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ABSTRACT

Haney, Mark, Ph.D., Department of Mechanical and Materials Engineering, College of 
Engineering and Computer Science, 2006. Topology Optimization of Engine Exhaust-
Washed Structures.

Aircraft structure subjected to elevated temperature and acoustic loading present a 

challenging design environment.  Thermal stress in a structural component has typically 

been alleviated by allowing thermal expansion.  However, very little work has been done 

which directly addresses the situation where such a prescription is not possible.  When a 

structural component has failed due to thermally-induced tensile stresses, the answer to the 

question of how best to stiffen the structure is far from trivial.  In this work, we demonstrate 

that conventional stiffening techniques, for example, those which add material to the 

thickness of a failing panel, may actually increase the rate of damage as well as increasing 

load into sub- and surrounding structure.  The typical compliance minimization topology 

optimization formulation is applied to a thermally-loaded panel resulting in extremely non-

optimal configurations.  To generate successful thermal stress designs where the objectives 

are to lower the tensile stresses while simultaneously limiting the amount of additional load 

into sub- and surrounding structures, a well-known characteristic of topology optimization 

for a single-load case mechanical loading is exploited which by construction limits 

additional load into surrounding structure.  Acoustic loading is also a major concern as 

exhaust gases with random frequency content impinge on aircraft structure in the vicinity of 
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the engines.  An evolutionary structural optimization algorithm is developed which 

addresses both the maximum von-Mises stress and minimum natural frequency for a generic 

thermal protection system.  The similarities between the two approaches are demonstrated.
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CHAPTER 1

Introduction

1.1. Motivation

The age-old adage "necessity is the mother of invention" is appropriate in describ-

ing the genesis of this work. Over the past three years the author along with other

members of the Air Force Research Lab Structures Division (AFRL/VA) have been

involved in the root cause investigation of premature cracking of the aft deck of the

B-2 Stealth Bomber. The aft deck is comprised of a large sheet of a high temperature

titanium alloy which is doubly curved in order to match the outer mold line (OML)

of the aircraft and is located directly behind the engines (Figure 1.1). Stealth air-

craft like the B-2 rely on low observability (LO) from both radar cross section and

Figure 1.1. Location of aft deck structure relative to B-2 aircraft.
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Figure 1.2. Side view of aft deck curvature

infrared detection standpoints for full mission capability. The concept of embed-

ding engines inside the airframe to prevent enemy detection has become a common

characteristic of stealth aircraft. A path for the expulsion of exhaust gases must be

directed such that the thrust is maintained and line of sight into the hot components

of the engine is prevented. One important purpose of an aft deck structure is to

prevent direct line of sight into the high temperature regions of the engine (Figure

1.2). Therefore, the aft deck, in e¤ect, denies a target which is very amenable to

infrared detection. In peforming its function, this structure is exposed to an extreme,

combined thermal-acoustic loading generating a very challenging design environment.

The root cause investigation determined that the premature cracking was due to

excessive stress generated at the "�xed" interfaces to sub- and surrounding structure

due to thermal expansion. This out-of-plane deformation was several times the

thickness of the aft deck and hence required nonlinear analysis. The original models
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were analyzed using MSC/Nastran linear static analysis and therefore did not predict

the failure condition. As cracks formed and grew to appreciable lengths, the natural

frequency of the structure decreased. With wide-band random noise impinging on

the structure from the engine exhaust, this frequency drop resulted in additional high

cycle fatigue damage which accelerated the crack growth rate.

The traditional approach to the design of thermal structures typically includes

a prescription for allowing thermal expansion. Thermal stresses result when this

expansion is inhibited. Aerospace examples of this approach to hot structures can

be found in engine liners, tailpipes and the well-known example of the fuel system

of the SR-71 [1]. This concept is not, however, unique to the aerospace industry as

very familiar examples are found in expansion joints in concrete sections and in the

slotted attachment of vinyl siding for home exterior.

An approach that allowed for thermal expansion was investigated for the long-

term solution of the engine exhaust-washed structure (EEWS) of the B-2. There were

several considerations that made this solution unworkable. Firstly, the aft deck, while

not being in the primary �ight load path, does, in fact, carry a small but signi�cant

share of the �ight loads. Removing the attachment to surrounding structure and

implementing a "�oating" design which was free to expand would, indeed, reduce the

aft deck thermal stress; however, �ight load would be reacted in structure not designed

for this purpose. Secondly, a concern was raised with respect to an increase in radar

cross section. An expansion joint would introduce a discontinuity in the outer mold

line of the aircraft and could potentially impact the mission capability of the plane.

A cover seal that is used at other junctures of the plane to conceal stationary gaps was

investigated as a potential solution. These knife-edge seals (Figure 1.3) were found

to be inadequate for a sliding interface due to potential curling of the edges resulting

from the stick-slip nature of frictional contact. A cavity similar to that shown in
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Knifeedge Seal

Expansion/Contraction

Direction

Exhaustwashed Panel

Discontinuity

Knifeedge Seal

Expansion/Contraction

Direction

Exhaustwashed Panel

Discontinuity

Figure 1.3. Discontinuity formation due to sliding at exhaust-washed
panel �knife-edge seal interface.

Figure 1.3 could result in an increase in radar signature due to loss of smoothness

[2].

Figure 1.4 provides a detailed description of the damage location and representa-

tive substructure that provides the relative �xity with respect to the aft deck skin.

The transient and subsequent steady state thermal reponse results from the engine

exhaust gases transferring energy to the upper surface of the aft deck through convec-

tion. Radiation and conduction heat transfer mechanisms transmit the heat down

through the supporting structure. Thermal stresses result from both the through-

thickness gradient in temperature as well as the pure volumetric expansive e¤ects.

With relatively little cooling supplied to the cavity, the stress �eld is dominated by

the gradient contribution early in the heat up. As the thermal response approaches

steady state, the volumetric e¤ects increase and eventually dominate the stress re-

sponse producing large loads into surrounding structure. Two spars (named the
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trailing edge and tunnel spar (Figure 1.4)) provide resistance to the thermal expan-

sion of the aft deck skin with respect to both displacement and rotation. Since the

structure can be considered a shell with large but �nite radii of curvature, several

modes of deformation are possible. The deck can respond linearly for low temper-

ature and small gradient regimes. If the maximum temperature and/or gradient

is increased, nonlinear geometric e¤ects become important and out-of-plane bowing

results. Depending on the level of �xity provided by the surrounding structure and

in-plane and through thickness temperature gradients, the skin can become unstable

as buckling and post-buckling behavior is possible. The damage locations are consis-

tent with a clamped boundary with the cracks initiating on the bottom surface at the

location where the deformed radius of curvature is maximum. Section B-B depicts

a recent crack location where repair was required. However, since no allowance has

been made to relieve thermal stress, and constraint is provided by a series of spars

and ribs, cracks are possible at a multitude of locations.

Since traditional methods of relieving this thermal stress condition proved prob-

lematic, another approach was needed. A sti¤ening approach which employed con-

ventional sti¤ening members (e.g., T- and I- shaped beams) was investigated. While

this approach would su¢ ce in a mechanically-loaded environment in which the loading

is independent of the sti¤eners, a thermal environment necessarily requires participa-

tion of the additional sti¤ening structure as loads into surrounding structure. Hence,

when a clamped boundary assumption is made (which is conservative from a loads

perspective), an enormous increase in loads and moments is observed at the clamped

boundary. While a truly clamped boundary is di¢ cult to observe in a physical

system, it provides a reasonable metric for comparison of design alternatives. This

increase in load is attributable to two factors. Firstly, the decrease in out-of-plane
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Figure 1.4. B-2 aft deck detailed damage location

bowing of the curved skin structure will result in additional load as the bending mo-

ment reacted at the boundary is exchanged for in-plane compression. The second

factor and the primary focus of this work, is the additional load that results from the

thermal participation of the sti¤ening structure. An obvious trade space emerged

which seeks to balance the need for additional out-of-plane sti¤ening with increase

in load at the boundary. A tool which provided for the greatest exploitation of the

design space was desired. Topology optimization was chosen as this tool to inves-

tigate an "optimal" sti¤ener that would prevent cracking in the skin while giving

consideration to additional load into surrounding structure.
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1.2. Research Objectives

It should be emphasized that while a recent failure investigation provided the

motivation for this work, the implications are much broader. When possible, tradi-

tional methods of alleviating thermal stress should be employed, namely, permitting

the expansion to take place. For example in the B-2 aft deck investigation, in the

regions where damage was observed initially, the stresses could be practically elimi-

nated if a few hundreths of an inch expansion were permitted over length scales of 10

to 12 inches. However, any situation which does not permit the alleviation of ther-

mal stress by expansion can bene�t from the concepts revealed in this dissertation.

Hence, future stealth aircraft with embedded engines will undoubtable encounter si-

miliar design di¢ culties. Therefore, this work addresses a class of problems where

design solutions will continue to be extremely important to the long-term vision of

the Air Force. Since the exact geometry of future aircraft will di¤er from that en-

countered on the B-2, without loss of generality, simple, single-curved shells and beam

strips are used in this work to demonstrate the salient features of the tools developed

in this dissertation.

The research objectives in this work are threefold. The �rst is to identify the

non-intuitive nature of the problem being addressed. Examples will be presented

which demonstrate how the structural analyst, who is familiar with the design of

mechanically-loaded structures, must use extreme caution when applying this "room

temperature" mentality to constrained thermal structures. Secondly, well-established

topology methods will be utilized to evolve a structure which balances the two objec-

tives of stress reduction in the skin and load into surrounding strucuture by taking

advantage of a de�ciency in the classical, minimum compliance topology optimization

formulation. And lastly, a novel evolutionary structural optimization (ESO) method

is developed which simultaneously addresses von-Mises stress and frequency for the
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more general application of thermal protection systems. Since the environment under

consideration contains acoustic as well as thermal energy, maintaining fundamental

frequency at high levels reduces the potential damage from acoustic loading.

1.3. Chapter Outline

This work begins with a review of previous e¤orts relevant to this development.

Chapter 2 is a review of thermal structures relevant to this development. Since

plane stress shells are used to model the skin response and are the focus of the failure

location, the thermal structures chapter provides a literature review which includes

a survey of previous work in thermally loaded shell geometries. The nature of the

di¢ culty in sti¤ening thermally loaded structures is illustrated by a series of sim-

ple, but revealing, examples. These results provide additional motivation for the

current work as well as demonstrating the necessity of advanced analysis and opti-

mization tools for robust designs in this environment. With topology optimization

being a primary focus of this work, Chapter 3 is devoted to providing an historical

perspective of this subject beginning with the discrete nature of the problem and the

mathematical ill-posedness of the formulation. Relaxation methods such as homog-

enization and the widely used SIMP (Simple Isotropic Material with Penalization)

are introduced to overcome the di¢ culties associated with �0-1�nature of the integer

programming problem. A less mathematically rigorous topology formulation known

as evolutionary structural optimization (ESO) is then introduced which does address

the discrete problem directly through a slow process of �nite element removal. The

ESO method provides the framework for the topology formulation in Chapter 4 which

simultaneously treats thermal stress and fundamental frequency. And lastly, a rela-

tive new-comer to the world of topology optimization formulations is brie�y discussed

in the Level-Set method.
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Topology optimization began as a tool exclusively applied to solid mechanics.

Since that time, many formulations have evolved which apply topology optimization

to the energy equation [3], Stoke�s �ow [4], and multi-physics applications [5]. In this

work, the focus is exclusive to solid mechanics so the review provided begins with the

minimum compliance formulation for mechanically-loaded structures and eventually

narrows the focus to nonlinear thermoelasticity.

In Chapter 4, conventional minimum compliance topology optimization is applied

to the sti¤ening of a thin, shallow shell geometry in an elevated temperature environ-

ment by taking advantage of a known de�ciency in topology optimization associated

with single load case mechanical loadings. A novel multi-objective ESO topology

method which seeks to minimize thermal stress while simultaneously increasing the

fundamental frequency of a thermal protection system (TPS) panel is developed in

Chapter 5. Chapter 5 provides paths for future work including a formulation which

directly addresses the reaction force vs out-of-plane deformation trade space.



CHAPTER 2

Thermal Structures Review

2.1. Historical Perspective

When one begins a study of thermal structures and thermal stress response, two

classic texts on the topic should be thoroughly reviewed. The �rst, Boley and Weiner

[6], provides a very rigorous mathematical treatment of the subject matter for linear

thermoelasticity. The coupled treatment of both the energy equation and elastic

equilibrium is developed. Guidelines for when the equations must be solved in a

coupled fashion and when a sequential, weak coupling of the thermal and structural

solutions is adequate are presented. Linear buckling of plates is addressed and solu-

tions for various boundary conditions are provided. The inclusion of nonlinear strain

coupling between the membrane and bending e¤ects is developed and an analytical

solution is provided for the unrestrained condition. Many of the analytical solutions

presented in [6] examine the unconstrained case in which stresses result from in-plane

and through-thickness temperature gradients. The stresses generated from this type

of loading are, in practice, smaller than those observed when overall volumetric ex-

pansion of prevented, i.e., clamped boundaries, except in the case of thermal shock

where very localized heating takes place.

The second text, which has a slightly more applied �avor, in particular, to the

aerospace industry, is the text by Gatewood [7]. Analytical and semi-analytical

solutions are presented for skin-stringer combinations and other familiar aerospace

constructs. Common to both references is the treatment of both transient and

steady state e¤ects. Gatewood provides a more thorough treatment of temperature

10
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dependent material properties which over large temperature ranges, can be quite

pronounced and if neglected can lead to misleading results.

The impetus for our ability to simulate the response of structures to thermal

loading began in the early 1950�s with the breaking of the sound barrier in the X-

1A experimental aircraft program. Compressible gas dynamics predicts that large

temperature increases can accompany frictional e¤ects from the conversion of kinetic

energy in the �owstream to internal energy (in the form of heat) at the �uid-structure

interface. The generated heat �ux inpinges on the surface of the vehicle and causes an

accompanying temperature increase. The second mechanism associated with super-

sonic �ight which can potentially generate very high temperatures in localized areas

is that of shock wave generation. Shocks are typically produced when supersonic

�ow is reduced to subsonic �ow at a point of stagnation such as a leading edge of a

wing or other control surface on the vehicle. The �rst vehicle on which aerothermal

heating was studied was the X-1B [8]. The X-1B was a more sophisticated version

of Captain Charles E. Yeager�s initial supersonic vehicle. Mach numbers reached by

the X-1B were just under Mach 2. The aerodynamic heating e¤ects for the given air

velocity and altitude resulted in skin temperatures of approximately 2000F . Con-

ventional aluminum airframes were capable of surviving this environment, however,

higher temperature material systems would be vital to enable higher speed vehicles.

As technology advanced in propulsion systems, supersonic speeds increased rapidly,

and aerodynamic heating e¤ects began to dominate the designs. The challenges of

managing the thermal environment and the associated di¢ culties became known as

the thermal barrier [1].

The X-2 was the �rst aircraft designed in which aerodynamic heating e¤ects were

given full consideration [9]. Up to this point, speeds had not been large enough for

aerodynamic heating to adversely a¤ect the aircraft performance. In 1956, the X-2
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achieved a Mach number of 2.5. This capability was realized through high temper-

ature material systems. The fuselage was constructed from K-Monel with the skins

consisting of stainless steel. These heavier materials systems were a penalty from

a payload and performance perspective when compared with aluminum. However,

they were an enabling component of high speed �ight. This trade-o¤ between pay-

load and thermal protection continues to be an important trade space. These e¤orts

are well documented in [10].

The next signi�cant achievement in the realm of thermal structures occured with

the establishment of the X-15 program. One of the many X planes that furthered

American aviation supremacy, the X-15 consisted of a thick-skinned vehicle made of

high temperature, nickel-based alloys (Inconel-X). The �ights were short in duration

typically lasting from 10 to 12 minutes [11]. The maximum temperature reached on

the vehicle occured at one of the primary stagnation points (the wing leading edges)

and exceeded 13000F . One of the principal events of the twentieth century with re-

spect to the so-called race to space was the success of the Sputnik I program After

the Soviets successfully orbited the world�s �rst man-made satellite (Sputnik I), the

X-15 program became a very important national priority with regard to the unde-

standing of aerothermal structures. The X-15 made many signi�cant contributions

to the understanding of hypersonic �ight including the design of thermal structures.

The success of Sputnik forced United States hypersonic �ight research to change

focus and to make space access its number one priority. Along with this change

of focus, came an even more challenging thermal-structural environment. With

Mach numbers approaching twenty, the maximum temperatures predicted on the

lifting bodies were in excess of 30000F . Two approaches were taken to mitigate this

extreme environment. The cool structures approach sought to insulate the primary

load bearing structure from the intense heat by means of a thermal shield. These
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barriers were made of high temperature metals, ceramic or ablative material and

carried virtually no �ight load. Hence, their weight was parasitic, penalizing the

mission payload. These type of systems are designed for transient thermal loads

that are associated with re-entry. The insulation layer is designed such that the

low-temperature airframe never reaches some speci�ed critical temperature. If no

active cooling is provided, these structures cannot operate at a steady state condtion

as the backing structure would eventually reach a temperature above its usage. This

cool structures approach has been somewhat successfully demonstrated on the space

shuttle, but the fragililty of the thermal protection system (TPS) has resulted in

costly losses including loss of life in the case of the Columbia tragedy.

An alternative approach to successful operation in the elevated temperature envi-

ronment is often referred to as hot structures. Hot structures are designed to operate

at or near the skin temperature. Hot structures are intended to participate in the

load path reaction and are integral to the airframe. The obvious advantage of hot

structure is that its weight is non-parasitic. This bene�t can potentially reduce the

cost to achieve lower earth orbit (LEO) with a payload. The challenges associated

with this approach make this area an active research �eld. The material systems

that can tolerate the high temperature environment are inherently brittle and have

low damage tolerance. Therefore, to use these materials as load carrying structure

is extremely challenging. The material science community has attempted to incor-

porate acceptable damage tolerance characteristics into ceramic-like material systems

by resorting to high-temperature composites. The combination of ceramic �bers with

a damage tolerant matrix has generated some success. Another approach to mitigat-

ing the risk associated with these materials is to employ structural health monitoring

(SHM). Since small cracks in brittle materials can cause catastrophic failure, embed-

ded sensors to detect damage before it becomes critical are being pursued to mitigate
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this risk. SHM is an active area of research and is one of the primary foci of research

funding of the Department of Defense and the Air Force Research Lab.

Engine exhaust-washed structures can be categorized as hot structure given that

they are exposed directly to a high temperature environment absent a thermal barrier

coating or insulation. Since the EEWS is expected to operate continuously for long

periods of time, a low-conductivity coating would only succeed in smoothing out the

early transients and delaying the heat transfer through the thickness. After a period

of time, the skin EEWS would come up to temperature as steady state conditions

dominate. While much of the work in hot structures assumes the high temperature

environment is a result of aerodynamic heating and Chapter 5 of this work examines

this case, an additional high temperature environment exists due to exhaust wash from

embedded engines in low-observable aircraft. And hence, the structure is exposed to

overall sound pressure levels (OSPL) that can potentially result in acoustic excitation

and additional damage accumulation.

2.2. Plates and Shells

Since the structure considered here can best be idealized as a shell, [12] is useful

in studying the past work in themal-mechancial response of plate and shell struc-

tures. Plates and shells exposed to thermal energy can respond in several di¤erent

ways depending on the in-plane temperature variation, through-thickness temperature

gradient, and essential boundary conditions. Depending on these inputs, the panel

may continuously deform out-of-plane (bowing); however, under appropriate condi-

tions, buckling and subsequent post-buckling response does occur. When studying

�at plates subjected to thermal loading, buckling is the primary response and occurs

at relatively low temperatures. As initial curvature is introduced into the geometry,

a shell geometry results and the buckling temperature increases [12]. This result
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is intuitive as buckling occurs due to instability which forces the structure to follow

bifurcated equlibrium paths. If the structure contains intial curvature, a smooth equi-

librium path may exist independent of buckling which allows for thermal expansion

albeit out-of-plane.

2.2.1. Flat Plate Response

Plates and shells can be categorized more broadly as plane stress structural elements.

In plane stress, the deformation is assumed to be a function of the in-plane coordinates

only. As the name implies, a plane state of stress exists such that the transverse

components of stress are assumed to be zero. Plane stress is identi�ed with thin sheets

where the smallest in-plane dimension is much larger than the thickness. Figure

2.1 details the rectangular geometry of a perfectly �at plate with thickness h and

dimensions 2a x 2b. The thermo-elastic equations for plane elasticity are given by

Eqs. 2.1-2.4 with respective stresses given by �x; �y; and �xy. �(x; y) is de�ned

as the Airy stress function which satis�es the inhomogeneous compatibility Eq. 2.4

and the prescribed boundary conditions. The inhomogeneous term is comprised of

E, the modulus of elasticity, �, the coe¢ cient of thermal expansion, and T (x; y), a

spatially-dependent temperature �eld.

�x =
@2�

@y2
(2.1)

�y =
@2�

@x2
(2.2)

�xy = � @2�

@x@y
(2.3)

r4� = �E�r2T(2.4)

Note that the inhomogeneity in the compatibility equation vanishes if the tempera-

ture �eld satis�es the steady state heat conduction equation (r2T = 0) and the Airy
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Figure 2.1. Rectangular plate of dimensions 2a x 2b

stress function takes the form of a third-order polynomial in x and y. Eqs. 2.1-

2.4 provide the in-plane response, however, because the plate is assumed perfectly

�at, no out-of-plane deformation is predicted. To determine the critical buckling

temperature, a small out-of-plane displacement w(x; y) must be assumed. The dis-

placement w(x; y) of the buckled plate is governed by the linear di¤erential transverse

equilibrium equation

(2.5) Dr4w = Nx
@2w

@x2
+ 2Nxy

@2w

@x@y
+Ny

@2w

@y2

where D is the �exural rigidity given by Eh3=12(1� �2) and Nx; Ny; Nxy are the in-

plane stress resultants obtained by multiplying the stresses by the plate thickness h.

These resultants are often referred to as running loads ( force
length

) in design engineering

parlance. A solution to Eq. 2.5 is provided in [13] with simply-supported boundary
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conditions and is given by

(2.6) Nx
m2�2

(2a)2
+Ny

n2�2

(2b)2
= D

�
m2�2

(2a)2
+
n2�2

(2b)2

�2
where m and n represent the number of waves in the x and y directions, respectively.

For a 2a x 2b �at plate, the in-plane running loads for the uniform thermal loading,

�T , are given by

(2.7) Nx = Ny =
� �T E h

(1� �)

Substituting these force expressions into Eq. 2.6 along with the expression for D, and

using the minimum values of m and n (=1), the critical buckling temperature change

is given by

(2.8) �Tcr =
�2h2

48(1 + �)�
(
1

a2
+
1

b2
)

One important conclusion drawn from Eq. 2.8 is the independence of modulus of

elasticity. This is unique to thermal buckling as buckling caused by mechanical

loading is a function of material sti¤ness [13]. Eq. 2.8 predicts extremely small

buckling temperature changes. For example, an aluminum plate with a = 18 in,

b = 12 in, and h = 0:25 in with � = 13:0 � in/in��F buckles at a temperature

change above room temperature of 7.5�F . The most obvious parameter to increase if

thermal buckling is a concern is the thickness. This quadratic dependence increases

the buckling temperature by a factor four each time the thickness is doubled. Also

note that the buckling dependence is inversely proportional the coe¢ cient of thermal

expansion (CTE). Therefore, if several materials are being considered for a high

temperature application, the material with the lowest CTE should be chosen provided

the material properties remain stable at the desired operational temperature. The
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dimensional aspects also play a crucial role in buckling studies. The aspect ratio,

a=b, of the plate in�uences the buckling characteristics and is a parameter in almost

all plate buckling studies [14]. The aspect ratio of a panel is usually dictated by the

substructure of the aircraft. However, the introduction of sti¤eners can be used to

alter the aspect ratio and hence the critical value of the buckling temperature.

While Eq. 2.8 provides a good estimate of the onset of buckling, no allowance is

made for the change of in-plane stress components with respect to the deformation.

The linear equations above assume the deformed and the undeformed con�guration

coincide. The �rst work to investigate thermal post-buckling of plates was done

in [15]. The above equations assume no coupling between the in-plane and out-

of-plane deformation. Therefore, they can be solved independently. In reality,

when the transverse de�ection of a plate becomes large (typically on the order of one

plate thickness) lengthening of the middle surface occurs and the membrane forces

change. This coupling requires simultaneous solution of both the stress function

and the transverse displacement. The set of equations which include these nonlinear

e¤ects is attributed to von Karman. The complete development of these equations

can be found in [6].

hr4� = Eh

"�
@2w

@x@y

�2
� @

2w

@x2
@2w

@y2

#
�r2NT(2.9)

Dr4w = h

�
@2�

@y2
@2w

@x2
� 2 @

2�

@x@y

@2w

@x@y
+
@2�

@x2
@2w

@y2

�
� 1

(1� �)r
2MT(2.10)

where the thermal force per unit length is given by

(2.11) NT = E�

Z h
2

�h
2

T (x; y; z)dz
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and the thermal moment per unit length is given by

(2.12) MT = E�

Z h
2

�h
2

T (x; y; z)zdz

Insight may be gained into Eqs. 2.11-2.12 by considering a temperature �eld inde-

pendent of the normal coordinate z. Being an even function, the thermal force has

a contribution to the solution, whereas, the thermal moment vanishes identically.

While the boundary conditions are not explicity stated in the above formulation, it is

understood that the functions � and w, must satisfy the prescribed essential and/or

natural boundary conditions. Most thermal stress problems of interest are associated

with constraint of the expansion, in fact, for a steady state temperature �eld in an

isotropic body with an unconstrained boundary, no thermal stress exists [7]. This,

however, does not hold true for arbritary temperature �elds.

2.2.2. Simply-Supported Finite Sti¤ness Boundary

Because thermal stress is a function of restrained thermal expansion, the thermoelastic

response is highly dependent on the boundary conditions. As was stated previously,

for certain temperature distributions, the thermal stress response is zero if the body

is unconstrained. As the level of constraint is increased, the potential for higher

stresses and larger reaction loads into surrounding structure exists. An investigation

of the e¤ects of varying boundary sti¤nesses on thermally loaded, simple-supported

�at plates was conducted in [16]. Figure 2.2 illustrates the boundary sti¤nesses in the

x and y directions supporting a �at plate in the plane. For a �at plate, elastic tensile

stresses capable of producing failure can only be generated if panel buckling occurs.

The critical buckling temperature which incorporates the boundary sti¤nesses is given
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Figure 2.2. Rectangular Plate with Edge Restraint in Plane of Plate [16]

by

(2.13) (��T )cr =

�2

12(1��2)
�
h
a

�2 h
1 +

�
a
b

�2i2 h�
1 + 2E

kxa

��
1 + 2E

kyb

�
� �2

i
h
1 +

�
a
b

�2i
[1 + �] +

�
2E
kyb

�
+
�
a
b

�2 � 2E
kxa

�
Eq. 2.13 is developed by solving the nonlinear von Karman plate equations. As the

boundary sti¤nesses (kx and ky) approach 1; the modulus dependence is eliminated

similar to Eq. 2.8. However, for small and intermediate values of boundary sti¤ness,

the modulus plays a signi�cant role. As the boundary sti¤nesses approach zero, the

buckling temperature approaches 1 for a uniform temperature �eld. With small

boundary sti¤ness, no potential is available to generate large in-plane loads which
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Figure 2.3. Spring sti¤ness vs buckling temperature ratio [16]

are required to buckle the plate. Figure 2.3 demonstrates that as the edge sti¤ness

increases, the buckling temperature ratio (where the subscript 1 denotes in�nite

sti¤ness) approaches unity. The sti¤ness ratio, kxa
2E
, is a key parameter which provides

a measure of the relative sti¤ness between the plate and the boundary. For example,

with a sti¤ness ratio value of 10.0, the buckling temperature ratio is approximately

1.145. Therefore, the actual buckling temperature is only 14.5% above the minimum

(k1 condition). Of design importance is the in�nite sti¤ness condition (which is

di¢ cult to implement practically) but provides a conservative estimate of any real,

simply-supported �at plate. For problems in which the thermal moment MT and/or

a transverse load are nonzero and does not vary spatially over the entire domain, the

plate experiences transverse de�ection w immediately upon loading, and bifurcation

buckling does not result [17]. Therefore, in many practical scenarios where the
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Figure 2.4. Geometry and coordinates of a typical doubly-curved shell.

thermal loading involves a transient heat up, a through thickness gradient exists.

Hence, a thermal moment is observed which causes bowing in the plate and allows a

smooth transition to out-of-plane deformation for originally �at plates.

2.2.3. Curved Shell Response

While the analytical solution for the response of �at plates provides an important

academic contribution to the study of thermally-loaded plane stress members, a more

general approach was needed and was realized with shell theory. Since no structural

member is truly planar, shells provided a more general geometric framework for more

realistic response prediction of engineering structures. A generic shell structure is

shown is Figure 2.4. While a shell�s curvatures ( 1
Rx
& 1

Ry
) can vary continuously,

the two radii of curvature of most practical shells are constant due to manufacturing
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constraints. As both radii approach in�nity, the �at plate solution is recovered.

Moreover, as a single radius is increased, the geometry approaches that of a cylinder.

The nonlinear equations for the response of the shell are more complicated than that

of the �at plate due to the presence of the initial curvature. The compatibility and

transverse equilibrium equations for a thermally loaded shell are given by Eqs. 2.14

and 2.15, respectively.

1

Eh
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�
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@x@y

�2
� @
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The Airy stress function, �, as well as NT and MT are identical to that employed in

the �at plate equations. Many texts and articles exist which address the formulation

and solution of shell equations for mechanical, transverse loading. Some of the

earliest works can be found in [18],[19],[20],[21],and [22]. However, with respect to

thermal loading, the number of publications is more limited. The text by Langhaar

[23] is one of the few which includes the thermal load terms in the development

of the equations for shell theory. Most references to thermally loaded structures

which include instabilities are found in articles. Some of the �rst publications which

addressed thermoelastic response and stability of shells are found in the works by

Ho¤ [24], [25], and [26]. In these articles, geometric symmetry is used to reduce

the computational burden as the solution domains are chosen to be cylindrical and

conical.
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2.2.3.1. In-plane Temperature Gradient. More applicable to the current work

with respect to geometry is the article by Mahayni [27]. Mahayni investigated the

thermal stability of isotropic nonlinear shallow shells subjected to an in-plane tem-

perature gradient. A sinusoidal solution is assumed for the transverse displacement,

w, which satis�es the zero displacement condition. A stress function is proposed

which satis�es Eq. 2.14 exactly. The transverse equilibrium Eq. 2.15 is then solved

by employing a Galerkin method to approximate the solution. Rx in Figure 2.4 is

chosen to be 1, so that the shell panel is singly-curved. Mahayni�s geometry di¤ers

slightly from that in Figure 2.4 in that the origin of the coordinate axes are located at

the center of the �gure with domain described by �a=2 � x � a=2, �b=2 � y � b=2,

and �h=2 � z � h=2. The positive direction of z is also reversed such that it points

toward the center of curvature. With u, v, and w as the displacement components

of a point on the middle surface, the internal forces can be represented by integrating

the stresses through the thickness,

Nx =

Z h=2

�h=2
�xdz = [

Eh

1� �2
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and

Mx = �D(@
2w

@x2
+ �

@2w

@y2
)� MT

(1� �)(2.19)

My = �D(@
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@y2
+ �
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The temperature distribution is assumed constant through the thickness and circum-

ferential directions but varies parabolically from x = 0 to a such that

(2.22) T = [f + k(x� a)2]

where

k =
e� f
a2

=
�T

a2

�T = Temperature di¤erence

f = Tx=a

e = Tx=0

A solution for the transverse displacement which satis�es the prescribed boundary

condition is given by

(2.23) w =

1X
n=1;2;3;:::

An(cos
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a
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b
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where An are undetermined coe¢ cients. The solution of equation 2.14 with Rx !1

and Ry = R, is given by
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The solution presented in Mahayni contains a 24 in the denominator of the last term

instead of the 12 used in this work. In fact, the stress function in [27] does not

satisfy equation 2.14. Therefore the equations derived from this point forward in

this development will di¤er from that found in [27]. Also, note that � is used in this

section to denote a reaction force as opposed its typical use as coe¢ cient of thermal

expansion. The variables used in this section were employed to permit the interested

reader to most easily compare results with the original work

The Galerkin method is used to determine the unknown coe¢ cient, A1. A residual

equation is formed from the transverse equilibrium equation, 2.15, by rearranging such

that the right hand side of the equation is zero. Denoting this residual by Q, the

error is minimized by determining A1 such that

(2.25)
Z a=2

�a=2

Z b=2

�b=2
Q 	n dx dy = 0

The following dimensionless quantities are de�ned to facilitate the solution,

Ky =
b2

R h
; � =

a

b
; Z1 =

A1
h

(2.26)
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a2b2

h2
ck; Px =

�b2

Eh3
; and Py =

�a2

Eh3

where c is the coe¢ cient of thermal expansion
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Upon completing the integration in Eq. 2.25, and incorporating the non-dimensional

quantities Eq. 2.26, a cubic equation in Z1 is obtained.

�
3�8(1 + �2)2(1 + �4)

�
Z31 �

�
32 Ky�

4�4(17 + 2�2 + �4)
�
Z21 + [�

4�8(1 + �2)4

(�2 � 1)

(2.27)

+48 K2
y�

4�4 + 24 K �4�4 � 4�6(12 Px + 12 Py +K �2)(�+ �3)2] Z1

�1536 K Ky�
4(1 + �2)2 + 192 Ky�

2(4 Py +K �2)(�+ �3)2 = 0

It should be noted here that the non-dimensional quantities for Px and Py again di¤er

from that published in [27]. In this work, both Px and Py contain an additional power

of h in their de�nition making the quantities dimensionless. Without this de�nition

of dimensionless force, Eq. 2.27 would contain both dimensionless and dimensional

quantities (e.g., h). These discrepancies do alter the results presented in [27] and

are therefore presented in this work for completeness.

The �rst case to be analyzed allows free in-plane expansion. The non-dimensional

reactions, Px and Py, will be zero. Substituting these values into Eq. 2.27 provides

a relationship between the non-dimensional temperature di¤erence, K , and Z1, the

maximum value of w scaled by the thickness, h. The response of the shell is best

described by plotting K vs Z1 for various values of curvature, Ky and aspect ratio,

�: Figure 2.5 displays results for several values of curvature. Since positive Z1

is directed toward the center of curvature, the unbifurcated paths are left of the

Z1 = 0 axis. As the spatial temperature di¤erence increases, the potential exists

to "snap" to another equilibrium position to the right of Z1 = 0. The plot reveals

that as Ky ! 1 (R ! 0), ever-increasing temperature di¤erences are required to

cause bifurcation. An important revelation of Eq. 2.27 with Px = Py = 0 is that

the temperature only enters the equations through K which is a measure of spatial
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Figure 2.5. Load de�ection curve for � = :30, � = 1, and Px = Py = 0.

temperature di¤erence. Therefore, if a constant temperature of any magnitude is

prescribed, buckling is not predicted for this set of boundary conditions for �nite

values of b. As mentioned earlier, the aspect ratio also plays an important role in

buckling studies. Figure 2.6 shows load vs maximum de�ection for three values of �.

Note that for an aspect ratio of three or greater, the response converges to a single

curve.

While the results are presented as non-dimensional quantities and allow appli-

cation to any isotropic material system, it is instructive to examine what physical

temperature di¤erence is required for a prospective high temperature material. Us-

ing Titanium 6-2-4-2 material properties [28], with � = 1; h = :125 in. and Ky = 5,

Figure 2.7 displays the critical buckling temperature di¤erence vs the circumferential

distance. To arrive at this relation, the equation for �K in Eq. 2.26 is solved for �T
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Figure 2.6. Load-de�ection curve for � = :30, Ky = 100 and Px = Py = 0.

with a = b. We can see that as b ! 1, (�T )cr ! 0, but for �nite values of b, a

non-zero value of �T is required for buckling. At the other extreme, small values of

b ('10 in), (�T )cr is well above the usage temperature of the material ('20,000�F ).

Using Mahayni�s values, a non-dimensional curvature (Ky) of 200 would be required

to produce similar results. Hence, his values greatly underestimate the value of

in-plane temperature gradient necessary to produce buckling in a curved panel with

boundary conditions that allow in-plane motion.

The second case of shallow shell buckling response examined is that of a simply-

supported boundary. Rotations at the boundary are allowed but no de�ection (in-

plane or transverse) is permitted. The average displacement of the middle surface in
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Figure 2.7. Critical spatial temperature di¤erence �T vs circumferen-
tial distance b for titanium alloy with Ky=5 and � = 1

the x-direction is given by the integral

(2.28) ex = �
1

a

Z a=2

�a=2

@u

@x
dx

However, this average varies in the y-direction. Hence, the integral average over the

y-coordinate is

(2.29) �ex =
1

b

Z b=2

�b=2
exdy

The constitutive equation provides a relation between @u
@x
and the dependent variables

(equation 2.30).

(2.30)
@u

@x
=

1

Eh
(
@2�

@y2
� � @

2�

@x2
)� 1

2
(
@w

@x
)2 + cT
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Carrying out the integrations in Eqs. 2.28 and 2.29, and equating �ex = 0, an equation

containing Px and Py is generated. This process is similarly carried out for �ey = 0

resulting in a second equation containing Px and Py. This system is solved for Px

and Py and substituted into Eq. 2.27. The governing equation for the panel with

restrained edges is given by

3�8(1 + �2)2(�3� 4�2� + �2 + �4(�3 + �2))Z31+(2.31)

32 Ky�
4�2(3� + �2(8 + 6� � 5�2) + �4(8 + 3� � 2�2)� �6(�4 + �2))Z21+

(�4�8(1 + �2)4 + 48 �f �6(1 + �2)3(1 + �) + 52 �K�6�2(1 + �2)3(1 + �)�

3072 K2
y�

4(�2 � 1) + 48 K2
y�

4�4(�2 � 1) + 24 �K�4�2(�+ �3)2(�2 � 1))Z1�

768 �f Ky�
2�2(1 + �2)2(1 + �)� 1536 �K Ky�

4(1 + �2)2(�2 � 1)+

64 �K Ky�
2�4(1 + �2)2(�15� 13� + 2�2) = 0

where

�f =
cfa2

h2

The response of the shell with restrained edges is shown in Figures 2.8 and 2.6 for

various values of curvature and aspect ratio. The values of K̄ shown in Figures 2.8 and

2.9 are two orders of magnitude lower than those presented in [27]. Mahayni predicts

buckling of simply-supported curved panels to occur for only for very small values of

curvature (< 20) in the practical temperature of the material. The results computed

in this work using the correct stress function reveal that simply-supported panels are

more likely to buckle due to in-plane temperature gradients than the unsupported

panels. Mahayni reached the opposite conclusion.

With such a large discrepancy between the results presented here and those pub-

lished earlier, it is important that veri�cation of the results be carried out. One
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Figure 2.8. Load-de�ection curve for � = 0:3, � = 1, �f = 0, and
�ex = �ey = 0.

Figure 2.9. Load-de�ection curve for � = 0:3, Ky = 30, �f = 0 and
ex = ey = 0.
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Figure 2.10. Load-de�ection curve for � = 1, � = 0:3, Ky = 0, K = 0,
and �ex = �ey = 0.

important di¤erence between the unrestrained and simply-supported conditions is the

presence of �f . Since �f contains an explicit reference to the temperature, buckling can

occur devoid of an in-plane temperature gradient. Since other, independent analyt-

ical solutions exist for constant temperature buckling solutions of simply-supported

�at plates, the solution developed in this section will be veri�ed independently. Set-

ting �K = 0, Ky = 0, and � = 1, the response of �f vs Z1 is given in Figure 2.10.

Since �f = cfa2

h2
, the critical buckling temperature of the shell is given by f = ( h

2

ca2
) �f .

This minimum value of �f (' 1:265) from Figure 2.10 occurs as Z1 ! 0. The corre-

sponding critical value of f above the reference state for a 12 in x 12 in x 0.125 in

Titanium 6-2-4-2 plate is 27.46 �F . Eq. 2.13 can be adapted to provide the necessary

independent veri�cation. As the spring boundary sti¤ness terms approach in�nity,

Eq. 2.13 predicts a critical buckling temperature for the given titanium plate to be
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T =27.46 �F . Therefore, the equations derived in this section reduce to the classical

�at plate buckling solution and provide a measure of veri�cation.

The major conclusions that can be deduced from this study are (i) as initial cur-

vature increases, larger spatial gradients and/or higher temperatures are required to

initiate buckling for both cases; (ii) much larger temperature di¤erences are required

to initiate buckling in the unrestrained case than in the simply-supported scenario,

and (iii) the aspect ratio in�uences the response to a much greater degree in the

simply-supported case.

While the previous study provides insight into the onset of buckling and post-

buckling response of a curved panel, stresses obtained from such a model are highly

inaccurate. The one-term approximation of the transverse displacement is not su¢ -

cient to resolve stresses accurately. Even though de�ections may be fairly accurate,

the second derivatives of the approximate de�ections may deviate widely from their

proper values. Consequently, when de�ections are used to calculate stresses, a high

degree of accuracy may be required [23]. This is not unlike the displacement �nite

element formulation where higher mesh density and/or higher order polynomials are

needed for stress convergence [29]. Since two and three-dimensional nonlinear prob-

lems typically require approximate methods like the Galerkin method used above, in

the next section a one-dimensional nonlinear model is solved to gain insight into the

stress behavior of thermally-loaded shell structures and the boundary loads generated

from employing common sti¤ening methods.

2.3. Straight Beam Model

2.3.1. Fixed End Conditions

A unit width strip model (Figure 2.11), will be used to demonstrate the non-intuitive

nature of sti¤ening in an elevated temperature thermoelastic environment. The strip
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Figure 2.11. Unit width strip beam model

model permits the use of a simpli�ed nonlinear beam theory to demonstrate the es-

sential characteristics of cylindirical bending of a semi-in�nite shell. Following an ap-

proach similar to that employed in [30],[31],[32], and [33] a planar two-point bound-

ary value problem is solved for the post-buckling response of a clamped-clamped,

thermally-loaded beam by employing the so-called "shooting" method for nonlinear

ordinary di¤erential equations. Figure 2.12 illustrates the undeformed and deformed

states of an initially straight beam. The material points in the undeformed con�g-

uration are described by the pair (X;Y ) with X � [0; L] and Y � 0. Hence, the

material points, (X; 0) transform to points (X + u;w) when the beam con�guration

corresponds to a buckled state. An undeformed di¤erential element, dS, is mapped

into the stretched and rotated di¤erential element ds in the current (or deformed)

con�guration. The deformations are restricted to lie in the X-Y plane and symmetry
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Figure 2.12. Undeformed and deformed con�guration of thermally
loaded, clamped-clamped beam.

Figure 2.13. Free-body diagram of deformed con�guration

about X = L=2 is assumed. Equilbrium in the deformed con�guration is illustrated

in Figure 2.13.

Symbolically, the mapping from the original to current con�guration can be ex-

pressed by

(2.32) ds = FdS
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where F is the deformation tensor [34]. In terms of the displacement gradient, F

can be expressed as

(2.33) F = I +rXu(X)

where rX represents the gradient operator with respect to the material (or La-

grangian) con�guration. From Eqs. 2.32-2.33, the following geometric relations

are obtained (with dependent variables suppressed).

(2.34)
jdsj
jdSj =

ds

dX
= r;

du

dX
= r cos � � 1; dw

dX
= r sin �

The strain and curvatures can be expressed in terms of r and � by

(2.35) " = r � 1; � =
1

r

d�

dX

The thermoelastic constitutive equations are given by

(2.36) N = EA ("� � �T ); M = EI �

Summing the forces and moments at point "c" results in the equilibrium equations,

N + P cos � = 0; M + Pw =Mo(2.37)

r = � P

EA
cos � + � �T + 1(2.38)
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where s(X) is the arc length of the de�ected curve, r(X) is the stretch ratio of the

axial line, and �(X) is the cross-section rotation; N(X) is the axial internal force,

and M(X) is the internal bending moment; P is the constraint reaction force at

the clamped boundary; MO is the reaction moment at the constrained ends; E is

the Young�s modulus; � is the linear thermal expansion coe¢ cient; A is the cross-

sectional area; I is the second moment of area of the cross-section and �T is the

change in temperature of the uniform �eld. For this study, the material properties

will be assumed independent of the temperature.

For solution convenience, the following dimensionless variables will be used,

(�; bs; bu; bw;bh) =
1

L
(X; s; u; w; h); � = 2� �T;(2.39)

 = L

r
A

I
; p =

PL2

EI
; m =

MOL

EI
(2.40)

the nonlinear system of dimensionless equations are given by

bs0(�) = r; bu0(�) = r cos � � 1;(2.41)

bw0
(�) = r sin �; �

0
(�) = r (m� p bw)(2.42)

p0(�) = m0(�) = 0(2.43)

where r = (�p cos �+ �)=2+1 along with the following symmetric boundary condi-

tions,
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bs(0) = bu(0) = bw(0) = �(0) = 0(2.44)

bu(1
2
) = �(

1

2
) = 0(2.45)

The dimensionless temperature � is treated as a prescribed parameter in the solu-

tion process. For values of � greater than 4�2, buckling occurs. To compute the large

displacement, out-of-plane deformation, a shooting method for solving nonlinear ordi-

nary di¤erential equations is utilized to solve the system of equations. Symbolically,

the system can be expressed as

dY (�)

d�
= H(�;Y ; �) (0 < � <

1

2
)(2.46)

B1Y (0) = f0 0 0 0gT ; B2Y (
1

2
) = f0 0gT

Y = fy1 y2 y3 y4 y5 y6 gT = fbs bu bw � m p gT

H = fr r cos y4 � 1 r sin y4 r(y5 � y3y6) 0 0gT

B1 =

2666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

3777777775
;B2 =

2640 1 0 0 0 0

0 0 0 1 0 0

375

In actuality, m and p are problem parameters. These load parameters are treated

as unknown functions of � forming a standard problem statement for accomodating

nonlinear boundary value problems with multiple parameters [35].
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The shooting method for the solution of nonlinear ordinary di¤erential equations

involves reformulating the problem in terms of an initial value problem.

d eY (�)
d�

= H(�; eY ; �) (0 < � <
1

2
)(2.47)

eY (0) = f0 0 0 0 m(0) p(0)gT

The initial value problem is iteratively solved using an appropriate integrator (i.e.,

4th-order Runka-Kutta) until the conditions at � = 1=2; match the prescribed values.

This problem can be treated as an optimization problem with the objective being

satisfaction of the end conditions while the unprescribed values at � = 0, m(0) =

p(0); are treated as design variables. If we de�ne the design variable vector dT =

fy5(0) y6(0)g ; then the current estimate of the initial value problem can be treated

as a function of the design variables,

d eY (�;d)
d�

= H(�; eY (�; d); �)(2.48)

eY (0) = f0 0 0 0 d1 d2gT

The primal problem can be di¤erentiated to compute analytical sensitivities of

the response with respect to the design variables. This direct di¤erentiation method

is given by the two following pseudo problems. 
d eY (�;d)
d�

!
;d1

= H ; eY (�; eY (�; d); �) eY ;d1(2.49)

eY ;d1(0) = f0 0 0 0 1 0gT 
d eY (�;d)
d�

!
;d2

= H ; eY (�; eY (�; d); �) eY ;d2(2.50)

eY ;d2(0) = f0 0 0 0 0 1gT
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The residual system of equations to be solved is expressed by

(2.51) �(d�) =
� eY (�;d�)�B2Y (�)

�
�= 1

2

= 0

where d� denotes the optimal value of d. Expanding Eq. 2.51 in a �rst-order Taylor

series expansion,

�(d�) = �(di) +

�
@�(d)

@d

�
d=di

�di � 0(2.52)

�di � �
�
@�(d)

@d

��1
d=di

�(di)(2.53)

di+1 = di +�di(2.54)

facilitates application of Newton�s method for the solution of the nonlinear system

with di the current estimate of the design variables.

Thermally buckled con�gurations are shown in Figure 2.14 for various values of � .

For a clamped-clamped isotropic beam, the maximum tensile stress will occur at the

clamped edge at the outermost �bers opposite the displacement. Hence for the case

under consideration, the maximum stress occurs at point "O" (Figure 2.13) on the

bottom side of the beam. One of the most common approaches to alleviating thermal

buckling is to increase the thickness of the panel. The minimal value of � for which

buckling occurs is computed by solution of the linearized eigenvalue problem in Eq.

2.46. The critical value of � at which buckling occurs is 4�2. From Eq. 2.39, with

� = 4�2 = 2� (�T )cr a decrease in  increases the temperature change required for

buckling to occur. The non-dimensional thickness is related to 2 by

(2.55) 2 = L2
A

I
= L2

�
h
1
12
h3

�
=

12�
h2

L2

� = 12bh2
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Figure 2.14. Post-buckled con�gurations for various values of � :

Therefore, a factor two increase in thickness increases the critical buckling temper-

ature by a factor of four. While this is an e¢ cient means to increase buckling

temperature, the increased load due to participation of the additional thermal mass,

must be reacted by the surrounding structure. So, care must be taken to ensure the

structural integrity of sub- and surrounding structure. Additionally, if an attempt is

made to prohibit buckling, and due to model uncertainty (e.g., boundary conditions,

material properties, etc.), the desired buckling temperature is under predicted, an

increase in tensile stress can be observed in the skin. Figure 2.15 presents the results

of a study examining the in�uence of plate thickness on maximum mechanical strain.

Note the parabolic behavior of the strain response with thickness. For a given mate-

rial and temperature change, there exists a maximum strain condition corresponding

to a particular value of non-dimensional thickness. This result di¤ers dramatically
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Figure 2.15. Maximum mechanical strain vs normalized thickness for
various values of ��T:

from typical mechanically-loaded cases where increases in thickness decrease the stress

monotonically. In fact, if geometric nonlinearity is ignored, a monotonic decrease in

stress is also observed in the thermoelastic problem for realistic values of thickness

[36].

Figure 2.15 demonstrates that increasing thickness does not necessarily lower the

stress and can, in many circumstances, increase the stress levels. Another important

consideration is the additional load that is transferred to the �xed boundary. The

�xed boundary assumption provides an upper bound on the potential load that can be

generated. From Eq. 2.40, with ��T = :005, the increase in load, P , is proportional



44

Figure 2.16. E¤ect of increasing thickness on non-dimensional load factor.

to the non-dimensional load, p, and the cube of the non-dimensional thickness, bh3,
(2.56) P � p(bh)bh3
The non-dimensional load, p(bh), is very nearly constant over the range of bh up to the
point where buckling is suppressed (Figure 2.16). Hence, in this region, the bh3term
dominates the relation. At thicknesses at which buckling is suppressed and greater,

a constant linear increase in reaction load at the boundary is observed. Since the

load for an unbuckled, unit width, �at rectangular beam is given by P = AE��T =

(E��T )h, these results are consistent. The slope of the load curve is greatest just

below the buckling suppression point. Therefore, if an attempt is made to suppress

buckling by increasing thickness and this point is missed due to model inadequacy,

a large increase in load is observed for even very small increases in thickness. This
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behavior is similar to what was observed in the strain verses thickness behavior. The

primary conclusion to be drawn is that an increase in thickness results in a monotonic

increase in load to the boundary which, in a realistic structure, will be reacted by

sub- and surrounding structure. So material, being used to sti¤en a structure in a

thermal environment, should be used sparingly and judicously to accomplish the two

objectives of minimal boundary load increase and stress reduction.

2.3.2. Elastic End Conditions

In the previous section, �xed end conditions were exclusively considered. In this

section the in�uence of �exibility at the boundary will be addressed. With �exible

end conditions, the possibility exists that the results of the previous section could

be called into question. However, one indication that the conclusions reached in

the �xed end condition case will remain valid is given by the curve in Figure 2.3.

Note that at large values of relative spring sti¤ness, the curve is rather �at. This

implies that decreases in relative spring sti¤ness between the panel and the boundary

have little e¤ect on the buckling temperature when the boundary sti¤nesses are large.

Therefore, as the sti¤ness of the panel is increased (e.g., increasing thickness) relative

to the boundary sti¤ness, the initial indication is that stresses may not be reduced

until a given ratio of sti¤ness is obtained. This phenomenon is investigated in this

section.

Since the damage location of interest is coincident with the boundary, edge rota-

tions will again be suppressed, however, �nite edge displacements will be permitted as

thermal expansion takes place. Figure 2.17 illustrates the geometry in which linear

springs are placed at X = 0 and X = L. This choice of placement maintains symme-

try in the problem formulation. In [33], Vaz and Solano introduce a spring at X = 0

but maintain a simple-supported boundary at X = L which destroys symmetry in
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Figure 2.17. Undeformed and deformed con�guration of thermally
loaded beam with spring supports.

the undeformed con�guration. However, Vaz and Solano overcome this di¢ culty by

expressing the deformation gradient derivatives with respect to deformed variables.

The commerical nonlinear �nite element code Abaqus is used to conduct a para-

metric study of the in�uence of the edge spring sti¤ness. A linear thermal buckling

analysis is initially performed. The �rst buckled shape is then used to seed the

nonlinear analysis with an small imperfection. Since the thickness is changed in

each analysis run, the initial imperfection is scaled to be 5% of the current thickness

for each analysis performed. A study was performed to ensure that the results were

independent of the perturbation size and did not in�uence the desired responses. A

temperature of 900�F was applied to the beam with a thermal expansion coe¢ cient of

5.0�10�6=�F: A constant, at-temperature value of Young�s modulus of 10.0�106lbf=in2

was used. A mesh convergence study was conducted and a mesh size of 0.1 inches

was found to be adequate to predict the buckling temperature di¤erence. Since the

potential exists for large out-of-plane displacement, nonlinear geometric e¤ects were

included in all analyses.
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Figure 2.18. Buckling temperature ratio vs h/h0 for various values of
end spring sti¤nesses.

Along with the non-dimensional quantities used in the previous section, an addi-

tional variable is introduced which represents the relative sti¤ness of the strip to that

of the boundary spring, Ks.

(2.57) ks =
Ks

EA=L

While this ratio di¤ers from the non-dimensionalization necessary for problem inde-

pendent solutions (e.g., [33]), scaling by the familiar beam sti¤ness, EA=L, provides

greater insight for physical systems. Figure 2.18 details the in�uence on critical

buckling temperature ratio as the thickness of the titanium panel is increased. The

y-axis in Figure 2.18 is the ratio of the current value of �T necessary to buckle the
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panel of thickness h to the value of �T with �xed boundary conditions and a thick-

ness of h0. This graph is useful is analyzing a possible repair scenario in which the

repair consists of adding material to the thickness of the failing panel. If we examine

the �gure at a thickness ratio of 2 (which corresponds to doubling the thickness),

the buckling temperature increases by a factor 4 for the in�nite edge sti¤ness con-

dition. If we consider a �nite sti¤ness ratio of 10, the buckling temperature ratio

approaches 6. Therefore, if the operating temperature is greater than a factor 6

above the original buckling temperature, the panel could continue to buckle. Hence,

as was shown in the �xed edge case, the possibility exists that the post-buckled state

of the thicker panel could produce higher stresses than the post-buckled state of the

thin, failing panel. Another important observation that can be gleaned from the

above results is as the initial boundary sti¤ness ratio decreases (i.e, weaker springs),

adding thickness to the panel has an ever increasing in�uence on the magnitude of

buckling temperature. This fact is re�ected in the average slope of each curve. As

ks decreases, the slope increases. If the original boundary sti¤ness were non-existent

(free-edge), then the buckling temperature, as well as the slope of the ks = 0 curve,

would approach in�nity. Small values of ks are of little interest due to the fact that

failures of the original structure (thickness h) would be much less likely to occur.

Since the quantitative behavior varies widely with boundary sti¤ness, a premium is

placed on the accuracy to which the boundary sti¤ness is determined. For example,

if the boundary sti¤ness is underestimated, adding thickness could appear to be a

very feasible solution from a stress reduction viewpoint.

As was discussed in the fully clamped case, the additional load transferred into

the boundary must also be considered for the �exible end case. Both the increase in

reaction force and moment are of concern as these additional loads must be reacted

by sub- and surrounding structure. Furthermore, the surrounding structure may
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Figure 2.19. Reaction force increase vs thickness increase for various
sti¤ness ratios.

have little or no margin for carrying this additional load if the thickness increase is

part of a repair. Figures 2.19 and 2.20 provide an illustration of the reaction force

and moment increases, respectively, for associated increases in thickness. Examining

Figure 2.19, we see that for small values of boundary sti¤ness, only small increases

in reaction force are possible. For large values of boundary sti¤ness ratio, the loads

increase very rapidly with the in�nite sti¤ness condition providing an upper bound.

Note that up to approximately two times the original thickness, the sti¤ness ratios of 5

and 10 are both approximated well by the �xed condition. As the thickness continues

to increase, the in�nite sti¤ness condition provides an upper bound and can be used as

a conservative design point. Another important bound can be deduced if we examine

the spring sti¤ness of the boundary and imagine the skin expanding freely. This free
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Figure 2.20. Moment increase vs thickness increase for various sti¤ness ratios

in-plane expansion multiplied by the spring sti¤ness provides an upper bound on the

reaction force produced. While this load is not theoretically possible since the skin

is not free to expand unabated, it does provide a useful metric for comparison if the

boundary sti¤ness ratio is available to the analysis.

The moment curves in Figure 2.20 demonstrate similar behavior to that found

in the previous clamped beam study. The moment initially increases with increas-

ing thickness, reaches a maximum and then tails o¤ as out-of-plane deformation is

eventually suppressed due to the buckling temperature exceeding the operation tem-

perature. Again we notice that as the boundary sti¤ness is reduced, less potential

exists for generating large moments. And as in the reaction force, the in�nite sti¤ness

case provides an upper bound on possible moment increases. Also, the sti¤ness ratio

of 10 is su¢ ciently approximated by the �xed case up to thickness ratios of 2.
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Figure 2.21. Stress ratio vs thickness ratio for various values of spring
sti¤ness ratio

While the additional loads into surrounding structure are of the utmost impor-

tance, the stress response also reveals the importance of knowledge about the sti¤ness

of the boundary. Axial stresses generated by the combination of in-plane load and

bending moment are shown in Figure 2.21. This graph is very revealing in that it

demonstrates that while the goal of adding material was to decrease the stress in the

panel, in fact, the stresses can increase for large values of boundary sti¤ness as mate-

rial is added. If we examine closely the ks=10 curve at double the original thickness,

while we have dramatically increased the loads into the boundary, the stress is virtu-

ally the same as the unsti¤ened panel. In the case of a crack repair, if the doubler

plate is placed over the crack on the high stress side opposite the deformation, the

outer-most �bers of the doubler plate would replace the single-thickness skin as the

location of highest stress. While this action would retard additional damage of the
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original panel since the crack would be located at the neutral axis of the new con�g-

uration, new cracking would appear in the doubler plate. Therefore, this approach

would provide a temporary �x and would require routine inspection and replacement

of the doubler. If, however, the crack has grown completely through the panel and

the repair consists of placing the doubler on the side opposite the maximum stress

location, the cracking can accelerate. The author observed this phenomena when a

doubler plate was placed over a severe crack in the B-2 aft deck on the outer mold line.

The crack growth rate on the underside of the skin (initial crack location) actually

increased. Much of the motivation for this study was provided by this observation.

This study con�rms the �ndings in the clamped case investigation and further

demonstrates that the addition of material in a thermal environment must be ap-

proached with extreme caution and with careful consideration given to the trade

space of load and stress reduction.

2.4. Curved Beam Model

While the study in the previous section applied a small perburtation to the initially

�at beam to provide a smooth equilibrium path for out-of-plane de�ection, the focus

of this section is to quantify the e¤ect of initial curvature on the problem at hand. A

study was conducted employing the widely used preliminary design text by Roark [36]

and comparing these results with �nite element computations performed using both

ABAQUS linear and nonlinear static analyses. Again, the strip (or beam) model

(Figure 2.22) is utilized for a uniform temperature �eld over the entire span, where

� is the initial out-of-plane distance at the center of the beam. Reaction forces and

moments at each end of the beam as well as relevant cross section dimensions are also

shown in Figure 2.22. Assuming a �xed boundary, the e¤ect of the thickness ratio,

d=�, on maximum strain, �, will be analyzed. For the geometries being considered,
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Figure 2.22. Curved beam geometry and reaction forces.

the maximum strain will again occur at the clamped edges. With L = 12 inches (and

the values of � also in inches), Figures 2.23 - 2.26 detail the results of the investigation

for various values of an initial out-of-plane curvature of the panel which is described

by the �=L ratio. The linear �nite element solution and the Roark solution coincide

precisely. To achieve this agreement, a mesh density of 0.01 inches was required

(~1200 two-noded linear elements). For very small values of � (Figures 2.25 - 2.26)

there are large di¤erences between the linear solution (Roark�s or linear FEA) and the

nonlinear �nite element solution. The linear solutions make no distinction between

the deformed and undeformed con�guration. Therefore, as the two con�gurations

diverge, nonlinear geometric e¤ects must be included. The out-of-plane deformation

in these two cases is greater than the thickness and hence requires nonlinear analyses.

As the initial out-of-plane distance of the curved panel is increased (Figures 2.23

- 2.24), the out-of-plane deformation decreases which results in coalescence of the

linear and nonlinear solutions. Another important observation is that the maximum
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Figure 2.23. Strain vs d=� for �=L = 0:083:

Figure 2.24. Strain vs d=� for �=L = :042
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Figure 2.25. Strain vs d=� for �=L = 0:0083:

tensile strain, for a given thickness, d, as � increases, is greatly reduced. Figure

2.27 shows the values of mechanical strain for di¤erent values of � with thickness

held constant at 0:125 inches. Therefore, a small decrease in radius of curvature

can provide a substantial reduction in stress and can increase the life of the curved

hot structure. As the in-plane load for various values of thickness was examined

in the �at beam scenarios of the previous sections, so too are the results presented

for additional reaction load in the initially curved beams. Figure 2.28 shows the

added bonus of reducing the radius of curvature. The graph demonstrates that as

the initial out-of-plane distance is increased, the loads are reduced with thickness

increases. The design engineering concept of applying generous radii to corners

to alleviate mechanical stress is a useful notion in this environment, albeit, for very

di¤erent reasons.
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Figure 2.26. Strain vs d=� for �=L = 0:0042

Figure 2.27. Maximum strain vs initial out-of-plane distance �:
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Figure 2.28. Reaction force vs thickness for various values of initial
out-of-plane distance for a curved panel

This chapter has detailed the results of a common sti¤ening method applied to

thermal shell structures. The results have revealed that care must be used when plac-

ing sti¤ening material in a thermal environment as very non-intuitive consequences

may occur. While these results have focused on increasing thickness, the addition of

sti¤eners such as I-beams or T-beams can be viewed as increases in material thickness

at discrete locations and hence must also be integrated into a thermal stress design

with caution.

More modern semi-analytical treatments of buckling and out-of-plane deformation

of panels and beams have been studied in [37], [38], [39], [40], and [41]. The liter-

ature review revealed that after the mid 1970�s very little work focused on isotropic

materials. Composite material formulations dominated the literature for roughly 20
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years while very recent work has focused on functionally-graded materials that al-

low very rapid (approaching continuous) material changes based on the local desired

properties. It is the author�s opinion that the particular revelations regarding the

thickness parameter that are the focus of much of this chapter were not produced

earlier due to two factors. Firstly, from a design standpoint, the solution to ther-

mally constrained structures is to permit expansion so the necessity of sti¤ening was

avoided. Secondly, when the focus of the research community turned toward com-

posite structures, the sti¤ness of the panel could now be in�uenced by a multitude

of material properties. To sti¤en a particular panel, attention was focused on the

reduced sti¤nesses of individual layers of the composite [42] as opposed to a simple

increase in cross section.

2.5. Chapter Summary

In this chapter we have detailed the inherent di¢ culties associated with thermo-

elastic design. Many of the traditional design concepts that designers are familiar

and comfortable with in a purely mechanically-loaded setting are highly non-optimal

when applied to structures whose response is due to thermal energy input. Sev-

eral examples of common aerospace structures were presented to demonstrate the

non-intuitive nature of sti¤ening strucures subjected to elevated temperature. The

entire concept of sti¤ening must be perceived di¤erently in this environment. Typ-

ically, when a designer intends to sti¤en a failing part, the intention is to reduce

the damage at that location by adding material. The conclusions in this chapter

reveal that sti¤ening thin shells in a thermal environment by adding material to the

damage location can actually increase the rate of damage. Therefore, to refer to this

process as sti¤ening is a misnomer. Because thermally-loaded structures in essence

provide their own loading through material expansion, the addition of material must
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be approached cautiously. For additional material to provide a bene�cial outcome,

it must participate in the reaction of the original loading more than it contributes to

additional load in the vicinity of the critical design region. The other major concern

that was investigated in this chapter was the additional load that is reacted at the

idealized boundary conditions. While in this work, the boundaries are assumed both

clamped and simply-supported, in reality, sub- and surrounding structure provide the

constraint. When additional material is added to prevent damage or for restoration

of a damaged component, additional load is introduced and will be reacted by the

surrounding structure. This additional load must be managed and therefore provides

an upper bound on what is possible from a sti¤ening approach.



CHAPTER 3

Topology Optimization

3.1. Overview

Topology optimization of continuum structures has been an area of active research

for more than a decade. The topology optimization formulation seeks to determine

the optimal distribution of material and void within an initial design region. To

prevent the trivial solution for a sti¤ness objective (i.e., no void regions), a resource

constraint on the volume of material is generally enforced. Topology optimization

is distinguished from both sizing and shape optimization in that the �layout�of the

structure is unknown a priori. In fact, the structural layout is the computed quantity.

A sizing optimization problem commonly has as its design variables, parameters

such as thickness, area, or moment of area of a structural member. Sizing optimization

has the most straightforward implementation and has numerous analytical solutions

[43]. Sizing optimization has been incorporated in several structural mechanics codes

�two of which are ASTROS [44] and GENESIS [45].

Increasing in level of complexity, shape optimization involves the determination

of the boundary of a structure or structural member. Variational calculus provides a

framework for analytical solutions to shape optimization problems (e.g., the brachis-

tochrone function [46]). In a �nite element or boundary element formulation, the

boundary node locations are commonly taken as design variables [47]. Other vari-

ants parameterize the boundary by a conveniently chosen basis of B-splines [48] or

structural frequency mode shapes obtained from a former analysis. While shape opti-

mization provides the designer with greater �exibility than simple sizing, the locations

60
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of material and void are necessarily speci�ed by the designer at the preliminary design

stage which limits the possible topologies generated.

A plethora of various methods have appeared in the literature which address the

topology optimization . Since the topology problem can be formulated as a combi-

natorial optimization problem with each material point potentially having a value of

0 (void) or 1 (material), genetic algorithms (GA�s) [49] and [50] and heuristic meth-

ods [51] have been used to determine global optima. Combinatorial (or zeroth order)

methods which do not require gradient information are somewhat limited with respect

to problem size and will not be pursued in this work. The most popular methods

are based on gradient search algorithms (also known as mathematical programming

methods). These gradient search methods can be further subdivided based on how

the discrete design variable is treated. The discrete problem can be transformed to a

continuous representation by either introducing a microscopically composite material

using the homogenization method [52] or employing an interpolation based on the

Simpli�ed Isotropic Material with Penalization (SIMP) method [53]. In contrast,

other methods such as the evolutionary structural optimization (ESO) method [54],

more directly address the discrete variable problem by removing elements from the

�nite element mesh. One relatively new approach which does not require a discrete

to continuous transformation is the Level Set Method [55]. This method embeds a

series of macroscopic holes in a topological domain. These embedded boundaries can

move and resize based on the solution to a �Hamilton-Jacobi-type�equation [56].

In the following sections, previous work in the area of topology optimization will

be detailed. The subsequent summaries are by no means exhaustive but provide a

general overview of the subject areas along with references for the interested reader

to gain further insight.
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3.2. The Homogenization Method

Early work in topology optimization was �rst introduced by Bendsoe and Kikuchi

[57] within the framework of the method of homogenization. The homgenization

method is an analytical technique that facilitates the analysis of heterogeneous ma-

terials by determining equivalent macro-scale material properties (which can be used

in structural analysis software) from periodic micro-scale features. The reader is re-

ferred to texts on asymptotic perturbation techniques for a thorough treatment of

the subject of homogenization [58], [59], [60] and [61].

This early work is more appropriately viewed as an �inverse� homogenization

process. In the solution to the traditional homogenization problem, the microstruc-

ture is given and the task is to determine the �homogenized� properties whereas

the methodology employed in [57] determines the microstructure based on the de-

sired macroscopic response. Although the homogenization method is a technique that

permits multiple constituents and is very general with respect to the complexity of

the micro-scale features (e.g., this technique is applied to complex three-dimensional

composite weaves with multiple constituents), the approach taken in [57] introduces

a two constituent model consisting of (i) a single homogeneous material model with

(ii) micro-scale voids. The topology optimization problem is then de�ned by seeking

the optimal porosity of such a porous medium using a desired condition of optimality.

The porosity is related to geometric characteristics by introducing a square micro-

scale pattern of length a along with an orientation angle � (Figure 3.1). The density

�(x) of the body 
 is given locally by 1 � a2. Both the square characteristic length

and the orientation angle are treated as design variables. Typically, a �nite element

mesh is used to discretize the domain. Each �nite element can contain single values

of a and � or sub-discretization of each element can be carried out for �ner grain
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Figure 3.1. Variable de�nitions for homogenization model

structures. Note that anisotropic structures are possible since the orientation angle

� is included in the formulation.

One of the early problems with homogenization was that solutions su¤ered from

a numerical instability known as checkerboarding. Checkerboarding is primarily

associated with linear, 4-node elements and can be suppressed (but not totally elim-

inated) by using higher-order elements as shown in [62]. Checkerboarding in a

topology design is evidenced by alternating solid-void combinations which justify the

name. Figure 3.2 provides an example of this phenomena. In addition to the use

of higher-order elements, other methods have been developed which penalize these
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Figure 3.2. Tip-loaded cantilever beam with severe checkerboarding instability.

checkerboard patterns by, for example, placing a constraint on the perimeter of the

problem [63]. This constraint allows some control over internal boundaries (or holes)

that are generated. The most thorough theoretical foundation for checkerboard oc-

currence is found in Jog and Haber [64]. Checkerboarding also occurs in the mixed

�nite element formuation where two-�eld problems are solved on a common mesh.

For example, a solution to Stoke�s �ow where both pressure and velocity are sought

on a common mesh with identical shape functions produces alternating pressures in

adjacent elements. Babuska and Brezzi [65] �rst identi�ed this pathology and pro-

posed a su¢ ciency condition on the interpolation (or shape) functions for the pressure

�eld to alleviate the checkerboarding phenomena. The proof requires that the two

�elds form a min-max saddlepoint problem and while checkerboarding in the topology

setting does not satisfy this condition, numerical experiments have proven successful

when applying the Babuska-Brezzi condition.
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3.3. Solid Isotropic Material with Penalization (SIMP)

Another method which relaxes the �0-1�design space is the "solid isotropic ma-

terial with penalization" (or SIMP) method. One of the primary advantages of the

SIMP method is its conceptual simplicity [66] and [67]. The SIMP method allows

intermediate densities to exist in a domain as opposed to the all or nothing approach

of material or void. In the typical SIMP approach, material properties are assumed

constant within each �nite element used to discretize the design domain (although

this assumption is not essential to the development) with the design variables being

the element "densities". This density �eld variable does not have to represent the

true mass density of the material. Instead it can be a user-de�ned �eld variable that

is used simply as a multiplier to adjust the modulus. The material properties are

modeled to be proportional to the relative density raised to a power. For example,

the fourth-order elasticity tensor is given by Eq. 3.1,

(3.1) Eijkl (x) =

�
� (x)

�0 (x)

�p
E0ijkl (x)

where Eijkl is the scaled value of the elasticity tensor �eld, E0ijkl is the initial value of

the elasticity tensor, � is the density, �0 is the initial density and p an integer power.

The e¤ect of the exponent p is to penalize intermediate densities (Figure 3.3). Since

intermediate densities are permitted in this method, a penalization of intermediate

densities is necessary to prevent so-called "grey" designs from evolving as they are

not manufacturable from a two-constituent (material or void) model. The problem

with penalizing intermediate densities is that the di¢ culties associated with the �0-1�

problem (e.g., checkerboarding) return as the penalty becomes large. In Figure 3.3,

we can see that as the exponent increases, fewer and fewer intermediate modulus ratio

values are possible. The value of p is typically chosen to be approximately three. To
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circumvent the problems associated with the �0-1�highly penalized behavior and still

arrive at designs which contain very little intermediate density, the value of p can be

chosen small initially and increased as the optimization proceeds. This approach is

known as a continuation method [68]. The power-law based approach to topology

optimization has been widely applied to problems with multiple constraints, multiple

physics and multiple materials. In fact, all (to the author�s knowledge) commercial

topology optimization codes include a SIMP implementation. This method is chosen

primarily for its ease of implementation into a �nite element framework. However, the

close association of the SIMP topology optimization method with the �nite element

discretization also limits the topologies generated and can cause mesh dependency

issues which much be addressed through �ltering techniques [69], [70] and [71].

3.4. Level Set Method

The most recent technique for addressing the structural topology optimization

problem is known as the level set model. This model combines level set methods [72]

and a mathematical programming method for optimization. The level set method uses

implicit, moving boundaries for topology optimization. The structural boundaries are

viewed as moving during the optimization process. Interior boundaries (or holes) may

merge with each other or with the exterior boundary and new holes may be created.

A level set model speci�es a surface in an implicit form as an iso-surface of a scalar

function, � : R3 �! R, embedded in 3D, i.e.,

(3.2) S = fx : � (x) = kg

where k is the iso-value and is arbitrary, and x is a point in space on the iso-surface

�. x is the set of points in R3 that composes the kth iso-surface of �. The embedded

� can be speci�ed in any speci�c form, e.g., as a regular sampling on a rectilinear
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Figure 3.3. E¤ect of SIMP penalty parameter

grid. A process of structural optimization can be described by letting the level set

function dynamically change in time. Thus, the dynamic model is expressed as

(3.3) S (t) = fx (t) : � (x(t); t) = k
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Upon di¤erentiation of Eq. 3.3 with respect to time, a �Hamilton-Jacobi-type�equa-

tion results

(3.4)
@� (x; t)

@t
+r� (x; t) dx

dt
= 0

In this dynamic level set model, the structural optimization process can be viewed

as follows. Let dx
dt
be the movement of a point on a surface driven by the objective

of the optimization, such that it can be expressed in terms of the position of x and

the geometry of the surface at that point. Then, the optimal structural boundary is

expressed as a solution of a partial di¤erential equation on �:

(3.5)
@�(x; t)

@t
= �r�(x; t)dx

dt
� �r�(x; t) � �(x;�)

where �(x;�) denotes the �speed vector� of the level set surface, which depends

on the optimization objective. This approach is very similar to that used in shape

optimization. In fact, the reference here to �speed vector� is analogously called

the design velocity vector in shape optimization and refers to the nodal boundary

movement of a model discretized by a �nite element mesh [73]. Figure 3.4 illustrates

the use of the level set method to generate an optimized structure. The objective

function represented by the optimization is minimal compliance.

The level set method has some obvious advantages over other topology generating

algorithms. Since the boundaries move to represent the structure, the �0-1�nature

of the problem is removed. This eliminates the di¢ culties associated with homoge-

nization and SIMP methods with regard to numerical ill-conditioning of regions with

�small�density. Another advantage is the black/white nature of the �nal design. Re-

gions of intermediate density are no longer problematic and do not require a postiori

�ltering techniques.



69

Figure 3.4. Minimum compliance example for level set method [72]

The topologies generated by the level set method are somewhat restricted by the

choice of the initial boundary unlike that of competing methods. The method also

su¤ers from potential degradation in mesh quality due to large changes in the domain

boundary. Mesh smoothing methods are required to maintain proper element aspect

ratios. Similar algorithms have routinely been employed in shape optimization. In

fact, the nature of the level set method associates it more closely with shape opti-

mization methods than with previously established topology optimization methods.

A satisfactory level set formulation for nonlinear response has yet to be developed

and is an active area of research.
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3.5. Evolutionary Structural Optimization (ESO)

The Evolutionary Structural Optimization (ESO) method for topology optimiza-

tion was �rst introduced in 1993 in [74]. The genesis for the method has its origins in

the well-known optimality criteria concept in structural optimization known as �fully-

stressed design.�A fully stressed design (FSD) is de�ned as one in which each point

in the body is fully utilized with respect to stress allowables[75]. In application, the

FSD method usually takes the form of driving the structure toward a uniform stress

state. To accomplish the objective, ine¢ cient material is slowly removed from the

body over many iterations for the given loading. This slow removal of material sub-

stantiates the �evolution�reference in the method title, i.e., the structure �evolves�

toward an �optimal�con�guration.

There are obvious similarities between the SIMP and ESO methods. In the SIMP

method, ine¢ cient material is, in essence, removed by adjusting the modulus down-

ward. In the ESO method, a more discrete methodology is employed which literally

removes the ine¢ cient material. Just as the SIMP method is closely tied to the �-

nite element method with regard to material discretization, so is the ESO method.

Therefore, ine¢ cient elements are removed from the initial structure generating in-

ternal surfaces.

The ESOmethod is similar to the aforementioned methods in that a design domain

is chosen large enough to cover the area of the �nal design. The design domain

is discretized by a �ne mesh of �nite elements. Loads and boundary conditions

are applied and a stress analysis is performed. The stress response is interrogated

comparing the lowly stressed regions to the rest of the structure. An appropriate

rejection criterion is chosen and is used to remove ine¢ cient material, i.e., elements.

An average stress value is computed for each element using the components of the

stress tensor. For this purpose the von Mises stress has been one of the most widely
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used criteria for materials with isotropic response. At the end of each �nite element

analysis, all the elements which satisfy the following condition are deleted from the

model.

(3.6)
�vme
�vmmax

< RRi

where RRi is the current rejection ratio (RR).

Finite element analyses and subsequent element removal are continued using the

same value of RRi until the process reaches steady state. Steady state in this context

is identi�ed with the iteration where no elements are removed. At this stage an

evolutionary rate (ER) is introduced and added to the rejection ratio, i.e.,

(3.7) RRi+1 = RRi + ER; i = 0; 1; 2; 3; : : :

With this increased rejection ratio, the cycle of analysis and removal is repeated until

a new steady state is reached.

The evolutionary process continues until an �optimal�design is reached. In prac-

tice, it is di¢ cult to achieve a design where each material point is stressed to full

strength. Therefore, a cuto¤ percentage is typically speci�ed which terminates the

process when, for example, all elemental stresses are within 10% of the maximum.

Another widely used approach to termination is to specify a volume constraint which

becomes active after the �kth�iteration.

The ESO method is considered a heuristic method which correctly implies that

ESO is not as mathematically founded as competing methods. Convergence has yet

to be proven for the general formulation, however, the remarkable agreement between

ESO and other methods suggest that a theoretical basis exists. A �rst attempt to

investigate the theoretical aspects of the ESO method is given in [76]. In spite of the
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infancy of the theoretical foundation, the ease with which the ESO formulation can

be incorporated into a commercial �nite element code makes it a formidable tool for

design optimization.

Checkerboarding does occur in ESO designs similar to highly penalized SIMP

models. A scheme to suppress these unwanted topologies is presented in [77]. The

method replaces the raw elemental stress response from the analysis with an averaged

value based on neighboring element values.

3.6. Formulations

In this section, the formulations for topology optimization applications speci�c

to solid mechanics will be presented. While topology optimization is not limited to

structural applications, the overwhelming majority of work has been in this area.

The scope of this section begins very broadly eventually narrowing to the topic of

nonlinear thermoelastic applications.

3.6.1. Minimum Compliance Design

When a topology optimization problem is formulated, a design objective must be

chosen. A seemingly obvious choice is to minimize volume subject to local stress

constraints on each �nite element. While this objective/constraint combination has

been pursued in the literature, a fully satisfactory, robust formulation has yet to be

accomplished [78]. Having a local stress constraint on each element destroys the

e¢ ciency of the widely used adjoint sensitivity method. The adjoint method can

accomodate a large number of design variables very e¢ ciently, but its advantages are

diminished as the number of response equations increases. Another consideration

when attempting to apply local stress constraints is the limit state value. If we

specify that the von-Mises stress, �kvm, in element k should remain less than some
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value (e.g, yield stress, �y),

(3.8) �kvm < �y

as the optimization proceeds, the density of each element will undoubtedly change.

The question arises as to what value of �y should be used for these intermediate den-

sities. The so-called "singularity" problem associated with stress constraints requires

special consideration in topology optimization [78]. The design space de�ned by the

constraint equations su¤ers from an "irregularity" that produces degenerated appen-

dices in which the Slater condition does not hold. The result of this pathology renders

algorithms based on Kuhn-Tucker conditions ill-equipped to locate the optima. Mild

success in this area has been achieved by prescribing stress constraints over regions

of the model (groups of elements) which converts the local stress constraints to a

global quantity and renders the design space more amenable to conventional opti-

mization methods. By not being able to address the stress issue directly, there is

no guarantee that an "optimal" topology will be a useful structural design. The

study of stress constraints remains a very active area of research as the solution to

this problem would make the critical connection between topology optimization and

robust structures.

An objective function which does not su¤er from the pathologies of the stress

objective while producing useful structures is given by the compliance. Minimiza-

tion of compliance subject to a volume constraint is the most widely used topology

optimization formulation in literature. For linear elastic structures, the minimum

compliance formulation takes the following form where the objective is to determine

the sti¤ness tensor Eijkl(x) as a �eld variable over the entire domain, 
. Introducing
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the energy bilinear form:

(3.9) a (u; v) =

Z



Eijkl (x) "ij (u) "kl (v) d


with linearized strains

(3.10) "ij (u) =
1

2

�
@ui
@xj

+
@uj

@xi

�

and the load linear form

(3.11) l(u) =

Z



b u d
 +

Z
�T

t u ds

the minimum compliance or maximum global sti¤ness problem is given by

min
u�U;E

l(u)(3.12)

s:t: : aE (u; v) = l(v); for all v � U

The equilibrium equation is expressed in weak form with U denoting the space of

kinematically admissible displacement �elds, b, the body forces and t, the tractions

on the prescribed traction portion of the boundary, �T . The subscript E in the

bilinear form denotes the dependence on the sti¤ness tensor.

If the domain of the bilinear form is discretized into a �nite element mesh with

appropriate basis functions, the familiar �nite element statement of equilibrium is

given by

(3.13) [K] fug = ffg

where [K] is the global sti¤ness matrix, fug is the vector of nodal displacements, and

ffg is the nodal force vector. Also in discretized form, the compliance is the nodal
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force vector multiplied by the nodal displacements,

(3.14) l(u) = ffgT fug

Combining equations 3.13 and 3.14, the compliance is given by

l(u) = ([K] fug)T fug(3.15)

= fugT [K]T fug(3.16)

The reader familiar with strain energy concepts will recognize equation 3.16 as two

times the strain energy of a linear elastic structure provided the sti¤ness matrix is

symmetric. Therefore, minimization of strain energy ensures minimum compliance

(or maximum sti¤ness) of a linear elastic structure.

3.6.2. Linear Thermoelasticity

The �rst work which addressed the minimum compliance problem for thermoelastic

structures was the journal article by Rodrigues, et. al. [79]. The development

presented in this paper extended the material-based formulation presented by Bend-

søe and Kikuchi [57], to include the e¤ect of temperature di¤erential. The material

e¤ective (homogenized) properties for both the elastic moduli and the thermal expan-

sion coe¢ cient are computed using the homogenization method. The mathematical

statement of the compliance objective is given by

(3.17) min
(0 � �(x) � 1; �(x)

�Z



b � u d
 +
Z



�H(�; �)"(u)�T d
 +

Z
�

t � u d�
�

subjected to the isoperimetric constraint on volume,

(3.18)
Z



�(x) d
 � �V
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assuming the constitutive law of linear thermoelasticity,

(3.19) � = EH"(u)� �H�T

whereEH(�; �) is the homogenized fourth-order elasticity tensor, �H(�; �) the second-

order, diagonal, homogenized thermal expansion coe¢ cient tensor, �H(�; �) = EH(�; �)�H(�; �),

and u is the solution of the equilibrium equation, in weak form,

Z



EH(�; �)"(u)"(w)� �H(�; �)"(u)�T � b � u d
�
Z
�

t � u d� = 0;(3.20)

8 w admissible

The equations in this section are combined into a single Lagrangian equation which

facilitates the derivation of the optimality conditions. These equations are then

solved numerically to arrive at optimal topologies.

It should be noticed that for structural problems in thermoelasticity, the work

done by the loads includes the contribution from the thermal expansion terms (Eq.

3.17) and is explicitly dependent on the design via the thermal property tensor, �H .

One implication of this compliance de�nition is, as the temperature increases, the

optimal structure may fail to use all available material, (i.e., the volume constraint

will be inactive). Rodriguez, et. al. demonstrates this fact with a combined thermo-

mechanically loaded two-dimensional example problem. The inital design domain

(Figure 3.5) and the resulting topologies are shown for a constant mechanical loading

and �T = 0 (Figure 3.6) and �T = 1� using 4-noded elements (Figure 3.7). The

results of using higher-order elements (9-noded) are are shown in Figure 3.8. In

the �gures below, the darker areas indicate �xed regions. For the mechanical-only

loading, the volume constraint is active providing the most material to resist the

displacement in the direction of loading. In Figure 3.7 we see that supports are
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Figure 3.5. Initial design domain thermoelastic example [79]

beginning to form which, when heated, help to resist the mechanical loading. While

the volume constraint is still active for this small temperature increase, an indication

is inferred by the topology that further increases in temperature could result in a

situation where additional material would actually increase the compliance. The

authors use both four-noded as well as nine-noded elements for the study. The well-

known checkerboard pathology is revealed in the four-noded mesh (Figure 3.7). These

instabilities can be successfully suppressed through �ltering techniques as mentioned

earlier in this chapter. The nine-noded elements do not su¤er from this numerical

instability (Figure 3.8).

As the temperature is increased to �T = 4�C, the resulting topology is shown in

Figure 3.9. The �nal volume for this topology is less than what is available to the

optimizer through the constraint. The supports which resist the mechanical load are
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Figure 3.6. Optimal topology for Rodriguez, et. al [79] example where
�T = 0�.

very pronounced in this case. By adjusting the volume constraint, a condition could

be achieved where the displacement corresponding to the applied load is zero. This

is very similar to the results for topological material design where a three-constituent

model can be constructed with a negative coe¢ cient of thermal expansion [80]. The

�nal point to be made from the work in [79] is in the de�nition of compliance used. If

the continuum body was fully constrained, the displacement would vanish and hence

the compliance would be zero. Alternatively, if the body were free to expand without

constraint, the compliance would be quite large since the thermal compliance term is

comprised of the total strain tensor, "(u). Therefore, in thermally loaded structures,

a compliance function like that in 3.17, seems diametrically opposed to our ultimate
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Figure 3.7. Optimal topology for Rodriguez, et. al [79] example where
�T = 1� using 4-noded elements

desire to produce low stress designs. If the volume constraint for the mechanical-

only situation were relaxed to allow more material to resist the load, the stresses will

tend to decrease. Since the volume constraint for the �T = 4� case is not active,

increasing the constraint will have no e¤ect on the topology and will not decrease

stress values. The use of total strain in the objective function de�nition eliminates

the relationship between compliance and strain energy.

The ESO method has also been applied in the area of linear thermoelasticity. In

[81], Li, et. al. address displacement minimization of thermoelastic structures. Since

compliance is a global measure of displacement, the minimum compliance formulation

is very similar to the minimization of a particular displacement in a structure. Instead
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Figure 3.8. Optimal topology for Rodriguez, et. al [79] example where
�T = 1� using 9-noded elements.

of "hard" removal of elements, a sensitivity number is computed for each element and

the thickness of elements with the smallest value of sensitivity are adjusted downward.

Suppose that the thickness of the ith element is changed from some old thickness

t to a lower thickness (t � �t). Since the global sti¤ness matrix depends on the

thickness of each element, an accompanying change in the sti¤ness matrix is given by

(3.21) �K̂i = K̂i(t��t)� K̂i(t)

where K̂i(t) and K̂i(t��t) are the extended sti¤ness matrices of the ith element for

the old thickness t and the new thickness (t��t), respectively. The e¤ects of element

resizing on the mechanical loading fme are negligible. This assumption is reasonable
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Figure 3.9. Optimal topology for Rodriguez, et. al [79] example where
�T = 4� using 4-noded elements.

for "dead" loads which are not design dependent. The change in displacement vector

can be determined by considering equilibrium, pre- and post- thickness change. These

equations are

(3.22) K u = fme + f th

before the thickness change, and

(3.23) (K +�K̂i) (u+ �u) = (fme +�fme) + (f th +�f th)
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after the thickness change where fme and f th denote the mechanical and thermal

loads, �fme(= 0) and �f th denote the changes in mechanical and thermal loads,

respectively. By subtracting Eq. 3.22 from Eq. 3.23 and ignoring higher order

terms, the �rst order change in displacement vector is given by

(3.24) �u = K�1(�f th ��K̂iu)

To �nd the change in a given jth displacement component uj, a virtual mechanical

load vector f j is introduced, in which the j
th component is equal to one and all others

are equal to zero. Taking the scalar product of Eq. 3.24 with the transpose of f j, the

change �uj in the speci�ed jth displacement component due to the thickness change

in the ith element is determined as

�uj = fTj ��u = fTj �K�1(�f th ��K̂iu)(3.25)

= uTj ��f th � uTj ��K̂i u

where uj is the displacement solution of the virtual system K u = f j. The reader

familiar with the adjoint sensitivity method will see the similarity between the "vir-

tual" load and the pseudo-load of the adjoint approach. Since Eq. 3.25 is a scalar

value, the calculations may be computed at the element level. For the ith element,

(3.26) �uj = u
T
ij ��f i;th � uTj ��Ki ui

where �Ki denotes the change in element sti¤ness matrix due to its respective thick-

ness change, ui and uij represent, respectively, the entries from global solution vectors
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u and uj which are related to the ith element, while

(3.27) �f i;th = f i;th(t��t)� f i;th(t) =
Z
Ai

BTD �

8>>>><>>>>:
1

1

0

9>>>>=>>>>; (T � Tref )(��t) dAi

is the change in the corresponding element�s equivalent thermal nodal force subjected

to a given temperature di¤erence �T = (T � Tref ) [82]. Substituting Eq. 3.27

into Eq. 3.26, we arrive at the displacement sensititivity number of the thermoelastic

structure.

Li, et. al. points out in this article that the thermoelastic sensitivity number can

take on positive or negative values, which implies that the displacement components

uj may increase or decrease when there is a change in the thickness of element i. The

example problem used to demonstrate the method is very similar to that used in [79].

The resulting structure also demonstrates the same characteristics as those found in

[79]. Figure 3.10 shows the resulting structure from an initial design domain similar

to Figure 3.5. Another interesting result is revealed by the plot of volume ratio verses

displacement (Figure 3.11). Note the minimum value of volume ratio on the curve.

This point corresponds to a displacement which is nearly zero. Any increase in the

volume will only increase the displacement (or compliance) of the system. Again,

this process does not address the stress in the structure.

Li et. al. produced another article which features the ESO technique applied

to thermoelastic structures [83]. Because structures rarely operate at a single tem-

perature, this article develops an approach to multiple temperature load cases. In

this development, the traditional ESO approach is used which eliminates elements

based on a von-Mises stress criterion driving the design toward a fully-stressed de-

sign. Both mechanical and thermal loads are applied to a two-dimensional design
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Figure 3.10. Optimized thickness design for displacement minimization
(V/Vo=54.7%) [81].

Figure 3.11. Evolution history of displacement vs volume ratio [81].
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domain, again similar to that used in [79]. The structures generated are also very

similar to the optimized shapes found in the minimum compliance designs of [79].

This is not surprising as the equivalence between the ESO stress criterion and mini-

mum compliance was established in [84]. The concept of fully-stressed design should

not be confused with necessarily producing low stressed designs. Removing lowly

stressed elements does produce e¢ cient designs where very little underutilized mate-

rial remains. However, as material is removed from a mechanically-loaded structure,

the stress will typically increase as a simple appeal to � = P=A; with diminishing A;

reveals. The fact that the temperature load takes the form of a design dependency

is not mentioned in the article. No consideration in the objective function is given

to the fact that thermal stress will be relieved if expansion is allowed.

3.6.3. Nonlinear Thermoelasticity

Linear elasticity has been, by far, the area to which topology optimization has been

most applied. This formulation makes up the foundation of virtually all commercially

available topology codes. The obvious reason for this focus is the relative infancy of

the topology method when compared with other optimization techniques. So as not

to convolute the results of the various topology methods, the simplest response was

chosen, i.e., linear elasticity, as the demonstration tool.

More recent developments have moved beyond the linear elastic model and have

addressed the topology optimization of nonlinear elastic structures [71] and [85]. In

[71], Bruns and Tortorelli solve the minimum compliance objective with a volume

constraint for small strain but allow for large displacement. The authors compare

the results from both linear and nonlinear topology optimization. Their �ndings

indicate that while the compliances between the two approaches were similar, the

resulting topologies were di¤erent.



86

The �rst work to address nonlinear thermoelasticity was by Jog [86]. Jog�s for-

mulation is similar to the SIMP method in which a "density" variable is introduced to

transform the problem from one of integer programming to a continuous variable over

the domain. The variable is penalized to remove intermediate densities. Jog also

introduces a perimeter constraint to eliminate the tendency toward checkerboarding.

Jog makes very precise de�nitions of the equations of motion and energy. These

strong forms of the equations are reproduced from earlier work in linear thermoelas-

ticity [87]. Jog also generalizes the compliance de�nition given in [79]. His topology

optimization statement combines the compliance of the mechanical loading and the

thermal loading through a simple additive equation. Jog, similar to Rodriguez et. al.

[79], uses the total strain, (albeit the Green�s strain due to the nonlinear formulation),

to de�ne the thermal compliance contribution. He summizes that this objective will

not lead necessarily to lower stress designs due to the non-proportionality between

stress and strain. The author concludes that, under combined thermo-mechanical

loading, a di¤erent performance functional would have to be used in order to have a

more even (magnitude-wise) stress distribution in the structure.

3.6.4. Coupled Heat Transfer and Minimum Compliance

Up to this point, we have examined topology optimizations where the temperature

�eld has been treated as a known or given distribution that is independent of the

topology changes that take place. In many real life scenarios, a heat �ux may

be prescribed on a boundary along with convection and radiation conditions also

prescribed on various portions of the domain. Therefore, only a small number of cases

lend themselves to treating the temperature �eld as independent of the topology with

the primary exception being that of uniform temperature. As the topology changes,
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the conduction path for heat must also change. A limited number of publications have

demonstrated the advantages of considering both phenomena in a coupled fashion.

In [88], Cho et.al. compute adjoint sensitivities for the coupled �eld equations and

apply these sensitivities to the topology optimization problem. The objective func-

tion used for the structural part of the problem is the familar compliance functional.

Similar to previous works, the total strain value is used to construct the functional.

Therefore, a similar disconnect is observed between minimal compliance and stress

reduction. By including heat transfer mechanisms, a secondary possibility exists

for reducing the compliance function. If the average temperature in the domain is

reduced, then expansion e¤ects are also reduced resulting in lower compliance. This

e¤ect is observed in the topologies generated in this article. A cooling, convective

boundary condition is prescribed on a portion of the design domain. The topology

evolves in such a manner as to conduct heat towards the heat sink, thereby reducing

the average temperature in the structure and the compliance. This formulation is

given in terms of linear responses for both the temperature and the displacement.

However, incorporating large deformation would not alter the trends of the process.

3.6.5. Compliant Mechanisms

While thermoelastic topology design has been applied to the design of structures

as detailed above, thermally actuated devices have also been an active area of re-

search. Generating mechanisms that displace in a speci�ed manner in response to

thermal energy is, in some sense, the opposite objective of a structure designed to

minimize compliance. This area of research has shown particular promise in the area

of MEMS (microelectromechanical systems). Sigmund�s two part monograph which

analyzes single [89] and two-material [90] systems provides a thorough treatment of

thermally-actuated compliant mechanisms. Two �gures are taken from this article
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Figure 3.12. Design domain for a compliant thermal actuator mecha-
nism [89].

that demonstrate the problem formulation. Figure 3.12 shows the design domain

where the desired objective is to maximize the work done against the spring. The

results of the optimization are shown in Figure 3.13 for various values of spring sti¤-

ness. For small spring sti¤nesses the work objective is maximized by producing a

mechanism that generates large displacement. As the spring sti¤ness increases, the

mechanism exchanges the large gain in displacement for mechanical advantage neede

to displace the heavier spring.

The example presented above is based on a constant temperature application.

One of the more creative applications of a thermally-actuated mechanism involves

the response to a transient thermal �eld. In [91], Li et. al. apply a transient
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Figure 3.13. Optimized topologies for various output spring sti¤nesses [89].

Figure 3.14. Load and design domain of thermal snap-�t mechanism [91].

thermal �eld to a design domain to generate a snap-�t mechansim. In Figure 3.14

the desired action of the mechanism is speci�ed. The snap-�t mechanism is designed

to disengage when a speci�ed transient thermal �eld is applied at the location shown

in the �gure. The resulting topology is shown in Figure 3.15. Since the design could

be exposed to an elevated temperature in its working environment, care is taken to
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Figure 3.15. Result for snap-�t thermal transient actuator[91].

ensure that disengagement only occurs if a speci�c heat �ux is applied to a speci�c

location for a given amount of time.

This section demonstrates that the possibilities for topology optimization are far

reaching and are only limited by the designers creativity in applying the techniques

to new and innovative problems.

3.6.6. Frequency Maximization

The response of a structure to time-varying loads has long been a concern from a

design standpoint. If the structure will be subjected to dynamic inputs in its working

environment, consideration should be given to ensure that the natural frequencies of

the structure do not coincide with an excitation frequency as this resonant condition
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can result in large amplitude oscillations. Topology optimization, with its inherent

capability for design variation, is ideally suited for frequency optimization. The

problem formulation takes the following form (Eq. 3.28)

max
�

(
�min = min�i

i=1;:::;Ndof

)
(3.28)

s:t: : (K � �iM) �i = 0; i = 1; : : : ; Ndof

NX
e=1

ve�e � V; 0 < �min � �e � 1; e = 1; : : : N

whereK andM represent the sti¤ness and mass matrices, respectively and �i is the

eigenvector associated with ith eigenvalue. In practice, only the �rst few modes are

of interest (~10) in determining the dynamic response. One important observation

with regard to the frequency optimization problem (Eq. 3.28) is the existence of a

trivial solution. As stated, (Eq. 3.28) will attain an in�nite frequency by removing

the entire structure. Hence, the eigenvalue formulation is primarily used to reinforce

an existing structure with regions that are �xed (or non-designable) due to other

problem constraints.

Homogenization, SIMP and ESO have all been successfully applied to frequency

optimization. One di¢ culty that arises when the optimizer is attemping to drive a

freqency to a target value is the phenomena known as mode-switching [54]. This

phenomena manifests itself when (as the name implies) a mode shape that was orig-

inally associated with a large eigenvalue exchanges with an initially low frequency

mode shape. This phenomena causes problems for the optimizer as the active con-

straint can be switching at each iteration. Variants of the formulation have been

developed which place an additional constraint on eigenvalue separation to eliminate

the problematic condition from occuring [92].
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3.7. Summary

The intent of this chapter was to provide the reader with enough information to

appreciate previous e¤orts in topology optimization of thermo-elastic structures. The

body of work in this area is relatively sparse as most topological designs address the

mechanically-loaded situation. We have shown the most common objective function,

compliance, is not a good objective when attempting to sti¤en structure that is failing

due to thermally-induced loads. A satisfying approach which can sti¤en curved or

�at panels without unduly supplying load to the boundary has yet to be developed.

In the next chapter an approach to this end is proposed.



CHAPTER 4

SIMP Approach to Sti¤ening of Thermally-Loaded Curved

Shells

4.1. Introduction

In this chapter a simple but e¤ective procedure for developing topology designs in

constrained thermal environments will be presented. As was demonstrated in Chapter

2, the trade space that develops when attempting to alleviate high edge stresses in

thermally-loaded shallow shells is one of tensile stress reduction verses increased load

into supporting structure. A conventional approach to failures resulting from out-of-

plane bending would appear to require the addition of structural members with large

moments of inertia. Typical structural members of this variety include I- or T-shaped

beams. In a loading scenario in which the loads are independent of the structure, this

approach has proven successful in many applications. However, when the loading

becomes dependent on the structure, as is the case in a thermal environment, the

e¤ect of the sti¤ener on the load must be considered.

Stresses in thin, thermally-loaded shells result primarily from the inhibition of

thermal expansion. Due to the skin�s inability to expand su¢ ciently against the sti¤

boundaries, out-of-plane deformation results either through buckling (for a �at plate)

or through bowing in the case of an initially curved panel. Two approaches can be

taken to diminish the tensile stresses in the panel. The �rst approach involves the

addition of sti¤eners large enough to provide motion at the sti¤ boundaries. This

approach essentially forces expansion of the boundary creating additional space for

the expansion of the skin with little or no resistance. Structural members designed

93
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for bending are not necessary since the primary load being carried is compression

(provided buckling is inhibited). In this scenario, the skin will be virtually load and

stress free. The newly-added structural members support the load and the thin skin

simply follows the large stuctural members as they expand. The di¢ culty with this

approach is obtaining accurate information regarding the sti¤ness of the boundary.

As was demonstrated in Chapter 2, the additional force resulting from sti¤ening the

skin varies widely depending on the boundary sti¤ness. If model inaccuracies and

assumptions predict a softer boundary than actually exist in the structure, loads

into the boundary as well as stresses in the sti¤ened shell will be underpredicted.

If the structure is placed back in service, failures in adjacent structure and/or the

original panel could result. So while this approach can produce satisfactory designs,

it requires a high level of �delity in the model. A model to produce this level of

predictive capability would require experimental validation of the boundary sti¤nesses

at each location where the skin is attached to sub- and surrounding structure.

The second approach and the one followed in this work is to provide just enough

out-of-plane sti¤ening to enable the skin to carry greater compressive load without

resorting to excessive out-of-plane deformation. Since the material will be placed in

such a manner as to prohibit only transverse de�ection, a minimal increase in load is

expected from the expansion of the additional, sti¤ening structure. As was demon-

strated in Chapter 3, the minimum compliance topology formulation for structures

whose primary loads are due to thermal expansion does not ensure lower stresses as

the volume constraint is relaxed. While this behavior is intuitive and observed in

structures whose function is to support mechanical loads, increasing volume in a ther-

mal stress problem can actually increase compliance. And since thermal expansion

e¤ects are related to the volume of the material, as volume increases so too does the

potential for larger stresses and reaction loads. To circumvent the problematic issues
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associated with topology optimization of thermal structures, an attempt will be made

to apply a mechanical load to induce a similar deformation as that of the damaging

thermal loading. One well-documented de�ciency in the topology optimization of

structures [85] occurs when the structure is optimized for a single load case. In the

case of minimum compliance, the structure will be sti¤ened in the direction of the

single case loading at the expense of other potential loading directions. In fact, for

the case of nonlinear optimized structures, the structure can actually collapse if the

load direction remains the same but the magnitude is changed [93]. For thermally-

loaded shell structures where the objectives are to reduce out-of-plane deformation

while limiting load into adjacent structure, the single-load case de�ciency becomes a

valuable asset of the methodology.

4.2. Problem De�nition

Two models are used to demonstrate this approach. The �rst model is a singly-

curved, shallow titanium shell with clamped edges on all sides. While any real struc-

ture will have �nite boundary sti¤ness, as shown in Chapter 2, the �xed assumption

provides a useful metric for comparison of alternative sti¤ening approaches. The

shell is subjected to a uniform temperature increase. Material properties of tita-

nium 6-2-4-2 are taken from the Aerospace Structural Mechanics Handbook [28] and

capture the temperature dependence of both Young�s modulus and the coe¢ cient of

thermal expansion. Figure 4.1 details the geometry and boundary conditions of the

shell structure. The ABAQUS �nite element package is used model the nonlinear

static response of the shell. Since the maximum usable temperature of this alloy is

approximately 1000�F , a 900�F temperature change above the reference temperature

of 70�F is used to demonstrate the largest stresses that one would expect in opera-

tion. The radius of curvature is 144 inches and the baseline shell thickness is 0.160
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Figure 4.1. Initial geometry of curved shell with clamped boundary.

inches justi�ying the �nite element shell assumption. These dimensions are inspired

from the EEWS application mentioned in the introductory chapter.

The second model is a two-dimensional plane idealization of the three-dimensional

shell (Figure 4.2). This model allows the focus to be placed on the edge stresses

and permits two-dimensional topology optimization. Since the primary stresses are

bending induced, second-order triangular elements are used to capture the response.

The dimensions of the shell model are maintained except for the 36 inch depth. A

reference control point is used to more easily monitor reaction force and moment.

Constraint equations are used to enforce the clamped conditions from the reference

point to the faces of the elements on both ends of the planar model.
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Figure 4.2. Curved plane stress model of constrained skin.

4.3. Bowing or Buckling?

A large portion of Chapter 2 was devoted to analyzing post-buckling of initially

�at plates or bowing of initially curved shells. Both of these scenarios induce large

tensile stresses at the clamped boundary on the side opposite the deformation. In

this section the deformation and stress will be analyzed for an initially curved shell

responding to thermal energy for (i) nonlinear geometric bowing and (ii) nonlinear

post-buckled response. As shown in Cook, et. al., [94] buckling occurs when strain

energy stored in membrane compression is exchanged for bending energy. The value

of strain energy remains constant but the resulting equilibrium con�guration can be

vastly di¤erent.

In Figure 4.3 we see the nonlinear geometric response of the curved shell to the

uniform temperature �eld. The contours represent maximum principal stress on the
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Figure 4.3. Nonlinear stress response of thermally-loaded shell with
clamped edges.

bottom (underside) of the shell. Notice the locations of maximum stress occur at

the �xed boundaries. This location is consistent with damage found in operation of

the EEWS as discussed in the introductory chapter. A linear buckling analysis is

performed to determine an estimate of the buckling mode shapes and temperatures.

The �rst four modes are shown in Figure 4.4. The lowest buckling temperature

corresponds to the �rst mode and is given by 258.45�F . To gain a better estimate

of the buckling temperature, the shell is loaded to a temperature just below this

linear buckling temperature and another linear buckling analysis is performed. This

procedure ensures that all geometric nonlinearity is included in the linear buckling

estimate. Cook et. al. [94] outlines this procedure in detail. When the shell is heated

to a temperature 5% below the original buckling estimate using a nonlinear static

procedure and a linear buckling analysis is performed about this new con�guration,

the buckling temperatures increases to 470.87�F . In fact, it appears that buckling
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Figure 4.4. First four buckling of thermally-loaded shell (a)
(�T )c =188.45 �F; (b) (�T )c =188.72 �F; (c) (�T )c =208.69 �F; (d)
(�T )c =213.07 �F

is not a possible equililbrium state as the predicted buckling temperatures eventually

reaches values well above the operating temperature of the material.

While buckling is unlikely in this scenario, the stress state of the post-buckled

shell is computed for comparison with the simpler, nonlinear, unbuckled state. To

arrive at possible post-buckled con�gurations, the undeformed shell is seeded with

imperfections corresponding to the linear buckling mode shapes. Each imperfection

is scaled such that the magnitude of the imperfection is 25% of the thickness of the

shell (in this case 0.04 inches). Figure 4.5 shows the stress results of the analysis.

Again, the contours represent maximum principal stress. While the deformation

state does di¤er slightly from Figure 4.3, the maximum stress locations also occur at

the clamped boundary and are within 2% in magnitude.

The debate over whether the out-of-plane deformation is due to nonlinear de-

formation and/or buckling is essentially a moot point from a sti¤ening perspective.

Whether the panel is buckling or not has little impact on the deformation or damage



100

Figure 4.5. Post-buckled, nonlinear stress response of thermally-loaded
shell with clamped edges.

location. If buckling were prevented, nonlinear out-of-plane deformation would con-

tinue to produce potentially damaging stresses. The observant reader will notice that

the stresses shown above are exceedingly high. In fact, plasticity should be included

in the modeling process to accurately capture the correct stress response. Since the

purpose of this work is stress reduction, the elastic model provides a reasonable metric

for comparision of alternatives.

4.4. Strip Model

In order to focus this study to the edge stresses, reaction loads and moments,

the plane model (Figure 4.2) is used to approximate the response of the shell model

(Figure 4.3). The stress and displacement results of the plane strain model are given

in Figure 4.6. This model allows the trade space between reaction loads and bending



101

(a)

(b)

(a)(a)

(b)

Figure 4.6. Half of plane strain model of (a) axial stress and (b) out-
of-plane displacement.

stresses to be analyzed without convolution with three-dimensional e¤ects. As men-

tioned earlier in this work, a trade space exists between the damaging stresses that

exist at the clamped boundary and the loads reacted by the boundary. Graphically,

the Venn diagram shown in Figure 4.7 illustrates the two opposing objectives and their

intersection. In an attempt to establish a reasonable upper bound on the e¢ ciency

of a sti¤ening approach, the following exercise was carried out. The plane strain
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Figure 4.7. Venn diagram of design space intersection between axial
stress and reaction force.

model was subjected to the thermal load and permitted to reach the �nal deformed

shape (Figure 4.6). In a secondary analysis, boundary conditions were prescribed at

each node of the model on a trajectory that would return structure to the undeformed

con�guration. This enforced displacement �eld is denoted by Uprescribed in Figure 4.8.

Notice that for a maximum tensile stress of 50 ksi, the necessary change in displace-

ment is approximately 1/10th of an inch. The objective of this exercise is to monitor

the stresses, forces and moments as the out-of-plane deformation was suppressed by

a process that required no sti¤ener. Hence, there would be no additional material to

expand and provide additional load to the boundary. This mental exercise, while be-

ing impossible to implement in practice, does o¤er a reasonable metric for comparison

between di¤erent options that would limit the undesired deformation. Figures 4.9,

4.10 and 4.11 present the axial stress, reaction force and reaction moment, respec-

tively, as a function of the �cticious, prescribed displacement. The arrows denote

the loading time sequence. From the diagrams, we see that to achieve a 50 ksi stress,

the minimal reaction load increase factor is 5.
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(a)

Uprescribed

(b)

Uprescribed

(a)

Uprescribed

(a)

Uprescribed

(b)

Uprescribed

(b)

Uprescribed

Figure 4.8. Half of plane strain model of (a) axial stress and (b) out-
of-plane displacement with enforced boundary condition Uprescribed.

4.5. Conventional Sti¤ening

To demonstrate some of the inadequecies associated with applying conventional

sti¤ening methods to the thermally-loaded shell strip, a combination of a doubler
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Figure 4.9. Axial stress vs out-of-plane displacement for plane strain model.

(double skin thickness) and T-sti¤eners are applied to the shell. This design was

motivated from an actual on-aircraft repair concept. The thermal load was applied

assuming �xed boundaries and the results are shown in Figure 4.12. We see that the

stresses are only reduced in the regions where the sti¤eners are placed. In reality, the

success of a sti¤ening concept such as this would require that the I-beams produce

motion at the boundary allowing the expansion of the skin. The problem with this

concept is the additional load that is transfered to surrounding structure. Without

quantitative information regarding the sti¤ness of the boundary, it is di¢ cult, if not

impossible, to determine the loads reacted by the boundary. In the introduction

of this chapter, two methods were outlined to reduce the thermal stresses. This



105

Figure 4.10. Reaction force vs out-of-plane displacement for plane
strain model.

approach corresponds to the �rst method mentioned which attempts to expand the

boundaries of the panel to accomodate the skin expansion.

4.6. Topology Optimization of Thermally-loaded Curved Shells

4.6.1. Thermal Loads

The �rst attempt to generate a useful structure in the elevated temperature environ-

ment using topology optimization did not prove constructive. A SIMP formulation

was used and thermal loads were applied to the design domain shown in Figure 4.13

A minimum compliance objective was sought with a volume constraint permitting

the �nal structure to use 30% of the original volume. The model is comprised of two

parts. The �rst is the shell strip which is speci�ed to be a �xed region and no material

removal is allowed. The second part is the designable area underneath the shell which
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Figure 4.11. Reaction moment vs out-of-plane displacement for plane
strain model.

represents the topology design region. The resulting structure is shown in Figure

4.14. The process was repeated for a volume fraction of .15 and is shown in Figure

4.15. The same problems with this formuation that have been well documented in

this work are also present in this result. Notice how all the material congregates at

the interface of the shell strip. Since the minimum compliance formulation employs

the total strain, and the boundary conditions at each end of the strip are �xed, all

the material desires to be aligned with the boundary condition to prevent in-plane

expansion and a resulting small compliance. As was shown in Chapter 2, placing

material as extra thickness is not an e¢ cient means of eliminating edge stresses when

boundary loads are a concern. However, from the study of curved panels, it was

observed that, with enough thickness addition, the tensile stresses could be reduced.

The reaction forces, on the other hand, will always increase as material is added to



107

Figure 4.12. Curved shell sti¤ened with conventional o¤-the-shelf sti¤eners.

Figure 4.13. Initial design domain featuring �xed and designable regions.
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Figure 4.14. Minimum compliance topology for thermal load of 900�F
and volume constraint of 30% of original volume.

Figure 4.15. Minimum compliance topology for thermal load of 900�F
and volume constraint of 15% of original volume.

this location creating an opportunity for failures in other locations outside the shell

structure.

4.6.2. Mechanical Loads

The next approach to generating sti¤ening structure that limits the out-of-plane de-

formation while also restricting the additional load into the boundary, is to apply

mechanical loads to the initial design domain (Figure 4.16) that produce the trou-

blesome deformed con�guration of the thermal loading. To this end, a series of

transverse loads of magnitude 10 lbf each are applied to the upper surface of the
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Figure 4.16. Initial design domain with mechanically-loaded out-of-
plane concentrated forces.

shell strip. This loading activates the strain energy due to bending. Since a min-

imum compliance objective is equivalent to minimizing strain energy, the structure

will evolve to reduce this out-of-plane de�ection. As discussed in the introduction to

this chapter, one additional consequence of developing a topology based on a single

load case, is the high compliance that the structure demonstrates in response to dis-

similar loadings. The results of this loading for volume fractions of .30 and .15 are

shown in Figures 4.17 and 4.18, respectively. One can see from Figures 4.17 and 4.18

that the resulting structure will have little resistance to loads applied in the plane

of the strip. Consequently, if the structure cannot resist compressive load, its abil-

ity to impart load in this direction through thermal expansion is also limited. The

reaction force and moment comparisons for each derived con�guration can be found
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Figure 4.17. Sti¤ener generated from mechanical loading with mini-
mum compliance objective and 30% volume constraint.

Figure 4.18. Sti¤ener generated from mechanical loading with mini-
mum compliance objective and 15% volume constraint.

in Figures 4.19 and 4.20 where the thermal load is applied to each topology. The

two graphs demonstrate the true feasibility of this topology approach. The desired

characteristic of compliance in the in-plane direction has been achieved. One obvious

di¤erence between the topologies generated from the mechanical loading and those

generated from the thermal loading is the multiple-connectedness of the two domains.

The mechanically-loaded topologies generate holes in-line with the �xed boundaries.

This characteristic allows thermal expansion to take place internally. This is in con-

trast to the simply-connected nature of the thermally-derived domains which when

heated have very little ability for thermal expansion to take place internally. This
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Figure 4.19. Reaction force comparisons for thermally and mechani-
cally derived sti¤eners for two volume ratios.

Figure 4.20. Reaction moment comparisons for thermally and mechan-
ically derived sti¤eners for two volume ratios.
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Figure 4.21. Deformed and undeformed con�gurations for
mechanically-derived sti¤ener subjected to thermal loading.

forces all the attempted thermal expansion to be reacted at the boundary and ac-

counts for the larger reactions found in the study. The next step is to determine

if the mechanically-derived sti¤ener does indeed reduce the de�ection of the curved

skin thus lowering the edge bending stresses.

Since the low volume, mechanically-derived sti¤ener was the best from a reaction

load and moment perspective, it is chosen as the potential candidate for the design

solution. If we analyze this sti¤ener subjected to the thermal loading, Figure 4.21

shows the undeformed (green) and deformed (white) con�gurations. A scale factor of

�ve is used to make viewing both con�gurations possible. Notice how the deformation

of the sti¤ener takes place opposite the in-plane direction. This expansion lowers the

possible magnitudes of loads into the boundary. The associated stress contours are

shown in Figure 4.22. The maximum principal stress is used as the stress measure

since this is the best representation of axial stress for the multi-member body. The

maximum axial stress in the skin is only 24 ksi, well below any value that would

result in cracking damage. In fact, the sti¤ener performed the task of eliminating
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Figure 4.22. Principal stress contours for mechanically-derived
sti¤ener-skin combination.

out-of-plane deformation so well that the thicknesses of the support structure could

be reduced to allow more de�ection and less load and/or moment reaction. If we

compare the axial stress in the skin with the prescribed displacement lower bound

of the previous section, we see that the to obtain this value of axial stress would

result in a reaction force of 7800 lbf . The reaction force in the mechanically-derived

sti¤ener is 13,400 lbf which results in a factor of 1.72. The moment reaction of

the mechanically-derived sti¤ener is 612 in-lbf while the lower bound is given by 225

in-lbf , a factor of 2.27. When compared with the thermally-derived sti¤ener, these

values seem very reasonable. In fact, the thermally-derived sti¤ener resembles most

conventional sti¤ening methods. For example the addition of a doubler sheet and an

I-beam reacts similarly to this type of approach.
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4.7. Conclusions

In this chapter, a simple method for developing structure which can be used to

sti¤en a curved shell in a thermally-loaded environment was developed. While the

treatment of topology optimization codes is lacking with respect to thermal loadings,

all commercial topology codes can be employed to derive a structure that will perform

well in a thermal environment. By applying mechanical loads in the problematic

direction, structures are evolved which have the property of compliance in dissimilar

loading directions. When sti¤ening a thermally-loaded shell structure that is failing

prematurely, the �rst and most important objective is to do no harm. By generating a

family of designs that, by their construction, limit the load into surrounding structure,

this objective is accomplished.

The methodology presented in this section could obviously be improved through

shape and/or sizing optimization. An objective which attempts to minimize a least

squares error between the desired displacement of the skin and the displacement

resulting from the optimization could be tailored to produce even more optimal solu-

tions. With topology establishing the property connectivity, many, more traditional

approaches are possible. Another concept which could be employed to amplify the

pull-down e¤ect of the sti¤ener is material grading. If, for example, a two material

system were permitted, one consisting of titanium (low CTE) and another consisting

of Inconel (high CTE), the response of the sti¤ener could be tailored to produce the

desired displacement of the skin. Topology optimization will continue to be an active

area of reasearch as it pertains to thermally-loaded structures.



CHAPTER 5

Multi-objective Evolutionary Structural Optimization Using

Combined Static/Dynamic Control Parameters for Design of

Thermal Protection Systems

In the previous chapter the focus was on a very particular geometry (i.e., curved,

clamped shells). In this chapter, a general three-dimensional domain is chosen to

demonstrate the applicability of topology optimization methods to a generic thermal

protection system. Exterior thermal protection systems (TPS) are responsible for

protecting a spacecraft�s structural components from degradation due to elevated

temperatures that result from atomospheric e¤ects that accompany re-entry. The

requirements for a successful thermal protection system should involve a prescription

for maximum thermal stress as well as minimum natural frequency. During launch

conditions, tremendous vibrational loads are generated from engine noise as a result of

multi-stage to orbit propulsion systems as anyone who has attended a space shuttle

launch can attest. Unlike typical vibration suppression approaches where care is

taken to ensure that the fundamental frequency of the structure is lower or higher

than the loading frequency, to alleviate damaging cycles in an acoustic environment,

a lower bound on frequency must be speci�ed. The content of the noise contains

multiple frequencies and is referred to as wide-band random noise. Typical ranges

for frequency are 0 to 2000 Hz. However, for excitation frequencies above 1000

Hz, the strain levels are small enough that damage accumulation is not a major

concern. Due to a transient temperature pro�le and discrete attachments, thermal

stress is also a concern. Thus in the design of TPS, both maximum thermal stress

115
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and minimum natural frequency should be considered due to the combined thermo-

acoustic environment inherent in high-speed vehicles. In this work, a multi-objective

structural optimization method for three-dimensional acreage TPS design is developed

using an Evolutionary Structural Optimization (ESO) algorithm. A static control

parameter, employed to �nd the optimum in minimum thermal stress design (in the

von-Mises sense), is modi�ed to simultaneously address the irregular mode-switching

phenomenon, as well as improvement in the modal sti¤ness in dynamic analysis. Two

objectives are optimized simultaneously; namely, the maximization of fundamental

natural frequency and the minimization of maximum thermal stress. The proposed

modi�ed control parameter is demonstrated on the design of a metallic TPS using the

method of weighted objectives. The results are then compared with the conventional

ESO sensitivity approach. This work concludes by applying the methodology which

makes use of both topology and shape optimization in the design of an acreage TPS.
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5.1. Nomenclature

ffg = global nodal force vector

fFrg = external force vector for the rth natural mode

[K] = global sti¤ness matrix

[M ] = global mass matrix

n = number of degrees-of-freedom

N = total number of degrees-of-freedom

P = correlation factor

Rj;i = ratio between �vmj;l and �
vm
j;max

Smultil = multi-objective control parameter for the lth element

Wj = jth criterion weighting factor

fxg = global nodal displacement vector

f ��xg = global nodal acceleration vector

�vmj;l = jth von-Mises stress for the lth element

� = parameter for element removal

! = natural frequency

f�g = natural mode

f"g = modal displacement vector

k�k = L2 norm
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5.2. Introduction

The primary challenges that must be addressed to enable lower-cost access to

space are weight, reusability, and ease of maintenance. The current methodology

for the design of space and high speed air vehicles is to construct a low-temperature

load bearing structure and then apply a thermal protective layer (also known as a

Thermal Protection System (TPS)) whose sole purpose is to shield the low temper-

ature structure. A successful TPS will not only perform its primary function of

maintaining the underlying vehicle structure within acceptable temperature limits,

but must also be durable, operable, cost e¤ective, and lightweight. By construction,

TPS is parasitic with respect to weight. In many situations, the themal insulation

layer is added after the vehicle is sized for structural loads. Typically, the insulation

is attached in such a manner as to permit thermal expansion. When following this

"loose" attachment approach, care must be taken ensure that the random noise from

the engines does not excessively excite the thermal protection system. Current re-

search e¤orts in �hot�structures have investigated the feasibility of using advanced

structural material systems that can function as load bearing structure at elevated

temperature. While hot structures will be important in the future for space and

high-speed air vehicle applications, parasitic TPS remains an enabling technology for

many current applications particularly in the area of re-entry where the heat load is

entirely transient. This work represents a hybrid approach in-between a true "hot"

structure where �ight load and stagnation pressures are reacted as internal loads and

a purely, parasitic TPS where all thermal stress is relieved by expansion joints. In

this work, no attempt is made to apply external �ight loads to the thermal protec-

tion system, however, thermal stresses will result as a "hard" attachment approach

is investigated. By attaching the TPS directly to the low-temperature substructure,

satisfaction of the frequency constraint will be more easily attainable.
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Existing thermal protection systems consist of various types of materials distrib-

uted over the spacecraft. Thermal insulators used as TPS are comprised of many

material systems including felt blankets, ceramic blankets and tiles, carbon-carbon

leading edges, as well as high temperature metallics. Metallic TPS has some ob-

vious advantages along with several disadvantages. On the plus side, the nature

and response of metals is well understood. Furthermore, the durability and fracture

toughness of metals are typically much greater than that of ceramics. Two important

disadvantages of metallic systems are weight and temperature capability. This work

attempts to mitigate the weight penalty through minimization.

Metallic thermal protection systems for spacecraft operating in an extreme thermal-

acoustic environment is of signi�cant importance [95]. Design considerations for ther-

mal and acoustic loading conditions tend to be diametrically opposed to one another.

So called �oating or compliant designs tend to reduce thermal stresses, whereas sti¤er

designs increase natural frequency and are not as easily excited by wide-band ran-

dom engine noise. To address the TPS design e¢ ciently, optimization methods are

essential from both the standpoint of identifying a potentially small feasible region

as well as driving toward low weight designs.

Traditional structural topology optimization methods, such as the density-based

method, [66], the Homogenization method [57] and [96], and the Evolutionary Struc-

tural Optimization (ESO) method [54] and [97] are applicable to multi-objective op-

timization of static or dynamic (modal) problems. A meaningful multi-objective op-

timization formulation is composed of con�icting objectives in which a compromised,

"best" solution is sought. Hence, multi-objective optimization is the generation of

designs that achieve optimal performance with consideration given to multiple crite-

ria [98] and [99]. Optimization solutions of this nature are known as Pareto optima
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[99] and [100]. Pareto optima do not produce unique solutions, but rather families

of solutions [101].

The formulation presented in this chapter incorporates a multi-objective optimiza-

tion formulation into the traditional ESO algorithm using the weighted objectives

technique. The ESO method developed by Xie and Steven is based on the princi-

pal that slow removal of ine¢ cient material from a structure evolves the structure

toward an optimum [54]. The ESO procedure addresses the �0-1�problem described

in Chapter 3 more directly than other topology methods. The relaxation that is uti-

lized to render the �0-1�problem well-posed is the small number of elements that are

removed at each iteration. While no proof currently exists, intuitively, the element

removal process in the ESO method can be thought of analogously with the continu-

ation methods used in the SIMP topology approach. Recalling from Chapter 3 that

continuation is achieved by slowly increasing the penalty exponent to approximate

the �0-1�problem at the end of the optimization process.

Traditional ESO procedures do not address the mode-switching phenomenon that

is common in three-dimensional dynamic problems. Mode-switching is a phenomenon

whereby the ordering of natural modes is altered along with structural modi�cation.

The phenomenon often occurs between the natural mode of interest and the neighbor-

ing, orthogonal natural modes. The natural frequency of interest and the modal sti¤-

ness are drastically a¤ected, resulting in convergence di¢ culties and/or non-optimal

con�gurations. In two-dimensional structures, Xie and his colleagues achieved suc-

cess in preventing this pathology by maintaining a prescribed separation between

frequencies [102]. This method, however, is not applicable to three-dimensional

structures in which the phenomenon occurs unpredictably during design iterations.

In addition, as the number of elements eliminated becomes large relative to the initial

design domain, a sudden drop in the natural frequency of interest is observed. This
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is a direct result of the modal sti¤ness decrease associated with the current level of

element removal. The ESO method and the associated dynamic sensitivity number

[54] fail to consider modal sti¤ness directly. Consequently, these problems make it

harder for the ESO method to determine the Pareto optimum in the multi-objective

optimization [97] that contains dynamic characteristics.

In the next section, control parameters for static and dynamic analysis based on

von-Mises stress are formulated. Section 4 presents the details of the multi-objective

optimization technique. The evolutionary optimization algorithm is described in

Section 5. In section 6, two relevant metallic TPS models with di¤erent load cases

are presented to demonstrate the applicability of the ESO method with the novel

control parameter.

5.3. Sensitivity Analysis

Like most structural optimization methods, many iterations are required for con-

vergence and the ESO procedure is no exception. Therefore, it is important that the

element removal process be e¢ cient and accurate so that the objective is obtained

as quickly as possible. In this section, two control parameters (called sensitivity

numbers [54]), both of which are based on static analyses, are proposed as requisites

for element removal. The static control parameter follows the typical ESO approach,

whereas the modi�ed static control parameter is newly developed and address the

shortcomings of modal sti¤ness reduction and mode-switching phenomenon in nat-

ural frequency optimization.

5.3.1. Control parameter for Static Analysis

To avoid direct consideration of each component of the stress tensor, an average stress

value is assigned to each element. The most common stress measure for this purpose
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in isotropic materials is the von-Mises stress. The von-Mises stress �vml of the lth

element for a three-dimensional structure is de�ned as

(5.1)

�vml =
1p
2

q
(�x;l � �y;l)2 + (�y;l � �z;l)2 + (�z;l � �x;l)2 + 6(� 2xy;l + � 2yz;l + � 2zx;l)

Here, �x;l, �y;l, and �z;l are normal stresses of the lth element in the x, y, and z

directions, respectively, and �xy;l, � yz;l, and � zx;l are the shear stresses action on the

lth element.

Consistent with the ESO algorithm, excessive stress or strain is assumed to be a

dependable indicator of structural failure, and a lowly stressed element in the struc-

ture is assumed to be under-utilized. Ideally, the stress in every part of a structure

should be near the same, safe level. By gradually removing material with low stress,

the stress level in the next iterate becomes more uniform. By equating the von-Mises

stress with the static control parameter, a prescribed number of elements with the

smallest static control parameter are removed so that the increase in the maximum

von-Mises stress is minimized. As eluded to in Chapters 3 and 4, the removal process

must be modi�ed when the stresses are a result of thermal �elds [30].

5.3.2. Control parameter for Dynamic Analysis

The dynamic control parameter in the ESO method [54], [102] is derived from the

Rayleigh quotient and is based on the natural mode of interest. This control pa-

rameter only estimates change in the natural frequency of interest. No direct con-

sideration is given to the modal sti¤ness. Also, when mode-switching occurs in the

optimization process, the dynamic control parameter based on the Rayleigh quotient

�uctuates dramatically due to the the natural mode of interest being exchanged for
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another mode. These e¤ects render the modal sti¤ness very small, bringing about

drastic changes in the natural frequency of interest when a large number of elements

are eliminated from the structure over many iterative steps.

To address the shortcomings of the traditional ESO method, a static control pa-

rameter using von-Mises stress is developed, which gives direct consideration to the

modal sti¤ness as a substitute for the conventional dynamic control parameter based

on the Rayleigh quotient. In addition, this static control parameter is modi�ed so

that consideration is given to adjacent natural modes, as well as the natural mode of

interest thus preventing a rapid change in the characteristic of the control parameter.

The derivation of the modi�ed static control parameter for dynamics is as follows.

The familiar equation of motion for an undamped system is given by

(5.2) [M ]f ��xg+ [K]fxg = ffg

where [M ] and [K] are the global mass and sti¤ness matrix, respectively, and fxg

and ffg are the global nodal displacement and nodal force vectors, respectively. The

displacement in the spatial coordinates of Eq. 5.2 can also be expressed using the

modal coordinates by

(5.3) fxg = "1f�1g+ "2f�2g+ � � �+ "Nf�Ng

where N is the total number of degrees of freedom, and f�g and f"g represent natural

modes and modal displacements, respectively.

Using Eq. 5.3 and the property of generalized orthogonality, the response in the

spatial coordinates is given by
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(5.4) fxg =
NX
r=1

f�rgf�rgTfFg
�!2mr + kr

ej!t

where ! is the natural frequency, f�rgT [M ]f�rg = mr = 1; f�rgT [K]f�rg = kr, and

ffg = fFg ej!t.

In this method, the displacement of each nodal point is computed by appealing

to the concept of a virtual static displacement for each mode shape. The virtual

static displacements are chosen to be the eigenvectors of the modal analysis. The

displacement for each mode shape is arrived at by assuming != 0. The absolute

value of the displacement is given by

fxg =
NX
r=1

f�rgf�rgTfFg
kr

(5.5)

= f�g[kr]�1f�gTfFg

Note that [kr] = diag(k1,� � � ,kN). From Eq. 5.5, [kr]�1[�]TfFg identi�es a modal

displacement vector due to the external force vector fFg. The natural mode f�rg

can be treated as a response (displacement) by applying the external force whose

modal displacement is 1 for the rth mode and 0 for all other modes. Regarding

fFrg as the external force satisfying this condition, fFrg is easily obtained by the

relationship the displacement - external force relationship given in Eq. 5.6

(5.6) fFrg = [K]f�rg

In general, the magnitude of the external force will vary from mode to mode, with

higher natural modes requiring larger external forces due to the complexity of the
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higher mode shapes. This tendency is exploited in the development of a novel control

parameter which simultaneously considers all frequencies of interest. This hypothesis

uses relative force magnitudes as a surrogate for �closeness�of natural frequencies.

The nodal force vectors are scaled such that large nodal forces (corresponding to

complicated mode shapes) are reduced by the factor (kFik = kFrk)P . Thus, {Frgnew

is given by Eq. 5.7

(5.7) fFrgnew =
�
kFik
kFrk

�P
fFrg

Here, subscript i shows the order of interest, (0 < i << N). Exponent P , which

adjusts the magnitude of the scaling factor between the ith natural mode and the

rth natural mode, is the correlation factor (typically P = 1). A larger value of P

emphasizes the relative importance of the natural mode of interest. Taking advantage

of linearity, the same scaling may be used for the response.

(5.8) f�rgnew =
�
kFik
kFrk

�P
f�rg

These scaled eigenvectors, f�rgnew, are then applied as static displacement �elds.

Using Eqs. 5.1 and 5.8, a series of von-Mises stresses for each element are obtained

corresponding to the ith through nth natural modes. Each natural mode is treated

as a displacement vector, and the corresponding stress components for each natural

mode are obtained via the strain-displacement and constitutive relations. Finally,

for each �nite element, the maximum von-Mises stress value among the ith through

nth natural modes is selected as the new dynamic control parameter. Symbolically,
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this process is expressed by Eq. 5.9.

(5.9) �vml = max


�vmi;l ; �

vm
i+1;l; �

vm
i+2;l; � � � ; �vmn;l

�
(0 < i << n; n < N)

Since Eq. 5.9 considers not only the ith natural frequency, but also neighboring natural

frequencies, a smooth change in natural frequency is possible even if mode-switching

occurs in the iterative process. For example, when other natural frequencies are much

higher than the ith natural frequency, only the maximum von-Mises stress of the ith

natural mode is selected for each �nite element because
�
kFik
kFrk

�P
for all competing

natural modes is small (<< 1). On the other hand, as the neighboring natural

frequencies approach that of the ith natural frequency during the iterative process,

neighboring natural modes are also considered (i.e.,
�
kFik
kFrk

�P
� 1). Note that the

necessity of considering lower frequencies than the ith natural frequency with respect

to mode switching is not crucial as this rarely occurs in most practical scenarios.

Since the proposed dynamic control parameter is derived using the von-Mises

stress, a chosen number of elements with the smallest von-Mises stresses are elim-

inated from the mesh. These elements represent the most ine¢ cient material in

the structural domain. Hence, the dynamic control parameter has been recast as a

familiar ESO static optimization problem.

5.4. Multi-Objective Optimization Technique

Using the method of weighted objectives, the static-dynamic multi-objective prob-

lem is converted to a single-objective problem. That is, the control parameter for

the static characteristic in Eq. 5.1 and the control parameter for the dynamic char-

acteristic in Eq. 5.9 are combined together to form a new single criterion:

(5.10) Fmultil = W1R1;l +W2R2;l =

2X
j=1

WjRj;l
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where Fmultil is the mult-objective function that determines element removal for each

element l. Wj is the jth criterion weighting factor with constraints 0 � Wj � 1 and
2P
j=1

Wj = 1. Rj;l = �vmj;l =�
vm
j;max is the ratio of the j

th criterion control parameter, �vmj;l

for the lth element, to the maximum value of the jth criterion control parameter �vmj;max.

Since both control parameters possess an associated von-Mises stress, a prescribed

number of elements with the smallest Fmultil are removed so that both characteristics

are improved simultaneously (identical to the conventional ESO method for statics).

5.5. Evolutionary Structural Optimization Algorithm

The weighted objectives ESO algorithm for simultaneous stress and fundamental

frequency consideration is implemented as follows:

(1) Discretize the structure using a �ne mesh of �nite elements.

(2) Solve the linear static analysis problem under thermal loads (or mechanical

loads).

(3) Calculate the von Mises stress by using Eq. 5.1.

(4) Solve the eigenvalue problem.

(5) Calculate the von Mises stress by using Eq. 5.9.

(6) Combine the two control parameters by using Eq. 5.10.

(7) Remove several elements from the current structure that have relatively small

contributions.

(8) Repeat steps 2 to 7 until the weight of the structure reaches some predeter-

mined value.

In the traditional ESO procedure, element removal is controlled by the rejection

ratio (RR). During the iterative process, the rejection ratio is gradually increased by

an evolutionary rate (ER ) [54]. The rejection ratio is obtained by comparing the
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relative values of the control parameter with the model maximum. For mechanically-

loaded structures, the maximum value of the reference criterion does not decrease

during the evolutionary process. This results in threshold levels steadily increasing

as material is removed. Conversely, for cases involving thermal stress, the maximum

stress level can actually decrease as the evolutionary process converges [30]. This

is due to the fact that thermal loads act as body forces in the domain. If a given

element is removed which contributed more stress to its neighbors than it reacted

from its neighbors, the maximum stress levels can decrease. For this reason, a new

rejection ratio is de�ned, RRnew , such that a percentage � of the original domain

of elements are removed which contribute the least to the objective Fmulti function.

Note that � should be chosen su¢ ciently small to ensure smooth evolutions between

two iterations. Typical values of � are 1~2%.

5.6. Thermal Protection System Design

Because the TPS composes the external surface of a spacecraft, several require-

ments must be satis�ed to design a TPS for all environments experienced by the

vehicle:

� In order to minimize operational costs, a TPS should be as lightweight as

possible while maintaining acceptable sti¤ness and high natural frequency.

� A TPS panel is utilized to protect the spacecraft from heat, while a frame

structure may be attached to prevent �uttering due to aerodynamic and/or

acoustic loading. If required, a honeycomb sandwich can be a¢ xed to the

plate if the spacecraft encounters a maximum surface temperature for an

extended period of time.

� A long support connecting the plate to the fuselage is recommended to de-

crease heat transfer to the fuselage. This construction provides for extra
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Figure 5.1. An initial metallic TPS.

volume of insulation to be placed in the cavity, and facilitates the generation

of novel attachment by ESO (or other topology) methods.

� The maximum thermal stress in the TPS is required to remain below yield

strength to avoid plastic deformation.

In this section, two relevant TPS models with di¤erent initial conditions are pre-

sented to demonstrate the e¤ectiveness of the ESO method with the proposed control

parameter. An e¢ cient means for designing a TPS is shown for various requirements

by employing the proposed control parameter. The initial TPS design is shown in Fig.

5.1. Inconel alloy 693 is utilized because of its excellent resistance to metal dusting

and high temperature corrosion, as well as for its favorable fabrication and joining

properties [103]. The TPS models are discretized with hexahedron isoparametric

linear elements for �nite element analysis, and the p-version of the linear �nite ele-

ment method with Guyan reduction is applied to enhance the accuracy of the analysis

and reduce computational e¤ort [104]. Structural characteristic matrices with more
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degrees of freedom are generated, although the sizes of the matrices are identical to

those obtained with the h-version �nite element method. For both examples, �, a

parameter for the element removal, as shown in the previous section, is set at 1%,

and in Eq. 5.9 n is set to 10.

5.6.1. Example 1: TPS Model with External Forces

The conventional ESO method and the new ESO method with the proposed control

parameter are both applied to a TPS model with a mechanical load case. The TPS

model, which has the dimensions of A=0.5 m, B=0.45 m, C=0.03 m, and D=0.27

m, as shown in Fig. 5.1, is loaded at room temperature, with a Young�s modulus

of 196 GPa, a material density of 7770 kg/m3, and a Poisson�s ratio of 0.32. The

model is meshed with 0.05 m x 0.05 m x 0.03 m rectangular isoparametric elements

with �xity prescribed on the bottom side. External tractions of magnitude 10 N

in the x-direction are applied to each nodal point on the top side. The elements

identi�ed with the external force, which include those in the plate-frame region, are

set as unremovable elements. The region shown as BOTTOM SIDE have a prescribed

boundary condition of zero displacement in all directions. This unremovable region

renders the evolutionary process unstable in the conventional ESOmethod as adjacent

regions with high modal mass are eliminated without consideration of the modal

sti¤ness.

The optimization problem is to minimize the maximum von-Mises stress and to

maximize the fundamental natural frequency while reducing the TPS weight. These

two objectives are applied as weighted objectives as shown in Eq. 5.10. The rela-

tionship between maximum von-Mises stress and the fundamental natural frequency

is investigated by varying both weighting factors and volume reduction.

Figure 5.2 shows the comparison between the fundamental natural frequency and
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(a) 20% volume reduction

(b) 50% volume reduction

(a) 20% volume reduction

(b) 50% volume reduction

Figure 5.2. Relationship between fundamental frequency and maxi-
mum stress.
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the maximum von-Mises stress for volume reductions of 20 and 50%. The plots

provide results for both the conventional ESO [97] and the proposed method. The

weighting factor for the dynamic characteristic (Wdynamic) and the weighting factor

for the static characteristic (Wstatic) for each point in Fig. 5.2 are as follows:

(A) and (A�): Wdynamic : Wstatic = 0.0:1.0,

(B) and (B�): Wdynamic : Wstatic = 0.2:0.8,

(C) and (C�) Wdynamic : Wstatic = 0.5:0.5,

(D) and (D�) Wdynamic : Wstatic = 0.8:0.2,

(E) and (E�) Wdynamic : Wstatic = 1.0:0.0.

Points of (A)-(E) and (A�)-(E�) are results from the conventional and the proposed

method, respectively.

In the proposed method, it is observed that each objective is improved by in-

creasing its respective weighting factor (e.g. both the fundamental natural frequency

and the maximum von Mises stress increase when the dynamic weighting factor is in-

creased and the static weighting factor is decreased). Because the proposed method

applied to the modi�ed static control parameter directly considers the mode-switching

phenomenon and the modal sti¤ness, smooth changes are observed in the static and

dynamic characteristics even as a large number of elements are removed as the intera-

tion count becomes large. It is shown that any improvement in one criterion requires

a tradeo¤ in the other, revealing a clear Pareto solution (or a Pareto curve).

Unlike the proposed method, a desirable solution is not obtained in the conven-

tional method. As shown in Fig. 5.2, the maximum von- Mises stresses obtained with

the conventional method are higher than those obtained from the proposed method

with increasing Wdynamic. Even though the conventional method addresses the rela-

tive ratio between modal sti¤ness and modal mass, the de�ciency arises from no direct

consideration of modal sti¤ness. In addition, the fundamental natural frequencies at
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Wdynamic:Wstatic =1.0:0.0 are decreased by this lack of modal sti¤ness as well as the

changing control parameter characteristics due to mode-switching. Determining the

trend of the Pareto solution with volume reduction is extremely di¢ cult. However,

in constrast to the conventional method, the proposed control parameter can be used

to design an optimum structure as a large number of elements are eliminated through

many iterations and yet provide constructive dynamic modi�cation.

5.6.2. Example 2: TPS Model with Thermal Loading

When a spacecraft re-enters the atmosphere from Low Earth Orbit (LEO), the tremen-

dous heat �uxes generated produce a non-uniform, transient temperature distribution

in the metallic TPS. Since most metallics demonstate temperature dependence, the

thermal (thermal conductivity and speci�c heat) and mechanical (Young�s modulus

and coe¢ cient of thermal expansion) properties will vary with temperature in the

TPS. This temperature dependence in the thermal problem results in nonlinearity

and necessitates an iterative solution technique.

For the second example, a transient thermal pro�le is applied to the initial TPS

model in Fig. 5.1. The (void) space inside the TPS and the vertical surface bound-

aries (with the exception of the surface of the plate) are treated as insulated. The

plate temperature (Tplate) on the top side varies according to a temperature pro-

�le, as shown in [105]. In this method, the temperature is simply represented as

Tplate = 1:2540t+200 C when (t < 500 sec:), and Tplate = 827 C when (t � 500 sec:),

regardless of the elimination of elements from the structure. This assumption is a

severe restriction. In the true structure, convection and radiation play major roles

in the transfer of energy. For instance, to address the internal radiative heat trans-

fer that will occur as material is removed, an e¢ cient method for constructing view

factors during the iterative process would be needed. Since the purpose of this work
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was to develop an ESO method for simultaneous consideration of thermal stress and

frequency, prescribed temperature boundary conditions were used to ensure tractabil-

ity.

A numerical time integration scheme,[106] similar to Newmark�s method, is used

to solve the following transient heat transfer problem

(5.11) (
1

�t
[Mt]+�[Kt])fTi+1g = [

1

�t
[Mt]� (1��)[Kt]]fTig+(1��)fFig+�fFi+1g

where [Mt] is the consistent mass matrix; [Kt] is the thermal conductivity matrix; fFig

is the thermal force vector created from heat sources (or heat sinks), heat �uxes, and

convective boundary conditions; �t is the time step; � is an integration parameter

set to 0.5 (Crank-Nicolson rule); and fTig & fTi+1gare the nodal temperatures at

time ti and ti+1, respectively. To reduce the computational time of the transient

analysis, only the tendency of the temperature pro�le at t = 1500 sec is evaluated

by assuming that [Mt] and [Kt] are constant with time as thermal conductivities

(Kxx = Kyy = Kzz = 20 W/(m-C)), density ( �=7770 kg/m3), and speci�c heat

(c =530 J/(kg-C)) are treated as temperature-independent variables. A constant

timestep of �t =10 sec. is considered. The initial temperature distribution fTog for

each iterative process is assumed to be a linear pro�le through the thickness with 127

C on the top side and 27 C on the bottom side.

5.6.2.1. Applicability of the Proposed Control Parameter to a Transient

Thermal Pro�le. Both conventional and proposed methods are compared to demon-

strate the applicability of the proposed control parameter for topology optimization

of a TPS with a non-uniform temperature pro�le. The TPS model has dimensions

A=0.48 m, B=0.42 m, C=0.03m, and D is intentionally set 0.27 m longer than typical

TPS structures [107] to reduce thermal stress in the �xed regions at the bottom side

(interface to low-temperature material). The plate and frame regions are treated as
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(a) Frequency histories by the conventional method (b) Frequency histories by the proposed method

(c) Max stress histories by the conventional method (d) Max stress histories by the proposed method

(a) Frequency histories by the conventional method (b) Frequency histories by the proposed method

(c) Max stress histories by the conventional method (d) Max stress histories by the proposed method

Figure 5.3. Evolutionary histories of the fundamental natural frequen-
cies and the maximum thermal stress.

unremovable. The model is divided into 0.03 m x 0.03 m x 0.03 m regular hexa-

hedron isoparametric elements, and the 0.06 m x 0.06 m bottom corner regions are

considered �xed. The coe¢ cient of thermal expansion and Young�s modulus are

considered as functions of temperature [103]. Similar to Example 1, the weighted

objectives method considers both the maximum thermal stress and the fundamental

natural frequency as both the weighting factors and volume reduction percentages

are varied.

Figure 5.3 shows the change in fundamental frequencies and maximum thermal
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stresses as weighting factors and sensitivities are varied. Both methods show improve-

ment in fundamental frequencies as the weighting factors for dynamics are increased,

identical to the mechanical load case. In general, when a structure is over-designed,

(e.g., when a structure consists of more elements than needed), the fundamental nat-

ural frequency can be increased by removing ine¢ cient elements. However, when

the sti¤ness of the structure becomes small, the fundamental natural frequency is

decreased. In Fig. 5.3, as a large number of elements are removed from the structure

over many iterations, the proposed method keeps the fundamental natural frequen-

cies much higher than that obtained from the conventional method, even though no

inertia consideration is inherent in the proposed control parameter. Conversely, the

results using the conventional control parameter show that the fundamental natural

frequency decreases quickly due to (1) the small modal sti¤ness in the connecting

region between the assumed �xity and the plate-frame region and (2) the character-

istic change in the control parameter due to the discontinuous change in the natural

modes (i.e., mode-switching).

The analysis of the change in the maximum thermal stress reveals considerably dif-

ferent behavior when compared with that of the mechanical load case. If we examine

the maximum stress histories, it is obvious that very little stress reduction takes place

when the static parameter dominates. This is not surprising as the elements being re-

moved are some of the lowest stressed. In the conventional method, the minimization

of the maximum thermal stress can be obtained by applying a large weighting factor

for the static control parameter in the early stages of the volume reduction. As the

volume removal percentage increases, the maximum thermal stress that results from

dynamic considerations alone becomes less than the maximum thermal stress that

results from static considerations alone. These seemingly inconsistent results are, in

fact, a revelation similar to the �ndings of Chapter 4. Just as activating sti¤ness in
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a direction orthogonal to the in-plane direction to minimize in-plane load, was shown

to be a successful approach to minimize boundary loads (Chapter 4), when the modal

sti¤ness is biased toward the out-of-plane direction (i.e., bending of the top plate),

stress reduction occurs. The von-Mises stress measure does not distinguish between

tension or compression. When the optimizer is removing material for all modes ex-

cept the out-of-plane direction, the other frequencies are being reduced. Granted

they are still higher than the mode of interest, but they will approach the bending

mode in the limit. The modal sti¤ness in these other orthgonal modes correspond

to static sti¤ness as well. Hence, this e¤ect renders the structure less equipped to

support high compression loads (or reaction forces) for the in-plane directions. As

the volume reduction proceeds, to maintain high frequency, the material is focused

on suppressing bending in the un-removeable plate region. By focusing material in

such a manner, the sti¤ness is focused directly into the out-of-plane bending mode at

the expense of the other modes. Since no mechanical boundary condition constrains

the thermal expansion of the TPS in the Z-direction, thermal stress is relieved as

frequency remains high even for large values of volume reduction.

Figure 5.4 shows resulting models close to 900 Hz in fundamental natural fre-

quency by both the conventional and proposed methods. Each model is developed

using solely dynamic considerations, that is, Wdynamic : Wstatic = 1:0 : 0:0. The

fundamental natural frequency, maximum stress, and the number of elements result

in 933.6 Hz, 0.523 GPa, and 740 (155.2 kg) using the conventional method, and 906.8

Hz, 0.330 GPa, and 568 (119.2 kg) by the proposed method. The main di¤erence

between the two resulting topologies is the location of the elements that are adjacent

to the plate-frame region: one is located towards the center of the plate-frame region,

and the other is located towards the edges of the plate-frame region. The conclusion
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(a) Modified TPS model by the conventional method

(b) Modified TPS model by the proposed method

(a) Modified TPS model by the conventional method

(b) Modified TPS model by the proposed method

Figure 5.4. Resultant TPS models with 900 Hz fundamental natural frequency
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to be drawn from this study is the proposed method is superior to the conventional

method in both maintaining high fundamental frequency and reducing thermal stress.

From the above results, the ESO method with the proposed control parameter

can be used to design a lightweight TPS model with a high fundamental natural

frequency and a low maximum thermal stress. Using the assumption that only

conduction a¤ects the support region, a practical TPS design is developed by using

Wdynamic : Wstatic = 1:0 : 0:0 in the next section.

5.6.2.2. Detailed TPS Design with Thermal Transient Pro�le. In contrast

to the static case, the convergence of the eigenvalue maximization problem presents

a more daunting task. In an evolutionary procedure that requires a large number

of element removals over many iterations, the ordering of natural modes may be

altered by selection of the initial geometry. Considering the initial geometry as an

input, considerable variations in structural characteristics (i.e. neighboring natural

frequencies, weight of the structure, etc.) can result. Therefore, appealing to the

topology results of the previous section (Fig. 5.4 (b)), the initial TPS model is

chosen to be that of Fig. 5.4 (b) with a slight modi�cation. Element removal is only

permitted on the inside of the structure, as shown in Fig. 5.5. A shape optimization

method based on the ESO technique (called �nibbling ESO [54]) is applied to the

support region to avoid the checkerboard pattern that occurred in Fig. 5.4 (b). That

is, only the structural boundaries in the Z direction between Layer 1 and Layer 10

(with the exception of the unremovable Layer 0 region ) are removed from the model.

The frame region, as well as the support region, are designed to reduce the TPS

weight. Using the proposed method, the objectives take the following form:

Minimize TPS weight

subject to

(1) maximization of the fundamental natural frequency (f1 � 900 Hz)
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Figure 5.5. Initial model for designing TPS support

(2) minimization of the maximum thermal stress below yield strength (�max �

0:3 GPa)

In early iterations, the fundamental natural mode is the bending mode of the

support region. The elements of the frame are eliminated to improve the dynamic

characteristics of the support. The local bending mode of the thin top plate becomes

the lowest mode of the structure. If the original model is too coarse or too much

material is removed at each iteration, the plate may not satisfy the frequency con-

straint and could result in undesirable �utter or acoustic excitation. Because the top

layer of the TPS is unremovable, the problem becomes a multi-scale phenomenon.

Ine¢ cient material remains in the base but the optimization algorithm�s focus is the

low frequency of the plate. Therefore, to address the problem e¢ ciently, the design

optimizations for the support region and the frame region are conducted separately.

TPS Support Design. In the support design, the boundary condtions and mesh

size are identical to the previous section for the initial model in Fig. 5.5. However,

additional �xed regions are established at the edges of the plate to prevent a local

mode from occurring in the unremovable region due to dynamic considerations. By
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Figure 5.6. Evolutionary histories for TPS support design.

choosing additional sti¤nesses of [kX ; kY ; kZ ] = [0, 0, 108] (N/m), the local mode of

the unremovable region will not represent the lowest frequency in the structure to

allow the optimizer to focus on the support. Figure 5.6 shows the change in the

fundamental natural frequency and the maximum thermal stress as a function of

volume reduction. For this case, the structure at 77.7% volume removal is the most

lightweight that satis�es the two constraints (Fig. 5.7). Analyzing the TPS with the

imposed sti¤nesses removed results in a frequency of 871.9 Hz which is slightly less

than the 900 Hz target. This is obviously due to the increase in modal mass of the

unremovable plate region. However, from an application perspective, producing a

design in which the stress is less than the Mises yield criterion along with a frequency

of nearly 872 Hz should be considered a success.
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Figure 5.7. Optimum TPS support

TPS Frame Design. To continue improvement in the modi�ed TPS model in

Fig. 5.7, attention is focused on modifying the frame independently to achieve the 900

Hz objective. By observation, the potential exists to increase the natural frequency

by adjusting the frame design since the elements in the frame region possess large

modal mass being located at the extreme of the domain. The modal sti¤ness of the

frame-plate combination will, by construction, be considered when using the proposed

control parameter. The plate and frame regions are remeshed using two element sizes,

0.03 m x 0.03 m x 0.007 m in the frame and 0.03 m x 0.03 m x 0.002 m in the plate.

The plate is considered as only the �rst layer of the plate-frame combination. Hence,

it has a thickness of 0.002 m. The four corners at the bottom of the support region

are assumed �xed as in the previous example. Shape optimization is applied by

eliminating elements from the bottom surface of the frame toward the upper skin (or

plate) to produce manufacturable designs as was accomplished in the support design.

Because the maximum thermal stress exists in the support region, no thermal stress

analysis is applied. The spatially varying temperatures are, however, used to adjust

material properties to proper values.
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Figure 5.8. Evolutionary history of the fundamental natural frequency
for TPS frame design.

Figure 5.8 shows the evolutionary history of the fundamental natural frequency

due to modi�cations in the frame region. Up to the 41st iteration, the fundamental

frequency increases because excessive modal mass is removed from the frame. No-

tice that the frequency drops o¤ drastically at this point due to the modal sti¤ness

reduction owing to the lack of elements in the frame region, although excessive modal

mass remains. In the frame design, the modi�ed TPS model satis�es the frequency

constraint at the 45th iteration, and has a fundamental natural frequency of 920.2

Hz.

Finally, a transient heat transfer analysis is applied to the TPS model at the 45th

iteration to obtain the exact solution. In this case, the model has a fundamental
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natural frequency of 919.8 Hz, the maximum thermal stress of 0.228 GPa, and 816

elements (76.50 kg), which consist of 224 elements (3.13 kg) in the plate, 316 ele-

ments (15.47 kg) in the frame, and 276 elements (57.90 kg) in the support region.

The fundamental natural frequency is reduced slightly by the change of the material

properties, and the maximum thermal stress is also reduced slightly by the volume

reduction of the frame. The �nal modi�ed TPS model and the cross-section of the

frame-plate are shown in Fig. 5.9. To prevent �utter or acoustic excitation of the

plate, the frame elements provide reinforcement at the plate center even though these

elements have high modal mass about the natural mode of the plate.

5.7. Summary Remarks

In this chapter, a multi-objective optimization problem for the thermal stress

and the fundamental natural frequency was conducted to generate a lightweight TPS

model using Evolutionary Structural Optimization (ESO). Two objectives were opti-

mized simultaneously, namely, the maximization of the fundamental natural frequency

and the minimization of the maximum thermal stress, through e¢ cient volume re-

duction. Speci�cally, the modi�ed static control parameter based on simple static

analyses is newly proposed and addresses the frequency response of stand-o¤ TPS

designs. Comparisons between the conventional ESO and proposed control parame-

ter have demonstrated that the novel control parameter is successful in preventing

several problems. While the proposed control parameter ignores inertia terms in

the equation of motion, both the mode-switching phenomenon and direct considera-

tion of modal sti¤ness are successfully addressed. Additionally, the technology was

demonstrated in the successful design of a metallic thermal protection system. In
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(a) Optimum TPS model

(i) Z = 0.270 m (ii) Z = 0.277 m (iii) Z = 0.284 m

(iv) Z = 0.291 m (v) Z = 0.298 m (vi) Z = 0.3 m (Plate)

(b) Crosssection in the plateframe region

(a) Optimum TPS model

(i) Z = 0.270 m (ii) Z = 0.277 m (iii) Z = 0.284 m

(iv) Z = 0.291 m (v) Z = 0.298 m (vi) Z = 0.3 m (Plate)

(b) Crosssection in the plateframe region

Figure 5.9. Optimum TPS model including heat transfer e¤ects.

future work, consideration will be given to more realistic thermal conditions. Inclu-

sion of convection and radiation as well as a maximum temperature constraint could

potentially result in new and innovative designs.



CHAPTER 6

Summary and Future Work

6.1. Summary

In this work, the design of thermal structures using topology optimization is ex-

plored. The primary motivation for this work rests in the design of low-observable,

engine exhaust-washed structures. Embedded engines require a surface on which

to expel exhaust gases. This protective covering must survive the thermal stresses

while performing its function of shielding the lower temperature substructure from

the extreme thermal environment. Of particular concern is the out-of-plane defor-

mation of the thin covering. Conventional sti¤ening methods are demonstrated to

be problematic as tremendous additional loads into sub and surrounding structure

can occur. The non-intuitive nature of sti¤ening thin panels (both �at and curved)

in a thermal environment are explored in detail. The �ndings reveal that adding to

the thickness of a panel will not only increase load into surrounding structure, but

can also increase the maximum tensile stress in the panel.

The Simple Isotropic Material with Penalization (or SIMP) minimum compli-

ance topology optimization is applied to the thermally-loaded problem and found be

highly non-optimal as material is distributed close to the original thickness of the

panel. However, a minimum compliance formulation is presented which applies me-

chanical loads in such a way as to activate sti¤ness only in the out-of-plane direction.

This formulation renders the design incapable of producing large loads in the in-plane

146
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direction when heated. The bridge-type sti¤ening structures generated share a com-

mon characteristic in that internal thermal expansion can occur, limiting the reaction

load.

A novel ESO control parameter is developed to address both sti¤ness and fre-

quency simultaneously. Mises stress and fundamental frequency are combined in a

weighted objective formulation while volume is reduced to achieve acceptability in

both responses. Similar to the exhaust-washed structure, a generic, metallic thermal

protection system is designed. A non-uniform temperature pro�le is applied to the

structure and a successful evolutionary design is achieved with von-Mises stress less

than yield and �rst fundamental frequency above 900 Hz. The novel control para-

meter addresses two major concerns in frequency optimization. The �rst remedies

the three-dimensional e¤ect where the mode of interest exchanges with a di¤erent

mode which is much lower after structural modi�cation. The second pathology that

is mitigated is the inadequacy of previous ESO frequency optimization schemes to

directly address modal sti¤ness. The newly-derived control parameter achieves this

end. The ESO method applied to TPS design demonstrates the same characteris-

tics as the SIMP formulation in that lower stress (or lower reaction force) designs are

achieved when only frequency optimization is the goal and that frequency corresponds

to an out-of-plane mode.

6.2. Adjoint Topology Formulation for Direct Consideration of

Load-Stress Trade Space

While the two topology optimization formulations given above produce reason-

able designs and extend the knowledge base of thermoelastic topology optimization,

a more direct approach to reducing stress and limiting reaction load is needed. The



148

procedure presented in Chapter 4 does limit the load into the boundary by construc-

tion, but further methods (shape and sizing optimization) are required to satisfy a

stress objective. The ESO method presented in Chapter 5 limits the von-Mises stress

(and hence the reaction load) to some degree but no direct prescription is made. In

this section, a methodology will be presented which directly exposes the stress-load

trade space and no restriction is made regarding the linearity of the analysis.

This development follows closely to that presented in [108] with the inclusion of

the thermal expansion e¤ects. The nonlinear thermo-elastic boundary value problem

is initially posed in the strong form. A reformulation of the problem statement into

the weak form provides a convenient transistion to the �nite element discretization.

A residual equation is presented which is solved by the Newton-Raphson nonlinear

simultaneous equation solver. And �nally, an implementation scheme for incorpo-

rating this capability into the commerical code ABAQUS via a user-de�ned element

(UEL) is discussed.

6.2.1. Thermoelastic Boundary Value Problem

Using the construct for a Lagrangian, material-based formulation as found in [34], a

material point � is located by the position vectorX in the undeformed con�guration


o of the body. Kinematically, the body experiences a displacement �eld u (X)

which results in the mapping f : X �! x where x is the position vector in the

current con�guration 
 of the body. The total strain E is de�ned through the

deformation gradient F ,

(6.1) F (X) = I +ru (X)
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(6.2) E (X) =
1

2

�
ru (X) +ruT (X) +ruT (X)ru (X)

�
Since thermal expansion e¤ects will be included, we must di¤erentiate between

the total strain and the mechanical strain Emech as the mechanical strain is the

appropriate strain measure for constitutive equation. The total strain is comprised

of both Emech (Eq. 6.3) and the thermal strain Eth

(6.3) Emech = E �Eth

with the thermal strain given by Eq. 6.4

(6.4) Eth (X) = �4T (X)I

The coe¢ cient of thermal expansion, �, can in general be a function of the spatially-

varying temperature di¤erence, 4T (X). The temperature di¤erence �eld, 4T (X) ;

is measured relative to a reference temperature, 4T (X) = T (X)� Tref .

If we assume that inertial e¤ects are negligible (which may not be the case if

thermal transients are large), the system response is treated as quasi-static; therefore,

the strong forms of local linear and angular momentum balance are respectively given

by

div (F (X)T o(X)) + b0(X) = 0(6.5)

T o(X) = T To (X)(6.6)

where T o(X) is the symmetric 2nd Piola-Kirchho¤ stress tensor and b0(X) is the

body force vector de�ned per unit original (undeformed) volume.
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A hyperelastic material response is assumed which implies path independence

of the material response. The hyperelastic assumption also guarantees that the

stress response can be derived from a strain energy e(X) =
�
e(Emech (X) ;X) de�ned

on the undeformed con�guration. The 2nd Piola-Kirchho¤ stress tensor T o(X) is

the derivative of the strain energy
�
e with respect to the mechanical strain tensor

Emech (X) ;i.e.T o(X) = @
�
e

@Emech
: In this work, the materials considered are high tem-

perature, isotropic metallic alloys, and it follows that small strains may be assumed

while the structure may undergo large displacements. The hyperelastic material

model introduced is adequate to describe the material behavior, i.e.

�
e =

�E

2 (1 + �)(1� 2�)tr(Emech)
2 +

E

2(1 + �)
tr(E2

mech)(6.7)

T o =
@
�
e

@Emech

= CEmech(6.8)

where the elasticity tensor C depends on two material parameters, Young�s modulus

E and Poisson�s ratio �. These material constants should be familiar to the reader

as they de�ne the familiar Hooke�s law for a linear isotropic material. Experimental

results have shown Young�s modulus to be a decreasing function of temperature for

most engineering materials. Therefore, if the range of operating temperatures is

signi�cant, E should include the temperature dependence.

A boundary value problem de�nition is incomplete without speci�cation of bound-

ary conditions. Displacement and surface traction boundary conditions are pre-

scribed as uP and tP on the complementary boundariesAu
0 andA

t
0 of the undeformed

con�guration. The essential and natural boundary conditions are given by

u(X) = up(X) X � Au
0(6.9)

F (X)T 0(X)n0(X) = tp(X) X � At
0(6.10)
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The solution to the boundary value problem is known once the displacement �eld is

determined.

6.2.2. Weak Formulation

The thermoelastic boundary value problem is recast into an equivalent variational (or

weak) form. The familiar weak form is generated by multiplying both the equilib-

rium Eq. 6.5 and the natural (traction) boundary condition (Eq. 6.10) by a weight

function v and integrating over the appropriate domains. Satisfaction of the essen-

tial boundary conditions is ensured by restricting u and v to the set of kinematically

admissible displacements. Conservation of angular momentum (Eq. 6.6) is ensured

by the proper choice of material constitutive law. After integration by parts and an

application of the divergence theorem, a residual equation is formed by the equivalent

weak form.

(6.11) g(u) = 0 = �
Z

0

rv � (FT 0) dv0 +
Z

0

v � b0dv0 +
Z
At
0

v � tpda0

The constitutive equation (Eq. 6.8), the strain-displacement relation (Eq. 6.2), and

the mechanical strain (Eq. 6.3) are substituted into Eq. 6.11.

g(u) = 0 = �
Z

0

rv � (FC (E � Eth)) dv0 +

Z

0

v � b0dv0 +
Z
At
0

v � tpda0(6.12)

= 0 = �
Z

0

rv � (F (CE))dv0 +
Z

0

rv � (F (CEth)) dv0 +Z

0

v � b0dv0 +
Z
At
0

v � tpda0

One important observation should be noted in Eq. 6.12 is the resemblence of the

thermal stress work to a body force. In fact, the thermal-elasic equations are identical

to the elastic relations with the work of the thermal stress included as a volume
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integral over the reference volume. The solution of the responses are found by

discretizing the domain and applying the Galerkin �nite element method.

The system version of the Newton-Raphson nonlinear equation solver is used to

solve the nonlinear algebraic �nite element equations. The Newton-Raphson solver

is characterized by second-order convergence and the formation of a tangent matrix

which is used in subsequent design sensitivity analysis. The nonlinlear �nite element

equation G, expressed as a function of the nodal response vector U , is given in

residual form by

(6.13) G(U) = 0

The development of the Newton-Raphson method follows from a �rst-order Taylor

series expansion of Eq. 6.13. The expansion is performed about the current solution

U i

(6.14) G(U i+1) � G(U i )+
DG

DU
(U i) �U = 0

where �U = U i+1�U i represents the update to the response vector. Rearrangement

of Eq. 6.14 gives the familiar �nite element form

(6.15) KT (U i) �U = G(U i)

where KT (U i) � �DG
DU

(U i) is the tangent (sti¤ness) matrix. Iterative is continued

until either (or both) the magnitudes of the residual and response update is less than

a speci�ed value.
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6.2.3. Finite Element Formulation

For solution expediency, the residual �nite element equations are decomposed into

internal and external force vectors,

(6.16) G(U) = 0 = S(U) + F

where

(6.17) S = �
Z

0

rv � (FT 0) dv0

is the virtual work of the internal force vector and

(6.18) F =

Z

0

rv � (F (CEth)) dv0 +

Z

0

v � b0dv0 +
Z
At
0

v � tpda0

is the virtual work done by the external forces. The displacement vector is partitioned

into an unknown free displacement vector U f and a known prescribed displacement

vector U p. In explicit vector form,

(6.19) U =

8><>:U
f

U p

9>=>;
Since only the free degrees of freedom will be solved, it is convenient to partition the

residual equation into Gf and Gp vectors as

(6.20) G
�
U p;U f

�
=

8><>:G
f
�
U p;U f

�
Gp
�
U p;U f

�
9>=>; =

8><>:S
f
�
U p;U f

�
Sp
�
U p;U f

�
9>=>;+

8><>:PR
9>=>; = 0

where P and R are the applied and reaction force vectors, respectively. In this de-

velopment, P will be independent of the displacement response, however, the thermal

loading will depend on the design.
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The nonlinear equation Gf is solved for the unknown free displacement vector

U f using the Newton-Raphson method. The tangent sti¤ness matrix in terms of the

solution variables is given by

(6.21) KT = �
@Gf

@U f

�
U p;U f

�
In �nite element parlance, the computation or recovery of the unknown reaction forces

can be accomplished by appealing to the second residual in Eq. 6.20 after the solution

of Uf is obtained.

6.2.4. Topology Optimization

The topology optimization problem is stated as

min �o(d)(6.22)

subject to �i(d) � 0

d
¯ j
� dj � �dj

where �o is the objective function, �i (i = 1; : : :) are the inequality or equality

constraints and dj (j = 1; : : :) are the design variables that are bounded above and

below by d
¯ j
and �dj. The design variable in this scenario is taken as a density variable

de�ned over each element. To ensure a mesh independent design, a �lter should be

employed.

6.2.5. Adjoint Sensitivity Analysis

As discussed previously in Chapters 3 and 4, the design variables typically consist

of a density measure de�ned over each element. The most common implementation

employs a single element density variable over each element. Therefore, the number
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of design variables equals the number of elements. Since the problem under con-

sideration is nonlinear, many iterations will be required for solution and subsequent

convergence. Hence a premium is placed on e¢ cient sensitivity computation.

For systems with large numbers of design variables but few objective and con-

straint equations are most e¢ ciently solved by applying the adjoint sensitivity method

[43] The adjoint formulation for the topology problem is constructed by augmenting

the objective function with the constraint equations via Lagrange multipliers (Eq.

6.23).

�̂k(d)= � k(U
P (d);Uf (d);R(d);d) + �f �Gf (UP (d);Uf (d);d)+(6.23)

�f � (SP (UP (d);Uf (d);d) +R(d))

The sensitivities are computed by di¤erentiating Eq. 6.23 with respect to the design

variables d. The result is manipulated such that the coe¢ cients of the response

sensititivies are equated to zero. The enforcement of this side condition results in

the adjoint problem. The Lagrange multipliers are obtained by solving the adjoint

problem for each objective and constraint equation. This process can be very e¢ cient

if the decomposed tangent sti¤ness matrix is available. Assuming this case, the

adjoint solution is obtained by a simple back substitution.

For the case of a clamped, curved panel subjected to thermal loading, the objective

consists of matching the deformed displacement �eld to a prescribed �eld with a more

benign tensile stress response. A single constraint that captures the increase in force

at the clamped boundary would provide the correct trade space.
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6.2.6. ABAQUS Implementation

To implement this formulation in the commercial package ABAQUS, a user-de�ned

element (UEL) would be necessary. The user would be required to implement the

necessary shape functions and solution residuals desired by the ABAQUS solver. This

step is necessary because the sensitivity arrays would need to be de�ned in the UEL

so that at the end of the analysis, the adjoint problem could be solved by treating

them as additional load cases. By using the load case feature in ABAQUS, the

nonlinear problem would not require multiple solutions. While the tangent sti¤ness

is not directly available to the user, the implementation outlined would possess the

desired e¢ ciency.
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