Wright State University
CORE Scholar

Computer Science and Engineering Faculty
Publications

2003

Analyzing Algorithms \& Asymptotic Notation

Dan E. Krane
Wright State University - Main Campus, dan.krane@wright.edu
Michael L. Raymer
Wright State University - Main Campus, michael.raymer@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse
Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation

Krane, D. E., \& Raymer, M. L. (2003). Analyzing Algorithms \& Asymptotic Notation. . https://corescholar.libraries.wright.edu/cse/382

This Presentation is brought to you for free and open access by Wright State University's CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

BIO/CS 471 - Algorithms for Bioinformatics

Analyzing algorithms \& Asymptotic Notation

Why Sorting Algorithms?

- Simple framework
- Sorting \& searching
- Without sorting, search is random
- Finding information
- Sequence search
- Similarity identification
- Data structures \& organization

Sorting algorithms

- SelectionSort
- Looking at a "slot" = 1 operation
- Moving a value $=1$ operation

- n items $=(n+1)(n)$ operations
- n items $=2 n$ memory positions

The RAM model of computing

- Linear, random access memory
- READ/WRITE = one operation
- Simple mathematical operations are also unit operations
- Can only read one location at a time, by address
- Registers

"Naïve" Bubble Sort

- Simplifying assumption: compare/swap = 1 operation

$$
\begin{array}{|l|lll|}
\hline 7 & 2 & 9 & 4 \\
\hline
\end{array}
$$

- Each pass $=(n-1)$ compare/swaps
- n passes $=(n)(n-1)$ compare/swaps
- Space = n

"Smart" Bubble Sort

- MikeSort:

- First pass ($n-1$) compare/swaps
- Next pass ($n-2$) compare/swaps
- n inputs: $(n-1)+(n-2)+(n-3) \ldots+1=\sum_{i=1}^{n}(n-i)$
- We need a mathematical tool to solve this.

Series Sums

- The arithmetic series:
- $1+2+3+\ldots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Linearity: $\quad \sum_{k=1}^{n}\left(c a_{k}+b_{k}\right)=c \sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$

Series Sums

- $0+1+2+\ldots+n-1=\sum_{i=1}^{n} i-1=\frac{(n-1) n}{2}$
- Example:

$$
\sum_{i=1}^{n} 3 i+5=? \quad \sum_{i=1}^{n} 3 i+5=3\left(\frac{n^{2}+n}{2}\right)+5 n
$$

More Series

- Geometric Series: $1+x+x^{2}+x^{3}+\ldots+x^{n}$

$$
\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}
$$

- Example:
$\sum_{k=0}^{5} 3^{k}+3 k+2$

$$
\begin{aligned}
& \frac{\sum_{k=0}^{5} 3^{k}=\frac{3^{6}-1}{2}=\frac{728}{2}=364}{\sum_{k=0}^{5} 3 k=3\left(\frac{5 \times 6}{2}\right)=45} \\
& \sum_{k=0}^{5}(2)=12 \\
& 364+45+12=421
\end{aligned}
$$

Telescoping Series

- Consider the series:

$$
\sum_{k=1}^{6}\left(\frac{2^{k}}{k+1}-\frac{2^{k-1}}{k}\right)
$$

- Look at the terms:

$$
\begin{aligned}
& \frac{2}{2}-\frac{1}{1}+\frac{2^{2}}{3}-\frac{2}{2}+\frac{2^{3}}{4}-\frac{2^{2}}{3}+\frac{2^{4}}{5}-\frac{2^{3}}{4}+\frac{2^{5}}{6}-\frac{2^{4}}{5}+\frac{2^{6}}{7}-\frac{2^{5}}{6} \\
& =\frac{2^{6}}{7}-\frac{1}{1}
\end{aligned}
$$

Telescoping Series

- In general:

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right)=a_{n}-a_{0} \\
& \sum_{k=0}^{n-1}\left(a_{k}-a_{k+1}\right)=a_{0}-a_{n}
\end{aligned}
$$

The Harmonic Series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}=\sum_{i=1}^{n} \frac{1}{n}=O(1)+\ln n
$$

Time Complexity of MikeSort

- "Smart" BubbleSort

7	2	9	4

- n inputs: $(n-1)+(n-2)+(n-3) \ldots+1$
$=\sum_{i=1}^{n}(n-i)=n^{2}-\frac{n^{2}+n}{2}=\frac{2 n^{2}-n^{2}-n}{2}=\frac{n^{2}-n}{2}$

Exact Analysis of Algorithms

for (\$i=1; \$i<=\$n; \$i++) \{
print \$i;
\}

- To make it easy, we’ll ignore loop control structures, and worry about the code in the loops.
for (\$i=1; \$i<=\$n; \$i++) \{

$$
\begin{aligned}
& \text { print \$i; } \\
& \text { print "Hi there\n". }
\end{aligned}
$$

- Each line of code will be considered one "operation".

Exact analysis

for (\$i=1; \$i<=\$n; \$i++) \{ for $(\$ j=1 ; \$ j<=\$ n ; \$ j++)$ \{ print "\$i, \$j\n";
\}

- $\$ \mathrm{i}=1$
- $\$ \mathrm{j}=1,2,3, \ldots n$
- $\$ \mathrm{i}=2$
- $\$ \mathrm{j}=1,2,3, \ldots n$ etc.
- Total: n^{2} operations

Exact Analysis of BubbleSort

\# \$i is the pass number
for (\$i=0; \$i<\$n-1; \$i++) \{
\# \$j is the current element looked at
for (\$j=0; \$j<\$n-1; \$j++) \{ if (\$array[\$j] > \$array[\$j+1]) \{ swap(\$array[\$j], \$array[\$j+1]); \}
\}
\}

- Best case: n^{2}
- Worst case: $2 n^{2}$
- Average case: 1.5(n^{2})

What if the array is often already sorted or nearly sorted??

Exact Analysis of MikeSort

\# \$i is the pass number
for (\$i=1; \$i<=\$n-1; \$i++) \{
\# \$j is the current element looked at
for (\$j=1; \$j<=\$n-\$i; \$j++) \{ if (\$array[\$j] > \$array[\$j+1]) \{ swap(\$array[\$j], \$array[\$j+1]); \}
\}
\}

- Best case: $=\left(n^{2}-n\right) / 2$
- Worst case: $n^{2}-n$
- Average case: $1.5\left(\left(n^{2}-n\right) / 2\right)=\left(3 n^{2}-3 n\right) / 2$

Exact Analysis of MikeSort

- Best case: $=\left(n^{2}-n\right) / 2$
- Worst case: $n^{2}-n$
- Average case: $1.5\left(\left(n^{2}-n\right) / 2\right)=\left(3 n^{2}-3 n\right) / 2$

n	Worst	Average	Best
10	90	67.5	45
100	9900	7425	4950
500	249500	187125	124750
1000	999000	749250	499500

Traveling Salesman Problem

- n cities
- Traveling distance between each pair is given
- Find the circuit that includes all cities

Is there a "real difference"?

- 10^1
- 10^2
- $10 \wedge 3$ Number of students in the college of engineering
- $10 \wedge 4$ Number of students enrolled at Wright State University
- $10 \wedge 6$ Number of people in Dayton
- $10 \wedge 8$ Number of people in Ohio
- $10 \wedge 10$ Number of stars in the galaxy
- 10^20 Total number of all stars in the universe
- $10 \wedge 80$ Total number of particles in the universe
- $10 \wedge 100 \ll$ Number of possible solutions to traveling salesman (100)
- Traveling salesman (100) is computable but it is NOT feasible.

Growth of Functions

\mathbf{n}	$\mathbf{1}$	$\mathbf{l g n}$	\mathbf{n}	$\mathbf{n l g n}$	$\mathbf{n}^{\mathbf{2}}$	$\mathbf{n}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{n}}$
$\mathbf{1}$	1	0.00	1	0	1	1	2
$\mathbf{1 0}$	1	3.32	10	33	100	1,000	1024
$\mathbf{1 0 0}$	1	6.64	100	664	10,000	$1,000,000$	1.2×10^{30}
$\mathbf{1 0 0 0}$	1	9.97	1000	9970	$1,000,000$	10^{9}	1.1×10^{301}

Is there a "real" difference?

- Growth of functions

Analyzing Algorithms

Introduction to Asymptotic Notation

- We want to express the concept of "about", but in a mathematically rigorous way
- Limits are useful in proofs and performance analyses
- Talk about input size: sequence align
- Θ notation: $\Theta\left(n^{2}\right)=$ "this function grows similarly to $n^{2 "}$.
- Big-O notation: O $\left(n^{2}\right)=$ "this function grows at least as slowly as n^{2} ".
- Describes an upper bound.

Big-O

$f(n)=O(g(n))$: there exist positive constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

- What does it mean?
- If $f(n)=O\left(n^{2}\right)$, then:
> $f(n)$ can be larger than n^{2} sometimes, but...
$>$ I can choose some constant c and some value n_{0} such that for every value of n larger than $n_{0}: f(n)<c n^{2}$
> That is, for values larger than $n_{0}, f(n)$ is never more than a constant multiplier greater than n^{2}
> Or, in other words, $f(n)$ does not grow more than a constant factor faster than n^{2}.

Visualization of $O(g(n))$

Big-O

$$
\begin{aligned}
& 2 n^{2}=O\left(n^{2}\right) \\
& 1,000,000 n^{2}+150,000=O\left(n^{2}\right) \\
& 5 n^{2}+7 n+20=O\left(n^{2}\right) \\
& 2 n^{3}+2 \neq O\left(n^{2}\right) \\
& n^{2.1} \neq O\left(n^{2}\right)
\end{aligned}
$$

More Big-O

- Prove that: $20 n^{2}+2 n+5=O\left(n^{2}\right)$
- Let $c=21$ and $n_{0}=4$
- $21 n^{2}>20 n^{2}+2 n+5$ for all $n>4$ $n^{2}>2 n+5$ for all $n>4$ TRUE

Θ-notation

- Big-O is not a tight upper bound. In other words $n=O\left(n^{2}\right)$
- Θ provides a tight bound
$f(n)=\Theta(g(n))$: there exist positive constants c_{1}, c_{2}, and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
$$

Visualization of $\Theta(g(n))$

A Few More Examples

- $n=O\left(n^{2}\right) \neq \Theta\left(n^{2}\right)$
- $200 n^{2}=\mathrm{O}\left(n^{2}\right)=\Theta\left(n^{2}\right)$
- $n^{2.5} \neq \mathrm{O}\left(n^{2}\right) \neq \Theta\left(n^{2}\right)$

Some Other Asymptotic Functions

- Little o - A non-tight asymptotic upper bound
- $n=o\left(n^{2}\right), n=O\left(n^{2}\right)$
- $3 n^{2} \neq o\left(n^{2}\right), 3 n^{2}=O\left(n^{2}\right)$
- $\Omega()$ - A lower bound
- Similar definition to Big-O
- $n^{2}=\Omega(n)$
- $\omega()$ - A non-tight asymptotic lower bound
- $f(n)=\Theta(n) \Leftrightarrow f(n)=O(n)$ and $f(n)=\Omega(n)$

Visualization of Asymptotic Growth

Analogy to Arithmetic Operators

$$
\begin{aligned}
f(n)=O(g(n)) & \approx \quad a \leq b \\
f(n)=\Omega(g(n)) & \approx a \geq b \\
f(n)=\Theta(g(n)) & \approx a=b \\
f(n)=o(g(n)) & \approx a<b \\
f(n)=\omega(g(n)) & \approx \quad a>b
\end{aligned}
$$

Approaches to Solving Problems

- Direct/iterative
- SelectionSort
- Can by analyzed using series sums
- Divide and Conquer
- Recursion and Dynamic Programming
- Cut the problem in half
- MergeSort

Recursion

```
Computing factorials
sub fact($n) {
    if ($n <= 1) {
        return(1);
        }
    else {
        $temp = $fact($n-1);
        $result = $temp + 1;
        return($result);
    }
}
print(fact(4) . "\n");
```


Fibonacci Numbers

```
int fib(int N) {
    int prev, pprev;
    if (N == 1) {
            return 0;
    }
    else if (N == 2) {
        return 1;
    }
    else {
        prev = fib(N-1);
        pprev = fib(N-2);
        return prev + pprev;
    }
}
```


MergeSort

- Let M_{n} be the time to MergeSort n items
- $\mathrm{M}_{n}=2\left(\mathrm{M}_{n-1}\right)+n$

