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ABSTRACT 

 

Holtkamp, David. M.S., Department of Computer Science and Engineering, 

Wright State University, 2009. A Self-Configuring 3-D Body Scanner. 

 

A flexible, self-configuring body scanner is described that is capable of capturing 

and merging range data from multiple views into a single coordinate system 

without the use of registration. The scanner uses two disconnected frames with 

embedded lights to merge the coordinate systems of multiple cameras. The 

frame also serves in finding the laser plane as the lasers are swept over the 

surface from multiple locations. Both hardware and software details are 

presented as well as techniques for automating most aspects of the scanner. A 

new implicit surface implementation is also described for processing and 

triangulating the resulting point clouds along with the design and use of 

measurement tools for analyzing the completed scan. 
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Chapter 1  

INTRODUCTION AND BACKGROUND  

 

3-D body scanners have a growing number of applications in today’s 

society, creating a marketplace with a large variety of scanners and technologies. 

The apparel industry is one of the most notable users of this new and 

forthcoming technology. These scanners provide the ability to produce tailor-fit 

clothes without the time or labor to perform traditional measurements. For 

instance, in the future, this technology has the potential to enable a customer to 

―try on‖ virtual clothing to determine the suit with the best fit [1]. 

 Along with creating the potential for easily obtaining custom-fit clothing, 

3-D body scanners may also change the way clothing is mass produced. By 

using large amounts of anthropometric data gathered from the 3-D scans, the 

clothing industry will be able to determine ways to make clothing that fits more 

people, leading to a larger portion of their customer base liking the way their 

clothes look on them. Other industries have also found important uses for body 

scanners. The airline, tractor, and automobile industries are using 3-D scans to 

create better seating that sit pilots and drivers more comfortably [1]. 
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 3-D scanners can be classified into two types: active and passive [2]. 

Passive methods, such as binocular stereo and depth from defocus, are not 

commonly used in applications such as 3-D body scanning due to the density 

and accuracy of the data required. Instead, active methods, such as structured 

light [3] and time of flight [4], are used. 

The most common type of structured light scanner is the laser scanner, 

which typically consists of four or eight cameras and four lasers that move 

synchronously together on four poles in such a way that creates a single laser 

plane. With the positions of both the lasers and cameras known, the scanner 

uses triangulation to extract 3-D information from the scene. Figure 1.1 shows an 

example of a 4-pole laser range scanner. White light body scanners are also 

available which cast a series of light stripes on the body from which 

measurements are extracted. Sixteen non-moving white light scanner heads are 

used [5].  
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Figure 1.1: A 4-pole upper-body scanner utilizing 4 cameras and 4 lasers. 

 

More recently, a new type of scanner has emerged that utilizes RF waves 

in the millimeter bandwidth and time of flight to scan subjects. These scanners 

are being used by the Transportation Security Administration in some airports as 

an alternative to pat downs. These scanners use two arrays of transmitters and 

receivers that rotate around the user and determine body dimensions. This type 

of wavelength is well suited for finding things such as hidden weapons and 

explosives due to its ability to see directly through clothing [6]. This same 

property, however, also makes it a privacy concern and a subject of active 

debate [7]. 
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Two issues which have helped hinder 3-D body scanners from being used 

by the general public are their cost and their portability. Almost all scanners on 

the market today use expensive automation hardware to keep the scanner heads 

synchronized and determine their positions with respect to each other. In the 

body scanner developed in this work, both of these problems are addressed 

simultaneously. By using a configuration frame, the cameras and lasers may be 

casually placed around the scanning area, removing the need for expensive 

automation hardware and also eliminating the need for any type of image 

registration. The proposed design makes the scanner flexible in usage, cheap to 

produce, and also easy to transport and reconfigure in a new location. 

In the following sections, hardware and software organization of the 

scanner are detailed, including an implicit surface for creating a triangulated 

model of the scan as well as useful measurement tools. Next, experimental 

results are shown, and the results are analyzed and concluding remarks are 

made. Finally, ideas and suggestions for future improvements to the system are 

presented. 
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Chapter 2  

HARDWARE ORGANIZATION 

 

2.1 Frame 

The frame of the scanner consists of two rigid white rectangular structures 

made out of square hollow tubing. On each side of both of the frames are four 

circular lights that can be turned on and off automatically by the software. These 

lights are used as marker points to associate points on the frame with points on 

the image plane of the cameras. The lights are embedded within the frame and 

covered with a semi-transparent covering that both diffuses the light coming out 

and diffuses the laser light when it strikes it on the outside of the frame. One of 

the two rectangular frames is placed flat on the floor and the other is either hung 

from the ceiling or set on a stand directly above the other at a height around 

seven to eight feet. Figure 2.1 shows an illustration of the reference frames. 
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Figure 2.1: Top and bottom frame layout. 

 

 

2.2 Cameras 

The cameras are placed around the reference frames facing inward, with 

all eight light points from either the front or the back of the frames visible within 

the image plane of each individual camera. Any number of cameras may be 

used, but using fewer than three cameras will lead to a considerable amount of 

occlusion and loss of data from the resulting scan. An optimal setup will have the 
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largest angle possible between all the cameras while taking into account both the 

symmetry of the body and the symmetry of the frame. 

 The resolution of the camera will directly correlate to the accuracy of the 

scanner. For our implementation, the scanner used three IEEE 1394 

monochrome machine vision cameras with 1280 x 1024 pixels CCD. One factor 

to consider when selecting the resolution of the camera is the resulting frame 

rate due to bandwidth constraints. A slow frame rate will result in a longer time 

period to scan a subject, which will raise the likelihood of the subject moving 

during the scan. 

 The type of lenses used on the cameras should also be taken into 

consideration. In some circumstances, a scanner may be required to fit within a 

smaller area; for this application, the use of wide angle lenses would be 

desirable. Although distortions caused by wide angle lenses can be corrected 

beforehand using training data, it should be taken into consideration that the 

accuracy of the scan will suffer to some extent. This is especially true for data 

captured by areas of the CCD far from the center of the image where there are 

far fewer pixels representing each pixel in the final corrected image. In addition to 

this, placing the cameras closer to the subject during a scan will increase the 

amount of occlusion. 
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2.3  Lasers 

The lasers for the scanner are line lasers mounted on software-controlled, 

high-precision step motors with the planes aligned vertically so as to intersect 

both the top and bottom frame simultaneously. The lasers may be placed 

anywhere around the frame, but the accuracy of the scanner will decrease as the 

angle between the lasers and the cameras decreases. Conversely, placing the 

laser at a far distance from the camera will result in higher amounts of 

occultation; therefore, a balance must be reached between the accuracy and the 

amount of data gathered. This choice will be dependent on the number of lasers 

and cameras used within the particular scanner configuration. Another factor to 

consider is that if two lasers lie on opposite sides of a camera or multiple 

cameras, then both of the lasers may be run simultaneously as long as the laser 

planes do not intersect within the bounding area of the frame and the person 

being scanned is within this bounding area as well. Being able to use multiple 

lasers in this manner can cut the scan time by a factor of two. See Figure 2.2 for 

a layout using three cameras and four lasers, wherein two lasers are run 

simultaneously on their respective sides.  
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Figure 2.2: The 4-camera 3-laser layout from top view. 

 

 

2.4 Automation Hardware 

 In order for the software to control the room lights, frame lights, and 

lasers, additional hardware is required. In our implementation of the scanner, 

three stepper boards from Peter Norberg Consulting, Inc., are used. Although 

there are a wide variety of stepper board controllers and automation products 

available, these boards were selected based on their low cost, high performance, 

and extensive options. 
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  The primary board is a SS0705UCR with the routing firmware installed 

and a USB interface. This is the only board that interfaces with the PC running 

the scanner software. The other two boards are model BS0710 and SS0705CR 

and are both loaded with the step motor firmware. Both of these boards are wired 

directly into the first board. In order to communicate with these two stepper 

boards, the PC routes commands through the primary board. 

 Both boards with the steeper board firmware control two of the step 

motors. Along with routing commands to the other two boards, the board with the 

routing firmware has the ability to drive 6 lines with an additional three-volt power 

supply. Four of these lines are used to turn on and off the lasers. The remaining 

two lines are routed to an external box containing two solid state relays, which 

turn on when the board drives their respective line voltage high. One of the lines 

controls a group of lights placed around the room used for ambient light, and the 

other line controls the lights within the frame, which are used for calibration.  
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Chapter 3  

SOFTWARE ORGANIZATION 

 

3.1 Scanner Software 

3.1.1 Camera Calibration 

The first step in calibrating the scanner system is to remove geometric 

distortions from lens nonlinearities. These distortions are even greater in wide 

angle and aspheric lenses, which may be desirable in some configurations due to 

their ability to reduce the area needed to set up the scanner 

 To remove these distortions, a grid of evenly spaced circular spots is 

used. Each camera is placed in front of the grid and aimed such that the optical 

axis is normal to the grid. The goal of this process is to find a transformation 

function that will change the distorted grid in the captured image into the ideal 

grid. 

To find this transformation for each camera, the following steps are followed: 

1. Capture an image of the configuration grid with the camera that is to be 

configured. 

2. Segment the image by local thresholding to find the spots. 
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3. For each spot: 

a.  Find the centroid of the segmented area to approximate the center of 

the circular spot. 

b. Determine its ideal position within the image based on its position 

within the grid. 

4. Knowing the ideal and obtained spot centers, determine two thin-plate spline 

mapping functions that map the acquired grid of spots into the ideal grid. 

Then, for each pixel in the distorted image, determine the coordinates of the 

pixel in the ideal image and save this mapping in two arrays to be used as 

lookup tables (See Figure 3.1). 

 

Once the lookup tables for correcting the distorted image are created for a 

camera, they can be used for any subsequently acquired image from that camera 

as long as the lens’ focus, zoom, and position with respect to the frame are not 

changed. For this reason, lenses that have locking screws are suggested. 

 

  𝑓 𝑥, 𝑦 =  𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 +  𝐹𝑖
𝑛
𝑖= 1  𝑟𝑖

2 ln 𝑟𝑖
2 

Figure 3.1: The equation for a thin-plate spline where 

 𝑟𝑖
2 = (𝑥 − 𝑥𝑖 )2 +  (𝑦 −  𝑦𝑖 )2 and the a’s and F’s are the parameters of the spline 
to be determine by using a number of corresponding points in the ideal and 

captured grids [8]. 
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Figure 3.2: The configuration grid before and after correction for lens distortion. 

  

3.1.2 Determining the Relation Between Image and Frame 

Coordinates  

In order to determine the 3-D position of a laser stripe during a scan, it is 

first necessary to find the transformation between the image planes of each 

camera and the 3-D planes created by the top and bottom reference frames of 

the scanner. To achieve this automatically, the software-controlled lights within 

the scanner are used as reference points. In order to get an accurate 

transformation from these marker points, the location of the top frame with 

respect to the bottom frame should be carefully measured.   

To find the frame markers, an image is first taken of the frame with the 

frame lights turned off. This image serves as the base image. Next, the software 

turns on the frame lights and takes another image. This image is subtracted from 
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the base image in order to remove everything except the lights. All values below 

a threshold value are then set to 0 so that only areas where the light points are 

located will be non-zero. This threshold value is found experimentally.  

 After the image has been cleared of noisy regions, a search is made for 

the non-zero regions. Once a region is located, its centroid is calculated. The 

centroid is then used as the center point for the light marker on the frame. Once 

this process is completed, eight individual light points are identified, four 

belonging to the top frame and four belonging to the bottom frame. 

 With the geometry of the frame known, it is trivial to determine the 

correspondence between points in the 2-D image and the corresponding points 

in 3-D. The only information that requires manual entry is which side of the frame 

the camera is placed, but even this step could be removed with an additional 

distinguishing marker on one side of the frame. Four sets of correspondences 

between image coordinates and 3-D coordinates are used to determine the 

following projective transformations:  

                                      

           

𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 𝑎9
𝑎10 𝑎11 1

   ∗    

𝑥
𝑦
1
 =   

𝑋
𝑌
𝑍
𝑤

                         (3.3) 

for the bottom frame and  
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𝑏1 𝑏2 𝑏3 
𝑏4 𝑏5 𝑏6
𝑏7 𝑏8 𝑏9
𝑏10 𝑏11 1

   ∗    
𝑥
𝑦
1
 =   

𝑋
𝑌
𝑍
𝑤

                         (3.4) 

 

for the top frame, where (x, y) is the 2-D coordinate of the point in the image 

plane and (X/w, Y/w, Z/w) is its corresponding 3-D point lying in the plane defined 

by the top or bottom reference frame. This will produce twelve equations and 

eleven unknowns for each frame, which can be solved using least squares to 

determine the best parameters of the projective transformations.  

 The above process is repeated on each camera for both the top and 

bottom frame so that each camera has transformation parameters (a1 – a11) and 

(b1 – b11), relating bottom and top frame coordinates to the image coordinates. 

Once the transformation parameters are determined, knowing the coordinates of 

image points representing the intersection of a laser plane with the two frames, 

from Equations 3.3 and 3.4, we can determine the 3-D coordinates of the 

corresponding frame points. 
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Figure 3.5: Calculating the intersections of the laser plane  
with the frame poles in 3-D. 

 

3.1.3 Determining the 3-D Equation of the Laser Plane 

Once the cameras are configured and the top and bottom frame 

transformation matrices are calculated, the location of the laser stripe forming on 

an object during a scan needs to be determined. To find this location, another 

projective transformation that relates the image coordinates to coordinates in the 

laser plane needs to be found, which will be denoted as c1 – c11. 
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𝑐1 𝑐2 𝑐3
𝑐4 𝑐5 𝑐6
𝑐7 𝑐8 𝑐9
𝑐10 𝑐11 1

   ∗   
𝑥
𝑦
1
 =   

𝑋
𝑌
𝑍
𝑤

                       (3.6) 

To find three of the four needed corresponding point sets to calculate the 

transformation, the configuration frame can be used. During the scan, the current 

laser plane should intersect both the top and bottom frame. Visibility of both the 

front pole and back pole on the top frame is ensured, but on the bottom frame the 

view of the far pole may be obstructed by the subject who is being scanned. To 

find the three visible point correspondences, the (x, y) positions of the frame 

markers, which were found previously, are used. Each set of two corresponding 

points on the same pole are used to determine the equation of the line that best 

fits the location of the pole on the image plane. This line is then traced along on 

all three visible poles to find the (x, y) location of the laser intersection using the 

same technique described in Section 3.1.4 in order to determine its sub-pixel 

position. The two top frame points are then transformed using matrix (a1 – a11) 

to find their corresponding (X, Y, Z) coordinates, and the bottom frame 

coordinates (x, y) are transformed with (b1 – b11) to find their corresponding (X, 

Y, Z) coordinates. Three correspondences are now known yielding nine 

equations, meaning additional information must still be found before the 

transformation for the laser plane can be determined. To obtain this information, 

the three points already found will be used along with the inverse projection of 

matrix (b1 – b11), which can be expressed as: 
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𝑖𝑏1 𝑖𝑏2 𝑖𝑏3
𝑖𝑏4 𝑖𝑏5 𝑖𝑏6
𝑖𝑏7 𝑖𝑏8 1

   ∗    
𝑋
𝑍
1
 =  

𝑥
𝑦
𝑤
                          (3.7) 

where (X, Z) are the respective components of the 3-D position in the plane 

defined by the bottom frame, and (x/w, y/w) are the corresponding coordinates in 

the camera’s image plane. This transformation will stay constant as long as the 

camera and frame are not moved and, therefore, can be calculated once per 

camera like the transformation with parameters (a1 – a11) and (b1 – b11). It is 

important not to use the (X, Y) coordinates instead of (X, Z) as this will yield an 

under-determined system of equations if the plane lies directly in an (X, Z) plane, 

or a loss of accuracy if it lies very close to an (X, Z) plane. 

 The next step in finding the fourth corresponding point set is to estimate its 

3-D position. The 3-D plane of the laser can be found using the three known 

points and the plane can be expressed by the equation Ax +By + Cz + D = 0. The 

estimated position of the obstructed 3-D point would then be at the intersection of 

the laser plane and the line defined by the obstructed pole. The equation of this 

line can be found by the location of the two configuration points already known, 

which will be denoted as P1 and P2. The intersection can be found at point P 

with  

                                                𝑃 = 𝑃1 + 𝑢 (𝑃2 − 𝑃1)                              (3.8) 

where u is equal to: 
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                         𝑢 =  
𝐴 𝑥1+𝐵𝑦1+𝐶 𝑧1+𝐷

𝐴  𝑥1−𝑥2 + 𝐵  𝑦1−𝑦2 + 𝐶 (𝑧1−𝑧2)
                         (3.9) 

with (x1, y1, z1) being the coordinates of P1 and  (x2, y2, z2) being the 

coordinates of P2 [9]. 

 With the 3-D coordinates of the fourth corresponding point set known, the 

(x, y) camera plane position can be solved for using the inverse b projection 

found earlier. This will yield the fourth set of corresponding points. With four sets 

of corresponding 2-D and 3-D points, the projective transform for the laser plane 

(c1 – c11) can now be solved with least squares using the same method as was 

used for the top and bottom frames’ projection matrices. See Figure 3.5 for an 

illustration of this process. 

 

3.1.4 Determining the 3-D Point Cloud 

Now that a transformation has been determined between the image plane 

coordinates and the plane of the laser, all that remains is to obtain the 3-D 

coordinates of laser points by accurately determining the (x, y) image coordinates 

of the laser stripe in the image plane. This process is simplified by the fact that 

our laser is mounted with the projected plane approximately vertical, allowing the 

stripe to only intersect each row of an image a single time. 

 Although most laser-plane generators can be focused to produce very thin 

stripes, both the material on which they strike and the angle at which they strike 

can make the true center of a stripe difficult to determine. Some materials may 
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diffuse a significant amount of the laser light. The stripe may appear very wide 

due to the projection angle or may even appear to be projected onto two non-

adjacent surfaces. To help alleviate these problems and to extract some level of 

sub-pixel information from the image, the following steps are followed:  

 

Given an image frame during an image scan and a frame (base image) 

immediately prior to the laser becoming active: 

1. From the current image, subtract the base image from before the laser was 

turned on to remove any other light sources in the room from the image. 

2. For each row in the new image: 

a. Find the pixel with the highest intensity. 

b. If this pixel is greater than the set threshold, then continue to step c. If 

it is not, then go to the next scanline and back to step a. 

c. At the location of the highest intensity, find the weighted average of the 

values, using the pixel intensities as the weight  

                             𝑃𝑥 =
  𝑥∗𝑖(𝑥)𝑋𝑀𝑎𝑥 +𝑟

𝑥 = 𝑋𝑀𝑎𝑥 −𝑟

 𝑖(𝑥)𝑋𝑀𝑎𝑥 +𝑟
𝑥 = 𝑋𝑀𝑎𝑥 −𝑟

                     (3.10) 

where x is the position in the image, i(x) is the intensity at this position 

in the image, Px is the final sub-pixel position of the stripe for the 

current scanline, and r is the radius of the search, which should be set 

based on the camera resolution and the laser stripe width. 

d. Transform the (x, y) location, which was found to be (Px, row), with the 

transformation (c1 – c11) to find the (X, Y, Z) coordinate of the laser 

stripe at the current scanline. 
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e. If additional scanlines exist, go to the next scanline and go back to step 

a. If this was the last scanline, then stop. 

 

3.2 Surface Generation Software 

3.2.1 Problem Statement 

In order to render the acquired points as a surface on graphics hardware, 

it is desirable to represent the surface as a set of joining triangles that accurately 

approximate the surface represented by the point cloud. Due to both the noise 

present in the scan and the varying density of data gathered by a laser scanner, 

it is necessary to pre-process the point cloud instead of using direct triangulation 

to connect the data points onto a joining surface. In addition, the surface 

implementation must be able to join two adjacent surfaces that lay close and run 

parallel to each other, which could be the result of a small error in configuration 

of the scanner or the movement of the subject during the scan. In order to meet 

the aforementioned criteria, an implicit surface has been formulated with the 

surface being defined as: 

                                                      𝑓 𝑥, 𝑦, 𝑧 =  c                                  (3.11) 

 Similar methods with implicit surfaces have been used in the past. Blinn 

[10] and Muraki [11] both placed a decreasing exponential on the field for each 

point in the point cloud in order to approximate the surface. Nishimura et 
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al. [12] and Wyvill et al. [13] got the same results but faster by using a polynomial 

function instead of exponentials. Although these methods are simple to 

implement, they only perform well when the point cloud used is evenly spaced.  

 

3.2.2 Approach 

3.2.2.1  Normal Estimation 

Before finding the implicit surface that fits the underlying point cloud, 

surface normals must be estimated. In order to estimate the normal of the 

surface at each point in the scanned point cloud, the following covariance matrix 

is created using the point in question and a set of its nearest neighbors.  

                                             𝑀 =   

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

                                (3.12) 

                                        𝐼𝑥𝑦 =  |𝑥𝑗 − 𝑥 |𝑛
𝑗=1  |𝑦𝑗 − 𝑦 |                        (3.13) 

The eigenvalues and eigenvectors are then calculated for the matrix. The 

eigenvector corresponding to the smallest eigenvalue is the approximation of the 

normal for the underlying surface and the other two eigenvectors are used as the 

orthogonal basis of the tangent plane. [14] 

 Before proceeding, it is important to make sure that all of the normal 

vectors are pointing in a uniform direction. In order to automate this process, a 

least spanning tree can be used. Each node in the tree represents a point in the 

cloud and each edge has the cost of the dot product between the two vectors in 
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question. Edges should be created between each node and its nearest n 

neighbors. The tree should be traversed and each child should have its sign 

changed if it would reduce the angle between itself and its parent. [14] 

 

3.2.2.2 Implicit Surface 

First, the field which will contain our implicit surface, denoted by F, is 

initialized to 0. For each point in the point cloud, a 3-D Gaussian is added to the 

field at the location corresponding to the point. In the two directions that are 

tangent to the estimated underlying surface, a Gaussian function is applied. In 

the direction of the surface normal, the first derivative of the Gaussian function is 

applied. This results in the field values within the model having one sign and the 

field values outside the model being the opposite sign. This can be written as 

follows: 

 

                           𝑓 t1 , t2 , 𝑛 =   𝐺(𝑛
𝑖=0 𝑡1) ∗ 𝐺 𝑡2 ∗ 𝐺 ′(𝑛)                 (3.14) 

                                                   𝐺 𝑥 =  𝑒
−𝑥2

2𝜎2                                   (3.15) 

where (t1, t2, n) is the position of the point in the coordinate system relative to the 

normal and the orthogonal basis of the tangent plane.  

See Figure 3.16 for a 2-D representation of this field. Parameters  𝜎𝑡1 and 

𝜎𝑡2 control the smoothing of the surface and parameter 𝜎𝑛  must be adjusted 

based on the noise in the point cloud in the normal direction. For example, if the 
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subject being scanned shifts during the scan, a higher 𝜎𝑛  will allow the two 

surfaces to be better merged into a single surface, but it will also have some 

smoothing effect upon the model, resulting in the loss of details. 

 

Figure 3.16: A 2-D cross section of function f(x, y, z) = G(x)G(y’)G(z). 

 

3.2.2.3 Density Adaptation 

With the current formula for the implicit surface, a change in point density 

could result in the loss of detail in the surface represented by the point cloud. In 

order to accurately render an area with sparse points within a model, a high σ 

would be required. If in another part of the same model, the density of the points 

increases, it will result in smoothing of details, which could have been present in 

the underlying surface. Situations such as this could occur when rendering a 

model that has had the data points decreased in areas of low curvature. This 

could also happen in a scanner such as the one described in this document 

when the object being scanned has overlapping areas from two different 
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cameras or lasers, or if the surface being scanned is at a large or small viewing 

angle from the camera.  

 In order to compensate for this problem and preserve the details of the 

model, the 𝜎𝑡1 and 𝜎𝑡2 are scaled based on the distance of the point to the n 

points nearest to it: 

                          𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
 𝐷𝑖𝑠𝑡[𝑖]𝑛

𝑖=0

𝑛
                        (3.17) 

                        𝜎𝑡1 =  𝜎𝑡2 =  𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗  𝜎𝑈𝑠𝑒𝑟  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑               (3.18) 

where n is the number of nearest neighbors and Dist[i] is the distance of the point 

in question to its i’th nearest neighbor. A larger n in this equation will cause a 

slower change in the way density affects the model, which could still over-smooth 

fine details. On the other hand, a small n will cause rapid changes in σ and that 

could cause a small group of points that just happen to lay next each other in a 

sparse area to cause an artifact on the surface. For this paper, the number of 

nearest neighbors used in the implementation of the surface was 10, which was 

found after testing to be the best number in most circumstances.  

 This refinement to the formula also removes any issue of model scale 

when rendering the implicit surface from a point cloud. Regardless of whether the 

model is in inches or millimeters, the σ will never need to be adjusted by the user 

to compensate for scale. 
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3.2.2.4 Curvature Adaptation 

In order to allow for sharp corners to be represented correctly in the 

implicit surface, an additional factor is added. Because the Gaussian field being 

added to our primary field F can cause sharp curves and corners to expand, it 

cannot accurately represent the underlying surface. To alleviate this flaw, σ is 

lowered in areas of high curvature in the direction of the curvature. This is done 

by approximating the curvature of the surface at each point in the direction of 

both of the principle axes of the tangent plane as determined by the covariance 

matrix. The curvature can be approximated from the point cloud in a variety of 

different ways. The most straightforward approach would be to fit a cubic surface, 

oriented with respect to the two tangent vectors, to the surrounding point cloud 

using least squares. This process is computationally expensive, and, if there is 

significant noise in the model, it may require repeating the process in order to 

remove any outlier points, which may cause large errors in the calculation when 

using least squares. 

In order to lower the computation time, two other methods were also 

tested. One method fits circles to the neighboring points. Because a circle is a 

two-dimensional shape, all of the points cannot be used simultaneously. Instead, 

to find the estimated curvature, points that lie near the planes defined by the 

normal vector and each tangent are projected onto each plane. A circle is then 

fitted to the points in each plane using the Levenberg-Marquardt algorithm [15]. 

The estimated curvature around each tangent vector is the reciprocal of the 
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circle’s radius fitted in the plane defined by the opposite tangent and the normal 

vector. 

Similar to surface fitting, the circle fitting is very vulnerable to outliers due 

to the use of least squares and may require use of the algorithm multiple times to 

remove the outliers. The other method addresses both the stability and speed 

issue while sacrificing some accuracy by only taking into account the angle 

between the normal vectors of the point in question and its neighbors and 

distances between the point in question and its neighbors. 

 

Figure 3.19: Finding the estimated curvature of the point cloud. 

 

For this method, we assume that the local curvature approximates a 

sphere. For the purpose of illustration, this will be shown in 2-D, but it is actually 

done in three dimensions. Given two points, p1 and p2, the distance d between 



 

28 
 

them, and the angle θ between the two normals, the estimated curvature is equal 

to the inverse of r, where r is the radius of the circle, which can be determined 

using the law of sines. 

                                   
𝑟

sin (
𝜋− 𝜃

2
)

=  
𝑑

sin (𝜃)
                    (3.20) 

Solving for the inverse of r yields the curvature approximation: 

                                               𝑐 = 
1

𝑟
=  

𝐷∗sin  (θ)

sin (
𝜋− 𝜃

2
)
                 (3.21) 

Or, 

                                      𝑐 =  
2∗sin (

𝜃

2
)

𝐷
                               (3.22) 

 Finally, we expand this formula and use it to find the curvature at point p 

with normal n, its ith nearest neighbor 𝑁𝑁𝑖, its normal 𝑛𝑁𝑁𝑖  , and the distance 

between p and 𝑁𝑁𝑖 being Dist[i]. The formula can either be applied directly to 

                         𝑐 =  
 2∗sin ( 

cos −1 𝑛 ∗ 𝑛𝑁𝑁𝑖  

2
)

𝑁𝑒𝑖𝑔 𝑕𝑏𝑜𝑟𝑠
𝑖=0

𝑁𝑒𝑖𝑔 𝑕𝑏𝑜𝑟𝑠
              (3.23) 

the local point cloud to estimate the overall curvature or, similar to the previous 

method, applied to only the points near the planes defined by the vectors 

composing the orthogonal basis of the tangent plane in order to get the curvature 

in both directions individually.  
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 The final implementation in this project uses a combination of the last two 

methods given to estimate the curvature with the actual curvature determined by 

fitting circles and using the last more stable method to see whether the circle 

fitting has become unstable. If this is found to be the case, the curvature value is 

set to the magnitude of the curvature value found by the last method. 

 After estimating the curvature using one of the aforementioned methods, 

these values are used to adjust the σ’s in their corresponding direction. To allow 

the user to select the desired surface sharpening, an additional parameter s is 

added. When s is set to 0, the curvature will have no additional effect on the 

model. 

     𝜎𝑡1 =  𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗  𝜎𝑈𝑠𝑒𝑟  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 − 
𝑠 ∗ 𝑐𝑡1  

𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦
         (3.24) 

     𝜎𝑡2 =  𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗  𝜎𝑈𝑠𝑒𝑟  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 − 
𝑠 ∗ 𝑐𝑡2  

𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦
         (3.25) 

 The curvature term is divided by 𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦  in order take local density into 

account. Without this term, a model at a smaller scale, which has a small 

curvature relative to its local density, might erroneously receive a low σ. 

  

3.2.3 Implementation 

In order to efficiently implement the implicit surface, the surface is 

calculated discretely by using a voxel grid to represent the field at discrete 

locations. Initially all field values are set to zero. For each point in the scanned 
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point cloud, the Gaussian function is calculated using its corresponding σ values. 

This field is then rotated to correspond with the normals and other two axes 

found from the inertia matrix’s eigenvectors and then added to the primary field. 

Once all points in the point cloud have their fields summed together, the 

marching cubes algorithm is used to generate triangles from the field’s zero 

surface [16].  

 Because a Gaussian approaches 0 exponentially, it is not necessary to 

calculate the values of the individual point fields for every position in the final 

model field. Instead, an error tolerance can be decided upon and then a block 

size determined based on the σ of the Gaussian.  

                                           𝑒
−
𝐷
2

2

2𝜎2 < 𝜖                                        (3.26) 

                                               𝐷 = 2𝜎 −2 ln (𝜖)                                 (3.27) 

where D is the size of the block in one dimension, and ε is the error tolerance. 

Calculating the field in this way allows for a significant reduction in computation 

time with a negligible loss in accuracy. 

 Depending on the hardware being used and the resolution of the desired 

surface, it may not be possible to allocate a single contiguous block of memory 

large enough to represent the overall field. To address this issue, sub-fields are 

used. Each subfield must take into account all points lying within its field as well 

as all points lying within D / 2 voxels in order to assure all points that may affect 

the field are taken into account, where D is the size of the largest block as 
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defined by Equation 3.27. With this stipulation in place, all of the subfields may 

be rendered individually and the triangles resulting from each sub-field may be 

merged into a single model with no artifacts present on the interface between 

adjacent fields. See Figure 3.28 for a depiction of this process. 

 

Figure 3.28: Breaking the model field into subfields. 
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3.2.4 Examples 

            

Figure 3.29: Point cloud and final model of the Max Planck bust model from MPI. 

     

 

Figure 3.30: Point cloud and final model of the Igea artifact model  
from Cyberware. 
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Figure 3.31: Point cloud and rendered rocker arm, which is a good example of 
varying point density. 

     

 

Figure 3.32: Point cloud and final model of a knee, which is a good example of 
an open surface. 

  



 

34 
 

 

  

Figure 3.33: A normalized point cloud with no Gaussian noise applied and its 
corresponding triangulated model. 

  

 

Figure 3.34: A normalized point cloud with .005 Gaussian noise applied and its 
corresponding triangulated model. 
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Figure 3.35: A normalized point cloud with .01 Gaussian noise applied and its 
corresponding triangulated model. 

 

Figure 3.36: A normalized point cloud with .02 Gaussian noise applied and its 
corresponding triangulated model. 
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Figure 3.37: A normalized point cloud (same model as the previous figures) with 
.05 Gaussian noise applied and its corresponding triangulated model. 

 

 

Figure 3.38: The Stanford Bunny and its corresponding triangulated model. 
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3.3 Measurement Tools 

3.3.1 User Interaction 

A number of measurement tools were developed for the 3-D body scanner to 

allow the user to perform measurements similar to those that a tailor would 

perform. These include the distance between two points along the surface, the 

distance around the surface, and the direct distance from point to point. The 

measurement tools work in an interactive manner, allowing the user to rotate the 

model in 3-D space. To find the distance along a curve, the user clicks on two to 

three points on the curve. Similarly, to find the direct distance between two 

points, the user clicks at two different points in the point cloud. Finally, in order to 

find the distance around a specific slice of the model, such as the neck or waist, 

the user would rotate the model to the desired angle, and then draw a line across 

the model where the cross section should be taken. The length around the model 

contained within the cross section is then calculated and displayed. 

 

3.3.2 Implementation 

To implement the aforementioned tools, either the raw point cloud from 

the scan is used or the vertices from the triangulation of the implicit field are used 

as input to the measurement software. The model is first displayed on screen 

using an orthogonal projection matrix, allowing the user to rotate the model. 

When the tool is selected for finding the distance between two points, the 

program waits for the user to click at a point. Once a point is clicked on screen, a 
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copy of the point cloud is made and rotated to coincide with the current rotation 

of the model on screen. The relation between the (x, y) screen coordinates and 

the (X, Y) model coordinates is then found using the orthogonal projection. All 

points within a certain distance threshold from the clicked (X, Y) point are found, 

and the point closest to the viewer is found, which is equivalent to the point with 

the smallest Z value. This is done for two points and then the Euclidian distance 

is calculated and displayed. 

 A similar method is used to find the distance around the object. Once a 

line is drawn on screen, a copy of the point cloud is once again created and then 

rotated according to the orientation of the model. All points that fall within a 

threshold (X, Y) distance of the line drawn are found. This collection of 3-D points 

is then rotated so that the plane created by the line projected through the model 

is aligned with the (X, Y) plane. The points in the slice can then be treated as 2-D 

points on a plane. To find the distance around the cloud, the convex hull is 

calculated using Graham’s Scan algorithm, and the sum of all the segment 

lengths creating the convex hull is taken as the distance around the object [17]. 

The purpose of the convex hull is to make the measuring tool work like a 

measuring tape. When measuring for tailoring, it would not be desirable to 

measure concave areas of the body because clothes will not stick to these areas. 

In addition, measuring the concave areas would cause small amounts of noise in 

the model to create a large error in the final measurements. Using the convex 

hull of the object solves both problems simultaneously. 
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 To find the distance along a curve, the program uses a combination of the 

previous two methods. First, the user selects two points from the cloud with 

which to define the curve. Note that the user may rotate the model between 

selecting these two points. The two points are remembered and then a line is 

drawn between them. This line is used to find the convex hull in the exact 

manner as was outlined in the previous method. Once the convex hull is found, 

the two points that were selected to define the curve are used to segment the 

convex hull into those segments lying on the curve and those lying outside the 

curve. The sum of all segments lying on the curve is then calculated and used as 

the length of the curve. An example is shown in Figure 3.39 through Figure 3.43. 

 

Figure 3.39: Selecting a cross section of a scan. 
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Figure 3.40: Selected points near the cross section. 

 

 

Figure 3.41: Selected points rotated in the XY plane. 
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Figure 3.42: A convex hull is found from the points in the XY plane. 

 

 

Figure 3.43: When finding the distance around a subsection, the convex hull is 
then restricted to the curve between the two selected points. 
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Figure 3.44: A screen shot created by the scanner’s measurement tools that 
shows a variety of different measurements on the raw point cloud of a subject. 
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In summary, the software system can be broken down into four 

components: system calibration, scan process, surface creation, and 

measurement tools. The first step in calibration involves correcting lens 

distortions. This is done by mapping the distorted surface to the ideal surface 

using a grid of evenly spaced spots. The mapping is done using two thin-plate 

spline surfaces that represent the X offset and Y offset of the distorted surface 

with respect to the ideal surface. Once both surfaces are found, these offsets are 

used in all subsequent frames as long as the zoom, focus, and lens position do 

not change. 

 Once the cameras are configured, transformations from the image plane 

of each camera and the 3-D planes that are defined by the top and bottom frame 

are found. These transformations are determined using the light points on the 

frame and their corresponding positions in the image planes.  

 After calibration, the scanned images can be converted into a point cloud. 

For each frame of the scan, the location of the laser stripe is found on both poles 

of the top frame and the front pole of the bottom frame. These three points, which 

can be converted into 3-D points using the transformations found previously, 

along with a fourth estimated point, are used to find the projective transformation 

from the image plane to the current 3-D plane of the laser. Each frame is then 

examined along the x-axis in order to determine the current location of the laser 

plane, if present, in each row of the image. If the laser stripe is found, it is then 

converted into a 3-D point by using the previously found transformation.   
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 Once the 3-D point cloud has been created, a surface can be obtained 

using a new implicit surface formulation, which was developed to help deal with 

some of the less desirable features of the raw point clouds: varying point density, 

noise, and misalignment of the scans. To create the surface, a discrete field is 

created and initialized to zero. At each point, a special Gaussian function is 

placed, oriented towards the normal, and scaled based on curvature and local 

point density. Once this process is completed for each point, the zero surface is 

extracted using marching cubes. 

 Finally, the built-in measurement tools can be used to determine common 

measurements of the scan model, including point to point, distance around a 

curve, and distance around a cross section. These operations can either be 

performed directly on the raw point cloud, or they can be performed on the 

vertices obtained from the marching cubes algorithm after the implicit surface is 

found. 
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Chapter 4  

RESULTS 

 

Presented below are the results obtained from the complete 3-D body 

scanner. First, the accuracy of the implicit surface implementation is gauged by 

using spheres of varying point density to measure the RMS error of the final 

surface. This test is done both for evenly spaced point clouds and unevenly 

spaced point clouds, as well as with varying levels of Gaussian noise.  

Sample images are then shown to visually represent the image correction, 

which transforms the distorted images gathered by the cameras to the final ideal 

images used for processing the raw point cloud. Two scans are then presented, 

one of a manikin and the other of a human subject. Four images are shown for 

each scan to show the different steps of the scan processing procedure. First, an 

intensity-mapped point cloud of the subject is presented, followed by a picture of 

the normals found for each point. Next, an intensity texture-mapped 

representation of the curvature at each point is presented. Finally, the 

triangulated model from the implicit surface is shown. Following the visual 

results, each scan has two tables where different measurements taken with a 

tape measure are compared to the computer measurements using both the raw 
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point cloud and the point cloud of vertices obtained from the implicit surface and 

marching cubes. 
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4.1 Implicit Surface Results 

4.1.1 Evenly Spaced Sphere 

Table 4.1: RMS error of the vertices of the implicit surface of a unit sphere at 
varying levels of point density (y-axis) and noise added (x-axis in standard 
deviations). For this table, the points on the sphere were evenly spaced around 

the sphere as shown in Figure 4.1. 𝜎𝑥𝑦  and 𝜎𝑧 were adjusted so as to get the 

minimum RMS for each measurement. 

16384 0.00168 0.003702 0.006593 0.007977 0.008106 0.010805 0.023484 
                

4096 0.002356 0.005056 0.008021 0.010576 0.012244 0.014794 0.02999 
                

1024 0.004395 0.006308 0.010053 0.012786 0.01579 0.01947 0.034901 
                

256 0.011795 0.013112 0.015654 0.021765 0.024259 0.02649 0.044915 
                

128 0.029443 0.030343 0.03398 0.040067 0.037699 0.045917 0.064353 
  0 0.01 0.02 0.03 0.04 0.05 0.1 

 

 

 

Figure 4.1: Visual representation of the sphere structure with 1024 uniformly 
spaced points before and after added Gaussian noise. 
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4.1.2 Nonuniformly Spaced Sphere 

Table 4.2: RMS error of final vertices of the implicit surface of a unit sphere at 
varying levels of point density (y-axis) and noise added (x-axis in standard 
deviations). For this table, the points on the sphere were nonuniformly spaced 

around the sphere as shown in Figure 4.2. 𝜎𝑥𝑦  and 𝜎𝑧 were adjusted so as to get 

the minimum RMS for each case. 

16384 0.00168 0.003702 0.006593 0.007977 0.008106 0.010805 0.023484 
                

4096 0.002356 0.005056 0.008021 0.010576 0.012244 0.014794 0.02999 
                

1024 0.004395 0.006308 0.010053 0.012786 0.01579 0.01947 0.034901 
                

256 0.011795 0.013112 0.015654 0.021765 0.024259 0.02649 0.044915 
                

128 0.029443 0.030343 0.03398 0.040067 0.037699 0.045917 0.064353 
  0 0.01 0.02 0.03 0.04 0.05 0.1 

 

 

 

Figure 4.2: Visual representation of the sphere structure with 1024 nonuniformly 
spaced points before and after Gaussian noise is applied. 
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4.2 Image Correction Results 

 

An example showing image correction for lens distortion is given in Figure 4.3. 

 

  

Figure 4.3: An example image before and after lens distortion correction. 
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4.3 Examples of Actual Scans 

An example of an actual scan by the developed scanner is given below. 

            

Figure 4.4:  Left: Point cloud drawn with the captured intensities. Right: The 
points drawn as normal vectors, with the red end of the vectors facing outside. 

These normal vectors are used when orienting the Gaussian fields at each point 
during implicit surface creation. 
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Figure 4.5:  Left: The original point cloud with the point colors representing the 
estimated curvatures. Brighter points show points with higher curvatures. σxy is 

reduced in areas of high curvature in order to preserve surface details and 
minimize surface expansion. Right: The final rendered model. 
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The accuracy of the measurements taken by the measuring tools is summarized 

in Table 4.3 and 4.4. 

 

 

Table 4.3: Measurements obtained by hand measurement versus the 
measurement tools when using the raw point cloud. Each hand and computer 
measurement was taken three times and the average was tabulated.  

Measurement Location Hand Measurement Computer 
Measurement 

Difference 

Waist Circumference 35.13” 34.92” -.21” 

Neck Circumference 15.03” 15.07” +.04” 

Toe to Nose 68.03” 67.96” -.07” 

Support Board Depth 3.38” 3.42” +.04” 

Upper Leg Circumference 21.45” 21.17” -.28” 

Toe to Groin 35.08” 35.21” +.13” 

 

Table 4.4: Measurements obtained by hand measurement versus the 
measurement tools when using the processed point cloud. Each hand and 
computer measurement was taken three times and the average was tabulated.  

Measurement Location Hand 
Measurement 

Computer 
Measurement 

Difference 

Waist Circumference 35.13” 34.41” -.72” 

Neck Circumference 15.03” 14.95” -.08” 

Toe to Nose 68.03” 68.18” +.15” 

Support Board Depth 3.38” 3.40” +.02” 
Upper Leg Circumference 21.45” 21.15” -.30” 

Toe to Groin 35.08” 35.32” +.24” 
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4.4 Human Scan Results 

An example scan of an actual person is given below. 

 

         

Figure 4.6:  Left: Point cloud drawn with the captured intensities. Right: The 
points drawn as normal vectors, with the red end of the vectors facing outside. 

These normal vectors are used when orienting the Gaussian fields at each point 
during implicit surface creation. 
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Figure 4.7: Left: The original point cloud with the point colors representing the 
estimated curvatures. Brighter points show points with higher curvatures. σxy is 

reduced in areas of high curvature in order to preserve surface details and 
minimize surface expansion. Right: The final rendered model. 
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The accuracy of the measurements taken by the measuring tools is summarized 

in Table 4.5 and 4.6. 

 

Table 4.5: Measurements obtained by hand measurement versus the 
measurement tools when using the raw point cloud. Each hand and computer 
measurement was taken three times and the average was tabulated.  

Measurement Location Hand 
Measurement 

Computer 
Measurement 

Difference 

Chest Circumference 39.25” 38.55” -.7” 
Neck Circumference 14.77” 14.42” -.35” 

Waist Circumference 34.48” 34.86” +.38” 

Neck to Waist 18.41” 18.29” -.12” 

Height to Nose 65.58” 65.45” -.13” 

 

 

Table 4.6: Measurements obtained by hand measurement versus the 
measurement tools when using the processed point cloud. Each hand and 
computer measurement was taken three times and the average was tabulated.  

Measurement Location Hand 
Measurement 

Computer 
Measurement 

Difference 

Chest Circumference 39.25” 38.52” -.73” 
Neck Circumference 14.77” 14.35” -.42” 

Waist Circumference 34.48” 34.69” .21” 

Neck to Waist 18.41” 18.09” -.32” 

Height to Nose 65.58” 65.676” .096” 
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Chapter 5  

CONCLUSIONS 

 

From the preceding results of the sphere (Tables 4.1 and 4.2), important 

properties of the implicit surface can be deduced. The first noticeable feature is 

that as noise increases, the surface expands. This can be attributed to the use of 

a larger 𝜎𝑥𝑦  trying to smooth the noise. This expansion is due to the zero surface 

of the Gaussian applied at each point on a plane. As the 𝜎𝑥𝑦  gets larger, this 

plane has more effect on its local neighborhood and draws the surface away 

from where the true surface should be.  

Observing the tables, it can also be seen that as the point density 

decreases, the surface expands. This is also due to the local planar nature of the 

Gaussian affecting its neighbors. It should be noted that in the case of the 

sphere, lower density is analogous to higher curvature.  

The result of measurements on the manikin shows a varying level of 

accuracy depending on the location and type of measurement preformed (Tables 

4.3 and 4.4). When doing a point to point measurement or measuring along an 

ark using the raw point cloud, a high level of accuracy is achieved with 

measurement variations from -.07‖ to +.13‖ when compared to the hand 



 

57 
 

measurements. The measurements for the distance around a cross section 

varied more with variations ranging from -.28‖ to +.04‖. Most of this variation is 

likely due to occlusions on the sides of the manikin and in-between the legs. This 

would also explain the reason for the large differences being negative. 

When measurements are performed using the implicit surface obtained 

from the point cloud, all measurements, with the exception of the support board 

depth, became less accurate. This could be due to a few different reasons: First, 

as discussed earlier, the implicit surface can cause some expansion of the model 

on curved surfaces. Similarly, when the implicit surface fills the holes, it will do so 

with a flat plane, causing curved surfaces that abruptly end on a curved surface 

to expand greatly.  

A similar set of measurements was also preformed on a human subject 

using both the raw point cloud and the implicit surface points. Similar to the 

previous results, the point-to-point and arc-length results were very accurate with 

a maximum disparity of only -.13‖. The circumference of the waist and chest also 

followed the same pattern varying from -.70‖ to +.38‖. This is a wider variance 

than was seen on the manikin, which could be caused by a few factors. First, 

human subjects breathe during the scan, causing both the chest and waist 

measurements to change. Similarly, they may also sway between front and back 

scans, which will have the effect of making the measurements larger or smaller. 

Lastly, unlike the manikin, the tape measure causes skin, fat, and muscle tissue 

to compress slightly. This, along with occlusion, is likely the reason for the chest 
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circumference being smaller when measured by hand than when measured by 

the computer.  

From the preceding data, it can be concluded that use of implicit surface 

for measuring is unnecessary and in some cases may actually impair correct 

measurements. When the scanner is not configured correctly or the subject being 

scanned moves, the implicit surface may help to bring together false double 

surfaces and improve measurements results. Regardless of its use in measuring 

the subject, the implicit surface is a powerful tool for visual inspection of the 

scanned result and for cleaning and compressing the model for storage. 
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Chapter 6  

FUTURE WORK 

  

Using the design described in this thesis, it would be possible to build a 

large variety of scanners by changing the size and shape of the reference 

frames. These frames could be used interchangeably and manufactured at a 

relatively low cost. Some frame shapes, such as a triangle or square, have the 

potential for better scans of the whole body due to the equal angles and side 

lengths. This would allow for better coverage on the edges and, unlike the 

rectangle frame, would allow more even spacing of the cameras and the lasers 

around the frame and a more consistent accuracy of gathered range points. See 

Figures 6.1 and 6.2 for an example layout. 
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Figure 6.1: A top view of a layout of a four-camera and four-laser scanner. 

 

Figure 6.2: A 3-D rendering of the above layout. 
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 To yield a better final model, the implicit surface formulation could also be 

altered to take into account different measures of confidence from the scan. For 

instance, once a scan is complete and the normals have been calculated, it 

would be possible to approximate the angle at which the laser struck the surface 

at that point. As this angle increases, the accuracy would decrease and, 

therefore, the weight of the point should be decreased when applying the 

Gaussian to the implicit field. The end result would be that lower-confidence 

points could still be taken into account, but they would have far less effect and 

introduce far less distortion when neighbored by high-confidence points. 

Along with adjustments in the frame configuration and surface formulation, 

another area of the scanner that could be changed to yield substantial 

improvements is the cameras. The current implementation of the scanner uses 

Prosilica IEEE 1394a cameras with a maximum resolution of 1024x1280. The 

overall accuracy of the scanner is limited by the resolution of the camera used, 

and moving to a higher resolution would certainly raise the accuracy of the 

scanner. One important point to note, however, is that although there are higher 

resolution cameras available with the common IEEE 1394a interface, the 

bandwidth constraints keep them from being a viable option for use in a human 

body scanner as the frame rate of the cameras would be too low, resulting in a 

long scan where the subject would be likely to move. To solve this issue, faster 

technologies, which require special hardware such as Camera-Link, could be 

used or cheaper and more readily available standards IEEE 1394b or Gig-E 

could be used. In the near future, USB 3.0 will likely provide a cheaper, faster, 
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and more readily available solution for computer to camera interface than what is 

currently available on the market today.
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