influence necessary for use of the SIC. Stochastic dominance was 595 confirmed for all subjects. 596

Null-Hypothesis Tests

Table 1 shows the SIC statistics for Little et al. (2011) and Little et al. (2013). The results of the CC statistic are shown in Table 2. The statistical SIC tests largely agree

SIC & MIC statistics for Little, Nosofsky & Denton (2011; Exp. 1) and Little, Nosofsky, Donkin & Denton (2013, Exp. 1).

Table 1

			Negativ	Negative SIC test		Positive SIC test		MIC test	est	
Experiment	ent	Observer	value	р	value	d		value	d	
LND2011 Exp 1	$\operatorname{Exp} 1$	Н	89.0	0.00	0.19	0.00	serial	-63.64	0.18	serial
		C 1	0.44	0.00	0.17	0.01	serial	-39.57	0.19	serial
		6	0.29	0.00	0.15	0.03	serial	28.80	0.84	serial
		4	0.45	0.00	0.21	0.00	serial	44.72	90.0	serial
LNDD 2013 Exp 1	Exp 1	П	0.07	0.46	90.0	0.54	<i>د</i> .	0.00	0.14	serial
		CI	90.0	0.47	0.22	0.00	coactive	0.05	0.00	coactive
		33	0.08	0.37	0.09	0.23	٠.	0.01	0.05	coactive
		4	0.03	96.0	0.20	0.00	coactive	90.0	0.00	coactive

Note: LND2011 = Little, Nosofsky & Denton (2011); LNDD2013 = Little, Nosofsky, Donkin & Denton (2013)

Table 2

CC statistics for Little, Nosofsky & Denton (2011; Exp. 1) and Little, Nosofsky, Donkin & Denton (2013, Exp. 1).

		CC test	est	
Experiment	Observer value p Inference	value	q	Inference
LND2011 Exp 1	₽	-5.96	0.00	-5.96 0.00 serial ST/serial EX/parallel EX
	2	-7.20	0.00	-7.20 0.00 serial ST/serial EX/parallel EX
	బ	-3.65	0.00	serial ST/serial EX/parallel EX
	4	-1.33 0.18		parallel ST^a
LNDD2013 Exp 1	<u> </u>	11.19	0.00	0.00 coactive
	2	6.39	0.00	coactive
	ယ	9.59	0.00	coactive
	4	6.02	0.00	0.00 coactive

Note: LND2011 = Little, Nosofsky & Denton (2011); LNDD2013 = Little, Nosofsky, Donkin & Denton (2013)

out the other models on the failure of this test, the inference can still be useful in conjunction with the results of tests of other aspects of the data (for instance, as in, Table 1). ^aIn the present case, although we do not reject the null hypothesis, the best inference in this case is the parallel ST model. While we cannot rule

with the conclusions reported in those papers. The SICs from the separable dimension case 600 (e.g., lamps, Little et al., 2011) demonstrate significant negative and positive deflections 601 from zero consistent with the predicted shape for a serial exhaustive SIC. (Note that the 602 AND category used this tasks necessitates exhaustive processing even from a 603 self-terminating system). The MIC tests for all four observers are not significantly different 604 from zero. For the CC test, three of the observers demonstrate significantly negative CC605 statistics, indicating that the CCF(t) function is significantly less than 0. For one observer, 606 we failed to reject the null hypothesis that the CCF(t) function was different from 0; 607 although, the CC statistic was negative as expected. A significantly negative CCF(t) 608 function is consistent with serial self-terminating, serial exhaustive, or parallel exhaustive 609 processing. Taken together with the SIC results, the present analyses, to a large extent, agree with Little et al.'s (2011) conclusions of serial self-terminating processing. 61 For the integral dimensioned stimulus data, the SIC tests are more varied. In two 612 cases, there is a significant positive deflection from zero, consistent with coactive 613 processing. For one of the observers who does not show any significant deflections in the 614 SIC, the MIC is significantly positive supporting an inference of coactivity. We failed to 615 reject the null hypothesis for the remaining observer; though we note that the parametric 616 modelling results favoured an inference of coactivity for this observer as well (Little et al., 2013). For this experiment, the CC tests are all significantly positive supporting an inference of coactivity for all observers. 619

620 fPCA

We applied the fPCA Resilience Difference analysis to the Rdiff(t) functions from Little et al. (2011) and (Little et al., 2013) (see Figure 4). Recall that in Little et al. (2011), the stimuli were comprised of separable dimensions but in Little et al. (2013), the stimuli were comprised of integral dimensions. As shown, the Rdiff(t) functions are negative for the separable-dimensions data and positive for the integral-dimensions data consistent with the inference of serial self-terminating and coactive processing, respectively.

Figure 5 shows the mean resilience difference function and the resilience difference 627 functions after subtracting the mean function. As shown in Figure 6, most of variation in 628 the resilience difference functions was captured by the first functional principle component 629 and only this component is selected for analysis. The first function principle component, 630 weighted by the average magnitude of the factor score, is shown in Figure 7 along with the 631 mean function. This function increases at earlier times and then decreases at later times 632 (for positive factor scores; the inverse is true for negative factor scores). The factor scores 633 shown in the right panel of Figure 7 nicely separate the observers who categorized 634 separable dimensioned stimuli (with negative scores) and the observers who categorized the 635 integral dimensioned stimuli.

637 Conclusions about data from resilience

The factor weights in from the fPCA provide a low dimensional representation of the 638 resilience difference functions shown in Figure 4, and consequently, allow a convenient 639 analysis of differences between conditions and participants that does not require qualitative 640 comparison between functions. The factor weights provide further support for the 641 conclusion that integral dimensions are processed differently from separable dimensions. 642 The key insight provided by the resilience difference function is that the integral 643 dimensions are consistent with coactive processing whereas the separable dimensions are 644 consistent with independent channel processing (i.e., serial and self-terminating although other architectures are possible candidates). Consequently, the analyses outlined here (see also Little et al., 2015, 2016) can be added to the growing set of methodological and theoretical analyses termed Systems Factorial Technology (Townsend & Nozawa, 1995). 648

649 Discussion

We have demonstrated a means for quantitatively analyzing resilience functions. The form of the resilience is quite similar to the capacity coefficient, and hence we were able to

adapt the main tools for analyzing the capacity coefficient. However, despite the similarity 652 in formulation, the resilience and resilience-difference functions are developed for a different 653 set of inferences than the capacity function. We adapted the Houpt and Townsend (2012) 654 null-hypothesis tests for inferences about whether the resilience functions are different from 655 zero, a prediction of the parallel, first terminating model. Directional versions of the 656 Houpt-Townsend test can additionally be used to reject either coactive or 657 serial/parallel-exhaustive models. Following, Burns et al. (2013), we also demonstrated the 658 use of fPCA for exploring differences among the shapes of resilience and 659 resilience-difference functions. 660

Simulations indicated good statistical power of the null-hypothesis tests with reasonable numbers of simulated trials for both exponentially distributed times and response times generated from the LBA model (Brown & Heathcote, 2008). Similar to the findings reported in Houpt and Townsend (2012), we explored variations in the relative weighting across the range of response time and showed that there was not a strong effect on Type-I or Type-II error rates.

Using these new statistical approaches, we reexamined two datasets collected from 667 experiments following the design in Figure 2. Of the eight observers tested across the two 668 datasets, seven had significantly non-zero CCFs using our new null-hypothesis test. The 669 first experiment used stimuli made up of attributes that are traditionally classified as 670 separable and hence our a priori assumption was that the best model would be either independent-serial or independent-parallel. Thus, we expected a negative CCF, which was observed for all observers and the null-hypothesis of a zero CCF (parallel, self-terminating) 673 was rejected for three of the four observers. These findings were further corroborated using 674 the SIC and MIC, other SFT measures of architecture and stopping-rule. The second 675 experiment we analyzed used attributes considered to be integral. Hence, we expected the 676 best model to be coactive, indicated by a positive CCF. This is indeed what we found: all 677 observers had positive CCFs and the null hypothesis of zero CCF was rejected for each. 678

Although the SIC and MIC were less decisive with the second dataset, coactive processing was indicated for three of the four observers.

Further analyses of these data using the fPCA approach indicated that the
Resilience-Difference function shapes were distinctive between the integral and separable
stimuli. The fPCA indicated that this distinction was most evident in the overall
magnitude of the R_{diff} function for earlier response times.

685 Future Directions

While the addition of these analyses are a major improvement over qualitative 686 judgment of resilience analyses, there are potential further improvements. Perhaps most 687 important to many users of resilience analysis is the ability to make both group and 688 individual level inferences. The current suggested approach to aggregating across subjects 689 is to first calculate each individuals resilience (or CCF) statistic, then perform standard 690 null-hypothesis tests on those values. For example, to test whether the participants had a 69 higher CCF with integral stimuli than with separable stimuli, we could have used a t-test on the CC statistics. A hierarchical analysis offers a more principled approach, in 693 particular incorporating the uncertainty of the estimated CCF into tests about group 694 differences. Houpt, MacEachern, Peruggia, Townsend, and Van Zandt (2016) recently 695 proposed a hierarchical Bayesian model for estimating cumulative hazard functions and 696 cumulative reverse hazard functions based on a piecewise-exponential model of response 697 times. They have demonstrated success using the model for inferences regarding standard 698 capacity coefficients, so the approach holds promise for resilience analysis as well. 699

700 References

- Aalen, O. O., Borgan, A., & Gjessing, H. K. (2008). Survival and event history analysis: A

 process point of view. New York: Springer-Verlag.
- Allen, S. W., & Brooks, L. R. (1991). Specializing the operation of an explicit rule.
- Journal of Experimental Psychology: General, 120, 3-19.
- Andersen, P. K., Borgan, A., Gill, R. D., & Keiding, N. (1993). Statistical models based on counting processes. New York: Springer-Verlag.
- Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. *Journal of Experimental Psychology: Learning, Memory* and Cognition, 14, 33-53.
- Blaha, L. M., & Townsend, J. T. (2014). On the capacity of single-target self-terminating processing. *Manuscript under review*.
- Blunden, A. G., Wang, T., Griffiths, D., & Little, D. R. (2015). Logical-rules and the classification of integral dimensions: Arbitrary dimensions are not necessarily processed coactively. Frontiers in Psychology, 5, 1531.
- Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. *Cognitive Psychology*.
- Burns, D., Houpt, J. W., Townsend, J. T., & Endres, M. J. (2013). Functional principle

 components analysis of workload capacity functions. *Behavior Research Methods*, 45,

 1048-1057.
- Chajut, E., Schupak, A., & Algom, D. (2009). Are spatial and dimensional attention
 separate? evidence from posner, stroop, and eriksen tasks. *Memory & Cognition*, 37,
 924-934.
- Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity.

 Psychological Review, 96, 433-458.
- Eidels, A., Houpt, J. W., Altieri, N., Pei, L., & Townsend, J. T. (2011). Nice guys finish fast and bad guys finish last: Facilitatory vs. inhibitory interaction in parallel

- systems. Journal of Mathematical Psychology, 55, 176-190.
- Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of
- a target letter in a nonsearch task. Perception & Psychophysics, 16, 143-149.
- Fific, M., Little, D. R., & Nosofsky, R. (2010). Logical-rule models of classification
- response times: A synthesis of mental-architecture, random-walk, and decision-bound
- approaches. Psychological Review, 117, 309-348.
- Fific, M., Nosofsky, R. M., & Townsend, J. (2008). Information-processing architectures in
- multidimensional classification: A validation of test of the systems factorial
- technology. Journal of Experimental Psychology: Human Perception & Performance,
- 34, 356-375.
- Folstein, J. R., Van Petten, C., & Rose, S. A. (2008). Novelty and conflict in the
- categorization of complex stimuli. *Psychophysiology*, 45, 467-479.
- Garner, W. R. (1974). The processing of information and structure. New York: Wiley.
- 740 Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., & Townsend, J. T. (2013).
- Systems factorial technology with r. Behavior Research Methods, 46, 307-330.
- Houpt, J. W., MacEachern, S. N., Peruggia, M., Townsend, J. T., & Van Zandt, T. (2016).
- Semiparametric approaches to Systems Factorial Technology. Journal of
- Mathematical Psychology. (in press)
- Houpt, J. W., MacEachern, S. N., Peruggia, M., Townsend, J. T., & Van Zandt, T. (2016).
- Semiparametric bayesian approaches to systems factorial technology. Journal of
- 747 Mathematical Psychology. Retrieved from
- http://www.sciencedirect.com/science/article/pii/S0022249616000249 doi:
- 749 http://dx.doi.org/10.1016/j.jmp.2016.02.008
- Houpt, J. W., & Townsend, J. T. (2010). The statistical properties of the survivor
- interaction contrast. Journal of Mathematical Psychology, 54, 446-453.
- Houpt, J. W., & Townsend, J. T. (2012). Statistical measures for workload capacity
- analysis. Journal of Mathematical Psychology, 56, 341-355.

- Little, D. R., Eidels, A., Fific, M., & Wang, T. (2015). Understanding the influence of
- distractors on workload capacity. Journal of Mathematical Psychology, 69, 25-36.
- Little, D. R., Eidels, A., Fific, M., & Wang, T. (2016). How do information processing
- systems deal with conflicting information? differential predictions for serial, parallel,
- and coactive processing models. *Manuscript under revision*.
- Little, D. R., & Lewandowsky, S. (2012). Mulitiple-cue probability learning. In N. Seel
- (Ed.), Encyclopedia of the sciences of learning. New York: Springer.
- Little, D. R., Nosofsky, R., & Denton, S. E. (2011). Response time tests of logical
- rule-based models of categorization. Journal of Experimental Psychology: Learning,
- Memory & Cognition, 37, 1-27.
- Little, D. R., Nosofsky, R. M., Donkin, C., & Denton, S. E. (2013). Logical-rules and the
- classification of integral dimensioned stimuli. Journal of Experimental Psychology:
- Learning, Memory & Cognition, 39, 801-820.
- Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals.
- 768 Cognitive Psychology, 14, 247-279.
- Moneer, S., Wang, T., & Little, D. R. (in press). The processing architectures of
- whole-object features: A logical rules approach. Journal of Experimental Psychology:
- Human Perception & Performance.
- Nosofsky, R. M. (1991). Typicality in logical defined categories: Exemplar-similarity vs
- rule instantiation. Memory & Cognition, 19, 131-150.
- Nosofsky, R. M., & Little, D. R. (2010). Classification response times in probabilistic
- rule-based category structure: Contrasting exemplar-retrieval and decision-bound
- models. *Memory & Cognition*, 38, 916-927.
- Parzen, E. (1962). On estimation of a probability density function and mode. The Annals
- of Mathematical Statistics, 33, 1065-1076.
- Proctor, R. W., & Vu, K.-P. L. (2006). Stimulus-response compability principles: Data,
- theory and application. CRC Press.

- Ramsay, J. O., Hooker, G., & Graves, S. (2009). Functional data analysis with R and

 MATLAB. New York: Springer.
- Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis. New York: Springer.
- Rouder, J. N., & Morey, R. D. (2012). Default bayes factors for model selection in
- regression. Multivariate Behavioral Research, 47(6), 877–903.
- Shalev, L., & Algom, D. (2000). Stroop and garner effects in and out of posner's beam:
- Reconciling conceptions of selective attention. Journal of Experimental Psychology:
- Human Perception and Performance, 26, 997-1017.
- Simon, J. R., & Rudell, A. P. (1967). Auditory s-r compability: The effect of an irrelevant
- cue on information processing. Journal of Applied Psychology, 51, 300-304.
- 791 Stroop, J. R. (1935). Studies of interference in serial verbal reaction. Journal of
- Experimental Psychology, 18, 643-662.
- Townsend, J. T., & Altieri, N. (2012). An accuracy-response time capacity assessment
- function that measures performance against standard parallel predictions.
- Psychological review, 119(3), 500.
- 796 Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: A unified methodology
- for response time measures of efficiency as workload is varied. Psychonomic bulletin
- 798 & review, 18(4), 659-681.
- Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary
- perception: An investigation of parallel, serial and coactive theories. Journal of
- Mathematical Psychology, 39, 321-340.
- Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel processing: New
- capacity measures and predictions for a response time inequality series. Psychological
- Review, 111, 1003-1035.
- Wenger, M. J., & Townsend, J. T. (2000). Basic response time tools for studying general
- processing capacity in attention, perception, and cognition. The Journal of General
- Psychology, 127(1), 67-99.

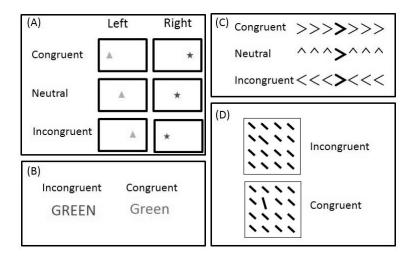


Figure 1. Examples of tasks containing conflicting information. (A) Simon task: the color of the cue conflicts with its location in the incongruent condition. (B) Stroop task: the color name conflicts with the font color in the incongruent condition. (C) Flanker task: the central target is in conflict with the flanking distractors in the incongruent condition. (D) Oddball Search: the oddball target shares some information with the distractors in the incongruent condition.

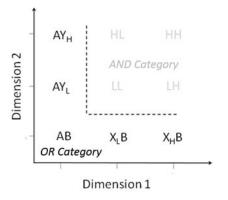


Figure 2. Schematic illustration of a categorization structure containing conflicting information for some members of the OR category. The stimuli in the upper right quadrant of the space are the members of the AND category since member of this category need to have values greater than the vertical boundary on dimension 1 and the horizontal boundary on dimension 2. The remaining stimuli are the members of the OR category since members of this category have a value one dimension 1 less than the horizontal boundary or a value on dimension 2 less than the vertical boundary. For the AND category, H and L refer to the high- and low-discriminability dimension values, respectively. Values further from the boundary are easier to categorize. For the OR category, the redundant (AB) stimulus satisfies the OR rule on both dimensions. The remaining OR stimuli are indexed as a combination of one dimension value which satisfies one of the OR rules (either A for dimension 1 or B for dimension 2) and a dimension value which provides evidence for the AND category (X for dimension 1 and Y for dimension 2). The subscripts H and L for the OR category stimuli reflect whether the conflicting information provides evidence for the AND category of high or low discriminability, respectively. For example, the OR stimulus AY_L provides only weak evidence for the AND category on dimension 2 (i.e., because this dimension is close to the horizontal boundary on dimension 2).

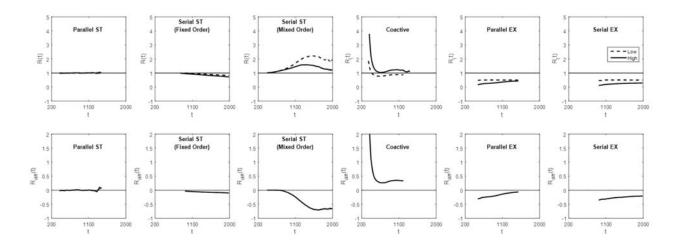


Figure 3. Top: Ordering of Resilience functions based on the discriminability of the conflict items. Bottom: Resilience difference functions.

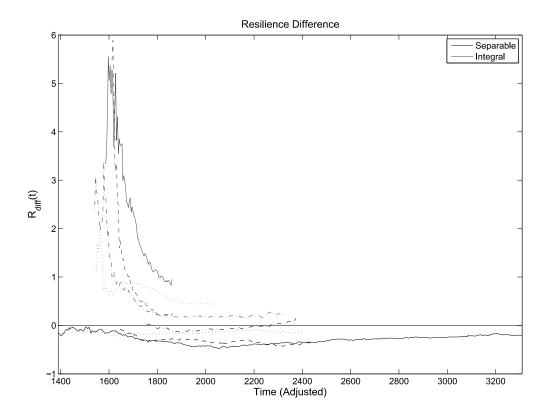


Figure 4. Resilience difference functions for the data from Little, Nosofsky & Denton (2011; Experiment 1) and Little, Nosofsky, Donkin & Denton (2013; Experiment 1). Each line represents a different participant.

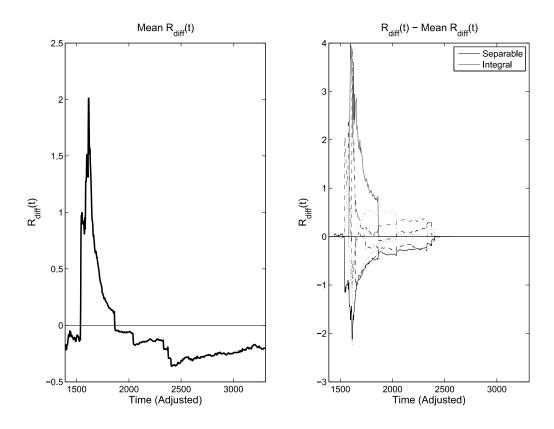


Figure 5. Left panel: Mean resilience difference function averaged across participants and conditions. Right panel: Mean subtracted resilience difference functions for each participant.

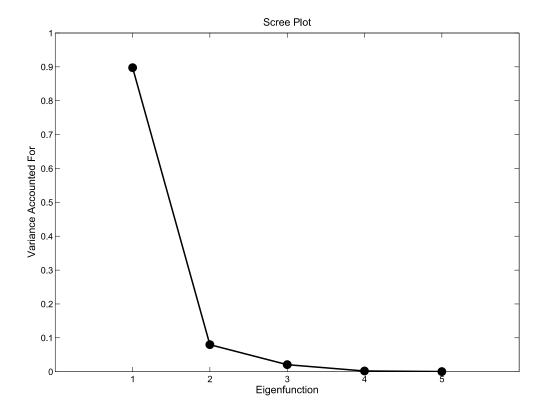


Figure 6. Percentage of variance accounted by adding each eigenfunction up to 5. The first eigenfunction captures approximately 90% of the variance across all of the resilience difference functions shown in the right panel of Figure 5. The second eigenfunction adds approximately an additional 9% and the rest of the eigenfunctions add only negligible amounts.

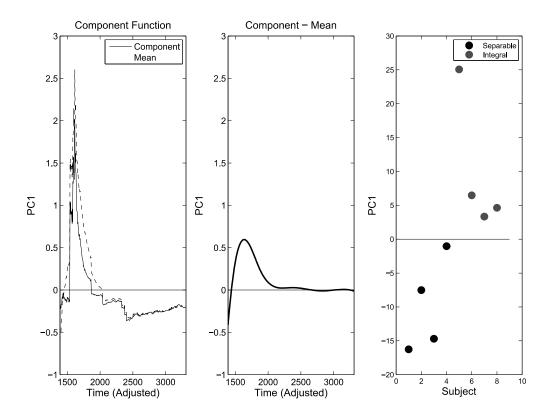


Figure 7. Left panel: The first functional principle component weighted by the average magnitude of the factor score compared to the mean resilience difference function. Middle panel: The first functional principle component weighted by the average magnitude of the factor score after subtracting the resilience difference function. Right panel: Factor scores for each participant's resilience difference function in both experiments.