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ABS TR AC T  

Clark, Lee Allen. M.S.Egr., Department of Electrical 

Engineering, Wright State University, 2010. Hyperspectral 

Methods for Determining Grit Application Density on 

Sandpaper. 

 

 

A low cost real time method of determining the density of grit applied to sandpaper 

does not currently exist.  This thesis will explore three methods for determining grit 

density from digital image data.  A means to characterize the application in terms of 

frequency by using direct cosine transform basis images will be explored.  An RX 

detector algorithm to characterize the image background will be tested.  A linear 

unmixing methodology will be developed that characterizes the proportion of glue and 

grit present in each hyperspectral pixel vector. 
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CHAPTER 1-GRIT DENSITY BACKGROUND AND THE STATE OF THE 

ART 

GRIT APPLICATION 

Typically grit particles are applied to sandpaper by means of an electrostatic process that causes 
the particles to leap from a negatively charged vibrating conveyor to a positive charged electrode.  
A continuous sheet of paper with a layer of wet glue is passed between the conveyor and the 
electrode intercepting the grit particles.  The grit particles become embedded in the glue on the 
sheet of paper.  The electrostatic process aligns the grit particles such that the particles are 
optimally arranged for cutting.   

Several factors affect the density of the grit application.  The electrode voltage, conveyor speed, and 
conveyor vibration magnitude must be adjusted to achieve the proper grit application density.  The 
machine operator must fine tune these adjustments to deliver the required sandpaper quality.   

Grit applied too sparsely creates an obvious sandpaper quality issue.  But grit applied too thickly 
can cause quality issues as well.  The over application of grit particles also adds unnecessary cost to 
the final sandpaper product.  

 

GRIT DENSITY MEASUREMENT 

Grit density measurement techniques have been developed to help sandpaper making machinery 
operators verify the quality of the sandpaper being produced.   

 

VISUAL INSPECTION 

Microscopes are typically used by operators to assess the density and quality of the grit application.  
The microscopes do not provide quantitative feedback but they do provide a means for operators to 
perform a basic assessment of the quality of a sandpaper sample. 
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If grit particles are applied too heavily the particles do not align their cutting surface properly. 
Through visual inspection the operator can detect the orientation of the grit particles.  

 

RADIATION BASED DENSITY MEASUREMENT 

Sandpaper density sensors that use radiation have been employed by many sandpaper 
manufacturers.  The radiation based sensors measure the amount of radiation reflected or passed 
through the sandpaper.  The sensor readings are compared to a known standard for the product to 
determine the grit density.   

The radiation based sensors are problematic for a few reasons.  The radiation sensors typically cost 
in excess of $100,000.  The sensors may require government approval for use due to the radiation 
emission.  The sensor calibration requires frequent adjustment.  The maintenance of a database of 
acceptable sensor readings for each product can be difficult for a sandpaper manufacturer with 
potentially hundreds of different products that are subject to recipe changes at any time.  

 

STANDARD WEIGHT BASED DENSITY MEASUREMENT 

Many manufacturers use weight based measurements to monitor the quality of the sandpaper 
making process.  Precise shapes are cut from samples of plain paper, paper with glue, paper with 
glue and grit.  The weight of the samples is used to determine how much grit in terms of weight has 
been applied to the sandpaper.   

Weight based processes are relatively cheap and easy to implement but the frequency of 
measurement is somewhat limited.  Many meters of sandpaper could be produced before a grit 
application issue is identified by the operator. 

IMAGE BASED GRIT DENSITY MEASUREMENT 

Image based grit density measurement provides many opportunities for improvement over existing 
grit density measurement techniques.  The cost of strobe lighting and a high shutter speed camera 
is an order of magnitude less expensive than a radiation based measurement system.  The 
instantaneous feedback and increased measurement frequency that an image based system could 
provide would be an advantage over a weight based measurement.  
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CHAPTER 2 -DATA COLLECTION AND CALIBRATION 

SAMPLE COLLECTION 

Samples of varying grit density were collected and pasted on to boards to keep the samples flat.  
The samples were then photographed with a hyperspectral camera supplied by The Wright 
Patterson Air Force Base.  The hyperspectral camera captured 120 wavelengths from 394.2 nm to 
893.9 nm.   The following sandpaper samples were imaged: 

 

Sample  Description 

1 Urea Glue on Paper, Base for Samples 2 and 3 
2 50 Grit on Paper, AO with Urea, 1.67 gm 
3 50 Grit on Paper, AO with Urea, 1.86 gm 
4 Urea Glue on Paper, Base for Samples 5 and 6 
5 40 Grit on Paper, AO with Urea, 2.52 gm 
6 40 Grit on Paper, AO with Urea, 3.43 gm 
7 Phenolic Glue on Cloth, Base for Samples 9 and 10 
8 80 Grit on Cloth, AO with Phenolic, 1.31 gm 
9 80 Grit on Cloth, AO with Phenolic, 1.84 gm 

10 120 Grit on Paper, Z and AO with Phenolic, .573 gm 
11 120 Grit on Paper, Z and AO with Phenolic, .883 gm 
12 120 Grit on Paper, Z and AO with Phenolic, 1.1 gm 
13  
14  
15 White Calibration Board 
16 Gray Calibration Board 

 

The images were captured in direct sun light.    A laptop computer was used to adjust the exposure.  
The bright sunlight made the laptop screen extremely difficult for viewing and consequently some 
images were under exposed.   



4 

 

CAMERA RESOLUTION AND GRIT PARTICLE SIZE 

The samples were 115 mm diameter circles.  The number of camera pixels across the diameter of 
the sample was approximately 550 pixels.  The resulting pixel size was approximately .21 mm x .21 
mm.  

During the manufacture of Aluminum Oxide abrasive, the Aluminum Oxide is crushed to form small 
particles.   The particles have a wide range of sizes.  Filters are used to limit the maximum particle 
size for each of the different grit ratings.  For example, the maximum particle size for 80 grit 
sandpaper is typically near .25 mm.  However, Aluminum Oxide abrasive used for 80 grit sandpaper 
also contains a wide range of particles small than .25 mm in length.   

For our four grit samples, 40 grit, 50 grit, 80 grit, and 120 grit, the maximum particle size is nearly 
equal to if not larger than the pixel size of the images.       However, fine Aluminum Oxide particles 
can fill in areas between the larger grit particles.  The fine particles can be much smaller than the 
pixel size.  As the following magnified image of sandpaper indicates, areas that are primarily glue 
can contain small particles of Aluminum Oxide dust.   

EMPIRICAL LINE METHOD CAMERA CALIBRATION 

The empirical line calibration method as described by Geoffrey M. Smith and Edward J. Milton was 
used to calibrate the hyperspectral image data.  The empirical line method uses two calibration 
points to form a linear predictor of camera recorded radiance versus surface reflectance.  In our 
case, gray and white calibration targets with specified surface reflectance were compared to the 
camera radiance values to generate slope and intercept values for each of the hyperspectral camera 
wavelengths.   

The calibrated reflectance of any camera radiance reading can be calculated as follows: 

R = sL+i 

Where R = Reflectance, s = slope, L = Camera Radiance, i = intercept    

AVERAGE CALIBRATION PANEL SURFACE REFLECTANCE 

The following calibration reflectance readings were provided for the gray calibration panel and the 
white calibration panel.   
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FIGURE 1- GRAY PANEL  AND WHITE PANE CALIBRATION DATA 

 

The 10 calibration samples for both the gray calibration panel and the white calibration panel were 
averaged to provide a single set of reflectance calibration values. 

 

FIGURE 2- AVERAGE WHITE AND GRAY CALIBRATION 
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HYPERSPECTRAL CAMERA AVERAGE CALIBRATION PANEL RADIANCE 

It is possible to calibrate each pixel individually.   The calibration panel image does not cover the 
entire camera field of view.  So, the calibration will be averaged over a 36 pixels in the middle of the 
camera image.  Each camera pixel will be treated equally.   

The following average gray panel and white panel radiance readings were averaged from a region 
in the center of the camera image. 

 

FIGURE 3- GRAY CALIBRATION PANEL AVERAGE CAMERA REFLECTANCE 

 

FIGURE 4- WHITE CALIBRATION PANEL AVERAGE CAMERA REFLECTANCE 
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EMPIRICAL LINE METHOD SLOPE AND INTERCEPT CALCULATIONS 

The hyperspectral camera data wavelengths do not match the calibration wavelengths provided for 
the gray and white calibration panels.  A linear interpolation must be performed to find appropriate 
calibration panel reflectance readings for the hyperspectral camera wavelengths.     

The slope is calculated as follows: 

Slope = (WhitePanelReflectance-GrayPanelReflectance)/(CameraAvgWhite-CameraAvgGray) 

After the slope is calculated, the Y intercept can be computed as follows: 

Intercept = GrayPanelReflectance- Slope*CameraAvgGray 

The slope and intercept calculations are performed for each of the hyperspectral camera 
wavelengths.  Images can then be calibrated by multiplying each of the camera readings by the 
slope and adding the Y intercept. 

IMAGES CALIBRATED WITH EMPIRICAL LINE METHOD 

After the calibration slope and intercept values are calculated for each of the camera’s wavelengths, 
the camera image can be calibrated.  Each of the 120 radiance values for every pixel should 
multiplied by the slope and the result added to the intercept.   

Calibrated Reflectance = (Camera Radiance x Slope) + Intercept 

The following is an example of an original camera image and the calibrated image.  The images have 
been converted to an RGB format. 

 

FIGURE 5 - UNCALIBRATED AND CALIBRATED IMAGE OF SANDPAPER SAMPLE 
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CHAPTER 3 - DIRECT COSINE TRANSFORM 

CHARACTERIZATION OF GRIT APPLICATION 

If the density of grit on sandpaper can be measured by the frequency of transitions from glue to grit 
in the image, then a technique for characterizing the frequency in an image may be useful.  

The direct cosine transform (DCT) characterizes a square section of a two dimensional image as a 
combination of basis images.  The basis images range from DC to high frequency.  The amount of 
contribution of the high frequency images should provide an indication of the rate of transitions 
from glue to girt in the sandpaper sample.   

The following chart shows a set of 8x8 DCT basis images.  Basis images on diagonal lines from 
upper right to lower left have varying orientation.  However, the diagonal set of basis images has 
constant frequency.   Summing the magnitude of the contribution of each basis image along the 
diagonals should capture the contribution of each frequency. 

 

FIGURE 6 – DCT 8X8 BASIS IMAGES 
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The DCT data was calculated for each of the 120 bands of hyperspectral data.  Then in order to 
characterize the frequency content of the DCT data, the magnitude of the contribution of basis 
images on the same diagonal were summed.  For example, the magnitude of the basis images (1,3), 
(2,2), and (3,1) were summed to form a measure of the contribution of that particular frequency.   A 
total of 15 diagonals or frequency bands were calculated. The following mesh plot is an example of 
the data collected for sample #9.   

 

FIGURE 7 - MESH PLOT OF SAMPLE #9 FREQUENCY DIAGONALS 

In order to simplify the analysis of the data, the first 25 wavelengths were summed to form a 
red spectrum contribution, the middle 60 wavelengths were summed to form a green 
spectrum contribution, and the last 35 wavelengths were summed to form a blue spectrum 
contribution.  The following image shows the combined DCT Diagonal plot of the red, green, 
and blue wavelength groups.   
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FIGURE 8 - DCT DIAGONAL PLOT FOR RED, GREEN, AND BLUE WAVELENGTH GROUPS 

 

DCT BASIS IMAGE SIZE 

DCT basis images of various sizes were explored to determine the optimum size for analysis.  
The following demonstrates the change in results as the size of the DCT basis image for sample 
#9 is increased from 4x4 to 256x256. 

 

FIGURE 9 - DCT DIAGONALS FOR 4X4, 16X16, 64X64, AND 256X256 BASIS IMAGE SIZES 

The shape and magnitude of the DCT diagonals plot appeared consistent across different areas 
of the sample when the basis image size was at least 128 x 128.  I chose to use a basis image 
size of 256 x 256. 

Each type of sand paper tended to have a characteristic shape.  The following image shows the 
characteristic shape for each of the four types of sandpaper that were sampled. 
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FIGURE 10 - CHARACTERISTIC PLOTS FOR 40 GRIT, 50 GRIT, 80 GRIT, AND 120 GRIT SANDPAPER 

DC BASIS IMAGE NORMALIZATION 

The exposure time of the samples was not consistent.  The reflectance magnitude was 
correspondingly higher for images that were exposed for a longer period of time.  In order to 
correct the exposure differences between the images, the contribution of each basis image was 
divided by the magnitude of the DC basis image.   
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distance between a basis sample and a comparison sample was calculated for each diagonal.  
The distances were summed for each of the color spectrums.  The following table details the 
results.   
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3 at (90, 90) 3 at (110, 110) 15.7 31.4 20.2 
5 at (90, 90) 5 at (110, 110) 0.9 -0.2 2.7 
5 at (90, 90) 6 at (90, 90) -21.4 -39.1 -88.6 
5 at (90, 90) 6 at (110,110) -17.5 -43.0 -88.0 
6 at (90, 90) 6 at (110, 110) 3.9 -4.9 0.8 
8 at (90, 90) 8 at (110, 110) 9.3 2.2 9.6 
8 at (90, 90) 9 at (90, 90) -20.0 18.0 -55.8 
8 at (90, 90) 9 at (110, 110) -15.9 25.3 -48.8 
9 at (90, 90) 9 at (110, 110) 4.0 7.3 7.0 
10 at (90, 90) 10 at (110, 110) 2.6 5.8 7.0 
10 at (90, 90) 11 at (90, 90) -19.3 -23.0 -69.6 
10 at (90, 90) 11 at (110, 110) -17.5 -23.0 -66.4 
10 at (90, 90) 12 at (90, 90) -23.2 -37.6 -104.6 
10 at (90, 90) 12 at (110, 110) -21.8 -38.3 -100.6 

 

The following chart shows the sum of the absolute value of the distances.   

Basis Sample Test Sample Red Distance Green Distance Blue Distance 
2 at (90, 90) 2 at (110, 110) 59 130 59 
2 at (90, 90) 3 at (90, 90) 198 497 214 
2 at (90, 90) 3 at (110, 110) 213 528 230 
3 at (90, 90) 3 at (110, 110) 34 79 40 
5 at (90, 90) 5 at (110, 110) 40 101 46 
5 at (90, 90) 6 at (90, 90) 63 140 113 
5 at (90, 90) 6 at (110,110) 59 142 111 
6 at (90, 90) 6 at (110, 110) 41 104 52 
8 at (90, 90) 8 at (110, 110) 35 55 25 
8 at (90, 90) 9 at (90, 90) 68 92 79 
8 at (90, 90) 9 at (110, 110) 71 95 73 
9 at (90, 90) 9 at (110, 110) 31 47 21 
10 at (90, 90) 10 at (110, 110) 13 38 23 
10 at (90, 90) 11 at (90, 90) 30 61 83 
10 at (90, 90) 11 at (110, 110) 31 62 82 
10 at (90, 90) 12 at (90, 90) 35 67 133 
10 at (90, 90) 12 at (110, 110) 35 65 108 

 

In order to verify that the algorithm works for the 120 wavelength spectrum, the following 
data was calculated using a sum of the absolute difference for each of the wavelengths.   

Basis Sample Test Sample Spectrum Sum 
2 at (90, 90) 2 at (120, 120) 290 
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2 at (90, 90) 3 at (90, 90) 932 
2 at (90, 90) 3 at (120, 120) 1007 
3 at (90, 90) 3 at (120, 120) 205 
5 at (90, 90) 5 at (120, 120) 250 
5 at (90, 90) 6 at (90, 90) 356 
5 at (90, 90) 6 at (120,120) 363 
6 at (90, 90) 6 at (120, 120) 262 
8 at (90, 90) 8 at (120, 120) 201 
8 at (90, 90) 9 at (90, 90) 300 
8 at (90, 90) 9 at (120, 120) 299 
9 at (90, 90) 9 at (120, 120) 203 
10 at (90, 90) 10 at (120, 120) 138 
10 at (90, 90) 11 at (90, 90) 206 
10 at (90, 90) 11 at (120, 120) 195 
10 at (90, 90) 12 at (90, 90) 238 
10 at (90, 90) 12 at (120, 120) 240 

 

FFT PHASE ANGLE DESCRIPTION OF PLOT SHAPE  

An attempt was made to use the phase of the FFT of the diagonal plots to describe the shape of 
the plot.  If the technique was successful, the magnitude of the reflectance in the image would 
not be a factor in the measurement of the plot.  However, the FFT phase results did not 
consistently provide meaningful results.  The following image shows the FFT phase plot of two 
areas of sample 10 as well as the DCT diagonal plots for the areas. 

 

FIGURE 11 – FFT PHASE ANGLE SHAPE DESCRIPTION PLOT 
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DIRECT COSINE TRANSFORMATION CONCLUSIONS 

Difference calculations for images selected from the same sample were much smaller than the 
differences between images from two different samples.  Sample 11 is more similar to sample 
10 than sample 12 is to sample 10 which is what was expected.  The results were repeatable 
across different areas of the sandpaper samples. 

The Direct Cosine Transformation Diagonals may provide a reliable means to verify that a 
sandpaper sample is close to an established standard.  The impact of the magnitude of 
reflectance was removed by dividing the results by the contribution of the DC basis image.   

Attempts to measure the shape of the DCT diagonal plots with the FFT phase were 
unsuccessful.  
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CHAPTER 4 - RX DETECTOR ALGORITHM 

The RX algorithm originally developed by Reed and Yu (1990) was designed to detect 
anomalies in an image.  The RX detector algorithm extracts targets that are spectrally distinct 
from their surroundings.  For each pixel vector r, the RX detector calculates the Mahalanobis 
distance given by: 

   EQUATION 1 

Where μ is the sample mean and  is the covariance matrix.  Anomalies in the data will be 
specified by small eigenvalues.  A small eigenvalue will produce a large value for . 

RXD SAMPLE TESTING METHODOLOGY 

A covariance matrix will be created from a known good sample.  The distance from the 
covariance matrix will be calculated for each pixel vector of a sample to be tested.  Statistical 
methods will be used to analyze the pixel distances and determine the degree of variation 
from the known good sample.   

A covariance matrix was formed from a large portion of one of the images of each sample type.  
Following is the covariance matrix formed from sample 2 and the resulting RXD distance 
image for an area of sample 2.   

 

FIGURE 12-  COVARIANCE MATRIX AND RXD IMAGE OF SAMPLE 2 

Four 100 X 100 pixel sample areas from each image were compared to the covariance matrix.  
The standard deviation for the pixel distances was calculated for each sample area.  The 
following tables contain the standard deviation calculation results.  
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Standard Deviation for 50 Grit AO, Samples 2 and 3, Using Covariance Matrix from Sample 2 
Sample 2 Grit Weight – 1.672 grams Sample 3 Grit Weight – 1.875 grams 
Area 1 36.8  Area 1 15.2 
Area 2 45.9 Area 2 18.4 
Area 3 41.7 Area 3 16.0 
Area 4 46.2 Area 4 19.0 
   

Standard Deviation for 40 Grit AO, Samples 5 and 6, Using Covariance Matrix from Sample 5 
Sample 5 Grit Weight – 2.5199 grams Sample 6 Grit Weight – 3.4255 grams 
Area 1 45.7  Area 1 27.9 
Area 2 33.1 Area 2 23.0 
Area 3 27.9 Area 3 19.4 
Area 4 29.4 Area 4 24.4 
 

Standard Deviation for 80 Grit AO, Samples 8 and 9, Using Covariance Matrix from Sample 8 
Sample 8 Grit Weight – 1.31 grams Sample 9 Grit Weight – 1.844 grams 
Area 1 18.6 Area 1 17.1 
Area 2 18.2 Area 2 16.5 
Area 3 20.1 Area 3 15.2 
Area 4 21.0 Area 4 15.1 
 

Standard Deviation for 120 Grit ZO, Samples 10, 11 and 12, Using Covariance Matrix from Sample10 
Sample 10 – 0.573 grams Sample 11 – 0.883 grams Sample 12 – 1.103 grams 
Area 1 16.4 Area 1 15.2 Area 1 14.2 
Area 2 16.8 Area 2 15.6 Area 2 14.7 
Area 3 16.3 Area 3 14.7 Area 3 14.2 
Area 4 16.1 Area 4 14.7 Area 4 14.3 
 

STATISTICAL METHODS ANALYSIS RESULTS 

In theory, the sample areas from the covariance matrix image should have a lower standard 
deviation than sample areas from other images.  The standard deviation results in the 
previous table do not support this hypothesis.  The results consistently indicate that the 
standard deviation is lower for higher grit density samples.   Changing the source image for 
the covariance matrix does not significantly alter the results.    
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In order to better understand the RXD results.  The top image is a representation of the 
frequency of a certain pixel type in an image.  The bottom image represents the magnitude of 
each pixel.    

 

FIGURE 13- PIXEL VECTOR OCCURANCE FREQUENCY AND IMAGE REFLECTANCE 

The areas of high grit concentration are represented by the blue areas in the lower image.  The 
areas of high glue concentration are represented by the red areas in the lower image.  The 
mixed pixels are represented by the bluish green areas.  The dark blue areas in the top image 
represent areas that contain pixels that do not occur very often in the image.  The red pixels 
indicate areas that occur frequently in the image.  The vast majority of pixels are mixed pixels 
of glue and grit.   

In the 40 grit and 50 grit samples, there are large glue only areas.  This glue only area 
increased the standard deviation of the RXD results.  The higher grit density samples closed up 
some of the glue areas to create a more uniform mixed pixel image that had a correspondingly 
lower standard deviation. 

The 80 grit and 120 grit samples displayed the same behavior as the 40 grit and 50 grit 
samples.  However, the amount of open glue areas in the 80 grit and 120 grit samples are 
much more limited.  Hence the change in standard deviation was much smaller for those 
samples.    
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EXPERIMENTS WITH TAILORED COVARIANCE MATRIX 

Rather than using a covariance matrix that represented the entire sample, a tailored 
covariance matrix might make certain areas of the image more visible.  Based on the previous 
testing, three logical choices exist for designing tailored covariance matrices.  The covariance 
matrix could be created from a homogeneous collection of grit pixels, glue pixels, or mixed 
pixels.    

The methods used to create homogeneous images for each of the covariance types was similar.  
For the grit homogeneous image, several samples with in a tolerance of the lowest energy 
sample were collected and placed in an image.  For the glue homogeneous image, a percentage 
of the highest energy pixels were collected and placed in an image.  The mixed pixel image was 
created by finding the pixels that appeared most often.  All the bands of each pixel were 
summed to form a single magnitude for each pixel.  The number of times that magnitude 
occurred in the image was calculated for each pixel.  The following is an example of the 
matching pixels sums for a small 10x10 image. 

     4     2     1     2     2     2     1     4     3     3 
     4     4     3     2     1     3     2     4     3     1 
     3     1     1     1     1     2     2     2     1     3 
     4     2     1     3     1     1     3     3     1     1 
     7     2     4     1     4     4     2     1     2     1 
     2     7     4     1     3     5     3     2     1     3 
     2     5     7     3     7     1     2     2     3     1 
     7     5     5     3     3     1     1     3     3     3 
     4     7     3     7     5     1     2     1     3     2 
     4     3     3     3     3     3     1     1     1     1 
 
The pixels with 7 matching pixels would be chosen to populate the homogeneous mixed grit-
glue image.  The following image was created to verify that the pixels chosen for the 
homogeneous image contain similar spectrums.   
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FIGURE 14 – MOST COMMON PIXELS MATCHING SPECTRUM 

TAILORED COVARIANCE MATRIX RESULTS 

The following images display typical RXD algorithm results for a grit tailored covariance 
matrix and a glue tailored covariance matrix.   

 

 

FIGURE 15 – GRIT TAILORED AND GLUE TAILORED COVARIANCE MATRIX RESULTS 

If only a small number of pixels were used, the covariance matrix would typically contain 
values along the main diagonal that were extremely small.  The small values would be inverted 
during the RXD calculation.  The RXD image could contain values greater than 10 raised to the 
16th power.   
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The grit and glue tailored covariance matrix images did not seem to present a convergent 
means to determine grit density.  

If the covariance matrix was constructed from a small number of the most common pixel 
vectors, the resulting RXD distances were split in to positive and negative distances.  An 
attempt was made to use the number of positive and negative distances as a means to indicate 
the proportions of grit coverage.  Samples 5 and 6 as well as samples 10, 11, and 12 produced 
results that indicated potential for the algorithm.  However, samples 2 and 3 as well as 
samples 8 and 9 did not produce positive results. The following image shows the results for a 
covariance matrix generated from a small sample of common pixels from sample 10.  

   

FIGURE 16 – MOST COMMON PIXEL TAILORED COVARIANCE MATRIX RESULTS 

 

CONCLUSIONS FROM RXD RESULTS 

The standard deviation for the RXD images was consistently lower for images with more grit than 
images with less grit.  The glue areas were found to be more spectrally diverse than grit areas.   The 
high diversity of the glue areas increased the standard deviation of the RXD image.   The spectral 
diversity of the glue areas may be due to variations caused by several factors including the backing 
material, the thickness of the glue, small grit particles and glare caused by the light source.  Also, 
most pixel vectors contained a combination of glue and grit.  As the grit density increased, the 
image became more uniform because fewer glue only areas remained.   The standard deviation of 
the RX detector algorithm showed potential to provide an indication of the variation of grit 
application compared to a known standard. 

Attempts to use a tailored grit or glue covariance matrix did not produce results that lead to a 
means of characterizing grit density.  The most common pixel tailored covariance matrix seemed to 
provide a possible solution by totaling positive and negative distances of the RX detector algorithm.  
However, the results were not consistent across all of the sandpaper samples. 
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CHAPTER 5 - LINEAR SPECTRAL MIXTURE ANALYSIS APPROACHES 

TO DETERMINE SANDPAPER GRIT DENSITY 

LINEAR MIXTURE BACKGROUND AND APPROACHES 

 

Each pixel vector (r) of a hyperspectral sandpaper image is assumed to contain a linear spectral 
mixture of the ingredients in the sandpaper.  The spectral signatures of the elements in the 
sandpaper form a signature matrix (M = m1, m2, …, mp).  The amount that any one spectral 
signature of the signature matrix contributes to the spectrum of an individual pixel vector is given 
by an abundance fraction (α = α1, α2, …, αp ).   

R = Mα + n         EQUATION 2 

Where n is noise. 

If the signature matrix and the abundance fractions can be determined accurately, the density of 
grit on the sandpaper could be calculated.   

TWO MOST DIVERGENT PIXELS SIGNATURE MATRIX ALGORITHM 

One would expect two main ingredients, glue and grit, to constitute the signature matrix of 
sandpaper.  Pixels that are primarily glue should be maximally divergent from the pixels that are 
primarily grit.   

Based on an assumption that the sandpaper is made from two basic elements, glue and grit, an 
algorithm will be explored that uses the two most divergent pixels in the image to form two target 
signature vectors that make up the signature matrix.  Two methods will be used to calculate the 
abundance fractions.   

The first abundance fraction calculation method will use an unconstrained least-squares estimate 
developed by Scharf, 1992.  

The second abundance fraction calculation method will use an assumption that the abundance 
fractions should be the same for all wavelengths.  Based on this assumption it should be possible to 
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solve 2 equations for 2 unknowns.  The 2 unknowns will be the two abundance fractions that 
represent the percentage of glue and grit in the sand paper.   

UNSUPERVISED FULLY CONSTRAINED LEAST SQUARES ALGORITHM 

In reality, the spectrums of the areas of sandpaper that are primarily glue are influenced by the type 
of backing, paper or cloth, and the thickness of the glue.  The grit is typically a mixture of various 
colors of Aluminum Oxide.  Also, grit is not limited to aluminum oxide.  Sometimes for example the 
grit may include a combination of garnet, aluminum oxide and some contaminants.   An 
unsupervised algorithm to generate the signature matrix will be explored that allows for the 
automatic generation of a multitude of signature vectors.   

Intuitively, the sum of the abundance fractions should equal one, if the signature matrix includes all 
of the possible spectral components of the sandpaper.  Also, all of the abundance fractions should 
be positive because it is physically impossible to have a negative proportion of any of the signature 
vectors.  A “fully constrained” algorithm developed by Chang that imposes these two constraints on 
the linear unmixing process will be explored. 

ABUNDANCE FRACTION ESTIMATE UTILIZING TWO MOST DIVERGENT 
PIXELS IN SIGNATURE MATRIX 

DETERMINATION OF MOST DIVERGENT PIXELS 

The two most divergent pixel vectors will be located finding the pixels with the greatest 
Jeffries-Matusita Distance (JMD).  The JMD formula is as follows: 

JMD(ri,rj) =    EQUATION 3 

Where p and q are hyperspectral reflectances of pixel vectors ri and rj.   

Originally an algorithm that calculated the JMD for every pixel vector pair combination was 
implemented.  The pixel vector pair with the greatest JMD was chosen as the most divergent 
pixels.  This algorithm was impractically slow for image sizes of more than a couple hundred 
pixels.   

Alternatively, the pixel vector with the highest JMD when compared to the pixel vector at x=1, 
y=1 was chosen as the first divergent pixel.  Then the other divergent pixel was found by 
calculating the JMD across the image with ri equal to the first divergent pixel.  This required 
only two passes through the data.  The shorter search algorithm was tested and verified.    
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The following table lists the most divergent pixels and the JMD for each of the sandpaper 
samples. 

Sample  Description Most Divergent Pixels JMD 

2 50 Grit on Paper, AO with Urea, 1.67 gm (39, 21) and (33, 27) 5.35 
3 50 Grit on Paper, AO with Urea, 1.86 gm (28, 4) and (40, 32) 3.41 
5 40 Grit on Paper, AO with Urea, 2.52 gm (40, 2) and (1, 3) 4.67 
6 40 Grit on Paper, AO with Urea, 3.43 gm (19, 13) and (19, 29) 5.26 
8 80 Grit on Cloth, AO with Phenolic, 1.31 gm (19, 6) and (7, 37) 1.24 
9 80 Grit on Cloth, AO with Phenolic, 1.84 gm (38, 19) and (25, 9) 1.06 
10 120 Grit on Paper, Z and AO with Phenolic, .573 gm (3, 24) and (28, 20) 1.49 
11 120 Grit on Paper, Z and AO with Phenolic, .883 gm (37, 29) and (9, 5) 1.79 
12 120 Grit on Paper, Z and AO with Phenolic, 1.1 gm (9, 14) and (10, 1) 1.29 

 

The JMD for samples 2, 3, 5, and 6 are large in comparison to the other samples.  These 
samples are comprised of a black aluminum oxide on light color glue.  The contrast between 
the grit and glue is significant and the JMD is correspondingly large.  Samples 8 and 9 are red 
aluminum oxide on red glue.  The contrast between the grit and glue is small and the JMD is 
low.   Samples 10, 11, and 12 are the finest grit samples.  The fine grit covers the glue and 
backing such that no significantly large glue area as compared to the size of the camera pixel is 
left exposed. Hence, all pixels are mixed pixels of glue and grit.  The resulting JMD is relatively 
low for these somewhat uniform images.  Sample 11 is a little overexposed compared to 
samples 10 and 12. 

The following image displays the spectrum for the two most divergent pixels from sample 12.  
The red line indicates a mostly glue pixel spectrum and the blue line indicates a mostly grit 
pixel spectrum.  

 

FIGURE 17- TWO MOST DIVERGENT PIXEL VECTORS FOR SAMPLE 12 
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The pixel vectors of the two most divergent pixels calculated above are assumed to be pixels of 
pure grit and pure glue.  The spectrum of those two pixel vectors forms the basis spectrum.   

M = [r1, r2]     EQUATION 4 

The abundance fractions that solve r = Mα + n will be determined by Scharf’s unconstrained 
least squares estimate and a two equation and two unknowns approach.   

UNCONSTRAINED LEAST SQUARES ESTIMATE 

The least-squares estimate of α=( α1 α2 … αp)T for r = Mα + n  denoted by αLS can be obtained 
by: (Scharf, 1992) 

αLS = (MTM)-1MTr    EQUATION 5 

Where M is the signature matrix and r is a hyperspectral pixel vector.   The signature matrix 
only contains two elements.  Therefore only two abundance fractions will be obtained.  One 
abundance fraction should represent the portion of the pixel that is comprised of grit and the 
other abundance should represent the portion of the pixel that is comprised of glue.  If the 
abundance fractions are averaged over a significant number of pixels, a value that represents 
the density of grit application can be obtained.   

The following table shows the average abundance fractions for a 40 pixel by 40 pixel region of 
each sample. 

Sample Grams/In2 LSE Grit LSE Glue Sum Glue and Grit 

2 .105 .296 .760 1.06 
3 .117 .388 .534 .922 
5 .158 .254 .928 1.18 
6 .215 .217 1.30 1.52 
8 .082 .370 .660 1.03 
9 .116 .465 .478 .943 

10 .036 .539 .443 .982 
11 .055 .534 .420 .954 
12 .069 .465 .517 .982 

 

The least squares error calculation does not consistently produce results that align with the 
sample grit weights.  The glue contribution to sample #6 was calculated as a nonsensical 
130%.  Clearly, the unconstrained least squares solution is not acceptable. 
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 TWO EQUATIONS AND TWO UNKNOWNS ALGORITHM 

Another approach to obtaining the abundance fractions would be to solve two linear equations 
with two unknowns.  If the basic assumption that sandpaper can be described with a basis 
matrix of only two elements is accurate, then the ratio of those two elements present in any 
pixel should be consistent across all of the wavelengths of the pixel vector.   The assumption 
that abundance fractions are consistent across all wavelengths combined with an assumption 
that the sum of the ratios is equal to one allows the linear unmixing problem to become a 
simple case of two equations with two unknowns.  

    EQUATION 6 

         EQUATION 7 

Where m1 is the signature spectrum of grit, α1 is the abundance fraction for grit, m2 is the 
signature spectrum of glue, and α2 is the abundance fraction for glue. 

In reality, it is not the case that all wavelengths are satisfied by the same abundance fractions.  
The bands in the blue and green spectrums tended to have fairly consistent abundance 
fractions.  The longer wavelength red spectrum bands tended to have the highest variation in 
abundance fractions and often included negative values.  However, averaging or taking the 
median value for the abundance fractions provided reasonable results. 

The following chart shows the values calculated for average and median grit values with a 
measure of the variance in abundance fractions. 

Sample Grams/In2 Ave Grit Median Grit Variance 

2 .105 .657 .673 .019 
3 .117 .656 .668 .022 
5 .158 .623 .664 .029 
6 .215 .626 .652 .016 
8 .082 .486 .569 .091 
9 .116 .535 .603 .082 

10 .036 .455 .461 .038 
11 .055 .491 .529 .036 
12 .069 .516 .578 .066 

 

The following chart shows the same calculations with the equations reversed to calculate 
average and median values for the glue abundance fraction. 
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Sample Grams/In2 Ave Glue Median Glue Variance 

2 .105 .325 .323 .010 
3 .117 .321 .328 .009 
5 .158 .344 .325 .02 
6 .215 .360 .342 .016 
8 .082 .340 .316 .066 
9 .116 .343 .332 .054 

10 .036 .483 .517 .042 
11 .055 .449 .452 .037 
12 .069 .376 .375 .048 

 

 

 

DOWN SAMPLED BANDS 

 

The effect of down sampling the number of bands was explored.  The following data was 
generated by averaging 4 bands at a time to create a 30 band image.   

 

Sample Grams/In2 Ave Grit Median Grit Variance 

2 .105 .661 .671 .010 
3 .117 .662 .668 .009 
5 .158 .628 .662 .02 
6 .215 .627 .649 .016 
8 .082 .504 .583 .066 
9 .116 .568 .624 .054 

10 .036 .471 .468 .042 
11 .055 .502 .530 .037 
12 .069 .513 .580 .048 

 

MOST DIVERGENT LINEAR UNMIXING RESULTS 

The results of the two equations and two unknowns algorithm look good for the red samples 8 
and 9 as well as the brown samples 10, 11, and 12.  The samples with the largest JMD actually 
produce results that do not correlate well.  However the images of samples 2 and 5 have a 
noticeable glare on some of the glue pixels.  The increased glare moves the glue basis matrix 
higher in the reflectance spectrum than it should be.  A larger ratio of the grit basis pixel vector 
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is required to offset the elevated glue basis pixel vector in samples 2 and 5.   The RGB 
converted image of sample 2 shows some of the glare produced by the reflection of the sun.   

 

FIGURE 18- GLARE IN SAMPLE 2 RGB CONVERTED IMAGE 

The abundance fractions selected by the median look to be more accurate than the abundance 
fractions generated by an average function.  The average abundance fractions may be skewed 
due to the high variance in abundance ratios of the longer wavelength bands.  

The abundance fraction ratios seem to correspond with the measured grit density.  However, 
the magnitude of change in the abundance fractions is much lower than what would be 
expected.  The camera was positioned at a slight angle to the sandpaper.  The angle increases 
the portion of the sandpaper that is covered by grit.   

The variance measurement was an attempt to characterize how well the linear combination of 
the basis pixels described the pixels.  The images with the smaller difference between the glue 
pixel and the grit pixel contained the highest variation indicating that the pixels were not as 
accurately described by the linear combination of the basis pixel vectors. 

The down sampled 30 band image produced very similar results to the 120 band image. 

 

UNSUPERVISED MODIFIED FULLY CONSTRAINED LEAST SQUARES 
ALGORITHM 
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UNSUPERVISED SIGNATURE MATRIX GENERATION PROCESS 

Chang describes an unsupervised signature matrix generation process that is similar to the 
most divergent pixels approach that was previously explored.  Chang suggest selecting the 
highest energy pixel vector by finding the pixel vector r that satisfies: 

      EQUATION 8 

 
The second pixel vector in the signature matrix is determined by finding the pixel vector that 
satisfies the following equation: 

     EQUATION 9 

More pixel vectors are iteratively added to the signature matrix if there is a pixel in the image 
that is not accurately described by a linear combination of the current signature matrix.  In 
other words, if the least squares error as calculated by the following equation is greater than a 
threshold є, then the pixel with the highest least squares error is added to the signature 
matrix. 

   EQUATION 

10 

I chose to modify Chang’s algorithm slightly.  Rather than selecting the highest energy pixel, I 
chose the lowest energy pixel.  The lowest energy pixel is typically a pixel that is entirely or 
mostly composed of grit.   

ABUNDANCE FRACTION CALCULATION 

A fully constrained least squares approach will be explored for determination of the 
abundance fractions.  The abundance fractions will be constrained to be all non-negative and 
they must sum to one.   

α J ≥ 0 for all 1 ≤ J ≤ p, and  ∑ αJ = 1      EQUATION 11 

 

ABUNDANCE FRACTION SUM TO ONE CONSTRAINT 

In Chang’s Modified Fully Constrained Least Squares abundance fraction calculation algorithm, 
the sum to one constraint is applied first.  Then a Lagrange multiplier technique is utilized to 
apply the non-negative abundance fraction constraint.   
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Imposing the sum to one constraint on equation 2-1 produces the following linear mixing 
problem: 

minαЄΔ {(r-Mα)T(r-Mα)} subject to Δ {α | ∑p αJ = 1}  EQUATION 12 

The sum to one constrained least-squares solution derived by (Chang 2003) utilizes an 
orthogonal subspace projection (OSP) technique.  The orthogonal subspace projector 

maps the least squares abundance fractions calculated using Equation 5 in to the space 

orthogonal to <M,1>.  The sum to one constrained least squares solution derived by Chang is 
given by the following: 

αSCLS = αLS(r) + (MTM)-11[1T(MTM)-11]-1    EQUATION 13 

Where the orthogonal projection  is given by  

 = ILXL – (MTM)-11[1T(MTM)-11]-11T  EQUATION 14 

with 1 = ( 1 1 … 1)T being a p-dimensional column vector. 

 

 

NONNEGATIVE ABUNDANCE FRACTION CONSTRAINT 

Imposing the nonnegative constraint on the abundance fractions yields the following 
optimization problem: 

Minimize LSE = (Mα – r)T(Mα-r) subject to α ≥ 0  EQUATION 15 

Chang solves the non-negative constraint problem by applying the sum to one constraint and 
the absolute abundance sum to one constraint at the same time to create an equation that can 
be solved with a Lagrange multiplier method.  In other words, the solution to the fully 
constrained abundance fraction is given by: 

 EQUATION 16 

Subject to  

 EQUATION 17 

The resulting Lagrange multiplier equation created from the Equations 16 and 17 is given by: 

 EQUATION 18 
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The following equation for the Modified Fully Constrained Least Squares Abundance Fractions 
can be derived, after differentiating equation 18 with respect to α and setting the result equal 
to zero. 

 EQUATION 19 

If  is substituted for α in Equation 19, then the following two equations can be used to 
solve for and . 

 EQUATION 20 

 EQUATION 21 

Iteratively computing  , and  using Equations 19, 20, and 21 can obtain a solution 
to Equations 16 and 17.   

The process of calculating the abundance fractions utilizing the Modified Fully Constrained 
Least Squares approach derived by Chang can be summarized as follows.  

1.  Calculate a set of sum to one constrained abundance fractions ( ) using Equation 13. 
2. If all of the abundance fractions are positive, then  
3. If any of the abundance fractions are negative, then utilize  in Equation 19 and solve 

for  by plugging the follow equation for  

 EQUATION 22 

in to the following summation and solving for . 

 EQUATION 23 

4. Utilize  and Equation 19 to calculate .   
5. If all of the abundance fractions in  are positive then  .  
6. If some of the abundance fractions are negative, then set  and go back to step 

3. 
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MODIFIED FULLY CONSTRAINED RESULTS 

 

FIGURE 19- SAMPLE 2 – 200X200 PIXELS, SIGNATURE SPECTRUM, GRIT RATIO, AND RGB IMAGE 

Sample 2 
Location and Size Grit Ratio Ratio 2 Ratio 3 Ratio4 Error Negs Starting Ratio 
(100, 100) – 100x100 .7705 .0828 .1183 .0284 1.002 1720-174 .7804,.0923,.1155,.012 
(100, 200) – 100x100 .8116 .1639 .0033 .0212 1.087 5470-3468 .8153,.165,.0082,.0115 
(200, 100) – 100x100 .7091 .0631 .1191 .1087 1.143 865-148 .713,.0668,.1155,.1047 
(200, 200) – 100x100 .7327 .0270 .0716 .0988 1.104 2027-336 .7353,.0873,.0595,.118 
(100, 100) – 200x200 .7605 .0894 .0880 .0621 1.107 3890-240 .7657,.098,.0839,.0523 
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FIGURE 20-SAMPLE 3, 200X200 PIXEL, SIGNATURE SPECTRUM, GRIT RATIO, AND RGB IMAGE 

Sample 3 
Location and Size Grit Ratio Ratio 2 Ratio 3 Ratio4 Error Negs Starting Ratio 
(100, 100) – 100x100 .6282 .2747 .0971  .7595 3164-0 .6607,.2999,.0394 
(100, 200) – 100x100 .6755 .1885 .0891 .0469 .6236 7358-277 .7156,.2718,.0437,-.031 
(200, 100) – 100x100 .878 .0945 .0346 -.0019 .9534 896-143 .8714,.1017,.0578,-.016 
(200, 200) – 100x100 .6343 .1539 .2119  .6748 499-0 .6332,.1506,.2162 
(100, 100) – 200x200 .8524 .1195 .028 .0001 1.087 3714-934 .8516,.1258,.034,-.0116 
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FIGURE 21- SAMPLE 5, 200X200 PIXELS, SIGNATURE SPECTRUM, GRIT RATIO, AND RGB IMAGE 

Sample 5 
Location and Size Grit Ratio Ratio 2 Ratio 3 Ratio4 Error Negs Starting Ratio 
(100, 100) – 100x100 .6658 .2795 .0277 .0270 .9971 5526-3318 .6658,.2795,.0277,.027 
(100, 200) – 100x100 .5898 .1652 .1489 .0961 .6634 1841-247 .5919,.1676,.1455,.095 
(200, 100) – 100x100 .5661 .2086 .1802 .0452 .661 4509-152 .5828,.2662,.163,-.0122 
(200, 200) – 100x100 .582 .2187 .1814 .018 .7465 5445-226 .585,.2664,.1978,-.049 
(100, 100) – 200x200 .7054 .2256 .0175 .0515 .9051 18189-

10626 
.7073,.2313,.009,.0524 
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FIGURE 22- SAMPLE 6, 200X200 PIXELS, SIGNATURE SPECTRUMS, GRIT RATIO, AND RGB IMAGE 

Sample 6 
Location and Size Grit Ratio Ratio 2 Ratio 3 Error Negs Starting Ratio 
(100, 100) – 100x100 .7151 .1794 .1055 .8619 1625-0 .7232,.1924,.0844 
(100, 200) – 100x100 .6235 .1735 .2031 .6886 458-0 .6233,.1714,.2052 
(200, 100) – 100x100 .6558 .2235 .1207 .6741 829-0 .6590,.2287,.1123 
(200, 200) – 100x100 .6391 .2631 .0978 .5983 328 - 0 .6405,.2655,.0940 
(100, 100) – 200x200 .7346 .2357 .0296 1.094 14735 - 0 .7581,.2631,-.0212 
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FIGURE 23- SAMPLE 8, 200X200 PIXELS, SIGNATURE SPECTRUMS, GRIT RATIO, AND RGB IMAGE 

Sample 8 
Location and Size Grit Ratio Ratio 2 Ratio 3 Error Negs Starting Ratio 
(100, 100) – 100x100 0.6158   .39 0  
(100, 200) – 100x100 0.6728   .38 0  
(200, 100) – 100x100 0.5965   .43 0  
(200, 200) – 100x100 .7359 .132 .1321 .47 2 - 0 .7359,.132,.1321 
(100, 100) – 200x200 .7275 .1186 .1539 .487 3 - 0 .7275,.1185,.1540 
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FIGURE 24- SAMPLE 9, 200 X 200 PIXELS, SIGNATURE PIXELS, GRIT RATIO, AND RGB IMAGE 

Sample 9 
Location and Size Grit Ratio Ratio 2 Ratio 3 Error Negs Starting Ratio 
(100, 100) – 100x100 .7668   .4146 0  
(100, 200) – 100x100 .8565 .0882 .0553 .3797 21-0 .8567,.0884,.055 
(200, 100) – 100x100 .6988   .3775 0  
(200, 200) – 100x100 .6285   .3881   
(100, 100) – 200x200 .8469 .0926 .0605 .3795 59-0 .8471,.0927,.0602 
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FIGURE 25- SAMPLE 10 GRIT RATIO AND RGB IMAGE 

FIGURE 26 – SAMPLE 10 (200,100) 100X100 GRIT RATIO AND RGB IMAGE 
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Sample 10 
Location – Size Grit Ratio Maximum Error of Description 
(100, 100) – 100x100 .5544 .4227 
(100, 200) – 100x100 .5209 .4556 
(200, 100) – 100x100 .5606 .4343 
(200, 200) – 100x100 .5066 .4104 
(100, 100) – 200x200 .5137 .3928 
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FIGURE 27 – SAMPLE 11, 200X 200 PIXEL REGION, GRIT RATIO AND RGB IMAGE 

 

 

Sample 11 - 200 x 200 pixels - Grit Ratio and RGB Image
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Sample 11 
Location – Size Grit Ratio Maximum Error of Description 
(100, 100) – 100x100 0.5778 0.3924 
(100, 200) – 100x100 0.6612 0.3934 
(200, 100) – 100x100 0.5240 0.3735 
(200, 200) – 100x100 0.5584 0.4095 
(100, 100) – 200x200 0.6433 0.3906 
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FIGURE 28- SAMPLE 12, 200 X 200 PIXELS, GRIT RATIO AND RGB IMAGE 

Sample 12 
Location – Size Grit Ratio Maximum Error of Description 
(100, 100) – 100x100 0.6178 0.3768 
(100, 200) – 100x100 0.5239 0.4119 
(200, 100) – 100x100 0.6222 0.3724 
(200, 200) – 100x100 0.5754 0.41 
(100, 100) – 200x200 .5874 .3828 

 

CONCLUSIONS FROM LINEAR UNMIXING RESULTS 

The Modified Fully Constrained Algorithm derived by Chang consistently found abundance 
fractions that satisfied the sum to one and non-negative constraints when fewer than four 
abundance fractions were required to accurately describe the pixel vectors in the image.  The 
algorithm was not always capable of satisfying the non-negative constraint when 4 or more 
target signatures were identified.  Sometimes a situation like the one in the following image 

Sample 12 - 200 x 200 Pixels, Grit Ratio and RGB Image
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would occur where the sum of the absolute values would never equal to 1.  Hence, a solution 
for the Lagrange multipliers could not be found.   

 

FIGURE 29- NO SOLUTION FOR LAGRANGE MULTIPLIER EXAMPLE 

Applying the non-negative constraint did not significantly alter the percentage of grit 
calculated by the sum to one constrained solution.  The Lagrange multiplier algorithm 
typically adjusted the contribution of the higher reflectance pixel vectors.  The proportion of 
negative abundance fractions was strongly influenced by the presence of abnormally high 
reflectance pixel vectors in the image.   

The linear unmixing results were heavily influenced by anomalous pixel vectors in the image.  
Some of the images contained pixel vectors that were much higher in reflectance than the 
other pixel vectors in the image.  These pixel vectors were typically created due to the sun’s 
glare reflected by some of the glue areas of the sand paper.  Due to the fact that the target 
selector looked for the extreme pixel vectors, the anomalous pixel vectors were selected to 
represent glue pixels.  The anomalous pixel vectors skewed the linear unmixing such that a 
larger percentage of the grit target pixel vector was required to describe offset the high energy 
of the anomalous pixel vector.  For example in sample 9, the upper right corner of the image 
contains an extremely high energy pixel vector.  The linear unmixing for this region of the 
sample identified the percentage of grit coverage at 85%.  The lower right corner of sample 9 
does not contain any anomalous pixels.  The linear unmixing results for this region indicate 
that the grit coverage is 63%. 
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FIGURE 30- SAMPLE 9 GRIT RATIO IMAGE 

An attempt to patch the anomalous pixels was made by using the RXD algorithm to identify the 
pixels that were unusual for the sample.  The anomalous pixel vectors were patched with 
average pixels for the image.  The following image shows a patched version of sample 3. The 
patches are visible in the dark blue areas of the image.   

 

FIGURE 31 – RXD CORRECTED VERSION OF SAMPLE 3 

 

The following chart compares the results of the two equations and two unknowns solution, the 
MFCL algorithm, and the RXD corrected image with sum to one constrained solution. 

Sample Number –  
Grit Weight 

Grit Percentage  
Two Unknowns 

Grit Percentage 
MFCL Algorithm 

Grit Percentage 
RXD SCL 

2 – .105 gms /in2 66% 73% 70% 
3 - .117 gms /in2 66% 64% 65% 

5 – .158 gms /in2 62% 58% 58% 
6 - .215 gms /in2 63% 64% 63% 

8 – .082 gms /in2 49% 64% 65% 
9 - .116 gms /in2 54% 69% 64% 

10 - .036 gms /in2 46% .51% 51% 
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11 - .055 gms /in2 49% .55% 58% 
12 - .068 gms /in2 52% .58% 59% 

 

Samples 10, 11, and 12 are the only group of samples that demonstrated consistent results.  
These samples are actually the finest grit samples.  The highest grit color to the glue color 
contrast was in samples 5, 6, 10, 11, and 12.  These samples also had the most consistent MFCL 
and RSD SCL results.     



43 

 

CHAPTER 6 - RESEARCH CONCLUSIONS 

Three primary methods (DCT Surface Characterization, RXD Variation, and Linear Unmixing) 
were explored to measure the density of grit application on sandpaper.  All three methods 
were able to provide insight in to the density of grit on the samples.   

The DCT and RXD methods demonstrated the potential to determine if a test sample varied 
significantly from a known good sample.   

The linear unmixing algorithms demonstrated the potential to determine the grit density 
without any prior knowledge of the sample being examined.   

The linear unmixing algorithms only produced repeatable results on the 80 grit and 120 grit 
samples.  Linear unmixing for the 40 grit and 50 grit samples did not produce the expected 
results.  Unfortunately, the lower density 40 and 50 grit samples contained significant 
amounts of glare that may have compromised the results.  The linear unmixing results showed 
that the grit application was not uniform for any of the grit sample types.   

For the RXD algorithm approach, the standard deviation of the samples decreased with more 
grit.  The glue areas produced the greatest variation.  If the sample was composed of mostly 
mixed grit and glue pixels, the standard deviation dropped.  Attempts to create a tailored 
covariance matrix for the RXD algorithm did not produce results that converged to a 
meaningful determination of grit density. 

Perhaps the most robust results were accomplished with the Direct Cosine Transform surface 
frequency characterization algorithm.  The algorithm consistently identified a difference in the 
surface between known good samples and a target sample.  The reflectance magnitude 
variation caused by exposure time may be an issue with this method though.   

A hyperspectral camera may be difficult to implement on a high speed web application, but 
most of the algorithms demonstrated the same level of success with a simulated RGB 
approach.  The following RGB camera system bill of material would provide a strobed high 
speed camera system that would support further testing of the algorithms identified in this 
research.    
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CAMERA SYSTEM DESIGN 

K56-999 - $650 - 4000 Strobe Controller 
Output for one light head, 1 microsecond minimum pulse  

K55-813 - $696 – RGB Ring Light 
4 inch working distance, 1.7” coverage,  

NT63-856 - $1,195 - EO-3112C Color GigE Camera 
½” progressive scan CMOS Micron MT9T001 sensor, 2048 x 1536 
pixels. 

NT59-233 - $60 – Cat6 Ethernet Cable, 25 ft 

NT63-866 – $65 – Intel PRO/100 Video Capture Board 

NT58-001 - $250 – Techspec Compact 12 mm Focal Length Lens 

NT03-632 - $5.95 – 1 mm Spacer 

NT03-631 - $5.95 – ½ mm Spacer 
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