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ABSTRACT 

 

Schwartz, Bonnie Jo. M.S.C.E, Department of Computer Science and Engineering, 
Wright State University, 2007. An Evolutionary Programming Algorithm for Automatic 
Chromatogram Alignment 
 
 
 

Scientists use liquid chromatography/mass spectrometry (LC/MS) instruments to 

measure animals’ metabolic responses to drugs, their environment, or diseases. These 

instruments produce large quantities of data that needs to be analyzed. The data, however, 

can be distorted due to changes in the testing environment and noise produced by the 

instrument. Automating the removal of these distortions is crucial in processing the data. 

The purpose of this thesis is to develop an algorithm that will automate the process. 

The data produced by the LC/MS instrument were treated as images and image 

registration techniques were applied. A polynomial transformation function between 

chromatograms was assumed. An evolutionary programming algorithm was used to 

determine the coefficients of the polynomial. Based on observations of the data set, the 

data was manipulated in different ways to determine the best technique for registering. 

This thesis describes the data manipulation, details of the resolution of the algorithm and 

provides some experimental results. 

The results show that the evolutionary programming algorithm is a reasonable 

solution for automating the registration of chromatograms produced by a liquid 

chromatography/mass spectrometry instrument. Very similar chromatograms were easy 

to register using the evolutionary algorithm while chromatograms with fewer similarities 
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were more difficult to register. These results show that more work needs to be performed 

to fine-tune the algorithm to work on chromatograms that are highly distorted. 



 v

TABLE OF CONTENTS 

          Page 

1. Purpose and Background        1 

1.1 Liquid Chromatography/ Mass Spectrometry     1 

1.2 Metabonomics         2 

1.3 Image Registration        3 

1.4 Evolutionary Computation       6 

1.5 Evolutionary Programming       8 

2. Data and Algorithm Description       9 

2.1 Data Description        9 

2.2 Algorithm Description                14 

2.3 Similarity Analysis                 19 

3. Experiment Description and Results               23 

      3.1 Experiment 1: Algorithm Validation                   23 

      3.2 Experiment 2: Comparing Initially Similar Real Data             26 

      3.3 Experiment 3: Comparing Initially Dissimilar Real Data                            34 

      3.4 Experiment 4: Additional Tests               37 

 3.4.1 Adding terms to the polynomial              38 

 3.4.2 Considering saturation of intensity              39 

 3.4.3 Separating chromatograms               43 

4.  Conclusions and Future Work                46 

5.  References                   49 



 vi

LIST OF FIGURES 

Figure           Page 

1. Data as an image           4 

2. Slight misalignment          5 

3. Basic evolutionary algorithm         7 

4. Basic evolutionary programming algorithm       8 

5. Plotted data; scan line represented by arrow       9 

6. Data organization for analysis        10 

7. Sample chromatogram         11 

8.  Registering a large set of samples        12 

9. Two chromatograms taken from same animal      13 

10. Two chromatograms taken from two different animals     13 

11. Base time and sample time relationships       15 

12. One individual          15 

13. Top: Linear Solution 
      Bottom: Initialization of candidate solutions      16 
 
14.  Top: Parent candidate before mutation 
       Bottom: Child candidate after mutation                                                               16 
 
15. EP algorithm used                                                                                                  17 
 
16. Fitness algorithm                                                                                                    17 
 
17. Fitness function           18 

18. Simple numerical example of fitness function       19 

19. Algorithm for determining similarity between two chromatograms    20 

20.  Illustration of similarity measure         21 



 vii

21. Numerical rankings of similarity         22 

22. Algorithm for solution alignment quality        22 

23. Known distortion used to test algorithm        23 

24. Test plan for experiment 1         24 

25. Average results of experiment 1         25 

26. Time of line #1 = 0.75 * (time of line #2)       26 

27.  Worst results of experiment 1; Line #3 should match line #1     26 

28. Examples of Very Similar, Similar and Least Similar Chromatograms    29 

29. Experiment 2 test plan          30 

30. Average results for experiment 2         31 

31. Very similar chromatograms and results from EP algorithm     32 

32. Similar chromatograms and results from EP algorithm      33 

33. Least similar chromatograms and results from EP algorithm     34 

34. Two chromatograms used in experiment 3 – similarity measure = 0.16717   35 

35. Experiment 3 test plan          36 

36. Additional tests           36 

37. Results from exercise 3- alignment quality value = 1.5443     37 

38. Example of adding more coefficients to polynomial      39 

39. Similarity values when some intensities are removed                            41 
 
40. Results from removing values < 200                          41 
 
41. Top: A least similar example including all values 
      Bottom: The same least similar example excluding values over 200    42 
 
42. Average solution alignment quality values                  43 
 
 



 viii

43. Top: Alignment worsens as time increases 
       Bottom: Results of splitting chromatograms in halves      44 
 
44. Solution alignment quality values for chromatogram halving     45 



 1

1. PURPOSE AND BACKGROUND 

1.1 Liquid Chromatography/Mass Spectrometry 

Liquid chromatography/ mass spectrometry is a powerful analytical tool that 

combines the capabilities of both liquid chromatography and mass spectrometry. “Liquid 

chromatography is a physical separation method in which the components to be separated 

are selectively distributed between two immiscible phases: a mobile phase is flowing 

through a stationary phase bed.” [1] More simply, liquid chromatography is the process 

of separating ions or molecules that are dissolved in a solvent. When the sample solution 

is in contact with another solid or liquid, differing degrees of interaction will occur due to 

differences in adsorption, ion-exchange, partitioning, or size. These differences are used 

to separate the mixture components, allowing the transit time of the solutes through a 

column to be determined. [7]  

“Mass spectrometry is the production of ions that are subsequently separated or 

filtered according to their mass-to-charge ratio and detected.”[1] In simpler terms, mass 

spectrometry is the art of measuring atoms and molecules to determine their molecular 

weight. The information obtained from mass spectrometry is useful in identifying 

species. To perform this analysis, a charge is put on the molecules of interest, i.e., the 

analyte, and then the trajectory response of the resulting ions is measured. [7] Scientists 

can discover differences in samples by analyzing the data produced from these methods. 

These differences can provide important information about changes in the sample 

subjects’ body chemistry. [1] 

The LC/MS instrument produces large quantities of data. Due  to changes in 

environment and noise in the instrument, distortions occur in the data. In order for 
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scientists to analyze this data, the distortions must be removed. This thesis revolves 

around automating the process of removing distortions so that large amounts of data can 

be processed quickly.  

1.2 Metabonomics 

Metabonomics is defined as “the quantitative measurement of the time-related 

multiparametric metabolic response of living systems to pathophysiological stimuli or 

genetic modification.”[9] In more general terms, metabonomics is the study of metabolic 

responses to drugs, environmental changes and diseases. Metabonomics identifies and 

quantifies molecules that are affected as the direct result of a disease, toxic insult, genetic 

modification, or other external stimulus. Knowledge about these compounds can 

potentially be used for “diagnosis, safety assessment screening, or to direct further 

research.” Metabonomics is used to identify up- or down-regulated metabolites and 

biomarkers as a result of a disease state, toxicity, genetic modification, and 

environmental factors.[10] The experiment described in this paper analyzes complex 

metabonomic data that is produced using a liquid chromatography/mass spectrometry 

instrument.  

Due to its high sensitivity and resolution, LC/MS is the preferred analysis for bio-

fluid samples such as serum, plasma, and urine. The LC/MS analysis produces three-

dimensional information regarding the metabolites: retention characteristics, mass-

charge-ratio (m/z), and peak intensities. The additional m/z information from LC/MS 

analysis is ideal for metabonomics. At the same time, more difficulties in alignment and 

deconvolution are encountered with the additional m/z information. [11] Errors and noise 

can be introduced in to the data sets produced by LC/MS analysis via instrument 
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inconsistencies, human error and biological differences between samples. These errors 

pose the problem of how to extract the useful information from the raw data. This has 

become an obstacle for LC/MS in metabonomics applications. [11] Data in large 

databases can be compared if each sample is characterized by the same number of 

variables, each of those variables is represented across all observations and a variable in 

one sample has the same biological meaning in all other samples.[11] When this is the 

case, data from multiple samples can be registered to align corresponding points that are 

misaligned due to errors or noise.   

1.3 Image Registration 

Image registration is the process of spatially aligning two or more images of the 

same scene taken at different times, from different viewpoints, and/or by different 

sensors. By overlaying the images, the centers of corresponding pixels can be matched. 

Differences between images (distortions) may be introduced due to different imaging 

conditions. [15][16] Images can be framed in many ways. Some of the most common 

types of transformation include rigid, affine, perspective and global polynomial. Rigid 

transformations account for object or sensor movement in which the objects maintain 

their relative shape and size.  Affine transformations occur when the same object is 

shown from different angles. Perspective transformations occur when the same object is 

shown from different distances. Polynomial transformations take into account many types 

of distortions as long as they do not vary too much over the image. [4]  

 When the data collected from LC/MS analysis is treated like images, they can be 

registered using image registration techniques. The following figure shows an example of 
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data represented as an image. With retention time on the y-axis and mass on the x-axis, 

the different shades of the points represent different peak intensities.   

 
Figure 1: Data as an image 

A common problem arises with images taken at different times or from different 

view points. If these images need to be compared to detect differences, they must first be 

aligned. To accomplish this alignment, a transformation must first be found so that the 

points in one image can be matched with their corresponding points in the other image. A 

transformation is a mapping of locations of points in one image to a new location in 

another. [4] Figure 2 demonstrates how this data might be misaligned. Although both 

images (data sets) are very similar, there are slight differences that need to be discovered 

and adjusted. A transformation would be used to match up corresponding points.  
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Figure 2: Slight misalignment 

Transformations used to align images can be global or local. A global transformation is a 

single equation which maps the entire image. Local transformations map the image 

differently depending on the spatial location. [4] Both types of transformations were 

explored in this experiment. While the global transformation worked for many cases, the 

local transformations added extra precision to the alignment.  

In images and also in the data from the LC/MS instrument, there are two different 

types of variations. One type is distortions. These are the variations that should be 

removed. They result from noise, shifting or skewing of data from inconsistencies in the 

instrument, measurement error or environmental effects. Other variations should not be 

removed because they represent natural variation of the underlying biological system. 

These are the ones that need to be detected. [4] The algorithm described in this paper 

checks each data point for accuracy using an evolutionary algorithm and it is assumed 

that the variations of interest will stand out while distortions will be removed.  
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The most general type of transformation is the polynomial transformation. [4] 

This works well for many types of distortions. A polynomial transformation is used in the 

algorithm described in chapter two.  

1.4 Evolutionary Computation 

Most registration techniques involve searching over the space of potential 

transformations to find the optimal transformation for a particular problem. [4] 

Evolutionary computation was used in this algorithm to search for the coefficients of the 

polynomial transformation function. Evolutionary algorithms simulate evolution to 

search for solutions to complex problems. [2] The common underlying idea behind all 

evolutionary computing techniques is the same: given a population of individuals, 

environmental pressure causes natural selection (survival of the fittest) and the overall 

fitness of the population grows. This process is easily viewed as optimization. [12]  

Given a function to be maximized, a set of candidate solutions can be randomly 

created and the function can be used as an abstract fitness measure. This function is 

referred to as the fitness function. Using the fitness function, some of the better 

candidates are chosen to seed the next generation by applying recombination and/or 

mutation to some or all members of the population. Recombination can be achieved in 

many ways but in general, it is the combination of two or more existing parental solutions 

to produce one or more new candidate solutions, the children. Mutation is applied to one 

candidate and results in one new, slightly modified candidate solution. Applying 

recombination and mutation leads to an entire set of new candidates, the offspring. The 

offspring then compete with the previous generation for a place in the next generation. 

The winners are determined by their fitness. This process can be iterated until a solution 
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is found or a previously set time limit is reached. [2][3] Figure 3 shows the general 

scheme of an evolutionary algorithm. 

 
 
 
 
 
 
 
 

Figure 3: Basic evolutionary algorithm 

“According to Darwin, the emergence of new species, adapted to their 

environment, is a consequence of the interaction between the survival of the fittest 

mechanism and undirected variations.” Therefore, recombination and mutation must be 

stochastic. The pieces of each parent to be exchanged during recombination as well as the 

mutations are random. However selection of parents and new generation can be 

stochastic or deterministic. Stochastic selection gives even the weak individuals a chance 

to survive or become a parent while deterministic selection only keeps a pre-selected 

group of individuals— usually those with the best fitness. [12] 

Evolutionary computation algorithms are considered generate-and-test, also 

known as trial-and-error, algorithms. The fitness function represents an estimation of 

solution quality. The search process is driven by recombination and mutation creating 

new candidate solutions. The selection operators are also key to the search process. 

However, evolutionary algorithms different from other generate-and-test algorithms 

because they are population based, i.e., they process a whole set of candidate solutions 

and create new solutions by using recombination to mix information from previous 

solutions. [12] 

Initialize population with random individuals 
Compute fitness of all individuals 
WHILE stopping criteria not met 

Select parents 
Create offspring via recombination and mutation 
Compute fitness of offspring 
Replace some parents by some offspring 
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1.5 Evolutionary Programming (EP) 

Evolutionary programming is a variation of evolutionary computing that is 

frequently used in optimization problems. EP does not rely on any form of 

recombination- only mutation. The typical selection method used in EP is to mutate each 

of the N members of the population to create N new offspring. The next generation 

typically contains the best N individuals of the 2N parents and offspring. [6] Evolutionary 

programming traditionally uses representations that are tailored to the problem domain. 

The type of mutation used is depends on the representation used and can also be adaptive, 

changing with each generation. [2] Figure 4 shows the basic evolutionary programming 

algorithm. The specific EP algorithm used for this research will be detailed in section 2.2.  

 

 

 

Figure 4: Basic evolutionary programming algorithm 

 The rest of this paper is laid out in the following format. Chapter two discusses 

the data that was used for this research. It also describes how the data was manipulated 

and the evolutionary search algorithm used. Chapter three provides details about the four 

experiments performed for this research. It details setup as well as results for each 

experiment. Chapter four discusses conclusions drawn from the results obtained in the 

four experiments described in chapter three. Chapter four also discusses future work.

Initialize population with random individuals 
Compute fitness of all individuals 
WHILE stopping criteria not met 

Create one offspring from each individual via mutation 
Compute fitness of offspring 
Replace some parents by some offspring
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2. DATA AND ALGORITHM DESCRIPTION 

2.1 Data Description 

The raw data provided from the liquid chromatography-mass spectrometry 

instrument can be processed into a matrix of mass values along with a corresponding 

matrix of peak intensities and array of retention times. Figure 5 shows these three 

elements plotted together with time on the y-axis, mass on the x-axis and the shade of 

each point representing the peak intensity. The arrow in figure 5 represents a scan line. 

The data in a scan line consists of the peak intensity of each mass at a single point in 

time. There are approximately 100 scan lines per minute in the data provided for this 

experiment.  

 
Figure 5: Plotted data; scan line represented by arrow 

For this experiment, it was assumed that there is little to no distortion in mass so 

no attempts were made to adjust the mass values. The intensity matrix is summed to the
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time axis to create an array of summed intensities. Each element of the intensity array 

corresponds to the same element of the retention time array.  The following figure 

illustrates this process of data organization. 

 
Figure 6: Data organization for analysis 

 
Plotting the intensity array against the time array produces a chromatogram. A 

chromatogram is a graph relating concentration (intensity) of solute leaving a 

chromatographic column, against time, and takes the form of a series of peaks. [5] To 

remove variations in the chromatograms, the data was normalized before analysis. Before 

summing the intensity matrix, all intensities were scaled by the maximum intensity value. 

This produced an intensity scale of zero to one for each chromatogram. As mentioned in 

section 1.2, it is also possible to normalize using a variable that has the same biological 

meaning throughout every sample. For example, creatinine is a chemical waste molecule 

that is generated from muscle metabolism. [14] Creatinine has a known mass value 

(114.1271 m/z) and a known retention time of 1.0 – 1.5 minutes.  While normalization 
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using the maximum intensity worked well for this experiment, using creatinine to 

normalize was another option.  

The data used for this research came from 10 minutes of tests. There were 1000 

scan lines of data—600 (6 minutes) of testing and 400 (4 minutes) of flushing the tube. 

The four minutes of flushing was ignored so each time array contained 600 elements, 

approximately 100 elements (scan lines) per minute.  The following figure shows an 

example of a chromatogram produced using the methods detailed in figure 6. 

 
Figure 7: Sample chromatogram 

 
It was suspected that once a transformation function was found for the 

chromatograms, that one polynomial could be used to adjust the entire data set—a global 

transformation. The goal of this experiment was to find a polynomial transformation 

function that can be used to register two chromatograms. Once registered, differences in 

data could be discovered. This process is performed on a pair wise basis. Figure 8 shows 

how a large set of samples would be processed. One chromatogram is chosen as the base 
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case. All other samples are then registered individually to that base case. One 

transformation function is found for each sample that will register it to the base case.  

 

Figure 8: Registering a large set of samples 

The data set provided contained approximately 410 samples from varying animals 

at varying times with varying dosages. Dosages ranged from 0 to 100 and data were 

collected from each animal at 0, 24 and 48 hours. The data were assumed to only be 

distorted along the time access. By using only the time variable, calculations and analysis 

were simpler than if shifts in both time and mass were considered.  

Samples that were taken from the same animal were visually close to being 

aligned. The following figure shows two samples taken from the same animal with a 

dosage of zero. Since these two chromatograms should be the same, the distortion seen 

(mostly after 3 minutes) is probably caused by noise from the instrument or measurement 

errors. It is these slight distortions that need to be compensated for during the registration 

process.  
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Figure 9: Two chromatograms taken from same animal 
 

Samples taken from different animals, regardless of the day or dosage, could be 

similar or very different. Figure 10 demonstrates how different those chromatograms 

could be. Since these chromatograms come from different animals, some biological 

variation is assumed as well as distortion from the instrument or measurement errors.  
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Figure 10: Two chromatograms taken from different animals 
 

Section 3.2 will discuss registration of chromatograms that initially only contain small 

distortions while section 3.3 will discuss issues that arise while attempting to match data 

with many dissimilarities. 

2.2 Algorithm Description 

 The hypothesis of this experiment is that there exists an n-degree polynomial, 

c1 * tn + c2 * tn-1 + … + cn * t + cn+1, 

where the coefficients c1 through cn+1 are unknown. This polynomial represents the 

transformation along the time axis between two chromatograms. An evolutionary 

algorithm was used to find the optimal combination of values for those coefficients. Each 

individual used in the search consisted of a set of coefficients. The figure 11 shows 

samples of how this transformation works. For example, in the case where the 

chromatograms are a perfect match, the base time and the sample time are equal. This 

linear relationship is displayed in the left plot in figure 11. In the case of a shift only, the 

sample time is some number (the coefficient) multiplied by the base time (ts = c * tb). The 

second plot in figure 11 shows the relationship between base time and sample time when 

a second degree polynomial transformation is used. For this experiment, second or 

greater degree polynomial transformations are used because as time increases, the 

chromatograms become more misaligned. Section 3.4 will discuss these changes in 

chromatograms over time in more detail.  
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Figure 11: Base time and sample time relationships 
 

The algorithm used was a basic evolutionary programming algorithm. Each 

individual consisted of a set of coefficients that would potentially define an n-degree 

polynomial transformation function. Figure 12 shows an example of a single individual 

where c1 through cn+1 represent the coefficients in the transformation function. 

c1 c2 … cn+1 

 
Figure 12: One individual 

 
As figure 9 demonstrated, it was visually obvious that some sample 

chromatograms were initially very similar to the base chromatogram with which they 

were to be registered. Using this domain knowledge, it was determined that the 

population should be initialized using a linear transformation of the base chromatogram 

as a starting point for each candidate solution.  The initial population was generated by 

adding a normally distributed random variable with a mean of zero and standard 

deviation of one to all coefficients except the first degree coefficient where 1 plus a 

normally distributed random variable was the starting value. Figure 13 illustrates how the 

population was initialized. 
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c1 = 0 c2 = 1 c3 = 0 

 

c1 = 0 + N(0, 1) c2 = 1 + N(0, 1) c3 = 0 + N(0, 1) 

 
Figure 13:  

Top: Linear solution  
Bottom: Initialization of candidate solutions  

 
The individuals used in this experiment consisted of three to six real values and 

no recombination of chromosomes was used. Mutation was the only method of variation 

in the population. To create a new child solution from a parent solution via mutation, a 

scaled, normally distributed random number with a mean of zero and a standard deviation 

of one was added to each coefficient in the parent solution.   

cc = cp + α * N(0, 1) 

The scaling constant, α, determined the size of the mutation. For example, if the random 

number generated was 1.2 and α was 0.01, the child coefficient would only be increased 

by 0.012. By using this scaling factor, the degree of change from generation to generation 

could be controlled. Figure 14 shows how a child candidate solution was produced from 

its parent solution. 

c1(p) c2(p) c3(p) 

 

c1 = ci(p) + α * N(0, 1) c2 = c2(p) + α * N(0, 1) c3 = c3(p) + α * N(0, 1) 

 
Figure 14: 

 Top: Parent candidate before mutation 
Bottom: Child candidate after mutation 

 
Each parent produced exactly one offspring and only the best N individuals were 

kept around for the next generation, where N is the size of the initial population. Elite 
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selection was used because if one parent candidate solution is a high quality solution, a 

slight mutation to that individual’s coefficients could be an even better solution. 

However, if a parent candidate solution was of poor quality, the slight mutation used in 

this algorithm would not be likely to create a significantly better quality solution. 

Population size and number of generations varied throughout the experiment to test for 

the optimal situation. Those variables will be discussed in chapter 3 in relation to each 

individual experiment. The algorithm used in this experiment is outlined in figure 15. 

 

 

 

 

 

 

 

Figure 15: EP algorithm used 

Figure 16 shows the algorithm used to evaluate the fitness of a candidate solution 

in this experiment.  

 

 

 

 

 

 

for each element of the sample time array 
{ 

evaluate with coefficients to get a new time 
interpolate new time onto base chromatogram 
find the expected intensity at the new time point 
sum = sum + (expected intensity – sample intensity)2 

} 
fitness = sum / total num of elements 
fitness = sqrt(fitness) 
 

randomly generate an array of N candidate solutions 
evaluate fitness of each solution 
sort population_array by fitness 
for (number of generations) 
{ 
   for (size of initial population) 
   { 
 mutate population_array[i] to create new solution 
 evaluate fitness of new solution 
 add new solution to back of population_array 
   } 
   sort population_array (now size = 2N) 
   crop population_array back down to size N, keeping only best 
} 
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Figure 16: Fitness algorithm 

The fitness algorithm produced the mean squared error of each set of coefficients 

when evaluated along the entire sample time array. The fitness, therefore, was maximized 

at zero because a mean squared error of zero indicates a perfect match between the 

sample chromatogram data and the base chromatogram data.  Figure 17 illustrates the 

fitness algorithm. 

 

Figure 17: Fitness function 

Figure 18 is a simple numerical example of the fitness function algorithm. 

Step 1:  t’ is calculated from the sample chromatogram using the candidate 

solution (top of figure.) t’ is then interpolated onto the base chromatogram.  

Step 2:  The expected intensity is derived from the base chromatogram.  

Step 3:  The actual sample intensity is derived.  
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Step 4:  Fitness is calculated using the fitness function and the intensities found in 

steps 2 and 3.  

Since the fitness calculated in this example is 0, the candidate solution, (0, 1, -0.5), 

evaluates to a perfect match with the base case chromatogram.  

Individual:  0 1 -0.5 

 

 

Figure 18: Simple numerical example of fitness function 

2.3 Similarity Analysis 

 In some of the following experiments, similarity must be quantified. Similarity of 

chromatograms before registration and similarity of solution chromatograms need to be 
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numerically measured to confirm results. Two similarity measurements were developed 

for these experiments. 

The first of these similarity measures is called an initial similarity measure. This 

refers to how similar two chromatograms are prior to any analysis. The algorithm used to 

determine the degree of similarity found the difference between intensities at each scan 

line and averaged the differences over the entire set of scan lines. The algorithm is 

outlined in figure 19.  

 

 

 
   
 

Figure 19: Algorithm for determining similarity between two chromatograms 
 

Figure 20 illustrates what is being measured by this initial similarity 

measurement. Given the first chromatogram set, the dark sections in the second set 

(bottom) represent the differences between the two. The dark sections are quantified with 

this similarity measure. 

sum = 0 
for (each scan line) 
{ 

add intensity difference to sum 
} 
sum = sum / # of scan lines
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Figure 20: Illustration of similarity measure 

To confirm the algorithm, the numerical rankings of similarity were compared 

with visual rankings of similarity. Figure 21 shows the range of numerical values 

associated with each category.  
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Initial 
Similarity Category 

0.00 - 0.02 Very Similar 
0.02 - 0.03 Similar 
0.03 – 0.1 Least Similar 

0.1 + Very Dissimilar
Figure 21: Numerical rankings of similarity 

This measure is used throughout experiments 2, 3 and 4 and is referred to as initial 

similarity.  

 A second similarity measure was introduced in experiment 3 to measure 

the quality of alignment of a solution produced by the EP algorithm. Because distortions 

were assumed to only be along the time axis, this similarity measure compared the values 

in the base case time array with the values in the solution time array. The algorithm used 

for this measure, shown in figure 22, was similar to the initial similarity measure. The 

results of this measure were confirmed using data from experiments 1 and 2 (discussed in 

sections 3.1 and 3.2) whose alignment was very close.  

 

 

 

 

Figure 22: Algorithm for solution alignment quality 

This measure was essentially the average time difference between the solution 

and the base chromatogram with which it was supposed to align. Tests conducted using 

this algorithm with data from experiment 1 and experiment 2 concluded that an alignment 

quality value of less than 0.05 was acceptable alignment and as the value grew the 

alignment was of poorer quality. 

diff = 0 
for ( each element in time array) 
{ 
 add time difference to diff 
} 
diff = diff / #of elements in array
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3. EXPERIMENT DESCRIPTIONS AND RESULTS 

3.1 Experiment 1: Algorithm Validation 

As an initial test of the evolutionary programming algorithm being used, one set 

of real data was distorted with a known second order polynomial: 

c1 * t2 + c2 * t + c3 

where the c1, c2 and c3 represent the coefficients that will be searched for using the 

evolutionary algorithm. Each element in the sample case time array was distorted using 

the distortion function to create the base case array. Figure 23 shows how the distortion 

was performed. 

       
 0.030    0.010  
 0.110    0.090  
 0.230    0.211  
 0.270    0.251  
 0.330 t2 = 0.01 * t1

2 + t1 - 0.02  0.311  
 0.400  0.382  
 0.510    0.493  
 0.620    0.604  
 0.700    0.685  
 0.780    0.766  
 0.850    0.837  
       

sample time      base time 
       

 
Figure 23: Known distortion used to test algorithm 

Intensities were assumed to be unchanging because the algorithm only calculates 

transformations along the time axis. Therefore, the intensity array was the same for both 

chromatograms. Since the distortion function was known, the goal of the algorithm was 
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to reproduce the coefficients of the function. This experiment verified the algorithm 

before it was used on two sets of real data whose distortion function was unknown. 

The known distortion functions were second-order polynomials. Therefore, the 

search was designed to find a second-order transformation polynomial. The results of this 

initial experiment were favorable. Multiple distortion functions were tested. Sets of 

coefficients were chosen such that each coefficient was tested individually and all were 

tested together to confirm that there were no biases in the algorithm. Each distortion 

function was tested with varying numbers of individuals and varying numbers of 

generations. Figure 24 shows the test plan for experiment 1. The table on the left shows 

an “x” in the position of the coefficient(s) being tested. The table on the right shows the 

test runs for each distortion function. For each quantity of individuals, the algorithm was 

allowed to run for 100, 200, 300, 500 and 1000 generations. Some runs showed poor 

results immediately (low numbers of individuals and/or low numbers of generations) so 

only a few tests were run. For any combinations that showed potential, at least 10 tests 

were run.  

distortion  Individuals: 100 
c1 c2 c3  100 200 300 500 1000 
0 1 0  Individuals: 200 
0 1 x  100 200 300 500 1000 
0 x 0  Individuals: 300 
0 x x  100 200 300 500 1000 
x 1 0  Individuals: 500 
x 1 x  100 200 300 500 1000 
x x 0  Individuals: 1000 
x x x  100 200 300 500 1000 

 
Figure 24: Test plan for experiment 1 

The combination of 500 individuals and 500 generations produced the best results 

in each case.  Due to the stochastic nature of the initialization and mutation, it was 
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expected that any combination of distortion coefficients would be equally difficult for the 

algorithm to locate. The following table shows five tests. For each run, the best fitness of 

the terminal generation was recorded. Each test represents the average over ten runs. The 

largest difference in fitness shown in figure 25 is 0.328779. Figure 26 will demonstrate 

that this is not a significant difference.  

Expected Calculated 
Average Fitness c1 c2 c3 c1 c2 c3 

0 1 0 -0.001615 0.804126 0.003122 0.381196 ± 0.14 
0.1 1 0 0.098824 1.004844 -0.001186 0.145632 ± 0.09 
0 0.75 0 0.000591 0.740612 0.010335 0.489382 ± 0.05 
0 1 0.25 -0.001774 1.005522 0.260270 0.458169 ± 0.13 

0.01 1.1 0.003 0.008986 1.102776 0.003500 0.233379 ± 0.03 
Figure 25: Average results of experiment 1 

The worst result (as seen in the above table) had an average fitness of 0.474411. 

Figures 26 and 27 show the visual results of this worst average. In figure 26, line #2 

(solid) is distorted along the time axis with the function, 0.75 * t, to produce line 

#1(dotted.) In figure 27, the third line (added alongside line #1) represents the worst 

result of this experiment. Line #3 is supposed to align with line #1. It almost completely 

aligns which is why it is difficult to discern two lines. 
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Figure 26: Time of line #1 = 0.75 * (time of line #2) 

 

 
Figure 27: Worst results of experiment 1; Line #3 should match line #1 

Figure 27 represents the worst results of experiment 1. The excellent quality of 

even the worst results demonstrates that experiment 1 performed well. Experiment 1 

successfully found a second-degree polynomial transformation function.  The 



 27

transformation function found was almost equal to the distortion function used to produce 

the base chromatogram. The results of experiment 1 demonstrated that the algorithm was 

functioning properly and could be used to compare two sets of real data. 

Because the distortion function was known in experiment 1, no similarity 

measures were necessary. A simple comparison of distortion function coefficients and the 

coefficients generated by the EP algorithm was enough to confirm quality.  

3.2 Experiment 2: Comparing Initially Similar Real Data 

The purpose of the second experiment was to use the algorithm with two sets of 

actual data. Data sets from samples taken from the same animal are similar. Some are 

more similar than others. Some of the difference in these samples are due to measurement 

error and/or noise in the instrument. The other differences are the biological variations 

that are caused by the experimental methods and need to be pinpointed.  

The chromatogram data used for experiment 2 was divided into three sections based on 

their initial similarity measures: very similar data, similar data, and least similar data. 

Very similar data was almost an exact match while similar data has a few shifts and 

skews. Least similar data contained many shifts, skews and differences. Data falling into 

the very dissimilar category will be tested in experiment 3. Eight chromatograms in 

different combinations were used for this experiment. The chromatograms were all from 

the same animal with the same dosage but at different times- 0, 24 and 48 hours.  

  Figure 28 shows a visual example of each category of similarity used for this 

experiment. In the first case, the chromatograms are considered very similar. With a 

similarity value of 0.0092524, they are almost equal. The second case shows 

chromatograms that are similar. Their similarity value is 0.025315. The third set of 
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chromatograms in figure 28 has a similarity value of 0.059379 and is considered least 

similar.  
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Figure 28: Examples of Very Similar, Similar and Least Similar Chromatograms 
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Even the least similar chromatograms in experiment 2 were initially much more 

closely matched than some of the distortions performed in experiment 1. Due to the 

initial similarities of chromatograms in experiment 2, a second degree polynomial was 

assumed.  

In this experiment, the general test plan from experiment 1 was used. Two 

chromatogram sets from each category were tested with at least 10 runs of each 

individual-generation combination. Figure 29 shows the test plan for experiment 2.  

     Individuals: 100 
Very Similar (1)  100 200 300 500 1000 
Very Similar (2)  Individuals: 200 
Similar (1)  100 200 300 500 1000 
Similar (2)  Individuals: 300 
Least Similar (1)  100 200 300 500 1000 
Least Similar (2)  Individuals: 500 

  100 200 300 500 1000 
     Individuals: 1000 
     100 200 300 500 1000 

Figure 29: Experiment 2 test plan 

Because this experiment used two real data sets rather than one real set and one set 

distorted with a known function, it took higher numbers of generations and individuals to 

find a good solution. With small numbers of individuals (<500), the algorithm 

prematurely converged to a solution that was not optimal. Due to the size of the search in 

this experiment, it was necessary to start the algorithm with many options for potential 

solutions. The bad candidate solutions were weeded out quickly, leaving many good 

potential solutions. Also, few generations (< 500), did not give the algorithm enough time 

to reach a good solution. More than 1000 generations did not produce significantly higher 

quality results and therefore were considered unnecessary. The evolutionary 

programming algorithm worked best with populations of 500 to 1000 individuals and 

1000 generations.  
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Because the noise and errors caused by the instrument and humans were even 

slighter than the distortions introduced in experiment 1, experiment 2 performed very 

well. Due to the similarities in these data sets, the algorithm typically settled on an 

approximately linear distortion function. The table below shows the average results for 

the three types of data sets.  

  Average 
  c1 c2 c3 fitness 
Very Similar -0.00097 0.99999 0.01592 0.02617 
Similar -0.00255 1.00466 0.01035 0.03959 
Least Similar -0.00185 1.00582 0.00443 0.05943 

 
Figure 30: Average results for experiment 2 

 
As figure 30 demonstrates, although all results for experiment 2 were very favorable, the 

fitnesses of the candidate solutions for the least similar chromatograms were of lower 

quality than those of very similar chromatograms. Figures 31, 32 and 33 show samples of 

results from each category. In all three figures, line #1 is the sample chromatogram while 

line #2 is the base which is being aligned with. Line #3 represents the solution produced 

by the evolutionary programming algorithm. Figure 31 shows the results from the very 

similar category. The chromatograms are initially almost equal. The 3 lines are aligned so 

closely that they almost appear to be a single line. However, the close-up view shows that 

they are in fact three individual lines. The solution alignment value for this result is 

0.0055. Because the difference between scan lines is approximately 0.6 seconds, the 

difference shown is not significant.  
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Figure 31: Very similar chromatograms and results from EP algorithm 

 
Figure 32 shows a result from chromatograms in the similar category. While the 

initial chromatograms were slightly less similar than in figure 31, the results were still 

very favorable. A very low solution alignment value (0.0057) was found for this solution 

too. Again, the difference is less than a scan line and therefore could not be a close 

match. 
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Figure 32: Similar chromatograms and results from EP algorithm 

Lastly, figure 33 shows a result from chromatograms that were categorized into the least 

similar category. Again, a low solution alignment value was found (0.032). While this 

value is not as low as the previous cases, the match is still excellent.  
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Figure 33: Least similar chromatograms and results from EP algorithm 

 An interesting anomaly was observed during this experiment. As time increased, the 

quality of the match of the results was increasingly worse. It is speculated that these 

changes over time are somehow related to changes in state as the solution moves through 

the LC/MS instrument. This anomaly is addressed in section 3.4.  

3.3 Experiment 3: Comparing Initially Dissimilar Real Data 

The third experiment tested data from different animals. These chromatograms 

are, for the most part, very different. While the chromatograms in experiments one and 

two could be visually confirmed to be similar, the chromatograms in experiment three 

were not as simple. The initial similarity measure used in experiment 2 was also used for 

initial data in experiment 3.  

In experiment 2, all chromatograms were in the least similar category or better 

because they had initial similarity measures of less than 0.1. The chromatograms used in 



 35

experiment 3 had initial similarity measures of 0.1 and greater. Figure 34 shows how 

different two of these chromatograms can be. 

 
Figure 34: Two chromatograms used in experiment 3 – similarity measure = 0.16717 

 
 Due to the poor quality of similarity measures for all data used in experiment 3, 

there was no division into very similar, similar and least similar categories. Five very 

dissimilar chromatogram sets were used for this experiment. The test plan used in 

experiments 1 and 2 was used as a starting point for experiment 3 and a second-degree 

polynomial transformation function was a starting assumption. Figure 35 shows the test 

plan for experiment 3.  
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     Individuals: 100 
     100 200 300 500 1000 
Very Dissimilar (1)  Individuals: 200 
Very Dissimilar (2)  100 200 300 500 1000 
Very Dissimilar (3)  Individuals: 300 
Very Dissimilar (4)  100 200 300 500 1000 
Very Dissimilar (5)  Individuals: 500 
     100 200 300 500 1000 
     Individuals: 1000 
     100 200 300 500 1000 

 
Figure 35: Experiment 3 test plan 

 
It was immediately obvious that experiment 3 would require both an increase in 

individuals and an increase in generations. The fitness of the candidate solutions was 

improving slightly but the results were still poor compared to the results found in 

experiments 1 and 2. An additional test plan was added to experiment 3. Figure 36 shows 

the additional tests that were run.  

     Individuals: 1000 
     1000 2000 3000 4000 5000 
Very Dissimilar (1)  Individuals: 1200 
Very Dissimilar (2)  1000 2000 3000 4000 5000 
Very Dissimilar (3)  Individuals: 1500 
Very Dissimilar (4)  1000 2000 3000 4000 5000 
Very Dissimilar (5)  Individuals: 1700 
     1000 2000 3000 4000 5000 
     Individuals: 2000 
     1000 2000 3000 4000 5000 

 
Figure 36: Additional tests 

 

These tests proved to be very time-intensive yet they did not produce better 

quality solutions. Regardless of the individual-generation combination, these 5 

chromatograms continuously produced alignment quality values of greater than 0.05. In 

many cases, the alignment quality values were greater than 1.0. These values led to the 

conclusion that the algorithm would not find a solution for these very different 
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chromatograms. This problem is potentially due to the fitness function and should be 

investigated in future works. There is also a possibility that a solution does not exist at 

all. Figure 37 shows one example of the quality of results achieved in experiment 3. Line 

#1 is the sample chromatogram while line #2 is the base chromatogram. Line #3 is the 

chromatogram resulting from the values obtained from the evolutionary programming 

algorithm.  

 
Figure 37: Results from exercise 3- alignment quality value = 1.5443 

 
Although none of the results from experiment 3 were high quality, it was noted that the 

more similar the data sets, the better the results of the algorithm.  

3.4 Experiment 4: Additional Tests 

Based on results observed in the previous three experiments, it was determined 

that additional tests might provide more information about the data sets and potential 

alternative solutions to registering the chromatograms. These additional tests explored the 
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data sets more thoroughly. It was hoped that they would provide a better understanding of 

how the data is laid out and what might be done to correlate data sets that are very 

dissimilar. Unless otherwise noted, these experiments were performed with the 

previously observed optimal individual-generation combination for the data set. 

3.4.1 Adding terms to the polynomial 

The first test attempted to add additional terms to the polynomial in hopes of 

getting better results from the algorithm. More terms in the polynomial will add more 

complexity and potentially lead to better quality matches. In experiment 2, it was 

observed that the match quality decreased as time increased. Figure 11 showed a second 

degree polynomial. As base time increased, sample time increased more rapidly. More 

terms in the polynomial would make this increase even more rapid. These increases in 

times seemed to be occurring in chromatogram registration.  

While this seemed like a reasonable idea, the algorithm produced coefficients, 

although very small, for the higher order elements of the polynomial. This caused very 

unpredictable results in the solution chromatogram and solution quality values of 0.1 or 

greater. When using more than two terms in the polynomial, if a perfect solution was not 

found, it was more likely to be a very poor solution. The following example shows why 

this could lead to many problems. 

Polynomial:             a * t5 + b * t4 + c * t3 + d * t2 + e * t + f 
Solution:             a = 0; b = 0; c = 0.01; d = 0; e = 1.2; f = 1 
Solution from EP:      a = 0.001; b = 0.001; c = 0.03; d = 0.0001; e = 1.2; f = 1.1 
Assume:                      t = 0.5; 1.5; 4.0 
Expected results:       1.60125; 2.83375; 6.44000 
EP results:                 1.70386; 3.01413; 9.10160 

 
The example shows that as time increases, the expected results and the EP-produced 

results become increasingly more different. Figure 38 illustrates this example. The 
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broken line shows the expected results while the solid line shows the results produced by 

the EP. Although the differences are not initially significant, as time increases, the results 

from the EP are very different from the expected results.  

 

Figure 38: Example of adding more coefficients to polynomial 

This experiment suggested that unless an exact solution was found, the second-order 

polynomial was the best transformation function for registering the chromatograms.   

3.4.2 Considering saturation of intensity 

In this research, it was known that the peak intensity values were saturated at 

values over 200. This knowledge led to the hypothesis that the values over 200 might be 

significant in some way. It was concluded that these values might be the key to matching 

these chromatograms or that they might be hampering the algorithm from finding a match 

if they are included in the chromatogram.  

First, all values fewer than 200 were excluded from the chromatogram analysis. 

Next, values greater than 200 were excluded from the chromatogram analysis. Much of 

the data tested in experiments 2 and 3 was reevaluated using this method.  
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Visual evaluation of this data showed that when excluding values greater than 

200, the initial similarity of the chromatograms was of better quality. Also, when only the 

values over 200 were analyzed, the visual analysis showed worse quality. Figure 38 

shows the similarity value results for this experiment. Eight of the chromatogram sets 

from experiment 2 are shown in the first table. All 5 of the chromatogram sets from 

experiment 3 are shown in the second table. Positive percent differences represent an 

improvement in similarity. Those values are highlighted in the tables.  

Similarity Values (experiment 2) 
all 

intensities 
intensities < 

200 
% 

difference 
intensities > 

200 
% 

difference 
0.00925 0.00927 -0.18590 0.01655 -78.90493 
0.01894 0.02695 -42.29226 0.02020 -6.61493 
0.02328 0.02044 12.21974 0.04808 -106.51147 
0.02532 0.01621 35.95497 0.03694 -45.90954 
0.02591 0.02184 15.70701 0.05558 -114.47978 
0.03800 0.04141 -8.97966 0.03185 16.16707 
0.04804 0.03179 33.82941 0.08313 -73.03097 
0.05938 0.05302 10.71759 0.05468 7.91694 

     
     

Similarity Values (experiment 3) 
all 

intensities 
intensities < 

200 
% 

difference 
intensities > 

200 
% 

difference 
0.10401 0.12287 -18.13287 0.09450 9.14239 
0.15374 0.13544 11.90321 0.13716 10.78444 
0.16717 0.11932 28.62356 0.23050 -37.88359 
0.16782 0.13381 20.26576 0.19130 -13.99118 
0.20567 0.15944 22.47776 0.23680 -15.13590 
Figure 39: Similarity values when some intensities are removed 

Overall, chromatogram sets constructed with only intensities greater than 200 did 

not show significant improvement over the initial sets that used all intensities. Only about 

25% showed improvement and the improvements were not as great as in the reverse 

experiment. When these new chromatograms were analyzed with the evolutionary 

programming algorithm, the resulting candidate solutions’ fitnesses were all worse than 
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the fitnesses of the same chromatograms including all intensity values. Figure 40 shows 

one result of removing values with intensities less than 200. Overall, the initial match 

quality is poor as well as the solution quality. Figure 42 shows the solution qualities of 

these results. 

 

Figure 40: Results from removing values < 200 

Interesting results were observed by eliminating values over 200. Since intensities 

over 200 were determined to be saturated, it was strongly suspected that these values 

could be inaccurate and therefore could be causing some of the noise and misalignment in 

the chromatograms. In approximately 72% of the cases, the chromatograms containing 

only values under 200 had better initial similarity values than the chromatograms 

containing all values.  When these chromatograms were tested with the EP algorithm, 

some showed better solution alignment quality. On average though, the solution quality 

was about the same (or slightly worse) for chromatograms with good initial similarity 

values but was better for chromatograms whose initial alignment was poor. Figure 41 

shows an example of chromatograms that had originally been classified as least similar 
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based on their similarity value. The first set of chromatograms includes all values while 

the second set contains only intensity values below 200. As in previous figures, line #1 is 

the sample chromatogram while line #2 is the base chromatogram. Line #3 is the solution 

produced by the EP algorithm and is supposed to align with line #2.  
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Figure 41: Top: A least similar example including all values 

Bottom: The same least similar example excluding values over 200 
 

 Figure 42 shows the average solution quality values for the chromatograms 

(categorized by initial alignment) tested using these methods.   
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Solution Alignment Quality Values 
  All intensities intensities > 200 % difference intensities < 200 % difference 
very similar 0.00994 0.02632 -164.91193 0.01052 -5.92854 
similar 0.01589 0.01956 -23.07886 0.01687 -6.18038 
least similar 0.01832 0.04992 -172.53767 0.01822 0.52413 
very dissimilar 0.86259 0.89116 -3.31272 0.67058 22.25926 

Figure 42: Average solution alignment quality values 

This experiment revealed that the values with intensities over 200 may be having 

a negative effect on the initial alignment of the chromatograms and potentially the ability 

of the algorithm to find the coefficients of the polynomial translation function.  

3.4.3 Separating chromatograms   

 Experiment 2 led to the observation that alignment of the chromatograms is better 

at the low end of the time scale than the high end. Figure 43 (top) illustrates this concept. 

The first half of the resulting chromatogram aligns so closely with the base 

chromatogram that they form one line (zoomed in picture on the left.) As time increases, 

the alignment becomes worse (zoomed in picture on the right.)  

This alignment issue led to the last additional experiment. To solve this problem, 

the chromatograms were divided into sections and each section was run through the 

algorithm as an individual chromatogram. After results were gathered for each section, 

they were combined to produce a single result chromatogram. For this experiment, 

chromatogram data was divided into halves and each half was treated like a separate 

chromatogram. As with previous experiments, this method led to improvements in some 

chromatograms but not all. While there are still slight flaws, this method occasionally 

created better results than using the entire chromatogram. Figure 43 shows the results 

when the chromatograms were split into halves.  
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Figure 43: Top: Alignment worsens as time increases 
Bottom: Results of splitting chromatograms in halves 

 
Figure 44 shows the average solution quality results for this experiment.  

Solution Alignment Quality Values 
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  All Values Halved/Recombined 
similar 0.015889 ± 0.003 0.00842 ± 0.005 
least similar 0.018316 ± 0.007 0.022704 ± 0.003 
very dissimilar 0.86259 ± 0.010 0.009608 ± 0.008 

Figure 44: Solution alignment quality values for chromatogram halving 

While the average quality got significantly worse in each case, this experiment showed 

potential with some chromatograms (as seen in figure 42.) The key is to divide the 

chromatograms in enough sections and to get a good quality match in each section. If all 

divisions produce a good solution alignment except for one, that one could cause the 

entire chromatogram to have a poor solution alignment quality value. 
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4. CONCLUSIONS AND FUTURE WORK 

This thesis demonstrated that a polynomial transformation function between two 

similar chromatograms can be found using evolutionary programming. However, when 

chromatograms were not initially similar it was difficult or even impossible to find a 

good quality alignment using just the chromatograms. Experiment 2 demonstrated that 

the algorithm would work with real data and that the more similar the chromatograms the 

better the algorithm performed. Experiment 3 showed that the algorithm was not capable 

of aligning very dissimilar chromatograms.  

 The data provided was assumed to only be distorted along the time axis. This 

somewhat explains the poor results of experiment 3. It might be unreasonable to assume 

all chromatograms are able to be registered. Chromatograms produced from samples 

taken from different animals which were given different dosages should be expected to 

be biologically different. Further investigation into the usefulness of aligning these 

chromatograms should be conducted before much more work is put into aligning these 

chromatograms. If these different chromatograms are to be correlated in some way, future 

work on the algorithm should consider differences in intensities and masses along with 

retention times.  

 The additional tests in experiment 4 provided some insight into the data provided 

by the LC/MS instrument. With the exception of adding terms to the polynomial, each of 

the experiments showed potential with at least a few chromatograms. None, however, 

worked consistently well with all chromatogram sets. Future work with this research 
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should incorporate these experiments. One way to incorporate these is to add 

components to the algorithm that try these tests and use them only if they improve the 

initial similarity value or the quality of the solution.   

In experiment 4, dividing the chromatogram into halves showed promise. For 

dissimilar chromatograms, dividing into several sections could improve alignment. 

Future work with the algorithm should include methods for determining when a 

chromatogram should be divided into smaller sections and how many sections are 

necessary. It would be wasteful of resources to automatically divide each chromatogram 

into a certain number of sections so decisions about division should be based on a 

predetermined value, perhaps the initial similarity value. A reasonable maximum number 

of sections should also be determined to prohibit chromatograms from being divided into 

many sections.  

With additional work in some areas, the recommended solution for improving this 

research is the following. Initial alignment measures should be taken for all intensity data 

values, just intensity values under 200 and just intensity values over 200. Whichever of 

these receives the best initial alignment value should be used to find the polynomial 

transformation function. The chromatograms should always be divided into two separate 

chromatograms (first half, second half.) Based on the initial alignment value, 

chromatograms should be divided into additional sections with the maximum number of 

sections being the number of minutes— so there are no fewer than 100 scan lines per 

section.  

The algorithm developed in this experiment will ultimately lead to a solution that 

will register the entire matrix of intensities rather than their resulting chromatograms. 
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Like the chromatogram, the matrix may need to be divided into sections, potentially both 

vertically and horizontally. The algorithm for registering the matrix should include a 

method for determining what divisions are needed. The full package, when developed, 

will hopefully be a useful tool for the scientific community to analyze large quantities of 

data quickly. Besides the liquid chromatography/ mass spectrometry and metabonomics 

application, this package could be used to automate many other data analysis that will 

help scientists further their research.   
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