Wright State University

CORE Scholar

Computer Science and Engineering Faculty Publications

Computer Science & Engineering

2003

Physical Mapping of DNA

Dan E. Krane Wright State University - Main Campus, dan.krane@wright.edu

Michael L. Raymer Wright State University - Main Campus, michael.raymer@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation

Krane, D. E., & Raymer, M. L. (2003). Physical Mapping of DNA. . https://corescholar.libraries.wright.edu/cse/387

This Presentation is brought to you for free and open access by Wright State University's CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

BIO/CS 471 – Algorithms for Bioinformatics

Physical Mapping of DNA

Landmarks on the genome

• Identify the order and/or location of sequence landmarks on the DNA

Producing a map of the genome

Physical Mapping

Restriction Fragment Mapping

Set Partitioning

- The Set Partition Problem
 - Input: $X = \{x_1, x_2, x_3, \dots, x_n\}$
 - Output: Partition of *X* into *Y* and *Z* such that $\sum Y = \sum Z$
- This problem is NP Complete
- Suppose we have $X = \{3, 9, 6, 5, 1\}$
 - Can we recast the problem as a double digest problem?

Reduction from Set Partition

NP-Completeness

• Suppose we could solve the Double Digest Problem in polynomial time...

*polynomial time conversion

Hybridization Mapping

- The sequence of the clones remains unknown
- The relative order of the probes is identified
- The sequence of the probes is known in advance

Interval graph representation

Simplifying Assumptions

- Probes are unique
 - Hybridize only once along the target DNA
- There are no errors
- Every probe hybridizes at every possible position on every possible clone

Consecutive Ones Problem (C1P)

Rearrange the columns such that all the ones in every row are together:

Clones

		Probes								
		<i>C</i> ₁	<i>c</i> ₂	<i>C</i> ₃	C 4	<i>C</i> ₅	С ₆	<i>C</i> ₇	<i>C</i> ₈	C 9
es:	l_1	1	1	0	1	1	0	1	0	1
	l_2	0	1	1	1	1	1	1	1	1
	l_3	0	1	0	1	1	0	1	0	1
	l_4	0	0	1	0	0	0	0	1	0
	l_5	0	0	1	0	0	1	0	0	0
	l_6	0	0	0	1	0	0	1	0	0
	l_7	0	1	0	0	0	0	1	0	0
	l_8	0	0	0	1	1	0	0	0	1

An algorithm for *C1P*

- 1. Separate the rows (clones) into *components*
- 2. Permute the components
- 3. Merge the permuted components

	<i>c</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> 5	<i>c</i> ₆	C 7	<i>C</i> ₈	<i>C</i> 9
l_1	1	1	0	1	1	0	1	0	1
l_2	0	1	1	1	1	1	1	1	1

$$S_1 = \{1, 2, 4, 5, 7, 9\}$$

$$S_2 = \{2, 3, 4, 5, 6, 7, 8, 9\}$$

Partitioning clones into components

- Component graph G_c
 - Nodes correspond to clones
 - Connect l_i and l_j iff:

1. $S_i \cap S_j \neq \emptyset$ 2. $S_i \not\subset S_j$ 3. $S_j \not\subset S_i$

Component Graph

Physical Mapping

Assembling a component

• Consider only row 1 of the following:

• Placing all of the ones together, we can place columns 2, 7, and 8 in any order

Row 2

- Because of the way we have constructed the component, l_2 will have some columns with 1's where l_1 has 1's, and some where l_2 does not.
- Shall we place the new 1's to the right or left?
- Doesn't matter because the reverse permutation is the same answer.

Adding row 2

	<i>c</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> 5	<i>c</i> ₆	<i>C</i> ₇	<i>C</i> ₈
l_1	0	1	0	0	0	0	1	1
l_2	0	1	0	0	1	0	1	0
l_3	1	0	0	1	0	0	1	1

$$S_1 = \{2, 7, 8\}$$

 $S_2 = \{2, 5, 7\}$

 Placing column 5 to the left partially resolves the {2, 7, 8} columns

Additional Rows

• Select a new row *k* from the component such that edges (*i*, *j*) and (*i*, *k*) exist for two already added rows *i*, and *k*.

• Look at the relationship between *i* and *k*, and between *i* and *j* to determine if *k* goes on the **same side** or the **opposite side** of *i* as *j*.

Definitions

- Let $x \cdot y = \left| S_x \cap S_y \right|$
- Place *i* on the **same** side as *j* if $j \cdot k < \min(j \cdot i, i \cdot k)$
- Else, place on the **opposite** side

Placing Rows

Place k on the same side as j if $l_1 \cdot l_3 < \min(l_1 \cdot l_2, l_2 \cdot l_3)$

• Or:

 $2 < \min(2,1)$

So we place l_3 on the **same** side of l_2 as l_1 , which is the right.

Placing rows

• Repeat for every row in the component

Joining Components

- New graph: G_m the merge graph (*directed*)
 - Nodes are connected components of G_c
 - Edge (α, β) iff every set in β is a subset of a set in α

Constructing G_m

δ

Properties of G_m

- All rows in γ will share the same disjoint/subset relationship with each row of α
 - Different compenents → disjoint *or* subset
 - Same component \rightarrow shares a 1 column
 - That column matches in a row of α, then subset, else disjoint

	<i>c</i> ₁	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>c</i> ₅	С 6	<i>C</i> ₇	<i>c</i> ₈	C 9	
l_1	1	1	0	1	1	0	1	0	1	
l_2	0	1	1	1	1	1	1	1	1	
<i>l</i> ₃	0	1	0	1	1	0	1	0	1	
l_4	0	0	1	0	0	0	0	1	0	
l_5	0	0	1	0	0	1	0	0	0	
l_6	0	0	0	1	0	0	1	0	0	
l_7	0	1	0	0	0	0	1	0	0	
l_8	0	0	0	1	1	0	0	0	1	

Ordering components

• Vertices without incoming edges: freeze their columns

- Process the rest in topological order.
 - β is a singleton and a subset

Ordering Components (2)

- Find the leftmost column with a 1
- In the current assembly, find the rows that contain all ones for that column
- Merge the columns