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ABSTRACT 

 
Jiang, Chunyu, Ph.D., Department of Computer Science and Engineering, Wright State 
University, 2007. Data Mining and Analysis on Multiple Time Series Object Data.  
 

 

 

Huge amount of data is available in our society and the need for turning such data into 

useful information and knowledge is urgent. Data mining is an important field addressing 

that need and significant progress has been achieved in the last decade.  

 

In several important application areas, data arises in the format of Multiple Time Series 

Object (MTSO) data, where each data object is an array of time series over a large set of 

features and each has an associated class or state. Very little research has been conducted 

towards this kind of data. Examples include computational toxicology, where each data 

object consists of a set of time series over thousands of genes, and operational stress 

management, where each data object consists of a set of time series over different 

measuring points on the human body. The purpose of this dissertation is to conduct a 

systematic data mining study over microarray time series data, with applications on 

computational toxicology.  

 

More specifically, we aim to consider several issues: feature selection algorithms for 

different classification cases, gene markers or feature set selection for toxic chemical 
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exposure detection, toxic chemical exposure time prediction, wildness concept 

development and applications, and organizing diversified and parsimonious committee. 

We will formalize and analyze these research problems, design algorithms to address 

these problems, and perform experimental evaluations of the proposed algorithms. All 

these studies are based on microarray time series data set provided by Dr. McDougal. 
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1. INTRODUCTION 

 
Huge amount of data is available in our society and new data is becoming available often. 

Previously available data can be used in new areas in other forms and new data sources 

from new applications emerge quickly as well. How to transform this data into useful 

information and knowledge has been the major concern in data mining.  

 

The data type we focus on in this dissertation is called Multiple Time Series Object 

(MTSO in short) data. Each MTSO data can be viewed as a bundle of time series, and it is 

associated with a class label. The typical examples for MTSO can be sensor network data, 

microarray time series data, and EEG (electroencephalogram) data.  

• Sensor network data are produced by sensor network from different applications. 

Each sensor inside the sensor network continuously produces data and hence 

produces a time series. All these time series data lead to a MTSO data.  

• Microarray data came into being several years ago and microarray time series data 

emerged recently. Microarray data has thousands of genes as features. Each 

gene’s expression values vary from time to time which produces a time series. 

When multiple microarray data is combined together, we have an MTSO data. 

Normally speaking, MTSO data has a relatively short time period.  

• Electroencephalography is the neurophysiologic measurement of the electrical 

activity of human brains. Electronic signals are collected by recording from 

electrodes placed on the scalp or, in special cases, subdurally or in the cerebral 
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cortex. The resulting traces are known as an electroencephalogram (EEG) and 

represent an electrical signal (postsynaptic potentials) from a large number of 

neurons. EEG data can be used in many areas such as building Brain Computer 

Interfaces (BCIs). Normally speaking, the associated time period is relatively long.  

 

In our research, we will use gene expression data as our data source. Our primary goal is 

to consider the following issues:  

• MTSO data normalization. Normalization needs to be done not simply because 

of the purpose of removing noises. In order to analyze the MTSO data, we need to 

compare features to features. So, as a comparison requirement, we have to make 

these features comparable to each other. 

• Feature selection for classification. Choose certain feature set from the feature 

domain that can be used in regular classifiers. For example, when given a 

microarray data with time value or an MTSO data from a test tissue, the first step 

is to choose certain features. Then, the classifier should be able to identify the 

class label for the tissue, cancer or not, controlled or exposed, or even cancer type. 

We will discuss ranking and classification methods for both microarray data and 

MTSO data.  

• Robust features selection and fragment classification. Time value is not always 

available for microarray data. Sometimes, the whole MTSO data may only be 

available partially, e.g. microarray. For toxic chemical exposure detection, when 

only a part of MTSO is provided, we need the classifier to find its class label 

regardless of the missing time value. We developed the idea of robustness and we 
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use robust genes to get around time when it is unavailable or inaccurate.  

• Wildness. There are genes that behave significantly different among different 

groups: it is expressed very consistently in the normal group because of being 

regulated and it is expressed extremely wildly in the other group, e.g. after toxic 

exposure. We developed wildness measurement and used these wild genes in 

fragment classification as well.  

• Time recovery. We are going to discuss how to estimate the time value of partial 

available MTSO data. For certain features, their values may be quite different 

from time to time in a highly regulated manner. Identification of these features’ 

time characteristics will help us to estimate the time value of a microarray data 

when given a value of such a feature. 

 

1.1. Overview of MTSO Data 

Each MTSO is in the form of a data matrix and associated with a label. In the matrix, each 

row of a MTSO matrix is a series of real numbers and it represents a time series and it has 

an attribute such as a sensor or a gene. The number of rows can be large or small and it 

depends on the nature of the application. The microarray time series data for gene 

expressions normally has thousands of rows, where each row represents a time series of a 

gene. The EEG data has only tens of rows and each row represents a time series of the 

sample of the EEG signal recorded by an electrode. 

 

Each column of the matrix represents a snap shot of the test samples and it is associated 
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with a time point. The number of columns can be larger or small and it depends on the 

amount of time data collection procedure consumes and how many sampling time points 

are available. The microarray time series data for gene expression normally have just a 

few time points and the EEG series data generally are quite long.  

 

1.1.1. Introduction to Microarray Technology 

 

Figure 1.1: Scheme of microarray technology 

From http://www.accessexcellence.org/RC/VL/GG/microArray.html
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Figure 1.2: Full yeast genome on a chip  

From http://cmgm.stanford.edu/pbrown/yeastchip.html
 

Microarray technology is a relatively new way of studying the working mechanism of 

large numbers of genes including interaction of these genes with one another and genes 

working simultaneously. A DNA microarray is also commonly known as gene or genome 

chip, DNA chip, or gene array. The goal of this technology is to help scientist to gain 

insights into underlying biological processes. A microarray is typically a glass slide. 

DNA molecules are attached to spots on these slides. The number of spots can be quite 

vast. 
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This technology first applies fluoresecence-labled DNA molecules onto to gene chips. 

Each spot on the chip can bind to a certain DNA sequence and is associated with a color. 

Later, lasers are applied to scan these colors, images are stored and the brightness of each 

spot reveals how much of a specific DNA fragment is present. The brightness value at 

each spot indicates how active the fragment associated with this spot is. 

 

After the intensity values are converted into numbers, we have a gene expression 

database including the gene expression data matrix, genes’ name, and sample’s class 

label. 

 

Based on DNA microarray technology, there are some other similar technologies 

developed later on, such as protein microarray technology, gene microarray technology, 

tissue microarray technology, and et al. 

 

1.2. Organization 

In this dissertation, the following topics are discussed in the following order. After briefly 

describing the MTSO data properties, several existing techniques that are used in this 

project and the related terminologies are briefly introduced in Chapter 2. Literature 

review is conducted in Chapter 3, where topics such as time series analysis, gene 

expression data normalization, and cancer classification are discussed. Previous research 

approaches are also systematically studied. In Chapters 4, 5 and 6, we outline our 

research problems and we present our approaches together with their experimental results 

 16



and analysis. These chapters cover the studies we made in topics such as: normalization, 

GST ranking, ET ranking, MTSO classification, fragment classification, wildness concept, 

robust concept, and time recovery. Then, a review and future work are conducted in 

Chapter 7. At the end of this dissertation, references are given. 
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2. PRELIMINARY 

In this chapter, we first introduce the MTSO data to be studied. Then, some analyzing 

techniques related to this research are briefly covered. At the end of this chapter, some 

terminologies and definitions used in this dissertation are given. 

 

2.1. Background of Microarray Data 

Time series data is frequently used in statistics and signal processing. It is a sequence of 

signals that are measured at successive time points for a subject. Each signal is associated 

with a time point. The intervals may or may not be uniform. Typical examples include 

electronic signals, stock prices and currency exchange rates.  

 

Microarray data is the data collected by using microarray technology. It is a snap shot 

of expression values of thousand of genes at a certain time point. All genes have the same 

time domain and are sampled simultaneously. Microarray is commonly called gene chip, 

DNA chip, or biochip. Also, microarray data is not limited to DNA microarrays. Other 

microarray data include protein microarrays, tissue microarrays, transfection microarrays 

(also called cell microarrays), chemical compound microarrays, and antibody microarrays. 

Each microarray data has a time value in our research. This value stands for the sampling 

time of the tissue. 

 

Microarray time series data is a collection of microarray data in the form of a matrix. It 
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is obtained by retrieving microarray data from tissues at several different time points.  

 

Multiple Time Series Object (MTSO) is a data object that contains several time series. 

These time series have the exactly same sampling time domain over the same features. In 

our research, each data object is associated with a class label. The data set we focus on is 

microarray time series data; the topic of this dissertation is how to analyze microarray 

time series data. 

 

We hypothesize that useful patterns exist in MTSO. These patterns are more informative 

and accurate for classification because they are extracted from time series data, as 

opposed to the data extracted from a single time point. With these patterns and given test 

samples, we will be able to build more accurate classifiers that give more reliable 

classification results, revealing more information than previous methods could, and 

recognize/analyze more patterns. While current research results are not quite satisfactory, 

these newly found patterns will be of great help in certain research areas especially where 

data varies frequently and drastically due to time changes, such as cancer classification 

using microarray time series data. 

 

There are several popular microarray data sets available online that has been studied by 

other researchers: 

• Colon cancer data set. It was originally reported by Alon et al. in [2]. This data set 

is collected from colon biopsy samples. It has 62 objects that are associated with 

colon epithelial cells. Among them, 40 biopsies are from tumors (labeled as 
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"positive") and 22 normal (labeled as "negative") biopsies are from healthy parts 

of the colons of the same patients. Two thousand out of around 6500 genes were 

selected based on the confidence in the measured expression levels. It is available 

at http://www.molbio.princeton.edu/colondata. 

• Ovarian cancer data set. This data set contains 32 objects: 15 ovary biopsies of 

ovarian carcinomas and 13 biopsies of normal ovaries, and 4 samples of other 

tissues. This data set includes approximately 100,000 genes.  

• Leukemia data set. This data set is a collection of expression measurements 

reported in [23]. It has 72 samples: 25 samples of acute myeloid leukemia (AML) 

and 47 samples of acute lymphoblastic leukemia (ALL). The tissues were taken 

from 63 bone marrow samples and 9 peripheral blood samples. The data, 72 

samples over 7129 genes can be retrieved at http://www.genome.wi.mit.edu/MPR. 

 

2.2. Feature Selection 

Feature selection has been the focus of interest for a while and much research work has 

been done. It tries to choose a subset of features from the feature domain according to 

certain criteria, such as minimizing subset size without degrading the classification 

accuracy drastically. 

 

In [14], four major steps were proposed in a typical feature selection method: 

1. Generation procedure generates the candidate subset; 

2. Evaluation function evaluates the subset; 
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3. Stopping criterion decides when to stop; 

4. Validation procedure checks if the subset is valid. 

 

There are many algorithms available and they can be divided into different categories [14] 

according to their generation procedures, such as complete, heuristic, random, and 

evaluation functions, such as distance, information (or uncertainty), dependence, 

consistency, or classifier error rate. 

 

2.3. Classification 

The classification problem has been studied in several areas such as machine learning and 

database. Many algorithms have been developed such as decision tree, Bayesian network, 

neural network, and etc.  

 

Cancer classification using gene expression data is special because of the uniqueness of 

gene expression data. It is a relatively new area and previous studies have shown that the 

expression values of certain genes are closely related to cancers. Although quite a few 

methods were developed, comparisons in [36] suggested that no single method is superior 

over other methods consistently.  

 

The challenges revealed earlier in [36] include: limited amount of available data, inherent 

noise in the existing data, huge numbers of features and most of them are irrelevant, and 

limited accuracy problem. But there is another challenge that has not been addressed yet. 

Microarray data is a time sensitive system. In another word, different features (genes) 
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have different response characteristics; different genes work differently at different time. 

For toxicity data, it is unrealistic to expect an early response gene to act reliably as an 

informative gene through out the whole time series. To improve the reliability of 

classifiers, we need to focus on finding a robust feature set. 

 

2.4. Statistical and Biological Significance 

Statistical significance and biological significance are two closely related concepts and 

they are the key features scientists expect from the cancer classifiers by using microarray 

technology. 

 

Statistical significance means the given effect is unlikely to have occurred randomly and 

it has some rules applied. The significance level refers to the randomness level, such as 

5% or even less. As the significance level decreases, so does the possibility that the effect 

occurs by chance.  This increases the certainty or precision of the prediction. “Any effect 

observed in a study or experiment carries with it some degree of uncertainty, or 

imprecision, because of randomness and variability in most biological phenomena. 

Values that has a low probability to happen by chance are called statistically significant” 

– available from http://www.rerf.or.jp/eigo/glossary/stats.htm

 

Statistical significance may not be informative enough to scientists, and that is why 

biological significance concept is introduced. For example, a phenomenon such as an 

increase in pulse of 1 per minute can be statistically significant if tested in a large sample, 
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but it has no practical clinical implication by itself. The concept of biological significance 

is based on statistical significance. According to the events that are statistically 

significant, some of them may have strong impact on health. In other words, the observed 

effect has to be statistically significant if it is biologically significant; on the contrary, an 

effect can be just statistically significant without being biologically significant. – 

available from http://www.rerf.or.jp/eigo/glossary/biols.htm. 

 

In order to obtain biological significant results via cancer classification, we need to focus 

on biological meaningful classifiers who can give out information such as gene markers. 

 

2.5. Terminologies and Definitions 

In this section, we are going to define and introduce some terminologies and notations to 

be used throughout this dissertation. 

 

Using microarray as an example, each MTSO consists of a number of microarray 

snapshots of tissues under similar conditions (exposed or controlled, and coming from a 

common person or animal), taken at a number of time points over a period of time.  

 

The microarray time series for gene expressions data is a MTSO. It has a number of genes 

g1, g2, ..., gγ, and a number of time points t1, t2, ..., tτ. Each unit of MTSO is a matrix X; 

such a matrix is analogous to a transaction for market basket data or a relational tuple for 

relational data; X has the genes as rows and the time points as columns. X[g,t] gives the 
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reading for gene g at time t. 

 

Data is grouped into classes and each MTSO is associated with a class label. For now, we 

consider the two-class situation, positive or negative. Let P = {P1, ..., Pμ} be a set of 

positive (e.g. exposed) MTSOs, and N = {N1, ..., Nν} (μ and ν don’t have to be equal) be a 

set of negative (e.g. control) MTSOs. Here, P1[g,t] refers to the gene expression value of 

gene g at time t of a positive MTSO P1; P1[g] stands for the time series for gene g; P1[t] 

stands for the snapshots of for all genes at time point t. 
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3. LITERATURE REVIEW 

Much research work has been done on several topics such as similarity search in time 

series analysis, microarray gene expression data normalization and classification, and 

microarray time-series data analysis. These topics are discussed in the following sections. 

 

3.1. Time Series Analysis  

Much research has been done on single time series data analysis. Research has been 

focused on searching similarity among time series. Normally, these algorithms can be 

divided into three parts: 

• A representation technique which abstracts the presented time series data. 

• A distance measure between two given time series data. 

• An efficient indexing method. 

 

Two categories exist in sequence similarity matching: 

– Whole matching: to measure the similarity between two whole time series. 

– Subsequence matching: query sequence is smaller. To measure the similarity between 

a short sequence and a subsequence of a time series. 

 

In studying time series similarity matching, most research work focuses on how to index 

time series data for efficient future similarity search. Several basic indexing requirements 

are: 
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• Fast. 

• Correct. 

• Small space overhead. 

• Dynamic: easy to insert, delete, and append sequences. 

• Flexible length. 

 

Locating and retrieving data efficiently is hard and normally transforms are necessary for 

indexing. Two kinds of transforms, data-dependent are data-independent transforms, 

were developed and there are advantages and disadvantages for both methods. Data-

dependent transforms are fast but they may need to re-compute the transformation matrix 

when algorithms are applied to different data set [3]. 

 

Several key issues in time series transforms are: to efficiently squeeze the data volume, to 

keep as much of the original information in transformed results as possible, to preserve 

the Euclidean distance between time series by using orthonormal transforms. 

 

Many transform or compression techniques were developed in [3], [21],  [29], [27], [28], 

[31], [37] and [1], such as DFT (Discrete Fourier Transformation), DWT (Discrete 

Wavelet Transformation), SVD (Singular Value Decompression), SVDD (Enhanced 

Singular Value Decompression), PAA (Piecewise Aggregate Approximation), APCA 

(Adaptive Piecewise Constant Approximation), SAX (Symbolic Aggregate 

approXimation), and SDA (Shape Description Alphabet) etc. These techniques can be 

divided into two categories: mathematical transforms such as Discrete Fourier 
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Transformation and approximation techniques such as Shape Description Alphabet. 

 

Comparisons are made between the two most popular techniques in [10] and [54]: DFT 

and DWT. Different conclusions are drawn as to which method is superior. 

The differences between DWT and DFT include:  

• DFT maps a one dimensional time domain discrete function into a representation 

in frequency domain. 

• DWT maps it into a representation that allows localization in both time and 

frequency domains. 

• DWT is more appropriate than DFT in time series because it reduce the error of 

distance estimates on the transformed domains. 

 

Both of them share some similarities such as:  

• Keep the first several coefficients to approximately keep most energy. 

• First DWT/DFT coefficients are the same because they represent the average 

value. 

• DFT coefficients spread suggests that most energy associates with low or high 

frequency, not middle level. 

• DWT coefficients spread suggests that most energy is associated with low 

frequency. 

 

Tests were done to verify the hypothesis made in [10]. Testing results show that DWT is 

superior to DFT if mirror effect is not considered. But it doesn’t hold otherwise.  
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3.2. Gene Expression Data Analysis  

Microarray gene expression data provided by biological scientists has become available 

recently. Microarray technology makes uses of the results of the genome projects. This 

technology tries to answer questions about what expression value of what gene in which 

kind of cells in what kind of organism at what time under what conditions. Different 

names are given like DNA microarrays, DNA arrays, DNA chips, gene chips. Interesting 

topics include normalization and classification.  

 

3.2.1. Normalization 

As mentioned in [42], the hypothesis of microarray analysis is: “the measured intensities 

for each arrayed gene represent its relative expression level.” Normally speaking, patterns 

that are biologically meaningful are discovered by comparing measured expression levels 

between different states on a gene-by-gene basis. In order to achieve this purpose, 

transformations have to be done to the original data, so that these gene expression levels 

are comparable to one another, since raw data is generally obtained by low-quality 

measurements. 

 

Notably, in research, normalization is the first transformation step in microarray data 

analysis. It is a crucial step because systematic variations exist when biologists obtain 

data through experiments. It adjusts each gene’s hybridization intensities to balance them 
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so that meaningful biological comparisons are possible. The sources could be: differences 

in labeling or detection efficiencies of various fluorescent dyes, laser power differences, 

experimental errors, unequal quantities of starting RNA, and system biases.  

 

There are basically two ways to perform data normalization: per chip normalization or 

per gene normalization. Per chip normalization has been studied extensively and per gene 

normalization is a relatively new research field. 

 

Per-chip normalization is a scaling method that tries to adjust the average expression 

value obtained from each gene chip to the same level. When applied to the MTSO data, 

per-chip normalization is used to adjust the average value of each column to 

approximately the same value when differences exist in probe preparation, hybridization 

conditions, etc. This helps to eliminate the bias among different samples and makes all 

the samples comparable. This method works for similar samples and the disadvantage is 

that it cannot detect outliers. Several popular methods are available:  

 

Per-gene normalization is another normalization method that compares the values of 

each gene across all the samples. When applied to the MTSO data, per-gene 

normalization is to make values at each row at the same range. It is helpful when gene-to-

gene comparisons are necessary especially when their original values are of different 

level but certain patterns may exist. It has not been as extensively explored as per-chip 

normalization. The reason is that people have not started to analyze MTSO data yet. 
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Four categories of per-chip normalization methods are listed below together with some 

individual algorithms. 

• Housekeeping genes: A set of genes that are expressed in such a way that little 

variance is involved. The scaling factor can be easily calculated by comparing 

different expression values of these housekeeping genes in various samples. This 

method differs from other methods; where synthetic references, such as using the 

average value of the whole microarray set, must be calculated. 

• Internal reference: algorithms in this category are based on internal standard 

genes or set of internal standard genes. One or more genes are chosen from the 

genes being studied when scaling is unnecessary. 

• Internal globalization: Sum, mean, median, quantile/percentile, trimmed mean, 

asymmetric trimmed mean, linear regression (centralization).  

• External reference: External standard genes are used to remove noises and this 

method is not as popularly adopted as other approaches. 

 

In [34], a complete comparison was made for most available normalization methods at 

that time such as:  

• Centralization in [58]. This method has two major steps to compensate the 

commonly believed fact that gene expression values from different samples are 

approximately proportional to the other samples. This method calculates a so-

called normalization factor. First, the quotient of the constants of proportionality 

is estimated for each pair of microarray data. Next, an optimally consistent scaling 

of the microarray data is calculated based on the matrix of the pair wise quotients 
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resulted from the previous step. 

• In [17], authors produced two synthetic poly(A)-RNAs that were generated by 

PCR and in vitro transcription. In their algorithms, these two synthetic poly(A)-

RNAs were used as external standards for normalization when internal reference 

were not available. 

• After studying [5], [30], [48], [55], [52], and [15], Table 3.1 from [34] is provided 

to show the basic formulas for each algorithm from these papers. 
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N, total number of genes in the data set. 
i, index of genes. 
r, rank of genes. 
si, background corrected signal of gene with index i. 
sr, background corrected signal of gene with rank r. 
Nref, number of reference genes. 
iref, index of reference genes. 
η , scaling factor to be applied. 

Table 3.1: Formulas of some normalization methods 
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3.2.2. Cancer Classification 

 

Cancer classification is a hard topic and it has been studied extensively. Cancers that 

have similar symptoms can be totally different and even different subtypes can result in 

significantly different responses to similar therapy. The classification has relied on 

specific biological insights in the history and still needs to be solved. A concrete example 

is: Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML) have 

major difference in treatment. Even the distinction between AML and ALL has been well 

established, no single test that can establish diagnosis. As a result, systematic and 

unbiased approaches to identify cancer types have always been the research target.  

 

Classification based on gene expression data is a promising research topic because some 

studies show the feasibility of cancer classification based solely on gene expression 

monitoring. As noted in [36], previous research work is limited in clinics and the 

reliability of classification results is limited as well. But the invention of gene chips and 

microarray data stimulated its development because some cancers can be reflected by the 

certain genes’ expression values. Because microarray data provides the ability to 

simultaneously monitor numerous genes’ expression values, using microarray data in 

cancer classification is promising and a number of classification methods have been 

proposed. A good classification method may provide statistical significance as well as 

biological significance. In this section, several existing classification algorithms are 

reviewed and a complete comparison is given in Table 3.2. 
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There are some special characteristics on gene expression data that make the research 

work unique. 

• High dimensionality and limited sample sizes. 

• Existing noises: biological or technical. 

• Irrelevance of most genes to cancers. 

• Availability of data sets is limited. 

 

In [23] and [50], a generic approach to cancer classification based on gene expression 

monitoring by DNA microarrays was developed. This method (referred to as GS method 

later) is applied to human acute leukemia as a test case in order to distinguish acute 

myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Several issues are 

discussed in the paper. These issues are: how to determine if the genes necessary to make 

a predication are available; how to use these genes to predict, and how to test the validity 

of class predictors. Genes were sorted according to their degree of correlation. They use 

“neighborhood analysis” to find the informative genes (genes that are highly correlated 

with the class labels, which means to a gene that is uniformly expressed high in one class 

and uniformly low in the other) and they are used in the predictors in weighted voting 

manner. In this method, a ratio called SNR (stands for Signal-To-Noise, 
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= , where )(),( 21 gg μμ  and )(),( 21 gg σσ  stands for the mean and 

standard deviation of the log10 of the expression values of gene g in class 1 and 2 

respectively.) is used to measure the correlations between class and gene expression 

value. The key idea is to select genes with expression values that are significantly 
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different between classes but quite uniform inside one class. After feature selection, each 

informative gene casts a vote towards one of the two classes in a weighted manner. The 

votes were summed and the sample was assigned to the winning class if prediction 

strength exceeded a predetermined threshold. Cross-validation method is used to test the 

accuracy of the predictors. The results show the feasibility of cancer classification by 

using gene expression data. 

 

In [32], authors present a Naïve Bayesian method for classifying tissues via using DNA 

microarray data as well as a gene selection scheme explicitly designed to optimize the 

classification algorithm. In this method, each gene from each class is modeled as a 

Gaussian distribution. Authors use a likelihood-based metric to select the most useful 

subset of genes in the classifier and use Naïve Bayesian classifier in prediction. 

Independence is assumed and the Naïve Bayesian method is used to assign class labels to 

a given sample. Because the gene selection and classification steps are orthogonal to each 

other, authors combined 2 possible gene selection methods (likelihood-based or GS) and 

classification (Naïve Bayesian or G-S) and performances are compared among the four 

possible combinations. The results show that Naïve Bayesian classifier and the G-S 

performed better on different data sets, no one is superior all the time. The results also 

show the direct correlation between the performance of the NB classifier and the 

magnitude of the Likelihood scores on the selected genes, which can be used to give 

suggestions that whether the Naïve Bayesian method should be adopted. The authors also 

pointed out that Naïve Bayesian method can be easily extended from bi-class 

classification to multi-class cases. 
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Artificial Neural Networks (ANNs) is an abstract simulation of a real human brain. It is 

composed of a certain numbers of neurons. This simulation can accomplish a set of tasks 

such as pattern recognition and classification after being trained. The training procedure 

is normally done by calibrating the parameter of the ANN by literately minimizing errors. 

Authors in [33] adopted artificial neural networks model and try to develop a classifier 

for cancers via only the gene expression values and the small, round blue-cell tumors of 

childhood (SRBCTs) are chosen as the training data set. Three major steps are developed 

on these 4 categories data. 

– Principle component analysis to reduce the data dimensionality. 

– Relevant gene selection. 

– ANN prediction. 

Because of the limited data availability and the achieved performance, only linear model 

is adopted. Still, the results show very good performance and no sign of over-training. 

The authors also calculated the sensitivity of the classification by changing the expression 

value of each gene. Authors also produced a list of genes sorted by their significance on 

classification. 

 

Authors in [59] tried the classification tree approach and proved to be significantly more 

accurate for discriminating among distinct colon cancer tissues than other statistical 

approaches. Recursive partitioning technique is used to classify tissues of gene 

expression data. Recursive partitioning is a classification technique that predicts the class 

label of a given test object based on feature information. The difference between Fisher’s 
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linear discriminant analysis and recursive partitioning technique is: Fisher’s linear 

discriminant analysis uses linear combinations of the covariates while the recursive 

partitioning technique extracts homogeneous features from the data. In this paper, a 

binary decision tree is constructed through recursively partitioning and finding the best 

gene to divide sample data group into smaller sample data groups in each loop. In 

splitting the nodes at each internal node of the tree, an entropy function, 

, is designed to evaluate the purity of each sample data group. 

Furthermore, a pruning procedure is considered to cut off redundant groups to avoid 

overgrowing. Also, to accurately evaluate the tree quality, cross-validation is adopted. 

Colon cancer data retrieved from http://www.sph.uth.tmc.edu/yhgc is used in the 

experiments. The results show that using only three genes, IL-8 (M26383), CANX 

)1log()1()log( PPPP −−+

(R15447), and RAB3B (M28214) is sufficient to achieve a very satisfactory classification 

accuracy (98%).  

 

The authors of [4] rigorously assessed the possibility of classification approaches via 

using gene expression data. A novel cluster based classification methodology is presented 

and is compared with two other approaches, Boosting and Support Vector Machines on 

three data sets: colon cancer data, ovarian cancer data, and leukemia data. Leave One Out 

Cross Validation (LOOCV) is used to evaluate the prediction level of the methods 

mentioned above. 

 

The authors of [4] compared two classification methods based on similarity. One method 

is based on nearest neighbor methods and it is used as a strawman in this paper; and a 
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more sophisticated classification method is put forward as an improved version of CAST. 

Cast is based on clustering method and is implemented in the BioClust analysis software 

package.  

 

The CAST algorithm utilizes a threshold parameter to control the granularity of the 

resulting cluster structure. CAST builds one cluster at a time until all objects are assigned 

to clusters. For the clustering results, objects must have high similarity to the cluster to 

which they are assigned; and have low similarity to other clusters. This threshold has a 

significant effect on the number of clusters in the results: the higher the threshold is, the 

smaller the size of a cluster is and the more the number of clusters is.  

 

In order to find the most appropriate value for this threshold, a measurement is proposed 

to evaluate the compatibility of cluster structure and the label assignment. This measure 

is called matching coefficient [16]. It favors uniformly labeled clusters and panelizes 

situations such as numbers of clusters have the same label. 

 

[4] also developed other classifiers such as large margin classifiers via which the decision 

surface between different classes are studied directly. Two methods are considered: 

support vector machine (SVM) and boosting. 

 

[41] designed a new approach that combines available methods, SVM and GA [40], 

together to achieve a satisfactory classification result.  
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A review of these methods is provided by [36] and Table 3.2 from [36] is listed below to 

compare different classification methods. 

 

 
Multiple 

class 
Strategy 

Biologically 

Meaningful 
Scalability 

SVM No Max-margin No Good 

Boosting 
(decision-tree) Yes Max-margin Yes Classifier 

dependent 
Decision tree Yes Entropy function Yes Good 

KNN (k<=1) Yes Similarity No Not scalable 

CAST Yes Similarity No Not scalable 

GS No Weighted voting Yes (gene selection) Fair 

FLDA Yes Discriminant analysis No Fair 

Neural network Yes Perceptrons No Fair 

Naïve Bayes Yes Distribution modeling No Fair 

Table 3.2: Cancer classification methods review 

 

3.3. Microarray Time Series Data Analysis  

As pointed out in [9]: “DNA replication, chromosome segregation, and mitosis define a 

fundamental periodicity in the eukaryotic cell cycle. Precise coordination of the 

unidirectional transitions between these stages is critical to cell integrity and survival.” In 

other words, the normal cell activity depends on the appropriate cell cycle regulation. 

And scientists expect to find irregular regulations for abnormal cells, such as cancers.  

 

The regulation has been studied by scientists separately before microarray technique 

became available. Microarray time series data is comprised of thousands of time series 
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data, or in other words, tens of microarray data. With this technique, one can easily 

monitor numbers of genes simultaneously to help scientists reveal novel functional and 

physical organization in coordinate gene regulation. This makes more comprehensive 

study possible. The most commonly used data set is called Cho/Spellman Yeast data set 

obtained by Cho [9] and Spellman [49], which are available at http://genome-

www.stanford.edu/cellcycle. The data set is comprised of four time-series data sets. Each 

of them contains temporal concentration measurements for ORFs in yeast. And the 

starting stage of these cells is synchronized so that the cells are approximately in the 

same state. The time-series courses are repeated through more than one period for Elu, 

more than two periods for alpha and cdc28, and more than three periods for cdc15. 

 

Certain research has been done based on that data set. The focus of that research was on 

finding the regulatory relationships, such as activation and inhibition, among different 

genes. As mentioned in [22], previous research’s performance is not good enough. They 

tried to implement previous algorithms, such as time series analysis, to check the known 

regulations. Unfortunately, less than 20% of the known regulator pairs exhibited strong 

correlations, which is neither helpful nor convincing in finding the pathways. 

 

They designed an edge detection function which they claimed to be significantly better in 

finding regulatory candidates. The edge detector favors similarity of local signals on the 

curves and acts as a conservative and biologically significant filter in order to maximally 

eliminate meaningless information. It represents each gene as an array of quadrary edges 

that only biologically significant and reliable expression level changes are involved. Then 
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a score function is designed for each pair of gene edges. As for the output of their 

algorithm, results show that this algorithm recognizes certain interesting putative pairs 

missed by other methods, 

 

The authors also implement integrated analysis by interleaving the 4 time-series curves 

for each gene because they believe that integrated analysis of the Cho/Spellman data sets 

is more informative than analyzing each data set separately. 

 

In [57], another approach using dominant spectral component is proposed. The 

assumption of this method is: regulatory gene pairs vary periodically at a constant and 

relatively similar frequency. In this method, each time series expression sequence is 

decomposed into a set of discrete-time damped sinusoids of different frequencies. 

Parameters in this model, such as amplitude, damping factor, normalized frequency and 

phase angle are determined based on the autoregressive model commonly used in signal 

processing. Correlation of two time sequences is reformulated as a sum of scaled sub-

correlations. It is claimed that this method is superior in dealing with time delays and 

many of regulatory genes pairs missed by traditional correlation method can be identified. 

 

3.4. Multiple-Class Classification 

Bi-class classification is the most common technique to be considered or studied. 

Numbers of classifiers are built to distinguish two groups of objects. A discriminant 

function is designed to separate these two groups of objects as clearly as possible. 
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Although bi-class classifications are important, multiple-class classifications are more 

practical. A concrete example is: recognize more than one kind of toxins in the 

microarray experiments. But, techniques used in bi-class classification might not be 

appropriate or fit in naturally in multi-class classification problem.  

 

As pointed out by Friedman in [19], multi-class classifications are more difficult than bi-

class classification because more class boundaries need to be considered. 

Friedman suggested a very intuitive approach for the K-class problem:  

• Solve each of the two-class problems 

• For a test object, combine all the pairwise decisions to form a K-class decision by 

assigning the test object to the class that wins the most pairwise comparisons. 

Friedman points out that this rule is equivalent to the Bayesian rule when the class 

posterior probabilities pi (at the test point) are known: 
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Friedman’s rule only requires an estimate of each pairwise binary decision. In many cases, 

not only simple classification results are available, but also the estimated class 

probabilities. When these estimation results are present, Friedman’s rule can be improved. 

 

In [26], authors discuss a strategy for polychotomous classification: firstly classify the 

given objects pair wisely, and then coupling the estimates together, which is similar to the 

Bradley–Terry method. The nature of the class probability estimation is studied and the 

performance is examined. Classifiers such as linear discriminants, nearest neighbors, 

adaptive nonlinear methods and the support vector machine are studied.  
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The following question was discussed in that paper: given a set of mutually exclusive 

events A1, A2, … Ak, as well as pair-wise probabilities, }|{Pr jiiij AAAobr U= , we need 

to find a set of probabilities }{Pr ii Aobp = ? The authors are trying to find the best 

approximation in model
ji

i
ij pp

p
u

+
= , or an equivalent model 

, where  is the expected value of  . Generally speaking, 

solutions may not exist for the given question because of the lack of equations comparing 

to the independent parameters. 
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The optimized solution can be achieved by maximizing a Kullback-Leibler distance 

criterion between uij (the expected value of rij) and rij together with Pairwise threshold 

optimization in order to improve the algorithm complexity, 

∑
< −

−
−+=

ji ij

ij
ij

ij

ij
ijij u

r
r

u
r

rnpl ]
1
1

log)1(log[)(  

On most occasions in the experiments, the pair-wise procedures perform better than 

linear discriminant analysis in most occasions. Threshold optimization improves 

performance for Friedman’s max rule and the coupling rule. And quadratic discriminant 

analysis and pairwise coupling performs equally. 

 

In Bayesian classifiers, the probability density function is estimated and the class label is 

assigned according to the highest posterior probability. This can be easily extended to 

multi-class problem. Only extra computation is needed and new objects are still assigned 
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to classes according the highest posterior probability. 

 

For classifiers such as linear discriminant, perceptron, and support vector machine, the 

fitting procedure of discriminant function from bi-class to multi-class is not 

straightforward. Several strategies are available: 

• Voting algorithms. Organize a classifier committee and each classifier votes for or 

against a class. The final classifications result is made according to the majority 

votes. 

• Couple a probability number with previous bi-class classification results. The 

multi-class classifications result goes to the class that has the maximal 

classification output.  

 

In [51], authors talk about the generalization from bi-class classification to multi-class 

classification. This paper compared two approaches: voting mechanism and combinations 

of approximate posterior probabilities. 

 

In voting approach, 2 training possibilities are considered: 1 against rest (1-r) and 1 

against 1 (1-1). These two methods suffered from questions such as: rejected by all 

classifiers, accepted by multiple classifiers, ties in voting. To eliminate these issues, 

simple methods such as assign these objects to the class with largest prior probability are 

designed by the authors. 

 

In posterior probabilities approach, a confidence value for each classification is used to 
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avoid inconsequent labeling. Then, maximum rules are applied to combine all estimation 

results.  

 

Experiments are done using 5 data sets and 3 kinds of classifiers: normal density based 

linear classifier (LDA), Fisher linear discriminant, and the linear support vector classifier 

(SVC). LDA belongs to the voting approach and the other two belong to posterior 

probabilities approach.  

 

Conclusions are drawn from the experiments that:  

• For voting approaches, rejections happen frequently in vote 1-r, and vote 1-1 has 

a relatively low rejection rate; the performance on the not rejected data is 

normally much better; the results of random assignment to the data being rejected 

are very poor; vote 1-1 is worse than vote 1-r if rejection is considered, but better 

than vote 1-r with random assignment of objects being rejected. 

• For posterior probabilities approach, better results appear for the 1-r case. When 

rejection is consider, the performance is at the same level as vote 1-r; otherwise, it 

is consistently better than vote 1-r with random assignment of objects being 

rejected. 

 

3.5. Decision Committee Learning 

Decision committee learning has been considered to be an effective method in reducing 

the classification errors. All committee members are given the same input test data and 
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their output results are combined in a certain way in order to give a more reliable and 

dependable classification decision. 

 

There are two popular decision committee learning approaches: Boosting and Bagging 

[47] [18] [8] [6].  

• Boosting is a method that tries to increase the accuracy of any given learning 

algorithm. It changes the distribution of the training set based on its performance. 

Boosting is done in the following steps. It maintains a set of weights over the 

training set. At the very beginning, all the weights are assigned with the values. 

But, the values are being changed after each round. In each round, a weak learner 

is trained with an unsolved problem. The output of the weak learner is then added 

to the learned function, with evaluated strength that corresponds to the 

performance. Then, the weights are reassigned. 

• Bagging (also called Bootstrap Aggregating) first generating new dataset of the 

same size as the given dataset. In the new dataset, replicates exist. Then, 

classifiers are trained according to the new datasets and obviously, these new 

classifiers are not going to be accurate individually. The final results are achieved 

by averaging the output or voting. This algorithm is quite satisfactory and it also 

reduces variance and helps to avoid overfitting. Experimental results and 

theoritical analysis show that bagging is effective on unstable learning algorithms 

and will downgrade the performance of stable learning algorithms. In this case, 

“unstable” means that small changes in the input test data will cause large 

changes in results. 
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There are also different ways in combining the classification results from these 

committee members.  

• Voting is a quite straightforward way. The majority of classification result from 

the available classifiers is considered as the final conclusion. Some methods 

consider assigning weights to each of the classifiers and drawing the final 

conclusion after adding them together. The major problem with voting is that it is 

incapable to take local expertise into account. 

• Instead of voting, dynamic integration of classifiers can be very effective. It has 

the assumption that each member of the committee has some expertise on some 

sub-areas in the feature space.  

 

Combining classifiers has been established as an important research area. The key to 

make more accurate classifiers is how to choose a diversified classifier set. In [35], 

authors discussed the concept of “diversity” in great details in the field of combining 

binary classifiers. Ten statistics which can measure diversity are studied: four averaged 

pair-wise measures (the Q statistic, the correlation, the disagreement and the double fault) 

and six non-pairwise measures (the entropy of the votes, the difficulty index, the Kohavi-

Wolpert variance, the interrater agreement, the generalized diversity, and the coincident 

failure diversity). The relationships between diversity and accuracy are also studied, 

different conclusion were drawn that no clear relationship is found in this research . 
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4. MTSO NORMALIZATION AND GST 

RANKING 

This chapter discusses some basic concepts and techniques, such as data normalization, 

revised GS ranking algorithm, and a microarray classification approach. Following 

chapters will be based on them. 

 

4.1. Normalization 

4.1.1. Motivation 

As discussed in previous chapters, there are inevitable variations in the microarray data 

which make normalization an important pre-process in biological research. Normalization 

helps researchers to mitigate or totally remove the hazards caused by these variations. 

There are several techniques which can be used separately or together in normalization. 

• Multiply genes’ expression values from each array by a constant value to make 

the mean intensity of each chip the same. 

• Adjust the chips by using housekeeping genes that are consistently expressed 

across all of the samples. 

• Match the percentiles of each array. 

• Adjust using a nonlinear smoothing curve. 
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In our research, data normalization becomes even more important. This is because we 

also need to bring the expression values from different sampling times for different genes 

into the same range so that different genes are comparable. The methods mentioned 

above are not suitable for our case, because they were designed for data that either does 

not have time feature association or does not have a class label. In our research, we 

consider feature selections on MTSO data, which has both time variables and class labels. 

We need a new approach. 

 

4.1.2.  Our Approach 

As discussed in chapter 3, previous normalization methods only consider microarray data 

normalization for an individual microarray. Apparently, we need some new approaches to 

handle the addition of the time dimension. The major challenge is: according to the 

nature of genes, they are expressed by vastly differing values, which makes direct 

comparisons between genes difficult. For example, in our sample data set, gene 

AA684929_f_at is regularly expressed at about 1000; on the contrary, gene Z49858_at 

normally has a value of less than 10. No comparison among genes can be made without 

first bringing them into a comparable level. In order to normalize the whole data matrix, 

two steps are performed in our normalization procedure: 

• Per chip normalization is based on the mean value of each chip. All the values 

on one chip are normalized by dividing them with the mean value of the chip. The 

rationale for this normalization is that most gene expression values don’t change 

among different classes and the mean value from each chip will remain roughly 

the same [34]. The primary goal of this step is to remove the differences and 
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noises among different chips as much as possible. 

Formally, for each chip j, we first compute the mean value for the entire chip: 

∑
=
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n
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jijj S

n
S

1
,

1η . (Here, n stands for the number of available genes on the chip 

and S denotes the array for the original gene expression values). Then, for every 

gene expression value, , let the new normalized value be jiS ,
j
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S
SS

η
,

, = . After 

this transformation, the values for the same gene coming from different chips are 

comparable.  

• Per gene normalization is performed to adjust each gene’s value into 

approximately the same range. Different genes are normally expressed in different 

ranges. This makes it difficult to compare them directly using their original values. 

An efficient approach is to scale all the genes’ expression values into the same 

range, such as [0, 1]. Per gene normalization will be done using the following 

formula. 
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Here, GSi,j is the expression value of gene i on chip j after the normalization and 

m is the total number of  gene chips. 

 

Let Γ be the total number of available time points (microarray sampling time) and n be 

the total number of available genes. The original and normalized MTSO data matrices are 

shown in table 4.1 and 4.2. In such a matrix, a row i, [GSi,1, GSi,2, …, GSi,τ], is a time 

series of gene i; a column j, [GS1,j, GS2,j, …, GSn,j], is a microarray data sampled at time 
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point t j. 

 t1 t2 … … t τ
      

Gene 1 S1,1 S1,2 … … S1,τ
Gene 2 S2,1 S2,2 … … S2,τ

… … … … … … 
… … … … … … 

Gene n Sn,1 Sn,2 … … Sn,τ

Table 4.1: Original MTSO matrix. 

 
 t1 t2 … … t τ
      

Gene 1 GS1,1 GS1,2 … … GS1,τ
Gene 2 GS2,1 GS2,2 … … GS2,τ

… … … … … … 
… … … … … … 

Gene n GSn,1 GSn,2 … … GSn,τ

Table 4.2: Normalized MTSO matrix. 

 

4.2. GS Ranking Method with Time Factor: 

GST 

Roughly speaking, this section is concerned with evaluating the performance of a ranking 

algorithm for microarray data, and making preparations for our methods in the rest of this 

dissertation (such as time series ranking and robust feature selection). To be more 

specific, we will first discuss the GS method and its limitations. After showing that this 

ranking should be time dependant, we will do minor improvements to the GS method and 

use the improved method for feature selection in microarray data. We will incorporate the 

ranking results in classifications. Finally, we conduct experiments to evaluate the 

performance of the improved ranking method. The experiments show that the ranking 
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results are time sensitive, which motivates us for the study on whole-time-series based 

ranking and robust feature selection.  

 

4.2.1.  Motivation 

As mentioned in chapter 3, the GS method introduced in [23] is a generic approach to 

cancer classification based on gene expression monitored by DNA microarrays. In [23], 

genes were sorted according to their degree of correlation between different classes. That 

article used “neighborhood analysis” to find the informative genes (genes that are highly 

correlated with the class labels, meaning that such a gene is uniformly expressed high in 

one class and uniformly low in the other class); these genes are used in the predictors in 

weighted voting manner. In this method, a ratio called SNR is used to measure the 

correlations between class label and gene expression value. (SNR stands for Signal to 

Noise Ratio, 
)()(
)()(

),(
21

21

gg
gg

cgP
σσ
μμ

+
−

= , where )(),( 21 gg μμ  and )(),( 21 gg σσ  stand for 

the mean and standard deviation of the log10 of the expression values of gene g in class 1 

and 2 respectively. The use of log10 is a simple method of normalization so that different 

genes become more comparable.) Clearly, this method has nothing to do with the time 

factor. In other words, this technique ignored the time value of the microarray data.  

 

In order to create more accurate and more informative classification results when time is 

present, we introduce the GST method, which is an enhanced GS method by taking the 

time factor into consideration and incorporate the GST results into classifiers. 
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4.2.2.  Approach and Application 

4.2.2.1. GST Ranking 

In the GST ranking approach we divide the microarray data into groups according to their 

time value and we only apply our GST ranking method inside each microarray data group. 

Specifically, for a given time point t, let 
),(),(
),(),(

),(
21

21

tgtg
tgtg

tgGST
σσ
μμ

+
−

= , where 

),(),,( 21 tgtg μμ  and ),(),,( 21 tgtg σσ  stand for the mean and standard deviation of 

normalized expression values of gene g  at time point t in class 1 and 2 respectively. 

 

Even though both GS and GST methods use the SNR formula to rank the genes, there are 

some differences between the original GS method and our GST ranking method: GST 

considers one time point at a time, and GST uses the mean and standard deviation of 

normalized expression values of gene g, instead of the log10 of the original gene 

expression values as was done in the GS method.  

 

 group1 group2 … … group τ
 t1 t2 … … t τ
      

Gene 1 GST1,1 GST1,2 … … GST1,τ
Gene 2 GST2,1 GST2,2 … … GST2,τ

… … … … … … 
… … … … … … 

Gene n GSTn,1 GSTn,2 … … GSTn,τ

Table 4.3 GST score matrix. 

 

We then use the GST scores to rank the genes as follows. Suppose table 4.3 is the GST 

score matrix.  
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 group1 group2 … … group τ
 t1 t2 … … t τ
      

Gene 1 Rank1,1 Rank1,2 … … Rank1,τ
Gene 2 Rank2,1 Rank2,2 … … Rank2,τ

… … … … … … 
… … … … … … 

Gene n Rankn,1 Rankn,2 … … Rankn,τ

Table 4.4: GST ranking matrix. 

 

 Control  
sample 1 

Control  
sample 2 

Exposure  
sample 1 

Exposure  
sample 2 

Gene 1 0.95, 1.1, 1 1, 1, 0.9 1, 1.2, 1 1.05, 1, 1 
Gene 2 1.1, 1, 0.9 1, 1.2, 1 1.3, 1.4, 1.3 1.3, 1.4, 1.4 
Gene 3 1, 1.5, 1.9 0.9, 1.6, 2 1.6, 1.4, 1.4 1.5, 1.5, 2 
Gene 4 0.9, 1, 1.1 0.7, 1, 1.2 1, 1.6, 2 1, 1.4, 2.1 
Gene 5 1.2, 1, 0.9 1, 1, 1.1 2.3, 1, 1 2.4, 0.9, 1 
Gene 6 1, 1, 1.3 1, 1, 1 1.1, 1.9, 1 1, 2.1, 1 
Gene 7 1, 0.9, 1 1, 0.8, 1.05 1.1, 1, 2.5 1, 1.1, 2.3 

Table 4.5: An example MTSO dataset.  

Data are in the order of (t1, t2, t3) 

 
 t1 t2 t 3

Gene 1 1 0.333333 1 
Gene 2 5 3 4 
Gene 3 6 1 0.714286 
Gene 4 2 5 12.33333 
Gene 5 8.333333 1 0 
Gene 6 1 18 1 
Gene 7 1 3 14 

Table 4:6 GST score matrix using example data. 

 

To illustrate, consider table 4.5 which consists of four MTSO matrices. This table will 

also be used as a running example for our algorithms when possible. In this example data 

set, two MTSO matrices belong to the “Control” class (also called negative class), and the 

other two matrices belong to the “Exposure” class (also called positive class). The 
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associated GST and ranking matrices are also shown in table 4.6 and 4.7. 

 
 t1 t2 t 3

Gene 1 7 7 5 
Gene 2 3 3 3 
Gene 3 2 6 6 
Gene 4 4 2 2 
Gene 5 1 6 7 
Gene 6 7 1 5 
Gene 7 7 4 1 

Table 4.7: GST ranking matrix using example data. 

 
When the time factor is not present, the rank of a feature is usually directly correlated 

with the feature’s importance for classification. Our concern is: will the introduction of 

the time factor into the ranking process affect the ranking results as well as the 

classification results? If the answer is yes, why? 

• To answer these questions, let us first have a look at our example. Figure 4.1 is 

drawn to examine the rank changes for every gene in the example. This chart 

shows that the rank for a gene depends on its time factor and the rank changes 

from time to time. 

• We also examine the actual data set to see the impact of adopting different 

ranking systems into a given classifier. We will explain this in detail in the 

following section. The experiments show that using different ranking systems to 

the same test leads to different classification results. 
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Rank Changing Trends
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Figure 4.1: Rank changing trends of the example data. 

 

According to the two tests we performed above, we can easily draw the conclusion that 

using a gene ranking result without considering its time factor is neither accurate nor 

scientific. For a given gene, at some time points the rank can be very high, which means 

this gene could be an informative gene that is highly correlated with its class. However, 

at some time points the rank of the same gene could be really low which means this gene 

is not closely correlated with the class label. Therefore, our next topic is how to 

accommodate the time factor in our new classification system. 

 

4.2.2.2. Classification 

In this section, we will focus on how to utilize the previous ranking results into 

classification. Before we illustrate our classification algorithm, let us define some 

prototypical MTSOs for future discussion convenience.  
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Suppose we are given a MTSO data set of two classes, P (Positive) and N (Negative). Let 

Pi denote the ith matrix of the P class, and similarly Ni for the N class. Suppose the P 

class has nP MSTOs and the N class has nN MSTOs. For each gene g and time point t let  

[ ] ∑
=

=
Pn

i P

i
P n

tgP
tgAverage

1

],[
, , 

[ ] ∑
=
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Nn

i N

i
N n

tgN
tgAverage

1

],[
, . 

 
 t1 t2 t3 

Gene 1 0.975 1.05 0.95
Gene 2 1.05 1.1 0.95
Gene 3 0.95 1.55 1.95
Gene 4 0.8 1 1.15
Gene 5 1.1 1 1
Gene 6 1 1 1.15
Gene 7 1 0.85 1.025

a. Example  MTSO data NAverage

 
 t1 t2 t3 

Gene 1 1.025 1.1 1
Gene 2 1.3 1.4 1.35
Gene 3 1.55 1.45 1.7
Gene 4 1 1.5 2.05
Gene 5 2.35 0.95 1
Gene 6 1.05 2 1
Gene 7 1.05 1.05 2.4

b. Example  MTSO data PAverage
Table 4.8: Example average MTSO data. 

 

The table 4.8.a is the average MTSO for the P class, whereas the table 4.8.b is the average 

MTSO for the N class. Observe that our method does not require that nP be equal to nN. 

 

Similarly, we define a “standard deviation MTSO” for each class. For each gene g and 

time point t let 
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Table 4.9.a is the variance MTSO for the P class, whereas table 4.9.b is the variance 

MTSO for the N class. According to these two formulas, we can easily derive “standard 

deviation MTSOs”: DeviationP[g, t] and DeviationN[g, t]. Example data is shown in table 

4.10. 

 
 t1 t2 t3 

Gene 1 0.000625 0.0025 0.0025
Gene 2 0.0025 0.01 0.0025
Gene 3 0.0025 0.0025 0.0025
Gene 4 0.01 0 0.0025
Gene 5 0.01 0 0.01
Gene 6 0 0 0.0225
Gene 7 0 0.0025 0.000625

a. Example Variance  MTSO data N

 
 t1 t2 t3 

Gene 1 0.000625 0.01 0
Gene 2 0 0 0.0025
Gene 3 0.0025 0.0025 0.09
Gene 4 0 0.01 0.0025
Gene 5 0.0025 0.0025 0
Gene 6 0.0025 0.01 0
Gene 7 0.0025 0.0025 0.01

b. Example Variance  MTSO data P

Table 4.9: Example variance MTSO data. 
 

[ ] [ ]tgVariancetgDeviation PP ,, = , 

[ ] [ ]tgVariancetgDeviation NN ,, = . 

 
 t1 t2 t3 

Gene 1 0.025 0.05 0.05
Gene 2 0.05 0.1 0.05
Gene 3 0.05 0.05 0.05
Gene 4 0.1 0 0.05
Gene 5 0.1 0 0.1
Gene 6 0 0 0.15
Gene 7 0 0.05 0.025

a. Example  MTSO data NDeviation

 
 t1 t2 t3 

Gene 1 0.025 0.1 0
Gene 2 0 0 0.05
Gene 3 0.05 0.05 0.3
Gene 4 0 0.1 0.05
Gene 5 0.05 0.05 0
Gene 6 0.05 0.1 0
Gene 7 0.05 0.05 0.1

b. Example  MTSO data PDeviation
Table 4.10: Example deviation MTSO data. 

 

Given the GST ranking results, we now consider how to use the top genes to build a 

classifier. It should be noted that the classifier deals with one time point only. 

For a given time point t, let P(t) = {P1(t), P2(t),  ... , Pµ(t)} be a set of positive (e.g. 
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exposed) microarray data, and let N(t) = {N1(t), N2(t), ..., Nυ(t)} be a set of 

negative (e.g. controlled) microarray data. The training input is of form {(X1, Y1), 

(X2, Y2), ... , (Xm, Ym)} for some unknown function Y = f(X). A microarray data, Xj, 

either from set P(t) or N(t), is a vector of the form < Xj(1), Xj(2), ..., Xj(G) >. In 

this vector, Xj(i) represents the expression value of ith gene, where 0< i <G and G 

is the total number of available genes. The domain of Y is normally a discrete set 

of classes, such as {controlled, exposed} in our case. After the training procedure, 

classifiers can be made so that when given a test microarray data, X, a Y value can 

be predicted as either controlled or exposed.  

 

The detailed classification training method is described below: 

Let gGTS be the top gene under the GTS ranking system of time point t. Let X be a given 

unknown class sample microarray to be classified. We define three scores as follows: 

)()()( GTS
N

GTS
N gAveragegXXScore −= , 

)()()( GTS
P

GTS
P gAveragegXXScore −= . 

)(
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log)( 2 XScore
XScore
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N

P= . 

To avoid division by zero situation,  

ε+
=

)(
)(

log)( 2 XScore
XScore

XScore
N

P  

is used. Here, ε is a very small positive number (e.g. 0.000001). Also, we use function 

log2 because of its ability to treat numbers and their reciprocals symmetrically so that we 

can view the results in a better perspective. 
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From the results of training data, we use an entropy based binning method to find the best 

cut-off threshold to decide the class of X:  

• If Score(X) > 0, then X is classified as a member of P group;  

• If Score(X) < 0, then X is classified as a member of N group; 

• If Score(X) = 0, then X is unclassified. 

 

Here, zero is used as a threshold to separate all the cases. The rationale for the choice of 

the threshold is stated as follows: if X belongs to the N class, then ScoreN(X) tends to be 

small and ScoreP(X) tends to be big. As a result Score(X) should be a value much bigger 

than 0. (In our experiments, Score(X) tends to be larger than 1.) On the other hand, if X 

belongs to the P class, Score(X) should be much smaller than 0. (In our experiments it 

tends to be smaller than -1.) 

 

In order to make the classification results more persuasive even though the number of 

unclassifiable cases will increase we will assign a range, [-1, 1], instead of using a 

number as the threshold. 

• If Score(X) >= 1, then X is classified as a member of P group;  

• If Score(X) <= -1, then X is classified as a member of N group; 

• Otherwise, X is unclassified. 

 

We must emphasize that because we have data from n>1 different time points, we have 

3n different GTS ranking results. Now, we limit our classifications inside the same 
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ranking system. In other words, if the top genes are chosen from the GTS ranking results 

that are associated to one time point, all the microarray data that are going to be used in 

the classification are also sampled at that time point. 

 

4.2.3. Experiments 

Let us briefly introduce the dataset we are going to use throughout our research. The 

dataset we used in our experiments was provided by Professor James McDougal in a 

scientific toxicology study field. As introduced in [60], the jet fuel jet propulsion fuel 8 

(JP-8) has been shown to cause an inflammatory response in the skin, which is 

characterized histologically by erythema, edema, and hyperplasia. There are 9 MTSO data 

in this dataset: 5 of them belong to the controlled group and 4 of them were exposed to 

JP-8. Each time series has 3 time points: 1 hour, 4 hours, and 8 hours. This data includes 

8799 genes. In our research we ignore the biological meanings of each gene and call each 

gene using their row number from the original data as well as the class labels assigned by 

biological researchers such as: A, M, and P. Research has also been done by Dr. 

McDougal by utilizing biological knowledge and some results are published in [60]. 

 

Table 4.11 and 4.12 show a small GST ranking result set. As you can see, gene 7070 

ranks as the top 1 gene at time point 1. However, it ranks low at all other time points. 

Even though gene 2510 and gene 8468 seem better, neither of them always ranks in the 

top among three different ranking systems like gene 5519 does. This proves the point we 

mentioned earlier: the ranks of genes change greatly from time to time. Some research 

has been done to identify genes’ responsive patterns such as immediate response, late 
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response, intermediate response, and constant response. We will study this phenomenon 

in detail in the following sections. 

 

Rank Time point 1 
ranking 

Time point 2 
ranking 

Time point 3 
ranking 

1 7070 2510 8468 
2 8156 5014 6895 
3 7102 6895 5490 
4 7447 2182 7078 
5 6876 2944 1458 
6 6899 3533 7204 
7 2836 8126 7635 
8 7071 4732 5671 
9 2837 5650 8795 
10 5898 7297 3967 

Table 4.11: Top 10 genes at individual time point using GST method 

 
 

Gene name Time point 1 
ranking 

Time point 2 
ranking 

Time point 3 
ranking 

7070 1 8116 7380 
2510 5696 1 2897 
8468 1817 2553 1 
5519 138 109 477 

Table 4.12: Ranks of top 1 genes using GST method 

 

In the next experiment genes from the GST ranking system are chosen for classifiers and 

results are shown in figure 4.2. In figure 4.2 we designed a chart to compare the overall 

performance of these genes selected from different ranking systems. In this chart there 

are three curves and each curve corresponds to classification using a ranking system: TP1, 

TP2, and TP3. The first 2000 genes are chosen from each ranking system and they are 

divided into 40 consecutive groups each with a size of 50. In each group genes are used 

in the classification individually and we count a gene as a satisfactory one only if all the 
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classification results are correct. Otherwise it is unsatisfactory. 
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Figure 4.2: Ranking system comparison in microarray classification 

 

According to this experiment, we can draw some conclusions: 

• Each individual ranking system works as it is expected to. The unsatisfactory 

rates rise when the ranks get low. In other words, if one gene ranks higher than 

another gene the correctness rate is very likely to be higher if they are both used 

in the classifiers even though small fluctuations exist. 

• The order of performance is: TP1 < TP2 << TP3. It is a very reasonable 

phenomenon because of the special character of living tissues: TP3 data are 

collected at 8 hours after exposure and the gene expression values have reached 

their relatively stable state if they have one. As a result, the genes that rank high 

in TP3 ranking system are relatively more closely correlated with the class label 

than top genes in other ranking system.  

• But, the fact is, accuracy is not the sole concern in our research. For example, in 

order to better help a patient, doctors need to predict the cancer in its early stage. 

TP1 classification is just as important as any other time points even though its 
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performance is not as good as TP3 classification. 

• These experiments are done according to their own input data time domain. In 

other words, these chosen genes are used to classify microarray data from the 

same time point. The performance is pretty good when considering the fact that 

even one single undetermined case will be considered as an unsatisfactory result. 

 

The previous experiment shows that classification is working properly if the ranking 

information and test cases are from the same time point. Microarray data from different 

time points can also be selected to repeat the above experiment. In the following 

experiment, we try to conduct an experiment to see how classification performance 

suffers when the test data’s time value is different from the training data’s. 
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 Figure 4.3: Ranking system comparison across time domain 
 

Figure 4.3 shows the experiment results. In this figure, the curve with label “same” 

means that the features selected for the classifiers are selected from the training data for 

the same time point as that of the test microarray data. The curve with the “different” 

label means that the features selected for the classifiers are selected from the training data 
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for some different time point from that of the test microarray data. We only considered 

classification situations where features are selected from time point 1 and test data are all 

associated with time point 2. Clearly, the results are totally unacceptable in the second 

case. The performance is extremely poor and the results show that even using the best 

feature from one time point to classify test data from another time point is inappropriate.  

 

Hence, the experiments proved that rankings are not time independent. Given one time 

point and its corresponding ranking results, the genes selected for the classifiers can 

deliver good results if the test microarray data is chosen from the same time point. On the 

other hand, if test microarray data is chosen from different time points, the classification 

results become a disaster. 
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5. ET TIME SERIES RANKING AND 

MTSO CLASSIFICATION 

Our focus in this chapter is to develop a classification approach that is applicable to 

MTSO data. In this method, the whole time series for each gene is treated as a feature. We 

will rank these features first and then classify the test MTSO data by using the top genes 

from the ranking results. 

 

5.1. ET Feature Selection Using ET 

5.1.1. Gene Ranking Method Motivation 

Ideally, we want to find a feature which is discriminative at all time points. But, the fact 

is, often such a feature does not exist. Let us go back to the example in table 4.7 from the 

previous section. Genes 5, 6, and 7 rank at the top at time points 1, 2, and 3 respectively, 

and no gene ranks as the top 1 all the time, which means there is no one-suit-all solution. 

When such a situation arises, a method that ranks the whole time series is in need. So, we 

have to adjust our feature selection strategy by defining a ranking algorithm on the genes 

in the format of MTSO. Roughly speaking, this ranking system considers the whole time 

series instead of values at any single time point, and it favors genes that have large value 

differences among different classes and have small variances among values within each 

class at the same time point. In other words, the method developed here is to rank 
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individual genes based on each gene’s correlation with its class.  

 

5.1.2. Approach and Application 

In this part, we have two sections. One is about the actual gene ranking on time series 

data and the other is about a pre-processing step that can be used to enhance the 

performance of ranking. We will talk about them in the reverse order because in order to 

recognize the necessity of the pre-processing, which is a screen procedure, we need to 

understand the actual ranking first. 

 

5.1.2.1. ET Ranking 

This ET gene ranking method and GS/GST method are somehow similar: they all take 

average values and deviations as part of the consideration. The main difference lies in 

whether they consider just one time point or all time points:  

• The GS/GST methods are only applicable to single time point which means they 

can only analyze data from different time points separately. 

• Our new method, ET Ranking, treats a whole time series as one data object which 

gives a method to compare two time series.  

 

We will use ET as a ranking measurement over gene g to evaluate the correlations 

between the time series of gene g and the class label. It is defined as:  

∑
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where τ is the total number of available time points in the given time series. 

ET method GST method  
Score Rank t1 t2 t 3

Gene 1 2.333333 7 7 7 5 
Gene 2 12 4 3 3 3 
Gene 3 7.714286 6 2 6 6 
Gene 4 16 1 4 2 2 
Gene 5 9.333333 5 1 6 7 
Gene 6 12 4 7 1 5 
Gene 7 14 2 7 4 1 

Table 5.1:  Example ET ranking  

(comparing with GST rankings) 

 
In order to find appropriate informative genes for building classifiers for MTSO data in an 

accurate way, finding the most discriminating genes is necessary. Intuitively speaking, 

genes with larger ET values could be better candidates. These genes have large value 

differences between the two classes and they have relatively smaller variances within 

each class. As a result, we rank genes according to their ET values and the genes that 

rank on the top are more likely to be chosen in the classifier. Table 5.1 shows the ET 

ranking results for the example data. 

 

But, experiments in classification show that ET rankings do not always help researchers 

to pick up the best candidates, which means genes with higher ranks are not necessarily 

better than the genes with lower ranks. We studied the data in further details and find out 

that the ET ranking system is not the sole standard, deviation plays an important role as 

well. So, we designed a screen procedure based on deviation value. 
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5.1.2.2. Filtering Using Deviation 

This step is about screening available gene time series before actual ranking. In other 

words, this is a pre-processing step.  

 

Genes are expressed differently from time to time and from group to group. In the ET 

ranking formula listed in the previous section, ET value is expressed as the sum of GST 

value from all the time points. But, we should notice that two genes may have identical 

GST values.  

 

Here is an example. We have two genes, gene1 and gene2, and we also have their 

corresponding GST values, 
22
45

1 +
−

=GST  and 
8.32.0

45
2 +

−
=GST . For the above two genes, 

although the two average values of the two groups are the same, the sum of the two 

deviation values are the same, and the GST values are the same, we prefer the first gene 

because the deviation values of the second gene vary too much between the two groups 

(the deviation in the second group is 19 times the deviation in the first group). This 

preference is based on the following observation: bigger deviation means less accuracy in 

classification. 

 

So, we decide to develop a screening procedure to find out the genes more like the first 

gene in the previous example. The intuition here is to find those genes that are 

consistently expressed at every single time point throughout the time series, either in 

control group or in exposure group. 

 68



 

We now consider how to find genes having the property just discussed. Several steps are 

needed for each gene g. Suppose we have τ2  deviation values: [ ]1,gDeviationP , 

, …, [ 2,gDeviation P ] [ ]τ,gDeviationP  from the exposure group and [ ]1,gDeviationN , 

, …, [ 2,gDeviationN ] [ ]τ,gDeviationN  from the control group. 

1. Find out the minimum value, MinDeviationg, from the deviation value set for gene g; 

2. Find out the maximum value, MaxDeviationg, from the deviation value set for gene g; 

3. Let
g

g
g onMinDeviati

onMaxDeviati
DevRatio = ; 

4. Set up a threshold value and eliminate all the genes whose  is bigger than 

this threshold value.  

gDevRatio

5. Only the remaining genes will be considered in actual ranking algorithm illustrated 

in the previous section. 

 

The above method can be further refined by considering both deviations and average 

values. The reason why we want to include average values into consideration is simple: 

larger values tend to have larger variances.  

 

In the new method, we first define a DAR (Deviation-Average-Ratio) value for each gene 

g at every time point t in a group. 

],[
],[],[

tgAverage
tgDevationtgDAR =  

As a result, we still have τ2  DAR values for a given gene g: , [ ]1,gDARP [ ]2,gDARP , …, 
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[ ]τ,gDARP  from exposure group and [ ]1,gDARN , [ ]2,gDARN , …, [ ]τ,gDARN  from 

control group. Several steps are to be followed in the screen procedure: 

1. Find out the minimum value, MinDARg,, from the DAR value set for gene g; 

2. Find out the maximum value, MaxDARg, from the DAR value set for gene g; 

3. 
g

g
g MinDAR

MaxDAR
DarRatio = ; 

4. Set up a threshold value and eliminate all the genes whose  is bigger than 

this threshold value.  

gDarRatio

5. Only the remaining genes will be considered in actual ranking algorithm illustrated 

in the previous section. 

 

In practice, we need to avoid the situations such as minimum deviations being zero even 

though it is not normal when the size of data set is considerably big enough.  

 

Time Series Rank Gene DarRatio DevRatio 
1 6895 10.92 2.56 
2 8600 10.67 1.99 
3 2324 13.62 2.43 
4 1511 5.55 2.06 
5 4453 14.59 2.39 
6 6717 7.82 1.84 
7 7078 11.53 2.12 
8 3533 12.43 3.92 
9 1393 10.14 2.65 
10 223 7.97 2.1 

Table 5.2: Top 10 ET ranking results and their DarRatio and DevRatio values 
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5.1.3. Experiments 

We applied our ET ranking algorithm to our microarray time series dataset and some 

ranking results are shown in table 5.2. 

 
Rank Gene DarRatio

1 4684 1.17 
2 2858 1.18 
3 6119 1.22 
4 8745 1.23 
5 5352 1.25 
… … … 

8795 957 45 
8796 6973 52.31 
8797 955 53.07 
8798 7071 61.05 
8799 944 72.4 

Table 5.3: Top 5 and bottom 5 genes according to DarRatio values 
 

Rank Gene DevRatio
1 1303 1.09 
2 215 1.12 
3 4312 1.15 
4 6012 1.15 
5 8768 1.15 
… … … 

8795 946 11.67 
8796 957 13.47 
8797 955 14.30 
8798 2131 14.51 
8799 944 19.85 

Table 5.4: Top 5 and bottom 5 genes according to DevRatio values 
 

Table 5.2 shows how genes are ranked in ET algorithm together with their corresponding 

DarRatio and DevRatio values. Combining with table 5.3 And 5.4, they give the readers 

some sense on what kind of DarRatio and DevRatio values are acceptable. 
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The classification experiments (will be studied in the next section) show that the 

DarRatio approach is not as persuasive as the DevRatio approach. The reason is obvious. 

For two genes that have the same deviation values all the time between two groups, the 

one that has bigger average expression value changes definitely produces bigger 

DarRatio values. As a conclusion, DevRatio is a more reliable screen approach in our 

case and DarRatio is more suitable for original data that has not been normalized yet. 

 

5.2. Classification on MTSO Data Using ET Ranking 

In the previous section, we provided a whole-time-series based ranking function, namely 

ET Ranking. In this part, we will consider approaches to MTSO data classification by 

utilizing the ET Ranking system, evaluate the performance in classification, and 

demonstrate the value of our ET ranking system. After that, we will use different 

approaches in building the classifiers: single feature or feature committee. The problems 

we try to answer are: 

• How to classify MTSO data? 

• Is ET Ranking actually better than GST ranking? 

• How to improve the classification results when it is not accurate? 

• Is our classification approach better than SVM? 

There is one thing we want to point out: because our data set is relatively small and the 

feature set is relatively huge, it may be a good idea to obtain a large data set to reconfirm 

the results of experiments reported here.  
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5.2.1. Classification Method 

 
The results from the ET ranking system can be used in different ways for different 

classification scenarios. We will consider two such ways and possible extensions:  

• Classification using single feature 

• Classification using feature committee 

• Possible extension of ET ranking 

 

Given the ET-Ranking system, we now consider how to use the top genes to build a 

classifier for MTSO data. More specifically, we consider the following supervised 

learning problem for MTSO data: 

Let P = {P1, P2,  ...,, Pµ} be a set of positive (e.g. exposed) MTSOs, and N = {N1, N2, ..., 

Nυ} be a set of negative (e.g. control) MTSOs. The training input is of form {(X1, Y1), (X2, 

Y2), ..., (Xm, Ym)} for some unknown function Y = f(X). An MTSO data, Xj, is a matrix 

where 0< j <n+1, which can be expressed as a vector of the form < Xj(t1), Xj(t2), ..., Xj(tτ) 

>. In this vector, Xj(ti) represents ith column of matrix Xj and it is a microarray collected 

at time ti, where 0< i <τ+1. The domain of Y is normally a discrete set of classes, such 

as {control, exposed} in our case. After the training procedure, classifiers are built. Given 

a test MTSO data, X, and a Y value can be predicted by such classifiers as either control or 

exposed.  
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5.2.1.1. Classification Using Single Feature 

5.2.1.1.1. Classification Approach 

The detailed classification training method is described below: 

Let g be a gene, and let X be a given sample MTSO to be classified. We define three 

scores as follows: 

∑
=

−=
τ

1

)),(),(()(
i

iNiN tgAveragetgXdistXScore , 

∑
=

−=
τ

1

)),(),(()(
i

iPiP tgAveragetgXdistXScore . 

)(
)(log)( 2 XScore

XScorexScore
N

P= . 

Similar as before, to avoid division by zero, the following formula can be used instead of 

the last one given above.  

ε+
=

)(
)(

log)( 2 XScore
XScore

xScore
N

P  

 

Here, ε is a very small positive number (e.g. 0.000001), and dist is a distance function 

that measures the difference between two vectors. We have two choices of the distance 

function: 

1. Manhattan distance: The distance between two points measured along axes at right 

angles. In a plane with P1 at (x1, y1) and P2 at (x2, y2), it is 2121 yyxx −+− .  

2. Euclidean distance: The straight line distance between two points. In a plane with P1 

at (x1, y1) and P2 at (x2, y2), it is 2
21

2
21 )()( yyxx −+− .  
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Theoretically speaking, using different distance functions may lead to different score 

values. However, our experiments show that they don’t make much difference. So we use 

Manhattan distance throughout our research. 

 

From the classification results on the training data, we use entropy based binning method 

to find the best cut-off threshold to decide the class of X. In particular, -1/1 can be used as 

the thresholds. 

• If Score(X) >= 1, then X is classified as a member of the N group;  

• If Score(X) <= -1, then X is classified as a member of the P group; 

• Otherwise, X is unclassified. 

Other values can also be used as thresholds, such as -0.5/0.5. 

 

5.2.1.1.2. Experiments 

We plan to compare the performance of different ranking systems for classification. To 

this end, we present table 5.5, which shows the ranks of some genes under the ET ranking. 

The GST ranks of these genes are also shown so that readers can have an idea on how 

ranking results from different ranking systems are related. 

Gene name Time point 1 
ranking 

Time point 2 
ranking 

Time point 3 
ranking 

Time series 
ranking 

7070 1 8116 7380 28 
2510 5696 1 2897 252 
8468 1817 2553 1 12 
6895 1665 3 2 1 
7680 6469 73 7611 2225 
8009 5198 7258 570 2058 

Table 5.5: Ranking results comparison of ET and GST 
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Table 5.6 shows the classification performance of those genes. It should be noted that 

some of the genes are not ranked near the top. For example, gene 2510 was ranked at 252. 

However, this gene’s relative rank is pretty high, in the top 2.8% (the number of available 

genes is a huge number.) 

Gene name Correct results Undetermined Incorrect results

7070 9 0 0 
2510 8 1 0 
8468 7 2 0 
6895 9 0 0 
7680 1 8 0 
8009 6 2 1 

Table 5.6: MTSO classification performance 
 

Results from table 5.6 show that: 

• Genes that rank on the top of ET ranking results normally give pretty good MTSO 

classification results. 

• Genes that rank on the top of GST ranking results do not necessarily put them on 

top of ET ranking results, and do not necessarily mean they can give good MTSO 

classification results. 

 

Here we will make a comparison of the four different ranking systems based on their 

performance in the MTSO classification: TP1, TP2, TP3, and ET. The purpose is to 

evaluate which ranking system lead to more accurate classification and what kind of 

results do we expect when using the wrong ranking system. In this way, we can see the 

value of ET ranking systems in MTSO classification. In this experiment, the first 500 

genes are chosen from each ranking system and they are divided into 10 consecutive 

groups of size 50. In each group, genes are used in the classification individually and we 
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count a gene as a satisfactory feature if all the classification results are correct. Otherwise, 

it is unsatisfactory. In this experiment, -0.5/0.5 is used as the threshold. 
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 Figure 5.1: Ranking system comparison in MTSO classification 
 

From figure 5.1 above, we can make certain conclusions: 

 Same as before, each individual ranking system (TP1, TP2, and TP3) works 

reasonably well even though they were not designed for dealing with MTSO 

data. The unsatisfactory rate rises when the rank gets low. In other words, if 

one gene ranks higher than another gene, the correctness rate is very likely to 

be higher as well. 

 The performance sequence is: TP1 < TP2 < TP3 < ET. This verifies our 

original intuition that our ET ranking system is better than other ranking 

systems in MTSO classification. It is interesting to note that, although the ET 

ranking system is a linear combination of the other three, it offers better 

performance than all the other three. 

 We also notice that TP1 < TP2 < TP3, which is in the same order as figure4.?.  
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From the results shown above, we learned that even though the ET ranking system is not 

necessarily the best solution at any individual time point, it is the best solution so far for 

the whole time series.  

 

In practical situations, choosing only one feature from the ET ranking system may not 

enable us to achieve satisfactory performance in MTSO classification. There are 

approaches that can improve the MTSO classification accuracy: we can either organize a 

decision committee or further improve the ranking formula. We will introduce these ideas 

in the following two sections. 

 

5.2.1.2. Classification Using Feature Committee 

Decision committee learning has been proven to be very effective in reducing 

classification error from learned classifiers, both practically and theoretically. The 

committee members are given the same classification task and their individual outputs are 

combined in a certain way to create the final conclusion. This combination of outputs is 

usually obtained by majority vote. 

 
Here, we will briefly discuss how to choose these committee members and how to 

combine the results from these committee members in details.  

 

5.2.1.2.1. Organizing Decision Committee 

There are two options in choosing committee members: we can either choose the top c 
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genes from the ET ranking system, or we can choose the top k
c  genes from each of the 

ranking system. Here c stands for the number of committee members and k stands for the 

number of available ranking systems. In order to make our committee members more 

diversified, we may want to use the second approach, even though features from single 

time point ranking system may not be as superior as the features from ET ranking system. 

Here, by superior, we mean “leading to more accurate MTSO classification results.” 

 

5.2.1.2.2. Voting 

Here, we consider ways of combining the classification results that come from these 

committee members so that final conclusion can be made. Suppose in our feature 

committee, we have c genes: g1, g2, …,gc. These genes can be either chosen from 

different ranking systems or just chosen from ET ranking systems. According to our 

classification algorithm, when given test data, X, each committee member will give a 

score: Score1(X), Score2(X),, …, Scorec(X), and their corresponding classification results 

are: Y1(X), Y2(X), …, Yc(X) where Yi(X) ∈ {-1, 0, 1}. Here, -1 stands for negative, 0 

stands for undetermined, 1 stands for positive. 

 
We have two options: 

• Equal Vote. We can use formula 

)(...)()()( 21 XYXYXYXY c+++=  

to finalize our classification result. In this formula, every vote from the members 

is given the same weight. Then we use  to determine the class label of data )(XY
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X: 

• If , then X is classified as member of N group;  0)( <XY

• If , then X is classified as member of P group; 0)( >XY

• If , then X is unclassified. 0)( =XY

 

• Weighted Vote. In the equal vote option, we treat these votes indiscriminately: 

members have equal vote towards the final conclusion. Since different ranking 

systems are associated with different classification accuracy, and since genes with 

different ranks in a given ranking are associated with different classification 

accuracy, the votes should not be treated the same in the counsel. We decide to 

arrange their contributions to the final score according to their ranks or scores. 

c
XScoreXScoreXScoreXScore c )(...)()()( 21 +++

=  

or 

c
XScorekXScorekXScorek

XScore cc )(*...)(*)(*
)( 2211 +++
=  

G
gETRank

k i
i

)(
1−=  

where G is the total number of genes in the MTSO, ki is the weight parameter of gi 

in the committee, and  is the ET rank of g)( igETRank i. For the top gene in the 

ranking results, it will be given the highest weight, 1. For the bottom gene in the 

ranking results, it will be given the lowest weight, 0. This is a linearly decreasing 

weight function. Of course, different weight functions can be defined, such as 

exponential, or log. But, experiments show that these weight functions produce 
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very similar performance. 

 

5.2.1.2.3. Experiments 

The following experiment is done to demonstrate the effectiveness of using committee in 

the classification. Equal voting is done in this experiment. 3000 committees are organized. 

Each committee has 4 members from 4 different ranking systems so that every ranking 

system has its representative in the committee. To be more specific, committee i consists 

of four features: ith feature from each ranking system, TP1, TP2, TP3, and ET. 
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Figure 5.2: Ranking system comparison in MTSO classification (with committee) 

 
Figure 5.2 shows that the classification performance is very stable and is significantly 

improved by using voting committees. We now give some more specific numbers, since 

the figure above is not clear enough. For the top 50 genes from each ranking system: 

• 24 genes from TP1 ranking system give satisfactory results; 

• 21 genes from TP2 ranking system give satisfactory results; 

• 33 genes from TP3 ranking system give satisfactory results; 

 81



• 37 genes from ET ranking system give satisfactory results; 

• But, when these genes are combined into 50 committees, all of these committees 

are quite accurate. In fact, the first 150 committees are 100 percent accurate. 

 

5.2.1.3. Extension of ET Ranking 

5.2.1.3.1. Approach 

Theoretically, the classification performance can also be improved by revising the ET 

ranking formula even though the performance improvement is normally not as significant 

as the voting committee approach. One way to revise the ET ranking is to use the 

following ranking formula which gives different weights to different time points: 

∑
= +

−
=

τ

1 ),(),(
|),(),(|)(

i iNiP

iNiP
i tgDeviationtgDeviation

tgAveragetgAveragekgET  

where ki stands for the actual weight for time point i. The larger value ki is, the more 

influential this time point is over the final ranking results. 
 

Apparently, in the original formula, we assigned equal weights to every time point (ki =1). 

Here, we will provide more choices and analyze their potential meanings (they are also 

listed in figure 5.3): 

1. Constant weight function (equal weight for each time point). In such a weight 

function, changes at different time points are treated equally.  

2. Linearly decreasing weight function. In such a weight function, changes at the 

beginning of the time series are magnified and hence play a bigger role than changes 
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towards the end of the time series. 

3. Linearly increasing weight function. In such a weight function, changes at the end of 

the time series are magnified and hence play a bigger role than changes at the 

beginning of the time series. 

4. Quadratic function. In such a weight function, changes at the middle of the time 

series are either magnified or diminished and hence play a bigger or smaller role than 

changes at either the beginning or the end of the time series. 
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Figure 5.3: Weight functions 

A universal weight function that fits all different requirements does not exist. In other 

words, the optimal weight function depends on the application. Choosing an appropriate 

weight function for a given application is important because data at different time points 

may play different roles and have different significance.  

 

5.2.1.3.2. Experiments 

In this experiment, different weights are given to different time points in ET ranking. 
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Then, these ranking results are applied in MTSO classifiers and the performance is 

compared.  

 

Table 5.7 is used to show how the rank changes among three different weight functions: 

ET123 (linearly increasing), ET111 (constants), and ET321 (linearly decreasing). 

Rank ET123 ET111 ET321 
1 6895 6895 7070 
2 8600 8600 8156 
3 7078 2324 8270 
4 8468 1511 7102 
5 5671 4453 5898 
6 3533 6717 6895 
7 1393 7078 2324 
8 1458 3533 1511 
9 4453 1393 6876 
10 5490 223 7447 

Table 5.7: Top 10 ET results using different weights 
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 Figure 5.4: Performance comparison using different weights 

 

From figure 5.4, we can see that these three different weight functions don’t lead to any 
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major difference in the classification results for our MTSO dataset. 

 

5.2.2. Discussion 

There are other classification approaches that can be easily extended to classify MTSO 

data, such as SVM. So, we conduct a performance comparison to answer questions such 

as which one is superior. The software we are using is called SVMdark provided by 

Martin Sewell. SVMlight is an implementation of Support Vector Machines (SVMs) in C 

and SVMdark is a Windows implementation of SVMs based on SVMlight. 

 

SVM is a method to find a hyperplane to separate the training set in a high dimensional 

feature space. Importantly, it is proved that the data set we are using is linearly separable. 

SVM is a preferred method for classification in general, even though it has disadvantages 

such as too many parameters, not easy to use, slow. 

 

Our experiments show that, after finding the correct parameter in training, the SVM 

method gives quite satisfactory results, just the same as our ET ranking approach. 

 

The usage of SVM is limited because of various reasons such as its tedious training 

procedure and the slow speed. But, most of all, researchers are more interested in 

biologically interpretable results whenever possible, not just black-box classification 

results. So, statistical significant results from SVM are not good enough for us. Marker 

genes are genes whose expression values are biologically useful for determining the class 

 85



of the samples. The identification of marker genes is important due to the following 

reasons:  

1. Enable better classification performance. 

2. Allow biologists to further study the interaction of relevant genes in achieving a 

certain biological performance.  

3. Study the functional and sequential behavior of known marker genes in order to 

facilitate the functionality discovery of other genes. 

4. Allow further study of relation of expression values of different genes with 

respect to the tumor class, similar expression pattern always results in cancer or 

the combination of suppression of certain genes and expression of certain genes 

are a better indication of tumor, etc.  

5. Using fewer genes to save money in test-kit design and production. It can also be 

time efficient for circumstances such as the battle field. 

 

As a result, our algorithm is superior to SVM in speed and the capability of identifying 

gene markers. 
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6. FRAGMENT CLASSIFICATION AND 

TIME RECOVERY 

In this chapter, we introduce a new problem: how to classify partial MTSO data. To be 

specific, one MTSO data has several microarray data and each of them has a time value. 

The previous classification approaches are not applicable if the time value for the 

microarray data is missing. We call such a problem fragment classification. To solve this 

problem, we need to find time insensitive features and then use them to classify the 

partial MTSO data. We will also discuss how to predict the missing time value, which is a 

natural extension of the fragment classification. 

 

6.1. Robust Feature Set 

6.1.1.  Motivation 

In the previous sections, we discussed how to select the informative genes that could be 

used in regular classifiers for MTSO data and how to use these genes in MTSO classifiers. 

The ET-Ranking system gives us a new metric on ranking time series and extends the 

targets of gene ranking algorithm from single time point microarray data to the MTSO. 

Our experiments from the previous section show that the informative genes obtained by 

ranking time series work quite accurately and reliably for MTSO classification.  
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However, MTSO classification is not the sole usage of ET-Ranking system. ET Ranking 

results can be interpreted in different ways and can be effective under various situations. 

Moreover, changing or adding parameters can make it more applicable for certain 

applications. One such possible application is called fragment classification. 

 

Fragment classification is a non-regular classification problem. The basic idea is how to 

classify a partial MTSO data. We are especially interested in the situation where the time 

value of some data is missing. To solve this problem, we need to find ways to spot time 

insensitive and robust features so that they can deliver reasonably accurate and reliable 

classification results in different situations. Here, robustness is defined as the capability 

of performing classification without failure under a wide range of condition. 

 

Our approach involves the following steps. Based on time series data, we first group 

features that have consistency as their common characteristics and we call this group of 

features the robust feature sets. We will discuss fragment classification using these robust 

features in the next section. 

 

Before giving the details of feature selection, let us use microarray time series data as an 

example to explain why it is possible to find robust features. In microarray time series 

data, different genes respond to certain circumstance changes in different manners. 

 Some genes are early responsive, which means these genes are expressed 

significantly different from normal at the early stage after the exposure but the 

difference diminishes after a certain period. These genes are good feature candidates 
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for fragment classification if the test data is also in the early stage after the exposure, 

but not the other way around. 

 Some genes are late responsive, which means the reactions of these genes to the 

exposure have some latency. They may produce very good accuracy when the testing 

data is from patients who are in the late stage of exposure, but it could be disastrous 

when applied to other patients. 

 Some genes react to these changes in a consistent manner. These genes are the key 

factors in fragment classification. We will focus on these genes’ either rank based or 

value based consistency. Obviously, these genes are not as accurate or sensitive as 

the early responsive genes when used to classify early stage data and they are not as 

good as late responsive genes when dealing with late stage data either. Their 

advantage is the capability to deliver stable results. 

 Some genes are totally irresponsive to these changes. These genes are not helpful in 

fragment classification research. 

 Some genes respond to the exposure in a random way, or should we say, in an 

unpredictable way. These genes are not helpful for fragment classification either. We 

will study these genes in a later section. 

 

6.1.2. Robust Gene Marker Set 

6.1.2.1. Rank Based Robust Gene Marker Set 

In this section, we will introduce methods that help us to identify rank based robust 

feature sets. We use the ranking results from previous ranking systems (GST ranking and 
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ET ranking) and their associated time values as the sole information source and rank 

features according to the consistency level of their ranks. The top features in the ranking 

results will be treated as rank based robust feature sets. The keys of this approach are:  

 We can try to find the features (genes) that are consistently ranked at the top in all 

the available ranking systems. 

 We can try to find a diversified set of features (genes) that are responsive to the toxic 

compound, which, collectively, provide highly reliable predictions at all times. Here, 

by diversify, we mean that we want all available ranking systems to have their own 

representatives in this set. 

The first approach is definitely a solution even though it is not always feasible. If the first 

option does not generate any or enough good feature candidates, we can switch to the 

second option. In the second option, we don’t need these representatives to be the best 

choices from each ranking system because we have to consider their consistency. In fact, 

we only need these features to be reasonably good choices for the classifiers at each 

ranking system. In the second option, a decision tree or voting committee is required. 

 

Gene name Rankt1 Rankt2 Rankt3 Rankt0

7070 1 8116 7380 29 
2510 5696 1 2897 252 
8468 1817 2553 1 12 
6895 1665 3 2 1 
5519 138 109 477 15 

Table 6.1: Rank information of top genes from different rankings 
 

So far, for a time series of τ time points, we have τ+ 1 different gene ranking results: 

one GST for each time point plus one for the time series (ET ranking). The GST rank of 

gene gk at time point ti is represented as Rankti(gk), i∈[1,τ]. For the sake of convenience, 
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the ET rank of gene gk is represented as Rankt0(gk). Table 6.1 gives some ideas on how 

the ranks of certain genes vary from time point to time point. 

 

We have two concerns in rank based robust gene selection algorithms: the best 

performance and the consistency. We need to select those genes that are ranked very high 

in one ranking system and are ranked consistently high in all other ranking systems. We 

design four metrics to screen the candidate gene, gk: 

1. The highest rank of the gene among all ranking systems. This item represents the best 

performance a gene can achieve. (To make things clear, by “highest” genes, we mean 

it has the smallest rank value. For example, 1 is the highest possible rank.) 

))(),...(),(min()(
10 ktktktk gRankgRankgRankgMinRank

τ
= . 

2. The lowest rank of the gene among all ranking systems. This item represents the 

worst performance a gene can have. 

))(),...(),(max()(
10 ktktktk gRankgRankgRankgMaxRank

τ
= . 

3. Rank consistency of the gene. It is defined as the maximal value of the differences 

among the ranks of the gene over different ranking systems. This item represents how 

consistently this gene ranks throughout the whole time series. 

)()()( kkk gMinRankgMaxRankgDiffRank −=  

4. We choose to use the following formula 

)()()( kkk gDiffRankgMinRankgssRBRobustne ×=  

to measure how robust a gene is throughout the whole time series. A gene that has 

small MinRank value and small DiffRank value will be more likely to have small 

RBRobustness value; the genes that have large MinRank values and large DiffRank 
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values are more likely to have large RBRobustness values. We rank all the genes 

according to their RBRobustness values and only the genes on the top are chosen as 

the rank based robust gene markers sets.  

 

Generally speaking, biological researchers are more willing to rely on genes that behave 

in a stable and consistent manner. Such genes allow biologists to make their experiments 

more predictable and to make their theory more persuasive and reliable. The robust gene 

markers tend to have such a quality.  

 

6.1.2.2. Value Based Robust Gene Marker Set 

In this part, we will introduce methods that help us to find value based robust gene 

marker set. We will focus on the expression values and rank genes according to the 

consistency level of their expression values. The top genes in the ranking results will be 

treated as value based robust gene marker set.  

 

The key in finding the value based robust gene marker set is similar to GST ranking 

system: find the features (genes) that are consistently expressed at all available time 

points in each class and are expressed greatly differently between different classes. 

Compared to the algorithm in finding rank based robust gene marker set, the value based 

algorithm is relatively easy.  

 

We will continue to use SNR formula to retrieve the VBRobustness value for each gene g,  
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−
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Here, )(),( 21 gg μμ  and )(),( 21 gg σσ  stand for the mean and standard deviation of 

normalized original expression values of gene g in class 1 and 2 respectively. The 

formula is the same as the one used in the GS method. However, in GS/GST method, 

there is no specific requirement that asks for equal number of training data at each time 

point. In VBRobustness ranking, it will be ideal to have every time point contributes 

equally to the final candidate list. As a result, we will try to have roughly the same 

number of training data at each time point. Otherwise, we may have to assign different 

confidence parameters to their corresponding candidates as a compromise. 

 

After we calculate these VBRobustness values, we rank the genes by using these values. 

Only the genes on the top are chosen as the value based robust gene markers sets.  

 

At this point, we want to briefly introduce an interesting phenomenon called Wildness, 

which we will study later. Both rank based and value based approaches may not be 

always feasible and may not be optimal either. The key idea of these two approaches is to 

find a feature g such that it is highly uniformly ranked/expressed inside each class and its 

values vary greatly between different classes. Problems emerge when such features don’t 

exist, or when the fragment classification performance by using such features is not 

satisfactory. When this problem appears, we must look for alternative solutions. After 

observation, we found that there are genes that are highly uniformly expressed in the 

normal class. However, their values in the exposure class vary greatly and are 

unpredictable. We call this phenomenon “Wildness”. By spotting these wild genes, we 
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can still build satisfactory classifiers. We will discuss how to locate and use these genes 

in later sections. 

 

6.1.3. Experiments and Discussion 

In the first experiment, we rank all the genes according to their RBRobustness values and 

the following table shows the ranking results. 

Robustness 
Ranking Gene name Rankt1 Rankt2 Rankt3 Rankt0

1 1511 93 120 129 3 
2 8600 358 45 15 1 
3 4453 200 366 19 4 
4 2324 57 506 29 2 
5 5519 138 109 477 14 
6 1112 165 427 313 29 
7 223 592 98 85 9 
8 1900 292 86 539 31 
9 4113 118 216 573 26 
10 2223 444 553 64 22 

Table 6.2: Example top genes from rank based robustness ranking 
 

From table 6.2, we notice that the rank based robustness ranking results are relatively 

similar to the ET ranking results.  

 

In the second experiment, we rank all the genes according to their VBRobustness values 

and table 6.3 shows the ranking results. 

 
It is not a surprise to see that some genes, such as 1511, 8600 and 2324, appear on the top 

of both ranking systems. These genes are highly uniformly expressed in both classes, and 

consequently, they have high ranks in the value based robustness ranking system. Also, 
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because they are highly uniformly expressed in both classes, they are highly uniformly 

expressed at every time point as well; so they have high ranks in the rank based 

robustness ranking system as well. There is no doubt that such genes are going to fit very 

well in the fragment classification that we are going to introduce in the next section. 

Robustness 
Ranking Gene name VBRobustness value 

1 1511 2.08071 
2 8600 1.75879 
3 6717 1.74582 
4 1837 1.73577 
5 1900 1.66149 
6 2057 1.64648 
7 4113 1.63108 
8 2324 1.62978 
9 7345 1.62976 
10 4196 1.61431 

Table 6.3: Example top genes from value based robustness ranking 

 

6.2. Fragment Classification 

In previous sections, we considered how to choose top features from different ranking 

systems for every time point and how to use these features in microarray data 

classification. (We should all understand that every microarray data has a time value. 

This time value is the elapsed time period since the possible exposure. We call it “time 

value” for the purpose of convenience. The time values we have been using are 2, 4, and 

8 hours.) The approaches considered so far are based on the assumption that the time 

value of the test microarray data is known. This assumption allows us to choose the right 

features that correspond to the time value of the test data. However, there are cases where 

the time value of the test data is unknown and cases where the time value of the test data 

 95



does not match that of any training data. This brings difficulties in performing regular 

classification. We call such a classification problem fragment classification. In this 

section, we will define what fragment classification is, discuss why we rely on robust 

features, propose solutions to solve this problem, and finally evaluate the performance of 

our solutions. 

 

6.2.1. Definition and Motivation 

First, let us illustrate our idea using the example of hologram. A hologram is a three-

dimensional image created with photographic projection by recording not just the 

intensity but also the phase information of light. When the hologram is illuminated by 

appropriate light, the entire three dimentional scene can be reconstructed. An interesting 

phenomenon of hologram is: if a laser light beam illuminates only a small part of the 

hologram, the entire image still appears, although it is now less refined and less detailed. 

This means that every portion of the hologram carries information about the entire image. 

It is interesting to compare this with normal photographs, where each portion of film 

contains only a corresponding portion of the whole image. Put simply, if we hold a 

fragment of a hologram, we are still able to make inferences on the entire original image. 

This is where the name of “fragment classification” comes from. 

 

Now, we are going to bring the same concept into classification problems. In regular 

classification, in order to identify the class label, the test data and the training data need 

to have the same standard format, which means the loss of any part of the test data is 

detrimental. However, it is not unusual that only part of the original test data is available 
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and we still want to know the class label of this partial data. Consequently, this problem 

cannot be handled by regular classification approaches. Here, we name this problem as 

fragment classification. 

 

Fragment classification is a new classification challenge. The training procedure is 

approximately the same as the MTSO classification method. However, the test data is 

only a fragment of the MTSO matrix. We expect to be able to draw the same 

classification conclusion as if we were using the entire MTSO data. The size of the 

fragment can vary from a single column to several columns of the whole data matrix. 

Apparently, the smaller the fragment is, the more difficult the problem is. In our study, 

we use only one column, X(t), as the testing input instead of the whole MTSO, X. Here, t 

is the time value of this array. The time variable can also take any values in a range even 

though they are not present in the training data. For example, the time values in the 

training microarray data set may be limited at 2, 4, 8 hour time points, but the time values 

of the test data can be 1, 3, 5, 7 etc hours.  

 

The fragment classification approach can be used in various complicated applications. 

For example: to test the impact or existence of a toxic, microarray data is obtained from a 

living tissue under treatment. If we know the exact time when this tissue was treated or 

exposed, by using the earlier described microarray classification approach, we will be 

able to conclude if this tissue has been exposed to a toxic compound, and even classify 

which toxic has this tissue been exposed to. However, the situation is different if the time 

value of such a microarray is uncertain and this is quite likely to be true when detecting 
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toxics in the battlefield. In other words, under circumstances that the possible exposure 

time is unknown or missing, it is hard to use previously discovered gene markers because 

of the time uncertainty.  

 

After revisiting figure 4.3, it is obvious that classification performance suffers without 

using robust features when the test data’s time value is different from the training data’s. 

To produce more accurate classification results in fragment classification, finding the 

appropriate gene(s) for the fragment classifiers is crucial. In the next section, we will use 

the robust features to solve this problem. 

 

6.2.2. Classification Method 

The classification procedure is the same as the method we described in Chapter 5. 

However, experiments show that classification using single robust gene is generally not 

sufficient. A committee can be constructed to improve the accuracy requirement. In such 

a committee, each member has a vote and the final classification decision is made 

according to the majority rule.  

 

Because of the natural differences between rank based and value based robust gene 

markers, we have different approaches in constructing committees. 

 

It is relatively simpler to build a classification committee from the value based robust 

gene marker set by picking several top genes from the ranking list. 
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Building a classification committee from the rank based robust gene marker set is more 

complicated because the genes from this rank based ranking system are associated with a 

time value. Therefore, we have two options in choosing committee members: rank based 

or rank/diversity based. 

 Rank based: A gene will not be chosen unless all genes with higher ranks were 

chosen; 

 Rank/diversity based: in this option, we need to consider the diversity of committee 

members as well as their individual performances. That is, a gene will not be chosen 

solely because of its rank level. The advantages of having more diversified members 

include: more robust in implementation, more reliable, and smaller size of committee. 

Here, by diversity, we mean we want all available ranking systems have their own 

representatives in the committee. Increasing diversity inside a committee has been 

adopted extensively to get highly accurate committee classifiers from less accurate 

individual classifiers. 

 

We designed a recursive method to select these committee members. In this method, we 

limit the number of committee members to τ+ 1 and each member is a representative of 

a time value, either one of the τ time points or the whole time series. The method 

consists of the following steps: 

1. We will maintain a list of all gene candidates and a list of current committee members. 

To initialize, let AllGene={g1, g2, …, gn} denote the set of all genes, let 

CommitteeSet={} and CandGeneSet=AllGene-CommitteeSet. 

2. We pick a time value t that does not have a representative in the committee. If there is 
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more than one time value that does not have a representative in the committee, we 

will pick according to the time order (viewing the entire time series as the first in the 

ordering).  

3. We rank the genes in CandGeneSet using the rank for time t. Let gt be the gene 

having the highest rank for time t. We will call gt the representative of time t in the 

committee. Add gt to CommitteeSet and remove gt from CandGeneSet.  

4. Go back to step 2 until all the time values have their representatives in the committee.  

 

6.2.3. Experiments and Discussions 

To examine the effectiveness of robustness ranking algorithm, we designed an 

experiment. In this experiment, 27 microarray data are treated as test data. Both rank 

based and value based robustness ranking results are tested in the classifiers and figure 

6.1 shows the results. 
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Figure 6.1: Ranking system comparison in microarray classification 

 
There are only very limited number of genes that are ranked on the top of robustness 

ranking system and that can deliver a 100% accurate classification results. “Incorrect 
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Rate” in this figure stands for the ratio of misclassifications. The top 400 genes are 

divided into 40 consecutive groups with size of 10. For each group, the sum of wrongly 

classified cases is divided by all the available test cases (270). Clearly, an incorrect rate 

such as 0.5 is not acceptable.  

 

From this experiment, we noticed three facts: 

• As the robustness rank goes lower, the classification results get worse. 

• Very few genes are perfect. We hope the committee approach can produce better 

performance. 

• The average performance of value based robust gene markers is superior than 

rank based robust gene markers. 

 
In order to improve the performance of fragment classification, we organize a committee 

for each robustness ranking system. 

• For the value based robust gene marker set: genes 1511, 8600, 6717, and 1837 are 

chosen as the committee members simply because they are the top genes in this 

value based robustness ranking system. Then, we perform fragment classification 

by using this committee and the majority rule is applied. Experimentation shows 

that all 27 test microarray data are classified correctly. 

 
• For the rank based robust gene marker set: genes 2324, 8600, 4453, and 1511 are 

chosen as the committee members by using the recursive method we introduced 

previously. Then, we do fragment classification by using this committee and the 

majority rule is applied. Experiment shows that all the 27 test microarray data are 
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classified correctly. 

The results show that the two committees all give quite satisfactory classification 

performance. 

 

In our research, you may have noticed that we used only one column of the training data 

as the fragment. In practice, situations can be more complicated such as when more than 

one column is available. For example, two fragments, namely A and B, can be sampled at 

the same or different time from the same tissue. So, A and B may or may not have the 

same time value.  

• If they have the same time values, we can classify them separately and try to 

combine the classification results in different ways, such as majority rule or 

averaging. 

• If they have different time values, it is very likely that the gap between these two 

sampling times is known. We can classify them separately and try to justify these 

two results with the known time gap. 

 

6.3. Wildness and Wild Discriminative 

Genes 

6.3.1. Motivation 

As we discussed in earlier sections, there are genes that are highly uniformly expressed in 

one class (normal class) and vary greatly/unpredictably in the other class (exposure class). 

 102



We call this phenomenon Wildness and these genes Wild genes. Although this 

phenomenon has been known in previous studies such as [32], not enough attention has 

been paid to it. The occurrence of such phenomenon can be attributed to various factors, 

such as: 

• Many cancerous cells are associated with elevated rates of somatic mutation [38]. 

• Some genes which are tightly regulated by certain genes in normal tissues may 

lose this kind of the regulation after the treatment/exposure. 

• Some genes show highly different levels of expression in cancer cells because of 

the existence of multiple hidden subtypes of the cancerous class. (In other words, 

one cancer type may actually be the union of two previously unknown subtypes.) 

Even though one gene is highly consistently expressed inside either subtype, it 

can still be possibly considered as a wild gene overall. 

• There are cases where the cancer cells in one cancer tissue, are actually impure, or 

are composed of two or more different sub-types. 

 

Finding wild genes is helpful in cancer researches by discovering unknown cancer types 

and identifying subtle gene regulations. Because it was not the focus of previous research, 

in this chapter, we will develop a new measurement to capture these wild genes, use these 

genes in classification, and examine the performance in experiments. 

 

6.3.2. Approaches and Applications 

We have mentioned and developed several ranking algorithms in previous sections. But, 
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none of them is appropriate in spotting wild genes because they are designed to pick out 

the genes that are highly uniformly expressed in every class and are highly differentiated 

between different classes. Here, we develop another algorithm in order to find wild genes 

according to their unique characteristics. 

 

In this part, we have three sections. We will first define a formula in order to measure the 

wildness level of each gene. Then we will try to incorporate the top genes from the 

wildness ranking list into applications such as fragment classification. Finally, a 

classification committee will be constructed where we consider the diversity factor. 

 

6.3.2.1. Wildness Ranking 

In order to single out the genes that cause the wildness phenomenon, we need to 

understand certain characteristics of wild genes: 

• Wild genes should be expressed very consistently in normal tissues. Therefore, 

wild genes should have a very small deviation value in normal group. 

• Wild genes should be expressed very inconsistently in exposure tissues. Therefore, 

wild genes should have a relatively large deviation value in exposure group. 

• Because we will consider how wild genes can be utilized in classifiers, we want 

wild genes to be discriminative as well. Therefore, we need the average values of 

these two groups to vary from each other as much as possible.  

 

Therefore, according to the characteristics we revealed above, we define the following 

formula to measure how wild and discriminative a gene is:  
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From this formula, we can see that genes that have large wildness values normally have 

large deviation values in the exposure group (positive), small deviation values in the 

normal group (negative), and a big difference between the average values of these two 

groups. 

 

Then, we rank all the genes by their Wildness value from high to low. The larger the 

wildness value a gene has, the wilder this gene is.  

 

6.3.2.2. Classification Using Wild Genes 

After the top genes are selected according to the wildness value, we will try to use them 

in fragment classification. Here, we will introduce a simple classification approach using 

wildness ranking information and deviation value. This method is an alternative approach 

to the one using robust genes. 

 

The following figures show our ranking and classification strategy. 
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Figure 6.2: The idea of wild genes and classification 

a: Gene selections preference in previous ranking methods 
b, c, d: Gene selections preference in wildness ranking methods 

 
In figure 6.2, the solid circles stand for samples from the negative class and the open 

circles stand for samples from the positive group. Figure 6.2.a shows what kind of genes 

we prefer in previous ranking methods: small variance for each group and far from each 

other. Figures 6.2.b, c, and d show our strategy in finding wild genes: small variances in 

the negative group and big variances in the positive group. The distance between the two 

groups is not as important as before. Apparently, Figure 6.2.d is the worst case in this 

example because of the overlap between the two groups. 
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The key idea of this approach is that when given a gene with great wildness value, it 

normally has a quite small standard deviation in the normal class. Our classification 

criteria is that when given a test microarray, if the expression value of the wild gene falls 

into certain narrow range around the average value of this gene in the normal group, e.g. 

=NegRange  [ )()( gDeviationKgAverage NN ×− , )()( gDeviationKgAverage NN ×+ ], 

it is quite likely that this test tissue is normal. Otherwise, it is quite likely that the test 

tissue is an exposed tissue. Here, the width of NegRange is )(2 gDeviationK N×× . K is a 

parameter that determines the width of NegRange and its value has a great impact on the 

classification results.  

 

The performance of the classification is very sensitive to the value of K. To find the most 

appropriate value, two factors have to be considered: accuracy and the possibilities of 

false positive/negative. Theoretically speaking, if the control group data set is normally 

distributed, according to the empirical rule, setting K=2 or 3 should deliver the most 

accurate results. However, K has to be adjusted for false negative and false positive cases. 

• False positive: A sample that is negative and is classified falsely as a positive 

sample. 

• False negative: A sample that is positive and is classified falsely as a negative 

sample. 

Intuitively speaking, because the gene is wildly expressed in the positive group, the wider 

NegRange is, the more likely the value falls into the NegRange. When the width of 

NegRange is too big, some samples (including cancer samples) will be misclassified as 

negatives (false negative). If the width of NegRange is too small, some samples, 

 107



including healthy samples, will be misclassified as positives (false positive). As a result, 

we cannot simply choose K=2 or 3. If we do, the possibilities of false negatives may be 

much higher than the possibilities of false positives. Normally speaking, this situation 

should be avoided because the price of false negatives and false positives can be different. 

For example, in cancer diagnoses, the price of false positives is much higher than that of 

false negatives. So, the best value of K is application dependant. Here, we only discuss 

how to experimentally determine the value of K if we want to find a NegRange such that 

misclassification possibilities are balanced for either group. Our experiments show that 

K=1.2 or 1.5 is better.  

 

Also, we noticed that the number of wild genes in the ranking list that can be used in the 

classifiers is quite limited because if a gene’s deviation is too large, the NegRange may 

become so wide that the classifiers won’t make any sense at all. 

 

6.3.2.3. Diversified Committee 

It is quite obvious that the classification performance when using wild genes will not be 

as good as using robust genes. The reason is: since the expression values of tissues from 

exposure group are highly diversified, some may fall into the NegRange. However, it 

does not stop the wildness approach from being an alternative choice when robust genes 

are not available. The accuracy problem can be solved by constructing a committee. 

More importantly, the wildness concept can be of significant interest to the biological 

scientists. 
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It has been widely agreed (such as [6], [13], [45]) that to make the classification more 

accurate and powerful, committee members have to be organized in a diversified manner. 

Diversity measures have not been systematically studied until [35]. In [35], two methods 

are mentioned and ten measures are studied to measure how diversified the committee 

members are. 

 

In our research, wildness is a new concept and wild genes are chosen according to the 

formula we put forward in earlier sections. But, wild genes are different from each other 

in that some wild genes can be randomly expressed or they may have a relationship such 

as regulation. As a result, having two genes that are closely related in the same committee 

should be avoided for two reasons: eliminate repeated votes and achieve better parsimony. 

 

Because the number of committee members is limited, we will use the pair-wise approach 

mentioned in [35] to study the diversity of the committee. As to the measures, we will try 

to use two measures according to the following table: 

 Dk correct (1) Dk wrong (0) 
Di correct (1) N11 N10

Di wrong (0) N01 N00

Table 6.4: Top genes from ranking results by using wildness value 
 

Here, Di and Dk are two different classifiers. N11 stands for the number of test cases that 

are correctly classified by both Di and Dk; N01 stands for the number of test cases that are 

correctly classified by Dk but not Di; N10 stands for the number of test cases that are 

correctly classified by Di but not Dk.; N00 stands for the number of test cases that are 

incorrectly classified by both Dk and Di.  
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 The Q statistics was introduced in [56] and implemented in [35], [46], and [25]. The 

Q value for these two classifiers is defined as  

10010011

10010011

, NNNN
NNNNQ ki +

−
=

 

From the formula, we can easily see that the Q value should be between -1 and 1. If 

the two classifiers are totally independent, the expected value of Q should be 0. If 

the two classifiers tend to give the same classification results, the Q value tends to 

be positive. Otherwise, the Q value tends to be negative. We will use the Q value to 

determine how different the two classifiers are and how diversified the 

classification committee members are. 

 However, our experiments show that the formula is not designed perfectly (we will 

explain this claim in the experiments). We alternatively used another measure 

called disagreement measure which was studied in [25] and [46]. The measure is 

given as: 

10010011

1001

, NNNN
NNDis ki +++

+
=  

From this formula, we see that the Dis value varies between 0 and 1. It tends to be 

closer to zero if the two classifiers are similar in classification results and tends to 

be closer to 1 if the two classifiers have less agreement in classification. After the 

comparison in our experiments, we will use this value to examine how similar two 

classifiers are in terms of classification results and try to diversify the committee 

members based on this measurement. 
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6.3.3. Experiments and Discussion 

6.3.3.1. Wildness 

The following two tables show us the top 10 and bottom 10 wild genes from the ranking 

results ordered by Wildness value. The standard deviation values for both control class 

and exposure class are shown as well.  

Wildness 
Ranking 

 Gene 
name DeviationN DeviationP AverageN AverageP Wildness 

1 6491 0.0097 0.2866 0.0123 0.2969 8.401 
2 1624 0.0200 0.3562 0.0278 0.3436 5.624 
3 637 0.0141 0.2732 0.0212 0.2762 4.918 
4 2803 0.0181 0.2833 0.0301 0.2701 3.753 
5 7447 0.0313 0.4147 0.0525 0.3272 3.637 
6 6315 0.0201 0.3074 0.0399 0.2752 3.590 
7 8526 0.0303 0.3880 0.0405 0.2895 3.181 
8 2022 0.0280 0.3731 0.0253 0.2511 3.006 
9 7070 0.0469 0.4683 0.0407 0.3247 2.831 
10 5080 0.0283 0.3627 0.0519 0.2694 2.784 

Table 6.5: Top genes from ranking results by using wildness value 
 

Wildness 
Ranking 

Gene 
name DeviationN DeviationP AverageN AverageP Wildness 

8795 8794 0.2684 0.1797 0.3295 0.3294 0.0000 
8796 6261 0.3084 0.2677 0.2834 0.2834 0.0000 
8797 4078 0.3108 0.1946 0.2749 0.2750 0.0000 
8798 1879 0.2842 0.2360 0.4339 0.4339 0.0000 
8799 8539 0.2601 0.2661 0.3684 0.3684 0.0000 

Table 6.6: Bottom 5 genes from ranking results by using wildness value 
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6.3.3.2. Fragment Classification Using Wild Genes 

Then, another fragment classification experiment is conducted just like previous sections. 

We are using the top genes from the wildness ranking list as the features. According to 

the formula, four different parameters, K=1.0, 1.2, 1.5, and 2.0, are used and each of them 

produced a series in figure 6.3. 
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 Figure 6.3: Ranking system comparison in microarray classification 
 
After studying this figure, we can draw some conclusions: 

• Different values of parameter K lead to different classification accuracy. Curves 

with K =1.5 and K =2.0 deliver similar performance in terms of accuracy. Both of 

them are significantly more accurate than the curve with K =1.2 and 1.0. The 

curve with K =1.0 is the worst among the 4 curves. 

• Both rank based fragment classification and value based fragment classification 

outperformed wildness based fragment classification. 

• These wild genes give very constant performance. 

 

Next, we need to compare the ratio of false positive cases and false negative cases so that 
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we can find the most appropriate value for parameter K. 

K=1.0 K=1.2 K=1.5 K=2.0 Wildness 
Ranking 

Gene 
Name DeviationN

FP FN FP FN FP FN FP FN 

1 6491 0.0097 5 0 4 1 1 2 0 2 
2 1624 0.0200 4 3 2 3 1 5 1 5 
3 637 0.0141 4 0 3 0 2 0 0 0 
4 2803 0.0181 8 2 4 2 2 2 0 2 
5 7447 0.0313 8 4 4 6 0 6 0 8 
6 6315 0.0201 4 3 2 3 2 4 1 5 
7 8526 0.0303 2 8 3 8 1 8 0 8 
8 2022 0.0280 3 8 2 8 2 8 1 8 
9 7070 0.0469 5 8 3 8 2 8 0 8 
10 5080 0.0283 4 4 3 6 2 6 1 8 

Table 6.7: False positives and false negatives in wildness classification 
 
From table 6.7, we can easily see that with the same K value, the ratios between FN (false 

negative) over FP (false positive) are consistently increasing when the deviation value of 

normal group grows. For our dataset, setting K=1.2 or 1.5 may be the best value for the 

top genes in the wildness ranking. 

 

6.3.3.3. Organizing Wild Genes Committee 

Because the number of satisfactory wild genes in classifications is limited and the overall 

performance is dragged down by other genes, we manage a committee using the first 

several genes in the wildness ranking list to enhance the performance. In the next 

experiment, we used the top 5 genes from the wildness ranking list and the classification 

results show that for all the 27 test cases, 25 are correctly classified, 2 are mistakenly 

classified and none are unclassified. 
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We also considered the diversity of the committee in order to make the committee more 

accurate and simplified as well as avoid having too many similar classifiers in terms of 

accuracy. Q statistics and Disagreement statistics are evaluated and compared. Table 6.8 

shows the N values which can be used to calculate the two statistics. 

 

Wild gene 
ranking Gene 1 2 3 4 5 

1 6491 N/A 0, 3, 2, 22 0, 3, 6, 18 2, 1, 2, 22 3, 0, 3, 21 
2 1624 N/A N/A 0, 2, 6, 19 0, 2, 4, 21 0, 2, 6, 19 
3 637 N/A N/A N/A 0, 6, 4, 17 0, 6, 6, 15 
4 2803 N/A N/A N/A N/A 2, 2, 4, 19 
5 7447 N/A N/A N/A N/A N/A 

Table 6.8: Ranking system comparison in microarray classification  
(numbers are listed in the sequence of N00N01N10N11) 

 
Wild gene 

ranking Gene 1 2 3 4 5 

1 6491 N/A -1 -1 0.9130 1 
2 1624 N/A N/A -1 -1 -1 
3 637 N/A N/A N/A -1 -1 
4 2803 N/A N/A N/A N/A 0.6521 
5 7447 N/A N/A N/A N/A N/A 

Table 6.9: Q statistics for pair-wised classifiers 
 

Wild gene 
ranking Gene 1 2 3 4 5 

1 6491 N/A 0.1851 0.3333 0.1111 0.1111 
2 1624 N/A N/A 0.2962 0.2222 0.2962 
3 637 N/A N/A N/A 0.37037 0.4444 
4 2803 N/A N/A N/A N/A 0.2222 
5 7447 N/A N/A N/A N/A N/A 

Table 6.10: Disagreement statistics for pair-wised classifiers 
 

From the Q statistics table above, we can easily see that it has a major flaw. The goal of 

such a formula is to have the Q value close to 1 if the two classifiers tend to give the 

same classification and have the Q value be negative if they tend to disagree with each 
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other. However, according to its formula, once N00 is equal to 0, the Q value will 

definitely be a non-positive number regardless how similar the two classification results 

are. And this is the reason why we want to try the Disagreement statistics formula. 

 
From the Disagreement statistics table above, it is obvious that 6491 and 2803, 6491 and 

7447 are fairly similar in classification results. So, we will remove gene 7447 from the 

committee. As a result, there are only four members in the committee and the 

classification is redone. Results show that 25 are correctly classified, none are mistakenly 

classified and 2 are unclassified. The results are better than before and the number of 

committee members has been decreased. 

 

6.4. Time Recovery 

6.4.1.  Motivation 

In previous sections, we discussed how to select the time-insensitive informative genes 

and wild genes and how to use them in fragment classifiers to determine the class label of 

the test samples without time value.  

 

Time recovery is considered as the further development of the fragment classification. In 

this section, we introduce an algorithm to discover the time characteristic of a fragment 

MTSO by using interpolation after predicting its positive class label. To be more specific, 

when given a microarray, X(t), if it is from the cancerous group, we use interpolation 

method to predict its time value, t. Here again, the time value, t, can be any value in a 
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certain range. At the end, experiments are conducted to examine the performance of our 

algorithm. 

 

6.4.2. Approach 

Interpolation is a method that can be used to make predictions within the range of the 

dependant variable from the sample data so that a model can be generated. The formal 

definition of interpolation is: 

Given a set of n pairs (Xk, Yk) of numbers, we need to define a function, f, so that 

. Such a function, f, is called the interpolation function. 

Interpolation functions have many different kinds, such as linear interpolation, 

polynomial interpolation, spline interpolation … 

nkXfY kk ,...,2,1),( ==

 

We choose linear regression to solve this time recovery problem. Linear regression is 

called "linear" because the relationship of the response to the explanatory variables is 

assumed to be a linear function. The reason we choose linear regression is that we want 

our approximation curve to be a monotonic function to ensure that each gene expression 

value gives exactly one time point in the estimation results. A monotonic function is a 

function that the dependent value (expression value) increases or decreases along with 

independent value (time) throughout the time series. Otherwise, when given one 

dependent value, there might be multiple time points that correspond to it, which leads to 

ambiguity. 
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We have to find the most appropriate genes for the interpolation. These genes need to 

have the following characteristics: 

 Gradually: we want the expression values of such a gene to change smoothly 

throughout the time series (or differentiable, no sudden jumps). 

 Constantly: we want the expression values of such a gene to change at some 

constant rate throughout the entire time series. 

 Significantly: we want the expression values of such a gene to change at a high 

rate throughout the whole time series so that it can be more error resistant when 

used for interpolation. 

 

In order to find these appropriate genes, several steps must be followed: 

1. For a given set of microarray data from exposure group, we perform linear regression 

according to their time and expression values. The standard notation of linear 

regression for the MTSO data is: when given a time series for gene, gk, the data are 

pairs of an independent variable (time t), and a dependent variable (expression value, 

X), . To achieve the LSE (Least Square Error), which is 

defined as ∑ , the fitted line is written as: 

),...2,1:)),(,(( nitgXt iki =

=

−
n

i
ikik tgXtgX

1
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Here,  is the predicted value obtained by using the equation. The regression 

equation is listed below: 

),(ˆ
ik tgX
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Here, t  and ),( tgX k  stand for the mean values,  stands for the slope, and 

 stands for the intercept. 
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2. We use the following formula to calculate the interpolation score (IPScore) for each 

gene, gk.  

)(
)(

)( 2

k

k
k gMSE

gb
gIPScore =  

and we prefer genes with large IPScore values. In other words, we want our 

regression model for the selected genes to be steep (big )(2 kgb ) and approximated 

well (small Mean Squared Error, ). )( kgMSE

We rank all the genes according to their IPScore in the order from large to small. 

 

From the IPScore ranking results, we choose the top genes so that we can evaluate the 

time value for the given test microarray data using the following formula: 

)(
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k
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We must emphasize that the interpolation results should have a limited effective range. In 

our experiments, all our original data is from 1 to 8 hours. The interpolation results at 10 

hours should be voided. 
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In certain applications, especially when a single feature is not accurate enough, several 

genes can be selected according to IPScore ranking results. In such a committee, each 

gene is used to give an estimation and the average value can be calculated as the final 

prediction value. 

 

6.4.3. Experiments and Discussion 

The following table shows the IPScore ranking list for the exposure group. 

IPScore 
Ranking Gene name b2 b1 IPScore 

1 3686 0.1128 -0.0181 0.4973 
2 5079 0.1119 -0.0226 0.4502 
3 6669 -0.1050 0.9285 0.4433 
4 7897 0.1142 -0.0582 0.4384 
5 7171 0.1222 -0.0801 0.4378 
6 7009 0.1237 -0.1102 0.4370 
7 2028 0.1218 -0.1218 0.4357 
8 1458 0.1242 -0.0447 0.4175 
9 248 0.1156 -0.0254 0.4109 
10 591 0.1218 -0.0965 0.4089 

Table 6.11: Exposure group IPScore ranking list 
 
Using the genes from table 6.11, we are able to interpolate the time value for a given 

microarray. The next table shows the interpolation results. 

 
From table 6.12, we find out that the interpolation values are somehow close to the actual 

value, which means the interpolation algorithm works as we hoped even though 

improvements on accuracy are necessary. 

 

To improve the performance, we choose first 3 genes from top of the ranking list and 

calculate the average prediction value of each interpolation results as the final estimation. 
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The results from the experiment are shown in following table. Improvements can be 

observed and further improvements can be done by removing outliers. 

Expression value Actual time value Interpolation result 
0.155 1 1.540 
0.076 1 0.841 
0.148 1 1.479 
0.097 1 1.024 
0.320 4 2.996 
0.477 4 4.394 
0.396 4 3.674 
0.364 4 3.384 
0.791 8 7.172 
0.920 8 8.316 
0.902 8 8.156 
1.000 8 9.018 

Table 6.12: Example interpolation when using gene 3686 
 

Actual 
time value 

Interpolation 
using 3686 

Interpolation 
using 5079 

Interpolation 
using 6669 Average 

1 1.540 0.202 0.390 0.710 
1 0.841 0.851 0.452 0.714 
1 1.479 1.068 0.821 1.122 
1 1.024 1.502 1.344 1.290 
4 2.996 3.825 4.752 3.857 
4 4.394 3.586 4.229 4.069 
4 3.674 4.717 4.786 4.392 
4 3.384 4.529 4.984 4.299 
8 7.172 6.984 7.631 7.262 
8 8.316 7.243 8.141 7.900 
8 8.156 9.137 7.973 8.422 
8 9.018 8.352 7.074 8.148 

Table 6.13: Example interpolation when using gene 3686, 5079, and 6669. 
 

 120



7. CONTRIBUTIONS AND FURURE 

WORK 

In this chapter, we will first conclude this dissertation by summarizing our contributions 

and then identify several possible future research directions for MTSO data analysis 

together with some preliminary work.  

 

7.1. Contributions 

MTSO data analysis is a relatively new research topic and the importance has not been 

fully recognized. Current practice shows the need of a systematic analyzing approach. In 

this dissertation, we developed several approaches to meet the classification needs. We 

used microarray data throughout our research. 

 

The main opportunities and challenges associated with the MTSO data include: (i) each 

feature (gene) is associated with a time series, and (ii) there are many features to consider. 

How to identify and take advantages of these unique characteristics of time series is the 

focus of our research. 

 

• GST Ranking and microarray classification: We started by studying a previous 

feature selection method called GS ranking algorithm for bi-class data without 

time. After pointing out that these features are time dependant, we used the GST 
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method to rank genes within a single time point and we studied the performance 

of microarray classification using this method for feature selection. Our 

experiments show that the performance is quite satisfactory if the test data and 

sampling data are from the same time domain. However, the performance is not 

acceptable in the cross time domain scenario, which implies that the ranking 

results are time sensitive. 

• ET Ranking and MTSO classification: We extended the GST method to utilize 

information extracted from entire time series and use top genes from ET ranking 

results in MTSO classification. Our experiments show that ET ranking results are 

quite accurate in MTSO classification. Experiments also show that GST ranking 

results are helpful in MTSO classification even they are not as superior as ET 

ranking results. 

• Robustness and fragment classification: Fragment classification is a new 

classification challenge. In fragment classification, the test data is just a partial 

MTSO data instead of the whole. Also the time value of such a fragment data is 

missing. Our approach to solve such an issue is to find time insensitive features 

and use these robust genes in classification. We developed two different ranking 

systems either based on values or rankings. At the same time, in order to improve 

the classification accuracy, we organized decision committee in a diversified 

manner. 

• Wildness and fragment classification: We noticed that some genes are very 

uniformly expressed in one class and are highly diversified in the other class. We 

call these features wild genes. In addition, metrics are designed to filter out wild 
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genes and used them as an alternative approach to robustness in fragment 

classification.  

• Time recovery: As a natural extension of fragment classification, we use 

interpolation approach to estimate the time value of the partial data. Committees 

are organized to improve the prediction accuracy. 

 

7.2. Discussions and Future Work 

We will end this dissertation by pointing out several possible new research directions. 

7.2.1.  GST Ranking Changing Pattern 

We know that gene expression values change from time to time. Biological scientists 

such as [24], [7], and [43] believe that the identification of genes with certain value 

change patterns is useful. [7] and [43] mainly focused on the identification of immediate-

early responsive gene changes. But, authors in [24] pointed out the fact that late 

responsive genes, such as genes that are ultimately responsible for long-term changes, are 

just as important as others. They gave an example that induction of immediate-early 

genes in response to neuronal activity is responsible for setting the stage for long term 

changes in synaptic function. Their studies focused on the gene expression value changes 

in different stages. They used the MTSO data to recognize genes that are: early-response 

genes, late-response genes, constant-response genes, intermediate-response genes, and 

gradual-response genes, etc.  

 

Value change patterns can be easily evaluated based on either z-ratio or fold-ratio [12]. 
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Fold-ratio for the gene expression values is the ratio between controlled and exposed data. 

Here is an example using fold-ratio for late-response genes: during the testing period, if 

the fold-ratio stays around 1 at the early stage and change drastically at the end, we will 

call such genes late-response genes. 

 

But, the fact most researchers have ignored is, according to the GST ranking results in our 

experiments, not just the expression values, the ranks of a gene change from time to time 

as well. For a given gene, at some time points, the ranks can be very high which means it 

could be an informative gene that is highly correlated with its class; but, at some time 

points, the ranks could be really low which means it is not closely correlated with the 

class label. So, we naturally come up with a new idea: by using the gene ranking 

information, associate certain genes with time values: 

• Immediate-early-stage discriminate genes. These genes are only suitable for 

classifying microarray data that are collected immediately or shortly after the 

exposure. In our example, gene 5 is a good candidate. At time point 1, it is ranked 

as number 1. After a while, it is ranked as number 7. In our experiments, gene 

7070 is one of such genes. 

• Intermediate-stage discriminate genes. These genes are suitable for classifying 

microarray data that are collected in the middle of the experiments after the 

exposure. In our example, gene 6 is a good candidate. At time point 2, it is ranked 

as number 1. It is ranked as number 7 at other time points. In our experiments, 

gene 2510 is one of such genes. 

• Late-stage discriminate genes. These genes are only suitable for classifying 
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microarray data that is collected long after the exposure. In our example, gene 7 is 

a good candidate. At time point 1 and 2, it is ranked quite low. But, at the end of 

the experiment, it is ranked as top 1. In our experiments, gene 8468 is one of such 

genes. 

• All-stage discriminate genes. These genes are suitable for classifying microarray 

data that is collected any time after the exposure. In our example, gene 2 and gene 

4 belong to this group. Even though neither of them is ranked at the top at any 

time points, they are ranked pretty high at every time points. In our experiments, 

gene 5519 is one of such genes. 

For some genes, the value changes and the rank changes may have the same pattern. But, 

for most genes, it may not to be true. Recognizing these genes could be helpful in further 

revealing the genes’ working mechanism after exposure. 

 

7.2.2. Multi-Class Classification 

After the algorithms for bi-class classification are developed, the natural idea for the next 

step is: is it possible to adapt it for multi-class classification? The research topic is like: 

training data is obtained by treating each tissue with only one toxin, and testing data is 

obtained similarly. However, there is more than one toxin possibility. We need to 

determine whether a tissue is contaminated and by which toxin if the classification result 

is positive.  

 

Problem definition: There are n types of cancers that are to be examined, which means 

this is a n+1 classes classification problem: n cancer groups and 1 normal group. When 
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given a sample, we need to identify its class label. 

 

We designed the following approach. Because we do not have any appropriate dataset, it 

only represents some naïve thoughts that need to be further developed and examined. 

1. For each cancer class, k, we pair it with the normal class and form a bi-class 

classification problem. 

2. We extract the robust gene marker candidate sets from the bi-class classification. 

As a result, we have n robust gene marker candidate sets that each one is 

associated with a cancer group. The difference between robust gene marker 

candidate sets and robust gene marker sets we mentioned in the previous section 

is the size. The robust gene marker candidate sets have more genes at every time 

point than before. 

3. Diversify the included genes from each robust gene marker candidate sets. Try to 

eliminate the multiple occurrences for the same gene in different sets. We call the 

results set for class k as Character Gene Sets (CGSk), and associate the average 

values of these genes in class k as Character Value Sets (CVSk). The number of 

genes in class k’s Character Gene Sets can be written as SS(k). For a gene in the 

k’s Character Gene Sets CGSk(i), the average value is expressed as CVSk(i). 

4. For a given sample, we determine its class label according to its gene expression 

values. 

a. We match the new sample to the existing CGSes. Because we have n 

CGSes, we need to match n times. The matching procedure uses Euclid 

distance, and gives confidence value as the result. GV(CGSk(i)) is the 
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expression value of gene CGSk(i) in the test sample.  
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b. We compare the confidence levels among the n matching results. If the 

comparison with Character Gene Sets k gives the highest confidence value 

and it is above a certain threshold, we label the given sample as class k. 

Otherwise, we assign it as a normal sample. 

 

7.2.3.  Other Possible Topics 

There are several other research topics that remain open: 

 Training data is obtained by treating each tissue with one toxin or several toxins, 

and testing data is obtained similarly. The problem is to determine whether a test 

tissue is contaminated and by which toxins if the classification result is positive.  

 Training data obtained by treating each tissue with one toxin, and testing data 

obtained by treating each tissue with one toxin or several toxins. The problem is 

to determine whether a test tissue is contaminated and by which toxins if the 

classification result is positive.  
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