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ABSTRACT 

Adduri, Phani Ram. Ph. D., Department of Mechanical and Materials Engineering, 
Wright State University, 2006. Robust Estimation of Reliability in the Presence of 
Multiple Failure Modes. 

 

 

 

In structural design, every component or system needs to be tested to ascertain 

that it satisfies the desired safety levels. Due to the uncertainties associated with the 

operating conditions, design parameters, and material systems, this task becomes 

complex and expensive. Typically these uncertainties are defined using random, interval 

or fuzzy variables, depending on the information available. Analyzing components or 

systems in the presence of these different forms of uncertainty increases the 

computational cost considerably due to the iterative nature of these algorithms. 

Therefore, one of the objectives of this research was to develop methodologies that can 

efficiently handle multiple forms of uncertainty. 

Most of the work available in the literature about uncertainty analysis deals with 

the estimation of the safety of a structural component based on a particular performance 

criterion. Often an engineering system has multiple failure criteria, all of which are to be 

taken into consideration for estimating its safety. These failure criteria are often 

correlated, because they depend on the same uncertain variables and the accuracy of the 

estimations highly depend on the ability to model the joint failure surface. The evaluation 

of the failure criteria often requires computationally expensive finite element analysis or 

computational fluid dynamics simulations. Therefore, this work also focuses on using 
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high fidelity models to efficiently estimate the safety levels based on multiple failure 

criteria.  

The use of high fidelity models to represent the limit-state functions (failure 

criteria) and the joint failure surface facilitates reduction in the computational cost 

involved, without significant loss of accuracy. The methodologies developed in this work 

can be used to propagate various types of uncertainties through systems with multiple 

nonlinear failure modes and can be used to reduce prototype testing during the early 

design process.  

In this research, fast Fourier transforms-based reliability estimation technique has 

been developed to estimate system reliability. The algorithm developed solves the 

convolution integral in parts over several disjoint regions spanning the entire design 

space to estimate the system reliability accurately. Moreover, transformation techniques 

for non-probabilistic variables are introduced and used to efficiently deal with mixed 

variable problems. The methodologies, developed in this research, to estimate the bounds 

of reliability are the first of their kind for a system subject to multiple forms of 

uncertainty.  
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1. INTRODUCTION 

Every structural component that is designed using computer models has to be 

experimentally validated and the level of safety has to be predicted. The cost of testing 

complex physical systems becomes increasingly expensive in today’s competitive 

market, driving the need for analytical certification. Uncertainty analysis is a 

computational tool that enables analytical certification by determining the safety of the 

component subject to various uncertainties in the design process. These uncertainties may 

be due to operating conditions, material properties, or geometric properties of the 

component. The uncertainty can be quantified based on the information available about 

that particular parameter.  

If sufficiently large amount of data about a particular variable is available, then its 

variation can be approximated by using a probability distribution. These variables that 

can be assigned a probability distribution to represent the associated uncertainty are 

classified as random variables. But, if the information about a particular variable is 

sparse, then its variation cannot be approximated reliably using a probability distribution. 

These types of variables are classified as non-probabilistic variables. Based on the 

amount of information available, these variables can be modeled as interval variables or 

possibility functions.  

 Depending on the type of uncertain variables in the problem, a quantification 

technique is chosen to propagate the uncertainty through the system. If the information is 

available as just the lower and upper bounds on an uncertain variable, interval analysis 

techniques are used. Likewise, possibility theory is used when possibilistic information is 

available. And when the variables are random, probability analysis methods can be used 
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to estimate the probability of failure. The various methods that can be used for 

propagation are shown in figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 1.1: Various Techniques for Propagating Uncertainty 

 Traditional structural design approaches simplify the problem by considering all 

the variables as deterministic and accounts for the uncertainties by using safety factors. 

This approach does not provide any information about the influence of the variations of 

different parameters on the safety of the system. On the other hand, using a probabilistic 
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approach, the information about the influence of these uncertainties on the safety of the 

system can be quantified. This information can be used to optimize structures for 

maximum reliability and minimum weight or other important design criteria. Due to this 

advantage, reliability analysis is finding increased application in the design environment 

over the past few years. The following sections identify various forms of uncertainty that 

were considered in this research.  

 

1.1. Probabilistic Techniques 

These techniques are used when all the uncertain variables are modeled using 

probability density functions representing large amount of test data. Using these 

techniques, the reliability of the structure is estimated based on a single or multiple 

failure criteria. In this dissertation, component reliability is defined as the reliability when 

dealing with a single failure criterion and when based on multiple failure criteria the 

reliability is defined as system reliability.   

1.1.1. Component Reliability 

Reliability is defined as the probabilistic measurement of satisfactory 

performance of a system based on a particular performance criterion. Another way to 

look at the problem is to consider the unsatisfactory performance. The probability 

associated with this unsatisfactory performance is called the probability of failure. Most 

often in probabilistic analysis, the main goal is to calculate the probability of failure of 

the component based on a particular performance criterion. The probability of failure is 

estimated using the following relation: 
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XXx dfp f )(∫Ω=              (1.1) 

where, )(Xxf denotes the joint probability density function of the vector of basic random 

variables,  T
nxxx ),,,( 21 K=X  representing uncertain quantities such as loads, geometry, 

material properties, and boundary conditions. Also, Ω is the failure region modeled by 

the limit-state function or performance function )(Xg .  The failure region is defined by 

0)( ≤Xg , and fp  is the probability of structural failure. 

 Monte Carlo simulation [1] can be used to estimate the failure probability 

numerically. But, if the limit-state function is implicit, this simulation involves 

tremendous computational cost, as a large number of exact function evaluations are 

required, which come from a computationally expensive Finite Element Analysis (FEA) 

or Computational Fluid Dynamics (CFD) simulations. To reduce the computational cost 

involved, the approximations of the limit-state functions can also be used in the Monte 

Carlo simulation. But, the random sampling used in Monte Carlo produces inaccuracy in 

the results [2]. This is because the random numbers generated using pseudo random 

number generators tend to form clusters and are not uniformly distributed over the entire 

design space [3]. Moreover, the accuracy of the estimated failure probability is also 

dependent on the number of samples used in the Monte Carlo simulation. So, to estimate 

low orders of failure probabilities, the number of samples needed are higher which in turn 

increases the computational cost involved. Therefore, alternate analytical or semi-

analytical methods that make use of approximations are required for the estimation of 

structural failure probability. 



 5

 Mathematically, it is often difficult to construct the joint probability density 

function, )(Xxf  for a given set of random variables, because of the scarcity of statistical 

data. Even if the joint probability density function could be determined, it is highly 

impractical to perform the multi-dimensional integration over the failure region, Ω, to 

estimate the failure probability. These difficulties lead to the development of methods to 

evaluate the failure probability based on function approximations.   

 Several methods were developed to estimate the failure probability using function 

approximations. The most common is the First-Order Reliability Method (FORM) [4]. In 

FORM, the limit-state function is approximated by a tangent plane at the Most Probable 

Point (MPP). The MPP is the point on the limit-state function that is closest to the origin 

in the standard normal space and has the maximum likelihood of failure. Using FORM, 

the first order estimation of the failure probability is given by )( β−Φ=fp , where )(•Φ  

is the standard normal cumulative distribution function and β is the safety index, which 

is the distance of the MPP from the origin. The use of FORM in the estimation of failure 

probability is justified when the random variables are normally distributed and the limit-

state function is linear around the MPP. However, if the failure surface is nonlinear, then 

the estimation of the failure probability using FORM gives inaccurate results. To improve 

the accuracy, advanced mean value methods [5] have been developed. 

 One method that takes into account the curvature of the limit-state function at the 

MPP is the Second-Order Reliability Method (SORM) [6-8]. In SORM, the limit-state 

function is approximated using a quadratic approximation at the MPP. In most cases, 

SORM provides a better estimate of the failure probability than FORM. But for using the 

quadratic approximation for the limit-state function, second-order derivatives of the limit-
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state function are needed, which require significant computational effort. Moreover, the 

formulae derived for the estimation of failure probability are based on specific 

characteristics of a standard normal distribution function. Therefore, non-normal random 

variables are to be normalized, which introduces additional error.  

 Wang and Grandhi [9] used a high quality approximation of the failure region to 

accurately estimate the MPP for a highly nonlinear limit-state function. This 

methodology does not need the evaluation of the exact performance function, as the 

approximate model is constructed and used for the MPP search. Therefore, the 

computational time in finding the MPP is greatly reduced for problems with highly 

nonlinear and implicit performance functions. Several authors [10-14] have also explored 

the use of approximations in computing the failure probability. 

 One methodology for estimating the failure probability is the evaluation of the 

convolution integral using Fast Fourier Transforms (FFT). In the literature the use of FFT 

for estimating the probability of failure for a particular limit-state function has been 

demonstrated. In order to use FFT, the limit-state function must be separable and in 

closed-form. Sakamoto, et al. [15] used a response surface approximation to get a closed-

form expression for a particular implicit limit-state function. Penmetsa and Grandhi [16] 

used a Two-point Adaptive Nonlinear Approximation (TANA2) at the MPP for obtaining 

a closed-form expression for a limit-state function. The accuracy of the estimated 

probability of failure depends entirely on the validity of the approximation around the 

MPP of the limit-state function. The procedural details of using FFT to estimate the 

failure probability are given below, as this is the basis for a methodology developed in 

this work to estimate the failure probability of a structural system. 
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Fast Fourier Transforms can be applied to solve the convolution integral if the 

limit-state function is a linear combination of independent variables. To obtain a linear 

function, the original limit-state function can be approximated by using a first-order 

Taylor series expansion, but this gives very poor estimates. If the second-order terms are 

considered in the approximation, the cost of evaluation of the second-order gradients is 

very high. Therefore, Sakamoto et al. [15] implemented the response surface 

methodology and used intervening variables in the response surface to make the response 

surface a linear combination of these intervening variables. In the response surface 

approach, the approximate limit-state function considered is expressed as 

∑∑
==

++=
n

i
iii

n

i
ii xxg

1

2

1
0)(~ βββX            (1.2) 

where, T
nxxx ),.....,,( 21=X are the basic independent random variables in reliability 

analysis and 0β , iβ ’s and iiβ ’s are constants. Eq. (1.2) is a second-order response surface 

model without the interaction terms. This was used so that the approximate limit-state can 

be express as a linear combination of the intervening variables is in the following form 

nyyyg +++= K21)(~ Y             (1.3) 

2
iiiiii xxy ββ +=              (1.4) 

where, iy is an intervening variable. 

If the distribution of the random variables ix is known, Eq. (1.5), using the chain 

rule gives the probability density function of the intervening variables iy . 

)()( yf
dy
dxyf xy =              (1.5) 

where yf is the PDF of the variable y and xf is the PDF of the variable x . 
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Figure 1.2: Transformation of PDF 

As shown in Fig. 1.2, the PDF of the transformed variables can be obtained by 

matching the area under the original PDF to the area under the transformed PDF.  The 

above statement that the areas are equal implies that, the likelihood that Y takes on a 

value in an interval of width yd  is equal to the likelihood that X takes on a value in an 

interval centered on a corresponding value )(1 ygx −=  but of width 
)(1 ygx dd −= . Figure 

1.2 is a graphical representation of Eq. (1.5) 

Eq. (1.4) transforms the approximation into a linear combination of the 

intervening variables. Therefore, the PDF of g~  which is the convolution of the individual 

PDFs of the intervening variables iy , can be expressed as follows: 

)()()()~( 21~
21 nyyyg yfyfyfgf

n
K∗∗=           (1.6) 

xd

yd
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Applying the Fast Fourier Transform on both sides of Eq. (1.6), we get 

][][][][
21

~
nyyyg fFFTfFFTfFFTfFFT K⋅=          (1.7) 

By the inverse FFT, the PDF of the limit-state g~ is obtained. The probability of failure is 

given by the following equation 

∫
∞−

=
0

~
~)~( gdgfp gf              (1.8) 

By evaluating the area under the probability density function for all values in the failure 

region, the failure probability is estimated. In this approach, the probability density 

functions are assumed to be time dependent signals enabling the use of FFT to perform 

efficient convolution. 

 

Probability Density and Characteristic Functions: 

As discussed earlier, the limit-state function is transformed using intervening 

variables into a linear combination of the random variables. The PDF of the linear limit-

state is obtained by the convolution integral [17]. For carrying out this multifold 

integration, the FFT technique is implemented. The characteristic function, which is the 

Fourier transform of the PDF, and the PDF of a random variable, can be expressed as a 

pair of Fourier transforms [18]. The formulation of the Fourier transform pairs is as 

follows 

∫
∞

∞−

= dyeyPM yi
YY

πθθ 2.)()(             (1.9)  

∫
∞

∞−

−= θθ πθ deMyP yi
YY

2.)()(           (1.10) 



 10

in which )(yPY and )(θYM  are the probability density and characteristic function of Y , 

respectively, and 1−=i . These equations define the direct and the inverse Fourier 

transforms with )(θYM  as the direct Fourier Transform of )(yPY , and )(yPY  as the 

inverse Fourier Transform of )(θYM . 

The properties of a characteristic function are summarized in the following: 

1. )()(,1)( θθθ YYY MMM =−≤  

in which • and • are the absolute value and the complex conjugate of • , 

respectively. 

2. The characteristic function of a random variable bYaX +⋅=  is expressed as,  

)()( 2 θθ πθ aMeM Y
ib

x ⋅=  

3. The characteristic function of a random variable Y , which is the sum of 

statistically independent random variables nyyy ,,, 21 K , is given by the product 

of the characteristic function of each random variable,  

)()()()(
21

θθθθ
nyyyY MMMM L⋅= . 

Due to the above properties, Fourier Transform techniques can be used to evaluate the 

complex convolution integral. The use of this technique for correlated random variables 

was also demonstrated by Sakamoto et al. [15]. As the technique can be applied for 

different kinds of distributions and even for correlated random variables, it has broad 

utility. 
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1.1.2. System Reliability 

A structure consists of many individual components that have the potential to fail. 

Failure of any of these individual components might lead to structural failure. The 

reliability analysis of structural systems involves the simultaneous consideration of 

multiple limit-states from different disciplines, which might be correlated. Each limit-

state might be an implicit function and requires expensive computations to evaluate the 

function value and the gradients that are needed for reliability analysis. Therefore, in the 

presence of multiple limit-states, the computational effort involved in estimating the 

failure probability increases tremendously. The failure probability of the system is the 

integration of the joint probability density function over the joint failure region obtained 

by the intersection of all of the limit-states. Monte Carlo simulation can be used to 

estimate the joint probability density function numerically. However, this simulation 

involves tremendous computational cost, as a large number of exact function evaluations 

are required. Therefore, alternate methods that make use of approximations are required 

for the estimation of structural system failure probability. 

Structural systems can be idealized into two simple categories: series and parallel 

systems [19]. A series system is one in which, if even one component fails, the whole 

system fails. These systems are also called weakest link systems. Every component of the 

system should function satisfactorily for the system to be reliable. A statically 

determinate structure is a series system, as the failure of one of its members implies the 

failure of the structure. Figure 1.3 (a) shows a series system, which clearly shows that the 

failure of anyone of the components leads to structural failure.  
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In the case of parallel systems, the system survives even if one or more of the 

components have failed. The system fails to function satisfactorily only when every 

component has failed. Parallel systems are also called redundant systems. Redundancy in 

parallel system is of two types, active and passive redundancy. Active redundancy occurs 

when the redundant members participate in the structural behavior even at low loading. 

Passive redundancy occurs when the redundant elements do not participate in structural 

behavior until the structure has suffered a sufficient degree of degradation or failure of its 

elements. Figure 1.3 (b) shows a model of a parallel system. A system that has a 

combination of series and parallel components is called a mixed system. 

 

 

 

 

 

 

 

Figure 1.3: (a) Series System, (b) Parallel System 

The system failure probability can be obtained easily if its components are 

assumed to be independent. However, in practical problems, the failure conditions 

depend on the same random variables, therefore, the components are correlated. Several 

authors have developed methods to determine the bounds on the failure probability of a 

structural system. Cornell [20] has developed bounds on the failure probability for a 

system subjected to multiple failure modes that have been extensively used in the 

(b) (a) 
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literature. The upper bound was obtained by assuming the components are perfectly 

correlated, whereas the components were assumed to be uncorrelated for obtaining the 

lower bound.  

For a series system, the bounds are given by 

Max [Component 
ifP ] fP≤ of system ≤ ∑

=

n

i 1
[Component 

ifP ]      (1.11) 

Bennett and Ang [21] developed the bounds for a parallel system that are given by 

Max [∑
=

n

i 1
[1-(Component 

ifP )], 0] fP≤ of system ≤  Min [Component 
ifP ]    (1.12) 

where n is the number of failure modes. However, the component fP  has to be quantified 

accurately in order to obtain an accurate system reliability bound. The failure probability 

of the components is typically estimated using either FORM or SORM. This estimation 

results in an inaccurate representation of the failure region for nonlinear limit-state 

functions. This error in the component failure probability is propagated into the bounds of 

the system failure probability, making them inaccurate. 

Ditlevsen [22] proposed a method of narrow bounds based on the correlation 

between the failure modes. However, these bounds are accurate when the limit-state 

functions are linear. A methodology was developed by Feng [23] to improve the accuracy 

of the Ditlevsen’s bounds using third-order joint probability. The resulting accuracy is 

high for problems for which the third-order joint probability can be estimated accurately; 

but, in most cases, the formula for the estimation of the third-order joint probability has 

significant errors. Song [24] has proposed a method using numerical integration in a 

reduced domain. This method reduces the actual number of simulations and gives 
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accurate results for a low number of failure modes. However, when the structure has 

many failure modes, this methodology cannot be used directly. He proposed a method to 

deal with this drawback, but that required second and third-order probabilities or the use 

of the failure probability estimated by using FORM, both of which introduces errors. 

Several other techniques [25-27] have been developed for estimating the bounds on 

system reliability based on the type of system under consideration. 

Some techniques [28-32] have been developed to estimate the system reliability 

as a single value rather than as bounds. Melchers and Ahammed [30] proposed a 

methodology to estimate the failure probability of a parallel system. In this method, the 

closest intersection point is estimated by using successive approximations. As this is the 

point of maximum likelihood within the zone of interest, a first-order approximation is 

constructed at this point for each of the limit-states and the failure probability is estimated 

based on these approximations. Using this method, the intersection point that is closest to 

the origin in the standard normal space can be estimated accurately, but a first-order 

approximation at this intersection point would result in an erroneous approximation of a 

nonlinear limit-state function. This, in turn, would result in a poor approximation of the 

joint failure region, as shown in Figure 1.4. Therefore, a high fidelity model is required to 

capture the nonlinear joint failure region. In this work, a methodology for estimating the 

reliability of a structural system was developed. This methodology was developed to 

primarily handle series systems but can be modified to approximate the intersection 

region required for parallel systems as well. 
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Figure 1.4: Joint Failure Region 

However, when dealing with a series system, the estimation of the probability of 

failure is not as straightforward as that of a parallel system. This is because the MPP for 

each of the limit-state functions, as well as the intersection points, make a significant 

contribution to the failure probability integral. The joint failure region should be modeled 

accurately for estimating the failure probability of a series system. Therefore, there is a 

need to develop a methodology to estimate the failure probability of a structural system, 

whether the system is a series or a parallel system. 

Importance sampling techniques [31, 32] can also be used to handle this 

integration, but an appropriate sampling function should be used to take full advantage of 

this method. Mori and Kato [31] proposed an importance sampling function for 

performing the integration for a series system. Based on the fact that an optimal 
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importance sampling function can be determined for a linear limit-state function in a 

standard normal space, an importance sampling function was presented as a linear 

combination of the optimal sampling functions for each of the limit-states. This sampling 

technique produces accurate results for linear limit-state functions. Due to the 

overlapping of the domains of the sampling functions for each of the limit-states, their 

linear combination differs from the optimal sampling function. This decreases the 

accuracy of the sampling function. Thus, the number of simulations needed for the 

convergence of the failure probability increases.  

System reliability estimation is a complex and computationally expensive task. In 

this research, a methodology is developed to efficiently estimate the reliability by using 

surrogate representations of the limit-state functions to reduce the computational cost. 

This methodology uses Fast Fourier Transforms (FFT) to solve the convolution integral. 

As the entire failure region cannot be modeled using a single approximation, a 

methodology was developed so that the convolution integral can be solved using several 

approximations, each of which are valid within a certain region over the entire space. 

 

1.2. Non-Probabilistic Techniques 

In many cases, uncertainty does not necessarily imply randomness. If the 

information available is not sufficient to model a PDF, assuming one in order to apply 

reliability estimation methods leads to erroneous results. Therefore, non-probabilistic 

techniques are used to propagate these kinds of uncertainties through the system and 

obtain the bounds on the system response. These bounds can be used to validate a design 
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or suggest additional testing to gather more data on the response. The following two 

types of models are considered in this research. 

1.2.1. Fuzzy Membership Functions 

Fuzzy theory facilitates the representation of imprecise and vague information in 

an analytical form. Zadeh [33] introduced these concepts of fuzzy sets in 1965. Since 

then, these concepts have been used in different fields for representing unclear 

information. In uncertainty analysis, these concepts are being used for representing 

uncertain parameters when the information is limited. Using fuzzy theory, these variables 

can be represented by membership functions based on their possibility of occurrence. The 

membership function is a functional representation of the missing information 

extrapolated from the available information, which is typically the lower and upper 

bounds and the central value.  Therefore, numerous models are fit to this minimal data 

depending on the problem and intuition of the designer. 

Fuzzy information can be propagated through a system using two different 

techniques. One technique is to include the fuzzy uncertainties in the finite element 

formulation [34- 36]. This results in a linear fuzzy system of equations as a function of 

α , which is the degree of possibility.  The degree of possibility is defined such that 0% 

represents the lower and upper bounds and the 100% possibility represents the central 

value of the peak of the membership function. The advantage of this technique is that 

these equations need to be solved only once to obtain the membership function of the 

response. These methods are still under development and have not been well tested. 

Another technique explores all the binary combinations of the extreme values of 

the fuzzy variables at each possibility level to obtain the bounds on the response. As one 
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exact finite element analysis is required for each configuration, the computational effort 

involved increases exponentially, but the bounds on the response are captured accurately 

in the absence of extreme values within these bounds. 

1.2.2. Interval Bounds 

If the information about a variable is available only as an upper and lower bound, 

then interval analysis techniques [37, 38] can be used to estimate the lower and upper 

bounds on the response. Interval arithmetic provides an exact bound if all the variables 

occur only once in the function. This problem of dependency [39] estimates a wider 

bound for the response if a variable occurs more than once. 

Interval uncertainties can also be propagated through the structure by including 

them in the finite element formulation [40-44]. A static structural problem can be 

expressed in the form of a system of linear interval equations which are solved to obtain 

the bounds on the structural response. As each variable appears more than once, the 

bounds obtained are wider than the actual bounds. 

Braibant et al [45] presented possibilistic approaches for structural optimization 

and design which establishes a connection between fuzzy analysis and interval arithmetic. 

They proposed that it is possible to evaluate fuzzy variables by the use of α -cuts or 

membership levels, as shown in figure 1.5. α  is the degree of possibility of the fuzzy set. 

At each level, the variation of an uncertain parameter is defined by a lower and an upper 

bound. Once the variables are defined as membership functions, the bounds on the 

response at various α -cuts can be obtained.  
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Figure 1.5: Membership Function Showing an α-cut 

The Vertex method [46] evaluates the function value at each of the vertices of the 

design space, represented by the bounds on the variables, to obtain the minimum and 

maximum values of the response. This method works well for linear problems, but fails 

to capture the minimum and maximum for nonlinear non-monotonic responses.  Some of 

the other methods [47, 48] use optimization techniques to calculate the minimum and 

maximum value of the response within the specified bounds.  

All these methods discussed above cannot accommodate a combination of random 

as well as fuzzy input variables. Therefore, methods need to be developed for dealing 

with problems comprised of mixed uncertain variables. Moller et al [49] introduced a 

methodology for estimating the membership function of the safety index by considering 

fuzzy randomness. They formulated a Fuzzy First Order Reliability Method (FFORM) 

that simultaneously permits the usage of fuzzy variables and random variables. Using this 
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method, the membership function of the reliability index can be estimated accurately. But 

the calculation of the failure probability from the safety index values is prone to errors. 

The estimated safety index is independent on the nonlinearity of the failure surface and 

this surface is approximated using a linear approximation in the calculation of failure 

probability. 

In this current work, a methodology to deal with problems with both random as 

well as fuzzy variables is developed. Typically, obtaining the minimum and maximum 

values of a nonlinear response requires the use of optimization techniques at each α -cut. 

The proposed technique estimates the membership function of the reliability accurately 

without the use of optimization techniques.  

In a multidisciplinary environment, the failure of the structure is governed by 

several limit-state functions. But when the knowledge about some of the uncertain 

variables is limited, the entire range of these bounds should be explored while estimating 

the bounds on the reliability. This increases the computational cost exponentially with the 

increase in the number of nonrandom variables. Moreover, for each combination of the 

nonrandom parameters a new joint failure region should be modeled accurately for the 

prediction of the reliability. So for dealing with problems where some variables are 

random and some are nonrandom, the methodology for estimating the reliability of a 

structural system is extended to estimate the bounds on the system reliability.  

 

1.3. Reliability-based Design Optimization 

While designing a structure, the uncertainties, which might arise in the design 

process due to the operating conditions, boundary conditions, material properties, etc, 
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need to be taken into consideration. These uncertainties contribute to the probability that 

the structure does not perform as intended. Therefore, when dealing with uncertain 

parameters in the design process, additional constraints are placed on the optimization 

problem to satisfy a prescribed reliability level. These constraints facilitate the optimal 

design to be both economical as well as reliable. The coupling between reliability 

analyses and optimization methods leads to high computational cost due to the iterative 

nature of both methods. Therefore, methodologies that make use of function 

approximations have been developed to improve their efficiency [50-56]. 

As the calculation of the failure probability requires the solution of the 

convolution integral, different approximation techniques have been used to compute the 

reliability index. In the optimization problem, this reliability index is constrained to 

achieve the target reliability. If the failure of the structure is based on a single failure 

mode, then the reliability index based on that particular failure mode is constrained in the 

optimization problem. In the case of multiple performance functions, each of the 

reliability indices can be constrained, leading to the same number of reliability 

constraints as the performance functions. So the optimization formulation is given by 

Minimize ),( BXf  

subject to itig _]0),([ ββ ≥≥BX , 1....i n=  

       L U
j j jb b b≤ ≤ , 1...j m=  

where ),( BXf  is the objective function, and ]0),([ ≥BXigβ  is the safety index of the 

limit-state function 0),( <BXig . The objective function and the limit-state might 
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depend on both the design variables, B , and the uncertain random variables, X . The 

_t iβ  are the target reliability indices. 

The safety or reliability index is defined as the distance of the MPP from the 

origin in the normalized space of the random variables. So, the safety index is 

independent of the nonlinearity of the failure surface at the MPP. As shown in Figure 1.6, 

for the given value of the safety index, the linear failure surface at the MPP differs from 

the actual surface based on the nonlinearity of the limit-state function. So the actual 

failure probability differs from the failure probability corresponding to the safety index.  

 

 

 

 

 

 

 

 

 

Figure 1.6: Failure Surface Based on Safety Index 

To overcome this difficulty, the same optimization problem can also be 

formulated with a failure probability constraint for each limit-state. The reliability 

constraints in the optimization problem can now be formulated as the probability of 

failure of each of the components to be less than a predetermined probability level. So, 
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the optimization problem based on one probability constraint for each failure mode can 

be generally defined as 

  Minimize ),( BXf  

subject to ii pgP ≤< ]0),([ BX , 1....i n=  

       L U
j j jb b b≤ ≤ , 1...j m=  

where ip  are the target probability of failures. This formulation needs an efficient 

algorithm to estimate the failure probability accurately. Moreover, when dealing with 

multiple limit-states, the definition of failure of the structural system cannot be taken into 

consideration in the design process because each failure probability or reliability index is 

constrained. So in this work, the methodology for estimating the system reliability is used 

along with optimization to design a structure using one system reliability constraint. The 

design space for a reliability-based optimization problem formulated with a system 

reliability constraint is not as restricted as the one with a constraint for each failure mode. 

This is because a combination of constraints has to be satisfied rather than each 

individual constraint.  Therefore, using the system reliability constraint, there will be an 

improvement in the optimal design obtained when compared with that obtained using 

multiple component reliability constraints.  

 

1.4. Overview 

This section summarizes the outline of the chapters in the context of the various 

uncertainty analysis techniques used to propagate different types of uncertainties. Chapter 

1 introduced the various propagation techniques available based on how the uncertain 
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parameters are modeled. Also, a brief introduction on optimizing a structure in the 

presence of uncertainties to obtain an optimal design which is also reliable is presented. 

Chapter 2 deals with an innovative technique for obtaining the membership function of 

the response by the use of transformation technique for membership functions. This 

technique was extended for problems with a combination of fuzzy and random uncertain 

variables. Chapter 3 deals with estimating the reliability of a structural system subjected 

to multiple failure modes. For dealing with high nonlinearity of the joint failure region, a 

methodology was developed so that the convolution can be solved based on multiple 

approximations over several disjoint regions in the design space. In chapter 4, the system 

reliability estimation algorithm was extended to handle a combination of random as well 

as interval variables. Chapter 5 combines the technique for transforming membership 

functions along with the algorithm for estimating the system reliability for handling 

problems with random as well as fuzzy variables. The advantages of using a system 

reliability constraint in reliability-based optimization is demonstrated by considering a 

lightweight composite torpedo model in chapter 6. Finally, chapter 7 summarizes the 

work done and presents some directions for future work. A brief description of function 

approximations used in this work to reduce computational cost is given in the appendix. 

 

1.5. Contributions 

Based on the information available about the uncertain quantities, different forms 

of uncertainties might be present in a given problem. The computational cost increases 

tremendously while dealing with problems with mixed forms of uncertainties. Moreover, 

most of the work available in the literature on uncertainty analysis deals with a single 
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failure criterion. But an engineering system often has multiple failure criteria and all of 

these criteria are to be taken into consideration while estimating its safety. Therefore, the 

primary objectives of this research work are: 

1. Develop methodologies to efficiently handle problems with a combination of 

random as well as nonrandom (fuzzy or interval) variables 

2. Develop techniques to estimate the safety in the presence of multiple failure 

modes 

High fidelity approximate models are used to model implicit limit-state functions 

as well as the joint failure surface to reduce the computational cost without loss of 

accuracy. Fast Fourier transforms based reliability estimation technique has been 

developed to estimate the reliability based on multiple failure modes. In this algorithm, 

the convolution integral is solved in parts over multiple disjoint regions spanning the 

entire design space. Transformation techniques for nonrandom variables is also 

introduced and used to efficiently deal with mixed variables problems. The 

methodologies, developed in this work, for dealing with multiple forms of uncertainties 

as well as multiple failure modes are the first of their kind to estimate the bounds on 

system reliability. 
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2. MEMBERSHIP FUNCTION OF COMPONENT RELIABILITY 

 The uncertainties in a physical system can be modeled and analyzed by using 

probability theory or possibility theory depending on the amount of information 

available. In probability theory, the uncertain variables are modeled using Probability 

Density Functions (PDF) and then propagated through the system to obtain its reliability. 

In the absence of sufficient data to model a PDF, possibility theory, in which variables 

are represented using fuzzy membership functions, can be used to propagate uncertainty. 

But when dealing with a combination of both probability distributions and fuzzy 

membership functions, the computational cost involved in estimating the membership 

function of reliability increases exponentially because one reliability analysis, which is a 

computationally expensive procedure, is performed at each possibility level to obtain the 

bounds on the reliability of the structure. To improve the computational efficiency, a 

technique that uses response surface models and transformations of possibility functions 

is presented here. The efficiency and accuracy of the proposed methodology is 

demonstrated using numerical examples. 

 

2.1. Transformation of Membership Functions 

 Obtaining the minimum and maximum values of a nonlinear response within 

certain bounds requires the use of optimization techniques at each α -cut. This procedure 

is computationally expensive for problems with implicit limit-state functions, as 

optimization requires the function value and gradient information at several points in the 

iterative process. But if the response is expressed as a linear combination of the fuzzy 

variables, then at each α -cut the bounds of the response can be obtained by using 
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interval arithmetic algorithm. Therefore, a nonlinear function is expressed as a linear 

combination of intervening variables in order to apply an interval arithmetic algorithm. If 

the membership functions of the intervening variables are available, then at each α -cut, 

the bounds of the response at that level can be determined.  

 Let the intervening variable, y , be a function of x  given by, )(xGy = . The 

membership function of y  is obtained by using the membership function of x . The 

membership function gives the possibility of occurrence. For this reason, the possibility 

of occurrence of a point 0y  is equal to the possibility of occurrence of 0x , where 

)( 0
1

0 yGx −= . Therefore, the possibility function of y  can be obtained using Eq. (2.1) 

and appropriate transformations (Fig 2.1):  

))(()( 1 yGy xy
−= µµ              (2.1) 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Transformation of Membership Function 
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43 1 ≤≤ x

According to possibility theory, the possibility of an event is equal to the 

maximum possibility of all the subsets of the event. The same applies in the 

transformation of the membership function. If there exists multiple values of x  for a 

given y , then the possibility of that y  is the maximum possibility of all the 

corresponding events of x .  For example, if 0y  has two events 01x  and 02x , which is 

generally the case when transforming based on 2xy = , then the possibility of 0y  is equal 

to the maximum possibility of the two individual events as shown in Eq. (2.2) 

=)( 0yyµ Max { )(),( 0201 xx xx µµ }           (2.2) 

If the uncertainties in the problem are quantified using fuzzy membership 

functions, these can be propagated through the structure to obtain the membership 

function of the response. Using the transformation technique described above, the bounds 

on the response at each level can be obtained without the use of optimization techniques 

if the response is available or approximated as a separable closed-form expression in 

terms of the uncertain variables.  

2.1.1. Numerical Example  

To illustrate the accuracy and the usage of transformation techniques to obtain the 

bounds on the response, consider a function with two fuzzy variables as shown in Eq. 

(2.3). The membership functions of 1x  and 2x  are given by Eq. (2.4) and Eq (2.5) 

respectively. Figures 2.2 and 2.3 show the membership functions of the fuzzy variables. 
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Figure 2.2: Membership Function of 1x  

 

 

 

 

 

 

 

 

 

Figure 2.3: Membership Function of 2x  
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In this problem the minimum value of the response is at 0.21 =x  and 0.02 =x  

which does not correspond to the vertices at any α -cut, as shown in figure 2.4. The 

membership function obtained by using the vertex method (fig. 2.5) fails to capture the 

minimum value of the response. This method calculates the minimum and maximum 

values of the response only at the lower and upper limits of the variables at each 

membership level. Therefore, it does not identify the minimum of the response which is 

located inside the design space.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Contour Plot of the Function 

The use of optimization techniques at each level estimates the extreme values 

within the interval accurately. Using transformation techniques, the membership function 

is also estimated accurately and is in good agreement with the membership function 
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obtained using optimization techniques as shown in figure 2.5. This method was also able 

to capture the extreme values within the interval. Once the closed-form expression is 

expressed as a linear combination in terms of intervening variables (Eq. 2.6), interval 

arithmetic can be used to estimate the response bounds. The drawback of using interval 

arithmetic for a closed-form expression is the problem with dependency [39]. If any 

variable appears more than once in an expression, it is treated as a different variable for 

each occurrence resulting in wider bounds. By using intervening variables, each variable 

appears only once in the expression resulting in accurate bounds on the response. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Comparison of Membership Function of Response 

 The use of transformations facilitates the determination of the minimum and 

maximum values of the fuzzy variables that correspond to the extreme values of the 

response at a particular level without the use of optimization techniques. Moreover, this 
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is an analytical procedure where there is little room for errors. So if the response is 

available as a separable closed-form expression, these transformations can be used to 

efficiently deal with problems having only fuzzy variables or both random and fuzzy 

variables to estimate the membership function of response or reliability accurately. 

 

2.2. Membership Function of Reliability 

Membership function of reliability represents bounds of reliability with varying 

possibility values based on the possibility information from the fuzzy variables. If the 

limit-state is available as a linear combination of the uncertain variables, then the 

estimation of the membership function of the reliability or failure probability can be 

determined using interval analysis. For a particular configuration of the fuzzy variables, 

Fast Fourier Transforms can be used to obtain the joint density function of the random 

variables, if a linear limit-state function is available. But a linear approximation often 

does not represent a nonlinear limit-state with required accuracy. Therefore, in this work, 

a second-order response surface model is used to approximate the limit-state function in 

terms of the uncertain variables (both random and fuzzy). The response surface model 

considered in this study is given by Eq. (2.7). 
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where, T
nxxx ),.....,,( 21=X is a vector of uncertain variables and β ’s are constants 

evaluated in the construction of the response surface model. This model can be 

transformed into a linear combination of intervening variables as shown in Eq. (2.8).  

021 ...)(~ β++++= nzzzg Z             (2.8) 
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where 2
iiiiii xxz ββ += . Once the limit-state is available as a linear combination of 

uncertain variables, it is divided into two parts: one containing only random variables and 

the other containing the fuzzy variables. The part of the limit-state containing random 

variables is used to obtain the joint density function of these variables by performing the 

convolution using FFT. The remaining fuzzy variables in Eq. (2.8) are combined into a 

single membership function using an interval arithmetic algorithm. These two procedures 

would result in a joint PDF and a joint membership function. At each α -cut the 

minimum and maximum values of the fuzzy variables would act as linear horizontal 

shifts of the joint PDF, which would result in the membership function of reliability.   

The details of the algorithm and its implementation are presented below: 

1. The Most Probable failure Point (MPP) for the random variables is estimated 

using traditional approaches. During this process, the fuzzy variables are set to 

their values at maximum possibility. 

2. Data points are sampled in the design space, around the estimated MPP, using a 

Latin hypercube sampling technique. The domain of interest is obtained by 

considering the bounds on the random variables to be two standard deviations on 

either side of the MPP and the minimum and maximum values of the fuzzy 

variables at the zero possibility level. 

3. A truncated second-order response surface model, as shown in Eq. (2.7), is 

constructed with these design points. This surrogate model is divided into two 

parts, one containing the terms with random variables and the other containing 

fuzzy variables. 
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4. The joint PDF and the joint membership function are estimated using appropriate 

algorithms. 

5. At each α -cut the minimum and the maximum values of the fuzzy variables are 

used to integrate the area under the joint PDF and obtain the membership function 

of reliability. Figure 2.6 illustrates the above-discussed methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Algorithm for Estimating Membership Function of Reliability 

One advantage of using FFT to solve the convolution is that the entire PDF of the 

performance function is obtained. The contributions of the fuzzy variables appear as a 

constant when performing the convolution leading to a linear shift in the PDF obtained. 

So, once the PDF and joint membership function are obtained, at each α -cut, the lower 

bound on the joint membership function is used to perform a linear shift in the PDF 
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obtained from the convolution. The lower bound on the failure probability is obtained by 

evaluating the area in the failure region of the resulting PDF. Similarly, the upper bound 

on the joint membership function is used to obtain the upper bound on the failure 

probability. Repeating this operation at several α -cuts results in the membership 

function of reliability. 

The accuracy of the estimated membership function of reliability depends on the 

accuracy of the response surface model constructed around the MPP. In the proposed 

algorithm, the number of design points used for the approximate model is based on the 

fact that an accurate approximation can be obtained. Traditional Design of Experiments 

(DOE) sampling techniques [57-59] can also be used, as opposed to Latin Hypercube 

sampling. The disadvantage of using DOE is the exponential increase in the number of 

simulations needed with the number of uncertain variables. So for problems with a large 

number of variables, the number of simulations needed in the construction of the 

response surface model is very high. Using Latin Hypercube sampling, the number of 

simulations needed is independent of the number of uncertain variables.  

 

2.3. Example Problems  

 Numerical examples are presented to demonstrate the accuracy and efficiency of 

the proposed methodology. The MPP is estimated and a second-order response surface 

model is constructed to represent the failure surface around this point. This methodology 

can be applied to any type of random variables or membership functions to result in an 

accurate estimation of the membership function of reliability. The results obtained using 

the proposed technique are compared with Monte Carlo simulation. 



 36

105 3 ≤≤ x

105 4 ≤≤ x

2.3.1. Closed-form Example 

 The limit-state considered for this problem is given in Eq. (2.9). 
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where 1x  and 2x  are assumed to be normally distributed with a mean of 10.0 and a 

standard deviation of 2.0. The variables 3x  and 4x  are assumed to be fuzzy variables 

with their membership functions given by Eq. (2.10) and Eq. (2.11). Figure 2.7 shows the 

membership function of the fuzzy variables. 
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Figure 2.7: Membership Function of Fuzzy Variables 
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The limit-state function is divided into two parts, one with only the random 

variables and the other with the fuzzy variables as shown in Eq. (2.12).  

),(),()( 4321 xxgxxgg FR +=X          (2.12) 

where 200725),( 2
2
21

2
121 −+++= xxxxxxg R  and 4

2
43

2
443 108),( xxxxxxg F −+−= . 

The joint density function is obtained by performing the convolution of the 

random variables using FFT based on ),( 21 xxg R . The joint membership function of 

),( 43 xxg F  is obtained using transformations for the variables 3x  and 4x . Using this 

approach, the minimum and maximum values of the function ),( 43 xxg F  are obtained at 

each α -cut. These values are used to integrate the joint PDF and to obtain the bounds on 

reliability.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Membership Function of Reliability 
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Figure 2.8 shows the membership function of reliability estimated using the 

proposed methodology, as well as that obtained using traditional Monte Carlo simulation. 

The membership function obtained using the proposed methodology matches exactly 

with that obtained using the Monte Carlo simulation. One million sample points were 

used in Monte Carlo simulation at each α -cut. They matched exactly, because there were 

no approximations used in this example to model the limit-state function. 

2.3.2. Ten Bar Truss 

 In this example, a ten bar truss, as shown in figure 2.9, was considered to estimate 

the membership function of its reliability. The criterion for failure was the maximum 

displacement at the tip of the structure to be less than 0.04826 m as shown in Eq. (2.13).  

Displacement Limit-State 00.1
04826.0

)(
)( ≤−=

X
X tipD

g       (2.13) 

  

 

 

 

 

 

 

 

Figure 2.9: Ten-bar Truss 

To demonstrate the applicability of the proposed method for multiple variables, 

five independent cross-sectional areas were considered. The cross-sectional areas of the 
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82.44338.40 2 ≤≤ P

82.44338.40 1 ≤≤ P

structure were physically linked as represented in Eq. (2.14). By linking the cross-

sectional areas, the number of independent random variables was reduced to five. These 

random variables are assumed to be normally distributed with mean values of 0.0635 m2 

and a standard deviation of 0.00635 m2. 

121 xAA == , 254 xAA == , 383 xAA == , 476 xAA == , 5109 xAA ==     (2.14) 

The variations of the forces applied on the structure were modeled using 

triangular fuzzy membership functions given by Eq. (2.15) and (2.16).  The Young’s 

modulus is taken as 7.0E10 N/m2. 
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 The structural analysis was done in GENESIS [60], a commercial finite element 

analysis program. Since this example is a problem with an implicit limit-state function, 

the MPP was obtained for the limit-state with the fuzzy variables set to their values at the 

maximum possibility. Latin hypercube sampling technique was used to sample 50 design 

points around the MPP with the bounds on the random variables being 2 standard 

deviations on either side of the MPP. The bounds on the fuzzy variables were taken to be 

the minimum and maximum values at the zero possibility level. An accurate second-order 

response surface model was constructed with 50 sampled design points. This surrogate 

model was divided into two parts and the membership function of reliability was 

estimated. 

Figure 2.10 shows the comparison of the membership function obtained by using 

the proposed methodology with that of Monte Carlo simulation. The maximum difference 

302.4982.44 2 ≤≤ P

302.4982.44 1 ≤≤ P
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in reliability was around 0.3% and was conservative. To show the difference between the 

proposed technique and Monte Carlo simulation, the membership function of the failure 

probability was plotted on a log scale as shown in Figure 2.11. Eighteen exact 

simulations were needed in obtaining the MPP. Therefore, a total of 685018 =+  exact 

simulations were needed to obtain the membership function of reliability. At each level, 

100,000 simulations were needed for convergence of Monte Carlo simulation. So a total 

of 2.1 million exact simulations were needed for Monte Carlo. This difference clearly 

shows the computational efficiency of the proposed methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Membership Function of Reliability for the Ten-bar Truss 
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Figure 2.11: Membership Function of Failure Probability for the Ten-bar Truss 

2.3.3. Wing Structure 

 A wing structure, as shown in Figure 2.12, is considered for estimating the bounds 

on the reliability at various confidence levels. The failure criterion considered was the 

fundamental natural frequency of the wing to be more than 1.52 Hz. (Eq. 2.17) 

0)(52.1)( 1 ≤−= XX ωg                     (2.17) 

The thicknesses of the top and bottom skins were modeled as normally distributed 

random variables with mean values of 0.0381 m. All the spars were physically linked and 

the same is done with the ribs. The thicknesses of the spars and the ribs were also 

modeled as normally distributed random variables with mean values of 0.0127 m. 

Physical linking results in four random variables and the coefficient of variation is 

assumed to be 10% for all of these variables.  
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Figure 2.12: Finite Element Model of the Wing Structure 

 

   

Figure 2.13: Membership Function of the Young’s Moduli of the Skins 
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Figure 2.14: Membership Function of the Young’s Moduli of Spars and Ribs 

Figures 2.13 and 2.14 show the membership functions of the Young’s moduli of 

the skins and the spars and ribs. Young’s moduli of the top and bottom skins were 

modeled using triangular membership functions. The membership functions for the 

Young’s moduli of the spars and ribs were constructed as step functions to model 

overlapping interval information from equally reliable sources. This was selected to 

demonstrate the versatility of the proposed method.  

Since this is a problem with an implicit limit-state function, a reliability analysis 

is carried out with the fuzzy variables set to their values at maximum possibility. Then a 

response surface model is constructed around the most probable point obtained in the 

reliability analysis. This model is used in the estimation of the membership function of 

reliability. Figure 2.15 shows the comparison of the membership function estimated by 

the proposed technique with that of Monte Carlo simulation.  
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Figure 2.15: Comparison of the Membership Functions for the Wing Structure 

The maximum percentage difference in the reliability estimated was around 5%. 

Twenty exact simulations were needed for estimating the most probable point. Moreover, 

100 exact simulations were used in the construction of the response surface model around 

this point. So, a total of 120 simulations were needed in estimating the membership 

function as opposed to 100,000 simulations used for Monte Carlo simulation at each 

level.  

The methods available in the literature efficiently deal with problems containing 

only random or nonrandom variables. Moreover, the computational cost associated is 

very high. The computational cost involved is minimal to use the proposed algorithm 
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when compared with Monte Carlo simulation. But the accuracy of the estimated 

membership function is greatly dependent on the accuracy of the response surface model 

constructed to represent the limit-state function. Once an accurate representation of the 

failure surface is obtained, using the proposed methodology, the membership function of 

the reliability of the structure can be estimated accurately. 

 Even though only one response surface was used in these examples to represent 

the entire failure surface, multiple response surface models can be used to represent 

different regions of the failure surface depending on its complexity. This provides 

additional flexibility to handle large scale highly non-linear problems that cannot be 

modeled using only one response surface. These details are provided in the following 

chapter.  
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3. STRUCTURAL SYSTEM RELIABILITY USING FAST FOURIER 

TRANSFORMS 

The failure of a structural system is governed by multiple failure criteria, all of 

which have a potential to fail and are to be taken into consideration for the estimation of 

reliability of the system. In a multidisciplinary environment, where all the failure criteria 

are equally important, there is no methodology to convert the system reliability problem 

into a component reliability problem without the loss of critical information. These 

failure criteria are often correlated and the accuracy of the estimated structural failure 

probability highly depends on the ability to model the joint failure surface. Monte Carlo 

simulation can be used to estimate the reliability of the system, but the evaluation of 

limit-states often requires expensive Finite Element Analysis (FEA) or Computational 

Fluid Dynamics (CFD) simulation. So there is a need for accurate estimation of the 

reliability of the system without much computational effort. 

In the reliability analysis of a system, there is an MPP for each limit-state 

criterion considered. Moreover, the intersection surfaces of these limit-states play an 

important role in the estimation of the system failure probability. In this work, the use of 

high quality function approximations for each of the limit-states and the joint failure 

surface are considered, to represent the failure region accurately. The approximations 

used to model the joint failure region should be valid to at least within the vicinity of the 

MPPs of all the limit-states. For highly nonlinear limit-state functions, modeling the 

entire failure region using a single approximation might be difficult. Therefore, a 

methodology is developed so that the convolution integral can be solved using several 

approximations, each of which accurately represent certain regions over the entire design 
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space. As the failure surface is represented accurately using several approximations the 

failure probability of a structural system can be estimated accurately. 

  

3.1. Solving the Convolution Integral in Intervals 

 For solving the convolution integral using FFT, the function must be available as 

a closed-form and separable equation. As a single approximation cannot model a highly 

nonlinear joint failure region, a methodology was developed for solving the convolution 

integral based on several function approximations. 

Let us suppose that the failure probability of the structural system is governed by 

two limit-state criteria, 0),( 211 ≤xxg  and 0),( 212 ≤xxg , where 1x  and 2x  are the 

random variables, as shown in Figure 3.1 (a). These limit-states intersect at a point where 

01 xx = . The joint failure region comprises of the part of 2g  where 01 xx <  and the part 

of 1g  where 01 xx > . Based on this information, the convolution integral is divided into 

two different integrals, as shown in Eq. (3.1). 

∫ ∫ ∫∫∫∫
∞−

∞ ∞

∞−

∞

∞−Ω

+=
0

0

1212 )()()(
x

x

dxdxfdxdxfdf XXXX XXX         (3.1) 

The two integrals in Eq. (3.1) can be solved separately using the expression for 

the joint PDF in their respective ranges. The Probability Density Function (PDF) of 1x , 

when 01 xx < , is convoluted with the PDF of 2x , as shown in Figure 3.1 (b), based on the 

failure surface represented by 2g , to evaluate the first integral, since only 2g  represents 

the system failure surface. The PDF of 1x , when 01 xx > , is convoluted based on 1g , for 



 48

the second integral, as shown in Figure 3.1 (c). To enable the addition of the two 

individual PDFs, obtained from each of these integrals, the PDFs are padded with zeros 

in appropriate locations, for numerical implementation, and then combined. The sum of 

these PDFs results in the system PDF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Convolution Based on More Than One Function 
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In a problem with more than two random variables, the intersection of the limit-

states is not a point, but a surface (hyperplane). Therefore, obtaining the bounds of 

integration is not a trivial task. The probability density function of any of these variables 

cannot be split, as shown in Figure 3.1. Therefore, the entire design space is divided into 

several regions as explained below and the convolution integral is solved for each region 

separately. The convolution integral can then be written as the sum of integrals over all 

the regions as  

........)()()(
21

++= ∫∫∫∫∫∫∫∫∫
φφφ

XXXXXX xxx dfdfdf         (3.2) 

 

 

 

 

 

 

 

 

Figure 3.2: Solving the Convolution Integral in Intervals 

As shown in Figure 3.2, the entire design space is divided into several regions 

such that the joint failure region can be modeled using approximations that are accurate 

within that region. The division of the design space is based on the accuracy of the 

approximations constructed. Initially only one approximation is constructed over the 
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entire design space to model the joint failure surface. The accuracy of the approximation 

is checked and if the required accuracy is met then the design space is not subdivided and 

the convolution integral is solved based on one approximation. In most problems, this is 

usually not the case as the joint failure surface is highly nonlinear. So the design space is 

split up into two divisions and an approximate model is constructed in each division. 

Based on their accuracy, the design space is subdivided. Once accurate approximations 

are constructed in each subdivision, the convolution integral is divided into several 

integrals, as shown in Eq. (3.2). Each of these integrals is then solved using FFT, based 

on the approximate model that is accurate within that region. Finally, all the probability 

density functions of the various models are added to result in the probability density 

function of the structural system. To enable this addition, the range of all the resulting 

PDFs should be the same. So for each original variable, the range of the PDF of the 

intervening variable before the convolution should be the same for all the approximate 

models. This is obtained by padding the PDFs with zeros at appropriate locations. The 

failure probability can be estimated by evaluating the area under this probability density 

function for all the values in the failure region. Using this method the convergence in 

failure probability can be verified by adding various regions (integrals) until the required 

accuracy is obtained. 

To demonstrate the accuracy of the proposed technique, an example problem is 

presented here, where the failure of the system is governed by two limit-state functions as 

shown below (Eq. 3.3 and Eq. 3.4). The failure of the system is defined by the failure of 

each of the limit-states (parallel system). This type of failure was chosen to compare the 

estimated failure probability with that obtained using importance sampling. For a parallel 
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system, importance sampling technique can be used by sampling points from a 

distribution with the intersection point as the mean values.  

0408),( 2
2

1211 ≥+−= xxxxg                    (3.3) 

017016),( 2
21212 ≥+−−= xxxxg                 (3.4) 

where 1x  and 2x  are normally distributed random variables with mean values of 5.0 and 

standard deviation of 1.0. The intersection point of the above two functions is at 

6203.51 =x  and 9485.82 =x . Based on this information the joint failure region is 

modeled and solved using the proposed technique. Figure 3.3 shows a comparison of the 

Cumulative Distribution Function (CDF) obtained using the proposed method and with 

that obtained by conventional Monte Carlo simulation. As there are no surrogate models 

involved, the CDFs match exactly. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Comparison of Cumulative Distribution Function 
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 Methodology System Pf % Difference Number of Simulations 

Monte Carlo 5.4E-6 ------- 50,000,000 

Importance Sampling 5.5E-6 1.85 1,000,000 

Proposed Algorithm 5.36E-6 -0.74 27 

 
Table 3.1: Comparison of Proposed Algorithm with Monte Carlo Simulation 

Table 3.1 shows the comparison of the failure probabilities estimated using the 

proposed technique as well as Monte Carlo simulation. All the three techniques estimated 

the failure probability accurately within 2% difference. Because of the low order of 

failure probability, the number of simulations needed to estimate the failure probability 

using traditional Monte Carlo was 50 million. Even when using importance sampling, 

one million function evaluations were necessary to obtain convergence. The proposed 

technique needs only 27 function evaluations which were used in the evaluation of the 

intersection point. In the presence of implicit limit-state functions, there is an increase in 

the number of function evaluations using the proposed technique as the limit-states are to 

be approximated using multi-point approximations. 

 

3.2. Proposed Methodology 

For modeling the joint failure region using an approximation, the limit-state 

functions should be available in closed-form so that the points on the joint failure region 

can be sampled. In the case of an implicit function, several local approximations can be 

constructed with design points around the MPP for each limit-state function and then 

blended into a Multi-Point Approximation (MPA). As the accuracy of the MPA is based 
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on the accuracy of the local approximations, Two-point Adaptive Nonlinear 

Approximations (TANA2) are used as local approximations to construct the MPA for 

each limit-state function. TANA2 can capture the information of the limit-state function 

around the vicinity of the points used, and MPA can retain this information for each of 

the failure surfaces without increasing the computational effort. Since each of the limit-

state functions are modeled using high quality approximations, these approximations can 

be used as closed-form expressions for sampling the points on the joint failure surface.  

 Reliability analysis methods begin with the prediction of the most probable failure 

point. This can be efficiently estimated using the algorithm presented by Wang and 

Grandhi [9]. This algorithm uses TANA2 approximations in the search procedure to 

reduce computational cost. This method is efficient for highly nonlinear problems with a 

large number of random variables. Once the MPPs are obtained for each of the limit-

states, a Latin hypercube sampling technique is used to obtain the design points around 

each MPP. Local approximations are constructed with points that are sampled to within 

two standard deviations of either side of the MPP for each of the limit-state functions. 

Based on these local approximations, an MPA is constructed for each of the limit-state 

functions. Using these MPAs, several points are sampled on the joint failure region to 

construct response surface models. The design space is sub-divided into regions based on 

the accuracy of the response surface models.  The convolution integral is then solved in 

intervals to obtain the failure probability of the structural system.  

 The maximum contribution to the failure probability is around the MPP of each of 

the limit-states. The probability density decreases away from the MPP of the limit-states. 

So for accurately estimating the reliability, one has to model the joint failure surface 
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accurately at least around each of the MPPs. In this work, two standard deviations on 

either side of each MPP were considered to sample points for modeling the MPAs. In 

most cases, this design space effectively captures the contribution to the failure 

probability of the system. If improved accuracy is needed, then the design space for the 

construction of the MPAs can be expanded to three or four standard deviations around 

each MPP.   

3.2.1. Estimation of System Failure Probability 

1. Estimate the MPP of each of the limit-state functions using local approximations. 

2. Design points are sampled within the vicinity of each MPP using a Latin hypercube 

sampling technique. The bounds on the random variables are taken to be two 

standard deviations on either side of each MPP. 

3. Several local TANA2 approximations are constructed for the set of design points 

sampled around each MPP. These local TANA2 approximations are blended into a 

multi-point approximation, which captures the behavior of the limit-state function 

around the MPP. Using this same procedure, an MPA is constructed for each of the 

limit-state functions. 

4. Points are sampled on the joint failure surface using surrogate representations for 

each of the limit-states. Multiple response surface models are constructed using 

these sampled points on the joint failure surface. Based on the accuracy (R2 value 

was used in this research) of the response surface models, the design space is sub-

divided into regions and one model is constructed for each region.  
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5. The convolution integral is solved using FFT, based on the response surface models, 

to estimate the probability of failure of the structural system. Figure 3.4 illustrates 

the methodology discussed above. 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3.4: Algorithm Details for System Reliability Estimation 

The accuracy in the estimation of the failure probability greatly depends on the 

accuracy of the approximations constructed. Therefore, all the TANA2s that are used in 

the construction of the MPAs for the limit-state functions should be accurate. The 

information of two design points is used in the construction of a TANA2 approximation. 

So, for any design point, TANA2s were constructed with the design points in the 

immediate vicinity of that point. The use of this strategy leads to the construction of 

accurate TANA2 approximations thereby reducing the error involved with the MPA. The 

Limit-state # 1 Limit-state # 2 Limit-state # n ……

MPP Search 

Design Points to construct TANA2s 
Latin hypercube sampling around each MPP 

MPA 
Blend all the local TANA2s 

Use MPA to construct multiple response surfaces to 
represent the joint failure region  

Use response surfaces and FFT to obtain the joint PDF 
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accuracy of the MPA can be checked by randomly sampling points in the design space 

and comparing with the function value of the exact limit-state. Once accurate MPAs are 

constructed for each of the limit-states, the criterion for system failure is considered while 

sampling points on the joint failure surface using these MPAs. For multiple limit-states, 

this criterion can be the union or intersections of the individual failure surfaces. In these 

cases, optimization techniques can be employed to obtain the points on the joint failure 

surface by using the surrogate representations of the limit-state functions.  

For multiple limit-states, optimization problems can be formulated and solved to 

obtain a point on the joint failure surface. For example, consider three limit-state 

functions as shown in figure 3.5. The failure of the system is defined as the failure of 

either of the limit-state functions i.e. 0)(1 ≥Xg  or 0)(2 ≥Xg  0)(3 ≥Xg . So based on 

this failure criteria, three optimization problems can be formulated to obtain three points 

on the joint failure surface. These optimization problems are given by Eqs. (3.5) – (3.7). 

Minimize ( ) ( )ii XXXX −•−=d  

subject to 0)(1 =Xg , 0)(2 ≤Xg , 0)(3 ≤Xg         (3.5) 

Minimize ( ) ( )ii XXXX −•−=d  

subject to 0)(1 ≤Xg , 0)(2 =Xg , 0)(3 ≤Xg         (3.6) 

Minimize ( ) ( )ii XXXX −•−=d  

subject to 0)(1 ≤Xg , 0)(2 ≤Xg , 0)(3 =Xg         (3.7) 



 57

where •  denotes the dot product and ( ) ( )ii XXXX −•−=d  is the distance between 

any point X  to the initial point iX . The difference between each of the above three 

optimization problems is the constraints. These constraints are dependent on the 

definition of the failure of the system. The solution of each of the optimization problems 

yields one point on the joint failure surface as shown in figure 3.5. By considering several 

initial points, iX , points on the joint failure surface can be obtained which can be used to 

approximate this surface using response surface models. As accurate MPAs are used in 

these optimization problems, the computational cost is minimal.  

 

 

 

 

 

 

 

 

 

Figure 3.5: Estimating Points on the Joint Failure Surface using Optimization 

Once points on the joint failure surface are obtained, these points can be used to 

construct accurate response surface models. 2R  criterion was chosen to check the 

accuracy of the response surface model constructed. Using the sampled points on the 
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joint failure surface, one response surface model is constructed initially. The accuracy of 

this modeled is checked and if the 2R  value is acceptable then the design space is not 

subdivided and the convolution integral is solved based on that one approximation. 

Usually this is not the case as the joint failure surface is highly nonlinear. The design 

space is divided into half and an approximate model is constructed in each subdivision. 

Based on the accuracy of the models, the design space is subdivided. This procedure is 

repeated until all the approximate models achieve the required degree of accuracy. The 

design space was divided so that the 2R  value was always greater than 0.99 for all of the 

response surfaces. A high order of accuracy was maintained for the response surface 

models so that the error associated in the representation of the joint failure surface is 

minimal. Moreover, because of this high accuracy of the response surface models, the 

error associated with not satisfying the transition conditions at the boundaries of the 

subregions is very less. 

 

3.3. Numerical Examples and Discussion 

 Numerical examples are presented to show the applicability of the proposed 

method. This methodology can be applied to problems with multiple non-normal random 

variables and implicit or explicit limit-state functions, providing an accurate estimation of 

the failure probability of the system. The final failure probability estimated by using the 

above-mentioned method is compared with the results obtained from Monte Carlo 

simulations.   



 59

3.3.1. Cantilever Beam 

 A cantilever beam, as shown in Figure 3.6, is subjected to a tip load of 444.82 N. 

Two failure criteria for the structure were considered: (i) the displacement at the tip of the 

beam should be less than 0.002 m, as shown in Eq. (3.8), and (ii) the stress in the beam 

should be less than 34 MPa, as shown in Eq. (3.9). 

Displacement Limit-State    0002.04)( 3

3

1 ≤−=
Ebh

PLg X           (3.8)  

Stress Limit-State    010*3412)( 6
22 ≤−=

bh
PLg X        (3.9) 

 

 

 

 

 

 

Figure 3.6: Cantilever Beam 

where L, b, h are the length, width, and height of the beam, which are taken as random 

variables. The length of the beam was assumed to be normally distributed with a mean 

value of 0.762 m and standard deviation of 0.0762 m. The width and height of the beam 

were both assumed to be normally distributed with mean values of 0.0635 m and standard 

deviations of 0.00635 m.  
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 As the limit-state functions are available as closed-form expressions in terms of 

the random variables, there was no need for constructing approximations of each of the 

limit-state functions. Using these closed-form expressions, several points were sampled 

on the joint failure region. These sampled points were used in the construction of 

multiple response surface models to represent the joint failure region. The domains for 

the response surface models are given in Table 3.2. The design space was then divided 

into smaller domains such that the response surface model captures the joint failure 

region accurately within that domain. The convolution integral was then solved over the 

entire design space to obtain the failure probability of the system. 

Response Surfaces Interval for b  Interval for h  Interval for L  

1 [0.0254, 0.0457] [0.0254, 0.0635] [0.381, 1.143] 

2 [0.0254, 0.0457] [0.0635, 0.1016] [0.381, 1.143] 

3 [0.0457, 0.0635] [0.0254, 0.0635] [0.381, 1.143] 

4 [0.0457, 0.0635] [0.0635, 0.1016] [0.381, 1.143] 

5 [0.0635, 0.1016] [0.0254, 0.1016] [0.381, 1.143] 

 

Table 3.2: Domains for the Response Surface Models for the Cantilever Beam 

 

Methodology System Failure Probability % Difference 

Monte Carlo Simulation 0.0091 ------------- 

RSM + FFT 0.0093 2.19 

First-order Series Bounds 0.0089 to 0.0111 -2.19 to 21.98 

 
Table 3.3: System Reliability Results for a Cantilever Beam 
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Table 3.3 illustrates the accuracy of the methodology in predicting the failure 

probability of the system. The difference in the failure probability estimated by the 

proposed methodology compared to that of Monte Carlo simulation was around 2.19%. 

One million evaluations of the limit-state functions were used in the estimation of the 

failure probability using Monte Carlo. The first-order bounds capture the estimated 

failure probability as each of the individual failure probabilities were estimated 

accurately. The lower bound was estimated with a difference of 2.19% but was not 

conservative. The upper bound was very inaccurate with a difference of over 20 %. 

3.3.2. Ten-bar Truss Structure 

 A ten-bar truss structure, as shown in Figure 2.9, is considered in this example to 

calculate the system failure probability. Two failure criteria were considered for the 

estimation of failure probability of the system. One criterion was the displacement limit 

and the other was the stress limit. The maximum displacement at the tip of the structure 

should be less than 0.04826 m, and the stresses developed in element number 1 (critical 

element) should be less than 72 MPa, as shown in Eq. (3.10) and Eq. (3.11), respectively.  

Displacement Limit-State    00.1
04826.0

)(
)(1 ≤−=

X
X tipD

g       (3.10) 

Stress Limit-State     00.1
10*72

)(
)( 6

1
2 ≤−=

X
X

σ
g       (3.11) 

To demonstrate the applicability of the proposed method for multiple variables, 

five cross-sectional areas were considered. The cross-sectional areas of the structure were 

physically linked, as represented in Eq. (3.12). By linking the cross-sectional areas, the 

number of independent random variables was reduced to five. 
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121 xAA == , 254 xAA == , 383 xAA == , 476 xAA == , 5109 xAA ==      (3.12) 

The random variables are normally distributed with mean values of 0.0635 m2 and 

a standard deviation of 0.00635 m2. The Young’s modulus is taken as 7.0E10 N/m2 and 

the forces applied are 482.4421 == PP  kN.  

The structural analysis was done in GENESIS [60]. Since this example is a 

problem with implicit limit-state functions, the MPPs were obtained for each of the limit-

states. Latin hypercube sampling technique was used to sample ten design points around 

the MPP of each limit-state. Local approximations were constructed using eleven points 

(ten design points and the MPP of that limit-state) and combined into a multi-point 

approximation. The MPAs obtained were used as closed-form expressions of the limit-

state functions to sample points on the joint failure region. Using these points on the joint 

failure region, five accurate response surface models were constructed to span over the 

entire design space and used to solve the multidimensional convolution integral. The 

number of response surfaces required depends on the 2R  value of each of the models. 

When improved accuracy is desired, each of the regions is further subdivided until the 

required 2R  value is obtained. 

 
Table 3.4: Comparison of Results for a Ten-bar Truss 

Methodology System Failure Probability % Difference 

Monte Carlo Simulation 0.00741 ------------- 

MPA + FFT 0.00758 2.29 

First-order Series Bounds 0.00669 to 0.00718 -9.72 to -3.11 
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A comparison of the failure probabilities obtained using the proposed 

methodology and Monte Carlo simulation is shown in Table 3.4. The estimated failure 

probability was comparable to Monte Carlo with a difference of 2.29%. One million 

exact finite element simulations were needed to obtain convergence of the Monte Carlo 

simulation. Eighteen exact simulations were needed in the search for the MPP of each of 

the limit-state functions and ten additional design points were sampled around each MPP. 

So the total number of exact simulations used to obtain the system failure probability 

using the proposed methodology was 56)1018(2 =+ , as opposed to one million using 

Monte Carlo simulation. The estimated failure probability was not within the FORM 

bounds because the individual failure probabilities estimated using FORM were not 

accurate. 

3.3.3. Torpedo Structure 

 The finite element model of the torpedo structure used for the analysis is 

shown in Figure 3.7. The structure is modeled using 1176 quadrilateral and 48 triangular 

shell elements between 1202 nodes. The structure is also comprised of longitudinal and 

radial stiffeners that provide additional structural integrity. The overall length of the 

structure is 2.60 m with a diameter of 0.32 m. The thickness of the shell is taken as 

0.0635 m and the width and breadth of the stiffeners is 0.01 m and 0.015 m. To represent 

the mass of the various subsystems in the structure, concentrated masses are added at the 

nodes. The structure is divided into four sections and the values of the concentrated 

masses in each section are modeled as random variables with a lognormal distribution 

and mean value of 1.9231 kg. The Young’s modulus and density are modeled, as shown 

in Figure 3.8. The modulus of elasticity and density are normally distributed with means 
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of 7E10 N/m2 and 2780 kg/m3, respectively. The coefficient of variation for all the 

random variables was taken to be 10%. Figure 3.8 shows the random variables 

considered in the analysis.  

 

  

 

 

 

 

 

Figure 3.7: Finite Element Model of a Torpedo Structure 

 
  

 

 

 

 

Figure 3.8: Description of the Random Variables 

Two failure criteria are considered for the calculation of failure probability of the 

system. One criterion, shown in Eq. (3.13), is that the fundamental natural frequency of 

M1 M2 M3 M4 

E1,ρ1 E2,ρ2 
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the structure should be greater than 19 Hz. The other criterion, given by Eq. (3.14), is the 

maximum strain to be less than the yield strain of the material.   

Frequency Limit-State 00.1
0.19

)(
)( 1

1 ≥−=
X

X
ω

g       (3.13) 

Strain Limit-State  00.1
00147.0

)(
)( 158

2 ≤−=
X

X
ε

g       (3.14) 

The structural analysis was performed using GENESIS and the MPP of each of 

the limit-states was estimated. As the Young’s modulus of element 158 is the only 

variable that affects the strain limit-state function, a reciprocal approximation was used in 

place of an MPA for the strain limit-state function. An MPA was constructed for the 

frequency limit-state by sampling points around the MPP. These approximations were 

then used to sample points on the joint failure region that are used in the construction of 

accurate response surface models, in multiple regions.  

 
Table 3.5: Comparison of Results for a Torpedo Structure 

Table 3.5 shows the comparison of the resulting probability of failure of the 

system using the proposed method and exact Monte Carlo simulation. Using the proposed 

methodology, the system failure probability was estimated to be 0.00413. The difference 

in the estimated failure probability when compared with Monte Carlo was about 3.76%, 

Methodology System failure probability % Difference 

Monte Carlo Simulation 0.00398 ------------- 

MPA + FFT 0.00413 3.76 

First-order Series Bounds 0.00351 to 0.00397 -11.81 to -0.25 
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which is conservative. One million exact simulations were needed to obtain convergence. 

Eighteen exact simulations were needed in the MPP search for each of the limit-state 

functions and ten design points were taken around the MPP for the frequency limit-state 

function for the construction of the MPA. No design points were sampled for the strain 

limit-state, because for the strain limit-state a reciprocal approximation at the MPP was 

able to capture the response. So, a total of 4610)18(2 =+  exact simulations were needed 

in the estimation of the failure probability as opposed to two million simulations (one 

million for each limit-state) using Monte Carlo. The first-order series bounds were 

obtained to be 0.00351 to 0.00397. The upper bound estimated the failure probability 

very accurately, but was not conservative. However, the estimation of the lower bound 

was highly inaccurate. Without any knowledge of the accuracy, these bounds would 

result in improper decisions. 

3.3.4. Composite Model of a Torpedo Structure    

 The methodology for estimating the reliability of a structural system is applied for 

the composite model of a light weight torpedo. This example is selected to demonstrate 

the method using 16 random variables and 11 limit-states. The finite element model is as 

shown in Fig. 3.9. The shell is made of a honeycomb core with fiber-reinforced laminates 

to form the top and bottom plates.  The composition of the shell is as shown in Fig. 3.10. 

The difference between the metallic model (fig 3.7) and the composite model (fig 3.9) is 

the lack of stiffeners in the composite model. The stiffeners in the longitudinal and radial 

direction, which provide structural strength, were not modeled to see whether the 

composite structure could achieve the same performance characteristics as a metallic 

lightweight torpedo without these stiffeners. The composite model was optimized to have 
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the same performance characteristics as that of the metallic model. The obtained 

optimum configuration was considered as the candidate design for the reliability analysis. 

 

 

 

 

 

 

 

Figure 3.9: Finite Element Model of a Torpedo Hull 

 

 

 

 

 

 

Figure 3.10: Torpedo Shell – Composite Layout 

Eleven failure criteria were considered in the calculation of failure probability. 

One criterion is that the fundamental natural frequency has to be greater than 20.0 Hz. 

The criterion on the buckling of the structure is that of the critical buckling load factor 

should not be less than 1.0. The maximum principal strain in each layer of the element 

Honeycomb  

00  

900  

450 
-450 
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should be more than -0.0065, which results in nine criteria, one for each layer. These 

criteria are given in Eqs. (3.15)- (3.17). 

Frequency Limit-State    00.1
0.20

)()( 1
1 ≥−=

XX ωg                 (3.15) 

Buckling Limit-State    00.1
0.1

)(
)(2 ≥−=

X
X crP

g                 (3.16) 

Strain Limit-State            00.1
0065.0

)(
)( ≤−

−
=

X
X i

ig
ε

, 11...3=i               (3.17) 

where 1ω  is the fundamental natural frequency, crP  is the critical buckling load factor and 

iε  are the strains in each layer. 

A total of 16 random variables were considered in this problem. The thickness of 

the laminate in a particular orientation direction and the thickness of the honeycomb were 

assumed to be log-normally distributed with a coefficient of variation of 5%. The 

longitudinal and transverse moduli and the density of the laminate were modeled with a 

normal distribution and a variation of 5%. The structure is divided into four sections and 

the values of the concentrated masses in each section are modeled as random variables 

with a lognormal distribution with a 10% coefficient of variation. The mean values, the 

coefficient of variation and the type of distribution of the 16 random variables are given 

in Table 3.6. 
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Table 3.6: Random Variables – Composite Model of a Torpedo Structure 

 

 

 
Table 3.7: Results of the Composite Model of a Torpedo Structure 

Random Variable Distribution Mean Coefficient of 
Variation 

Top Plate Laminate Thickness 
00 orientation Lognormal 0.0012 m 5% 

Top Plate Laminate Thickness 
450 orientation Lognormal 0.0008 m 5% 

Top Plate Laminate Thickness 
-450 orientation Lognormal 0.0008 m 5% 

Top Plate Laminate Thickness 
900 orientation Lognormal 0.0004 m 5% 

Honeycomb Thickness Lognormal 0.0306 m 5% 
Bottom Plate Laminate Thickness 

900 orientation Lognormal 0.0004 m 5% 

Bottom Plate Laminate Thickness 
-450 orientation Lognormal 0.0008 m 5% 

Bottom Plate Laminate Thickness 
450 orientation Lognormal 0.0008 m 5% 

Bottom Plate Laminate Thickness 
00 orientation Lognormal 0.0012 m 5% 

Concentrated Mass, M1 Lognormal 1.9231 kg 10% 
Concentrated Mass, M2 Lognormal 1.9231 kg 10% 
Concentrated Mass, M3 Lognormal 1.9231 kg 10% 
Concentrated Mass, M4 Lognormal 1.9231 kg 10% 

Longitudinal Young’s Modulus, E1 Normal 1.4E10 N/m2 5% 
Longitudinal Young’s Modulus, E2 Normal 9.0E09  N/m2 5% 

Density of Laminates, ρ1 Normal 1600  kg/m3 5% 

Methodology System failure probability % Difference 

Monte Carlo Simulation 0.00214 ------------- 

MPA + FFT 0.00224 4.67 

First-order Series Bounds 0.00123 to 0.00205 -42.52 to -4.21 
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Table 3.7 shows the comparison of the failure probability values obtained using 

the proposed methodology and Monte Carlo simulation. The system failure probability 

was estimated to be 0.00224 with a difference of 4.67%. The first-order series bounds 

using FORM were obtained as 0.00123-0.00205. The upper bound was close to the 

estimated reliability value, but was not conservative; whereas, the lower bound was 

highly inaccurate. The proposed methodology needed 1412 exact simulations, which 

include the simulations required for calculating the gradients needed for the analysis. For 

each of the limit-states, 500,000 random points were needed to obtain convergence using 

Monte Carlo for each of the limit-states. This clearly shows the computational efficiency 

of the proposed system reliability estimation method.   

The use of MPA enables the representation of implicit limit-state functions in a 

closed-form expression in terms of the random variables. Since information at more than 

one point is used in the construction of the MPA, it is accurate over a larger region 

compared to one and two-point approximations. Once the n-dimensional joint failure 

region is approximated, the convolution integral can be solved using the FFT technique. 

The FFT technique uses a robust algorithm to solve for the convolution integral 

accurately and efficiently to result in a reliable estimate of the probability of failure of the 

structural system. Moreover, the correlation between the various limit-states is taken into 

account by the accurate estimation of the joint failure region. 

The accuracy of the proposed methodology depends on the accuracy of the MPA 

constructed for each of the limit-state criteria because the points on the joint failure 

region are sampled based on these MPA. So care should be taken in the construction of 
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MPAs for each of the limit-state functions. The use of accurate local TANA2 

approximations leads to an accurate MPA. 

 The difference between a series and a parallel system is in the definition of the 

joint failure region. Based on the definition of failure, MPAs are to be constructed in the 

region of interest. For a parallel system, MPAs can be constructed around the closest 

intersection point that has the maximum likelihood of failure. Once accurate MPAs are 

obtained, design points are sampled on the joint failure region and the system reliability 

is estimated. Therefore, the proposed methodology can be easily applied to any type of 

system by modeling the appropriate joint failure region accurately. 

 In most structural problems, information is available to model some uncertain 

variables with a PDF while some variables have limited information. The following two 

chapters deal with the estimation of bounds on system reliability when some variables are 

random and others are nonrandom in nature. Chapter 4 deals with the extension of this 

algorithm for handling interval variables while the algorithm for handling random and 

fuzzy variables and multiple failure modes is presented in chapter 5. 
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4. BOUNDS ON STRUCTURAL SYSTEM RELIABILITY 

If all the uncertain parameters are defined as random variables, then the reliability 

of a structural system can be estimated accurately by using the algorithm presented in the 

previous chapter. But when the knowledge about some of the variables is limited to lower 

and upper bounds, the entire range of these bounds should be explored while estimating 

the bounds on the reliability. The computational cost involved in estimating these bounds 

increases tremendously because a single reliability analysis, which is a computationally 

expensive procedure, is performed multiple times for each configuration of the interval 

variables. To reduce the computational cost involved, transformation of intervals is used 

along with high quality function approximations for each of the limit-states and the joint 

failure surface. The use of transformation techniques facilitates the estimation of the 

interval configurations that correspond to the bounds on system reliability. Once the 

configurations are estimated, the system reliability at each configuration can be estimated 

accurately using the algorithm presented earlier. 

 

4.1. Transformation of Interval Variables 

In the presence of mixed uncertain parameters, the joint failure surface, which is 

highly nonlinear, is dependent on the configuration of the interval variables. The entire 

domain of the interval variables is to be explored to determine the configuration of the 

interval variables that correspond to the minimum and maximum values of the reliability. 

The contribution of the interval variables to each of the convolution integrals can be 

obtained by using transformation techniques.  
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Consider a response is given by 2 2
1 2 1 2 1( , ) 4 4Y x x x x x= + − +  where 1 [1, 4]x =  and 

2 [ 1,1]x = −  are interval variables. The response equation can be expressed as a linear 

combination given by 1 2 1 2( , )Y z z z z= +  where 2
1 1( 2)z x= −  and 2

2 2z x= . Based on these 

relations, the bounds of the original variables are transformed to obtain the bounds of the 

intervening variables. The bounds of the intervening variables are 1 [0, 4]z =  and 

2 [0,1]z = . Now as the response is a linear combination of the intervening variables, the 

bounds on the response are the summation of the lower and upper bounds of the 

intervening variables resulting in the range of [0,5]Y = . The solution obtained by 

applying interval arithmetic on the original equation is [2,5]Y = . This is because the 

minimum value of the response occurs when 1 2x =  and 2 0x =  which are within the 

bounds. The problems associated with the dependency is eliminated as each variable 

appears only once in the response leading to accurate estimation of the bounds. 

 

4.2. Algorithm for Estimating System Reliability Bounds 

In the presence of both random and interval variables, every configuration of the 

interval variables has an unknown probability. To estimate this probability, the new joint 

failure region needs to be modeled accurately at each configuration of the interval 

variables. For modeling this joint failure region using an approximation, the limit-state 

functions should be available in closed-form so that the points on the joint failure surface 

can be sampled. In the case of an implicit function, several local TANA2 approximations 

can be constructed, with sample points around the Most Probable Point (MPP) for each 

limit-state function, and blended into a Multi-Point Approximation (MPA). The MPP of 
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each of the limit-state functions is estimated by setting the interval variables to their 

central values. The domain around this MPP is approximated using an MPA. The bounds 

on the random variables are taken to be two standard deviations on either side of the MPP 

while the lower and upper bounds were considered for the interval variables. Once an 

accurate MPA is constructed for each of the limit-state functions, there is no need for 

running exact simulations as the MPAs capture the behavior of the limit-states accurately 

in this domain. These MPAs along with Fast Fourier Transforms (FFT) are used for 

estimating the bounds on the reliability of the system.  

The details of the algorithm and its implementation are presented below: 

1. Estimate the MPP of each of the limit-state functions with the interval variables at 

their central values. The MPP is obtained by using the modified HL-RF (Hasofer 

Lind – Rackwitz Fiessler) algorithm with TANA2 approximate models. 

2. Design points are sampled within the vicinity of each MPP using a Latin 

hypercube sampling technique. All the uncertain variables (random + interval) are 

used during this sampling. The bounds on the random variables are taken to be 

two standard deviations on either side of each MPP. The lower and upper limits 

are used as the bounds in the sampling for the interval variables. 

3. Multiple local TANA2 approximations are constructed using the set of design 

points sampled. These local TANA2 approximations are blended into a multi-

point approximation. Since all the interval variables are included in the design 

points sampled, the MPA constructed captures the behavior of the limit-state for 

the whole range of the intervals. Using the same procedure, an MPA is 

constructed for each of the limit-state functions. 
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4. Points are sampled on the joint failure surface using these surrogate 

representations of each of the limit-states. Multiple response surface models are 

then constructed using these sampled points. In order to obtain an accurate 

representation of the joint failure surface, the design space is sub-divided based 

on the accuracy of the response surface models as described in section 3.2.  

5. Based on the response surface models constructed, the convolution integral is 

divided into several regions found in step 4 spanning the entire design space. Each 

of these integrals is evaluated separately. 

6. Each response surface is divided into two parts, one containing the terms with 

random variables and the other containing interval variables. The part of the 

interval variables is used to determine the contribution of the interval variables to 

the particular integral by applying necessary transformations. The part with the 

random variables is convoluted using FFT to obtain the joint PDF. The 

contribution of the interval variables acts as a linear shift in the PDF obtained. 

7. Once the joint PDFs and interval variable contributions for all the integrals are 

evaluated, the minimum and maximum values of the intervals are used to 

combine and integrate the joint PDF to obtain the bounds on the system 

reliability. Figure 4.1 illustrates the methodology discussed above. 

For nonlinear responses, the contribution of the interval variables that correspond 

to the extreme values of the reliability is estimated using transformations. These 

contributions appear as a constant when performing the convolution using fast Fourier 

transforms leading to a linear shift in the PDF obtained from the convolution. In this 

methodology, the contribution of the intervals to the reliability are evaluated separately 
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and used in the failure probability calculation. So even if it seems like the interval values 

appear more than once during the failure probability calculation, there is no 

overestimation of the bounds as interval arithmetic is not implemented in the estimation 

of the bounds. Only the contributions of the interval variables to the reliability are used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  Methodology for Estimating System Reliability Bounds 

 

Uncertain input variables 
(Random + Interval)
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the bounds on reliability
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Design Points to construct TANA2 
Latin hypercube sampling around each MPP 

MPA  
Represent each of the limit-state functions 

Response Surface Models 
To represent the joint failure surface
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4.3. Numerical Examples 

4.3.1. Cantilever Beam 

A cantilever beam, as shown in figure 3.6 is subjected to a tip load, P. Two failure 

criteria were considered: (i) the displacement at the tip of the beam should be less than 

0.002 m, as shown in Eq. (4.1), and (ii) the stress in the beam should be less than 34 

MPa, as shown in Eq. (4.2).  

Displacement Limit-state    0002.04)( 3

3

1 ≤−=
Ebh

PLg X           (4.1)  

Stress Limit-state    010*3412)( 6
22 ≤−=

bh
PLg X        (4.2) 

where L, b, h are the length, width and height of the beam which are taken as random 

variables. The length of the beam was assumed to be normally distributed with a mean 

value of 0.762 m and standard deviation of 0.0762 m. The width and height of the beam 

were both assumed to be normally distributed with mean values of 0.0635 m and standard 

deviations of 0.00635 m. The point load, P, acting on the tip of the beam was assumed to 

be between the interval of [355.856, 533.784] N.  

 As the limit-state functions are available as closed-form expressions in terms of 

the uncertain variables, there was no need for constructing approximations of each of the 

limit-state functions. The closed-form expressions of the limit-state functions are used for 

sampling points on the joint failure region. These sampled points were used in the 

construction of multiple response surface models to represent the joint failure region. The 

design space was divided into smaller domains so that the response surface model 

captures the joint failure region accurately within that domain. As there is only one 
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interval variable in this problem, the configurations of the load that yields the bounds on 

the reliability are obtained using transformation techniques. These configurations were 

used to solve the convolution integral over the entire design space to obtain bounds on 

the system failure probability. 

% Difference 
Methodology 

Failure probability 

bounds Lower limit Upper limit 

Monte Carlo [0.00227, 0.02598] --- --- 

Proposed algorithm [0.00228, 0.02704] 0.44 4.08 

 
Table 4.1: Failure Probability Bounds of the Cantilever Beam 

Table 4.1 illustrates the accuracy of the methodology in predicting the failure 

probability of the system. The bounds obtained by the proposed methodology were 

conservative with a difference of around 4%. For each configuration of load, one million 

evaluations of the limit-state functions were used in the estimation of the failure 

probability using conventional Monte Carlo simulation. 

4.3.2. Wing Structure 

A wing structure, as shown in Figure 4.2, is considered to estimate the bounds on 

the failure probability. Two failure criteria of the system are considered. The 

displacement at the tip of the wing when subject to aerodynamic loading to be less than 

0.04 m (Eq. 4.3) and the fundamental natural frequency of the wing to be more than 1.52 

Hz. (Eq. 4.4) 

004.0)()(1 ≤−= XX tipDg             (4.3) 

0)(52.1)( 12 ≤−= XX ωg                          (4.4) 
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Figure 4.2: Wing Structure 

The thicknesses of the first two span-wise skins are physically linked to have the 

same value, which is modeled as a normal distribution with a mean of 0.0381 m. The 

same is done with the other two span-wise skins. All of the spars are linked to have the 

same thickness and the same is done with the ribs. These are also modeled as normally 

distributed random variables with a mean of 0.0127 m. Physical linking results in four 

random variables and the coefficient of variation is assumed to be 10% for all of these 

variables. The Young’s moduli of the two physically linked skins are modeled as interval 

variables. Moreover, the Young’s modulus of the spars and ribs is also modeled as an 

 Thickness of ribs, t3 

 Young’s Modulus, E3 

Skin thickness, t1 
Young’s Modulus, E1 

Skin thickness, t2 
Young’s Modulus, E2 

Thickness of spars, t4 
Young’s Modulus, E3 
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interval variable. These variables were considered to be in the interval of [7.17E10, 

7.31E10] N/m2. 

% Difference 
Methodology 

Failure probability 

bounds Lower limit Upper limit 

Monte Carlo [0.00132, 0.04522] --- --- 

Proposed algorithm [0.00125, 0.04692] -5.30 3.76 

 
Table 4.2: Failure Probability Bounds of the Wing Structure 

Table 4.2 shows the comparison of the reliability estimated using the proposed 

methodology and Monte Carlo simulation. As this is a problem with implicit limit-state 

functions, multi-point approximations were constructed for each of the limit-states which 

were used as closed-form expressions in estimating the bounds on the reliability. A total 

of 31 exact function evaluations were needed in the estimation of both the MPPs. 25 

design points were used in the construction of each of the MPAs. The bounds obtained by 

using the proposed technique were conservative with a difference of around 5% on the 

lower bound and 4% on the upper bound. The proposed methodology required only 

8131)25(2 =+  exact simulations as opposed to 1.2 million simulations for Monte Carlo.  

4.3.3. Turbine Blade 

The methodology of estimating the bounds on system reliability was applied to a 

twisted turbine blade with a 45-deg twist angle. The finite element model is shown in 

Figure 4.3. The blade is modeled using 80 quadrilateral plate elements between 99 nodes. 

All the degrees of freedom along the hub are fixed. This blade is subjected to a uniform 

pressure loading.  



 81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Finite element model of the turbine blade 

The thicknesses and the moduli of elasticity were considered as uncertain 

parameters, but with physical linking only 10 independent uncertain variables were 

considered. Every two sets of the chordwise elements are assumed to have the same 

thickness and same Young’s modulus. The five Young’s moduli are modeled as normally 

distributed random variables with a mean value of 20E10 N/m2 and a coefficient of 

variation of 10%. The thickness of the blade decreases from the hub to the tip. These 

t2, E2 
t1, E1 

t3, E3 
t4, E4 t5, E5 



 82

thicknesses are modeled as interval variables with the lower and upper bounds as shown 

in Table 4.3. 

Interval Variable Lower Bound Upper Bound 

Thickness, t1 0.00838 m 0.00939 m 

Thickness, t2 0.00825 m 0.00927 m 

Thickness, t3 0.00812 m 0.00914 m 

Thickness, t4 0.00800 m 0.00902 m 

Thickness, t5 0.00787 m 0.00889 m 

 
Table 4.3: Intervals of the Thickness Distribution of the Turbine Blade 

Two different failure modes are considered. One limit-state is that the 

displacement at the tip in the direction perpendicular to the plate should be less than 

0.000635 m. Another limit-state is that the fundamental natural frequency should be 

greater than 1850 Hz. These criteria are shown in Eqs. (4.5) and Eq. (4.6) 

0000635.0)()(1 ≤−= XX tipDg            (4.5) 

0)(1850)( 12 ≤−= XX ωg             (4.6) 

The MPPs of each of the limit-states are estimated, and Latin Hypercube 

sampling technique was used to sample 25 design points around these MPPs. Local 

TANA2 approximations were constructed with these 26 design points (25 design points + 

MPP of that limit-state) and combined into a multi-point approximation. These MPAs 

were used as closed-form expressions of the limit-states to obtain points on the joint 

failure surface. These points were used in the construction of accurate response surface 

models based on which the bounds on the system failure probability are obtained. 
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A comparison of the bounds on the system failure probability obtained using the 

proposed algorithm and traditional Monte Carlo simulation is shown in Table 4.4. The 

bounds obtained by using the proposed technique were comparable with those obtained 

by Monte Carlo simulation. The proposed methodology needed a total of 590 exact 

simulations, which include the simulations required for calculating the gradients needed 

in the construction of the MPAs. At each configuration of the interval variables, Monte 

Carlo simulation needed 1 million simulations to obtain convergence. This clearly shows 

the computational efficiency of the proposed methodology. 

% Difference 
Methodology 

Failure probability 

bounds Lower limit Upper limit 

Monte Carlo Simulation [0.000028, 0.1127] --- --- 

Proposed algorithm [0.000025, 0.1204] -10.71 6.83 

 
Table 4.4: Failure Probability Bounds for the Turbine Blade Example 

Due to the vagueness in the available information, all of the uncertain parameters 

in a problem cannot be assumed to be random in nature. When dealing with a 

combination of random and interval variables, the computational cost for estimating the 

bounds on system reliability increases exponentially. To reduce the computational cost 

without a loss of accuracy, a methodology that uses transformations for interval variables 

along with the system reliability estimation algorithm is presented to efficiently deal with 

mixed variables problems. 

The technique of transforming interval variables can be used to accurately 

estimate the configurations that correspond to the bounds of system reliability. This 

technique yields the same results as the expensive optimization method to obtain the 
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extreme values for non-linear functions. Since innovative transformation techniques 

based on the interval variables is used in this research, there is no overestimation in the 

bounds even if it seems like the interval variables appear more than once in the 

estimation of the reliability bounds. 
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5. MEMBERSHIP FUNCTION OF SYSTEM RELIABILITY 

When dealing with a combination of probability distributions and fuzzy 

membership functions, the computational cost involved in estimating the membership 

function of reliability increases exponentially because multiple reliability analysis are 

needed. Moreover, when multiple failure modes are involved, the joint failure region is 

dependent on the configuration of the fuzzy variables at various possibility levels. For 

accurate estimation of the membership function of the system reliability, the 

configuration of the fuzzy variables that correspond to the extreme values of reliability as 

well as the system reliability are to be estimated accurately. In this work, the 

transformation techniques for membership functions as well as the system reliability 

algorithm presented previously are combined to estimate the membership function of 

system reliability accurately.  

 

5.1. Proposed Algorithm 

The details of the proposed algorithm and its implementation are presented below.  

1. The MPP is estimated for each of the limit-state functions. During this process, 

the fuzzy variables are set to their values that have maximum possibility. 

2. Design points are sampled within the vicinity of each MPP using a Latin 

hypercube sampling technique. The bounds on the random variables are taken to 

be two standard deviations on either side of each MPP. Fuzzy variables are then 

set to their bounds at zero possibility level. 
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3. Multiple local TANA2 approximations are constructed for the set of design points 

sampled around each MPP. These local TANA2 approximations are blended into 

a multi-point approximation, which captures the behavior of the limit-state 

function around the MPP. Using the same procedure, an MPA is constructed for 

each of the limit-state functions. 

4. Points are sampled on the joint failure surface using these surrogate 

representations of each of the limit-states. Multiple response surface models are 

constructed using these sampled points as illustrated in section 3.2. In order to 

improve the accuracy of each of the response surface models, the design space is 

sub-divided until the regression sum of squares value of the approximations in 

each sub-division are acceptable.  

5. Each response surface is divided into two parts, one containing the terms with 

random variables and the other containing fuzzy variables. The part with the 

random variables is convoluted using FFT to obtain the joint PDF and the part 

with the fuzzy variables is used to obtain the joint membership function by 

applying the necessary transformations.  

6. At each α -cut the minimum and the maximum values of the joint membership 

functions are used to combine and integrate the area under the joint PDF and 

obtain the membership function of reliability. Figure 5.1 illustrates the 

methodology discussed above. 
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Figure 5.1: Proposed Algorithm Details 
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5.2. Numerical Examples and Discussion 

5.2.1. Simply Supported Beam 

 A simply supported beam, as shown in Figure 5.2, is subjected to a central point 

load of 444.82 N. The two failure criteria for the structure are: (i) the displacement at the 

midspan of the beam should be less than 0.001 m, as shown in Eq. (5.1), and (ii) max. 

stress in the beam should be less than 19.86 MPa, as shown in Eq. (5.2).  

Displacement Limit-State    0001.0
4

)( 3

3

1 ≤−=
Ebh
PLg X          (5.1)  

Stress Limit-State    010*86.19
2
3)( 6

22 ≤−=
bh
PLg X        (5.2) 

 

 

 

 

Figure 5.2: Simply Supported Beam 

where L, b, h are the length, width and height of the beam. The width and height of the 

beam were both assumed to be normally distributed random variables with mean values 

of 0.0635 m and standard deviations of 0.00635 m. The length of the beam was modeled 

as a fuzzy variable with the membership function given by Eq. (5.3). Figure 5.3 shows 

the membership function of the fuzzy variable. The modulus of elasticity of the beam was 

taken to be 68.9 GPa. 

L b 

h 

P 
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Figure 5.3: Membership Function of Fuzzy variable 

As the limit-state functions are available as closed-form expressions in terms of 

the random variables, there was no need for constructing approximations of each of the 

limit-state functions. Using these closed-form expressions, several points were sampled 

on the joint failure region. These sampled points were used in the construction of 

multiple response surface models to represent the joint failure region. The design space 

was divided into smaller domains such that the response surface model captures the joint 

failure region accurately within that domain. Each of the response surface models were 

then linearized in terms of the intervening variables and divided into two parts. The part 

with the random variables was used for convolution to obtain the joint PDF and the part 
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with the fuzzy variable was used for transforming the membership function of the 

original variable into that of the intervening variable. Due to the presence of only one 

fuzzy variable in the problem, the joint membership function of the fuzzy variables is 

nothing but the membership function of the fuzzy intervening variable. At each α -cut, 

the bounds of the fuzzy intervening variable were used to combine the joint PDFs, 

obtained from each response surface, to result in the system PDF which is integrated in 

the failure region to obtain the membership function of system reliability.  

 

 

 

 

 

 

 

 

 

Figure 5.4: Membership Function of Reliability for the Simply Supported Beam 

Figure 5.4 shows the membership function of reliability estimated using the 

proposed methodology, as well as that obtained using traditional Monte Carlo simulation. 

To illustrate the difference in the failure probability, the membership function of failure 

probability was compared by plotting the failure probability using a log scale as shown in 

figure 5.5. The maximum difference in reliability was around 0.25% and was 
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conservative. At each level, one million function evaluations were needed for 

convergence of the Monte Carlo simulation. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Comparison of Failure Probability for the Simply Supported Beam 

5.2.2. Wing Structure 

The methodology was applied to a wing structure, as shown in figure 2.12, to 

obtain the membership function of system reliability. The displacement at the tip of the 

wing when subject to aerodynamic loading to be less than 0.04 m (Eq. 5.4) and the 

fundamental natural frequency of the wing to be more than 1.52 Hz. (Eq. 5.5) are the 

criteria considered for the failure of the system.  

004.0)()(1 ≤−= XX tipDg             (5.4) 
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0381.00331.0 ≤≤ L

0127.00076.0 ≤≤ L

0)(52.1)( 12 ≤−= XX ωg                          (5.5)  

The Young’s moduli of the top and bottom skins were modeled as normally 

distributed random variables with mean values of 7.24E10 N/m2. All the spars were 

physically linked and the same is done with the ribs. The Young’s moduli of the spars 

and the ribs were also modeled as normally distributed random variables with mean value 

of 7.24E10 N/m2. Physical linking results in three random variables and the coefficient of 

variation is assumed to be 10% for all of these variables. The thicknesses of the top and 

bottom skins (Eq. 5.6) as well as the thickness of the spars and ribs (Eq. 5.7) are modeled 

using triangular fuzzy membership functions. A total of six uncertain variables, three 

random variables and three fuzzy variables, were considered in this problem.  

⎩
⎨
⎧

−−
−

=
0005.0/0432.0(
0005.0/)0331.0(

)(
1

1

11 t
t

ttµ                                      (5.6) 

⎩
⎨
⎧

−−
−

=
0005.0/0178.0(
0005.0/)0076.0(

)(
3

3
3

3 t
t

ttµ                             (5.7) 

As this is a problem with implicit limit-state functions, multi-point 

approximations were constructed for each of the limit-states which were used as closed-

form expressions in estimating the bounds on the reliability. The bounds obtained by 

using the proposed technique are comparable with those obtained by Monte Carlo 

simulation. The use of accurate MPAs for the limit-states facilitates the accurate 

estimation of the system reliability bounds at each α -cut without increasing the 

computational cost. Figures 5.6 and 5.7 show the comparison between the membership 

function obtained using the proposed algorithm and the one obtained using the Monte 

Carlo simulation. 

0432.00381.0 ≤≤ L

0178.00127.0 ≤≤ L
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Figure 5.6: Comparison of the Reliability Estimation of the Wing Structure 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 

Figure 5.7: Comparison of the Failure Probability of the Wing Structure 
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00889.000838.0 1 ≤≤ t

00876.000825.0 2 ≤≤ t

00863.000812.0 3 ≤≤ t

00851.000800.0 4 ≤≤ t

5.2.3. Turbine Blade 

The methodology of estimating the membership function of system reliability was 

applied to a twisted turbine blade with a 45-deg twist angle. The finite element model is 

shown in Figure 4.3. The blade is modeled using 80 quadrilateral plate elements between 

99 nodes. All the degrees of freedom along the hub are fixed. This blade is subjected to a 

uniform pressure loading.  

The thicknesses and the moduli of elasticity were considered as uncertain 

parameters, but with physical linking only 10 independent uncertain variables were 

considered. Every two sets of the chordwise elements are assumed to have the same 

thickness and same Young’s modulus. The five Young’s moduli are modeled as normally 

distributed random variables with a mean value of 20E10 N/m2 and a coefficient of 

variation of 10%. The thickness of the blade decreases from the hub to the tip. These 

thicknesses are modeled using triangular fuzzy membership functions given by the 

equations below (Eq. 5.8-5.12). 
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⎨
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00939.000889.0 1 ≤≤ t

00927.000876.0 2 ≤≤ t

00914.000863.0 3 ≤≤ t
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00838.000787.0 5 ≤≤ t
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Two different failure modes are considered. One limit-state is that the 

displacement at the tip in the direction perpendicular to the blade should be less than 

0.000635 m. Another limit-state is that the fundamental natural frequency should be 

greater than 1850 Hz. These criteria are shown in Eqs. (5.13) and Eq. (5.14) 

000635.0)()(1 ≤−= XX tipDg               (5.13) 

0)(1850)( 12 ≤−= XX ωg             (5.14) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8:  Membership Function of Reliability for the Turbine Blade 

 

 

00889.000838.0 5 ≤≤ t



 96

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9:  Membership Function of Failure Probability for the Turbine Blade 

Figure 5.8 shows a comparison of the membership function of system reliability 

obtained using the proposed algorithm and conventional Monte Carlo simulation. To 

show the difference between the proposed technique and Monte Carlo simulation, the 

membership function of the failure probability was plotted on a log scale as shown in fig. 

5.9. The MPPs of each of the limit-states are estimated, and Latin Hypercube sampling 

technique was used to sample design points around these MPPs for the construction of 

MPAs. These MPAs were used as closed-form expressions of the limit-states to obtain 

points on the joint failure surface. The proposed methodology needed a total of 590 exact 

simulations, which include the simulations required for calculating the gradients needed 

in the construction of the MPAs. At each configuration of the fuzzy variables, Monte 
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Carlo simulation needed 1 million simulations to obtain convergence. This clearly shows 

the computational efficiency of the proposed methodology. 

The use of transformation techniques for membership functions leads to the 

estimation of the contribution of the fuzzy variables to the convolution integral 

accurately. These techniques coupled with the system reliability algorithm facilitate the 

improvement in the computational efficiency of the proposed algorithm.  
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6. OPTIMIZATION WITH SYSTEM RELIABILITY CONSTRAINT 

 

The advantage of using a system reliability constraint as opposed to one reliability 

constraint for each failure mode is demonstrated by considering the composite model of 

the lightweight torpedo as an example. Different types of system reliability constraints 

are investigated in this work. An optimization problem was formulated to obtain a 

minimum weight composite structure that has the same characteristics as a metallic 

torpedo. Since there are numerous uncertainties associated with composites, a robust 

design was obtained by using reliability-based optimization techniques. A system 

reliability constraint is used in the probabilistic optimization rather than individual 

constraints on each of the failure modes. The algorithm presented earlier was used in 

determining the system reliability accurately during the optimization process. Results 

from the system level design constraint are compared with the results from the individual 

reliability constraints. 

 

6.1. Reliability-Based Optimization with System Reliability Constraint 

Traditionally, the optimization problem with reliability constraints is formulated 

using either safety index or failure probability constraints. But in the presence of multiple 

limit-states, all the limit-states can be taken into consideration for estimating and 

constraining their reliability. If the reliability of the structure is estimated based on all the 

failure modes, i.e. system reliability, then only one reliability constraint can be used in 

the optimization routine as opposed to multiple constraints.  

A general optimization problem with system reliability can be defined as  
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  Minimize ),( BXf  

subject to systemisystem pgP ≤< ]0),([ BX , 1....i n=        (6.1) 

            L U
j j jb b b≤ ≤ , 1...j m=  

where X  represents the random variables, B  represents the design variables, n  is the 

number of limit states. 

This system-reliability constrained optimization problem cannot be formulated in 

terms of a safety index. This is because the whole failure surface should be modeled 

accurately for a precise estimate of the system reliability, rather than just the MPP. 

An advantage of using a system reliability formulation is that the system 

reliability estimation algorithm takes into account the definition of the failure of the 

structure. Based on whether it is a series or parallel system, the joint failure surface can 

be modeled and the failure probability can be imposed as constraint. Moreover, in the 

presence of an intersection region of the limit-states in the design space of the joint 

probability density function of the random variables, the system reliability formulation 

captures this intersection region accurately, leading to a better reliability estimate. Even if 

there is no intersection region and the system failure probability is the combination of the 

individual failure probabilities, the optimizer has the freedom of satisfying this 

combination rather that each individual constraint resulting in a better design. Therefore, 

an optimization problem formulated using a system reliability constraint yields a more 

robust optimal design than one obtained by using individual safety index or failure 

probability constraints. 
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6.2. Results and Discussion 

A robust design must satisfy constraints such as weight, performance, cost, etc., 

as well as the reliability of the design due to the uncertainties in the system. To 

demonstrate the advantage of using a system reliability constraint in the design process 

rather than using failure probability or safety index constraints for each of the limit-states, 

the reliability-based optimization problem was formulated and solved with each of these 

constraints examined in three different cases. 

The objective of the optimization problem was to minimize the total weight of the 

torpedo structure. The design variables were taken as the thicknesses of the laminates in 

the three orientation directions considered, i.e., 00, ±450, and 900, along with the thickness 

of the honeycomb core. These variables were also modeled as normally-distributed 

random variables with a coefficient of variation of 5%. The mean values of these 

variables were taken as the design variables in the optimization problem. In addition to 

these random variables, the material properties of the composite laminate, i.e., the moduli 

of elasticity in the longitudinal and transverse directions along with the density of the 

laminates were also modeled as random variables with a normal distribution. The 

coefficient of variation for these variables was also taken to be 5%.  

Two deterministic constraints were used to ensure that the performance of the 

composite model matches that of the metallic model of the lightweight torpedo. These 

deterministic constraints are given in Eq. (6.2) and Eq.(6.3) 

Fundamental Natural Frequency   Hz0.221 ≥ω          (6.2) 

Buckling Load Factor (at 1000 m)  0.1≥crP          (6.3) 
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 In addition to these deterministic constraints, the structure was constrained to 

attain a prescribed reliability level of 0.001fP ≤ . The failure criteria for determining the 

reliability was that the fundamental natural frequency must be greater than 22.0 Hz and 

the buckling load factor must be greater than 1.0. Three different optimization problems 

were solved with the three different reliability constraints. In the first case, the failure 

probability of the system was constrained to be less than 0.001. In the second case, the 

failure probability of each of the limit-state functions was constrained to be less than 

0.001. In the final case, the constraints were applied on the safety index of each of the 

limit-state functions. A failure probability of 0.001 corresponds to a safety index value of 

3.09. So in this case, the safety index of each of the limit-states was constrained to be 

greater than 3.09. The optimization formulation for each of these cases is given below in 

(6.4) - (6.6). 

Minimize )(XW   

subject to [ ] 001.00.10.221 ≤<∪< crf PP ω         (6.4) 

     Hz0.221 ≥ω , 0.1≥crP  

Minimize )(XW   

subject to [ ] 001.00.221 ≤<ωfP , [ ] 001.00.1 ≤<crf PP       (6.5) 

     Hz0.221 ≥ω , 0.1≥crP  

Minimize )(XW  

subject to [ ] 09.30.2211 ≥≥ωβ , [ ] 09.30.12 ≥≥crPβ        (6.6) 

     Hz0.221 ≥ω , 0.1≥crP  
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 The target failure probability on each of the component reliabilities was chosen to 

be the same as the system reliability. This is due to the lack of information on how to 

divide the system level requirement to the individual component level requirement.  

The above three optimization problems were solved by the Design Optimization 

Tool (DOT) using the modified method of feasible directions algorithm. The structural 

analysis was performed using GENESIS. The failure probability of the system was 

estimated using the algorithm presented in chapter 3. The failure probabilities of each 

limit-state were calculated using the algorithm presented by Penmetsa and Grandhi [16]. 

The safety indices of the limit-states were estimated using the methodology presented by 

Wang and Grandhi [9]. A stacking sequence of [0t1/±45t2/90t3]s was considered for this 

study. In all three cases, the starting point of the probabilistic optimization routine was 

the optimal solution from the deterministic optimization. 

 Deterministic 
Optimum 

With System 
Pf 

With Individual 
Pf 

With Individual 
β 

Objective Weight (kg) 224.27 229.20 228.67 227.98 

00 0.0012 0.00143 0.00141 0.00144 

450 0.0008 0.00089 0.00087 0.00090 

900 0.0004 0.00062 0.00061 0.00045 

Design 
Variables – 
Thickness 

(m) 
Honeycomb 0.0306 0.03067 0.03067 0.03065 
Frequency 

(Hz) 22.40 24.18 23.98 23.93 

Buckling 
Factor 1.1181 1.21 1.20 1.19 

Constraints 

Reliability System 
Pf=0.53 

System 
Pf=0.0007 

Pf1=0.001, 
Pf2=0.00005 

System 
Pf=0.00105 

β1=3.11, 
β2=3.63 
System 

Pf=0.0014 
 

Table 6.1: Comparison of Reliability-Based Optimization Results 
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Table 6.1 shows a comparison of the optimum results obtained by the three 

different cases mentioned above. When compared to the deterministic optimization 

results, the weight of the structure obtained by probabilistic optimization was higher 

because the failure probability of the structure at the deterministic optimum was very 

high. This was because the optimizer tried to satisfy the constraint on the failure 

probability by increasing the thicknesses of the laminates. The increase in the thickness 

of the laminates increased the fundamental natural frequency and buckling load factor of 

the structure, thereby decreasing the failure probability. The system failure probability at 

the optimum design obtained was 0.0007, as opposed to 0.53 at the deterministic 

optimum. In the case of failure probability constraints on each limit-state, the weight of 

the obtained design was less than the weight obtained with a system reliability constraint, 

as can be seen from Table 6.1. But the system failure probability at the optimum was 

0.00105, which violated the system reliability constraint. When the optimization problem 

was solved using safety index constraints, it produced an even lighter design, but the 

system failure probability was 0.0014. The calculation of the safety index did not take 

into account the nonlinearity of the failure surface, thereby resulting in an inaccurate 

estimation of the failure probability.  

In the system reliability formulation, the failure surface was modeled accurately, 

which resulted in an accurate estimate of the failure probability. These results indicate 

that the optimization problems with individual failure probability or safety index 

constraints can produce lighter designs but cannot meet the design requirement of the 

system reliability. Moreover, by using the system reliability constraint, the definition of 

the structural failure (series or parallel) can be taken into account. 
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7. SUMMARY AND FUTURE DIRECTIONS 

 This work mainly focuses on two aspects of uncertainty quantification. One is to 

deal with mixed variable problems where some variables are quantified with probability 

distribution, while others are either interval or fuzzy membership functions. The other 

aspect is to propagate the uncertainties through structural systems with multiple 

correlated failure criteria. While dealing with these types of problems, the computational 

cost involved increases tremendously. This is due to the increase in non-random variables 

and the number of failure modes for the structure. So, to reduce the computational cost 

without losing much accuracy, function approximations are used to model the limit-state 

functions, as well as the failure surface. 

 Once the failure surface is available or approximated as a closed-form 

expression, the use of Fast Fourier Transforms (FFT) to solve the convolution integral 

efficiently has been demonstrated in the literature. Some of the approximation concepts 

used in this work are presented in the appendix. These high quality approximations are 

constructed around the MPP of the limit-state functions, thereby capturing their behavior 

around the MPP. Moreover, these approximations require only the computation of the 

first-order gradients to capture the nonlinearity of the limit-state functions. 

In chapter 2, a methodology was presented for problems with a single failure 

mode and both random and fuzzy variables to result in an estimate of the membership 

function of reliability. Transformation techniques for fuzzy membership functions are 

introduced and these techniques are used along with FFT. The use of transformations 

facilitates the determination of the minimum and maximum values of the fuzzy variables 

that correspond to the extreme values of the response at a particular possibility level 
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without the use of optimization techniques. This is demonstrated with a numerical 

example where the extreme values of the response are within the region of interest. In the 

case of mixed variables, this configuration of the fuzzy variables can be used in 

estimating the bounds on the reliability at that level. Numerical examples were presented 

to show the accuracy of this methodology for mixed variable problems. 

An algorithm for efficiently dealing with multiple correlated failure modes was 

presented in chapter 3. In the literature, the convolution integral was solved using FFT 

based on the failure region being represented by a single function. As the joint failure 

region in the case of structural systems is highly nonlinear, representing this region 

accurately with a single function can be complex. So a methodology was developed to 

solve the convolution using FFT based on multiple functions over several disjoint regions 

spanning the whole design space. The use of Multi-Point Approximations (MPA) enabled 

the accurate representation of the limit-states which can be used to obtain points on the 

joint failure surface. Response surface models were used to represent the failure region as 

a closed-form expression. The accuracy of the estimated failure probability of the system 

highly depends on the approximations used to model the failure surface. Therefore, the 

design space was divided until all the response surface models were accurate.  

This technique for estimating the reliability of a structural system was extended 

for problems with random as well as interval variables. In the presence of interval 

variables, each configuration of these variables has an unknown probability. Moreover, 

for each configuration, an entirely new joint failure region is to be estimated. By the 

inclusion of interval variables in the construction of the MPA for the limit-states, the 

computational cost was greatly reduced. These techniques were applied to problems with 
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a large number of non-normal variables and multiple failure criteria. The numerical 

examples presented show the accuracy and applicability of these techniques. 

For dealing with a combination of random and fuzzy variables in problems with 

multiple failure modes, the algorithm for estimating the system reliability is combined 

with transformation techniques for membership function. This technique can be used to 

solve a general uncertain analysis program where the variables could be modeled as using 

fuzzy membership functions or intervals or random variables. This methodology is 

capable of handling a wide range of random variable distributions and multiple failure 

criteria. It also has the capability of handling both series as well as parallel systems by 

modeling the joint failure surface accordingly.  

A brief introduction of reliability based optimization is presented. By including 

additional constraints on the reliability of the structure, the obtained final design is not 

only optimal but also reliable. These reliability constraints can be placed on the reliability 

of each component or on the reliability of the system as a whole. The advantages of using 

a system reliability constraint as opposed to one reliability constraint for each failure 

mode is demonstrated by performing the optimization of the composite model of a 

lightweight torpedo. The results indicate that an optimization problem formulated with a 

system reliability constraint yields a better design that one formulated with individual 

failure probability or safety index constraints. 

The use of high fidelity approximations to model implicit limit-state functions as 

well as the joint failure surface facilitates the reduction in the computational cost without 

losing accuracy. Fast Fourier transforms based reliability estimation technique has been 

developed to estimate the reliability based on multiple failure modes. Moreover, 
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transformation techniques for nonrandom variables are introduced and used to efficiently 

deal with mixed variables problems. These methodologies are the first of their kind and 

can be used to efficiently deal with a general uncertainty analysis problem with multiple 

failure modes as well as mixed forms of uncertainties. 

 

 

Future Directions 

In this dissertation, function approximations were used to estimate the reliability 

in problems with multiple forms of uncertainty as well as multiple failure modes. The 

accuracy of the reliability estimates is highly dependent on the quality of the 

approximations constructed. One area of further research is the development of a 

methodology to obtain the confidence intervals on these reliability estimates. This is a 

challenging task as the effect of the accuracy of the approximations used on the reliability 

estimates is to be studied. Moreover, the focus of these methodologies was on 

uncorrelated random variables. However, further research can be carried out for dealing 

with correlated uncertain variables where the random and non-random variables are 

correlated. 

Another area of research would be system reliability estimation when the 

uncertain quantities are expressed as random fields as opposed to random variables. 

Component reliability can be estimated using existing stochastic finite element methods. 

But new techniques are to be developed for propagating random fields through structures 

with multiple failure modes. 
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APPENDIX A: APPROXIMATIONS 

Reliability analysis is a computationally expensive iterative procedure.  The 

problem for solving the multidimensional convolution integral can be transformed into a 

safety index problem. This requires optimization to find the point on the failure surface 

that is closest to the origin in the standard normal space. As this is an optimization 

problem, difficulty arises in obtaining convergence for highly nonlinear response 

functions and large scale structural problems. The computational expense involved in 

reliability analysis of an implicit response can be greatly reduced with the use of 

approximations. These approximations use the information about the behavior of the 

response at a limited number of points and establish a closed-form relation between the 

response and the input variables. Based on the validity of the approximation and the 

number of design points used in constructing the approximate model, they can be 

classified as local approximations and global approximations.    

 

A.1. Local Approximations 

 Local approximations are those which use information at one or two points in the 

design space. As a limited amount of information is used in constructing these models, 

the validity of these approximations is restricted to the design space around the points 

used in the process. Most of the local approximations are constructed by using a first-

order Taylor series expansion about a point where the function and gradient information 

are available. For example, a linear approximation is a first-order Taylor series expansion 

in terms of the design variables, ix . Due to the truncation error associated with the first-
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order Taylor series, the validity of these approximations is limited to the close vicinity of 

the expansion point. To improve the accuracy of these approximations, intervening 

variables can be used. A reciprocal approximation is obtained by expanding the first-

order Taylor series in terms of intervening variable, 
i

i xy 1= . As can be seen here, the 

nonlinearity associated with the variables is fixed to be -1. The usage of this fixed 

nonlinearity restricts the capability of the model to adapt to different types of responses. 

This led to the development of approximations with adaptive intervening variables. These 

approximations calculate the nonlinearity indices of the intervening variables by using 

the information at two design points. One point is used as an expansion point for the 

Taylor series and the other is the comparison point based on which the nonlinearity 

indices are calculated.  

A.1.1. Two-point Adaptive Nonlinear Approximation (TANA) [61]  

This approximation is a first-order Taylor series expansion in terms of the 

intervening variables, r
ii xy = , as shown in Eq. (A.1). 
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where 2X is the expansion point. The nonlinearity index, r , is estimated by matching the 

function value at the comparison point, 1X , with that of the approximate model. This 

model has increased flexibility than one point approximations for representing the 

response accurately. But the nonlinearity index is same for all the variables, which might 

not be the case for many structural problems. Moreover, only the information about the 

function value at the comparison point is used in the construction of this model. 
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Therefore, using the gradient information at the comparison point, this approximation can 

be improved to obtain a different nonlinearity index for each variable.  

A.1.2. Improved Two-point Adaptive Nonlinear Approximation (TANA2) [62]  

TANA2 is a second-order Taylor series expansion in terms of the intervening 

variables  

ip
ii xy =        ni ,,2,1 K=           (A.2) 

where the exponents ip  represent the nonlinear indices and are different for each 

variable, iy is the intervening variable, and ix  is the physical variable. The approximation 

is expanded about 2X  and is given by Eq. (A.3). 
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 This equation is a second-order Taylor series expansion in terms of the 

intervening variables, in which the Hessian matrix has only diagonal elements of the 

same value ε . Therefore, this approximation does not need the calculation of second-

order derivatives. The error from the approximate Hessian matrix is partially corrected by 

adjusting the nonlinearity index ip . In contrast to the true quadratic approximation, this 

approximation is closer to the actual function for highly nonlinear problems due to its 

adaptability. 

Eq. (A.3) has 1+n  unknown constants, so 1+n  equations are required. By 

differentiating Eq. (A.3), n equations are obtained by matching the derivatives available 

at the comparison point 1X : 
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Another equation is obtained by matching the exact and approximate function 

values with the comparison point 1X : 
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 The 1+n  unknown constants are solved simultaneously using the 1+n  equations 

given by Eq. (A.4) and Eq. (A.5). In this method, the exact function and derivative values 

are equal to the approximate function and its derivative, respectively, at the comparison 

and expansion points. So the approximate model generated is more accurate than the one-

point approximations.  

 

A.2. Global Approximations 

 Global approximations use the information at several design points spanning the 

whole design space. Due to the use of information at more design points they are accurate 

over a larger design space than local approximations. In this section, a brief review of the 

two global approximations used in this study is discussed.  

A.2.1. Multi-point Approximation (MPA) based on Local Approximations [63]  

 The multi-point approximation can be regarded as the connection of many local 

approximations.  With function and sensitivity information already available at a series of 

points, one local approximation is built at each point.  All local approximations are then 

integrated into a multi-point approximation by the use of a weighting function.  The 
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weighting functions are selected such that the approximation reproduces function and 

gradient information at the known data points. 

If the function )(XF  and gradient 
x

F
∂

∂ )(X  information is available at Xk = (x1,k, x2,k, 

..., xn,k)T, k = 1, 2, ..., K, where K is the number of local approximations, then the multi-

point approximation can be written in terms of the local approximations as, 
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where Wk is a weighting function  
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and )(~ XkF  is a local approximation. )(XkW  adjusts the contribution of )(~ XkF  to 

)(~ XF in Eq. (A.6). The weighting function, )(XkW has its maximum of 1 at Xk and 

vanishes when Xk is very far from X. 

 Several blending functions, )(Xkφ , can be used to make the MPA reproduce the 

exact function and gradient values at the data points where the local approximation was 

built.  There are at least three blending functions that could meet this requirement.  They 

are   
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where      ∑
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where m is a positive integer. Additionally, it is recommended, from computational 

consideration, that the design space be normalized as xi∈ [0,1] to measure the weighting 

function.  

With each of Eqs. (A.8-A.10), the weighting function of Eq. (A.7) has the properties 

Wk(Xj)=δkj                                                                                                                                                                               (A.12)   

0 ≤ Wk(Xj) ≤ 1 

Lim W
Kx ki→±∞ = ( )X 1                                                                                                   (A.13)     
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The weighting function varies between 0 and 1, and the summation of all 

weighting functions is 1.  The following properties can be shown for each blending 

function given in Eqs. (A.8-A.10).  
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Differentiating Eq. (A.6). 
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From Eqs. (A.6), (A.12), (A.15) and (A.16), the following are obtained as 

~( ) ~ ( ) ( )F F Fj j j jX X X= = , j = 1, 2,..., K                                                                  (A.17) 
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Equations (A.17) and (A.18) show that the multi-point approximation has the same zero-

order and first-order information as the original function at the data points.   
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The MPA is an average value of all the local approximation estimations when a design 

point is far from every data point.   

Reliability analysis involves iterations, which require implicit function 

evaluations and gradient evaluations that are expensive and come from finite element 

simulation. Therefore, the use of approximations helps reduce the cost involved in each 

analysis without sacrificing the accuracy of the results. Multi-point function 

approximations are suitable for reliability analysis as the behavior of the response is 

accurately represented in the design space. The accuracy of the MPA is dependent on the 

local approximations used. TANA2 captures the information of the response accurately 

around the expansion and comparison points. Therefore, this approximation discussed-

above is used as the local approximation in the construction of the MPAs. 

A.2.2. Response Surface Methodology [64] 

 In this methodology, a polynomial equation is considered to represent the 

dependency of the input variables on the structural response as shown in Eq. (A.19).  
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where, T
nxxx ),.....,,( 21=X is a vector of the input variables in the problem and all the 

β ’s are constants evaluated in the construction of the response surface model. The 

number of design points needed to construct the model must be more than the number of 
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unknown coefficients. These unknowns are estimated using the method of least squares 

which minimizes the sum of square errors between the predictions from the model and 

the actual values at the data points. Adding additional terms to the model in Eq. (A.19), 

increases the number of unknown coefficients which increases the number of design 

points needed to construct the model. This becomes computationally expensive for a 

large number of variables. 

 To add more nonlinearity into the model, intervening variables can be used [65]. 

A response surface model with intervening variables is as shown in Eq. (A.20) 
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where p ’s are the nonlinearity indices of each of the input variables. These indices are 

estimated while solving for the unknown coefficients in the model. An optimal 

configuration of these indices can be obtained by minimizing the sum of error squares. 

 In this work, response surface models were used to obtain closed-form 

expressions between the uncertain variables and the response. These closed-form 

expressions were used in conjunction with fast Fourier transforms to solve the 

convolution integral. To employ this methodology for solving the convolution, the 

closed-form expressions must be separable. Moreover, these closed-form expressions 

must be expressed as a linear combination of intervening variables. So a second-order 

response surface model without interaction terms was used. If this model failed to capture 

the variation in the response, then a second-order model with intervening variables is 

used. These models are shown in Eq. (A.21) and (Eq. A.22) respectively. 
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 As the failure surface is modeled using response surfaces, the accuracy of the 

models constructed should be checked. One of the statistical criteria used to evaluate this 

accuracy is the 2R  criterion. 2R  accounts for the amount of variation in the response 

explained by the set of inputs in the response surface model.  It is defined as 
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where SSR  is the Sum of Squares of Regression and SST  is the Sum of Squares Total, 

iy)  are the values predicted by the surrogate model and iy  are the exact values of the 

response used for constructing the model. An 2R  value of 1.0 indicates that all the 

variability of the response is explained by the response surface model, and an 2R  value 

of 0 indicates that none of the variability is explained by the response surface model. 

Therefore, a higher values of 2R  are preferred.  
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