Wright State University

CORE Scholar

Computer Science and Engineering Faculty
Publications

Physical Mapping of DNA

Dan E. Krane
Wright State University - Main Campus, dan.krane@wright.edu
Michael L. Raymer
Wright State University - Main Campus, michael.raymer@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse
Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation

Krane, D. E., \& Raymer, M. L. (2003). Physical Mapping of DNA. .
https://corescholar.libraries.wright.edu/cse/387

This Presentation is brought to you for free and open access by Wright State University's CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

BIO/CS 471 - Algorithms for Bioinformatics

Physical Mapping of DNA

Landmarks on the genome

- Identify the order and/or location of sequence landmarks on the DNA

Restriction Enzyme Digests

Hybridization Mapping

Producing a map of the genome

Restriction Fragment Mapping

B:

| $\mathrm{A}+\mathrm{B}:$ | 3 1 5 2 6 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Set Partitioning

- The Set Partition Problem
- Input: $X=\left\{x_{1}, x_{2}, x_{3}, \ldots x_{n}\right\}$
- Output: Partition of X into Y and Z such that $\sum Y=\sum Z$
- This problem is NP Complete
- Suppose we have $X=\{3,9,6,5,1\}$
- Can we recast the problem as a double digest problem?

Reduction from Set Partition

- $X=\{3,9,6,5,1\}$

1	3	5	6	9
12			12	
1	3	5	6	9

9	3	5	6	1
12		12		
9		3	5	6

NP-Completeness

- Suppose we could solve the Double Digest Problem in polynomial time...

Solve in polynomial time
*polynomial time conversion

Hybridization Mapping

- The sequence of the clones remains unknown
- The relative order of the probes is identified
- The sequence of the probes is known in
 advance

Interval graph representation

> Becomes a graph coloring problem, which is (you guessed it) NPComplete

Simplifying Assumptions

- Probes are unique
- Hybridize only once along the target DNA
- There are no errors
- Every probe hybridizes at every possible position on every possible clone

Consecutive Ones Problem (C1P)

Rearrange the columns such that all the ones in every row are together:

Probes

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}
l_{1}	1	1	0	1	1	0	1	0	1
l_{2}	0	1	1	1	1	1	1	1	1
l_{3}	0	1	0	1	1	0	1	0	1
l_{4}	0	0	1	0	0	0	0	1	0
l_{5}	0	0	1	0	0	1	0	0	0
l_{6}	0	0	0	1	0	0	1	0	0
l_{7}	0	1	0	0	0	0	1	0	0
l_{8}	0	0	0	1	1	0	0	0	1

An algorithm for C1P

1. Separate the rows (clones) into components
2. Permute the components
3. Merge the permuted components

\[

\]

$$
\begin{aligned}
& S_{1}=\{1,2,4,5,7,9\} \\
& S_{2}=\{2,3,4,5,6,7,8,9\}
\end{aligned}
$$

Partitioning clones into components

- Component graph G_{c}
- Nodes correspond to clones
- Connect l_{i} and l_{j} iff:

$$
\begin{aligned}
& \text { 1. } S_{i} \cap S_{j} \neq \varnothing \\
& \text { 2. } S_{i} \not \subset S_{j} \\
& \text { 3. } S_{j} \not \subset S_{i}
\end{aligned}
$$

Component Graph

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}
l_{1}	1	1	0	1	1	0	1	0	1
l_{2}	0	1	1	1	1	1	1	1	1
l_{3}	0	1	0	1	1	0	1	0	1
l_{4}	0	0	1	0	0	0	0	1	0
l_{5}	0	0	1	0	0	1	0	0	0
l_{6}	0	0	0	1	0	0	1	0	0
l_{7}	0	1	0	0	0	0	1	0	0
l_{8}	0	0	0	1	1	0	0	0	1

Here, connected components
 are labeled with greek letters.

Assembling a component

- Consider only row 1 of the following:

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	
l_{1}	0	1	0	0	0	0	1	1
l_{2}	0	1	0	0	1	0	1	0
l_{3}	1	0	0	1	0	0	1	1

- Placing all of the ones together, we can place columns 2, 7, and 8 in any order

$$
\begin{array}{lllllcl}
& & & \{2,7,8\} & \{2,7,8\} & \{2,7,8\} \\
l_{1} & \rightarrow & \ldots & 0 & 1 & 1 & 1
\end{array} \quad \begin{aligned}
& \ldots
\end{aligned}
$$

Row 2

- Because of the way we have constructed the component, l_{2} will have some columns with 1 's where l_{1} has 1 's, and some where l_{2} does not.
- Shall we place the new 1's to the right or left?
- Doesn't matter because the reverse permutation is the same answer.

Adding row 2

$$
\begin{array}{|l|llllllll|}
\cline { 2 - 7 } & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} & c_{8} \\
\hline l_{1} & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
l_{2} & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
l_{3} & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
\end{array} \quad \begin{aligned}
& S_{1}=\{2,7,8\} \\
& S_{2}=\{2,5,7\}
\end{aligned}
$$

				$\{5\}$	$\{2,7\}$	$\{2,7\}$	$\{8\}$		
l_{1}	\rightarrow	\ldots	0	0	1	1	1	0	\ldots
l_{2}	\rightarrow	\ldots	0	1	1	1	0	0	\ldots

- Placing column 5 to the left partially resolves the $\{2,7,8\}$ columns

Additional Rows

- Select a new row k from the component such that edges (i, j) and (i, k) exist for two already added rows i, and k.

- Look at the relationship between i and k, and between i and j to determine if k goes on the same side or the opposite side of i as j.

Definitions

- Let $x \cdot y=\left|S_{x} \cap S_{y}\right|$
- Place i on the same side as j if

$$
j \cdot k<\min (j \cdot i, i \cdot k)
$$

- Else, place on the opposite side

Placing Rows

		c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}
$j \rightarrow$	l_{1}	0	1	0	0	0	0	1	1
$i \rightarrow$	l_{2}	0	1	0	0	1	0	1	0
$k \rightarrow$	l_{3}	1	0	0	1	0	0	1	1

Place k on the same side as j if

$$
l_{1} \cdot l_{3}<\min \left(l_{1} \cdot l_{2}, l_{2} \cdot l_{3}\right)
$$

- Or:

$$
2<\min (2,1)
$$

So we place l_{3} on the same side of l_{2} as l_{1}, which is the right.

Placing rows

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}
l_{1}	0	1	0	0	0	0	1	1
l_{2}	0	1	0	0	1	0	1	0
l_{3}	1	0	0	1	0	0	1	1

			$\{5\}$	$\{2\}$	$\{7\}$	$\{8\}$	$\{1,4\}$	$\{1,4\}$		
$l_{1} \rightarrow$	\ldots	0	0	1	1	1	0	0	0	\ldots
$l_{2} \rightarrow$	\ldots	0	1	1	1	0	0	0	0	\ldots
$l_{3} \rightarrow$	\ldots	0	0	0	1	1	1	1	0	\ldots

Repeat for every row in the component

Joining Components

- New graph: G_{m} - the merge graph (directed)
- Nodes are connected components of G_{c}
- Edge (α, β) iff every set in β is a subset of a set in α

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}
l_{1}	1	1	0	1	1	0	1	0	1
l_{2}	0	1	1	1	1	1	1	1	1
l_{3}	0	1	0	1	1	0	1	0	1

Constructing G_{m}

Properties of G_{m}

- All rows in γ will share the same disjoint/subset relationship with each row of α
- Different compenents \rightarrow disjoint or subset
- Same component \rightarrow shares a 1 column
- That column matches in a row of α, then subset, else disjoint

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}
l_{1}	1	1	0	1	1	0	1	0	1
l_{2}	0	1	1	1	1	1	1	1	1
l_{3}	0	1	0	1	1	0	1	0	1
l_{4}	0	0	1	0	0	0	0	1	0
l_{5}	0	0	1	0	0	1	0	0	0
l_{6}	0	0	0	1	0	0	1	0	0
l_{7}	0	1	0	0	0	0	1	0	0
l_{8}	0	0	0	1	1	0	0	0	1

Ordering components

- Vertices without incoming edges: freeze their columns

- Process the rest in topological order.
- β is a singleton and a subset

\[

\]

Ordering Components (2)

- Find the leftmost column with a 1
- In the current
assembly, find the rows that contain
all ones for that column
- Merge the columns

