
Wright State University Wright State University

CORE Scholar CORE Scholar

Computer Science and Engineering Faculty
Publications Computer Science & Engineering

2003

Analyzing Algorithms & Asymptotic Notation Analyzing Algorithms & Asymptotic Notation

Dan E. Krane
Wright State University - Main Campus, dan.krane@wright.edu

Michael L. Raymer
Wright State University - Main Campus, michael.raymer@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

 Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation Repository Citation
Krane, D. E., & Raymer, M. L. (2003). Analyzing Algorithms & Asymptotic Notation. .
https://corescholar.libraries.wright.edu/cse/382

This Presentation is brought to you for free and open access by Wright State University’s CORE Scholar. It has been
accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of
CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcse%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fcse%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Analyzing algorithms
& Asymptotic Notation

BIO/CS 471 – Algorithms for Bioinformatics

Analyzing Algorithms 2

Why Sorting Algorithms?
• Simple framework
• Sorting & searching

• Without sorting, search is random
• Finding information

• Sequence search
• Similarity identification
• Data structures & organization

Analyzing Algorithms 3

Sorting algorithms
• SelectionSort

• Looking at a “slot” = 1 operation
• Moving a value = 1 operation

• n items = (n+1)(n) operations
• n items = 2n memory positions

7 2 9 4 6

Analyzing Algorithms 4

The RAM model of computing
• Linear, random access memory
• READ/WRITE = one operation
• Simple mathematical operations

are also unit operations
• Can only read one location at

a time, by address
• Registers

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010…

Analyzing Algorithms 5

“Naïve” Bubble Sort
• Simplifying assumption: compare/swap = 1

operation

• Each pass = (n-1) compare/swaps
• n passes = (n)(n-1) compare/swaps
• Space = n

7 2 9 4 6

Analyzing Algorithms 6

“Smart” Bubble Sort
• MikeSort:

• First pass (n-1) compare/swaps
• Next pass (n-2) compare/swaps
• n inputs: (n-1) + (n-2) + (n-3) … + 1

• We need a mathematical tool to solve this.

7 2 9 4 6

()∑
=

−=
n

i
in

1

Analyzing Algorithms 7

Series Sums
• The arithmetic series:

• 1 + 2 + 3 + … + n =

• Linearity:

()∑
=

+
=

n

i

nni
1 2

1

()∑ ∑ ∑
= = =

+=+
n

k

n

k

n

k
kkkk bacbca

1 1 1

Analyzing Algorithms 8

Series Sums

• 0 + 1 + 2 + … + n – 1 =

• Example:

()∑
=

−
=−

n

i

nni
1 2

11

∑
=

=+
n

i
i

1
?53 ∑

=

+






 +
=+

n

i
nnni

1

2

5
2

353

Analyzing Algorithms 9

More Series
• Geometric Series: 1 + x + x2 + x3 + … + xn

• Example:
1

11

0 −
−

=
+

=
∑ x

xx
nn

k

k

∑
=

++
5

0
233

k

k k

364
2

728
2

133
65

0
==

−
=∑

=k

k

45
2

6533
5

0
=






 ×

=∑
=k

k

() 122
5

0
=∑

=k

4211245364 =++

Analyzing Algorithms 10

Telescoping Series
• Consider the series:

• Look at the terms:

∑
=

−









−

+

6

1

12
1

2
k

kk

kk

6
2

7
2

5
2

6
2

4
2

5
2

3
2

4
2

2
2

3
2

1
1

2
2 564534232

−+−+−+−+−+−

1
1

7
26

−=

Analyzing Algorithms 11

Telescoping Series
• In general:

()∑
=

− −=−
n

k
nkk aaaa

1
01

() n

n

k
kk aaaa −=−∑

−

=
+ 0

1

0
1

Analyzing Algorithms 12

The Harmonic Series

()∑
=

+==+++++
n

i
nO

nn 1
ln111...

4
1

3
1

2
11

Analyzing Algorithms 13

Time Complexity of MikeSort
• “Smart” BubbleSort

• n inputs: (n-1) + (n-2) + (n-3) … + 1

7 2 9 4 6

()∑
=

−=
n

i
in

1 22
2

2

2222
2 nnnnnnnn −

=
−−

=
+

−=

Analyzing Algorithms 14

Exact Analysis of Algorithms
• To make it easy,

we’ll ignore loop
control structures,
and worry about
the code in the
loops.

• Each line of code
will be considered
one “operation”.

for ($i=1; $i<=$n; $i++)
{

print $i;
}

for ($i=1; $i<=$n; $i++)
{

print $i;
print “Hi there\n”.

}

Analyzing Algorithms 15

Exact analysis

• $i = 1
• $j =1 , 2, 3, … n

• $i = 2
• $j = 1, 2, 3, … n etc.

• Total: n2 operations

for ($i=1; $i<=$n; $i++) {
for ($j=1; $j<=$n; $j++) {

print “$i, $j\n”;
}

Analyzing Algorithms 16

Exact Analysis of BubbleSort
$i is the pass number
for ($i=0; $i<$n-1; $i++) {
$j is the current element looked at
for ($j=0; $j<$n-1; $j++) {

if ($array[$j] > $array[$j+1]) {
swap($array[$j], $array[$j+1]);

}
}

}

• Best case: n2

• Worst case: 2n2

• Average case: 1.5(n2)

What if the array is
often already sorted or
nearly sorted??

Analyzing Algorithms 17

Exact Analysis of MikeSort
$i is the pass number
for ($i=1; $i<=$n-1; $i++) {
$j is the current element looked at
for ($j=1; $j<=$n-$i; $j++) {

if ($array[$j] > $array[$j+1]) {
swap($array[$j], $array[$j+1]);

}
}

}

• Best case: = (n2 – n)/2
• Worst case: n2 – n
• Average case: 1.5((n2 – n)/2) = (3n2 – 3n)/2

Analyzing Algorithms 18

Exact Analysis of MikeSort
• Best case: = (n2 – n)/2
• Worst case: n2 – n
• Average case: 1.5((n2 – n)/2) = (3n2 – 3n)/2

n Worst Average Best
10 90 67.5 45

100 9900 7425 4950
500 249500 187125 124750

1000 999000 749250 499500

Analyzing Algorithms 19

Traveling Salesman Problem
• n cities

• Traveling distance between each pair is given
• Find the circuit that includes all cities

A

C

D

G

B

E

F
8

12

20

25

35

33

10

22

21
15

25

23

22

14
19

19

Analyzing Algorithms 20

Is there a “real difference”?
• 10^1
• 10^2
• 10^3Number of students in the college of engineering
• 10^4 Number of students enrolled at Wright State University
• 10^6 Number of people in Dayton
• 10^8 Number of people in Ohio
• 10^10 Number of stars in the galaxy
• 10^20 Total number of all stars in the universe
• 10^80 Total number of particles in the universe
• 10^100 << Number of possible solutions to traveling salesman

(100)

• Traveling salesman (100) is computable but it is NOT feasible.

Analyzing Algorithms 21

Growth of Functions

Analyzing Algorithms 22

Is there a “real” difference?
• Growth of functions

Analyzing Algorithms 23

Introduction to Asymptotic Notation
• We want to express the concept of “about”, but

in a mathematically rigorous way
• Limits are useful in proofs and performance

analyses
• Talk about input size: sequence align
• Θ notation: Θ(n2) = “this function grows

similarly to n2”.
• Big-O notation: O (n2) = “this function grows

at least as slowly as n2”.
• Describes an upper bound.

Analyzing Algorithms 24

Big-O

• What does it mean?
• If f(n) = O(n2), then:

 f(n) can be larger than n2 sometimes, but…
 I can choose some constant c and some value n0 such that

for every value of n larger than n0 : f(n) < cn2

 That is, for values larger than n0, f(n) is never more than a
constant multiplier greater than n2

 Or, in other words, f(n) does not grow more than a
constant factor faster than n2.

() ()()
() () 0

0

 allfor 0
such that and constants positiveexist there :

nnncgnf
ncngOnf

≥≤≤
=

Analyzing Algorithms 25

Visualization of O(g(n))

n0

cg(n)

f(n)

Analyzing Algorithms 26

Big-O

()
()

()
()

()21.2

23

22

22

22

22
2075

000,150000,000,1
2

nOn
nOn

nOnn
nOn

nOn

≠

≠+

=++

=+

=

Analyzing Algorithms 27

More Big-O
• Prove that:
• Let c = 21 and n0 = 4
• 21n2 > 20n2 + 2n + 5 for all n > 4

n2 > 2n + 5 for all n > 4
TRUE

()22 5220 nOnn =++

Analyzing Algorithms 28

Θ-notation
• Big-O is not a tight upper bound. In other

words n = O(n2)
• Θ provides a tight bound

() ()()
() () () 021

021

 allfor 0
such that and , , constants positiveexist there :

nnngcnfngc
nccngnf

≥≤≤≤
Θ=

Analyzing Algorithms 29

Visualization of Θ(g(n))

n0

c2g(n)

f(n)

c1g(n)

Analyzing Algorithms 30

A Few More Examples
• n = O(n2) ≠ Θ(n2)
• 200n2 = O(n2) = Θ(n2)
• n2.5 ≠ O(n2) ≠ Θ(n2)

Analyzing Algorithms 31

Some Other Asymptotic Functions
• Little o – A non-tight asymptotic upper bound

• n = o(n2), n = O(n2)
• 3n2 ≠ o(n2), 3n2 = O(n2)

• Ω() – A lower bound
• Similar definition to Big-O
• n2 = Ω(n)

• ω() – A non-tight asymptotic lower bound

• f(n) = Θ(n) ⇔ f(n) = O(n) and f(n) = Ω(n)

Analyzing Algorithms 32

Visualization of Asymptotic Growth

n0

O(f(n))

f(n)

Ω(f(n))

ω(f(n))

o(f(n))

Θ(f(n))

Analyzing Algorithms 33

Analogy to Arithmetic Operators

() ()()
() ()()
() ()()
() ()()
() ()() bangnf

bangonf
bangnf
bangnf
bangOnf

>≈=
<≈=
=≈Θ=
≥≈Ω=
≤≈=

ω

Analyzing Algorithms 34

Approaches to Solving Problems
• Direct/iterative

• SelectionSort
• Can by analyzed using series sums

• Divide and Conquer
• Recursion and Dynamic Programming
• Cut the problem in half
• MergeSort

Analyzing Algorithms 35

Recursion
• Computing factorials

sub fact($n) {
if ($n <= 1) {

return(1);
}
else {

$temp = $fact($n-1);
$result = $temp + 1;
return($result);

}
}

print(fact(4) . “\n”);

fib(5)

Analyzing Algorithms 36

Fibonacci Numbers
int fib(int N) {

int prev, pprev;

if (N == 1) {
return 0;

}
else if (N == 2) {

return 1;
}
else {

prev = fib(N-1);
pprev = fib(N-2);
return prev + pprev;

}
}

Analyzing Algorithms 37

MergeSort

• Let Mn be the time to MergeSort n items
• Mn = 2(Mn-1) + n

7 2 9 4 6 9 4 6

	Analyzing Algorithms & Asymptotic Notation
	Repository Citation

	Analyzing algorithms�& Asymptotic Notation
	Why Sorting Algorithms?
	Sorting algorithms
	The RAM model of computing
	“Naïve” Bubble Sort
	“Smart” Bubble Sort
	Series Sums
	Series Sums
	More Series
	Telescoping Series
	Telescoping Series
	The Harmonic Series
	Time Complexity of MikeSort
	Exact Analysis of Algorithms
	Exact analysis
	Exact Analysis of BubbleSort
	Exact Analysis of MikeSort
	Exact Analysis of MikeSort
	Traveling Salesman Problem
	Is there a “real difference”?
	Growth of Functions
	Is there a “real” difference?
	Introduction to Asymptotic Notation
	Big-O
	Visualization of O(g(n))
	Big-O
	More Big-O
	-notation
	Visualization of (g(n))
	A Few More Examples
	Some Other Asymptotic Functions
	Visualization of Asymptotic Growth
	Analogy to Arithmetic Operators
	Approaches to Solving Problems
	Recursion
	Fibonacci Numbers
	MergeSort

