
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Computer Science and Engineering Faculty 
Publications Computer Science & Engineering 

2003 

Analyzing Algorithms & Asymptotic Notation Analyzing Algorithms & Asymptotic Notation 

Dan E. Krane 
Wright State University - Main Campus, dan.krane@wright.edu 

Michael L. Raymer 
Wright State University - Main Campus, michael.raymer@wright.edu 

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse 

 Part of the Computer Sciences Commons, and the Engineering Commons 

Repository Citation Repository Citation 
Krane, D. E., & Raymer, M. L. (2003). Analyzing Algorithms & Asymptotic Notation. . 
https://corescholar.libraries.wright.edu/cse/382 

This Presentation is brought to you for free and open access by Wright State University’s CORE Scholar. It has been 
accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of 
CORE Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcse%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fcse%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


Analyzing algorithms
& Asymptotic Notation

BIO/CS 471 – Algorithms for Bioinformatics
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Why Sorting Algorithms?
• Simple framework
• Sorting & searching

• Without sorting, search is random
• Finding information

• Sequence search
• Similarity identification
• Data structures & organization
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Sorting algorithms
• SelectionSort

• Looking at a “slot” = 1 operation
• Moving a value = 1 operation

• n items = (n+1)(n) operations
• n items = 2n memory positions
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The RAM model of computing
• Linear, random access memory
• READ/WRITE = one operation
• Simple mathematical operations

are also unit operations
• Can only read one location at

a time, by address
• Registers
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“Naïve” Bubble Sort
• Simplifying assumption:  compare/swap = 1 

operation

• Each pass = (n-1) compare/swaps
• n passes = (n)(n-1) compare/swaps
• Space = n

7 2 9 4 6
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“Smart” Bubble Sort
• MikeSort:

• First pass (n-1) compare/swaps
• Next pass (n-2) compare/swaps
• n inputs:  (n-1) + (n-2) + (n-3) … + 1

• We need a mathematical tool to solve this.
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Series Sums
• The arithmetic series:

• 1 + 2 + 3 + … + n = 

• Linearity:
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Series Sums

• 0 + 1 + 2 + … + n – 1 =

• Example:
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More Series
• Geometric Series:  1 + x + x2 + x3 + … + xn

• Example:  
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Telescoping Series
• Consider the series:

• Look at the terms:
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Telescoping Series
• In general:  
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The Harmonic Series
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Time Complexity of MikeSort
• “Smart” BubbleSort

• n inputs:  (n-1) + (n-2) + (n-3) … + 1

7 2 9 4 6
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Exact Analysis of Algorithms
• To make it easy, 

we’ll ignore loop 
control structures, 
and worry about 
the code in the 
loops.

• Each line of code 
will be considered 
one “operation”.

for ($i=1; $i<=$n; $i++) 
{

print $i;
}

for ($i=1; $i<=$n; $i++) 
{

print $i;
print “Hi there\n”.

}
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Exact analysis

• $i = 1
• $j =1 , 2, 3, … n

• $i = 2
• $j = 1, 2, 3, … n etc.

• Total:  n2 operations

for ($i=1; $i<=$n; $i++) {
for ($j=1; $j<=$n; $j++) {

print “$i, $j\n”;
}
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Exact Analysis of BubbleSort
# $i is the pass number
for ($i=0; $i<$n-1; $i++) {
# $j is the current element looked at
for ($j=0; $j<$n-1; $j++) {

if ($array[$j] > $array[$j+1]) {
swap($array[$j], $array[$j+1]);

}
}

}

• Best case:  n2

• Worst case: 2n2

• Average case:  1.5(n2)

What if the array is 
often already sorted or 
nearly sorted??
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Exact Analysis of MikeSort
# $i is the pass number
for ($i=1; $i<=$n-1; $i++) {
# $j is the current element looked at
for ($j=1; $j<=$n-$i; $j++) {

if ($array[$j] > $array[$j+1]) {
swap($array[$j], $array[$j+1]);

}
}

}

• Best case:  = (n2 – n)/2
• Worst case: n2 – n
• Average case:  1.5((n2 – n)/2) = (3n2 – 3n)/2
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Exact Analysis of MikeSort
• Best case:  = (n2 – n)/2
• Worst case: n2 – n
• Average case:  1.5((n2 – n)/2) = (3n2 – 3n)/2

n Worst Average Best
10 90 67.5 45

100 9900 7425 4950
500 249500 187125 124750

1000 999000 749250 499500



Analyzing Algorithms 19

Traveling Salesman Problem
• n cities

• Traveling distance between each pair is given
• Find the circuit that includes all cities
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Is there a “real difference”?
• 10^1
• 10^2 
• 10^3Number of students in the college of engineering
• 10^4 Number of students enrolled at Wright State University
• 10^6 Number of people in Dayton
• 10^8 Number of people in Ohio
• 10^10 Number of stars in the galaxy
• 10^20 Total number of all stars in the universe
• 10^80 Total number of particles in the universe
• 10^100 << Number of possible solutions to traveling salesman 

(100)

• Traveling salesman (100) is computable but it is NOT feasible.
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Growth of Functions
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Is there a “real” difference?
• Growth of functions
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Introduction to Asymptotic Notation
• We want to express the concept of “about”, but 

in a mathematically rigorous way
• Limits are useful in proofs and performance 

analyses
• Talk about input size: sequence align
• Θ notation: Θ(n2) = “this function grows 

similarly to n2”.
• Big-O notation:  O (n2) = “this function grows 

at least as slowly as n2”.
• Describes an upper bound.
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Big-O

• What does it mean?
• If f(n) = O(n2), then:

 f(n) can be larger than n2 sometimes, but…
 I can choose some constant c and some value n0 such that 

for every value of n larger than n0 : f(n) < cn2

 That is, for values larger than n0, f(n) is never more than a 
constant multiplier greater than n2

 Or, in other words, f(n) does not grow more than a 
constant factor faster than n2.
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Visualization of O(g(n))
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Big-O
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More Big-O
• Prove that:
• Let c = 21 and n0 = 4
• 21n2 > 20n2 + 2n + 5  for all n > 4

n2 > 2n + 5  for all n > 4
TRUE

( )22 5220 nOnn =++
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Θ-notation
• Big-O is not a tight upper bound.  In other 

words n = O(n2)
• Θ provides a tight bound
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Visualization of Θ(g(n))
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A Few More Examples
• n = O(n2) ≠ Θ(n2)
• 200n2 = O(n2) = Θ(n2)
• n2.5 ≠ O(n2) ≠ Θ(n2)
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Some Other Asymptotic Functions
• Little o – A non-tight asymptotic upper bound

• n = o(n2), n = O(n2)
• 3n2 ≠ o(n2), 3n2 = O(n2)

• Ω() – A lower bound
• Similar definition to Big-O
• n2 = Ω(n)

• ω() – A non-tight asymptotic lower bound

• f(n) = Θ(n) ⇔ f(n) = O(n) and f(n) = Ω(n)
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Visualization of Asymptotic Growth
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Analogy to Arithmetic Operators
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Approaches to Solving Problems
• Direct/iterative

• SelectionSort
• Can by analyzed using series sums

• Divide and Conquer
• Recursion and Dynamic Programming
• Cut the problem in half
• MergeSort
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Recursion
• Computing factorials

sub fact($n) {
if ($n <= 1) {

return(1);
}
else {

$temp = $fact($n-1);
$result = $temp + 1;
return($result);

}
}

print(fact(4) . “\n”);  

fib(5)
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Fibonacci Numbers
int fib(int N) {

int prev, pprev;

if (N == 1) {
return 0;

}
else if (N == 2) {

return 1;
}
else {

prev = fib(N-1);
pprev = fib(N-2);
return prev + pprev;

}
}
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MergeSort

• Let Mn be the time to MergeSort n items
• Mn = 2(Mn-1) + n

7 2 9 4 6 9 4 6
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