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Abstract 

 In the late 20th century there was a spill of Technetium in eastern Washington 

State at the US Department of Energy Hanford site.  Resulting contamination of water 

supplies would raise serious health issues for local residents.  Therefore, the ability to 

predict how these contaminants move through the soil is of great interest. The main 

contribution to contaminant transport arises from being carried along by flowing water. 

An important control on the movement of the water through the medium is the hydraulic 

conductivity, K, which defines the ease of water flow for a given pressure difference 

(analogous to the electrical conductivity). The overall goal of research in this area is to 

develop a technique which accurately predicts the hydraulic conductivity as well as its 

distribution, both in the horizontal and the vertical directions, for media representative of 

the Hanford subsurface.  The Hanford subsurface is a disordered sequence of ice-age 

flood deposits. It is known that concepts from percolation theory are well-suited to 

addressing transport problems in disordered media. The objective of this thesis was two-

fold: (a) to implement techniques using critical path analysis from percolation theory for 

calculating the distribution of K values for soils with known characteristics, (b) to apply 

this technique to 53 sets of particle-size data and water retention characteristics taken 

from soils which represent the area in which the Technetium spill occurred. The research 

performed should be applicable to other contaminated sites under DOE supervision as 

well as being relevant for agriculture, climate models, mining and elsewhere. 
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1 

Introduction 

The purpose of the work described in this thesis is to develop a general approach 

for calculating fundamental flow properties of disordered unsaturated porous media from 

an experimentally obtained description of the medium.  A disordered medium is one that 

is not uniform, at least at some spatial scale.  An unsaturated medium does not have all its 

pore space filled with moisture. The terms space and volume will be used 

interchangeably in what follows. 

The topic of the research undertaken here has broad applicability.  For example, 

soils in which water flows easily and which also retain moisture are important in 

agriculture. Prediction of flow and retention of water in agricultural soils is critical for 

optimal yields. Another example is Heap leaching, a mining practice in which bacteria 

catalyze chemical reactions transforming ore to metal. Predicting water and air flow in 

mining heaps allows optimization of bacterial activity and maximization of ore yield. In 

the atmosphere, water vapor is the most important greenhouse gas and in most cases the 

chief carrier of thermal energy. Description of vapor phase transport of water across the 

soil-air interface, which is dependent on soil flow properties, is vital for the development 

of accurate global climate models (Opportunities in the Hydrologic Sciences1991). 

Finally, understanding flow in nuclear waste deposits in the subsurface is essential in 

evaluating risks arising from contaminant transport by water.  

The fundamental difficulty for most researchers in this field is the treatment of 

disorder and heterogeneity.  Here disorder is used to imply that particles are not orderly 

arranged (i.e. particles of a given size are not all found together, but instead are mixed up 

 



 

at random with particles of other sizes). Disorder encompasses also particle and pore 

shapes as well as composition. Heterogeneity arises from a lack of uniformity in many 

soil features, such as typical particle sizes and porosity, and from the existence of mud 

cracks, animal burrows, and plant roots. Heterogeneity and disorder are introduced over a 

wide range of spatial scales from geological layering through depositional processes with 

effects on the distributions of particle and pore sizes on scales ranging from millimeters 

to kilometers. 

Other difficulties arise in obtaining accurate data from experiments which are to 

be used as inputs in this model. Experiments are performed in both field situations 

(spatial scales of meters) and laboratory samples (spatial scales of centimeters). Thus 

there may be important differences between the media in the two types of experiments. 

Samples are easily deformed in the process of collection. It is notoriously difficult either 

to dry or wet a sample completely. Porosity is often determined by measuring the 

difference in water content at full saturation and under dry conditions. But measurements 

of this sort on the same sample performed by different Department of Energy National 

Laboratories (Los Alamos, Livermore, Argonne, etc.) have been shown (Or and Wraith, 

2003, unpublished) to yield porosities that differed by as much as 20%, and that typically 

differed by 10%. If the goal of a research project is to predict the hydraulic conductivity 

of a medium as a function of its saturation, then it is important to know what the porosity 

of the medium is. 

The subject of subsurface hydrology has a significant overlap with soil physics, 

and the flow of fluids through disordered porous media is often recognized in both fields, 

as well as in pure physics, as a fundamental physics problem that is not completely 

solved.  A fundamental difficulty is simply the development of a reliable mathematical 
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model of the medium. No consensus exists regarding a unified means for calculating flow 

properties of porous media. An important advance in treatment of fluid flow in disordered 

porous media was the invention (Broadbent and Hammersley, 1957) and development 

(e.g., Stauffer, 1979) of percolation theory.  A great deal of further development has 

occurred since Broadbent and Hammersley’s original work (summarized in the reviews 

of, Berkowitz and Balberg, 1993; Sahimi and Yortsos, 1990, Hunt, 2001, 2005), and 

some of that progress is represented here.  We first define the relevant terms used 

throughout this thesis. 

 

Basic Terminology 

Virtually all (solid) media are porous at some scale, but what is addressed here are 

media for which the pores range in size from microns to millimeters, e.g., soils and rocks.  

These pores combine in various ways to form interconnected pathways which permeate 

the medium and allow for the flow of moisture (or air).  The ratio of the volume of the 

pores, Vp, to the total volume of the medium, V, is called the porosity φ.  The ease of 

passage of liquid water through the medium is represented by a quantity called the 

hydraulic conductivity, or K.  This depends in a complex way on the structure of the 

medium (pore space in particular) as well as the distribution of water in the pore space. 

Because it is comparatively easy to vary the concentration of water in a soil, K is 

typically written as a function of the soil saturation defined as the volume fraction of the 

pore space occupied by the water (or, more generally, any wetting fluid). If Vw is the 

volume of water in the medium, then the saturation S =Vw/Vp. Throughout the course of 

this document the term ‘full saturation’ will occasionally be used.  This will refer to when 

S is equal to one. When dealing with saturation, it is common to define the moisture 
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content θ, as the volume fraction of water relative to the total volume of the medium: 

θ=Vw/V.  Thus, the saturation is related to the moisture content by the relationship  

θφ =S     (I1) 

The value of the saturation is dependent on both particulars of the soil, and the 

operant value of the air-water interfacial tension or pressure.  This pressure, P, is 

normalized to the density of water, ρ, and the acceleration of gravity, g, and denoted by 

height h = P/ρg.  To understand the influence of h on the moisture content of a soil in a 

natural setting take the example of the unsaturated portion of a soil above a water table.  

The soil could be considered to be composed of many vertical capillary tubes, with the 

tubes' distribution of radii with volume matching that of the soil pores.  If the bottom of 

the capillary bundle is now placed in the water table at atmospheric pressure (air pressure 

varies minimally with the depth in a soil), water will rise inside each tube to a specific 

height. This height is established when the attractive forces of the moisture with the walls 

of the tube cancel the weight of the water column.  In particular, tubes having smaller 

radius will have a higher water column.  Thus, the number of capillaries with water at a 

given height h above the water table will decrease with increasing h.  In a laboratory 

experiment h can be manipulated by changing the air pressure, and waiting until the 

system comes to equilibrium.  

Because the soil is not really a capillary bundle, the pressure-saturation 

relationship (also called the water retention curve) is hysteretic.  A water-saturated soil 

subjected to some pressure h will not actually have its largest pores drain first, then the 

next-largest, and so on: this is because the water must be replaced by air.  Without a 

continuous air-filled pathway to the pore in question, the pore cannot drain.  A similar 

constraint operates during wetting of a dry soil, so the difference between wetting and 
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drying curves in the pressure-saturation relationship is related to the connectedness of the 

soil pores. 

 

Derived Quantities 

The basic parameters to be calculated are the hydraulic conductivity as a function 

of saturation, K(S), and the saturation as a function of h, S(h) (giving ultimately K(h)).  

The calculation of these quantities from basic soil physics data, such as the distribution of 

pore sizes and the porosity, has occupied many researchers for at least a century (e.g., 

Buckingham, 1907, Kozeny, 1927, Carman, 1956, Collis-George, Miller and Miller, 

1956, Burdine, 1953, Millington and Quirk, 1959, Mualem, 1976, van Genuchten, 1980, 

Arya-Paris, 1981).  As such, this is a problem of great interest in subsurface hydrology. 

These older works have been criticized on many grounds (e.g., Snyder, 1996, Hunt, 

2004) and there are two chief areas of concern.  One is that the usual means to generate 

the pore-size data from the particle-size data need not be unique, while the other relates to 

the difficulty in generating an effective transport property for a heterogeneous medium. 

The former problem is not addressed in this thesis, but the latter problem is. In particular 

the usual means of generating effective transport coefficients through taking arithmetic 

means of microscopic values are inaccurate in disordered systems. A better method 

(Seager and Pike, 1974) is to apply percolation theory in the form of critical path analysis 

(developed initially by Ambegoakar et al., 1971 and Pollak, 1972). This approach is used 

here and allows not only a better prediction of the hydraulic conductivity, but a less 

ambiguous evaluation of the suitability of any given model of a porous medium. This is 

the theoretical advantage of the work described here.  

5 



 

 At the pore scale it is typical to assume that given a particle size/shape 

distribution and a porosity, one can generate a well-defined pore size/shape distribution 

(Arya and Paris, 1981, Gvirtzman and Roberts, 1991).  This distribution is assumed to be 

stationary on a scale of centimeters, the typical size of a core sample of soil taken for 

measurements of K (i.e., the pore-scale disorder does not change over a relevant spatial 

scale).  But such particle size distributions typically do change in space over a range of 

decimeters (or less) due, for example, to e.g., local heterogeneities in depositional 

environments or chemical heterogeneities in parent rocks from which soil weathers.  

Over larger scales (hundreds of meters) the chemical composition and even geologic 

origin of porous media can vary greatly, such as the variation between crystalline rock 

and recent flood deposits.  Thus the hydraulic conductivity varies in space over orders of 

magnitude in a very complicated manner. 

 One of the first advances in modern soil physics was the recognition that the great 

complexity of real soils might be describable using the fractal models developed in the 

1980’s (Turcotte, 1986, Tyler and Wheatcraft, 1990, Rieu and Sposito, 1991, summarized 

in Baveye et al., 1998). These fractal models assume self-similarity (i.e., that the medium 

essentially looks the same on all length scales) and their application yielded various 

power-law relationships for pore and/or particle volume distributions as well as other 

properties, such as water retention curves. However, the simplification developed from 

these models did not appear adequate to address all of the discrepancies between theory 

and experiment. The purpose of applying percolation theory to fractal models (Hunt, 

2005) has been to explain as many of the remaining deviations as possible between 

theory and experiment. Nevertheless it may be that not all soils follow a simple fractal 

law.  In fact, in many cases (including a significant fraction of the soils considered here) 
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the particle size distribution is far too complicated to be considered fractal in nature, i.e. 

described by a simple power law. Thus a generalization of the medium is required, and 

that generalization is considered here. The chief practical advantage (compared with, e.g., 

Hunt (2005)) is that any pore-size distribution can be treated, rather than just an idealized 

mathematical model.  

 

Specific Goals 

 The work described in this thesis can and will ultimately be applied elsewhere to 

the problem of Technetium (Tc) transport in the subsurface of the US Department of 

Energy Hanford site near Richland, WA. A large amount of “high risk” Technetium 

(99Tc) in solution was intentionally discharged to ground at a specific location on the 

Hanford reservation called the BC Crib site (Ward et al., 2006).  It is currently not known 

whether to expect this Tc plume to reach the Columbia river within years or within 

centuries, a question of significance to all who live downstream (Portland Oregon, for 

example). For this reason soils from that site with known K have been chosen, both for 

testing the validity of the code and the theory on which it is based and for making 

subsequent predictions in cases where K is unknown.  The general strategy is to develop 

the best prediction of K at the core scale (using soil physics data, such as the porosity and 

the particle-size distribution), and use the statistics of the variability of the soil physics 

data and fundamentals of percolation theory to predict K at larger scales. 

 The specific purpose of this thesis is to solve the problem of finding K(h) for an 

arbitrary medium by writing two pieces of code: 1) to calculate θ(h), the water retention 

curve as a function of interfacial tension (between wetting and non-wetting fluids), and  

2) to calculate the hydraulic conductivity K(θ) of a particular soil as a function of 
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volumetric moisture content (θ).  The ratio of K for a particular moisture content vs. K at 

full saturation (KS) is calculated.  If a measured value of KS is available, then K as a 

function of θ can be plotted and compared with experiment (if that information is 

available). 

 The method of calculation chosen here is a generalization of the application of 

percolation theory to random fractal media mentioned above.  To understand this 

application it is necessary to give some background information on percolation theory.  In 

the theory section, calculations for a fractal medium are discussed as a special case of the 

more general method developed here. 
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9 

Theory 

Percolation theory has been successful in describing fluid flow in disordered 

media (Berkowitz and Balberg, 1993; Sahimi and Yortsos, 1990; Hunt, 2005).  Imagine 

taking a pitcher of water and pouring it onto the surface of a rock.  The rock is made up 

of solid volumes and empty volumes, called pores, which are of variable size and 

orientation with respect to each other.  The size and location of one pore in the rock is 

often assumed to be independent from the size and location of other pores.  A question 

that percolation theory attempts to address is the following:  Does the water find a series 

of connected holes through which it can flow from the top of the rock to the bottom?  

That is, can the water percolate through the rock?  (This example is closely related to the 

original work of Broadbent and Hammersley (1957), which grew out of research dealing 

with the performance of gas masks.)  It should be mentioned that the strict definition of 

percolation is that connection is possible in all coordinate directions (Stauffer, 1979). 

Percolation theory exists in three main forms: site, bond, and continuum. The type 

of percolation theory I will use to introduce the basic concepts is called site percolation 

theory, which is discussed next. 

 

Site Percolation Theory 

 So, we now know the basic idea of percolation theory, but what is it exactly and 

how does it work?  To begin answering this question, imagine a square lattice.  That is, 

imagine a set of squares that are all the same size and compactly placed next to each 

other, similar to a piece of graph paper.  Imagine that this lattice is so large that the 

 



 

effects from the edges play a negligible role (thermodynamic limit, defined as allowing 

the number of squares in the lattice to go on infinitely so that there are no edges).  Now, 

begin to put dots in the center of different squares.  There are many ways to imagine 

placing these dots.  For instance, they could like each other and want to be close to each 

other, or they could not like each other and want to have some space around them, but the 

simplest way to arrange the dots is by having them ignore each other.  That is, the 

probability that one square contains a dot is independent from the probability that any 

other square contains a dot.  This is the case in the original version of percolation theory.  

Also in its original version we have that the probability that a square contains a dot is the 

same for all squares in the lattice, and is denoted by p.  As a consequence of the random 

or independent nature of the lattice, we have that the probability of a square being empty 

is 1-p.  When these dots are distributed throughout the lattice, certain lattice sites will not 

only contain dots themselves, but they will have nearest neighbors (that is, a square 

immediately left, right, above or below the square in question, but not diagonally 

proximate) which also contain dots.  A group of s lattice sites which are all filled and all 

connected through neighboring sites is called a cluster of size s.  If a cluster can be found 

which extends from one side of the lattice to the other, without any break in the chain, 

then the system is said to percolate.  For our example above, if the dots represent pores in 

the rock and a cluster can be found that extends from the top of the rock to the bottom, 

then the water will be able to percolate through the rock.  (The size of the pores which 

form the percolating cluster is going to affect ‘how much’ water will flow in a given 

amount of time, i.e. the ‘conductance’ of the percolating path.)  From a strictly 

mathematical point of view, percolation theory deals with the statistics of these clusters 

(Stauffer, 1979, Wikipedia, “Percolation theory,”). 
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 A natural question that arises now is, “What is the relationship between the 

probability p that a lattice site is filled and the existence of a percolating cluster?”  In fact, 

this is the main question percolation theory tries to answer, just re-cast in a different 

form.  For low values of p it will be difficult to find a cluster which extends across the 

network.  For high values of p one will almost certainly find a percolating cluster.  So, 

where does the transition between these two cases occur?  When dealing with any infinite 

lattice (thermodynamic limit) it turns out that there is a single value for p which defines 

the transition, denoted pc for the critical probability or the percolation threshold.  The 

probability of finding a percolating cluster is a step function, equaling zero if p is below 

the percolation threshold and one if p is above.  This probability is discontinuous at p=pc.  

The specific value of pc depends not only on the dimensionality of the space, but also the 

geometry of the lattice.  (Also, note that in the infinite lattice the percolating cluster will 

extend from any one ‘side’ of the lattice to any other ‘side.’  It is for this reason that there 

can only be one percolating cluster in an infinite lattice.  For, if the cluster percolates in 

one direction, it will percolate in all directions.)  For all values of p below pc on such a 

network there will be no chance to find a percolating cluster, and for all values of p above 

pc there will always be one percolating network (Fig T1).  When dealing with lattices of 

finite size, however, pc less sharply defines the existence of a percolating cluster (Fig T2).  

Sometimes for p<pc a finite cluster will extend across the system and for p>pc a finite-

sized hole will extend across the system. However, as can be seen in Fig T2, pc still 

represents a good measure of the critical value where the probability of finding a 

percolating cluster shifts from very low to very high.  The major difference between the 

infinite lattice and the finite lattice is that the transition from no percolating cluster to a 
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percolating cluster occurs discontinuously in the infinite case and continuously in the 

finite case (Stauffer and Aharony, 1994). 
P

ro
ba

bi
lit

y 
of

 e
xi

st
en

ce
 o

f p
er

co
la

tin
g 

cl
us

te
r

Site probability, ppc
0

1

P
ro

ba
bi

lit
y 

of
 e

xi
st

en
ce

 o
f p

er
co

la
tin

g 
cl

us
te

r

Site probability, ppc
0

1

 

Fig. T1 
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Fig T2 

 Now I would like to introduce some important quantities for the statistics of these 

clusters.  Most of this discussion has its roots in the discussions in Stauffer (1979) and 

Stauffer and Aharony (1994).  First let us define ns equal to the number of clusters with s 

occupied sites divided by the number of sites in the lattice. Since there are s sites in the 

cluster, sns becomes proportional to the probability that if we point to a random site we 

hit a cluster of size s. If we sum sns over all values of s, then we get the probability p that 

a site is occupied. For ease of calculation the sum is approximated as an integral 

(Stauffer, 1979). 

      (T1) dssnp
s s∫
∞

=
=

1
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 Another important quantity in the cluster statistics is the idea of a correlation 

length, denoted χ.  This quantity is important because it gives a measure of the scale of 

the lattice.  The correlation length is effectively the distance across the largest finite 

cluster in the lattice.  If p is less than pc then there is no percolating cluster and the largest 

finite cluster will be the largest cluster in the lattice.  As p approaches pc from below the 

largest finite cluster is becoming the infinite cluster, so the correlation length tends to 

infinity.  Now, if p is greater than pc then there is an infinite cluster present, so the 

correlation length is defined as the distance across the largest cluster which is not infinite.  

As p gets closer and closer to one, more and more of the sites in the lattice are occupied 

and are therefore going to be connected to the infinite cluster, so the size of the largest 

finite cluster is going to decrease.  Conversely, as p decreases from one and approaches 

pc from above, fewer occupied sites are connected to the infinite cluster so the largest 

finite cluster is growing in size.  Therefore, as p goes to pc from above, the correlation 

length is again becoming infinite.  This is a very important result in percolation theory, 

because it tells us that when we are at the percolation threshold, we lose any sense of 

scale we had in our lattice. 

 As stated above, the value of pc is intimately connected to both the dimensionality 

of the space and the geometry of the lattice (i.e., whether it is hexagonal or square, for 

example).  However, there are certain critical exponents in percolation theory which are 

geometry-independent.  That is, they depend only on the dimensionality of the space.  For 

example, ns takes on the following form (Stauffer, 1979) 

          
τ−= sns cpp =   (T2) 

   ))(( cs ppsfsn −= − στ
cpp ≠    (T3) 
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where both τ and σ are such critical exponents. If we consider the case where p equals pc 

and plug in the value for ns from eqn(T2) into integral (T1), we obtain 

        (T4) dssp
sc ∫
∞

=

−=
1

1 τ

In order for this integral to converge, τ must be greater than 2.  In fact τ=2.18 in three 

dimensions (Stauffer, 1979), independent of the geometry of the lattice, while σ=0.45 

(Stauffer, 1979).  There are several more critical exponents which all share this sole 

dependence on dimensionality (although these exponents are not independent of each 

other (e.g., Stauffer, 1979, Fisher, 1971)).  This discussion is relevant to applying the 

present results to the transport of Technetium in Hanford site soils, but the details of this 

theory (Hunt, et al., 2006) are outside the scope of this thesis. Such basic theory is also 

relevant for finite-size effects when they are important. However finite-size (or edge) 

effects are important only in systems of ca. 50 particles on a side or larger (Hunt, 2001). 

For normal soils, with particle sizes in the micron to millimeter range, and core sizes 

approximately 5cm on a side, this does not present a problem. Thus, finite-sized systems 

are not considered in any portion of the following theoretical development. 

 There are many other types of lattices which we could apply site percolation to.  

For example, in two dimensions there can also be triangular and diamond lattices.  Also, 

there’s no need to restrict the analysis to two dimensions.  In fact, the physical problems 

we want to tackle (including the problem addressed in this thesis) are in three 

dimensions.  Further, it is also possible to have more than one kind (or “species”) of 

occupied site, analogous to different colored dots in the centers of the squares. In order 

for a particular species to percolate a path must be connected through sites of that “color” 

15 



 

alone. Since percolation requires simultaneous connections between all borders of a 

medium, in two dimensions it is only possible for one species of occupied site to 

percolate as the one percolating cluster of any species cuts off all other clusters. In three 

dimensions connections can avoid a block in any particular plane and multiple clusters 

can percolate. In a porous medium the different colors could correspond to different 

immiscible fluids (water, air, oil). There are also two more entirely different kinds of 

percolation theory, one which deals not with sites in a lattice but with bonds between 

sites, and another called continuum percolation (Scher and Zallen, 1970).  I will describe 

continuum percolation next in greater detail in the context of its application to relevant 

soils. 

 

Continuum Percolation Theory 

 The particular form of percolation theory called continuum percolation is of 

greatest relevance to problems involving porous media. An argument for this is that soil 

particles often vary in size by over two orders of magnitude or more, rendering lattice 

descriptions inappropriate. In continuum percolation theory the relevant variable is a 

volume, rather than a site or bond fraction, and the relevant questions relate to the 

connectivity of some particular type of volume, such as solid particles, pore volumes, or 

volumetric fluid contents. All of these species can percolate simultaneously, 

 As a specific application then, Continuum Percolation Theory tells us that if a 

certain critical fraction of the pore space is saturated, then there will exist a percolating 

path of water-filled pore space extending from one side of the system to the other. Such a 

connected path is essential not only for fluid flow, but for molecular diffusion of a solute 

as well. In the absence of such a connected path through water-filled pore space, the 
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physical process of diffusion cannot bring a solute from one side of a medium to the 

other.  Thus it is known that such quantities as the diffusion constant or the conductivity 

(electrical, thermal, or hydraulic) must vanish at the percolation threshold and be 

identically zero below the threshold.  The fact that this predicted behavior is observed for 

solute diffusion in porous media (which indeed vanishes at a specific moisture content, 

Moldrup et al., 2001) is a strong motivation for taking an approach based on percolation 

theory, especially since experiment shows that even in sedimentary rocks, over ninety-

nine percent of the pore space is interconnected (Sahimi, 1993).  However, the most 

important application of percolation theory in water flow in porous media, at least over 

most of the range of experimentally accessible saturations, is critical path analysis 

(Ambegaokar et al., 1971; Pollak, 1972). Critical path analysis calculates the path of least 

resistance through the medium. It is usually applied far above the percolation threshold in 

order to isolate that part of the medium which contributes most to the macroscopic flow 

(or current). It is known to be the most accurate means for calculating effective transport 

coefficients in highly disordered media (e.g., Seager and Pike, 1974). This method was 

not discussed in the standard review (Berkowitz and Balberg, 1993), which may help to 

explain why it has not yet been applied generally. 

 To get a better feel for what critical path analysis does, consider a soil with 

moisture well above the percolation threshold.  In such a medium, there will be many 

different percolating paths which a volume of moisture might take in its journey from one 

side of the system to the other.  Each of these paths can be considered in parallel, using 

an analogy to an elementary electric circuit of resistors set up in parallel.  One argues that 

the percolating path with the least resistance (or highest conductivity) will dominate the 

overall resistance of the circuit.   
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 The pores along the path of least resistance can be thought of as resistors 

connected in series.  Since the resistance of a pore increases as its cross-sectional area 

decreases, the resistance of the chain of pores will be dominated by the resistance of the 

smallest pore (largest resistor) in the chain.  The effective radius (for flow) of this 

smallest pore along the critical path is called rc. Thus the largest resistance (smallest 

pore) on the most conducting path dominates the expression for K for the medium. 

 When a soil is in equilibrium, the moisture will all collect in the smallest pores 

possible (standard texts on soil physics, e.g., Marshall et al., 1996). The largest pore that 

can be filled with water is denoted r> and, under equilibrium conditions, all pores smaller 

than r> are filled with water.  Over the small size of lab samples effects of gravity are 

typically ignored. Gravity induced variations in h are on the order of the sample height, 

typically 5-10cm whereas the experimental variations treated here extend over thousands 

of centimeters.  r> will, in general, be a function of saturation, S. Similarly, all pores 

larger than r> contain air.  In a real soil, this condition may be violated for several 

reasons: 1) the path which a fluid may need to follow to exit (or enter) the medium 

contains pores which the fluid would not reside in under equilibrium conditions (because 

e.g., r>r>, the largest pore which can be filled with water, 2) the rate at which the fluid 

enters or exits the medium is so slow that the change in moisture content would take 

centuries or longer. 

 

Applications 

Next, I consider the application of Continuum Percolation Theory to a simple 

fractal model of a soil, which provides the background for the more general results 

presented in this thesis.  Fractal models for soils were introduced by Turcotte (1986) and 
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others (e.g., Tyler and Wheatcraft, 1990), but the particular model used here is adapted 

from Rieu and Sposito (1991) by Hunt and Gee (2002a).  In this model the pore space is 

represented by one fractal with dimensionality Dp and the particle space is modeled with 

a different fractal with dimensionality Ds.  The ideas motivating the development of this 

analytical example can be extrapolated to apply to any particle/pore size distribution 

(psd), but use of this specific example is illustrative, and also gives a comparative 

theoretical result in case the particular material investigated is compatible with this 

simple model. 

 The expression, W(r)dr, is proportional to the probability density function (pdf) 

that an arbitrary pore has radius between r and r+dr.  For ease of communication, W(r)dr 

in this context will be referred to as a pdf, even though it describes a relative rather than 

an absolute probability. In particular, for a fractal model, we have (Hunt and Gee, 2002a), 
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where r is the dimension of the pore, rm is the maximum pore size in the medium, r0 is 

the minimum pore size, and Dp is the fractal dimensionality of the pore space.  Under the 

assumption that volume is proportional to r3, r3W(r)dr represents the fraction of the total 

volume occupied by all the pores between size r and size r+dr.  The particle space is 

represented by a similar pdf obtained by exchanging Dp by Ds. Dp and Ds are not 

independent quantities (Hunt and Gee, 2002b). 

The integral of r3W(r) between two general limits r1 and r2 appears repeatedly in 

what follows, defining many useful quantities for any soil model defined by a pdf W(r)dr.  

For the particular case of a fractal model given by Eq. (T5), 
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 Applying Eq. (T6) to the case r1 = r0 and r2 =  rm gives the fraction of the total 

volume occupied by all of the pores in the medium.  This is the definition of the porosity, 

φ, given earlier so that in the fractal case, 
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This result for φ is the same as that obtained by Rieu and Sposito (1993), even 

though they used a model with only discrete pore sizes allowed. Notice that the geometry 

of the pores is not taken into consideration when expressing the volume of the pore as r3.  

This has no impact on the results for two reasons.  First, the geometrical constant is the 

same for all pores due to the self-similarity of the fractal.  And second the pore radii enter 

in as a ratio and any such constant will cancel. Note that when we calculate the ratio of 

the hydraulic conductivity at a certain water content vs. the hydraulic conductivity at full 

saturation a similar ratio of geometrical constants will also cancel (as described below). 

Since any infinitesimal volume in the soil must either belong to the pore space or 

the particle space, 1–φ must be the fractional volume occupied by the particle space.  

Looking at the above equation we see that if we change Dp to Ds then we are integrating 

the pdf for the particle space.  Therefore, our results remain valid under a substitution of 

Ds for Dp in any of our equations as long as it will be accompanied by a substitution of 1-

φ for φ.  This gives, 
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This result is identical to that of Nigmatullin et al. (1992).   This shows that the 

porosity can be expressed in terms of the fractal dimensionality of the particle space.  It 

therefore enters below into the equation for the surface area to volume ratio of the 

particle space. 

The value of the critical moisture content required for percolation, θt (t is for 

threshold as in ‘percolation threshold’) has been determined experimentally to be 

(Moldrup et al. 2001), 

  
52.0)(1905.0

V
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t =θ    (T9) 

where As/V is the ratio of the surface area of the particle space to the volume of the 

particle space. In eqn(T9) As/V was determined experimentally by gas adsorption. A 

value of As/V can also be estimated from (Hunt and Gee, 2002a) 
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In Hunt and Gee (2002a) it was assumed that the calculated value of As/V in eqn(T10) 

was proportional, at least, to the measured As/V in eqn(T9) and a regression coefficient 

was found by comparison to experiments.  Here the fractal dimensionality for the solid 

particles is used because the calculation addresses the solid surface and the solid volume. 

Because the geometry of the pores is not known, eqn(T10) uses r2 for a particle surface 

area as well as r3 for its volume, with no specific shape assumed.   

 Turning to the hydraulic conductivity, first define the moisture content, θ, of a 

soil, irrespective of whether the water percolates or not.  The minimum water content 
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necessary for percolation (the threshold value) is denoted as θt.  Applying our general 

result Eq. (T6) to the case r1 = r0 and r2 equal to the largest pore with moisture, r>, gives 
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which yields the volume fraction of the moisture, by definition the moisture content. In 

this result and the following results we have explicitly represented the fact that r> is a 

function of saturation. Making the substitution of Sφ=θ from eqn(I1) results in 
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 Remember that the largest resistance (smallest pore) on the most conducting path 

dominates the expression for K for the medium. So consider a soil which is at the critical 

moisture content, θt, for percolation. The saturation, which ranges from zero at 

completely dry to 1 at completely wet, will be some critical or threshold value, St.  Such a 

soil contains moisture in all pores from size r0 to the largest pore size which still has 

water, denoted r>, and θt is equal to the moisture content, eqn(T11), for the specific case 

of a percolating soil at saturation St.  As the saturation (equivalently moisture content) 

increases, so that S>St, r> will increase. In order to force the integral in eqn(T6) to yield θt 

for the new saturation, the lower limit must become greater than r0 and it will depend on 

S. This lower limit then defines rc (the largest resistance on the most conducting path) as 

a function of saturation.  Although it is possible to choose a smaller value for the lower 

limit (with the upper limit smaller than r>) this percolating path would have a much larger 

resistance due to the smaller pores included on the path. Performing the integration in Eq. 

(T6) gives  
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If  one integrates instead eqn(T11) from r0 to r> then one still gets the total moisture 

content of the percolating soil, but this is now greater than θt.  As S goes to 1, r> goes to 

rm and rc(S) goes to rc(S=1).  As stated before, it is the smaller pores which provide the 

bottlenecks in the percolating cluster since they have larger resistances (Hunt and Gee, 

2002b).  The significance of rc increasing with saturation is that the pore size which 

bottlenecks the conductivity increases with saturation, ie., the conductivity increases.  

Even though the pores smaller than rc contain liquid and have larger resistances to flow, 

they are not necessary to form a percolating cluster and therefore do not hinder the 

conductivity. In the case where the soil is saturated (r> = rm), we see that 
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These simple results yield most of the information necessary to calculate the ratio of K(S) 

to K(S=1).  What is still needed is a way to find an appropriate conductance of a pore 

from its radius, since critical path analysis identifies the critical conductance (or 

equivalently, resistance). In order to write down the conductance of a pore it is necessary 

to find the flow through a pore for a given pressure difference (analogous to the electrical 

current for a given potential difference). This result for an arbitrary pore shape is difficult 

to obtain. But for the present (fractal) case, all that is needed is how the flow scales with 

pore radius r. Such a result for the flow for a right circular cylinder is given by 

Poiseuille’s law for viscous flow (Halliday et al., 2004), which states that the flow is 

proportional to r4/L, where L is the length of the cylinder. For fractal media L must, in the 
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mean, be proportional to r, making r4/L proportional to r3.  There is no guarantee that this 

particular power must be appropriate if a medium is not fractal (e.g., if the pore-size 

distribution is not a simple power law). Nevertheless this simplest assumption possible is 

chosen since there is no evidence on which to base a more complicated model (which 

would require a distribution for L). This assumption yields verified results (Hunt and 

Gee, 2002b) when the soil is a fractal. Armed with the assumption that the hydraulic 

conductivity is proportional to the cube of the critical pore size we take the ratio of rc(S) 

to rc(S=1).  After cubing we notice this is the ratio of the critical volume size at an 

arbitrary saturation vs. the critical volume size at full saturation.  It is here that the 

geometrical constants in the volume cancel. Using T13 and T14  in the following steps 

we calculate, 

   

pp D

t

t

D

m

c

c r
r

Sr
Sr

−−

>

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
=

3
1

3

1)1(
)(

θ

θ

 (T15) 

Rearranging eqn(T12) for the saturation we have 
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Using Eq. (T7)) for (r0 / rm)3−D
p gives 
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Inserting eqn(T17) into eqn(T15) for the ratios of the critical pore size we find 
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Cubing rc to obtain the hydraulic conductivity, as described previously, gives 
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At this point, it must be emphasized that eqn(T19) is obtained only for W(r) appropriate 

for a fractal soil. 

It is important to note that the derivation of eqn(T19) yields a valid expression for 

K(S) only for water contents high enough that the connectivity of the water-filled pores is 

not changing rapidly with saturation, i.e., so long as the percolation threshold is not 

approached too closely (from above).  The basic problem in that case is that the 

correlation length from continuum percolation theory starts to diverge, meaning that the 

interconnected paths along which water can flow are becoming infinitely far apart.  This 

represents a dominance of the role of connectivity vis-à-vis pore size distributions. Even 

if these flow paths are optimal, the total flow through the medium must be vanishing if 

their separation diverges. In such cases a universal expression (independent of the pdf) 

for K(S) from percolation theory applies (Berkowitz and Balberg, 1993, Hunt, 2005) 

which describes the effects of the rapid change in connectivity of the water-carrying 

paths.  

 The value for the moisture content which defines the transition between applying 

critical path analysis and the universal result for percolation theory has been calculated 

for the fractal model, but not in the general case. One of the principle new results in this 

thesis is the development of an algorithm to determine the relative impacts of 
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connectivity and of the pore size distribution on K for an arbitrary pore-size distribution.  

But in order to be explicit, first consider the effect for the fractal model. 

 When the pore size distribution is not relevant for K (θ is close to θt) it is known 

(Berkowitz and Balberg, 1993) that K must obey universal behavior, e.g., 

                                       (T20) 2
0 )()( tKK θθθ −=

where K0 is, in principle, an unknown constant with units of hydraulic conductivity.  

Since eqn(T19) must hold for large saturation, but eqn(T20) must hold near the critical 

saturation, there must be a cross-over moisture content, called θd, which delimits the 

ranges of validity of these two equations. K(θ) and dK/dθ from eqn(T19) and eqn(T20) 

are set equal at θ= θd, yielding both K0 and θd.  Such a cross-over has the physical 

relevance of determining the ranges of moisture contents for which the pore-size 

distribution and the universal features of percolation theory are dominant respectively.  

For the fractal case the result of the above procedure for the cross-over moisture content 

is (Hunt, 2005) 
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 This procedure is easily generalized to the non-idealized soils that are considered 

in this thesis.  Instead of using eqn(T19) for the functional form for the hydraulic 

conductivity (a result specific to fractal geometry), K is set to the unspecified (and thus 

general) form K(θ).  Then, combining this K with eqn(T20) and then setting K(θ) and 

dK/dθ equal for each equation when θ = θd yields, 
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This is the fundamental new analytical formula of this thesis which will be employed 

below in the Data section.   

At moisture contents below θd, most systems are not in equilibrium (Hunt and 

Skinner, 2005).  Thus the discussion of water-retention curves below is typically 

restricted to moisture contents θ> θd.  This also will imply that there can be no 

expectation that theoretical predictions will be verified for moisture contents θ< θd. We 

now turn our attention to the water retention curve (θ(h) from the introduction) of the 

medium. 

 Vital to our derivation of the water retention curve is the Young-Laplace 

relationship (e.g., Marshall, et al., 1996), which says the pressure, h, is inversely 

proportional to the largest pore containing moisture, r>.  The constant of proportionality 

we call A, so that h = A / r>.  hA is defined to be that value of h such that air can just enter 

the largest pore in the medium, and this physical condition corresponds to r> = rm, Under 

these conditions (or any smaller value of h) the medium is fully saturated, S = 1.  

Applying Eq. (T6) to the saturation, Eq. (I1), for this case gives 
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In eqn(T23) make the substitution A/rm=hA. Then add and subtract 1 inside the square 

brackets in eqn(T23) to generate φ-1 (from eqn(T7)). Then remove the term φ from the 

square brackets to yield 
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The procedure to find the water retention curve in the general case is to substitute the 

appropriate form of W(r) into the above equations.   

Details of the new procedure developed in this thesis for an arbitrary pore size 

distribution are given in the next section. 
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Data 

 In order to predict the hydraulic conductivity and the water retention curve of a 

given medium it is necessary to know the corresponding pore-size distribution, as 

illustrated above for the specific case of a fractal distribution.  The quality and 

availability of experimental data on pore-size distributions is limited, as are the data for 

unsaturated hydraulic conductivity necessary for a comparison between theory and 

experiment.  Most particle size data sets in the literature provide data points for only three 

different sizes (see, e.g., Marshall et al., 1996), which is insufficient to justify use of an 

accurate numerical routine. Among the data sets that do contain sufficient information, 

we describe next the assumptions that allow us to derive a pore-size distribution for 

predicting the hydraulic conductivity and water retention curve.  The validity of these 

assumptions is assessed by comparing our theoretical predictions with experimental 

measurements of hydraulic conductivity and water retention below. 

W(r) for the pore size distribution (psd) is almost always unknown for a real soil.  

However, the integrated value r3W(r) (see eqn(T6)) for the particle size distribution (ie., 

the cumulative mass distribution, cmd) may be obtained from data specific to a given soil 

site under investigation.  A simplifying assumption can then be made that the particle size 

distribution is proportional to the pore size distribution.  The pore size, r, is assumed to 

be related to the particle size, R, by the following relationship (e.g., Arya and Paris, 1981, 

Gvirtzman and Roberts, 1991), 

    r = C * R  (D1) 

 



 

In our application we set C = .3 in accordance with the literature. Thus, the 

cumulative mass fraction at a given particle size gives the cumulative pore space at the 

corresponding pore size.  This cumulative psd is equivalent to the integral on the left 

hand side of eqn(T6) with limits r1 = r0 and r2 = r, i.e., 
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Furthermore, the discussion following eqn(T6) in the Theory section can then be used to 

obtain the moisture content and saturation.   S(h) can also be inverted numerically to find 

h(S), which is a common representation of experimental data. Note that use of 

experimental data to generate the cumulative pore size distribution, as shown in eqn(D2), 

is the fundamental advance of this thesis relative to prior work applying critical path 

analysis (Hunt, 2005). 

The cmd’s were obtained from the US DOE Hanford site and supplied by Dr. 

Rockhold from Pacific Northwest National Laboratory (Rockhold et al., 1988; personal 

communication, 2005).  Particle size distributions are typically obtained by a 

combination of sieving (for particles larger than 70μm) and by Stokes’ settling for 

smaller particles. The data we received sometimes implied that the cmd is a non-

monotonically increasing function of particle size, which would imply negative mass 

(realistically, lost mass) for particles in a given size range. For this reason such curves 

were dropped from further analysis.  

The next issue that must be addressed is that the experimental data provide the 

cmd at discrete measured values of the particle radius.  Interpolation between data points 

requires an assumption regarding the functional dependence of the cmd on the particle 

size.  Due to the process of sieving discussed above, a step function was chosen, i.e., we 
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consider any particle size between two data points as equally likely to contribute to the 

cumulative mass fraction.  This need not be the case; the functional dependence could be 

assumed linear or quadratic and the predictions could be analyzed to see if they yield 

better results.  Even with a step function, a choice must be made on how to bin the data. 

For the ith value Ri,  the corresponding cmd could include all particles of size less than Ri . 

If this is assumed, then cmdi becomes the value of the step function between Ri-1 to Ri, 

where Ri-1 is zero when i = 1 (i.e. the smallest particle size in the distribution goes to 

zero).   Or it could include all particle sizes up to the next highest particle size (the step 

function equals cmdi between Ri to Ri+1 and R1 is the smallest particle size in the 

distribution).  These two ways of assuming the step function were implemented in the 

calculation of the hydraulic conductivity as extreme cases, which provide bounds for the 

results obtained from any intermediate interpretation (eg, linear interpolation between 

data bins).  Since there was little difference in the result for K using these two extremes, 

we only implemented the second of these two interpretations in the calculation of the 

water retention curves. 

 Verification of the theoretical predictions for the water retention curve and 

hydraulic conductivity requires comparison with experimental data.  Experimental water 

retention curves for the same soils used to obtain the cmd/psd were obtained in the 

laboratory using ceramic plates (Gee and Bauder, 1986) in a pressure chamber. The 

results yield the water content as a function of h.  The data for the porosity (Ward et al., 

2006) were obtained by measuring bulk density and assuming a value of the density of 

the individual particles.  

31 



 

 The data for the hydraulic conductivity were obtained from field 

experiments and, together with the corresponding cmd’s, were published in Rockhold 

(1988). 
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Code 

Water Retention 

In the data for the water retention curves cited above, pressure is the independent 

variable, as in eqn(T24) giving S(h) for the fractal distribution.  When filling up with 

liquid, the smallest pores in the soil are filled first, and when drying, the largest pores are 

evacuated first.  The pore radius r> which delineates the boundary between water-filled 

and empty pores is inversely proportional to the value of the pressure (refer to discussion 

preceding eqn(T24)).  

    r> = A / h  (C1) 

The proportionality constant A is a parameter which depends on the geometry of the 

pores.  Since this geometry is unknown, A becomes an adjustable parameter used to fit 

the predicted curve to the data.  A is the only adjustable parameter that will be used.  For 

each value of pressure given in the data we calculate the corresponding r> using eqn(C1).   

As described in the Data section, when the integration limits in eqn(T6) are r1 = r0 and r2 

= r>, the cumulative pore size distribution  inferred from the supplied particle cmd gives a 

theoretical prediction for the moisture content.   

The data also provide experimental measurements of the moisture content as a 

function of pressure.  The inverse, h(θ),  is plotted along side the water retention 

calculation, so one can compare the prediction to the experiment.  The following flow 

charts give the algorithm for calculating h(θ), 

 

 



 

Calculate Best A

Plot Water Retention

Calculate Best A

Plot Water Retention
 

Breaking down Calculate Best A we have the following set up.  Calculate Best A reads in 

the pore-size distribution and predicts a trial h(θ), which is then compared with 

experiment (via method of least squares). This function needs inputs of a minimum A, a 

maximum A and a value of how much to increment A.  Calculate Best A then returns both 

the best value of A (defined as having the minimum least squares deviation) and the 

corresponding water retention prediction. The Plot Water Retention routine accepts both 

the calculated and measured curves and plots them. The next discussion gives the details. 
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false
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Read data reads particle-size data and the experimental water retention curve from a text 

file.  It reads in the cumulative mass fraction as a function of particle sizes and the 

pressure as a function of water retention.  Then we start with Amin and call Calculate 

Water Retention.  This function takes in the data read from the file, along with a 

particular A value for which we calculate the water retention curve.  It returns the 

predicted water retention curve (see further details, below).  We then increment A and 

calculate the next curve, repeating this process until we reach Amax.  Once we are finished 

we compare every curve we calculated to the measured water retention curve and find the 

one with the minimum least squares deviation. While it cannot be excluded that the 
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extreme value of the least squares deviation could occur for the endpoints, Amin or Amax, in 

our particular case examination of the results shows that the values returned were always 

contained between these limits. We return this curve along with the experimentally 

measured curve.  When doing this comparison we only compare up to a specified value 

of pressure (in this case log[h]=2.5), which corresponds to a minimum moisture content. 

In other words, the least squares routine calculates the squares of the deviations only for 

lower pressures.  The reasoning behind this is that as the moisture content approaches θd 

(see eqn(T22)), the system being measured goes out of equilibrium, and we don’t expect 

our prediction to agree with experimental results in this range. 

 Finally we break down the Calculate Water Retention routine, 

Calculate Water RetentionCalculate Water Retention

Start with max
Pressure

r> = A / Pressure

Pressure equals
Min Pressure?Decrement Pressure

false

Normalize Cumulative
Mass Fraction

Find Water Content
Associated with Current

Value of r>

Return Pressure as a
Function of Water

Content

true

Start with max
Pressure

r> = A / Pressure

Pressure equals
Min Pressure?Decrement Pressure

false

Normalize Cumulative
Mass Fraction

Find Water Content
Associated with Current

Value of r>

Return Pressure as a
Function of Water

Content

true

 

Multiplying the cumulative mass fraction by the porosity normalizes the cumulative mass 

fraction.  This converts it from a variable with values between 0 to 1 to a variable with 
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values between 0 and φ.  We also multiply all the values of the particle size by the 

proportionality constant of eqn(D1) (here C=0.3) so that we have the pore size 

distribution. There is no point in using C as an adjustable parameter because any 

adjustment in C is already accounted for in the adjustable parameter A.  The experimental 

data give the values of the moisture contents at a discrete set of pressure values. The code 

calculates the moisture contents at these discrete pressure values. Starting with the max 

pressure, we find the biggest pore size which still contains moisture via eqn(C1). The 

moisture content associated with this pore size is simply the value of the normalized mass 

fraction at the same pore size.  This is why the cmd is normalized to the porosity, which 

is equal to the moisture content at full saturation—i.e., the total available pore space 

(porosity) is filled.  We then decrement the pressure, which gives a new value for r> 

according to eqn(C1) and repeat the procedure to calculate the moisture content at the 

new r>, thus building up a table which is representative of the water retention curve.  

After considering all the provided pressure values, the code returns the predicted curve. 

 

Hydraulic Conductivity 

 The overview of the hydraulic conductivity code is as follows, 
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Read Data

Calculate Hydraulic
Conductivity

Calculate Theta D

Fix Hydraulic
Conductivity

Plot Hydraulic
Conductivity  

Read Data here scans in a file which contains the cumulative mass fraction as a function 

of particle size data and the experimental measurements of the hydraulic conductivity as 

a function of moisture content.  There is considerable uncertainty as to whether soils 

reputed to be saturated (at h=0) are truly saturated. Alternative measurements of the 

porosity by different means do not provide values consistent with those obtained from 

water-retention experiments, as noted in the Introduction. One assumption, adopted here, 

is that this maximum value of the water content given in the data is equal to the porosity.  

The Calculate Hydraulic Conductivity routine takes as input the cumulative mass fraction 

as a function of particle size, the porosity, and the critical moisture content for 

percolation of the soil.  Because the McGee Ranch soil is the only soil for which K(S) and 

water retention are both provided, we take the published value of θt = 0.108 (Hunt 2004).  

It returns the predicted ratio of the hydraulic conductivity as a function of moisture 

content divided by the hydraulic conductivity at full saturation, K(θ )/KS, as in eqn(T19), 

where KS = K(S = 1).  
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The predicted hydraulic conductivity will not be valid for moisture contents close 

to the critical moisture content (see discussion around eqn(T20)).  What is needed first is 

a procedure to determine the value θ = θd where eqn(T20) supercedes the validity of 

eqn(T19).  This requires implementation of eqn(T22), the new analytical result of this 

thesis. Therefore, the calculated K(θ ) is fed into the Calculate Theta D routine, which 

finds θd and K0 as discussed below. For all values of moisture content below the newly-

calculated θd, we set the hydraulic conductivity equal to eqn. (T20).  Finally, the Plot 

Hydraulic Conductivity routine takes in the predicted and measured hydraulic 

conductivities and plots them on the same graph. 

 Breaking down how Calculate Hydraulic Conductivity works we have, 

Calculate Hydraulic
Conductivity

Calculate Hydraulic
Conductivity

Start with r> equal
To rMax

Calculate Moisture
Content

Moisture Content
Is less than

Critical Moisture
Content?

Decrement r>

false

Normalize Cumulative
Mass Fraction

Find Critical Pore Size

Return Hydraulic
Conductivity as a function

of Moisture Contenttrue

Start with r> equal
To rMax

Calculate Moisture
Content

Moisture Content
Is less than

Critical Moisture
Content?

Decrement r>

false

Normalize Cumulative
Mass Fraction

Find Critical Pore Size

Return Hydraulic
Conductivity as a function

of Moisture Contenttrue

 

The Normalize Cumulative Mass Fraction routine works the same here as it did 

for the water retention curves and is not discussed further.   
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Calculate Hydraulic Conductivity has two principle tasks: to generate θ (in 

Calculate Moisture Content) and to find K for that θ.. Calculate Moisture Content uses r> 

as an independent variable to calculate θ  while Find Critical Pore Size uses r> and θt to 

generate rc. The moisture content of the medium is the sum of contributions from all the 

pores in the distribution from the smallest up to the largest pore containing moisture.  The 

saturation data have been assumed to be accurate, as discussed above.  Since r> is initially 

equal to rm (the largest pore in the medium), and since the largest moisture content 

reached is the saturated value (equal to the porosity), the first calculation of θ generates 

φ. We find rc associated with the current water content, analogously to eqn(T13).  

Eqn(T13) is the result of integrating eqn(T6) between the limits r1=rc and r2=r>. With the 

cmd, the analogous sum is performed by taking the value of the normalized cumulative 

mass (equal to θ) corresponding to r> and then finding an r < r> such that the 

corresponding cumulative mass is θ(r>)-θ(r)=θt.  The value of r obtained is equal to the 

critical pore size rc.   

As r> is decremented each time through the loop, smaller values of the moisture 

content are obtained. The ratio of K(θ)/KS is expressed, similarly to eqn(T19), as the cube 

of the ratio of rc(θ)/rc(S=1) (shown for the fractal model in eqn(T18)). Find Critical Pore 

Size starts with the fully saturated case (θ=φ) and generates thereby  rc(S=1),.   Each time 

we decrement r> we find an associated rc(θ=Sφ) and θ . We stop decrementing r> if the 

moisture content we just calculated is less than θt because the hydraulic conductivity 

must be zero below θt. At this point we exit the loop and cube the ratio of rc vs rc(S=1) 

for all rc values, which gives the hydraulic conductivity as a function of θ.     

 The algorithm for the routine which calculates θd is as follows, 

40 



 

Calculate Theta D
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Pick out and return
Theta D

Calculate derivative of
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Calculate Theta D
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Theta D
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The test function referred to above is obtained from the fundamental new analytic 

formula of this thesis, eqn(T22).  The numerical derivative dK/dθ is given by the 

difference in successive K values divided by the difference of successive θ values. 

Subtracting θd from both sides of eqn(T22) leaves on the right hand side an expression 

(our test function) which is positive or negative depending on whether K / (dK/dθ ) is 

greater or less than θd. We evaluated this test function for all values of θ>θt and θd was 

chosen to be the value of θ corresponding to the case when the test function most closely 

approached zero.  In the code, this choice is determined by evaluating the sign of the test 

function. Since the hydraulic conductivity is a positive, monotonically increasing 

function of moisture content, the value of θ for which our test function goes from 

negative to positive is the place where it is closest to zero. 

 

Running the Code 
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 For the most part, running the code is pretty simple.  The code will easily 

recognize all the data files if they are in the same folder in which the .m Matlab files are 

contained.  Otherwise, make sure to set up Matlab so that it will look for the data files in 

whichever folder you wish to store them.  If you want to calculate the water retention 

curve, first you must call the CalculateBestA function.  You pass in the number of the 

data file you which to use (data files are named data#.txt The # is the value you pass into 

CalculateBestA) as well as a minimum A, maximum A and an increment.  The values 

used for the graphs below are:  minimum A = 500, maximum A = 20000 and increment = 

50.  This function passes back the A value which corresponds to the curve which best fits  

the measured data based on a least squares estimation.  Then all you have to do is call 

PlotWaterRetention and pass it again the same file number and the A value which was 

returned.  If you want to calculate the hydraulic conductivity you only need to make a 

call to one function, PlotHydraulicConductivity.  This simply takes in the file number, a 

tolerance on how close you want to be to θt when finding rc (currently the code does this 

iteratively, although an exact solution has recently been suggested by Dr. Skinner) and a 

value used to decrement r>.  The decrement actually applies logarithmically.  Initially r> 

is equal to rm*10^0.  Each time through the loop the power in the exponent is reduced by 

the decrement value.  The reason for doing this is that we plot the log of the hydraulic 

conductivity.  The values of tolerance and decrement in the graphs below of the hydraulic 

conductivity were 10^-6 and 10^-2, respectively. 

 The only other component of running this code successfully is in setting up the 

data files.  Both programs read text files with just a string of numbers.  The format for the 

water retention curves is to have the particle size data, followed by the associated 

cumulative mass fractions (entered as percents), then the pressure values followed by the 
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moisture contents.  Currently the number of data points for these two functions is ‘hard-

wired’ into the code.  In the future you will put the number of data points to be read in 

directly into the file.  The data files for the hydraulic conductivity calculations are 

formatted again with the particle size data followed by the cumulative mass fraction (in 

percent), then the experimental data of the hydraulic conductivity  which is first values of 

moisture content followed but their associated hydraulic conductivities. 
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Results and Comparison with Experiment 

The results of the calculation are presented for each soil alongside experimental 

results for the same soil.  This allows an objective evaluation of the effectiveness of the 

theory and code. 

 Data relevant to flow in the U.S. Department of Energy Hanford site have been 

obtained from two sources:  1) An internal Pacific Northwest National Laboratory 

(PNNL) Report from 1988, (Rockhold et al., 1988) which contains particle size data for 

eleven samples of the McGee Ranch soil, as well as experimental water-retention curves 

and the hydraulic conductivity as a function of saturation for 5 different depths.  2) A 

second internal PNNL report (Vadose Zone Transport Study) with data supplied 

electronically by Dr. Mark Rockhold in 2005.  This latter collection contains the particle-

size data and water-retention curves of 53 soils, as well as the saturated hydraulic 

conductivity. 

Using data set 1 it is possible to validate theory and code for the hydraulic 

conductivity and for the water retention curves, but using data set 2 it is possible only to 

validate the coded predictions for the water-retention curves.  Using data set 2, however, 

which is taken from a site believed to be analogous to the location of the Technetium spill 

(Ward et al., 2006), it is possible to predict the hydraulic conductivities of the medium 

constituents at interfacial tensions similar to what is typically observed at the BC Crib 

site.  While such predictions cannot at this time be verified, they may be useful for risk 

analysis of this spill. 

 



 

In the case of the water-retention curves, one parameter, A, must be fit to experiment 

in order to allow a reasonable evaluation of the accuracy of the procedure.  This 

parameter describes the relationship between the air-water interfacial tension and the 

radius of the pore.  Equivalently, one may choose a minimum suction pressure at which 

air will enter the system, though in this particular case some confusion exists due to the 

fact that the pressure at which air can enter the largest pores is not the same pressure at 

which air enters the system.  Such pores must also form an interconnected, percolating 

network for air actually to enter the system.  In any case, the fitted values of the 

parameter A have been tabulated (Table 1) for the 53 (7 of the 60 data sets were missing 

water retention data) Vadose Transport Field Study soils along with the characteristics of 

the soils. The least squares fits for comparison of prediction and experiment then yield 

the residuals in Table (1) under the column labeled ‘Fit’. The only use for the number 

given by the least squares residuals is that it tells us how close the prediction matches the 

experimental data. Due to a lack of uncertainty in the data, we have no way of 

quantifying whether the theory actually falls within the error bars of the data. 

 

      Table 1 
Data 
Set A Fit Soil characteristics 

1 13600 0.047324 Disturbed (ring filled by hand) contains plant roots, medium coarse 
2 5000 0.049297 Disturbed (ring filled by hand) contains plant roots, medium coarse/coarse 
3 11200 0.070225 undisturbed, wet, coarse sand D
4 5800 0.085624 undisturbed/disturbed , wet, coarse sand, subsample rose in the ring 

5 4200 0.107021 undisturbed,  wet, coarse sand 
6 8300 0.07337 undisturbed,  wet, coarse sand 
7 -1 -1 undisturbed,  wet, (medium) coarse sand 
8 5800 0.106359 undisturbed, coarse sand/almost gravel 

9 5800 0.055963
Disturbed (ring filled by hand). Obtained only a small amount of grab 
sample 

10 4100 0.079513 undisturbed, coarse sand/almost gravel, dry 
11 4200 0.053685 undisturbed, coarse sand 
12 4100 0.08498 undisturbed, coarse sand 
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13 3100 0.055784 undisturbed, medium coarse/coarse sand 
14 3500 0.069439 undisturbed, medium coarse/coarse sand 
15 4900 0.060298 undisturbed, medium coarse sand 
16 3100 0.062378 undisturbed, medium coarse sand 
17 3100 0.077423 undisturbed, medium coarse sand 
18 6800 0.049528 undisturbed, medium coarse sand 
19 5000 0.049068 undisturbed, medium coarse sand 
20 4200 0.078984 undisturbed, fine/medium coarse sand/coarse sand  
21 11600 0.097672 undisturbed, coarse sand/almost gravel, fine at bottom 
22 5800 0.091046 undisturbed, coarse sand(almost gravel) 
23 6100 0.052222 undisturbed, coarse sand(almost gravel) 
24 5800 0.098742 undisturbed, coarse sand 
25 -1 -1 undisturbed, coarse sand at top, fine at bottom 
26 3100 0.164148 undisturbed, fine sand 
27 8400 0.114908 undisturbed, fine sand at top, coarse at bottom, wet 
28 -1 -1 extra subsample of 26 (S-1/42D), probably pretty disturbed. 
29 -1 -1 extra subsample of 25 (S-1/42C), probably pretty disturbed.  
30 -1 -1 (un)disturbed, coarse sand 
31 8300 0.040095 (un)disturbed, fine sand at top, coarse at bottom, wet 
32 4200 0.050044 (un)disturbed, coarse sand dry 
33 3100 0.053629 (un)disturbed, coarse sand dry 
34 5800 0.081888 undisturbed 0.9 cm high damp, loose 
35 4300 0.039622 undisturbed 0.9 cm high damp 
36 8100 0.063754 undisturbed 1.2 cm high wet semi solid 
37 -1 -1 undisturbed 1.5 cm high damp 
38 5800 0.034589 undisturbed 1.4 cm high damp 
39 8300 0.034493 disturbed finer cemented 
40 4100 0.052255 undisturbed 1.2 cm high 
41 5800 0.049818 semi undisturbed fine, cemented 
42 5800 0.071255 0.6 cm high coarse dry 
43 6100 16611.81 level coarse loose damp 
44 16600 0.08505 level coarse damp 
45 5800 0.069741 0.3 cm very dry loose 
46 3100 0.0589 0.8 cm damp loose 
47 3800 0.058455 0.9 cm damp loose 
48 4300 0.060818 0.4 cm fines & sand damp 
49 5800 0.103919 0.6 cm damp coarse 
50 3800 0.05805 damp coarse 
51 8300 0.066216 1.1 cm damp fine cemented 
52 5800 0.090962 damp medium fine sand 
53 4100 0.057782 1.3 cm high damp loose 
54 5000 0.077663 0.5 cm high some silt, damp loose 
55 5000 0.038078 1.1 cm high damp loose some silt 
56 10000 0.064537 0.9 cm wet silt, compacted 
57 9700 0.034712 0.7 cm damp silt sand 
58 -1 -1 0.6 cm dry loose average sand 
59 4000 0.070959 level very dry loose 
60 3800 0.049201 level damp loose sand 
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 Table two summarizes how much of the soil consisted of particles within a given 

size range, as well as porosity of the sample.  Gravel includes particles larger than 2mm, 

Sand 0.05mm-2mm, Silt 0.002mm-0.05mm and Clay particles are smaller than .002mm.  

The porosity values of some of the samples were not available. 

     Table 2 
Data 
Set Gravel Sand Silt Clay Porosity 

 
Weight 
% 

Weight 
% 

Weight 
% 

Weight 
% cm3/cm3

      
1 4.36 81.24 10.66 3.75 0.376
2 1.95 94.74 2.06 1.25 0.422
3 1.47 88.33 7.70 2.50 0.389
4 0.33 93.83 3.34 2.50 0.400
5 0.25 97.71 0.79 1.25 0.418
6 0.18 92.32 5.00 2.50 0.399
7 0.32 91.30 5.88 2.50  
8 0.14 84.76 11.35 3.75 0.388
9 0.77 88.67 6.81 3.75 0.464

10 0.27 98.48 0.00 1.25 0.452
11 0.63 98.12 0.00 1.25 0.463
12 1.37 96.13 1.25 1.25 0.464
13 0.74 98.01 0.00 1.25 0.427
14 0.40 97.10 1.25 1.25 0.452
15 0.38 89.07 8.06 2.50 0.379
16 0.59 96.91 1.25 1.25 0.433
17 0.17 97.33 1.25 1.25 0.451
18 0.54 88.55 7.16 3.75 0.369
19 0.21 93.16 5.38 1.25 0.397
20 0.00 90.21 6.04 3.75 0.474
21 3.80 90.10 3.60 2.50 0.359
22 0.94 94.27 2.30 2.50 0.391
23 1.28 96.22 0.00 2.50 0.404
24 0.43 89.85 5.97 3.75 0.374
25 0.43 93.54 3.53 2.50  
26 0.28 74.23 21.75 3.75 0.403
27 0.15 90.02 6.08 3.75 0.384
28 3.22 76.11 15.67 5.00  
29 1.72 85.77 8.76 3.75  
30 2.00 85.49 8.76 3.75  
31 0.14 82.15 11.46 6.25 0.360
32 0.41 97.09 0.00 2.50 0.424
33 0.00 95.24 1.01 3.75 0.445
34 0.00 92.67 3.58 3.75 0.403
35 1.69 90.81 3.75 3.75 0.423
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36 1.21 85.29 7.25 6.25 0.382
37 4.46 90.54 1.25 3.75  
38 1.18 82.70 9.87 6.25 0.386
39 2.46 78.89 12.41 6.25 0.374
40 0.07 88.17 6.76 5.00 0.456
41 0.54 72.65 21.93 4.88 0.356
42 0.73 87.51 8.01 3.75 0.406
43 0.31 85.25 10.69 3.75 0.410
44 1.14 89.36 7.00 2.50 0.401
45 0.84 85.61 9.80 3.75 0.430
46 0.78 91.96 2.26 5.00 0.421
47 1.92 90.58 2.50 5.00 0.430
48 2.99 92.01 1.25 3.75 0.429
49 1.79 90.95 4.76 2.50 0.392
50 0.08 94.93 2.50 2.50 0.431
51 0.96 84.19 9.86 5.00 0.360
52 1.23 85.19 8.59 5.00 0.360
53 0.35 95.90 1.25 2.50 0.448
54 0.37 84.78 9.86 5.00 0.411
55 0.00 87.68 7.32 5.00 0.453
56 0.61 84.65 11.00 3.75 0.368
57 0.56 74.64 17.31 7.50 0.354
58 2.23 91.52 3.75 2.50  
59 0.19 92.62 3.43 3.75 0.424
60 0.00 92.50 3.75 3.75 0.415

 
 The figures R1 through R20 show twenty of the fifty-three water retention 

predictions for the soil data received from the Hanford site.  These predictions (the 

dashed lines) are plotted along side the experimentally determined curves (the solid lines) 

provided in the data.  In the title of the figures, information is provided to show:  what 

data set is evaluated, the value of A which fits the prediction to the data best (as 

calculated by the least squares routine) and a value called ‘Fit’ which is the sum of the 

least squares residuals divided by the number of residuals.  Due to the absence of any 

knowledge of the error in our data, we are unable to determine conclusively that our 

model fits the experiment.  This fit value only tells us which choice of A causes our 

prediction to fit best with the experimental data provided, relative to all other choices of 

A. 
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Fig R19 

 

 
Fig R20 
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 When we consider the comparison of predicted and observed water retention 

curves we find that most yield satisfactory agreement if the water content is not too low. 

For lower water contents we expect the predicted water content to lie below the actual 

value because of the cross-over in K to the percolation power-law, which leads to very 

low values of the hydraulic conductivity. The reason is that with k values of 10-8cm/s or 

smaller, the drying of a soil will typically take years or longer—experimental time scales 

which are never approached. This particular situation was already investigated in detail, 

though only for the specific fractal model, by Hunt and Skinner (2005). Nevertheless the 

general conclusions still apply here.  

 Comparisons of predicted and experimental values of the hydraulic conductivity 

are given in the set of figures Fig R21-R31. The experimental data for both the particle 

sizes and the hydraulic conductivity were obtained from McGee Ranch (Rockhold et al., 

1988).  Particle-size data were taken for eleven soil samples near the surface, while 

hydraulic conductivity measurements were taken at five different depths. It is not clear 

which K measurements correspond to which particle-size data sets. As a consequence, I 

decided to investigate the predictions resulting from all 11 psd’s for each of the five K/Ks 

measurements separately. Even though predictions for each of the eleven soils were thus 

compared to all five measurements of K, I only display the experimental K which agrees 

best with the prediction. The number corresponding to a particular soil sample is 

provided in the title as well as which hydraulic conductivity curve is plotted.  A further 

inquiry was made into the relevance of the particular choice of the discretization in the 

distributions, i.e., the influence of the finite widths of the bins (see Data section). The 

solid line represents the experimental data. The two alternate predictions are shown as the 
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dotted and dashed lines and the “goodness” of the fit is again described by the residuals 

of sum of the squares of the deviations.   

 The dotted line corresponds to the interpretation in the cumulative mass fraction 

that R1 is the smallest particle in the sample.  The dashed line corresponds to the 

interpretation that the smallest particle in the sample has zero radius.  Each of the dotted 

and dashed lines has its own ‘Fit’ value, which represents the value returned from the 

least squares routine.  Again, this value gives us no information as to how well our model 

fit the data.  It just tells us which of our predictions are closest to the data provided us.  

These values are all summarized in table(3). It appears that there is, in the present case, 

no meaningful difference between the two discretization procedures. 

 

 

 
      Fig R21 
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Fig R22 

 

 
      Fig R23 
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Fig R24 

 

 
      Fig R25 
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      Fig R27 
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      Fig R29 
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      Fig R31 
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 Table 3 summarizes the results of the least squares calculation for all eleven soil 

samples, each compared to all five hydraulic conductivity measurements.  Each soil, 

compared to each set of hydraulic conductivity measurements, has two values given by 

the least squares routine.  These two values are calculated by the two ways of binning the 

data , as discussed in the Data section, which were implemented in this work.  Dev1 

assumes R1 is the smallest particle size in the distribution, while Dev2 assumes the 

smallest particle size goes to zero. 

     Table 3 

 

 The lack of data for K for the Rockhold (2005) data set restricts our comparison 

with experimental data to a single site (McGee Ranch), which would tend to emphasize 

the role of coincidence in any statistical analysis. In other words, to get a more realistic 

idea of the scope of validity of the treatment one needs a much wider database. On the 

other hand, the predictions of the water retention curves, for which we have a much 

broader range of data, do not constitute the sought-for validation of the percolation 

theoretical treatment of K, as the non-equilibrium effects treated by Hunt and Skinner in 

the fractal case have not yet been incorporated into the general model. 

 The predicted values of the hydraulic conductivity also tend to deviate at the very 

lowest moisture contents, and we believe that this occurs for a similar reason. In order to 

66 



 

measure such low values of the hydraulic conductivity in field studies, the study must be 

conducted over months or years, but this is prohibitively expensive. 

 Given the known experimental limitations at low water contents, as well as the 

general variability in data, it appears that the theoretical curves for K may be predictive. 

It is worth noting that phenomenologies currently in use (Mualem, 1976; van Genuchten, 

1980) typically fail to predict K(θ) by several orders of magnitude in the vicinity of θd  

Their strength is that they can describe a very wide range of data phenomenologically 

through curve-fitting, but they are not expected to be predictive (Hunt, 2004). 

 Remaining questions regarding whether the pore-space can generally be modeled 

from knowledge of the particle sizes have not been addressed. This is the major 

uncertainty in modeling water retention curves using the method in this thesis. It appears 

that this assumption was reasonably verified here (with the possible exception of 

curves…R3, R5, R13, R14…), but it is already common knowledge that such an 

assumption breaks down for very coarse soils. It is also not clear in advance where it will 

work and where it will fail. Note also that there was no obvious correlation between 

particle size distributions or experimental treatment for curves R3, R5, R13, and R14. 
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Conclusions 

 A study was conducted to test the predictions of critical path analysis for the 

hydraulic conductivity, K, in an arbitrary porous medium.  K was obtained as a function 

of saturation and also pressure.  Particle size data were used to infer the pore space 

characteristics, a procedure which, though commonly used in this field, is not often tested 

quantitatively.  Data for K were taken from the US DOE Hanford site and compared with 

our predictions.  The results of this study found: 

1. Using particle data to predict pore geometry often, but by no means always, 

generates water-retention curves that qualitatively reproduce the data. 

2. Using concepts of percolation theory to predict the ratio of the unsaturated to the 

saturated hydraulic conductivity appears to be very successful for the data set 

analyzed.  Predictions over as many as four orders of magnitude of K were 

typically within a half an order of magnitude of observed values. 

3. The method developed for calculating K from particle-size data can be applied to 

any porous medium when both the particle size distribution and the critical 

moisture content for percolation are known. If the pore-size distribution is not 

accurately generated from the particle size distribution, the method will not give 

accurate results. 

4. Although final confirmation would require many further tests, this method shows 

promise of being the first accurate means to predict the hydraulic conductivity as 

a function of saturation in disordered porous media. 
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