
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2007

Role-Based Access Control for the Open Grid Services Role-Based Access Control for the Open Grid Services

Architecture - Data Access and Integration (OGSA-DAI) Architecture - Data Access and Integration (OGSA-DAI)

Anil L. Pereira
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Pereira, Anil L., "Role-Based Access Control for the Open Grid Services Architecture - Data Access and
Integration (OGSA-DAI)" (2007). Browse all Theses and Dissertations. 95.
https://corescholar.libraries.wright.edu/etd_all/95

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/80834383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/95?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

ROLE-BASED ACCESS CONTROL FOR THE OPEN GRID SERVICES

ARCHITECTURE - DATA ACCESS AND INTEGRATION (OGSA-DAI)

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

By

ANIL L. PEREIRA
M.S., Wright State University, 2002

B.E., Bombay University, 1999

2007
Wright State University

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

April, 4, 2007

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED
UNDER MY SUPERVISION BY Anil L. Pereira ENTITLED Role-based Access
Control for the Open Grid Services Architecture - Data Access and Integration
(OGSA-DAI) BE ACCEPTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.

 Soon M. Chung, Ph.D.
 Dissertation Director

 Thomas Sudkamp, Ph.D.
 Ph.D. Program Director of
 Computer Science and Engineering

 Joseph F. Thomas, Jr., Ph.D.
 Dean, School of Graduate Studies

Committee on
Final Examination

Soon M. Chung, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Natsuhiko Futamura, Ph.D.

Henry Chen, Ph.D.

Chansu Yu, Ph.D.

iii

ABSTRACT

Pereira, Anil L. Ph.D., Department of Computer Science and Engineering, Wright State
University, 2007. Role-based Access Control for Grid Data Resources in the Open Grid
Services Architecture - Data Access and Integration (OGSA-DAI).

Grid has emerged recently as an integration infrastructure for the sharing and

coordinated use of diverse resources in dynamic, distributed virtual organizations (VOs).

A Data Grid is an architecture for the access, exchange, and sharing of data in the Grid

environment. In this dissertation, role-based access control (RBAC) systems for

heterogeneous data resources in Data Grid systems are proposed. The Open Grid Services

Architecture - Data Access and Integration (OGSA-DAI) is a widely used framework for

the integration of heterogeneous data resources in Grid systems.

However, in the OGSA-DAI system, access control causes substantial

administration overhead for resource providers in VOs because each of them has to

manage the authorization information for individual Grid users. Its identity-based access

control mechanisms are severely inefficient and too complicated to manage because the

direct mapping between users and privileges is transitory. To solve this problem, (1) the

Community Authorization Service (CAS), provided by the Globus toolkit, and (2) the

Shibboleth, an attribute authorization service, are used to support RBAC in the OGSA-

DAI system. The Globus Toolkit is widely used software for building Grid systems.

Access control policies need to be specified and managed across multiple VOs. For

this purpose, the Core and Hierarchical RBAC profile of the eXtensible Access Control

iv

Markup Language (XACML) is used; and for distributed administration of those policies,

the Object, Metadata and Artifacts Registry (OMAR) is used. OMAR is based on the e-

business eXtensible Markup Language (ebXML) registry specifications developed to

achieve interoperable registries and repositories.

The RBAC systems allow quick and easy deployments, privacy protection, and the

centralized and distributed management of privileges. They support scalable,

interoperable and fine-grain access control services; dynamic delegation of rights; and

user-role assignments. They also reduce the administration overheads for resource

providers because they need to maintain only the mapping information from VO roles to

local database roles. Resource providers maintain the ultimate authority over their

resources. Moreover, unnecessary mapping and connections can be avoided by denying

invalid requests at the VO level. Performance analysis shows that our RBAC systems add

only a small overhead to the existing security infrastructure of OGSA-DAI.

v

TABLE OF CONTENTS

1 Introduction ..1

1.1 Data Grid ...1

1.2 Motivation..2

1.3 Contribution...4

1.4 Outline of Dissertation ...7

2 Background...8

2.1 Existing Middleware for Data Grids ...8

2.1.1 Globus Toolkit ...8

2.1.2 Open Grid Services Architecture � Data Access and Integration

(OGSA-DAI) ...9

2.2 Issues for Access Control in Grids..11

2.3 Need for Role-Based Access Control for Grid Data Resources14

2.4 Drawbacks of the Access Control Mechanisms in OGSA-DAI17

2.5 Incorporation of Existing Authorization Services in Data Grids....................18

2.5.1 Community Authorization Service (CAS)19

2.5.2 Shibboleth and GridShib ..22

2.6 Concepts and Foundation for our Research Topics23

2.6.1 Enforcement of VO Policies...25

2.6.2 Distributing VO Policies among Resource Providers......................27

3 RBAC with CAS in the OGSA-DAI System ..29

vi

3.1 OGSA-DAI Services ..31

3.2 Drawbacks of the Existing Approach for RBAC with CAS...........................32

3.3 Our Proposed System for RBAC Using CAS..37

3.3.1 Specifying Privileges and Timing Constraints on VO Roles...........39

3.3.2 Specifying Role Hierarchies...40

3.3.3 Authorization Decision Statement in the CAS credential................43

3.4 Implementation Details ..44

3.5 Performance Analysis...50

3.5.1 Profiling Details...51

3.5.2 Client-Side Security...52

3.5.3 Server-Side Security ..55

4 RBAC with Shibboleth in the OGSA-DAI System ..58

4.1 Architecture of the RBAC System Using Shibboleth60

4.2 Managing VO Policies Using XACML and OMAR63

4.2.1 eXtensible Access Control Markup Language (XACML)63

4.2.2 Specifying VO Policies Using XACML...64

4.2.3 Object, Metadata and Artifacts Registry (OMAR)..........................68

4.2.4 Managing the RBAC Policies in XACML Using OMAR...............69

4.2.5 User-Role Assignments..72

4.2.6 Administration of RBAC Policies and Dynamic Delegation of Rights

with OMAR...75

4.3 Performance Analysis...77

4.3.1 Profiling Details...78

vii

4.3.2 Client-Side Security...79

4.3.3 Server-Side Security ..81

5 Conclusions ...85

References ..87

viii

LIST OF FIGURES

2.1 Mapping VO Roles to Local Roles�������������������..25

2.2 Distributing VO Policy among the Resource Providers�����������..28

3.1 Accessing a Data Resource through OGSA-DAI��������������32

3.2 userGroup1 with a Role Alpha/programmer and Read Access to
ftp://local host/tmp/fileA.txt����������������������35

3.3 userGroup2 with a Role Alpha/supervisor and Read Access to
 ftp://local host/tmp/fileA.txt����������������������35

3.4 Distributing VO Policies to the Resource Providers�������������36

3.5 An Example of Limited Role Hierarchy�����������������..40

3.6 An Example of General Role Hierarchy�����������������..41

3.7 Limited Inheritance�������������������������..42

3.8 SAML Authorization Decision Statement Issued by CAS����������..44

3.9 Modified Role-map file������������������������45

3.10 User�s Normal Proxy Credential and CAS Proxy Credential Creation�����.46

3.11 Accessing a Data Resource through OGSA-DAI Using a CAS Credential���..47

3.12 User Session Accessing a GDS Using CAS���������������..48

3.13 Client-Side Security������������������������...53

3.14 Obtaining Service Data and Query Execution��������������...53

3.15 Server-Side Security������������������������..54

3.16 Security Overheads on the Server-side�����������������..54

3.17 Mapping and Database Connection������������������...55

ix

4.1 Accessing a Data Resource Using GridShib and Shibboleth���������...60

4.2 RPS of the employee role�����������������������65

4.3 PPS of the employee role�����������������������.67

4.4 PPS of the Manager role�����������������������..68

4.5 A part of the employee RPS in XACML and corresponding storage in OMAR��.70

4.6 A part of the employee PPS in XACML and corresponding storage in OMAR��.71

4.7 Policy objects of the employee role and their associations stored in OMAR���..73

4.8 Details of the PPS:employee:role object in Figure 4.6 as stored in OMAR.���...73

4.9 Client-Side Security�������������������������.80

4.10 Server-Side Security������������������������..82

4.11 Database Connection������������������������.82

4.12 Retrieval of Security Context���������������������.83

1

Chapter 1

Introduction

1.1 Data Grid

Grid has emerged recently as an integration infrastructure for the sharing and

coordinated use of diverse resources in dynamic, distributed virtual organizations (VOs).

A Data Grid is an architecture for the access, exchange, and sharing of data in the Grid

environment. It provides a distributed system middleware that allows different

communities to access and share data, networks, and other resources in a controlled and

secure manner [1]. Data Grids facilitate the management of distributed heterogeneous

data. The burden of managing the operations is removed from the user. The collective

operations required are all managed by the system via a single sign-on and uniform

querying mechanism for the user. The motivation behind such a system is to address the

following considerations [2]: (1) Large data set size, geographic distribution of users and

resources, and computationally intensive analysis results in complex and stringent

performance demands that are not satisfied by any existing data management

infrastructure; (2) No integrating architecture exists that allows us to identify

requirements and components common to different systems and hence apply different

2

technologies in a coordinated fashion to a range of data-intensive large-scale application

domains. Current technology cannot easily handle these scenarios which require the

coordinated sharing of data and resources across multiple organizations. It either does not

accommodate the range of resource types or does not provide the flexibility and control

on sharing relationships [3].

Scientific and Business communities are increasingly collaborating, and this is

giving rise to the need for more sophisticated technologies for data and resource sharing.

Data Grids reduce hardware and software costs by enabling the secure exchange of

programs and data between collaborating organizations. Without a Data Grid, a separate

set of resources are purchased (and managed) in a demilitarized zone (DMZ) behind a

completely separate firewall. By using Data Grid technology, there is no need to build a

separate DMZ [4].

1.2 Motivation

User authorization is one of the most challenging issues in Data Grids. Current

authorization mechanisms cannot address all the issues that arise in dynamic Grid

environments which often encompass multiple organizations, each with its own security

policy [5]. Traditional means of security administration that involves manual editing of

policy databases or issuance of credentials cannot meet the demands of these dynamic

scenarios [6]. There will be a profound impact on the security of distributed systems by

using a Data Grid system. In traditional systems, the focus of security mechanisms has

3

been to protect the system from its users and, in turn, to protect data maintained by the

system on behalf of each user. While such protection remains important for Data Grid

applications, Data Grids introduce the extra requirements of protecting applications and

user data from the systems on which parts of an application will execute [7]. Also,

traditional network security research has focused primarily on two-party client-server

interactions with relatively low performance requirements. Data Grid applications

frequently involve many more entities, impose stringent performance requirements and

involve more complex activities, such as collective operations and the downloading of

code [8].

The typical identity-based authorization used in Grids today is not scalable because

authorization information should be maintained for each user. In role-based access

control (RBAC) [9, 10] permissions are associated with roles, and users are assigned

appropriate roles, thereby acquiring the roles� permissions [11]. Hence, RBAC is quite

scalable since authorization information is associated with roles, not with individual

users. RBAC shows clear advantages over traditional access control models in Grid

environments, because it allows a uniform representation of diverse security policies and

ensures that no security violations occur during inter-domain accesses [5]. None of the

current access control systems in Grids provide comprehensive support for RBAC.

The Data Access and Integration Services Working Group (DAIS-WG) of the

Global Grid Forum (GGF) established standards for Grid interface to data resources [12].

The Open Grid Services Architecture - Data Access and Integration (OGSA-DAI) [13]

4

provides the first implementation for these standards. OGSA-DAI is a middleware

infrastructure for accessing and controlling data sources and sinks. Though OGSA-DAI is

widely used, its access control mechanisms are not scalable and cause substantial

overhead for resource providers in VOs because each of them has to manage a role-map

file containing authorization information for individual Grid users.

The Community Authorization Service (CAS) [14] and the Shibboleth [15] are

authorization services that have several advantages over other authorization services used

in Grids, and they both use the Security Assertion Markup Language (SAML) [16]

standard. None of the other authorization services in Grids use a standard format to

express authorization assertions. CAS records user groups and their permissions on

resources, and it targets access control for computational and file-based storage

resources. CAS is part of the Globus Toolkit [8]. The Globus Toolkit provides a set of

basic services to establish a Grid system and it has a wide support base in the Grid

community. Shibboleth is designed to provide user attributes to requesting resources and

it targets access control for internet based resources. Shibboleth has a wide support base

in the Internet2 community. SAML is used to express authentication and authorization

assertions between different security domains.

1.3 Contribution

In this dissertation two RBAC systems for heterogeneous data resources in Data

Grids are proposed. The first system uses CAS as the main building block. This system is

5

scalable in terms of the number of users and VOs; it can be quickly and easily deployed;

and it provides centralized privilege management and delegation via roles. The second

system uses Shibboleth as its main building block. This system is scalable in terms of the

number of access requests in addition to the number of users and VOs; it is robust as

there is no single point of failure; it supports the distributed management of privileges

and fine-grain attribute release policy; and it provides privacy protection for users, in

addition to dynamic delegation via roles. We also use the Core and Hierarchical RBAC

profile of the eXtensible Access Control Markup Language (XACML) [17] to specify

access control policies for multiple VOs. XACML is a standard of the Organization for

the Advancement of Structured Information Standards (OASIS) for describing access

control policies uniformly across different security domains [18]. The Core and

Hierarchical RBAC profile of XACML defines how the ANSI core and hierarchical

RBAC standard [19] can be specified in XACML. For the distributed storage and

administration of XACML policies, we propose the use of the Object, Metadata and

Artifacts Registry (OMAR) which provides an implementation of the OASIS e-business

eXtensible Markup Language (ebXML) registry specifications. The ebXML registry

specifications are developed to achieve interoperable registries and repositories with an

interface that enables submission, query and retrieval. The main contributions of this

dissertation are outlined as follows:

• The RBAC systems will support a wide range of security policies using role-

privileges, role hierarchies, delegations, and constraints. It is shown how the CAS

policy statements and SAML assertions can be used to support RBAC. The RBAC

profile of XACML has several drawbacks for the access control in Grids. It does not

6

address dynamic delegation of rights and dynamic user-role assignments. They are

supported in our system by using OMAR.

• With the proposed RBAC systems resource providers will have to maintain only the

mapping information from VO roles to local roles and the local policies, thus the

administration overhead is reduced. Furthermore, the resource providers can grant or

refuse the access requests of specific users by maintaining their authorization

information separately. This enables the resource providers to have the ultimate

authority over their resources. Also, unnecessary authentication, mapping and

connections can be avoided by denying invalid requests at the VO level. The access

control systems can provide increased manageability for a large number of users and

reduce day-to-day administration tasks of the resource providers, while they maintain

the ultimate authority over their resources.

• The integration of the systems with OGSA-DAI will bring several advantages (as

noted above) into its authorization infrastructure. Enhancements have been proposed

to the role-map files so that they can also contain mapping information from VO roles

to local database roles, and local policy. This dramatically reduces the number of

entries to be managed in the role-map files and updates to them need to be made far

less frequently. The implementation on the client side has been extended to request

and delegate policy assertions. The server-side has been extended to parse the policy

assertions to obtain the VO roles. The server also verifies the capabilities associated

with a VO role against the local policies of the resource provider and maps it to a

local database role. The performance evaluation shows that not much extra time is

required to set up the security contexts between clients and servers.

7

1.4 Outline of Dissertation

The rest of the dissertation is structured as follows: Chapter 2 provides detailed

background in terms of the major components used such as the Globus Toolkit, OGSA-

DAI, CAS and Shibboleth. We discuss the security issues related to these components

and Data Grids in general. We explain the need for RBAC, and provide the required

concepts and foundation for our research. Chapter 3 reviews our work of the RBAC

system for Grid Databases using CAS and includes performance analysis of the system.

Chapter 4 reviews our work of the RBAC system for Grid Databases using Shibboleth

and also includes performance analysis of the system. Chapter 5 has some conclusions.

8

Chapter 2

Background

2.1 Existing Middleware for Data Grids

Distributed data resources can be diverse in their formats, schema, quality, access

mechanisms, ownership, access policies, capabilities, and authentication and

authorization mechanisms. To efficiently manage these, a Data Grid needs technical

solutions and standards for data discovery and access, data exploration and analysis,

resource management, and security [1, 20, 21]. The Globus Toolkit [8] provides a set of

basic services to establish a Grid system. The Open Grid Services Architecture � Data

Access and Integration (OGSA-DAI) [13] is an existing middleware implementation that

is widely used for the integration of heterogeneous data resources in Grid systems.

2.1.1 Globus Toolkit

The basic Grid middleware components provided by the Globus Toolkit are: (1)

Grid Security Infrastructure (GSI): authentication and related security services; (2)

Globus Resource Allocation Manager (GRAM): resource allocation and process

management; (3) Meta Computing Directory Service (MDS): distributed access to the

9

structure and state information of a system; (4) Globus Executable Management (GEM):

construction, caching and location of executables; (5) Global Access to Secondary

Storage (GASS): remote access to data via sequential and parallel interfaces; (6) Nexus:

unicast and multicast communication services; (7) Heart Beat Monitor (HBM):

monitoring of the health and status of system components; and (8) General Purpose

architecture for Reservation and Allocation (GARA): reservation of resources and

monitoring of reservations. In addition to these components, the Globus Toolkit

implements the Open Grid Service Architecture (OGSA). OGSA integrates Grid and

Web services technologies and defines standard interfaces and behaviors for distributed

system integration and management [1]. The toolkit has recently been aligned with the

Web Services Resource Framework (WSRF) [22]. WSRF defines conventions for

managing the state in distributed systems based on Web services. For each of these

components, a C and/or Java Application Programming Interface (API) is available for

developers [23].

2.1.2 Open Grid Services Architecture � Data Access and

Integration (OGSA-DAI)

Grid integrates several communities of resource providers and resource consumers.

This integration can be technically challenging because of the need to achieve various

qualities of service when running on top of different native platforms. The Open Grid

Services Architecture (OGSA) addresses these challenges and defines uniform exposed

service semantics, the Grid Service [24]. Version 3 of the Globus Toolkit and its

10

accompanying Grid Security Infrastructure (GSI) provide the first implementation of

OGSA mechanisms and cast security functions as OGSA services. This version of the

Globus Toolkit also publishes service security policies and specifies standards for

interoperability [7].

Current research in the area of Grid databases is undertaken by Project Spitfire

associated with the European Data Grid [25] and the Open Grid Services Architecture -

Data Access and Integration (OGSA-DAI) [13]. Project Spitfire provides access control

based on authorization tags specified within XML-based query files. These tags are

mapped by a database resource to local roles via a role-database that it maintains. A

drawback of their approach is that the role-database contains the mapping to local

database roles for all Grid users that have access to that database resource. Multiple

entries in multiple role-databases may need to be updated if new Grid users are allowed

to access multiple data resources or if the access privileges of current users change.

The Database Access and Integration Services Working Group (DAIS-WG) of the

Global Grid Forum (GGF) is currently establishing the standards for Grid interface to

data resources [12]. OGSA-DAI is a widely used middleware infrastructure, aligned with

the GGF�s OGSA vision, to facilitate uniform access to data resources using a service-

oriented architecture (SOA) [13]. OGSA-DAI provides activities to access relational,

XML databases, and indexed files, etc. It also provides data translation and third-party

delivery activities [13]. OGSA-DAI enables client applications to submit request

documents in order to perform a set of tasks on a remote data resource.

11

OGSA-DAI provides a set of core activities that implement the basic functionality needed

to interact with a data resource, and it is easy for users to add new activities that operate

within the OGSA-DAI framework [26]. OGSA-DAI users can extend OGSA-DAI web

services to expose their own data resources and to support application-specific

functionality. OGSA-DAI also provides a consistent transactional framework and

facilities to allow developers to add transactional behavior to their activities.

OGSA-DAI has over 1100 registered users and projects which require continuously

available data access and integration services [13]. OGSA-DAI is used by a number of

large projects both within the US and UK to satisfy their data access and integration

requirements. In addition to this, the OGSA-DAI project is working in close collaboration

with other major Grid middleware providers, such as Globus, IBM and the UK Open

Middleware Infrastructure Institute (OMII), to ensure that OGSA-DAI integrates

seamlessly with their products.

2.2 Issues for Access Control in Grids

The overall direction for access control architectures in Grid computing is toward

the need for leveraging IT infrastructure as it emerges. Integration with Web services and

hosting environment technologies introduces opportunities to leverage emerging security

standards and technologies such as the Security Assertion Markup Language (SAML)

[16] and Web Services Security (WSS) [27]. Participating organizations within a Grid

often have significant investment in existing security mechanisms and infrastructure, and

12

Grid services could be built on sophisticated container-based hosting environments such

as J2EE or .Net. Grid security mechanisms should interoperate with, rather than replace,

those mechanisms [6]. Most security functionality should be placed in the hosting

environments, so that application development will be simplified and security

functionality can be upgraded independently of applications [6]. The WSS specifications

address these issues. WSS is a standard mechanism for interoperability and enables the

interaction between different platforms and security models. WSS standard can be used

to transport credentials from a client to a server, such as the ones represented by SAML

attribute assertions [28]. Users need globally defined names that are recognized at all

sites they access. A user�s identity needs to be passed securely and transparently between

sites as jobs progress [29]. Users must be able to access resources dynamically without

any administrator intervention. These resources must be coordinated properly and must

interact securely with other services. Thus, resources must have global identities, and

they should be accessed without violating their local policies.

Significant challenges remain for cross-domain auditing and privacy management

[30]. An audit mechanism can be used to determine whether or not the access control

policies have been administered properly. The audit mechanism is responsible for

producing records which track security related events [31]. And, for this purpose, it is

essential to keep a log of the access requests and the enforced security policies. In

traditional systems, the audit mechanism is local to each server; however, on the Grid,

either the audit mechanism should be distributed or the audit records should be

transmitted to a location where a higher level view of the system can be constructed [32].

13

Standards are required to facilitate the audit and to reconcile different audit trails that are

distributed among different organizations. It is extremely difficult to browse the audit

logs if they are in different formats and in different administrative domains. Also, the

access control mechanism should be able to match the audit entries in different audit logs

and administrative domains.

Auditing also depends on authentication because audit records usually associate

individuals with the actions they have taken, and the identity of the user must be

determined if these entries are to be trusted [32]. The user identity can be used to identify

the user who initiated the request. The request can be logged at the resource along with

the mapping information and the subsequent actions performed. This information can be

used to find patterns that fit the profile of a system intrusion or the activities that do not

fit the profiles of legitimate users [32]. However this information could affect the privacy

of users. For example, by examining the information logged at various sites with respect

to users belonging to a particular research group, it is possible to infer their data access

patterns and thus obtain information about their work. To solve this problem, a user could

be issued a set of pseudonym identities [33] and he/she could access each site with a

different identity in the set. The information that binds the set of pseudo identities to the

user identity should be maintained securely and can be used when security violations

occur.

14

2.3 Need for Role-Based Access Control for Grid Data

Resources

In Grids, both users and resources are dynamic. Furthermore, those users and

resources may belong to multiple organizations with their own diverse security policies

and mechanisms. Participating organizations may have different security models. It is

important for these models to interoperate based on different levels of trust. Trust should

be established not only among users and resources, but also among the resources

themselves so that they can be coordinated. These trust domains can span across multiple

organizations and must adapt dynamically as participants join or leave and resources are

accessed or released [6]. Resource providers must understand and support the

mechanisms and policies that are not strictly under their control.

It is desirable to group users and resources that need to be coordinated towards a

common goal into virtual organizations (VOs). The key requirement is to design access

control mechanisms for these VOs, which can interoperate with existing local security

infrastructures and allow resource providers to have the ultimate control over their

resources. A VO spanning across multiple sites can use a single security mechanism, but

usually it needs to accommodate multiple security mechanisms [29]. While

acknowledging and respecting the site autonomy, there are a number of requirements to

be met for Grid security, in order to achieve the goals of the VOs.

15

Supporting role-based access control (RBAC) [9, 10] is desirable in Grids. RBAC

shows clear advantages over traditional discretionary and mandatory access control

models in such environments, because it allows a uniform representation of diverse

security policies and ensures that no security violations occur during inter-domain

accesses [5]. In RBAC, permissions are associated with roles, and users are assigned

appropriate roles, thereby acquiring the roles� permissions [11]. In a VO with a large

number of users, we could think of several groups of users, each with different levels of

access (roles). A role has certain privileges associated with it. When a VO role is mapped

to a local role, it will specify the privileges a user can have; for example, access to a

specific table of a database.

In VOs, users may be assigned specific tasks, and there may be constraints related

to the execution of those tasks. For example, a user may have access to data only during

certain days of the week, or certain tasks may be considered mutually exclusive for a

user; i.e., any two or more tasks cannot be executed at the same time. RBAC can support

a wide range of security policies using role-privileges, role hierarchies, and constraints.

The typical identity-based authorization used today is not scalable because

authorization information should be maintained for each user. In RBAC, authorization

information is associated with roles, not with individual users. It has been shown that the

cost of administering RBAC is proportional to U+P per role, while the cost of associating

users directly with permissions is proportional to U×P, where U is the number of

individuals in a role and P is the number of permissions required by the role [34, 35].

16

In certain instances, a user may wish to delegate only a subset of its rights to an

application to act on its behalf. This requirement can usually arise in systems where a

limited trust relationship is established between entities. For example, a user may contact

a data mining service to mine certain data sets that the user has access to. If the trust

between the user and the service is limited, then the user may want to delegate only a

specific subset of its rights to the service, thus enabling it to complete only the required

task and nothing more. With RBAC, such delegation could be done easily. For example,

a user in a special role can delegate privileges to other roles.

RBAC is distinguished by its inherent support for the Principle of Least Privilege

[30], which requires that a user be given no more privileges than necessary to perform a

job [9]. It can be easily enforced by first identifying the roles in an organization correctly

and then assigning only those privileges to each role that allow the role members to

perform their tasks. Users can request a particular role among those they are entitled to

and, hence, gain the specific permissions tied with that role. Furthermore, current RBAC

models are modular and can thus incorporate sophisticated functionality such as RBAC

policy administration. Also, more complex forms of access control, such as task-based

access control (TBAC), can be layered on RBAC [10].

17

2.4 Drawbacks of the Access Control Mechanisms in

OGSA-DAI

To date, most work on data storage, access and transfer on the Grid has focused on

files [36], but the Grid can also be used to integrate various distributed heterogeneous

databases and supports query/transaction processing on them through a uniform interface

[36, 37]. The use of databases in Data Grids presents different security needs and access

policies compared with the use of computational resources. For example, certain

applications may be authorized to access only certain parts of the information in a

database during a specific time interval. OGSA-DAI uses Access Control Lists (ACLs)

for user authorization.

OGSA-DAI supports access control via an ACL held in a role-map file that maps

individual Grid users to local database usernames and passwords. In this case, each

resource provider has to maintain a role-map file to authorize access to its resources. This

access control method is not suitable for VOs, especially in terms of scalability, because

both users and resources are dynamic in VOs. Multiple entries in multiple role-map files

may need to be updated if new users are allowed to access multiple data resources or if

the access privileges of current users change, which is not unusual in Data Grids. This

puts an unnecessary burden on the resource providers in managing the role-map files,

especially when both the users and resource providers belong to multiple VOs.

Furthermore, there are unnecessary overheads on the server side whenever users make

18

invalid requests. This is because users are authenticated, mapped and connected without

first verifying their requests against their access privileges.

2.5 Incorporation of Existing Authorization Services in

Data Grids

None of the current access control systems in Grids provide comprehensive support

for RBAC. We will use the Community Authorization Service (CAS) and Shibboleth

(along with the GridShib interface) to support RBAC in OGSA-DAI, as described later in

Chapters 3 and 4. CAS and Shibboleth services have certain advantages over other

authorization services for Grids, such as the Virtual Organization Management Service

(VOMS) [38] and Akenti [39]. VOMS authorization assertions do not provide rights

directly, and they need to be interpreted by the resource. As far as Akenti is concerned, it

is targeted on authorizing accesses to web resources and particularly websites, so it is not

adequate for VOs [38]. Akenti does not provide support for dynamic delegation [40].

Delegation is a key issue in a VO, wherein a set of rights can be delegated to a program

for it to act on behalf of a user. A program should also be able to delegate some of its

rights to other programs [3].

PERMIS [40] is an attribute-based authorization service, and so is VOMS. They

use assertions that bind the attributes to users for authorization, as opposed to the typical

identity-based authorization used today [28]. However, currently they do not support any

19

standard for how attributes are transferred from the attribute authority to the Grid services

and no standard is used for expressing the policy regarding those attributes [28].

SAML can be used to express authorization queries, and Extensible Access Control

Markup Language (XACML) [18] can be used to express authorization policy statements.

Except CAS and Shibboleth, which use the SAML standard, none of the other

authorization services use a standard format to express authorization assertions. SAML is

used to uniformly express the authentication and authorization assertions between

different security domains. These assertions could contain the following three types of

statements: (1) Authentication statements which assert that the user has been

authenticated by the authorization service; (2) Attribute statements which can express the

attributes of the user such as institutional affiliation, group membership, and so on; (3)

Authorization decision statements which can assert how a user is allowed to access a

resource.

2.5.1 Community Authorization Service (CAS)

The Community Authorization service (CAS) provides a scalable mechanism for

specifying and enforcing complex and dynamic policies that govern resource usage

within Grids. It allows resource providers to delegate some of the authority for

maintaining fine-grain access control policies to communities, while still maintaining the

ultimate authority over their resources [14].

20

A community runs a CAS server to keep track of its membership and fine-grain

access control policies. A user accessing community resources contacts the CAS server,

which delegates rights to the user based on the request and the user's responsibilities

within the community. These rights are in the form of capabilities, which users can

present at a resource to gain access on behalf of the community. The user effectively

obtains the intersection of the set of rights granted to the community by the resource

provider and the set of rights defined by the capabilities granted to the user by the

community. The CAS server uses a backend database to store the capabilities of the

users. The CAS architecture builds on the public key authentication and delegation

mechanisms provided by the Globus Toolkit�s Grid Security Infrastructure (GSI) [14].

If a user of a community needs to gain access to a resource, the user generates a

proxy credential which is signed by his/her own user credential. The proxy credential is

presented to the CAS server, which returns a new credential, known as CAS proxy

credential. This credential contains the CAS policy assertions to represent the user�s

capabilities and restrictions as an extension. SAML authorization decision statements are

used to express the CAS policy assertions. The CAS proxy credential is presented to the

resource provider. The resource provider verifies the validity of the proxy credential and

then parses the CAS policy assertions to obtain the restrictions imposed by the CAS

server. Thus, the CAS credential facilitates the mapping of the user to a local account,

and the restrictions determine the operations the user is allowed to perform.

21

CAS provides scalability in terms of the number of users and VOs. The CAS

structure reduces the number of necessary trust relationships from C×P to C+P, when

there are C consumers and P providers. Each consumer needs to be known and trusted by

the CAS server, but not by each provider. Similarly, each provider needs to be known and

trusted by the CAS server, but not by each consumer [14]. However, in terms of the

actual number of access requests on resources, using a single CAS server may not be

quite scalable. A single CAS server can be a bottleneck if a large number of users attempt

to access it at the same time, and it can be a single point of failure. A possible solution for

these problems depends on how frequently the community policies change. If the

community policies do not change frequently, a single master server can be maintained to

accept the changes and then routinely replicate the policies to one or more read-only

slave servers. If the community policies change frequently, multiple peer servers can be

used. All the servers update the policies, so that the failure of any one server will not lead

to a loss of functionality [14].

However, when policies are changing dynamically, it is believed that complete

centralization of policies (which can be realized by using CAS) can achieve better

consistency. Also, in the case that a user credential is compromised, revocation is easier

when a single CAS server is used because the user needs to be removed only from that

server [14]. Even though CAS was designed primarily for fine-grain policies, it has been

also shown to be capable of asserting coarse-grain group memberships [41, 42]. CAS

comes packaged within the Globus Toolkit and is easily deployable.

22

2.5.2 Shibboleth and GridShib

In the GridShib project [33], they leverage the local security infrastructures of

different organizations so that users can be authenticated to Grid resources by using the

methods already supported at their home organizations. The goal of GridShib is to create

a distributed authorization framework that supports anonymous interactions between

users and, hence, protects their privacy. The rights of the users can be expressed using

attributes such as institutional affiliation, group membership, or their role in collaboration

[33]. Resource providers can make informed authorization decisions using these

attributes unlike in identity-based authorization. For example, only graduate students

studying computer science in a particular university and enrolled in a particular course

can gain access to certain database records.

GridShib incorporates the Shibboleth [15], which is an Attribute Authority service,

developed by the Internet2 community for cross-organization identity federation [33].

Shibboleth creates a distributed authorization infrastructure for web resources, and

simplifies access control policies and makes them more scalable [43]. It enables

anonymous interaction between users, thus protecting individual privacy while still

providing basic security for resource providers [33]. The Shibboleth service maps a user

name and attributes onto a unique identifying handle. To protect the user�s privacy, the

service can restrict the information about the holder of the handle depending on who is

asking for the information. For example, it does not release the user�s name except to

those requestors who have been authorized [29].

23

A target Grid service authenticates a user by using GSI, determines the address of

the appropriate Shibboleth attribute service in the process, and then obtains the selected

user attributes, that the Grid Service is authorized to see, from the Shibboleth service.

These attributes are presented using SAML attribute statements. To determine the address

of the Shibboleth attribute service, the Grid service obtains a pointer that will be placed in

the user�s proxy certificate [33]. The attributes obtained will then be used by the Grid

service in making authorization decisions. These attributes will be passed securely

through a trust relationship to the Grid service. To provide anonymity in the Grid context,

users are issued a set of credentials with pseudonym identifiers, and they will have the

option of releasing only a subset of their attributes to particular resources. For example,

identifying information about the user doesn�t need to be released.

2.6 Concepts and Foundation for our Research Topics

In order to provide scalable and fine-grain access control in Data Grids, we will

enhance the access control mechanisms in OGSA-DAI to allow users to be assigned

memberships on VO roles and to support role hierarchies and constraints. We will show

that the SAML assertions of CAS and Shibboleth can provide the user�s privileges

directly in addition to the VO roles. These assertions could be obtained by the resource

using either a push model or a pull model. In the push model, the user can directly obtain

the permissions from the authorization server and pass them to the target resources at the

time of making a request. The resource will verify the authenticity of the user and then

authorize the user based on the permissions obtained, provided the authority that issued

24

them is trustworthy. The advantage of the push model is that the user can explicitly select

a role. Also, in the case that the user and the authorization service belong to the same

organization and are protected by a firewall, the push model should be deployed because

the resources may not be able to contact the authorization service directly. Some

authorization services, like Akenti, support the pull model, where the user is

authenticated by a target resource. The target resource contacts the authorization server to

obtain the user�s permissions. An advantage of the pull model is that it can be deployed

easily because users do not need to interact with the authorization service [33].

Specification of VO policies by CAS and Shibboleth will allow for authorization

decisions to be made easily based on the user�s request and VO policies. In case the user

does not possess the required privileges, the access can be denied by CAS and Shibboleth

without involving the resource providers. For OGSA-DAI, this eliminates authentication,

mapping and connection overheads on the resource providers in case the user�s request is

not valid. The resource providers then need to maintain only the mapping information

from the VO roles to local database roles and the local policies, thus the number of

entries to be managed in the role-map files will be reduced dramatically. When users

join/leave collaborations, the resource providers do not have to bother about updating

their information in the role-map files, because the authorization service can just

grant/revoke their memberships on the VO roles. Different VOs may have different role

structures. Furthermore, the resource providers can grant or refuse the access requests of

specific users by maintaining their authorization information separately in the role-map

25

Figure 2.1: Mapping VO Roles to Local Roles

files. This will enable the resource providers to maintain ultimate authority over their

resources.

2.6.1 Enforcement of VO Policies

In our systems, the decision to map a VO role to a local role lies in the hands of the

resource provider. The assignment of privileges to the local role and specifying

constraints on it will also be the responsibility of the resource provider. For example, as

user2user1

SELECT, UPDATE

membership

userGroup1

ER,RN=Physician

Local
Physician

Local Role

VO Role

SELECT, UPDATE

Trigger for enforcing timing constraint

GMT#10.01.2005-07.30.2006#MON-FRI#19:00-5:00

26

shown in Figure 2.1, a resource provider could decide to map the

ER,RoleName=Physician role, where ER could be an Emergency Team that forms a VO

across several hospitals, to a local role that allows the SELECT and UPDATE operations

to be performed between 19:00 and 5:00 GMT, Monday through Friday during

10.01.2006�07.30.2006 (say, only for those patients affected by a natural disaster). This

timing constraint could be enforced by a database trigger, which executes an action

automatically on the occurrence of a predefined event. The privileges and constraints

associated with the local role can be negotiated between the VO and the resource

provider. Alternatively, if local privileges and constraints have been fixed already, they

can be made known to the VO.

The VO can restrict the policies further by specifying a subset of the privileges

associated with the local role and/or specifying tighter constraints. For example,

applications invoked by users in a Junior Physician VO role may be allowed to perform

SELECT and UPDATE operations only between 21:00 and 5:00 GMT, instead of

between 19:00 and 5:00 GMT. This scheme allows the VO to change privileges and

constraints without involving the resource provider. However, these changes have to be

enforced at the VO level. For example, the user�s query and the current time can be

examined in order to check the conformance with those changes. In this way, the resource

provider does not have to create new local roles in addition to existing ones because both

the original and restricted VO roles can be mapped to the same local role. Furthermore,

the resource provider can enforce more restrictions in addition to those imposed by the

VO policy; for example, restricting the access privilege of particular users based on their

27

institutional affiliation. For this purpose, the resource provider can maintain a separate

list of users and deny their access by checking the Grid identity in the SAML assertion.

This enables the resource provider to have the ultimate authority over its resources.

2.6.2 Distributing VO Policies among Resource Providers

If roles and privileges do not change often and VOs have a long lifespan, then it is

feasible to distribute the VO policies among the various resource providers. The fine-

grain privileges and constraints associated with the local role can be negotiated between

the VO and the resource provider. But, the resource provider will have control over the

actual assignment of fine-grain privileges to the local role and the specification of

constraints on it. For example, a resource provider could grant permission to perform

basic database operations (e.g., SELECT) on a particular database table. The resource

provider could also grant permissions for more complex operations such as executing

stored database procedures.

With our systems, a user can delegate a subset of his/her authorized VO roles to

certain applications and services. In this case, the privileges associated with the delegated

VO roles are the privileges associated with the corresponding local roles. As shown in

Figure 2.2, after a negotiation with a VO, a resource provider could decide to map the

Alpha,RN=Supervisor role (where Alpha is the name of the VO) to a local Supervisor

role that allows the function updateInventory() to be performed between 9:00 and 5:00

GMT from Monday to Friday during 01.20.2006�07.30.2006. Another resource provider

28

Figure 2.2: Distributing VO Policy among the Resource Providers

could decide to map the same VO role to a local Employee role that allows the function

viewInventory() to be performed between 19:00 and 5:00 GMT from Monday to Friday

during 05.20.2006�07.30.2006.

membership

user2 user1

userGroup1

Alpha,RN=Supervisor
Employee

DB2

Local Roles

VO Role

viewInventory()

GMT#05.20.2006-07.30.2006#MON-FRI#19:00-5:00

Supervisor

DB1

updateInventory()

GMT#01.20.2006-07.30.2006#MON-FRI#9:00-5:00

29

Chapter 3

RBAC with CAS in the OGSA-DAI
System

The goal of this research topic was to design and implement a Role-based Access

Control (RBAC) system with CAS, which can be quickly and easily deployed at various

sites using the Open Grid Services Architecture � Data Access and Integration (OGSA-

DAI). We demonstrate that our system can support RBAC for multiple virtual

organizations (VOs) to access Grid databases within the OGSA-DAI framework. Our

system extends the access control mechanism supported by OGSA-DAI to allow users to

be assigned memberships on VO roles, to assign privileges and specify constraints on

those roles, and to allow role hierarchies.

In our system, CAS maintains the security policies of VOs, grants users�

memberships on VO roles, and then authorizes them in those roles. The resource

providers need to maintain only the mapping information from VO roles to local database

roles and the local policies, thus the number of entries in the role-map file is reduced

dramatically. Our system also allows the specification of policies at the VO level, thus if

30

the users do not possess the required privileges, their access can be denied at the VO level

itself. This eliminates unnecessary authentication, mapping and connection overheads on

the resource providers. When users join/leave a VO, the resource providers do not have to

bother about individually adding/removing their information in the role-map files because

the CAS server can just grant/revoke their memberships on the VO roles. Furthermore,

the resource providers can grant or refuse the access requests of specific users by

maintaining their authorization information separately in the role-map files. This enables

the resource providers to have the ultimate authority over their resources.

We have implemented the proposed system and analyzed its performance. In our

implementation, users obtain CAS credentials based on user credentials. The user

credential is formed by an X.509 certificate and the associated public/private keys and is

issued by a Certificate Authority (CA) trusted by all entities in a Grid [44]. The CAS

credentials contain the authorization information for the user in terms of his/her VO roles.

We have extended the client-side implementation of OGSA-DAI to pass the CAS

credential. The server-side has been extended to parse the CAS credential to obtain the

VO roles. The server also verifies the capabilities associated with that VO role against the

local policies of the resource provider and maps it to a local database role. We have

evaluated our solution in terms of the overheads incurred when security contexts are set

up between a client and a server. This has been done with respect to the original security

mechanism in OGSA-DAI.

31

The organization of the chapter is as follows: Section 3.1 describes how users can

access a data resource using OGSA-DAI Services. In Section 3.2, we describe the

drawbacks for the existing approach for RBAC with CAS. In Section 3.3, we present our

RBAC system using CAS in OGSA-DAI. Section 3.4 describes the implementation

details, and Section 3.5 describes the results of performance analysis.

3.1 OGSA-DAI Services

In order to expose physical data resources to the Grid, by extending the interfaces

defined by Open Grid Services Infrastructure (OGSI) [45], OGSA-DAI introduced the

following services [46]: (1) Grid Data Service Factory (GDSF): Represents a data

resource, and exposes its capabilities and metadata. (2) Grid Data Service (GDS): Created

by a GDSF and holds the client session with the data resource. (3) DAI Service Group

Registry (DAISGR): Clients can discover service/data by locating GDSFs registered with

a DAISGR.

Figure 3.1 shows how clients can access data resources using OGSA-DAI. The

client first contacts the DAISGR and gets information about the registered GDSFs. The

client then contacts the desired GDSF and makes a request for the creation of a GDS.

Once the GDS is created, it authorizes the client and establishes a JDBC connection to

the underlying database. The client can then submit queries on the database and retrieve

results. The client authorization process is discussed in detail in Section 2.1.

32

CAS was initially designed to record user groups and their permissions, but in our

system, CAS has been incorporated to support RBAC within the OGSA-DAI framework.

With our system, the resource providers can delegate the fine-grain authorization to CAS

which will grant users� memberships on VO roles and then authorize them in those roles.

3.2 Drawbacks of the Existing Approach for RBAC

with CAS

A proposed approach for supporting RBAC with CAS is the use of rights

associated with a role to access role-specific resources [41]. The role of a user is

presented in a hierarchical form. For example, Alpha/admin indicates the administrator

role of a virtual organization Alpha. Alpha could be the name of a project undertaken by

collaborating organizations. In VOs, users may be assigned specific tasks, and there may

be constraints related to the execution of those tasks. For example, a user may have

4. JDBC
connection based
on the mapping
in the role-map
file

2. Request
for creation
of a GDS

<<Exposes>>

3. Creates a
GDS

Client

Grid Data
Service Factory

Grid Data
Service

 DB

5. Queries and
results submitted
and received using
XML documents

DAISGR

1. Client
gets the
information
about the
GDSFs
registered

Figure 3.1: Accessing a Data Resource through OGSA-DAI

33

access to data only during certain days of the week. One of the key aspects of RBAC is

that it allows the specification of constraints on roles [10]. However, the approach

proposed in [41] does not address this aspect of RBAC. Another drawback is that for a

user to act in multiple roles, multiple CAS proxy certificates have to be created.

Most systems do not enforce the Principle of Least Privilege [47]. An application

must be delegated only those privileges required for completing a certain set of tasks,

otherwise the application should be totally trusted to do no more than required. In Grids,

this is even more critical since software can be regularly downloaded from remote sites.

In addition to the possibility of downloading malicious software such as Viruses, Trojans,

Worms, and so on, we cannot expect software to work exactly as specified because of

bugs or malicious intent. Any software with certain extra privileges has the potential to

cause severe damage to computer systems and data. When the method proposed in [41] is

used in CAS, the Principle of Least Privilege is not always enforced. Users authorized to

act in a role may be granted some privileges in addition to those assigned to that role.

This is because both roles and privileges are set up in the same way. In particular, a role

is considered as a resource, and a user group is given the �member� right on a role, in the

same way that a user group is given the �read� right on a resource such as a file. With the

current implementation of CAS, a user belonging to multiple groups can request and be

authorized any combination of roles and privileges from one or more of those groups at

the same time.

34

The following example illustrates this problem. The VO Alpha may have a policy

in which programmers are allowed only read access to a particular file while supervisors

are allowed read/write access. To implement this policy based on the method proposed in

[41], two roles, �Alpha/programmer� and �Alpha/supervisor�, can be created as shown in

Figures 3.2 and 3.3. The �Alpha/programmer� role can be assigned the �read� right on

�ftp://localhost/tmp/fileA.txt�, and the �Alpha/supervisor� role can be assigned the �read�

and �write� rights on �ftp://localhost/tmp/fileA.txt�. As users of userGroup1 are given the

�member� right on the role �Alpha/programmer�, they can acquire the �read� right on

�ftp://localhost/tmp/fileA.txt.� Similarly, as users of userGroup2 are given the �member�

right on the role �Alpha/supervisor�, they can acquire the �read� and �write� rights on

�ftp://localhost/tmp/fileA.txt�. If a user �user1� is in both userGroup1 and userGroup2,

and makes a request to act in the �Alpha/programmer� role with the �read� and �write�

rights on �ftp://localhost/tmp/fileA.txt�, CAS will authorize the request because �user1�

is a member of both user groups. This authorization decision clearly violates the VO

policy in terms of the Principle of Least Privilege, since a programmer is granted write

access to a file while he/she is allowed only read access to it. If there is an application

that analyzes data for programmers, it must be delegated only the read access to the file.

Delegating the write access to the application can potentially result in an alteration of the

file.

A possible refinement to this method is distributing the VO policies to the resource

providers while keeping only the assignment of users to the VO roles within CAS. This

method is applicable if roles and privileges do not change often and VOs have a long

35

lifespan. CAS is not used to associate the privileges with roles to access role-specific

resources. Instead, the VO role is mapped to a local role, and the assignment of fine-grain

privileges to the local role is the responsibility of the resource provider. The fine-grain

privileges associated with the local role can be negotiated between the VO and the

resource provider.

user2 user1

read member

userGroup1

ftp://localhost/tmp
/fileA.txt

Alpha/
programmer

Figure 3.2: userGroup1 with a Role Alpha/programmer and Read
Access to ftp://local host/tmp/fileA.txt

 read
 write member

user3 user1

userGroup2

ftp://localhost/tmp
/fileA.txt Alpha/

supervisor

Figure 3.3: userGroup2 with a Role Alpha/supervisor and Read/Write
Access to ftp://local host/tmp/fileA.txt

36

Figure 3.4: Distributing VO Policies to the Resource Providers

A user can delegate a subset of his/her authorized VO roles to certain applications

and services. In this case, the privileges associated with the delegated VO roles are the

privileges associated with the corresponding local roles. As shown in Figure 3.4, after a

negotiation with a VO, a resource provider could decide to map the �Alpha/supervisor�

role to a local �Supervisor� role that allows the function updateInventory() to be

performed on a database (DB1). Another resource provider could decide to map the same

VO role to a local �Employee� role that allows the function viewInventory() to be

performed on another database (DB2). This method enforces the Principle of Least

Privilege since a user can receive no more privileges for a VO role other than those tied

with the corresponding local roles. However, a VO does not have the flexibility to update

VO policy without contacting the resource providers because they control the assignment

of privileges to the local roles.

viewInventory()

updateInventory()

member

user2user1

userGroup1

Alpha/supervisor
Employee

DB2

Local Roles

VO Role

Supervisor

DB1

37

3.3 Our Proposed System for RBAC Using CAS

Specification of policies at the VO level allows authorization decisions to be made

based on the user�s request and VO policies. In case the user does not possess the

required privileges, the access can be denied at the VO level itself without involving the

resource providers. This eliminates authentication, mapping and connection overheads on

the resource providers in case the request is not valid. Our proposed system is

implemented using a newer version of CAS which supports SAML. Participating

organizations within VOs may have different security models. So, it is important for these

models to interoperate at different levels of trust, and SAML can be used to uniformly

express the authorization assertions between different security domains.

The CAS server contains policy statements that specify who (which user or group)

has the permission, which resource or resource group the permission is granted on, and

what permission is granted [14]. The permission is denoted by a service type and an

action. The action describes the operation (e.g., read, write or execute program), and the

service type defines the namespace in which the action is defined (e.g., file). Different

resource providers may recognize different service types, but all resource providers that

recognize the same service type should have the same interpretation of that service type's

actions [14].

38

To support RBAC using CAS, we define the role as a new service type, and each

role name in the form of �[VOName{,SubgroupName}][,RN=rolename]�1 as an action.

Roles can be specified for any subgroup within a VO. For example,

�Alpha,RN=Manager� indicates the Manager role for the Alpha VO, whereas

�Alpha,Data,RN=Manager� indicates the Manager role for the Data subgroup of the

Alpha VO.

For each role name, we can specify the actions (privileges and constraints) and some

junior roles. Resources represented in the form, �URI{.Subcomponent}� are associated

with usergroups in the CAS database. Thus, fine-grain authorization for resources can be

allowed, where access control can be specified not only for the entire resource (e.g.

database) but also for the subcomponents of a resource (e.g. table). For example,

�http://130.108.17.176:8080/ogsa/services/ogsadai/SecureGridDataServiceFactory.Emplo

yee� indicates the Employee table in the database represented by the specified URI. This

permits the members of a usergroup to access a resource in a specific role. We propose

new service types and actions to assign privileges on roles, and to specify timing

constraints as described in the following subsections. With these proposed ideas,

privileges can be specified at fine-grain levels.

1 The curly brackets {} indicate zero or more occurrences of their content and the square brackets []
indicate only one occurrence of their content.

39

3.3.1 Specifying Privileges and Timing Constraints on VO

Roles

To assign privileges on a role, we define the role name as a service type and each

privilege in the form of �privilege:operation� as an action. This allows the specification

of a privilege in terms of the operation permitted for a specific role. For example, the role

name �Alpha,RN=Manager� could have �privilege:select� as a privilege to execute the

SELECT operation. Obviously, not only the basic database operations, but also complex

operations, such as transactions and stored procedures, can be assigned as privileges.

To specify a timing constraint on a role, we define the role name as a service type

and the timing constraint in the following form as an action:

�timing_constraint:[local/GMT] [Date#Day#Time]{;Date#Day#Time}� where

• Date can be �[FromDate-ToDate]{,FromDate-ToDate}�

• Day can be �[FromDay-ToDay]{,FromDay-ToDay}� or �[Day]{,Day}�

• Time can be �[FromTime-ToTime]{,FromTime-ToTime}�

For example, the role name �Alpha,RN=Manager� could have

�timing_constraint:GMT#10.01.2005-07.30.2006#Mon-Fri#1:00-5:00,17:00-21:00�,

indicating that the user can act in that role only within the time intervals 1:00�5:00 and

17:00�21:00 GMT from Monday to Friday during 10.01.2005�07.30.2006.

40

3.3.2 Specifying Role Hierarchies

A role hierarchy defines a seniority relation between roles, whereby senior roles

automatically acquire the permissions of the junior roles. In the role hierarchy diagrams

[48], senior roles are placed at the top of the junior roles. According to the NIST standard

for RBAC [48], there are two types of role hierarchies: limited hierarchy and general

hierarchy. In the limited hierarchy, each senior role cannot have more than one junior

role. On the other hand, in the general hierarchy, each senior role can have multiple

junior roles. However, in both types, a junior role can have multiple senior roles.

Examples of a limited hierarchy and a general hierarchy are illustrated in Figures 3.5 and

3.6, respectively.

 Figure 3.5: An Example of Limited Role Hierarchy.

The selection of the type of role hierarchy is made by the VO. To specify a role

hierarchy, we define each senior role name as a service type and each junior role name in

the form of �junior_role:[VOName{,SubgroupName}][,RN=rolename]� as an action. For

example, in Figure 3.6, the senior role name �Alpha,RN=Manager� has

�junior_role:Alpha,RN=Supervisor� and �junior_role:Alpha,RN=Programmer� as junior

role names, and thereby inherits their privileges.

Supervisor

Employee

Programmer

41

 Figure 3.6: An Example of General Role Hierarchy.

The constraints on a junior role are also inherited by a senior role [28]. In our

method, the timing constraint specified on a senior role would override those on the

junior roles. If a timing constraint is not specified on a senior role, then it inherits the

timing constraints of its junior roles. However, there should be no conflicts between the

timing constraints on the junior roles. If such conflicts exist, then the concept of limited

inheritance [10] can be used. With limited inheritance, a senior role can inherit only a

subset of privileges of a junior role. The following example illustrates the concept of

limited inheritance. As shown in the hierarchy of Figure 3.6, the Manager role is senior to

both the Supervisor and Programmer roles. Managers can be prevented from inheriting

specific privileges of the Supervisor role by defining a new role Supervisor′ as shown in

Figure 3.7. Only those specific privileges not to be inherited by the Manager role can be

assigned to the Supervisor′ role and the rest of the original set of privileges can be

retained by the Supervisor role. The Supervisor′ role can inherit the privileges from the

Supervisor role, thus acquires the entire set of privileges originally held by the Supervisor

role. The Manager role can then inherit the privileges of the Supervisor role but not the

privileges of the Supervisor′ role. Similarly, by creating the Programmer′ role, the

Manager

Supervisor

Employee

Programmer Secretary

42

Manager role can be prevented from inheriting specific privileges originally held by the

Programmer role.

To deal with conflicting constraints on junior roles, some modifications to the

approach illustrated above are required. If conflicting timing constraints exist on the

Supervisor and Programmer roles shown in Figure 3.6, then new timing constraints with

no conflicts can be specified on those roles while each retains the entire set of its

privileges. The Manager role can then inherit the privileges and new constraints on the

Supervisor and Programmer roles. The original timing constraints of the Supervisor and

Programmer roles can be specified on the Supervisor′ and Programmer′ roles,

respectively. These timing constraints will then override the new constraints specified on

the Supervisor and Programmer roles. The Supervisor′ and Programmer′ roles are not

assigned any privileges and can inherit all the privileges from the Supervisor and

Programmer roles, respectively. Thus the Supervisor′ and Programmer′ roles possess the

set of timing constraints and privileges originally associated with the Supervisor and

Programmer roles, respectively. While the original information of the Supervisor and

Manager

Supervisor

Employee

Programmer Secretary

Supervisor′ Programmer′

Figure 3.7: Limited Inheritance

43

Programmer roles is retained, the Manager role can still inherit their privileges without

any conflicts due to the newly specified timing constraints.

3.3.3 Authorization Decision Statement in the CAS credential

Once the roles and their privileges and constraints are specified in the CAS

database as described above, a SAML authorization decision statement is included in the

CAS credential. An example of the SAML authorization decision statement is shown in

Figure 3.8, and its components, denoted by (1), (2), (3) and (4), are explained as follows:

(1) specifies the time period during which the authorization decision is valid.

(2) specifies the URI of the resource on which the permissions are granted.

(3) specifies the identity of the user to whom the permissions are granted.

(4) specifies what permissions are granted.

The user identified by the Subject in (3) is authorized in the role

�Alpha,RN=Manager� with the privilege to execute the UPDATE operation on the

resource specified in (2). Also, �Alpha,RN=Manager� inherits, from its junior role

�Alpha,RN=Supervisor�, the privilege to execute the SELECT operation on the same

resource with the specified timing constraint �gmt#10.01.2005-07.30.2006#MON-

FRI#19:00-5:00�. The timing constraint specifies the duration for which the user can

access the resource in the authorized role. This authorization decision is valid for the time

period specified in (1).

44

3.4 Implementation Details

CAS has a backend database for storing information about users, resources and

associated privileges. The VO members are granted user credentials signed by a

Certificate Authority (CA). CAS issues a certificate to authorize users based on their

requested role, their user credentials and the role membership information in the CAS

database. The CAS database administrator can delegate the right to grant/revoke

Figure 3.8: SAML Authorization Decision Statement Issued by CAS

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="8b53a37e-3116-44e2-a499-67e2d0fe49f1"
IssueInstant="2005-12-02T19:58:23Z"
Issuer="O=Grid,OU=GlobusTest,OU=simpleCA-
motive.cs.wright.edu,CN=Globus Simple CA" MajorVersion="1"
MinorVersion="0">

<Conditions NotBefore="2005-12-02T19:58:23Z" NotOnOrAfter=
"2005-12-02T21:20:53Z"></Conditions>

<AuthorizationDecisionStatement Decision="permit"
Resource="http://130.108.17.176:8080/ogsa/services/ogsadai/SecureGrid
DataServiceFactory.Employee">

<Subject> /O=Grid/OU=GlobusTest/OU=simpleCA-
motive.cs.wright.edu/OU=cs.wright.edu/CN=John Doe
</Subject>
��..
<Action Namespace="role">Alpha,RN=Manager</Action>
<Action Namespace="Alpha,RN=Manager">privilege:
update</Action>
<Action Namespace ="Alpha,RN=Manager">junior_role:
Alpha,RN=Supervisor</Action>

<Action Namespace="Alpha,RN=Supervisor">privilege:
select</Action>
<Action Namespace="Alpha,RN=Supervisor">timing_constraint:
gmt#10.01.2005-07.30.2006#MON-FRI#19:00-5:00</Action>

</AuthorizationDecisionStatement>
��..

(2)

(3)

(4)

(1)

45

memberships on roles to other users, and those users can exercise that right only within

the user groups to which they belong.

CAS provides a set of APIs for managing fine-grain access policies for resources in

a VO [17]. The Service API of CAS provides an administrative interface for managing

the user groups and associated privileges. This API supports the user�s role assignments

in our method. CAS also provides a Client API through which users can obtain a signed

SAML assertion and present it to the resource provider for authorization. The OGSA-

DAI client program uses the Java Generic Security Services API (GSSAPI) to delegate

the CAS credential to a Grid Data Service (GDS).

We configured CAS to incorporate the proposed RBAC method as described before

and modified the OGSA-DAI implementation to make use of the CAS credentials. The

<?xml version="1.0" encoding="UTF-8" ?>

<!-- (c) International Business Machines Corporation, 2002 - 2004. -->
<!-- (c) University of Edinburgh, 2002 - 2004. -->
<!-- See OGSA-DAI-Licence.txt for licencing information. -->
<DatabaseRoles>
 <Database name="jdbc:mysql://130.108.17.176/ogsadai">

<User dn="No Certificate Provided" userid="ogsadai" password="ogsadai" />
<User dn="/O=Grid/OU=GlobusTest/OU=simpleCA-
motive.cs.wright.edu/OU=cs.wright.edu/CN=John Doe"
userid="ogsadai" password="ogsadai" />

<User dn="ER,RN=Physician" userid="username" password="password"/>

<Role Name="ER,RN=Physician">

 <Action Namespace="role">privilege:select</Action>
 <Action Namespace="role">privilege:update</Action>
 <Action Namespace="role">timing_constraint:GMT#10.01.2005-

07.30.2006#MON-FRI#19:00-5:00</Action>
 </Role>

 </Database>
</DatabaseRoles>

Figure 3.9: Modified Role-map File

46

modifications are made at both client-side and server-side. The client is modified to

delegate the CAS credential instead of the user proxy credential. The server is modified

to recognize the CAS credential delegated by the client and to obtain the VO role from it

using the GSSAPI libraries. The modified server also verifies the privileges and

constraints associated with the VO role against the local policy, and performs the

mapping based on that role via the role-map file. The role-map file has been extended to

include the mapping from a VO role to a database username and a password. Also

included in it are the local policy details as shown in Figure 3.9. The role-map file can

also include a list of users for whom access would be denied based on their Grid identity.

Creation
of CAS
proxy

Cu

Cup

 Ccas

Cucasp

Long-lived
credential

Temporary
credential

User�s Proxy
credential

User�s
credential

User�s CAS
Proxy
credential

CAS Server
credential

CAS Server

CucaspCapability
details for user

CAS
Database

Cup

Ccas

User

Creation
of user
proxy

R
equest C

A

signature Si
gn

 U
se

r
C

re
de

nt
ia

l

Certificate
Authority

(CA)

Cu

Host Computer

 User Proxy

Cup

Cucasp

CAS Proxy

Figure 3.10: User�s Normal Proxy Credential and CAS Proxy Credential Creation

47

 The following is the sequential process of a Grid user obtaining a CAS credential

for accessing a resource. As shown in Figure 3.10, a user generates a certificate (Cu) by

making a request to a Certificate Authority (CA) which is trusted by all the entities within

the Grid, i.e., all users and resources. If a user needs to gain access to a resource, the user

generates a proxy credential (Cup) which is signed by his/her user certificate (Cu). This

generated proxy credential's lifetime will be less than the lifetime of the user certificate.

The lifetime of a proxy credential generated using the Globus Toolkit is 12 hours. In

order to use a CAS credential, the user makes a request to the CAS server to initiate a

CAS proxy based on the user�s proxy credential. The CAS server authenticates the user

and obtains the user�s capability details present in the CAS database. The CAS server

then creates a CAS proxy credential (Cucasp) which contains the CAS policy assertions

to represent the user�s capabilities and restrictions as an extension to the existing user

proxy credential (Cup).

5. JDBC
connection based
on the capability
provided in the
CAS credential

3. Request
for creation
of a GDS

<<Exposes>>

1. Client
makes
assertions to
CAS and
receives
capability as
in Figure 4

4. Creates a
GDS

Client

 CAS
Server

Grid Data
Service Factory

Grid Data
Service

 DB

6. Queries and
results submitted
and received using
XML documents DAISGR

2. Gets the
information
about the
GDSFs
registered

Figure 3.11: Accessing a Data Resource through OGSA-
DAI Using a CAS Credential

48

As shown in Figure 3.11, once the user has obtained the CAS credential with the

requested assertions, the user can contact the desired GDSF to create a GDS. The GDS

gets the CAS credential delegated by the user, and verifies the capabilities against its

local policy present in the role-map file. The GDS also checks if any specified timing

constraint is violated.

Figure 3.12 depicts a typical user session using the command-line tools provided by

the Globus Toolkit, CAS and OGSA-DAI, which shows the initiations of the user proxy

and the CAS proxy. We have modified the OGSA-DAI client to accept the CAS

credential and the desired VO role specified as shown in Figure 3.12. Based on the VO

role of the user, a JDBC connection is established between the GDS and the database

exposed by the GDSF. If no role is provided in the CAS credential, then the user�s

identity is used for mapping. The client can submit queries to the GDS and obtain the

results in XML documents.

#Initiate a User Proxy
% grid-proxy-init
Your identity: /O=Grid/OU=GlobusTest/OU=simpleCA-
motive.cs.wright.edu/OU=cs.wright.edu/CN=John Doe
Enter GRID pass phrase for this identity:
Creating proxy... Done
Your proxy is valid until: Fri Dec 2 21:20:53 2005

#Initiate a CAS Proxy
%cas-proxy-init -c
http://localhost:8080/ogsa/services/base/cas/CASService -t tag

#Contacting a specific GDSF using CAS capabilities
%java uk.org.ogsadai.client.Client -mls -role ER,RN=Physician -t tag -factory
http://130.108.17.176:8080/ogsa/services/ogsadai/SecureGridDataService
Factory examples/GDSPerform/JDBC/query/select1Row.xml

Figure 3.12: User Session Accessing a GDS Using CAS

49

In our implementation, the GDS checks the local policy in the role-map file against

the policy assertion in the CAS credential only before connecting the client to the

database. After a CAS credential is issued, if a set of privileges is deleted from a VO role

on the CAS server and/or the timing constraints on the role are changed then the

credentials have to be expired before the new policy takes effect on the resources. We

have not implemented mechanisms to revoke current credentials containing old policy

assertions. However, if the same set of privileges deleted from the VO role is also deleted

from each of the corresponding local roles, or the same changes to the timing constraints

are made, then the access to the resources can be restricted immediately based on the new

policy. The resource providers can use the local database management systems (DBMSs)

to update the privileges on the local database roles and modify the triggers to

accommodate the new timing constraints. The changes in the local policy information

also have to be made in the role-map files. Since the privileges and timing constraints on

the local database roles are enforced by the local DBMS itself, they will come into effect

immediately. If the client submits a query, but the query fails due to the new policy, then

the client can be notified via an error message. The client can request new credentials and

then restart the application.

If a VO role is updated independently of the corresponding local roles after the

credentials are issued, one way to restrict the access immediately is to have the CAS

server notify the GDSFs of the updates. This information can be passed on to the GDSs

and cached by the GDSFs for up to the maximum lifetime of the credential. Any

credential issued before the notification and containing an authorized VO role, which has

50

been updated on the CAS server, can then be rejected. If a connection to the resource has

been already established based on that role, then it should be discontinued.

If the local policy is changed to deny the access of a particular Grid user after that

user has already been connected to the resource, then this new policy is not enforced

because the role-map file is not rechecked. One possible solution to enforce the new local

policy immediately is to notify the GDS every time the local policy information in the

role-map file is updated, so that the user identity and policy assertion in the CAS

credential can be checked against the local policy information.

With our method, a user who wants to perform the tasks associated with multiple

roles does not need to generate multiple CAS proxies. The user can just delegate a single

CAS credential containing all those roles. For example, a user may want to read from one

database in one role and write to another database in another role. In this case, a single

CAS credential containing both roles can be delegated, and then the user can be

authorized by each resource provider with respect to the corresponding role.

3.5 Performance Analysis

The existing implementation of the OGSA-DAI client has been modified to

delegate a CAS credential, and the server has been modified to obtain the user�s

capabilities present in the CAS credential. The overheads incurred with our

implementation are compared with those of the existing implementation of OGSA-DAI,

51

which does not use the CAS credential. OGSA-DAI Release 4.0 was deployed on a

Jakarta Tomcat 5.0.27/Globus Toolkit 3.2.1 (GT3) stack running on a Linux machine

with a 2.6 GHz Intel Pentium IV processor and 1 GB of RAM. The littleblackbook

MySQL database table distributed with OGSA-DAI was used as a test database, and it

contains 10,000 tuples. The perform document consisting of a request for a single tuple

was used for the purpose of analysis.

3.5.1 Profiling Details

A Java method System.currentTimeMillis() is used to get the current system time in

milliseconds. Also, for the server-side analysis, the Apache Log4j logger, which logs

time to a log file in milliseconds, is used. For more accuracy, the tomcat container was

shutdown and restarted before each client request in order to minimize the caching effects

within GT3 and OGSA-DAI [49]. The main changes from the original configuration are

the way the mapping is done at the server-side and how the credential is delegated at the

client-side. So, only the security aspects of the client and the server are profiled and

analyzed. The following types of Grid Data Services are used in the analysis as in [49]:

1) Signature: GDS enforcing GSI Secure Conversation with Signature. This enforces

message integrity being established between the client and the server.

2) Encryption: GDS enforcing GSI Secure Conversation with Encryption. This enforces

message privacy being established.

3) None: GDS which does not enforce any security. The GDS does not provide a secure

conversation.

52

3.5.2 Client-Side Security

A call is made to each of the above GDSs with and without using a CAS proxy

credential. In case of using a CAS proxy credential, an additional overhead for its

creation is incurred. In the performance analysis, we do not show this overhead because it

is incurred only once before the client contacts the GDSs. Thereafter, the client can

submit any number of queries before the CAS proxy credential expires. The lifetime of

the CAS proxy credential is equal to the time remaining for the expiration of the user

proxy credential, which can last up to 12 hours. The time taken for the creation of the

CAS proxy credential depends on several factors such as network bandwidth and

workload of the CAS server. In our system, the average time taken for the creation of a

CAS proxy credential is around 600 milliseconds.

The findServiceData method of a GDSF returns the information about its

corresponding data resource. Three consecutive calls to findServiceData are required:

The first call returns the database schema, the second returns the activities permitted, and

the third returns the product type (for example, the type of DBMS). The perform method

of a GDS takes the perform document, which contains the query, and returns the results

to the client. GSI Secure Conversation requires a security context to be established

between the client and the server. The overheads incurred in setting up this security

context are analyzed based on the following:

1. Calls made for creating a credential object from the proxy credential.

2. Calls to the findServiceData and perform methods.

53

0

2000

4000

6000

8000

10000

12000

14000

Signature
w ith CAS

Signature
w ithout

CAS

Encryption
w ith CAS

Encryption
w ithout

CAS

None w ith
CAS

None
w ithout

CAS

Ti
m

e
(m

s)
Perform
FindServiceData3
FindServiceData2
FindServiceData1
Credential Creation

0

100

200

300

400

500

600

Signature
w ith CAS

Signature
w ithout

CAS

Encryption
w ith CAS

Encryption
w ithout

CAS

None w ith
CAS

None
w ithout

CAS

Ti
m

e
(m

s)

Perform
FindServiceData3
FindServiceData2

The corresponding times are shown in Figure 3.13, and as observed, the time for

creating the credential object is almost the same regardless of the security enforced by the

GDS. In case of None, there is no such overhead as the credentials are not used. The first

call to the findServiceData takes longer than the subsequent calls because it includes the

initialization of the GDS regardless of the security type used. Figure 3.14 clearly shows

Figure 3.14: Obtaining Service Data and Query Execution

Figure 3.13: Client-Side Security

54

the times taken for the subsequent calls to the findServiceData and the perform methods.

The times recorded in the case of using a CAS proxy credential and those without using a

CAS proxy credential are almost the same. The reason is because all the security

functions on the client-side remain unchanged except for the use of a CAS proxy

credential instead of a user proxy credential.

0

50

100

150

Signature
w ith CAS

Signature
w ithout

CAS

Encryption
w ith CAS

Encryption
w ithout

CAS

None w ith
CAS

None
w ithout

CAS

Ti
m

e
(m

s)

Credential Extraction
Perform

0

0.5

1

1.5

2

Signature
w ith CAS

Signature
w ithout

CAS

Encryption
w ith CAS

Encryption
w ithout

CAS

None w ith
CAS

None
w ithout

CAS

Ti
m

e
(m

s)

Credential Extraction

Figure 3.15: Server-Side Security

Figure 3.16: Security Overheads on the Server-Side

55

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Signature
w ith CAS

Signature
w ithout

CAS

Encryption
w ith CAS

Encryption
w ithout

CAS

None w ith
CAS

None
w ithout

CAS

Ti
m

e
(m

s)

Connection
Mapping

3.5.3 Server-Side Security

The analysis made on the server-side is based on the following:

1. The client credentials accessed using the GT3 infrastructure.

2. Extracting the VO role or Grid identity from the credential. If the VO role is extracted,

its capabilities are compared against the local policy.

3. Mapping a user to a database username and a password, and creating a JDBC

connection.

4. The perform operation.

As shown in Figure 3.15, the time for the credential extraction, which includes

policy comparison, is very small compared to the time for executing the perform

operation. The time for executing the perform operation remains constant for all the

GDSs. The perform operation is done only after the credential extraction process is

completed; and as a result, its execution time is not affected by the type of credential

Figure 3.17: Mapping and Database Connection

56

used. The credential extraction times are shown more clearly in Figure 3.16, and we can

see that the credential extraction takes more time when a CAS proxy credential is used

for contacting a GDS that enforces the secure conversation. An overhead is incurred

because of the time taken for obtaining the user identity and the policy assertion from the

CAS credential and then comparing it against the local policy in the role-map file.

However, this overhead is in the order of a few milliseconds and is insignificant

compared to the overall time taken for performing the client�s query. When a CAS proxy

credential is not used, the user proxy credential is used instead, and then the credential

extraction involves obtaining only the user identity. In case of contacting a nonsecure

GDS, since credentials are not used, there are no overheads incurred for credential

extraction.

Figure 3.17 shows that there is a constant overhead for mapping a user to a

database username and a password and then subsequently setting up the database

connection. The processes of mapping and connection are done after the credential

extraction process is completed; and as a result, their execution times are not affected by

the type of credential used. If there are a large number of entries in the role-map file, the

mapping would still not take much time because a hash table is used to store those

entries.

In summary, on the client-side, our method incurs small overheads in the security

setup as additional steps are involved for requesting and using the CAS credential.

However, as seen from the performance results, the time taken for the individual OGSA-

57

DAI method calls are the same whether a CAS credential is used for authorization or not.

This is because all the security functions remain unchanged, except for the use of a CAS

proxy credential instead of a user proxy credential. On the server-side, the additional

overheads incurred in our credential extraction process are very small compared to the

time taken for executing the client�s queries. These overheads in setting up the security

context are insignificant when we consider the benefits of our method, such as scalability

in managing VO policies and reduced administration overheads for resource providers.

58

Chapter 4

RBAC with Shibboleth in the OGSA-
DAI System

In the last chapter, we described how the Community Authorization Service (CAS)

[14] can be used to enhance the security mechanism in OGSA-DAI. However, a single

CAS server can be a bottleneck if a large number of users attempt to access it at the same

time, and it can be a single point of failure. Also, while our system provides security in

terms of access control, it does not provide privacy protection for the users because every

CAS credential contains information that identifies the user. In this chapter, we propose

for OGSA-DAI an RBAC system using Shibboleth, GridShib and the Object, Metadata

and Artifacts Registry (OMAR) [50]. OGSA-DAI has recently been linked with the Web

Services Resource Framework (WSRF). The newly defined OGSA-DAI Data Service can

be dynamically configured and can expose multiple data resources, which can be any

entity that acts as a source and/or a sink of data [13]. Shibboleth is designed to provide

user attributes to the resources for access control, and it mainly targets the internet-based

resources. In our system, it is also used as a Role Enablement Authority (REA), which is

responsible for assigning roles to users and for enabling roles within a user�s session [17].

OMAR provides an implementation of the OASIS e-business eXtensible Markup

59

Language (ebXML) registry specifications. The ebXML registry specifications are

developed to achieve interoperable registries and repositories with an interface that

enables submission, query and retrieval [51].

Our system is scalable in terms of the number of access requests as well as the

number of users and VOs; and it is robust as there is no single point of failure. It supports

the management of roles and privileges; and also supports dynamic delegation of rights

via roles. It also supports fine-grain attribute release policy and provides privacy

protection for users within VOs that employ OGSA-DAI. Furthermore, similar to the

previous system it can support a wide range of security policies using role-privileges, role

hierarchies, delegations, and constraints. Resource providers need to maintain only the

mapping information from VO roles to local roles and local policies, thus their

administration overhead is reduced. When users join/leave a VO, the resource providers

do not have to bother about individually adding/removing their information in the role-

map files, because OMAR can be used to directly grant/revoke their memberships on the

VO roles. Moreover, the resource providers can permit or deny the access requests of

specific users by maintaining their authorization information separately. This enables the

resource providers to have the ultimate authority over their resources. Also, unnecessary

mapping and connections can be avoided by denying invalid requests at the VO level.

We have implemented our proposed system and analyzed its performance. The

server-side of OGSA-DAI has been configured to use Shibboleth through GridShib. The

GridShib software provides two interfaces, one for the Grid services and the other for

60

Figure 4.1: Accessing a data resource using GridShib and Shibboleth

Shibboleth [33]. The OGSA-DAI server has been modified to obtain the user�s attributes

from the Shibboleth service, verify them against the local policies, and map the user to a

local role based on the role-map file. The role-map file has been extended to include the

mapping from a VO role to a local role. Our performance analysis shows that the

proposed system incurs a small overhead in setting up the security context between the

client and server. This overhead is quite acceptable when we consider the benefits of our

system, such as scalability in managing VO policies and reduced administration overhead

for resource providers.

The organization of the chapter is as follows: In Section 4.1, we propose a RBAC

system with Shibboleth and GridShib in OGSA-DAI. In Section 4.2, we show how to

manage VO policies using XACML and OMAR. Section 4.3 describes the results of

performance analysis.

4.1 Architecture of the RBAC System Using Shibboleth

1. User
contacts Data
Service

 (PIP/REA)

Attribute Space
at Site 1

2. Data Service
obtains
attributes
through
GridShib

3. Connection
based on attributes
obtained through
GridShib

Shibboleth
Service

DB

User authenticates at Site 1
and obtains a user proxy

OGSA-DAI Data
Service at Site 3
(local PAP/PEP) GridShib-

Shibboleth
Interface

Attribute Space
at Site 2

GridShib-Data
Service
Interface (PDP)

4. Queries and results
submitted and
received

Policies managed
by VOs
(VO PAP)

OMAR

OMAR

61

Each site participating in the Grid maintains its own attribute space and Shibboleth

service. The GridShib software provides two interfaces, one for the Grid services and the

other for Shibboleth. Shibboleth and GridShib support the pull model in which a target

resource (a) authenticates a user by using the Grid Security Infrastructure (GSI) of

Globus Toolkit [14]; (b) determines the address of the appropriate Shibboleth service in

the process; and (c) obtains the selected user attributes (that the resource is authorized to

see) from the Shibboleth service [33].

In our system, as shown in Figure 4.1, the GridShib-Shibboleth interface and the

Shibboleth service together function as the Policy Information Point (PIP) and Role-

Enablement Authority (REA). A PIP releases attribute values related to the subject (such

as a user, application or Grid service), the resource and the environment. A REA is

responsible for assigning roles to users and for enabling roles within a user�s session [17].

Attributes are released in order to authorize users not only based on their entitlements and

affiliations, but also based on their requested roles, role memberships and user

credentials. The user credential is formed by an X.509 certificate and the associated

public/private keys, and is issued by a Certificate Authority (CA) trusted by all entities in

a Grid [44].

The user submits a request to the OGSA-DAI Data Service, and it retrieves the

user�s roles and attributes from the PIP/REA (i.e., GridShib-Shibboleth interface and the

Shibboleth service) based on the user�s identity. The GridShib interface for the OGSA-

DAI Data Service functions as the Policy Decision Point (PDP) and returns the

62

authorization decision, such as �permit� or �deny�, to the requesting Data Service. The

request is evaluated based on the attributes released by the PIP/REA and the attributes of

the local policies maintained by the Data Service. The OGSA-DAI Data Service

functions as a Policy Administration Point (PAP) at the local level and also as a Policy

Enforcement Point (PEP). A PAP manages the policies and policy sets, and makes them

available to the PDP (i.e., the GridShib interface for the OGSA-DAI Data Service). A

PEP executes the decision of the PDP by either performing or denying the client�s

request. If the decision is �permit�, the PEP (OGSA-DAI Data Service) sets the security

context based on the user�s role, and then a connection is established between the Data

Service and the requested data resource. The user can then submit queries to the Data

Service and obtain the results. If the decision is �deny�, then an error message is returned

to the user, indicating that the user is not authorized to perform the operation. PIP, PDP,

PAP, and PEP are terms used in the XACML authorization model [18].

The attribute space at each site, shown in Figure 4.1, is composed of the attributes

related to the subject, the resource and the environment; and can also hold the attributes

pertaining to VO policies. Shibboleth does not store or manage attributes, so a data store,

such as a Lightweight Directory Access protocol (LDAP) directory or a database, is

required. We propose the use of OMAR as the PAP at the VO level to administrate the

portion of the attribute space pertaining to VO policies at the individual sites. This is

explained in the following section.

63

4.2 Managing VO Policies Using XACML and OMAR

In order to specify VO policies in the form of VO roles, role hierarchies, privileges

and constraints, we used the Core and Hierarchical RBAC profile of XACML. We also

used OMAR for the storage and distributed administration of the VO policies.

Specification of policies at the VO level allows authorization decisions to be made based

on the user�s request and VO policies. In case the user does not possess the required

privileges, the access can be denied at the VO level. This eliminates mapping and

connection overheads on the resource providers in case the request is not valid.

4.2.1 eXtensible Access Control Markup Language (XACML)

XACML is an OASIS standard for describing access control policies uniformly

across different security domains [18]. XACML defines the following main components

to represent policies:

(1) A <PolicySet> contains a set of access control policies or other policy sets.

(2) A <Policy> represents an access control policy described through a set of rules.

(3) A <Rule> represents an access rule or permission.

An XACML <PolicySet>, <Policy> and <Rule> may contain a <Target> element. A

<Target> element specifies the set of subjects, resources, actions and environments to

which the <PolicySet>, <Policy> and <Rule> applies [18]. The Core and Hierarchical

RBAC profile of XACML specification defines how ANSI core and hierarchical RBAC

standard [19] can be specified in XACML. The Core and Hierarchical profile further

defines the following components:

64

(1) Permission <PolicySet> (PPS) contains <Policy> elements and <Rules> associated

with a given role. A PPS may also contain references to other PPSs associated with other

roles that are junior to the given role, thereby allowing the role to inherit all the

permissions associated with its junior roles. The <Policy> elements and <Rules> of the

PPS describe the resources and the permissions on the resources along with any

conditions on those permissions.

(2) Role <PolicySet> (RPS) associates a role with the corresponding PPS. Each RPS can

only refer to a single PPS.

(3) Role Assignment <Policy> (or <PolicySet>) defines which roles can be enabled or

assigned to which subjects.

4.2.2 Specifying VO Policies Using XACML

In this section, we explain how the VO policies can be expressed with the Core and

Hierarchical RBAC profile of XACML. For example, consider a VO Alpha which could

be a project undertaken by collaborating organizations. Assume that the VO uses two

roles: manager and employee. An employee has permission to read the data from a

database only from 9:00 AM to 5:00 PM. The manager has all the permissions of the

employee, and additionally has permission to update the database. The manager role is

therefore senior to the employee role. In multi-domain environments such as VOs, it is

necessary to manage the attributes across different domains and is often needed to

aggregate the attributes for making authorization decisions. For this purpose, it is

necessary to distinguish the VO�s attributes from local attributes and also from attributes

65

of other VOs. For example, the employee role in the Accounting subgroup of Alpha may

have different permissions from the employee role in the Accounting subgroup of Beta,

where Beta is another VO. Hence, when making an authorization decision, it is not only

important to know the role name employee but also the VO name, either Alpha or Beta.

In order to manage and identify attributes from different domains, Shibboleth uses

scoped attributes defined in SAML, which can include the domain name. A scoped

attribute is a combination of a value and its scope. Scope identifies the domains and sub-

domains in which the values are defined. For example, a scoped attribute may be

�faculty@abcuniv.edu�, which identifies the value �faculty� in the scope �abcuniv.edu�.

However, the XACML profile does not support these scoped attribute values for subjects

such as roles. Mapping SAML to XACML allows the systems using XACML to store

SAML attributes [62].

We show how the scoped attribute values can be specified in the RBAC profile of

XACML to represent role names specific to VOs and VO subgroups. For example, the

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" PolicySetId="RPS:employee:role"
PolicyCombiningAlgId="&policy-combine;permit-overrides">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="&function;anyURI-equal">
 <AttributeValue DataType="&xml;anyURI" Scope="Alpha.Accounting">&roles;employee</AttributeValue>
 <SubjectAttributeDesignator AttributeId="&role;" DataType="&xml;anyURI"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 </Target>
 <PolicySetIdReference>PPS:employee:role</PolicySetIdReference>
</PolicySet>

Figure 4.2: RPS of the employee role

66

employee role in the Accounting subgroup of Alpha can be represented in XACML as

shown in Figure 4.2 which illustrates the RPS for this role. The VO and subgroup names

�Alpha.Accounting� represent the scope of the employee role. The RPS of the employee

role references the PPS of the employee role via <PolicySetIdReference>. The PPS of the

employee role is shown in Figure 4.3, where the resource is represented in a hierarchical

form. The RPS of the manager role is not shown here, but is similar to the RPS of

employee except that the role name is manager and the <PolicySetIdReference>

references the PPS:manager:role shown in Figure 4.4.

In order to support fine-grain authorization for resources, where access control can

be specified not only for the entire resource (e.g. database) but also for its components

(e.g. table), the hierarchical resource profile of XACML [53] can be used. This profile

specifies how XACML provides access control for resources that are organized as a

hierarchy, such as file systems, XML documents, and databases. For example, for non-

XML data, the profile specifies the URI of the following form:

<scheme>://<authority>/<pathname> where <pathname> is of the form <root name>

{/<node name>}, and <scheme> identifies the namespace of the URI and may further

restrict the syntax and semantics of identifiers using that scheme. The scheme can be a

protocol such as �ftp� or �http�, and a file system resource can have �file� as the scheme.

<authority> is typically defined by an Internet-based server or a scheme-specific registry

of naming authorities, such as DNS. The sequence of <root name> and <node name>

values should correspond to the components in a hierarchical resource. For example,

67

�https://localhost:8484/ogsadai/DataService/Employee� indicates the Employee table in

the database represented by the specified URI.

The PPS of the employee role shown in Figure 4.3 grants the permission to execute

the SELECT operation (specified within <Action>) on the resource identified by the URI

�https://localhost:8484/ogsadai/DataService/Employee� (specified within <Resource>)

only from 9:00 AM to 5:00 PM (specified within <Condition>). Obviously, not only the

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" PolicySetId="PPS:employee:role"
PolicyCombiningAlgId="&policy-combine;permit-overrides">
 <Policy PolicyId="Permissions:specifically:for:the:employee:role" RuleCombiningAlgId="&rule-combine;permit-overrides">
 <Rule RuleId="Permission:to:read:data:from:employee:table" Effect="Permit">
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="&function;string-equal">
 <AttributeValue DataType="&xml;string">https://localhost:8484/ogsadai/DataService/Employee</AttributeValue>
 <ResourceAttributeDesignator AttributeId="&resource;resource-id" DataType="&xml;string"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="&function;string-equal">

<AttributeValue DataType="&xml;string">select</AttributeValue>
 <ActionAttributeDesignator AttributeId="&action;action-id" DataType="&xml;string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Condition>
 <Apply FunctionId="&function;and">

<Apply FunctionId="&function;time-greater-than-or-equal">
 <Apply FunctionId="&function;time-one-and-only">
 <EnvironmentAttributeDesignator AttributeId="&environment;current-time" DataType="&xml;time"/>
 </Apply>
 <AttributeValue DataType="&xml;time">9h</AttributeValue>
</Apply>
<Apply FunctionId="&function;time-less-than-or-equal">
 <Apply FunctionId="&function;time-one-and-only">
 <EnvironmentAttributeDesignator AttributeId="&environment;current-time" DataType="&xml;time"/>
 </Apply>
 <AttributeValue DataType="&xml;time">17h</AttributeValue>
</Apply>

 </Apply>
 </Condition>
 </Rule>
 </Policy>
</PolicySet>
</PolicySet>

Figure 4.3: PPS of the employee role

68

basic database operations, but also complex operations, such as transactions and stored

procedures, can be permitted. The PPS of the manager role shown in Figure 4.4 grants the

permission to execute the UPDATE operation on the Employee table. It references the

PPS of the employee role via <PolicySetIdReference>, thereby inherits all the

permissions of the employee role.

4.2.3 Object, Metadata and Artifacts Registry (OMAR)

For storing and managing the XACML policies, we make use of the Object,

Metadata and Artifacts Registry (OMAR) which provides an implementation of the

OASIS ebXML registry specifications. The ebXML specifications are developed to

achieve interoperable registries and repositories, with an interface that enables

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" PolicySetId="PPS:manager:role"
PolicyCombiningAlgId="&policy-combine;permit-overrides">
 <Policy PolicyId="Permissions:specifically:for:the:manager:role" RuleCombiningAlgId="&rule-combine;permit-overrides">
 <Rule RuleId="Permission:to:update:data:from:employee:table" Effect="Permit">
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="&function;string-equal">
 <AttributeValue DataType="&xml;string">https://localhost:8484/ogsadai/DataService/Employee</AttributeValue>
 <ResourceAttributeDesignator AttributeId="&resource;resource-id" DataType="&xml;string"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>

<ActionMatch MatchId="&function;string-equal">
<AttributeValue DataType="&xml;string">update</AttributeValue>
<ActionAttributeDesignator AttributeId="&action;action-id" DataType="&xml;string"/>

</ActionMatch>
 </Action>
 <Actions>
 </Target>
 </Rule>
 </Policy>
 <PolicySetIdReference>PPS:employee:role</PolicySetIdReference>
</PolicySet>

Figure 4.4: PPS of the manager role

69

submission, query and retrieval of the registry and repository contents [51]. An ebXML

registry is an information system that securely manages any content type and the

standardized metadata that describes the content. It also provides a set of services for the

sharing of its content and metadata between organizational entities in a federated

environment [54].

OMAR stores data in a repository and stores the associated metadata as registry

objects [54]. The relationship between the registry objects is represented by an

association object. OMAR allows many-to-many associations between the registry

objects. OMAR uses an object, called slot, to add attributes dynamically to registry

objects.

OMAR stores the XACML policies in their entirety as repository items and

classifies them as either XACML Policy object or XACML PolicySet object. However,

as policies are stored in their entirety, any updates in policies become difficult especially

for VOs whose policies are complex and tend to change dynamically. To solve this

problem, we propose to split each policy into components and store them as different

objects, as described below.

4.2.4 Managing the RBAC Policies in XACML Using OMAR

OMAR allows the creation of new objects and their classification. The information

pertaining to these objects is stored in a relational database. A Role <PolicySet> (RPS) is

represented in XACML as shown in Figure 4.5(a). In OMAR, we represent a

70

<PolicySet> as an XACML PolicySet object with the <PolicySetId> attribute value used

as the object�s name. The other attributes of the <PolicySet> are represented as slots. For

the other components, such as <Target> and <Subjects>, we create new objects, as shown

in Figure 4.5(c).

The role name is stored as a String object. To represent the relationship between

the various components, we use the associations, such as �Contains�, which are defined

by OMAR. In addition, we create a new association �PolicySetIdReference� to represent

the association between a Role <PolicySet> and a Permission <PolicySet> (PPS). The

Id �.. Association
Type

sourceId TargetId

234 Contains 1273123 3874583

345 Contains 3874583 3243454

456 PolicySetId
Reference

1273123 1253123

Figure 4.5: A part of the employee RPS in XACML and corresponding storage in OMAR

 (a) Role <PolicySet> in XACML

<PolicySet
xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="RPS:employee:role"
PolicyCombiningAlgId="&policy-combine;permit-
overrides">
 <Target>
 <Subjects>
 ���..� &roles;employee ����
 </Subjects>
 </Target>
<PolicySetIdReference>

PPS:employee:role
</PolicySetIdReference>
</PolicySet>

Id:1273123
ObjectType: PolicySet
Name:RPS:employee:role
Slots:
 Name: PolicyCombiningAlgId
 Value: &policy-combine;permit-overrides

Id:3874583
ObjectType: Target

Id: 3243454
ObjectType: Subjects

Id: 7234263
ObjectType: String
Name:&roles;employee

Id: 234
ObjectType: Association
AssociationType: Contains

Id: 345
ObjectType: Association
AssociationType: Contains

PPS

(b) Associations between objects in OMAR

(c) Role <PolicySet> stored as objects in OMAR

Id: 456
ObjectType: Association
AssociationType:PolicySetIdReference

71

associations between the various objects are captured in a relational table as shown in

Figure 4.5(b). For example, the association between a PolicySet object and a Target

object is stored as a tuple with Id �234�. A representation of a PPS in XACML and it

corresponding storage in OMAR are shown in Figure 4.6.

Figure 4.6: A part of the employee PPS in XACML and corresponding storage in OMAR

Id:1253123
ObjectType: PolicySet
Name:PPS:employee:role
Slots:
 Name: PolicyCombiningAlgId
 Value: &policy-combine;permit-overrides

Id:5675677
ObjectType: Target

Id: 4356575
ObjectType: String
Name: resource2

Id: 456
ObjectType: Association
AssociationType:Contains

Id: 2398474
ObjectType: Policy
Name: Permissions:specifically:for:the:employee:role
Slots:
 Name: RuleCombiningAlgId
 Value: &rule-combine;permit-overrides

Id: 878
ObjectType: Association
AssociationType: Contains

Id: 256
ObjectType: Association
AssociationType:Contains

Id:2837429
ObjectType: Rule
Name:Permission:to:perform:action2:on:resource2
Slots:
 Name: Effect
 Value: permit

Id: 565
ObjectType: Association
AssociationType:Contains

Id:789
ObjectType: Association
AssociationType: Contains

Id: 3256444
ObjectType: Actions

Id: 4565675
ObjectType: String
Name: action2

Id: 3256444
ObjectType: Resources

RPS

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" PolicySetId="PPS:employee:role"
PolicyCombiningAlgId="&policy-combine;permit-overrides">
 <Policy PolicyId="Permissions:specifically:for:the:employee:role" RuleCombiningAlgId="&rule-combine;permit-overrides">
 <Rule RuleId="Permission:to:perform:action2:on:resource2" Effect="Permit">
 <Target>
 <Resources>�.resource2� </Resources>
 <Actions>�action2� </Actions>
 </Target>
 </Rule>
 </Policy>
</PolicySet>

72

OMAR supports the federation of registries by defining a federation object and the

association between the registry objects and the federation object. Federation allows

multiple registries to link together seamlessly and appear as a single logical registry,

while retaining local autonomy and security. Thus, XACML-based policies can be stored

and managed across multiple sites in the Grid, while each site maintains its own registry

and Shibboleth service. Hence, there is less potential for bottlenecks and no single point

of failure in the system as authorization queries are distributed among the Shibboleth

services. OMAR provides a Java browser user interface and a Web user interface for

managing the registry objects and repository items. It also provides an API for creating

new objects and associations. The XACML-based policies can be easily managed

through this API since all the policy information is stored in relational databases. Figure

4.7 shows the policy objects in Figures 4.5 and 4.6 in a Java browser, and Figure 4.8

shows how the attributes and their values of the PolicySet object in Figure 4.6 are stored

using slots in OMAR.

4.2.5 User-Role Assignments

The RBAC profile of XACML allows the specification of constraints on specific

user-role assignments through the Role Assignment <Policy>/<PolicySet>, but it does

not maintain the roles assigned to each user. The user-role assignments are typically

made by an identity provider at each site by adding the roles to a user�s attribute list. The

identity provider can release the attributes of the users to the resource providers so that

access control decisions can be made.

73

Figure 4.7: Policy objects of the employee role and their associations stored in OMAR

Figure 4.8: Details of the PPS:employee:role object in Figure 4.6 as stored in OMAR

74

In a VO, the user attributes may have to be managed across multiple sites, and in

that case a portion of the attribute space at each of those sites should be delegated to the

VO. This can be supported by Signet [55] which is a privilege management system being

developed by a working group of the Internet2 Middleware Initiative for the distributed

administration of privileges. By interfacing Signet to the Shibboleth and enabling the user

access through GridShib, we can delegate the management of a portion of an attribute

space at a site [33].

The VO can then make the role assignments at each site for the users who are VO

members. However, the Grid identity of the user has to be mapped to a local identity in

order to retrieve the attributes of the user from the attribute space of the site. The

GridShib interface for Shibboleth handles this mapping by maintaining a text file that

maps the Grid identity of a user to a local identity. However, this method is not scalable

as the mapping information should be maintained for each user. In our system, roles are

assigned to the user�s Grid identity, and it can be done within OMAR itself. A registry

object is created for each user, and it contains the user�s Grid identity. The �HasMember�

association is specified between the RPS object of the role and the user object as shown

in Figure 4.7, thus allowing the REA in our system to enable the user�s role.

Moreover, since Shibboleth can be interfaced to local data stores, like LDAP

directories and databases, providing user attributes, the VO can delegate the user-role

assignments to individual sites. The sites can assign certain VO roles to local users based

on their attributes. For example, only the employees of a particular department can be

75

given a membership on the role VO-guest. The REA in our system can also make user-

role assignments dynamically. For example, students enrolled in a particular course can

be given a membership on the role VO-student, based on their user attributes in the local

data stores and the Role Assignment <Policy>/<PolicySet> registry objects.

4.2.6 Administration of RBAC Policies and Dynamic

Delegation of Rights with OMAR

One of the key features of RBAC is the ability to manage itself through

administrative roles and permissions [10]. Users in administrative roles can create roles

and role hierarchies; make user-role and permission-role assignments; and specify

constraints. Furthermore, they can assign administration privileges to other users. This

administration feature of RBAC is not directly addressed by the RBAC profile of

XACML, but can be easily realized through OMAR.

A user with OMAR registry administration privileges can create policy objects and

determine how other registry users can access them through the Access Control Policy

(ACP) file. In particular, that user can create a registry role (by creating policy objects)

and assign privileges for creating/accessing certain registry objects to that role. A registry

role is an OMAR component similar to a database role. The user who creates a registry

role can also grant memberships on that registry role to other registry users. For example,

a VO administrator having OMAR registry administration privileges can create a new

registry role and assign (to that role) only the privilege to create users in VO employee

76

role. The VO administrator can then assign a VO manager to the new registry role (after

creating a registry account for the VO manager). Then, the VO manager can create new

users in VO employee role by himself/herself.

The RBAC profile of XACML does not address dynamic delegation of rights,

which is important in Grids. A user should be able to dynamically delegate his/her rights

to other users, applications and Grid services without administrative intervention. For

example, a VO supervisor with access rights to a new resource may wish to delegate

his/her rights to applications run by certain users. The Grid Security Infrastructure (GSI)

of the Globus Toolkit achieves such delegation through the use of temporary proxy

credentials which are generated based on user credentials [44]. However, it does not

allow the specification of constraints on the delegation of rights. For example, a VO

supervisor may be allowed to delegate his/her rights only to programmers, but not to

operators. Such constrained dynamic delegation can be easily achieved with OMAR. The

VO supervisor can be assigned to a registry role that allows him/her to only create policy

objects representing a new VO role, but not to create user objects. The VO supervisor can

also be allowed to create associations only between the PPS object of the new VO role

and the PPS object of the VO supervisor role. This allows the delegation of privileges

from the supervisor role to the new VO role. Furthermore, the VO supervisor can be

allowed to create associations only between the RPS of the new VO role and the user

objects associated with the RPS of the VO programmer role. This allows only VO

programmers to be assigned to the new VO role. Thus, the VO supervisor can delegate its

77

own privileges only to VO programmers, whose applications can then access the new

resource as soon as the new VO role is enabled by the REA.

4.3 Performance Analysis

We have implemented the proposed RBAC system and integrated it with OGSA-

DAI. We have configured the server-side of OGSA-DAI to use Shibboleth through

GridShib. The OGSA-DAI server has been modified to obtain the user�s attributes from

the Shibboleth service, verify them against the local policy, and map the user�s VO role

to a local role by using the role-map file. The role-map file has been extended to include

the mapping from a VO role to a local role. Furthermore, the resource providers can grant

or refuse the access requests of specific users by maintaining their authorization

information separately in the Access Control List (ACL) maintained by the OGSA-DAI

server. This enables the resource providers to have the ultimate authority over their

resources. The Shibboleth service has been modified to use a custom data connector for

the retrieval of the user�s attributes based on his/her Grid identity from OMAR.

The overheads incurred with our RBAC system are compared with those of the

existing authorization infrastructure of OGSA-DAI. In our system, OGSA-DAI WSRF

Release 2.0 was deployed in the Globus Toolkit 4.0.1 container running on a Linux

machine with a 2.6 GHz Intel Pentium IV processor and 1 GB of RAM. Shibboleth identity

provider (IdP) 1.3c was configured to run on SSL-enabled Apache 2.2.0 and Tomcat 5.0.28

servers. We used OMAR 3.0 beta 1 as the repository for storing the XACML policies. The

78

littleblackbook MySQL database table distributed with OGSA-DAI was used as a test

database, and it contains 10,000 tuples. The perform document consisting of a request for a

single tuple was used for the purpose of analysis.

4.3.1 Profiling Details

A Java method System.currentTimeMillis() is used to get the current system time in

milliseconds. Also, for the server-side analysis, the Apache Log4j logger, which logs

time to a log file in milliseconds, is used. For more accuracy, the tomcat, apache and

Globus toolkit containers are shutdown and restarted before each client request, in order

to minimize the caching effects within Globus Toolkit, OGSA-DAI and Shibboleth

server. The main change from the original configuration of OGSA-DAI is the way

authorization is performed at the server-side. Hence, only the security aspects of the

client and the server are profiled and analyzed.

Globus Toolkit uses Grid Security Infrastructure (GSI) which allows two levels of

security: transport-level and message-level. In the transport-level security, the complete

communication channel between the client and server is encrypted. In the message-level

security, only the message is encrypted, so it has the flexibility that the message can be

transmitted over any transport. The message-level security offers more features than the

transport-level security, but it takes more time. The performance is analyzed based on

these different levels of security established between the client and the server as shown

79

below. For each of these levels, we recorded the times taken with and without using

Shibboleth.

1) MLS: Enforces GSI Secure Conversation between the client and the server of

OGSA-DAI with message-level security and privacy.

2) TLS: Enforces GSI Secure Conversation between the client and the server of

OGSA-DAI with transport-level security and privacy.

3) None: Does not provide a secure conversation between the client and the server of

OGSA-DAI and does not enforce any security.

4.3.2 Client-Side Security

A call is made to each of the above OGSA-DAI Data Services with and without

using Shibboleth. In case of using Shibboleth, additional overhead exists for contacting

the Shibboleth service, retrieving user attributes, and verifying the validity of the attribute

assertions. The getversion method of the Data Service returns the version of OGSA-DAI

used. The listResources method of the Data Service returns the list of resources hosted by

the Data Service. The perform method of the Data Service takes the perform document,

which contains the query, and returns the result to the client.

GSI Secure Conversation requires a security context to be established between

the client and the server. The overheads incurred in setting up this security context are

analyzed based on the following:

1. A call made to manage the communication with the configurable Data Service.

80

2. Calls to the getversion, listResources and perform methods.

0

5000

10000

15000

20000

25000

30000

TLS with
Shib

 TLS without
Shib

 MLS with
Shib

 MLS
without Shib

 None

T
im

e
(m

s)

Perform
ListResources
Version
ConfigurableDataService

The corresponding times are shown in Figure 4.9, and as observed, the time for

creating the proxy which manages the communication with the configurable data service

is almost the same. This process involves connecting to the service at the given URL,

retrieving its information, and determining the specification of web services used for the

OGSA-DAI distribution. As this step does not require any authorization, it takes almost

the same time regardless of the security enforced by the Data Service. The calls to the

getversion, listResources and perform take longer when Shibboleth is used because the

server has to contact it, retrieve the user information, and verify whether the user is

authorized to perform the requested operation. In case of None, it takes less time because

there is no such authorization overhead.

Figure 4.9: Client-Side Security

81

The times for executing the getversion method are longer compared with other

methods, because it is the first call made by the client and takes time to retrieve the user

attributes from the Shibboleth service. The later calls take less time as they may require

the same attributes that are obtained previously and cached by the GridShib interface for

the Data Service.

4.3.3 Server-Side Security

The analysis made on the server-side is based on the following:

1. Times taken for retrieving user attributes from the Shibboleth service during the

getVersion, listResources and perform method calls.

2. Time to establish the JDBC connection.

3. A call to the getSecurityContext method which returns the security related information.

Figure 4.10 shows the times taken for retrieving the attribute information during

the getVersion, listResources and perform method calls. The GridShib interface for the

Data Service can cache received attributes from call to call, which allows multiple

methods to be executed by the same client without making repeated callouts to the

attribute authority. Hence, the attribute retrieval from Shibboleth during the getVersion

method call involves contacting the attribute authority and takes longer time than

subsequent method calls which can use the cached user attributes. When Shibboleth is not

used, this overhead is not incurred as attribute retrieval is not performed.

82

0

1000

2000

3000

4000

5000

6000

7000

TLS with
Shib

 TLS without
Shib

 MLS with
Shib

 MLS
without Shib

 None

T
im

e
(m

s)
shibPerformTime
shibListResourcesTime
shibVersionTime

0

5

10

15

20

TLS with
Shib

 TLS without
Shib

 MLS with
Shib

 MLS
without Shib

 None

T
im

e
(m

s)

Connection

Figure 4.11 shows the time taken for setting up the database connection between

the server and the resource. As no authorization is required, this step takes almost the

same time regardless of the security enforced by the Data Service. Figure 4.12 shows the

time taken for obtaining the security related information on the server-side. In this step,

obtaining the user credential and extracting the identity of the user can be done only

when the GSI Secure Conversation is used. In case of None, the overhead is bigger

Figure 4.10: Server-Side Security

Figure 4.11: Database Connection

83

because of the unsuccessful attempts made to retrieve the credential and the identity of

the user.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

TLS with
Shib

 TLS without
Shib

 MLS with
Shib

 MLS
without Shib

 None

T
im

e
(m

s)

SecurityContext

In summary, on the client-side and server-side, additional overheads exist when

setting up the security context because the server contacts the Shibboleth service,

retrieves user attributes, and verifies the validity of the attribute assertions in order to

authorize the client. The client can execute multiple methods without repeated callouts

being made to the attribute authority by the server. This is because the GridShib interface

for the Data Service can cache received attributes and those same attributes may be

required for subsequent method calls. On the server-side, no additional overheads are

incurred in the credential extraction process and setting up of the database connection, as

no authorization is required during these steps. The overheads in setting up the security

context are quite acceptable when we consider the benefits of our method, such as

scalability in managing VO policies and reduced administration overheads for resource

Figure 4.12: Retrieval of Security Context

84

providers. For multiple large queries, this overhead is almost negligible compared to the

execution time of the perform document.

85

Chapter 5

Conclusions

In this research, we enhanced the role-based access control (RBAC) mechanism of

OGSA-DAI by using (1) the Community Authorization Service (CAS), and (2) the

Shibboleth, GridShib, XACML and OMAR, so that users are granted memberships

statically and dynamically on virtual organization (VO) roles for Grid database services.

Interoperability between different security mechanisms, dynamic delegation of rights,

privacy protection, and the centralized and distributed management of privileges are

supported. The resource providers need to maintain only the mapping information from

VO roles to local database roles and the local policy information; thus, the number of

entries to be managed in the role-map file is reduced dramatically compared to the case

of using the identity-based mapping. The specification of policies at the VO level

eliminates unnecessary authentication, mapping and connections by denying invalid

requests at the VO level itself. When users join/leave a VO, the resource providers do not

need to add/remove their information individually in the role-map files because we can

just grant/revoke their memberships on VO roles. Furthermore, the resource providers

can grant or refuse the access requests of specific users by maintaining their authorization

86

information separately in the role-map files. This enables the resource providers to have

the ultimate authority over their resources.

Our performance analysis shows that the proposed RBAC systems incur a small

overhead in setting up the security context between the client and server. However, this

overhead is quite acceptable when we consider the benefits of our system, such as the

scalability in terms of the number of users and VOs and reduced administration

overheads of resource providers. For multiple large queries, this overhead is almost

negligible compared to the execution time of the perform document.

87

References

[1] I. Foster and R. L. Grossman, �Data Integration in a Bandwidth-Rich World,�

Communications of the ACM, vol. 46, no. 11, pp. 50�57, 2003.

[2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, �The Data

Grid: Towards an Architecture for the Distributed Management and Analysis of

Large Scientific Datasets,'' Journal of Network and Computer Applications, vol. 23,

no. 3, pp. 187�200, 2001.

[3] I. Foster, C. Kesselman and S. Tuecke, �The Anatomy of the Grid: Enabling

Scalable Virtual Organizations,� Int�l Journal of Supercomputer Applications and

High-Performance Computing, vol. 15, no. 3, pp. 200�222, 2001.

[4] A. Grimshaw, �The ROI Case for Grids,� Grid Today, vol. 1, no, 27, 2002.

[5] J. B. D. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor, �Access-Control Language for

Multidomain Environments,� IEEE Internet Computing, vol. 8, no. 6, pp. 40�50,

2004.

[6] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C.

Kesselman, S. Meder, L. Pearlman, and S. Tuecke, �Security for Grid Services,�

Proc. of the 12th Int�l Symp. on High-Performance Distributed Computing, pp. 48�

57, 2003.

88

[7] C. Neuman, �Security, Accounting, and Assurance,� in The Grid: Blueprint for a

New Computing Infrastructure, I. Foster and C. Kesselman (Eds.), Morgan

Kaufmann, pp. 2�48, 1999.

[8] I. Foster and C. Kesselman, �The Globus Toolkit,� in The Grid: Blueprint for a

New Computing Infrastructure, I. Foster, C. Kesselman (Eds.), Morgan Kaufmann,

pp. 259�278, 1999.

[9] D. Ferraiolo and R. Kuhn, �Role-based Access Control,� Proc. of the 15th National

Computer Security Conference, 1992.

[10] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, �Role-based Access

Control Models,� IEEE Computer, vol. 29, no. 2, pp. 38�47, 1996.

[11] C. Ramaswamy and R. S. Sandhu, �Role-based Access Control Features in

Commercial Database Management Systems,� Proc. of the 21st National

Information Systems Security Conference, 1998.

[12] S. Malaika, A. Eisenberg, and J. Melton, �Standards for Databases on the Grid,�

ACM SIGMOD Record, vol. 32, no. 3, pp. 92�100, 2003.

[13] M. Atkinson, K. Karasavvas, M. Antonioletti, R. Baxter, A. Borley, N. Chue Hong,

A. Hume, et al., �A new Architecture for OGSA-DAI,� Proc. of the UK e-Science

All Hands Meeting, 2005.

[14] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke., �A Community

Authorization Service for Group Collaboration,� Proc. of the 3rd IEEE Int�l

Workshop on Policies for Distributed Systems and Networks, 2002.

89

[15] S. Carmody, �Shibboleth Overview and Requirements,� Shibbololeth Working

Group Document, available at http://shibboleth.internet2.edu/docs/draft-internet2-

shibboleth-requirements-01.html, 2001.

[16] Organization for the Advancement of Structured Information Standards (OASIS),

�Assertions and Protocols for the OASIS Security Assertion Markup Language

(SAML) V1.1,� available at http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=security, 2003.

[17] Organization for the Advancement of Structured Information Standards (OASIS),

�Core and hierarchical role based access control (RBAC) profile of XACML v2.0,�

available at http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-

profile1-spec-os.pdf.

[18] Organization for the Advancement of Structured Information Standards (OASIS),

�eXtensible Access Control Markup Language (XACML) Version 2.0,� available at

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf,

2005.

[19] Secretariat of Information Technology Industry Council (ITI), �American National

Standard for Information Technology � Role Based Access Control,� available at

http://csrc.nist.gov/rbac/rbac-std-ncits.pdf, 2003.

[20] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, �A Security Architecture for

Computational Grids,� Proc. of the 5th ACM conference on Computer and

Communications Security, 1998.

[21] N. V. Kanaskar, U. Topaloglu, and C. Bayrak, �Globus Security Model for Grid

Environment,� SIGSOFT Software Eng. Notes, vol. 30, no. 6, 2005.

90

[22] M. Humphrey, G. Wasson, J. Gawor et al., �State and Events for Web Services: A

Comparison of Five WS-Resource Framework and WS-Notification

Implementations,� Proc. of the 14th IEEE International Symposium on High

Performance Distributed Computing, 2005.

[23] M. Cannataro and D. Talia, �The Knowledge Grid,� Communications of the ACM,

vol. 46, no. 1, pp. 89�93, 2003.

[24] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, �The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration,� Open

Grid Service Infrastructure Working Group, Global Grid Forum, 2002.

[25] W. H. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance, and M. Silander,

�Project Spitfire ― Towards Grid Web Service Databases,� Informational

Document, Global Grid Forum, 2002.

[26] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. P. Chue Hong, P.

Dantressangle, A. C. Hume, et al., �OGSA-DAI Status and Benchmarks,� Proc. of

the UK e-Science All Hands Meeting, 2005.

[27] Organization for the Advancement of Structured Information Standards (OASIS),

�Web Services Security: SOAP Message Security 1.0,� available at

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss, 2004.

[28] The Globus Security Team, �Globus Toolkit Version 4 Grid Security Infrastructure:

A Standards Perspective,� available at

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf, 2005.

[29] M. Humphrey, M. R. Thompson, and K. R. Jackson, �Security for Grids,�

Proceedings of the IEEE, vol. 93, no. 3, pp. 644�652, 2005.

91

[30] T. Mayfield, J. E. Roskos, S. R. Welke, and J. M. Boone, �Integrity in Automated

Information Systems,� Technical Report, National Computer Security Center, 1991.

[31] N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist, V. Welch, I. Foster,

and S. Tuecke, �The Security Architecture for Open Grid Services,� Open Grid

Service Architecture Security Working Group, Global Grid Forum, 2002.

[32] I. Foster and C. Kesselman, �Security, Accounting, and Assurance,� in The Grid:

Blueprint for a New Computing Infrastructure, I. Foster, C. Kesselman (Eds.),

Morgan Kaufmann, pp. 395�420, 1999.

[33] V. Welch, T. Barton, K. Keahey, and F. Siebenlist, �Attributes, Anonymity, and

Access: Shibboleth and Globus Integration to Facilitate Grid Collaboration,� Proc.

of the 4th Annual PKI R&D Workshop, 2005.

[34] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, �A Role-based Access Control

Model and Reference Implementation Within a Corporate Intranet,� ACM Trans. on

Information and System Security, vol. 2, no. 1, pp. 34�64, 1999.

[35] G. Zhang and M. Parasher, �Dynamic Context-Aware Access Control for Grid

Applications,� Proc. of the 4th Int�l Workshop on Grid Computing, 2003, pp. 101�

108.

[36] J. Smith, A. Gounaris, P. Watson, et al., �Distributed Query Processing on the

Grid,� Int�l Journal of High Performance Computing Applications, vol. 17, no. 4,

pp. 353�367, 2003.

[37] H. Stockinger, �Distributed Database Management Systems and the Data Grid,�

Proc. of the 18th IEEE Symp. on Mass Storage Systems and the 9th NASA Goddard

Conf. on Mass Storage Systems and Technologies, 2001.

92

[38] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell�Agnello, A. Gianoli, F. Spataro, et al.,

�Managing Dynamic User Communities in a Grid of Autonomous Resources,�

Proc. of Int�l Conf. for Computing in High Energy and Nuclear Physics, 2003.

[39] M. R. Thompson, A. Essiari, K. Keahey, V. Welch, S. Lang, and B. Liu, �Fine-

Grained Authorization for Job and Resource Management Using Akenti and the

Globus Toolkit,� Proc. of Int�l Conf. for Computing in High Energy and Nuclear

Physics, 2003.

[40] S. Otenko and D. Chadwick, �A Comparison of the Akenti and PERMIS

Authorization Infrastructures,� available at

http://sec.isi.salford.ac.uk/download/AkentiPERMISDeskComparison2-1.pdf, 2003.

[41] S. Cannon, S. Chan, D. Olson, C. Tull, V. Welch, and L. Pearlman, �Using CAS to

Manage Role-Based VO Sub-Groups,� Proc. of Int�l Conf. for Computing in High

Energy and Nuclear Physics, 2003.

[42] L. Pearlman, C. Kesselman, V. Welch, I. Foster, and S. Tuecke, �The Community

Authorization Service: Status and Future,� Proc. of Int�l Conf. for Computing in

High Energy and Nuclear Physics, 2003.

[43] M. Baker, A. Apon, C. Ferner, and J. Brown, �Emerging Grid Standards,� IEEE

Computer, vol. 38, no. 4, pp. 43�50, 2005.

[44] R. Butler, V. Welch, D. Engert, I. Foster, S. Tuecke, J. Volmer, C. Kesselman, �A

National-Scale Authentication Infrastructure,� IEEE Computer, vol. 33, no. 12, pp.

60� 66, 2000.

93

[45] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, and P.

Vanderbilt, �Grid Service Specification, Draft 4,� Open Grid Service Infrastructure

Working Group, Global Grid Forum, 2002.

[46] A. Anjomshoaa, M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, et al., �The

Design and Implementation of Grid Database Services in OGSA-DAI,� Proc. of UK

e-Science All Hands Meeting, 2003.

[47] K. Yee, �Secure Interaction Design and the Principle of Least Authority,� Proc. of

Workshop on Human-Computer Interaction and Security Systems, 2003.

[48] R. Sandhu, D. F. Ferraiolo, and D. R. Kuhn, �The NIST Model for Role Based

Access Control: Towards a Unified Standard,� Proc. of the 5th ACM Workshop on

Role Based Access Control, 2000.

[49] M. Jackson, M. Antonioletti, N. C. Hong, A. Hume, A. Krause, T. Sugden, and M.

Westhead, �Performance Analysis of the OGSA-DAI Software,� Proc. of UK e-

Science All Hands Meeting, 2004.

[50] Object, Metadata and Artifacts Registry, available at

http://ebxmlrr.sourceforge.net/3.0/

[51] Organization for the Advancement of Structured Information Standards (OASIS)

ebXML Registry Technical Committee, available at http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=regrep.

[52] Organization for the Advancement of Structured Information Standards (OASIS),

�SAML 2.0 profile of XACML v2.0,� available at http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf, 2005.

94

[53] Organization for the Advancement of Structured Information Standards (OASIS),

�Hierarchical resource profile of XACML v2.0,� available at http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf, 2005.

[54] Organization for the Advancement of Structured Information Standards (OASIS),

�ebXML Registry Information Model Version 3.0,� available at http://docs.oasis-

open.org/regrep/v3.0/specs/regrep-rim-3.0-os.pdf, 2005.

[55] Signet, available at http://middleware.internet2.edu/signet

	Role-Based Access Control for the Open Grid Services Architecture - Data Access and Integration (OGSA-DAI)
	Repository Citation

	Microsoft Word - 4616983A-483E-08B396.doc

