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ABSTRACT 

 
 
Chintamaneni, Vamsee Krishna. M.S. Egr., Department of Mechanical and Materials 
Engineering, Wright State University. Fabrication of Superconducting thin films using 

colloid of nanoparticles as precursors. 

 
 
       This thesis reports the development of a new approach for the fabrication of 

superconducting oxide thin films. Among the non vacuum liquid phase methods of 

fabricating high temperature superconductors having critical current density about 1 

MA/cm2, metalorganic deposition using metal trifluoroacetates (TFA-MOD) is the best 

known method. In this project, detailed spectroscopic and microscopic analysis was 

performed at every stage of the TFA-MOD process to understand the evolution of 

crystalline superconducting film. The effect of heating rate on the film properties has 

been investigated. From these studies it was observed that the TFA-MOD has some 

inherent disadvantages such as long process time, evolution of HF gas and results 

porosity in films. A new liquid phase process was developed to fabricate identical 

superconducting YBCO thin films, which has the potential to overcome the above 

mentioned drawbacks. This process involves using a precursor, which is a colloidal 

suspension of Y-Ba-Cu-O nanoparticles of size ~ 20 nm. Precursor films were deposited 

on LaAlO3 by spin coating or dip coating and heat treated in two stage annealing process 

to obtain final films. Compared to MOD-TFA processed films, the nanoparticle 

processed films showed lower porosity and can be grown at faster heating rates. The 

effect of nanoparticle concentration in colloid, substrate treatment, and solvent on the 

properties of these films has been reported in this thesis. The superconducting transition 

temperature (Tc) of nanoparticle processed YBCO films to date is ~ 89 K at R=0. Self-
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field critical current densities (Jc) of 2 MA/cm2 at 77 K have been achieved.  These 

results indicate that this new Nanoparticle method has potential to fabricate long-length, 

robust YBCO coated conductors. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 



 v 

CONTENTS 

 

1. INTRODUCTION ...................................................................................................... 1 

1.1 History....................................................................................................................... 1 

1.2 Theory of Superconductivity .................................................................................... 1 

1.3 Types of Superconductors......................................................................................... 2 

1.3.1 Type I superconductors...................................................................................... 3 

1.3.2 Type II Superconductors.................................................................................... 4 

1.3.3 High Temperature Superconductors (HTS) ....................................................... 5 

1.4 YBCO Crystal Structure ........................................................................................... 6 

1.5 YBCO Thin Films:.................................................................................................... 8 

1.5.1 Architecture of Coated Conductor ..................................................................... 8 

1.5.2 Fabrication of YBCO Thin films ....................................................................... 9 

1.5.3 TFA-MOD Process .......................................................................................... 12 

1.6 Objective of the Thesis ........................................................................................... 17 

2.  EXPERIMENTAL PROCEDURES............................................................................ 18 

2.1 TFA-MOD Method................................................................................................. 18 

2.1.1 Substrate Preparation ....................................................................................... 18 

2.1.2 Synthesis of Precursor Solution ....................................................................... 19 

2.1.2 Precursor Coating............................................................................................. 19



 vi 

2.1.3 Calcination of the Precursor Film .................................................................... 21 

2.1.4 Firing of the Film ............................................................................................. 23 

2.2 Fabrication using Nanoparticle Method.................................................................. 24 

2.2.2 YBCO Nanoparticle Synthesis ........................................................................ 24 

2.2.3 Heat Treatment................................................................................................. 26 

2.3 Characterization Techniques................................................................................... 28 

2.3.1 X-ray Photoelectron Spectroscopy (XPS) ....................................................... 28 

2.3.2 Scanning Electron Microscope (SEM) ............................................................ 31 

2.3.3 X-Ray Diffraction (XRD) ................................................................................ 32 

2.3.4 Measurement of Superconducting Properties .................................................. 33 

3. RESULTS AND DISCUSSION................................................................................... 35 

3.1 Fundamental Studies to understand the Evolution of YBCO from Metallic TFA 

Precursors...................................................................................................................... 35 

3.1.1 XPS Studies on TFA – MOD Process ............................................................. 35 

3.1.2 Effect of Heating Rate on Films Fabricated using TFA-MOD Method .......... 40 

3.2. YBCO Nanoparticle Method ................................................................................. 46 

3.2.1 Overview.......................................................................................................... 46 

3.2.2 Comparison between TFA-MOD and Nanoparticle Processes ....................... 48 

3.2.2 Concentration of Nanoparticulate Dispersion.................................................. 55 

3.2.3 Effect of Surfactant in the Colloid on the Film................................................ 59 

3.2.5 Effect of concentration of Copper on YBCO thin films .................................. 64 

3.2.8 Fabrication of Thick YBCO films using Nanoparticle Process:...................... 67 

3.2.6 Fabrication of YBCO Thin Film using Decanol Solvent................................. 70 



 vii 

3.2.7 Effect of Firing Temperature on Microstructure of YBCO Film .................... 74 

4. SUMMARY & FUTURE WORK................................................................................ 80 

4.1 Summary................................................................................................................. 80 

4.2 Future Work ............................................................................................................ 82 

REFFERENCES: .............................................................................................................. 84 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii 

LIST OF FIGURES 

 

Figure 1.1: Graph of induced magnetic field of a Type I superconductor versus applied 

field……………………………………………………………………………………....... 

Figure 1.2: Graph of induced magnetic field of a Type II superconductor versus applied 

field……………………………………………………………………………………….. 

Figure 1.3: Irreversibility fields for Bi-2223 and YBCO………………………………....6 

Figure 1.4:  Schematic view of crystal structure YBCO showing CuO2 planes and CuO 

chains…………………………………………………………………………………….... 

Figure 1.5: Typical architecture of YBCO coated conductor..............................................9 

Figure 2.1: Process for preparing the TFA precursor coating solution…………..............20 

Figure 2.2: Dip Coating Process for preparing the TFA precursor film............................ 

Figure 2.3: Experimental Setup for the fabrication of YBCO superconductor................. 

Figure 2.4: Heating Profile for Calcination of the TFA-MOD film................................... 

Figure 2.5: Heating Profile for Firing of the TFA-MOD film........................................... 

Figure 2.6: Synthesis of YBCO nanoparticles using the organometallic decomposition 

method............................................................................................................................... 

Figure 2.7: AFM line scan generated on a particular area on YBCO nanoparticles.......... 

Figure 2.8: AFM analysis on the film fired till 400 oC .....................................................25

Figure 2.9:  First stage heating profile for the nanoparticle process..................................27

3 

4 

7 

22 

22 

20 

23 

24 

25 



 ix

Figure 2.10: Photoelectric Effect in XPS...........................................................................

Figure 2.11: XPS AXIS ULTRA from KRATOS ANALYTICAL Inc............................ 

Figure 2.12: JSM 35-CF Scanning Electron Microscope from JOEL USA Inc............ 

Figure 2.13: Principle of an X-ray Diffractometer............................................................ 

Figure 2.14: Illustration of the four point probe for the measurement of transport 

properties............................................................................................................................34 

Figure 3.1: XPS spectra of C 1s obtained on the films before and after calcination.........37 

Figure 3.2: XPS spectra of F 1s obtained on the films before and after calcination......... 

Figure 3.3a: XPS spectra of Y 3d obtained on the films before and after calcination.......38 

Figure 3.3b: XPS spectra of Ba 3d obtained on the films before and after calcination.....39 

Figure 3.4a: XPS spectra of Ba 3d obtained on the films early stages of firing and after 

calcination.......................................................................................................................... 

Figure 3.4b: XPS spectra of F 1s obtained on the films early stages of firing and after 

calcination.......................................................................................................................... 

Figure 3.5: XPS survey scan for calcined films heated at different rates..........................42 

Figure 3.6a: Microstructure of calcined sample heated at 1.5 oC/hr during the 200 – 300oC  

step.....................................................................................................................................43 

Figure 3.6b: Microstructure of calcined sample heated at 3 oC/hr during the 200 – 300oC  

step.....................................................................................................................................43 

Figure 3.6c: Microstructure of calcined sample heated at 10 oC/hr during the 200 – 300 oC  

step.....................................................................................................................................43 

Figure 3.7a: Microstructure of fired sample heated at 1.5 oC/hr during the 200 – 300 oC  

step.....................................................................................................................................44

29 

30 

31 

33 

38 

39 

40 



 x

Figure 3.7b: Microstructure of fired sample heated at 3 oC/hr during the 200 – 300 oC  

step.....................................................................................................................................44 

Figure 3.7c: Microstructure of calcined sample heated at 10 oC/hr during the 200 – 300 oC  

step.....................................................................................................................................44 

Figure 3.8: Temperature dependence of the electrical resistivity for YBCO films calcined 

at different heating rates.....................................................................................................45 

Figure 3.9: XRD pattern of YBCO film deposited by using TFA-MOD method.  The film  

was heat treated at 800 oC..................................................................................................45 

Figure 3.10: Comparison of High resolution XPS peaks in case of YBCO nanoparticle 

film heat treated till 400 oC and TFA-MOD calcined film till 400 oC............................... 

Figure 3.11: Microstructure of YBCO film prepared using TFA-MOD. The film was fired  

at 500 oC at the rate of 1 oC/min........................................................................................ 

Figure 3.12: Microstructure of YBCO film prepared from colloidal dispersion of YBCO 

nanoparticles. The film was fired at 500 oC at the rate of 1 oC/min.................................. 

Figure 3.13: Microstructure of YBCO film prepared using TFA-MOD process. The film  

was fired at 800 oC............................................................................................................ 

Figure 3.14: Microstructure of YBCO film fabricated by using 4% nanoparticle solution. 

The film was heat treated at 800 oC................................................................................... 

Figure 3.15: XRD pattern of YBCO film deposited by using nanoparticle method.  The  

film was heat treated at 800 oC..........................................................................................   

Figure 3.16: Microstructure of YBCO film fabricated using 6% YBCO nanoparticles  

solution...............................................................................................................................56 

50 

51 

52 

53 

54 

54 



 xi

Figure 3.17:  Tc data for film fabricated using 6% YBCO nanoparticles solution after the 

surface treatment of LAO substrate...................................................................................57 

Figure 3.18: Microstructure of final film prepared using 20% YBCO nanoparticle 

concentration on LAO substrate........................................................................................58  

Figure 3.19: XRD of final film prepared using 20% YBCO nanoparticle concentration on 

LAO substrate with 1% PVP layer....................................................................................59 

Figure 3.20: Surface Morphology of the film fabricated using 13% YBCO nanoparticle 

colloid with surfactant on LAO substrate..........................................................................60 

Figure 3.21: Tc data for film fabricated using 13% YBCO nanoparticles solution with 

surfactant on LAO substrate.............................................................................................. 

Figure 3.22: Ic data for film fabricated using 13% YBCO nanoparticles solution with 

surfactant on LAO substrate.............................................................................................. 

Figure 3.23: XPS peaks comparison between YBCO final film formed by 13 % YBCO 

nanoparticles colloid and YBCO film fabricated by PLD process....................................63 

Figure 3.24: Surface morphology of film fabricated using 5% excess copper 

concentration in the colloid................................................................................................65 

Figure 3.25: Surface morphology of film fabricated using 10% excess copper 

concentration in the colloid................................................................................................65 

Figure 3.26: Surface morphology of film fabricated using 15% excess copper 

concentration in the colloid................................................................................................66 

Figure 3.27: Effect of concentration of copper in the solution on the Tc of the YBCO 

films...................................................................................................................................66

61 

61 



 xii

Figure 3.28: Effect of concentration of copper in the solution on the Critical Current of 

the YBCO films.................................................................................................................. 

Figure 3.29: Cross-sectional view of film fabricated using 13% nano particle solution...68 

Figure 3.30: Cross-sectional view of film fabricated using 18% nano particle solution...69 

Figure 3.31: Surface morphology of film fabricated using 12% YBCO nanoparticles in a 

Decanol Solvent................................................................................................................. 

Figure 3.32: XRD taken on film fabricated using 12% YBCO nanoparticles in a decanol 

solvent on LAO substrate...................................................................................................72 

Figure 3.33: Tc data for film fabricated using 12% YBCO nanoparticles in a decanol 

solvent on LAO substrate..................................................................................................72 

Figure 3.34: Ic measurement on film fabricated using 12% YBCO nanoparticles in a 

decanol solvent on LAO substrate.....................................................................................73 

Figure 3.35: Surface morphology of film fabricated using 16% YBCO nanoparticles in a 

Decanol Solvent.................................................................................................................74 

Figure 3.36: Surface morphology of YBCO film fired at 700o C for 1 hr after calcining at 

400o C................................................................................................................................76 

Figure 3.37: Surface morphology of YBCO film fired at 750o C for 1 hr after calcining at 

400o C................................................................................................................................76 

Figure 3.38: Surface morphology of YBCO film fired at 800o C for 1 hr after calcining at 

400o C................................................................................................................................77 

Figure 3.39: Surface morphology of YBCO film fired at 850o C for 1 hr after calcining at 

400o C................................................................................................................................77 

67 

71 



 xiii 

Figure 3.40: Surface morphology of YBCO film fired at 900o C for 1 hr after calcining at 

400o C................................................................................................................................78 

Figure 3.41: Effect of Firing Temperature on the Critical Current of the YBCO films....78 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xiv

LIST OF TABLES 

 

Table 3.1: Quantified raw data taken on film prepared by YBCO nano colloid and TFA 

processed precursor YBCO film........................................................................................50 

Table 3.2: Quantified raw data taken on film prepared by 13% YBCO nano colloid and 

PLD processed YBCO.......................................................................................................63 

Table 3.3: Quantified raw data taken on film prepared by 12% YBCO nanoparticles in a 

decanol solvent on LAO substrate.....................................................................................73 

 

 

 

 

 

 

 

 

 

 

 

 



 xv

Acknowledgement 

 

         I owe my most sincere gratitude to my advisor, Professor Sharmila M. 

Mukhopadhyay, for her immense support, without which I couldn’t have come along this 

far. I would like to express my sincere thanks to Dr. Jianhua Su for his guidance, aid in 

setting up the experiments and long invaluable discussions we had during the course of 

project, which had helped to complete my thesis successfully. I would also like to 

acknowledge Dr. Joshi for his valuable advices and assistance throughout my graduate 

work.  

          I would like to thank Dr. Suvankar Sengupta, Dr. Rao Revur and Mr. Troy Pyles 

for providing me with the sample, colloids and for the project meetings we had, which 

altogether helped me in carrying out my experiments successfully. I also like to thank Dr. 

Srinivasan, Dr Mukhopadhyay, and Dr. Jackson for guiding me through my master’s 

work in Material Science at Wright State University. I would also like to thank Greg Wilt 

for his assistance with analytical instruments in the laboratory. 

         I would like to thank my friends Kirit Kalagara, Bala Cherukuri, Viswanath Kota, 

Chaitanya Bandlamudi, Raja Pulikollu, and my sister Lavanya Durgam for their 

continuous encouragement, invaluable advices throughout my graduate work at Wright 

State University. I would also like to thank my relatives and other well-wisher for their 

support. 

         I am very much indebted to my parents, brothers Anil Chintamaneni, Lalit 

Chintamaneni and uncle Gopalakrishna Narravula, for their unconditional love, affection, 

blessings, and continuous support, which made everything possible.  



 xvi

 

 

 

 

 

 

This thesis is dedicated to my parents, Mr. Ch. Nirmalanand, 

Mrs. Vijaya, brother Lalit, and uncle N. Gopalakrishna 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

1. INTRODUCTION 

  

1.1 History 

         The discovery of superconductivity had created a revolution in science. Its 

discovery is closely related to that of liquid helium at the University of Leiden by 

Kamerlingh Onnes in 1908. After this discovery, temperatures as low as 1 K became 

accessible. In 1911, Onnes found that the electrical resistivity of mercury suddenly 

dropped to very small values at a temperature of approximately 4.2 K [1]. According to 

Onnes, "Mercury has passed into a new state, which on account of its extraordinary 

electrical properties may be called the superconductive state” [2]. Superconductivity was 

observed in different metals, alloys, and compounds in following years.  

1.2 Theory of Superconductivity 

 
         A superconductor is a material which loses its electrical resistance below a certain 

critical transition temperature (Tc) and expels the magnetic field from its interior while 

below this Tc. This phenomenon of diamagnetism in superconductors is called the 

MEISSNER effect and was discovered by Meissner and Oschenfeld in 1933. The London 

brothers proposed a simple theory to explain the Meissner effect in 1935 [4]. According 

to this, the failure of the diamagnetism in superconductors does not occur abruptly at the 

surface, but instead the magnetic field penetrates slightly into the bulk of the 

superconducting material. This penetration depth is called the London penetration depth 
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(λ) [4] . In 1950 the theory of Landau and Ginzburg described superconductivity in terms 

of an order parameter (Φ) and provided a derivation for the London equations [5]. Both 

of these theories were macroscopic. 

 

         The first microscopic theory of superconductivity, which is based on electron-

phonon interaction, was proposed by American physicists John Bardeen, Leon Cooper, 

and John Schrieffer in 1957, called BCS theory. According to this theory when an 

electron travels through a cationic lattice it creates distortion in the lattice (phonons). This 

creates a greater positive cloud around the electron, which attracts another electron in the 

lattice. Due to this attractive interaction, electron with opposite momenta and spins form 

what are known as cooper pairs [6]. The cooper pairs have a slightly lower energy and 

leave an energy gap above them on the order of 0.001 eV inhibiting the kind of collision 

interactions which lead to ordinary resistivity. For temperatures such that the thermal 

energy is less than the band gap, the material exhibits zero resistivity [6]. These cooper 

pairs are coherent with one another as they pass through the conductor in unison. The 

correlation distance between the two electrons in the cooper pair is called coherence 

length (ζ) [7]. 

1.3 Types of Superconductors 

           

         Superconductors can be classified in to two groups, Type I and Type II based on 

their magnetic and current carrying properties.   
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1.3.1 Type I superconductors 

 

          Type I superconductors, also called soft superconductors, are mostly comprised of 

metals and metalloids. These are well modeled by BCS theory. They completely expel 

magnetic flux from their interior with the help of the surface currents.  Figure 1.1 shows 

the graph of induced magnetic field of a Type I superconductor versus applied field. 

When an external magnetic field is applied to a Type I superconductor the induced 

magnetic field exactly cancels that applied field until there is an abrupt change from the 

superconducting state to the normal state. Type I superconductors have only one very low 

critical magnetic field (Hc) [4]. Hence the practical applications of these superconductors 

are not feasible.  

 

 

 

 

Figure 1.1: Graph of induced magnetic field of a Type I superconductor versus applied 

field 
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1.3.2 Type II Superconductors 

 

         Type II superconductors, also called hard superconductors, are mostly comprised of 

metallic alloys and compounds. Figure 1.2 shows a graph of the induced magnetic fields 

of a Type II superconductor versus the applied field. Below the lower critical field (Hc1), 

the superconductor excludes all magnetic field lines. At field strengths between Hc1 and 

the higher critical temperature (Hc2), the magnetic flux partially penetrates into the 

material. When this occurs, the material is said to be in the mixed state [4].  In this 

region some of the areas shift to normal regions so that it can accommodate the flux line 

of the field. Above Hc2 the material returns to its normal state.  
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Figure 1.2: Graph of induced magnetic field of a Type II superconductor versus 

applied field 
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1.3.3 High Temperature Superconductors (HTS)       

 

         Three decades after BCS superconductors, a startling discovery reopened the field 

of superconductivity research. In 1986 at IBM in Switzerland, Bednorz and Müller 

discovered a new class of superconducting materials LaBaCuO (30 K) [8]. The following 

year, YBa2Cu3O7-x (YBCO) was discovered, which is superconducting at 90 K. showing 

a scope for use of superconductors at liquid nitrogen temperature (77 K). In the following 

years many superconductors were developed which had Tc above liquid nitrogen 

temperature. Notable among these were the Bi-Sr-Cu-O with Tc = 85 K [9] , Bi-Sr-Ca-Cu-

O with Tc = 115 K [10] , Tl-Ca-Ba-Cu-O with Tc = 125 K [11] and Hg-Ba- Ca-Cu-O with 

Tc= 135 K [12]. All these superconductors have copper oxide planes. Hence these are 

also known as cuprates or copper oxide superconductors. Of the four types of cuprates 

YBCO has the most potential for HTS applications. The performance of YBCO thin films 

in the presence of magnetic fields is far superior to bismuth based superconductors, due 

to the higher irreversibility line [13]. The irreversibility fields for Bi2Sr2Ca2Cu3Ox (Bi -

2223) and YBCO is illustrated in Fig. 1.3 [13] . Thallium and mercury based 

superconductors have higher Tc than YBCO, but they are not as attractive due to their 

toxic nature.   
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1.4 YBCO Crystal Structure  

 

         All high-Tc superconductors are related to pervoskites with layered structure, in 

which the presence of CuO2 layers plays a determinant role in their superconducting 

character. The carriers only move along these planes, while the other components act as 

charge reservoirs that regulate the charge density in the CuO2 planes. In the case of 

YBCO, each unit cell contains two CuO2 superconducting planes, separated by a plane of 

yttrium atoms, all sandwiched by two BaO layers, as shown in Fig. 1.4. The compound 

can present two possible symmetries, tetragonal or orthorhombic, depending on the 

amount and distribution of oxygen in the final Cu-O layers (charge reservoir) which close 

the cell. In the formula YBa2Cu3O7-x, if x is close to zero we have orthorhombic structure, 

which is superconducting. When x>0.5 we have tetragonal structure. The lattice 

Figure 1.3: Irreversibility fields for Bi-2223 and YBCO [13] 
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parameters for superconducting YBCO are:  a = 3.8227 Å, b = 3.8872 Å, c = 11.6820 Å 

[15]. The layered structured in YBCO leads to anisotropic behavior in this HTS material 

The conductivity along a-b planes is greater than that along c- direction, i.e Jc
ab >> Jc

c. 

Hence a c-axis oriented structure is needed for high-power applications [16]. 

 

 

 

 

 

a 

b 
c 

Cu2+, Cu3+ 

O2- 

Ba2+ 

Y3+ 

           11.6802 Å 

3.8872 Å 
3.8227 Å 

CuO chains 

CuO2 Planes 11.6820 Ǻ
 

Figure 1.4:  Schematic view of crystal structure YBCO showing CuO2 planes and   

            CuO chains [14] 
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1.5 YBCO Thin Films: 

 

        After the discovery of superconductivity in YBCO it was realized that, however 

bulk sintered ceramic, which are weakly coupled across the grain boundary, could not 

carry current more than that of copper, single crystal YBCO thin films showed high Jc, at 

77 K [17]. This was due to high angled grain boundary in case of bulk and polycrystalline 

substrate when compared to thin films [18]. It was found that the upper limit for grain 

misorientation for good Jc is ~ 5° [19] .  Very high critical current densities, (Jc > 106 at 

77 K) can be achieved in thin films, making YBCO a promising material in the future for 

high power applications. However, preparation of these thin films with desired qualities 

is a challenging problem for every processing method as discussed in the following 

section. 

 

1.5.1 Architecture of Coated Conductor 

          

         The HTS coated conductor to be used as second generation wire consists of a thin 

flat metal foil or polycrystalline metal on top of which a buffer layer is deposited, over 

which the epitaxial YBCO thin film is grown followed by the final silver layer as shown 

in Fig. 1.5 . There are two main approaches to attain long length coated conductors with 

high critical current densities. The first one is deposition of biaxial textured buffer layers 

on a polycrystalline metal substrate using deposition techniques such as ion beam assisted 

deposition (IBAD) [20] or incline substrate deposition (ISD) [21]. The second method 

involves first the fabrication of biaxial textured metal surface using rolling assisted 
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biaxially textured substrate (RABiTS) method, followed by the deposition of epitaxial 

buffer layer which gets the biaxial texture of the substrate. The buffer layer principal 

functions are: (i) to provide epitaxial growth of YBCO layer and (ii) act as barrier for 

chemical diffusion between superconducting layer and the substrate. The final 

superconducting layer can be grown using different techniques, which will be discussed 

in the following section.   

 

 

 

1.5.2 Fabrication of YBCO Thin films 

 

       The fabrication techniques used to make the final YBCO layer can be broadly 

classified into two classes, in-situ and ex-situ. In the case of in-situ, crystallization of 

oxides occurs during deposition on a heated substrate where as in ex-situ nucleation and 

growth occur during post-deposition heat treatment. Both of these methods are capable of 

producing thin films with good transport properties.  

YBCO 

Buffer 

Layer 

Silver 

Metal 

Substrate 

Figure 1.5: Typical architecture of YBCO coated conductors [19]  
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         In-situ film growth techniques like pulsed laser deposition (PLD), molecular beam 

epitaxy (MBE), thermal co-evaporation and sputtering have been successfully used for 

the synthesis of epitaxial YBCO [19]. Among these vacuum based methods, the PLD 

technique developed by Los Alamos National Laboratories (LANL) [19] and University 

of Goettingen in Germany [24] is widely used. In this method, YBCO targets are 

vaporized or ablated by a laser source; these vapors are then deposited onto a substrate at 

about 800 oC in a low pressure atmosphere containing O2 – N2 mixture [25]. Since PLD 

method involves transfer of YBCO from a target source to the substrate surface, the 

stoichiometry of the target can be preserved in these films. These films have excellent 

compositional homogeneity [27].   Jc values higher than 1 MA/cm2 at 77K were observed 

in films fabricated by this method with high reproducibility [28]. The cost of scaling up is 

a challenge for this approach, which includes the cost of lasers, tubes, windows, gases, 

high-vacuum systems and HTS targets. A lower vacuum and potentially low cost 

technique called Metal Organic Chemical Vapor Deposition (MOCVD) was developed 

by Fujikura [29] and IGC superpower [29]. In this method, a volatile precursor 

compound is evaporated and carried to a heated substrate using a carrier gas, where the 

film growth occurs due to chemical reactions at the substrate surface [31]. The commonly 

used precursor compounds are Y(TMHD)3, Ba(TMHD)2, Cu(TMHD)2 where TMHD 

stands for 2,2,6,6-tetramethyl-3-5 Heptanedionate or β – diketonate. These compounds 

are mixed in an organic solvent that consists of tetrathydrofuran (THF), isopropanol and 

tetraglyme to form the final precursor solution. The application of this precursor coating 

is carried out at temperatures between 600 - 800 oC using a nitrogen carrier gas [25].  

Deposition rates as high as 150 Å/s have been obtained by this method with Jc~ 1 
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MA/cm2 [32]. The deposition area in this method is limited by the area of the 

showerhead, which is unlimited [30]. This technique too has some challenges including 

(i) uniformity in the film over larger areas (ii) the cost incurred for the complex raw 

materials to prepare the precursor (iii) film composition due to its sensitivity to substrate 

temperature and (iii) equipment cost.  

 

         Liquid phase techniques could be an alternative to vapor phase approaches due to 

the simplicity of the deposition process, vacuum less procedure, efficient use of all 

precursor material, and the relatively low cost of the furnaces needed to react the 

precursor to the superconducting state [13]. One of the liquid phase techniques, 

metalorganic deposition (MOD) process holds great potential as a method of fabricating 

YBCO thin films. It is a fast and efficient method of producing large-scale, biaxially-

textured superconducting films at lower cost than physical and chemical vapor deposition 

techniques [33]. However, in most MOD processes except one, Jc over 1 MA/cm2
 
(77 K, 

self-field) is seen rarely in these films [[32]. The poor transport properties are attributed 

to the stability of BaCO3
 

which forms as an intermediate compound during 

decomposition of carboxylates [33]. The MOD process using Metal trifluoroacetate 

(TFA) precursors is an exception. This approach avoids the formation of BaCO3 during 

decomposition. Initial investigation of TFA-MOD process was conducted by Gupta et al. 

in 1988 [34]. Afterwards, McIntyre et al. first reported high Jc (> 1 MA/cm2) for YBCO 

film using the TFA-MOD process [35]. This is an effective method of producing large-

scale, bi-axially textured superconducting films at lower cost than any other method to-

date [36]. However, it has some inherent drawbacks [37]: (i) it needs a very careful 
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optimization of heating rates, and very long processing times are needed and (ii) it 

releases highly corrosive HF during processing which is not only an environmental 

concern, but also the cause of significant porosity in the final film.  It will therefore be 

beneficial to investigate an alternative liquid phase approach that can fabricate films of 

these oxides without the drawbacks listed above. To start with nanoscale particles 

containing the constituent ions (Y-Ba-Cu-O) may be an attractive option. By starting with 

oxides of cations rather than fluoroacetates, gaseous by-products could be significantly 

reduced or completely eliminated. Nanoscale particles having higher surface area are 

expected to crystallize more easily at lower temperatures and at faster rates. We have 

developed a new method in collaboration with Metamateria Partners LLC, a company in 

Columbus that specializes in nanoscale processing of oxides. This new synthesis route 

called Nanoparticle process use the colloidal dispersion of Y-Ba-Cu-O nanoparticles as 

precursors. 

 

         The second approach i.e. fabrication of YBCO films using nanoparticle of Y-Ba-

Cu-O in a colloid form, was developed by our group and no prior publication exists in the 

literature. The first approach (TFA-MOD) has been developed over the last few years and 

current state of knowledge in this field has been discussed in the following section. 

 

1.5.3 TFA-MOD Process 

 

         Gupta et al. [34] have first introduced TFA-MOD method for the fabrication of 

YBCO thin films. The idea of using metal trifluoroacetates originated from studies of 
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Mankiewich et al. [38], where they successfully used BaF2 in place of other Ba 

compound for fabrication of superconducting thin films using co-evaporation technique. 

Textured YBCO with sharp transition of Tc (R=0) = 94 K was reported by Gupta et al. 

[34] using this method.  Several years later in 1991, McIntyre and Cima reported critical 

current densities over 1MA/cm2 with Tc above 90 K [35]. Since then many research 

groups have reported high Jc’s on single crystal and metal buffered substrates [42].  

 

         In the TFA-MOD method, the precursor solution is obtained by reacting aqueous 

solution of metal (Y, Ba and Cu) acetates with stoichiometric quantities of trifluoroacetic 

acid (TFA), then drying followed by mixing with methanol. The precursor is light blue in 

color before mixing with methanol, after which it turns deep blue. The blue color is 

mostly from the copper ions. The substrates can be either spin coated or dip coated to 

obtain a gel film. The gel film is calcined at 400 oC in humid oxygen atmosphere for long 

periods to get the precursor film. It mainly involves the decomposition of metalorganic 

salts to oxyfluoride intermediate states. These chemical reactions results in > 50% 

decrease in thickness and an increase in the internal stresses of the films. In order to 

avoid the cracking in the film due to these stresses a very slow calcining profile has to be 

used (~20 hrs). During the calcining process the fluorine replaces oxygen linked to Y and 

Ba as it very electronegative, whereas carbon cannot replace oxygen hence it is expelled. 

The calcined films are fired at 800 oC in a humid furnace atmosphere, where the 

intermediate films are converted to crystalline, superconductive Y123 films.   
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         Several groups have investigated the complex reactions during the calcining and 

firing stages [41-44]. Gupta et al have reported that all the metal trifluoroacetates 

decompose around 300 oC in argon atmosphere. The weight loss and high temperature x-

ray analysis has shown yttrium and barium trifluoroacetates decompose to respective 

fluorides, YF3, BaF2 and whereas copper trifluoroacetate forms a mixture of CuO, Cu2O, 

CuF2 [34]. Smith et al. [44] has reported the intermediate compounds of Y2Cu2O5, BaF2, 

and CuO after calcination using high temperature x-ray study and fluorine removal study. 

Araki et al. [43] reported that the precursor mainly consists of CuO nanocrystallite and 

amorphous matrix of Y-Ba-O-F or Y-Ba-Cu-O-F using TEM energy dispersive x-ray 

spectroscopy. The pyrolysis mainly occurs in the temperature zone of 250–300 oC. 

TGA/DTA analysis has shown that exothermic reactions occur during this period and 

most of the weight loss and shrinkage occurs during this stage [45]. . McIntyre et al. [35] 

reported that Cu in the gel film sublimes as copper trifluoroacetate when the humidity is 

low during the calcining process. Araki et al. [36]  has observed the same thing using TG-

DTA results.  The average size of CuO nanocrystallites in a precursor grows during 

heating between 200 – 250 oC in the calcining process creating localized inhomogeneities 

in the composition of the film [45]. The grain growth of these CuO nanocrystallites can 

be decreased by increasing the humidity in the firing process. The overall reaction that 

occurs during crystallization can be represented by the following equation [44] 

 

                 ½Y2Cu2O5 + 2BaF2 + 2CuO + 2H2O → YBa2Cu3O6.5 + 4HF. 
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         Humidified argon gas mixed with 50-500 ppm oxygen gas is used to remove the 

fluorine from the film. To understand the firing process, Araki et al [42]  defined a quasi-

liquid consisting of Y, Ba, Cu, O, H, and F, which exits for certain atomic composition.  

YBCO grains precipitate out from this liquid onto a lattice matched substrate surface 

while releasing HF gas. The reaction has to be precisely controlled to get the epitaxial 

nucleation of YBa2Cu3O6.5. The HF removal from the surface of these film limits the 

growth of the YBCO grains [45]. Tokunaga et al. [48] claimed that the removal of HF 

from the film results in a macroporous film.   The film is oxygenated at 450 °C for couple 

of hours to transform non-superconducting tetragonal YBCO to superconducting 

orthorhombic YBCO superconductor. The conversion of precursor film to final film 

results in > 50% reduction in thickness of the film causing further pores and shrinkage at 

this stage.  

 

         Though high Jc films have been fabricated with good reproducibility using this 

method, there are some challenges associated with it: (i) the long processing time 

required to burn out the organics during the calcining process (ii) high porosity in the 

final film due to the gases evolved during the whole process of fabrication (iii) evolution 

of highly corrosive HF gas during the firing and handling of this gas during large-scale 

processing is a big problem and (iv) difficulty in fabrication of thick YBCO films (2-5 

µm) without considerable decrease in Jc. The first two problems may be addressed if we 

have a fundamental understanding of the chemical reactions during calcining and firing 

process.  Although there are many studies on the chemical reaction and growth 

mechanisms using thermal techniques, several aspects of it still are not understood [44], 
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[46]. X-ray Photoelectron Spectroscope (XPS) can be used to study chemical reactions 

that occur during calcining and firing of the film.  No reports on x-ray photoelectron 

spectroscopy (XPS) investigation for the TFA-MOD process have been reported to date. 

A systematic study on the effect of heating rate during the calcining process on the 

microstructure, surface chemistry and electrical properties would be helpful in having an 

understanding to control the microstructure and film properties on these superconducting 

films. This study has been done by this group. 

 

         An approach using nanoparticles of yttrium, barium, copper cations as starting raw 

material has been developed in collaboration with Metamateria LLC a company in 

Columbus that specializes in nanoscale processing of oxides. This process may result in 

lower porosity as gaseous by-products can be significantly reduced, and it is expected 

that the use of nanoparticles might lower the processing temperature and time. This 

method has been termed as nanoparticle method in this thesis.  
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1.6 Objective of the Thesis 

 

         The work of this thesis is divided into two tasks. 

Task 1: To have fundamental understanding of the TFA-MOD process. Spectroscopic 

and microscopic analysis will be performed in conjunction with electrical properties 

measurement in order to study the changes going on during the calcining and firing 

process in  the TFA-MOD method. The effect of heating rate during the calcining on final 

film properties will also be studied. 

 
Task 2: To develop an alternate method to the TFA-MOD process. Nanoparticle of Y-Ba-

Cu-O in a colloid form will be used as precursor solution. A process has to be developed 

form a dense, epitaxial film using nanoparticle precursor solution. The properties of these 

Nanoparticle processed film will be compared to that that of TFA-MOD processed 

sample. 
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2.  EXPERIMENTAL PROCEDURES 

 

         This chapter gives a detailed description of sample fabrication using the TFA-MOD 

and Nanoparticle methods as these are the main techniques which have been used in 

thesis work. The characterization techniques used throughout this thesis are also 

discussed briefly.   

 

2.1 TFA-MOD Method 

2.1.1 Substrate Preparation 

 

         Lanthanum aluminate was used in this study due to its close lattice match with the 

YBCO crystal. 10 mm x 10 mm x 0.5 mm, (100) oriented, single-side polished lanthanum 

aluminate (LAO) single crystal substrates were obtained from Coating and Crystal 

Technology. The substrates were sliced into small pieces with dimensions of 5 mm x 10 

mm using a diamond stylus. These substrates have been cleaned before they were used 

for film fabrication. A three step cleaning procedure is followed as it is very critical in 

getting good films. The substrates were first ultrasonicated in chloroform for 15 minutes 

followed by ultrasonication in acetone for 15min and finally ultrasonication in methanol
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Before dip coating or spin coating these cleaned substrates were checked with the optical 

microscope to make sure that the surface was spot free. 

  

2.1.2 Synthesis of Precursor Solution 

 

        A typical synthesis process for preparation of the precursor solution is given in 

figure 2.1. Acetates of yttrium, barium and copper are mixed in the molar ratio of 

1:2:3.05 in deionized water using a glass rod. A stoichiometric quantity of TFA is added 

to this solution and mixed using a magnetic stirrer until all the acetates have dissolved 

into the solution. The solution thus obtained is dried overnight at 125o C in a box type 

furnace to obtain a glassy blue gel residue. The residue is dissolved in sufficient methanol 

to give a cationic solution with concentration of 1.0M. The color of this solution is a deep 

blue from the Cu2+ ions. When this solution is left alone over-night, a thick residue is 

observed at the bottom of the beaker. Care has been taken such that only the clear 

solution is transferred from the beaker and used for experiments. The solution thus 

obtained seems to have very long shelf life time in a closed bottle at room temperature. 

 

2.1.2 Precursor Coating  

 

         Deposition of the TFA precursor onto the single crystal substrate can be done using 

a variety of techniques used for industrial film-coating processes. The processes which 

are being considered for commercialization are dip coating and slot die casting.  In this 
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thesis, the samples were prepared mostly by dip coating. In very few cases spin coating 

was used. The description of the dip coating method is given in figure 2.2. 

 

                         

 

           

Dipping Wet Layer Formation Solvent Evaporation 

Substrate 

Coating 
Solution 

Coating 

Figure 2.2: Dip Coating Process for preparing the Precursor film 
 

      Y (OCOCH3)3       Ba (OCOCH3)3        Cu (OCOCH3)3 

H2O 

Solution 

TFA metal: CF3COOH=1:1 

Light Blue Glassy gel 
with impurities 

Dried at 120oC  

Solution with impurities 

CH3OH 

Pure Coating 
Solution 

Purification of solution 

Figure 2.1: Process for preparing the Precursor coating solution [37] 
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2.1.3 Calcination of the Precursor Film 

 

         Calcination of the precursor film is needed to decompose the metal organics and 

burn out the impurities in the precursor to result in a film containing Yttrium, Barium and 

Copper compounds.  

        

         Calcination of the as-deposited film is done in a mullite horizontal tube furnace. 

The experimental setup for this process is shown in figure 2.3. The sample is placed 2-3 

cm from the center in the horizontal mullite tube, as the homogenous temperature zone is 

within this range. The temperature of the sample is monitored by a K-type thermocouple 

mounted along the centerline of the furnace with its tip located above the sample. The 

humidified gas required during the process is obtained by passing the gas through de-

ionized water contained in three 500 mL conical flasks which are arranged in series as 

shown in figure 2.3. Care was taken to prevent the release of HF vapors in air by purging 

the outgoing gas through de-ionized water and exhausting into the hood.   

 

         The heating program during this process was optimized by our group, details of 

which are given elsewhere [37]. The optimized heating profile is given in figure 2.4. The 

heating profile was programmed using a Eurotherm temperature controller. Dry oxygen 

was used until 110o C to avoid water absorption into the sample. The gas flow rate was 

controlled at 2 L/min through out the process using a gas flow meter. Humid oxygen gas 

was used in the process to suppress the sublimation of copper oxide. After the furnace 

reaches 400o C, gas flow is stopped and the sample is furnace cooled. Typically the 
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sample is removed from the furnace when the temperature is less than 100o C. and the 

calcined film looks light brown in color. 

 

 

 

 

Figure 2.4: Heating Profile for Calcination of the TFA-MOD film [37] 

O2 gas 

Ar/O2 gas 

Humidifier 
 Gas valve 

Sample 

Mullite Tube 

Figure 2.3: Experimental Setup for the fabrication of YBCO superconductor 
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2.1.4 Firing of the Film            

 

         The calcined film is fired at 800o C in humid atmosphere with low oxygen vapor 

pressure. An Ar/O2 mixture with 200ppm of O2 is used here. The firing program used in 

this study is given in figure 2.5. During the heat treatment, a mixture of dry Ar/O2 gas 

was used until 400o C to avoid the condensation of moisture inside the furnace near the 

sample. After that, a humid Ar/O2 mixture was used until 800o C. The flow rate is 

maintained at 2L/min using the gas flow meter throughout the process. An earlier 

publication indicates that humid gas is used to convert metal oxyfluoride to oxides [46]. 

The furnace was maintained at 800o C for 60 minutes for the conversion of fluorides to 

oxides and subsequent growth of YBCO. The furnace is slowly cooled to 450o C at a rate 

of 3o C/min in dry Ar/O2 mixture until 525o C and thereafter by dry O2 gas. The sample 

was annealed in the dry O2 atmosphere at 450o C for 90 min to convert non-

superconducting tetragonal YBCO to superconducting orthorhombic YBCO.  After the 

program is completed, the furnace was switched off, gas flow was turned off and the 

sample was furnace cooled to room temperature. The final film should be black and 

shiny.  

 
Figure 2.5: Heating Profile for Firing of the TFA-MOD film [37] 
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2.2 Fabrication using Nanoparticle Method 

 

         This approach is completely initiated by our group and no prior publications exist 

to use as a starting platform. Therefore, optimization and trials for this method were little 

more challenging. The procedures for this method are outlined in the following sections. 

 

2.2.2 YBCO Nanoparticle Synthesis 

     

         Colloids containing YBCO nanoparticles were used as precursors. These were 

obtained from a Metamateria Partners LLC (our collaborator in this project). 

Nanoparticles containing Y, Ba, Cu and O are prepared by using an organometallic 

decomposition route (Fig. 2.6). 

 

 

Figure 2.6: Synthesis of YBCO nanoparticles using the organometallic decomposition 

method 
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         The color of the colloid varied from dark green to blue depending on the 

concentration. The size of the nanoparticles obtained viewed by AFM showed was < 20 

nm which is shown in Fig.2.7and 2.8. 

 

 

 

 

Figure 2.8: AFM analysis on film fired till 400 oC (Courtesy Dr Xioming Hu, WSU) 

20 nm 

Figure 2.7 : AFM Line scan generated on a particular area on ybco nanoparticle film.  

Grain size ~ 20 nm 
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        Coatings were applied on LAO either by dip coating or spin coating. Dip coating is 

similar to that discussed in section 2.1.3. Spin coating is done on a custom made spin 

coater. The sample is held firmly at the centre of the spin coater with help of double stick 

tape. The whole set-up is kept in the hood in order to avoid contamination on the film. 

The spin coating speed is fixed at 3600rpm. The spinning time depends on the desired 

thickness and viscosity of the colloids. The typical spinning time varies from 2 - 3 

minutes.  

 

2.2.3 Heat Treatment 

 

         The as-prepared film is subjected to two separate heat treatments in horizontal 

mullite tube furnace as shown in Fig. 2.3. The experimental setup for this heat treatment 

is similar to that of TFA-MOD heat treatment (Fig. 2.3), but the rate of the first heat 

treatment is much higher. This is one of the expected advantages of this approach and 

will be elaborated later. 

 

         During the first stage of heat treatment, the sample is subjected to 400o C 

temperature following the heating program given in Fig. 2.9. In this program a slower 

ramp rate from 200o C to 300o C was used as it was observed from DTA measurements 

that around 250o C there was an exothermic reaction which also resulted in major weight 

loss. It is believed that the weight loss is mostly due to evaporation of the 1, 4 butanediol 

solvent. The sample was heated till 110o C in dry O2 in order to avoid condensation of 

water vapor. Humid O2 was used there after till 400o C to avoid copper oxide sublimation 
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and to prevent the loss of film integrity. The flow rate of gas was maintained at 2 L/min 

throughout the process. After the temperature of the furnace reaches 400o C, gas flow is 

switched off and the furnace is left to cool down to room temperature. The film is taken 

out and checked for its uniformity and defects, if present. The total heat treatment time is 

less than 6 hr as compared to the 20hrs of calcination in the TFA process.  

 

        The second heat treatment profile is same as that is used by TFA firing process. A 

detailed description of this process was given in sec 2.1.4.              

 

 

         The texturing of the film was characterized using XRD and Surface morphology 

was studied using SEM. The chemistry and electrical properties of the samples was 

studied using XPS and four point dc current-voltage method respectively. 

Figure 2.9: First stage heating profile for the Nanoparticle process. Note that the 

slower heating rate step (200 oC – 300 oC) in this case is 60 times less than that in 

figure 2.6. 
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2.3 Characterization Techniques 

 

        Different characterization techniques were used in this study. X-ray Photoelectron 

Spectroscopy (XPS) was used to study the surface chemistry, x-ray Diffraction (XRD) 

was used to study the crystallographic orientation, Scanning Electron Microscopy was 

used to study the surface morphology and Four-point method was used to study the 

electrical properties of the films. A brief introduction of these techniques is given below. 

 

2.3.1 X-ray Photoelectron Spectroscopy (XPS) 

 
         XPS not only identifies the element present on the top few atomic layers but also 

indicates their chemical bonding states; hence it has been used in this study for studying 

the chemistry of the samples. The basic working principle of XPS is depicted in figure 

2.10. In this process a photon of known energy interacts with the sample surface causing 

in ejection of electron from it, the kinetic energy of this outgoing electron is by related to 

the original binding energy of that particular electron by the equation given below. 

 

                                                   

        

 

         The binding energy of a particular electron is its characteristic property and 

therefore the measurement of kinetic energy of that particular photoelectron will enable 

the identification of the elements. These photoelectrons are detected by an electron 

spectrometer. The analyzer is normally operated as energy “window”, accepting only the 

EK = hν - EB 
 
where,    EK= Kinetic Energy 
              
               EB= Binding Energy 
 
              hν = Photon Energy 
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electron having energy within the range of this fixed window (pass energy). The electrons 

are detected as discrete events and the number of electrons for a given detection energy 

and time is stored digitally [49].    

                         

 

 

         All the XPS experiments during this study were done using an AXIS ULTRA from 

KRATOS ANALYTICAL Inc (Figure 2.11). Monochromatic Aluminum X-rays are used 

as the photon source in this instrument. The system consists of two chambers: sample 

transfer chamber (STC) and sample analysis chamber (SAC), which are separated by a 

gate valve. The sample is mounted on a stub using a double stick carbon tape. The 

mounted sample is first introduced into STC and left there until the pressure in that 

chamber reaches 1 x 10-7 Torr. The gate valve is opened to transfer the sample from STC 

to SAC. The typical pressure in the SAC is around 10-9 Torr. A charge balance of 2.62 V 

was kept for charge neutralization. A high voltage of 14 KV and current of 10 mA is 

applied on the filament to produce the required X-rays. The analyzer was operated with 

 

Binding 
Energy 

Figure 2.10: Photoelectric Effect in XPS 
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X-ray (photon) 

Photoelectron 

Efermi level 



 30 

the entrance slot placed and fixed pass energy of 40 eV. An 8-channeltron multi-detector 

was used to amplify and record the signal. Analysis on the sample is averaged on 110µm 

x 110µm area. A plot of electron pulses versus the analyzer energy range gives the 

photoelectron spectrum, which is then stored into a UNIX based computer. The obtained 

spectrum was processed using vision 2.0 software.      

 

        In most of the cases the samples need to be cleaned to remove the contamination 

from the top surface. The sample is etched by 3 KeV Ar+ ion bombardments using an ion 

gun. The pressure is maintained at 3 x 10-8 Torr in SAC during the etching process. The 

spot size of the ion beam is 650µ. 

 

                  

 

 

Figure 2.11: XPS AXIS ULTRA from KRATOS ANALYTICAL Inc. 
(funded by NSF and OBR) 
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2.3.2 Scanning Electron Microscope (SEM) 

 

         Scanning electron microscopy is a commonly used technique in the material 

characterization. A focused electron beam is rastered over the sample surface; due the 

interaction of this electron beam and the sample surface several emissions are observed 

[50]. Among these secondary electrons and back scattered electrons are used to form the 

image on the cathode ray tube by mapping the intensity of the detected signal as a 

function of the position of the incident beam .  

          

         Scanning Electron Microscope used in this study is a JOEL 35-CF (fig 2.12). 

Typical operating voltage is 15 kV. Secondary electron images were obtained keeping the 

working distance at around 15 mm to get a better image. No sample preparation was 

done. There is an Energy Dispersive X-ray Diffraction (EDX) attached to the SEM to get 

the elemental information. The SEM was used to check the grain structure, grain 

orientation, porosity, secondary phases, and film homogeneity. Cross-sectional SEM 

provided the estimate of the thickness of the deposited film. 

 

 

 

 

 

                              

 
 

Figure 2.12: JSM 35-CF Scanning Electron Microscope from JOEL USA Inc 
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2.3.3 X-Ray Diffraction (XRD) 

 

         XRD is a widely used technique for the crystal structure analysis and for the 

identification of secondary phase in the sample. The basic working of XRD is governed 

by Bragg’s law. Bragg’s law assumes that crystals are built up in layers or planes and are 

spaced at a distance ‘d’ apart. When an X-ray is incident on these planes, they diffract or 

reflect, and these reflected rays interfere constructively if they satisfy the Bragg’s law. 

 

         Where θ is the angle of incidence of X-rays, λ is the wavelength of X-rays, n is the 

order number of the reflection. From the values of θ, λ, and n the value of d is obtained 

and we can obtain the crystal orientation from these ‘d’ values. The schematic 

diffractometer geometry is show in fig 2.13. 

          

         Philips PW 1830 XRD was used in these studies. Cu Kα having a wavelength of 

1.5418 generated by applying 45 kV and 35 mA on the source are used as the X-ray 

source. X-rays are diffracted from the sample and by varying the angle of incidence of X-

rays a diffraction pattern is obtained that is characteristic of the sample. The diffraction 

pattern peaks are identified with an internationally recognized database. No sample 

preparation is required in this case.  

 

 

 

 

2d Sin θ = nλ [50] 
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2.3.4 Measurement of Superconducting Properties 

 

         The superconducting properties, critical current(Ic) and critical temperature (Tc) of 

the specimen are measured using the four point probe method. A schematic diagram of 

the four point probe with the sample is shown in Fig. 2.14. Indium wire is used at the 

edges of the specimen for better contact with the copper plates. The probe is immersed in 

liquid nitrogen. In the case of measurement of critical temperature (Tc), liquid nitrogen is 

slowly evaporated and the change in voltage with respect to temperature is acquired. A 

LabVIEW program is used to convert this data to get a final plot of Resistance Vs 

Temperature, which gives the value of Tc. In the case of measurement of critical current 

the temperature is kept constant and the current is varied, voltage is plotted against the 

2θ 

θ 

X-Ray Tube 

Specimen 

XRD Detector 

Figure 2.13: Principle of an X-ray Diffractometer 
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current to get the critical current. The current is increased at 0.1 A per step during the 

measurement of Ic. 1 µV/cm criterion is used to determine Ic. The distance between the 

voltage taps is 3 mm, 4 mm for Tc and Ic measurements respectively. The transport 

critical density of the sample was calculated by dividing the Ic by the cross-sectional area 

of the sample, which is measured using a microscope.  
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Figure 2.14: Illustration of the four point probe for the measurement of transport 

properties 
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3. RESULTS AND DISCUSSION 

3.1 Fundamental Studies to understand the Evolution of YBCO from 

Metallic TFA Precursors 

3.1.1 XPS Studies on TFA – MOD Process  

 

         XPS analysis was done on samples at every step of the calcining and firing 

processes so as to have a fundamental understanding of the chemical reactions that occur 

as the precursor evolves to a crystalline superconducting film.  

 

         Figure 3.1 shows the comparison of C 1s XPS spectra obtained on the films before 

and after the calcining process. Before calcination, the C 1s has several components. The 

component occurring at 292.5 eV is due to the –CF
3 

group, while the one at 289.2 eV is –

COOH. After calcining process these two components become weak, indicating 

decomposition of fluoroacetates group during calcination. The third component of C 1s 

peak is observed at 284.7 eV on films both before and after calcination and can be 

attributed to the C-O-R and/or the atmospheric contaminants absorbed during sample 

transfer. Figure 3.2 shows the F 1s spectra obtained on the films before and after 

calcination. The F 1s spectra for the samples before calcination have two components, a 

high binding energy at ~ 687.9.0 eV representing the CF3 bonds and a low 
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binding energy at 684.5 eV, which can represent either BaF2 or CuF2. It has been reported 

by various groups [49, 51, 52] that the binding energy of BaF2 ranges from 683.7 to 684.2 

eV and CuF2
 [49] ranges from 684.3 to 685.9 eV. However, the 684.5 eV peak is not 

attributed to CuF2 as Cu 2p3/2 peak does not indicate any presence of Cu-F bonds. Hence 

that peak has been attributed to BaF2. After calcining there is only a single peak at 684.1 

eV which represents Ba-F.  

 

         Figure 3.3a shows the Y 3d spectra before and after calcination. For a film after 

calcination, the binding energy of the Y 3d3/2 peak is 158.0 eV, which less than that of 

YF3 (159 eV) [51], [54], [55], but greater than that of Y2O3 (156.5 eV) [49, 51]. Araki et 

al. has reported the formation of amorphous YOF compound during calcination [36]. So 

we assumed that 158 eV peak represents oxy-fluoride of Y3+ ion. This is further 

supported by earlier study by Rizhkov et al [55] where a binding energy of 157.6 eV was 

reported for a Y-O-F component, which is close to that measured in this instrument.  

Moreover, F in Y-O-F has a reported binding energy of 685.3 eV [55], which could be 

within the envelope of the larger BaF2 peak.  Figure 3.3b shows the Ba 3d peak for films 

before calcination and after calcination. The Ba 3d XPS spectra shows a strong peak at 

780.6 eV for the film before calcination which is representative of Ba (CF3COO)2. The 

Ba 3d5/2 peak at 779.8 eV in case of calcined sample has been associated with BaF2. 

 

         XPS analysis was done on samples at the early stage of firing (after the sample 

reaches 800o C) and after firing. Figure 3.4a and b shows the Ba 3d, F 1s peaks for these 

films respectively. The Ba 3d5/2 XPS spectra for samples in early stages of firing shows a 
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peak at 779.8, associated to BaF2 while the fired sample peak is at 778.5 which is 

attributed to BaO in an YBCO structure. The F 1s peak for the case of sample in the early 

stage of firing represents the BaF2. As the film is fired this peak diminishes. This 

indicates that after firing, all the fluorine is eliminated leaving a textured YBCO film. 

 

         In summary it has been observed from these XPS experiments that all the acetates 

and fluorocarbon groups were removed after calcination process. The calcined film 

mainly consists of Y, Ba, Cu, O, and F, where Yttrium is present as Y-O-F, Barium is 

presents as BaF2, and Copper is in form of CuO. During the early stages of firing, Barium 

is still in fluoride form but after firing all the fluorine is eliminated as HF gas leaving 

Barium in oxide form in the final film. 

 

 

 

Figure 3.1: XPS spectra of C 1s obtained on the films before and after calcination.  
 

C 1sBefore Calcination

After Calcination

C 1sBefore Calcination

After Calcination
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Figure 3.2: XPS spectra of F 1s obtained on the films before and after calcination.  
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Figure 3.3a: XPS spectra of Y 3d obtained on the films before and after calcination.  
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Figure 3.3b: XPS spectra of Ba 3d obtained on the films before and after calcination.  
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Ba 3d
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Figure 3.4a: XPS spectra of Ba 3d obtained on the films early stages of firing and 

after firing.  

Ba 3d5/2 
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3.1.2 Effect of Heating Rate on Films Fabricated using TFA-MOD Method 

          

         The removal of organics is a crucial step during the first treatment of the film. Two 

parameters which were found to have influence on this are heating rate and atmosphere. 

The effect of calcination heating rate on the microstructure and electrical property of the 

final film has been investigated. It has been reported that the most critical step during the 

calcination is the 200 oC – 250 oC step [35, 46].  Three different heating rates, 1.5 oC/hr, 

3 oC/hr and 10 oC/hr were used during this step to study the effect of it on film properties 

and in turn optimize the TFA – MOD method.   

           

         XPS analysis was done on all three samples and it was observed that the heating 

rate did not change the overall chemistry of the films (Fig. 3.5). The surface 

F 1s
Early Stage of Firing 

After Firing
F 1s

Early Stage of Firing 

After Firing

Figure 3.4b: XPS spectra of F 1s obtained on the films early stages of firing and after 

firing.  



 41 

morphologies of the calcined films heat treated at 1.5 oC/hr, 3 oC/hr, and 10 oC/hr are 

shown in Fig 3.6a,b and c respectively. The films calcined at the slowest rate (1.5 oC/h) 

have a granular surface (Fig. 3.6a). It was reported that most of the Cu in the precursor 

films converts into CuO nanocrystallites during the calcination process [36]. So when a 

slower heating rate (1.5 oC/hr) was used CuO crystallites had sufficient time to separate 

out as a second phase, which can be observed from the micrograph (Fig 3.6a). In case of 

the intermediate heating rate (3 oC/hr), a smooth and uniform surface was obtained (Fig. 

3.6b). The film calcined at 10 oC/h showed an uneven surface with porous features (Fig. 

3.6c), possibly due to rapid the escape of HF gas.  

 

         These calcined films were fired to 800 oC following the heating profile given in Fig. 

2.5. Surface morphologies of fired films are shown in Fig. 3.7a, b, and c. Figure 3.7a 

shows the microstructure of the fired film which was calcined at 1.5 oC/hr. The surface 

has lot of a-axis oriented grains which can characterized by the presence of columnar or 

needle like structure. Large white particles are also observed which were found to be 

copper rich zones. The microstructure observed in the case of 3 oC/h heated films was 

smooth, uniform, and c-axis oriented (Fig. 3.7b). In case of the faster calcined sample no 

a-axis oriented grains were observed (Fig. 3.7c), however these films had bigger pore 

size and high pore density when compared to that of 3 
o
C/h calcined sample. Critical 

temperature was measured on all three samples. The Tc’s at R=0 (~ 88 K) were found to 

be same for all the three samples (Fig. 3.8). When critical current densities were 

measured on all three samples it was found that the 3 oC/hr treated sample had the highest 
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Jc of 1.3 MA/cm2. XRD of this 3 oC/hr treated final film shows that the film obtained is 

c-axis textured (Fig. 3.9). 

 

          The influence of heating rate during the calcining process on film chemistry, 

microstructure, and electrical properties has been investigated. It can be seen that the 

heating rate does not change the overall chemistry of calcined films. Surface morphology 

of the calcined films depends on heating rate. The 3 oC/hr calcined film resulted in a 

uniform, smooth calcined film and well textured final YBCO film. Heating rates had no 

significant effect on critical transition temperature (Tc), however critical current density 

(Jc) was found to be higher for 3 oC /hr treated sample. The total process time for the 

optimized TFA-MOD is 28 Hrs. There is significant porosity observed in the final YBCO 

films. The critical current density, Jc = 1.3MA/cm2 and critical temperature, Tc = 88.5 K 

were observed in this optimized film. 

 

Figure 3.5 XPS survey scan for calcined films heated at different rate 
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Figure 3.6a: Microstructure of calcined sample heated at 1.5 oC/hr during the 200 – 

300oC  step. 

Figure 3.6c: Microstructure of calcined sample heated at 10 oC/hr during the 200 – 300 

oC  step. 

Figure 3.6b: Microstructure of calcined sample heated at 3 oC/hr during the 200 – 

300oC  step. 
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Figure 3.7c: Microstructure of calcined sample heated at 10 oC/hr during the 200 – 300 

oC  step. 

Figure 3.7a: Microstructure of calcined sample heated at 1.5 oC/hr during the 200 – 

300 oC  step. 

Figure 3.7b: Microstructure of calcined sample heated at 3 oC/hr during the 200 – 300 

oC  step. 
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Figure 3.9: XRD pattern of YBCO film deposited by using TFA-MOD method.  The 

film was heat treated at 800 oC.   

Figure 3.8: Temperature dependence of the electrical resistivity for YBCO films 

calcined at different heating rates.  
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3.2. YBCO Nanoparticle Method  

3.2.1 Overview 

 

         As discussed earlier, the inherent problems in TFA-MOD process are the porosity, 

long process time and evolution of highly corrosive HF gas. An alternate approach 

starting with nanoparticles of Y-Ba-Cu-O as precursor was initiated by our group. A brief 

overview of the studies conducted in this thesis is given. Details of the results at every 

step is shown in the subsequent sections. 

 

         Initial experiments were carried out using Y-Ba-Cu-O nanoparticles in 1,4 

butanediol (C4H10O2) solvent without the use of any surfactant. A 4 % concentration of 

YBCO nanoparticle colloid was used in the experiments where we compared the 

chemistry and microstructure of the film processed using Nanoparticle method with that 

of the TFA-MOD processed film. From these results, it could be seen that to increase the 

processing speed and reduce porosity, therefore serve as an alternate approach to the 

TFA-MOD method. However the films fabricated still had porosity and inadequate 

superconducting properties. 

 

         Hence, higher concentration of particles was tried. It was realized that surface 

treatment of the substrate is essential in order to get a continuous film using these high 

concentration colloids. In these new films both porosity and processing time had 

significantly reduced. However, the critical temperature (Tc = 80 K) was low, critical 

current (Ic) was undetectable, and reproducibility was a concern. It appeared that the use 
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of a polymeric binder as an intermediate layer on the substrate might have detrimental 

effect on the film quality and epitaxy issues. Therefore, a new nanoparticle colloid with 

surfactant in the liquid was tried. The main idea behind the use of surfactant was to lower 

the surface tension and increase the wetting ability of the colloid. As expected, the use of 

any additional surface treatment of the substrate was eliminated with this new colloid. 

The films showed some improvement in Tc (82.5 K) and some Ic (0.57 A) was detected, 

but found to be very low. Different parameters like heating rate and concentration of 

copper was studied to improve the quality of the films, but no considerable increase in Tc 

and Ic was observed.  

 

         The beneficial results from these 1, 4 butanediol based experiments were (i) 

porosity was significantly reduced (ii) faster processing speed (iii) good texturing of 

YBCO films (iv) potential to fabricate thicker films using this route and (v) Tc and Ic 

were detected indicating superconductivity in these films. The problems that still existed 

were; low Tc and Ic in these films. It was suspected that the 1, 4 butanediol solvent which 

contain some impurities or the surfactant itself. It is also reported that viscosity of the 

solution in any liquid based technique has an effect on the film quality [57], so a new 

solvent which had lower viscosity was attempted.  

 

         Decanol has lower viscosity than the butanediol as it has only one OH group 

whereas butanediol has two OH groups and its boiling point is similar to butanediol   

(230 o C) which is requirement of the solvent used in this process. Films fabricated using 

this new decanol based colloid have shown very good results. The Tc has increased to 89 
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K which is comparable to that of our optimized TFA-MOD processed sample (88.5 K). 

Critical current density over 1 MA/cm2 was detected in these films. The best result 

obtained till date with this method was 2 MA/cm2, which took over a decade for the   

TFA – MOD process to achieve. 

 

3.2.2 Comparison between TFA-MOD and Nanoparticle Processes 

 

         A 4% YBCO nanoparticle colloid was spin coated on MgO at the rate of 

3600 rpm. The as deposited film was heat treated following the calcining heating profile 

of TFA- MOD process as shown in Fig 2.4. The chemistry of the sample was compared 

with that of the TFA-MOD processed sample.  

 

Figure 3.10 shows the comparative XPS spectra of Y 3d, Ba 3d, and Cu 2p 

obtained from the samples after calcination using the Nanoparticle and the conventional 

TFA-MOD processes. In the Nanoparticle process, Y 3d5/2 peak observed at 156.7 eV can 

be attributed to Y2O3 according to the reported binding energy of 156.6 eV [49]. The Ba 

3d5/2 peak is at 779.2 eV, which represents BaO according to its reported binding energy 

[51].  In case of TFA-MOD processed sample, the Ba 3d5/2 binding energy of 780.1 eV is 

attributed to BaF2 and Y 3d binding energy of 157.6 eV is attributed to Y-O-F. The peak 

shapes of Cu 2p looks very similar in both cases. The Cu 2p binding energy analysis 

revealed that in both cases copper is bonded with oxygen. These films were fired to 800 

oC following the heating profile given in Fig.2.5. XPS analysis on these samples showed 
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that the final chemistry is same for both Nanoparticle processed sample and TFA-MOD 

sample.    

 

It is clear from XPS spectra analysis that in the Nanoparticle process, the calcined 

film has yttrium and barium ions bonded to oxygen, while in the TFA-MOD process, 

yttrium and barium ions in the calcined film are still bonded to fluorine, so additional 

chemical reaction will be required to expel fluorine containing gases, thereby resulting in 

higher porosity in the final film. The fluorine percentage which is one of the major 

disadvantages in case of TFA-MOD process is very minimal in the case of YBCO 

Nanoparticle processing. The raw atomic concentration of all the elements for the both 

films is given in table 3.1.  The raw atomic concentration of fluorine in case of 

Nanoparticle process calcined film is only 2.6% when compared that due to TFA-MOD 

which is around 17.2 %. HF removal is not expected to be an issue in case of the 

Nanoparticle process due to very minimal amount of fluorine present. The final films had 

identical chemistry.  

The next step was to check the surface morphology and texturing of the 

Nanoparticle processed film. 
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% Atomic 
Concentration of 

TFA processed precursor 
film(400 oC) (% ±  3) 

Nanoparticle processed film 
(400 oC) (% ±  3) 

Y 3d  3.9  2.3 
Ba 3d  3.5  4.0 
Cu 2p 25.5 26.7 
O 1s 38.7 42.7 
C 1s 11.4 19.7 
F 1S 17.0   2.6 

 

 

Figure 3.10: Comparison of High resolution XPS peaks in case of YBCO nanoparticle 

film heat treated till 400 oC  and TFA-MOD calcined film till 400 oC. 

Table 3.1: Quantified raw data taken on film prepared by YBCO nano solution and 

TFA processed precursor YBCO film (error = 3%) 



 51 

         In order verify if the use of nanoparticle would result in higher processing speeds, 

as-prepared films using nanoparticle precursor and TFA-MOD precursor were calcined at 

fast rates (1 oC/min). Surface morphology of these films was studied using a SEM. 

          

          The TFA- MOD processed film has showed a lot of buckling as shown in figure 

3.11. The Nanoparticle processed film was very smooth and uniform as shown in Fig. 

3.12. Some adsorbed white particles were seen on the surface. EDS on these particles has 

indicated that they are Y-Ba-Cu-O compound. XRD observations showed that none of 

these films are crystalline yet. Higher temperatures were needed to crystallize the 

structure to form the superconducting phase. 

 

 

 

Figure 3.11: Microstructure of YBCO film prepared using TFA-MOD. The film was 

fired at 500 oC at the rate of 1 oC/min. 

3.0 µm 
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         The 500o C heat treated films were fired at 800 oC following the heating profile 

shown in fig 2.5 in order to check their surface morphology and texturing. The TFA-

MOD film was crumpled and it had needle like growth with lot of defects as shown in 

Fig. 3.13. On the other hand, the Nanoparticle processed film showed c-axis oriented 

structure after 800o C heat treatment as shown in Fig. 3.14. The XRD of this film has 

supported the fact that it is c-axis oriented YBCO crystal structure (Fig. 3.15). Some 

pores were also observed in this case, though lower than that of TFA films. It was 

determined that further optimization should be done to eliminate these pores.  

 

         From these initial results it was realized that the Nanoparticle method has a 

potential benefits and therefore may be used as an alternate approach to the TFA-MOD 

Figure 3.12: Microstructure of YBCO film prepared from solution dispersion of YBCO 

nanoparticles. The film was fired at 500 oC at the rate of 1 oC/min. 
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method. But in order for that to really be the case, the superconducting properties need to 

be tested and processing needs to be optimized until comparable critical Jc and Tc are 

obtained. The following sections will discuss how this goal has been realized. 

 

 

 

Figure 3.13: Microstructure of YBCO film prepared using TFA-MOD process. The 

film was fired at 800 oC. 
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Figure 3.15: XRD pattern of YBCO film deposited by using nanoparticle method.  The 

film was heat treated at 800 oC.   
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Figure 3.14: Microstructure of YBCO film fabricated by using 4% nanoparticle solution.  The 

film was heat treated at 800 oC. 
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3.2.2 Concentration of Nanoparticulate Dispersion 

          

        The films fabricated using a 4% YBCO nanoparticle colloid were porous and 

discontinuous. One of the approaches that can be used to reduce pores in the film was to 

increase the solid loading of the nanoparticles in the suspension. Three different 

concentrations (6%, 15%, 20%) of nanoparticles in the colloid were tried for fabricating 

the films.  

 

6 % YBCO Nanoparticle Colloid: 

 

         The main problem with the colloids of higher nanoparticulate concentration was the 

wetting of the colloid with the LAO substrate. A polymeric binder was used as an 

intermediate layer before applying the nanoparticle coating (the chemistry of the binder 

used is not disclosed due to proprietary concerns). Once this problem was solved, the 

other problem faced was degree of shrinkage of film, when it was heated to 250 oC at the 

rate of 1 oC/min. Different heating rates were tried. A faster heating rate like 10 oC/min 

worked out better. The reason for this behavior might be due to the slow evaporation of 

the solvent, which was holding the particles apart, and would give enough time for the 

particles to agglomerate. So during the faster heating rate, the time was not enough for 

the particles to aggregate and form as a lump.  The optimized heating rate was found to 

be 3 oC/min. 
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         The calcined sample was fired to 800 oC following the heating profile given in Fig 

2.5. The surface microstructure of this fired film is shown in Fig. 3.16. The films looks 

very dense with c-axis oriented grained. White particles were observed on the film, EDS 

reveals that these are copper rich zones. The sample showed room temperature resistance 

of 100 ohms. The Tc detected on this sample was 80 K with transition width of 2.3 K 

(Fig. 3.17), which is very low when compared to the optimized TFA-MOD processed 

film (88.5 K). The low Tc values and the observed broad transition can probably be 

attributed to the formation of other second phases and the low oxygen content in the 

YBCO structure. The Ic of the films is undetectably small and this was likely due to the 

low Tc and the presence of secondary phases. Concentration was further increased to see 

the effect on film morphology and electrical properties.  

 

 

Figure 3.16: Microstructure of YBCO film fabricated using 6% YBCO nanoparticles 

solution. The substrate was treated with RCA protocol solution and intermediate 

polymeric binder layer as applied before the nanoparticle coating. 
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15% and 20% YBCO nanoparticle colloid: 

         The concentration of nanoparticle was increased further to 15% and 20% to study 

the effect of higher concentration on surface morphology of films. The problem with 

these higher concentrations was that the nanoparticles started to precipitate out of the 

coating after a short period of time, making the film chemistry inhomogeneous. When a 

thick layer of polymeric binder is used as a pre-coating the problem of precipitation is 

solved. The thick layer of polymeric binder is formed by placing the polymeric binder 

coated substrate on a hot plate preheated to 100oC immediately after coating. The 

polymeric binder evaporated right away like a steam forming a thick layer of coating on 

the substrate. The pre-coated substrates were dip coated or spin coated with 15% and 

20% nanoparticle colloid. The room temperature resistance in case of 20% and 15% 

nanoparticles coated final YBCO films were 56 ohms and 16 ohms respectively. The 

Figure 3.17:  Tc data for film fabricated using 6% YBCO nanoparticles solution 

after the surface treatment of LAO substrate with polymeric binder layer. 
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transition temperature for R=0 was 81 K in case of 15% where as 80 K in case of 20%.  

The Ic of the films was undetectably small. The 20% coated film showed a lot of a-axis 

orientation (Fig. 3.18). XRD result also showed a strong presence of a-axis oriented 

grains (Fig. 3.19). The presence of a-axis grains causes deterioration of critical current Ic 

of a superconductor.   

 

         These results indicated that use of higher concentrated colloid for fabrication of 

films would not have any positive effect without additional surface treatment of the 

substrate. Surface treatment may enable formation of uniform coatings. The 

concentration of nanoparticles did not have considerable effect on the Tc. The measurable 

critical current was still not achieved which might be due to the secondary phases and 

defects. Reproducibility has become an issue in this procedure. The use of polymeric 

binder as an intermediate layer may be one of the reason. So a colloid with surfactant is 

tried.      

 

Figure 3.18: Microstructure of final film prepared using 20% YBCO 

nanoparticle concentration on LAO substrate with polymeric binder layer.  
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3.2.3 Effect of Surfactant in the Colloid on the Film 

          

         Surfactant is used to decrease the surface tension of a liquid and increase the 

wetting ability of the colloid with the substrate. A nanoparticle colloid with a surfactant 

was used to check if surfactant improvements were possible. 13% nanoparticle colloid 

was used in this study. The use of a surfactant inside the colloid has solved the problem 

of wetting the substrate which was encountered in previous experiments.    
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Figure 3.19: XRD of final film prepared using 20% YBCO nanoparticle 

concentration on LAO substrate with polymeric binder layer.  
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         Nanoparticle precursor coating was applied on the substrate either by dip coating or 

spin coating. These as prepared films were calcined to 400o C following the temperature 

profile which has been optimized as given in Fig. 2.6. The precursor film was then fired 

to 800 oC following the heating profile given in Fig. 2.5. Figure 3.20 show an SEM image 

of the surface of the final film. The coating looked uniform and dense with some a-axis 

orientation. White particles seen in the microstructure were found to be copper rich zones 

using EDS. The room temperature resistance of this sample was found to be 5 ohms. The 

critical temperature of this sample was found to increase to increase to 82.5 K (Fig 3.21).  

Ic was detected for the first time in these samples. It was measured to be only 0.57 A (Fig. 

3.22). One of the reasons for low the Ic can be the presence of white copper rich zones 

which lower the critical current.    

 

 

Figure 3.20: Surface Morphology of the film fabricated using 13% YBCO 

nanoparticle colloid with surfactant on LAO substrate. 
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Figure 3.21: Tc data for film fabricated using 13% YBCO nanoparticles solution with 

surfactant on LAO substrate. 

Figure 3.22: Ic data for film fabricated using 13% YBCO nanoparticles solution with 

surfactant on LAO substrate. 

Ic = 0.57 A, 77 K, Self-field 
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         These results have shown that surfactant in the colloid has positive effect on the 

processing of film.  As expected, there was no necessity of substrate surface treatment as 

the surfactant has affected the wetting ability of the colloid with the substrate, as was 

expected. The total time for the calcination of film was less than 6 hrs as compared to the 

19 hrs for TFA-MOD. Dense, continuous and textured films have been fabricated with 

this colloid, porosity was considerably reduced, critical current was detected and there 

was minor improvement in critical temperature. The reason for poor Tc and Ic might be 

due to the presence of any impurities or formation of secondary phases in the final films. 

XPS was used to check for any impurities or secondary phases present in the films. 

 

                  XPS analysis was done on the sample fabricated using a colloid with 

surfactant. As mentioned earlier, PLD samples have best stoichiometry since it is a direct 

transfer from the YBCO target onto the substrate. Therefore, XPS spectra of the final 

films fabricated using the Nanoparticle method were compared with that of the YBCO 

film fabricated using PLD process. XPS analysis shows that the whole chemistry of the 

as prepared film is similar to that of the PLD processed YBCO (Fig. 3.23). It was 

observed that the film contained only Y, Ba, Cu and O elements. Raw quantification data 

of both films is shown in table 3.2. From raw quantification data it is observed that Cu 

atomic % was low in the nanoparticle films when compared to that of PLD films.   

 

         From these XPS results it was found that the film did not contain any impurities and 

the chemistry of the film is similar to that of a PLD film. The possibility of impurities can 

not be totally neglected since XPS has limitations detecting elements with concentrations 
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below 2%. It was also noticed that copper atomic percentage was low in case of 

Nanoparticle processed sample when compared to that of PLD sample. It has been 

observed by Santiso et al. [56]  that the critical temperature decreases with the decrease in 

copper content in the film. The effect of concentration of copper on the film properties 

will discussed in the next section. 

 

 
 
 
 
 
 
% Atomic Concentration of PLD processed YBCO 13% YBCO Nanoparticle 

processed film (800oC)  
Y 3d 11.3  8.3 
Ba 3d 15.1 16.5 
Cu 2p 24.9 20.2 
O 1s 48.7 55.0 

 

Figure 3.23: XPS peaks comparison between YBCO final film formed by 13 % 

YBCO nanoparticles colloid and YBCO film fabricated by PLD process 

YBCO PLD Film YBCO Nano Colloid Film 

O 1s Y 3d 

Ba 3d Cu 2p 

Table 3.2: Quantified raw data taken on films prepared by 13% YBCO nano colloid and 
PLD processed YBCO 
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3.2.5 Effect of concentration of Copper on YBCO thin films  

 

         One of the factors that might affect the critical temperature (Tc) is the concentration 

of copper in the colloid [56]. There is a possibility of copper loss during the calcining and 

firing treatment, leaving the film deficient in copper. Experiments were performed to see 

the effect of excess copper percentage on the film properties. Films are fabricated with 

5%, 10%, and 15 % excess copper in the colloid. 

 

         Figures 3.24 – 3.26 shows the SEM images of the surface morphology of the 

YBCO films, indicating a similar microstructure observed for all the samples. Films had 

copper- rich zones and fine (Cu, Ba) rich zones. The critical temperature measurements 

are shown in Fig. 3.27. There was no considerable change in the critical transition 

temperature, which is about 80 K (R=0) in all three cases. Note that a higher second 

transition was observed in all curves, as show in inset of Fig. 3.27, indicating the 

formation of secondary phases in these films. Figure 3.28 shows critical currents 

measured in samples with variation of concentration Cu. The highest critical current was 

observed on the film with 10% copper excess. All the samples fabricated had similar 

dimensions.  

 

         These results show that the variation of Cu content does not have a significant 

effect on the microstructure and transition temperature. Though there is a change in the Ic 

values, this could either due to the copper effect, or the sample microstructure, or the 

defects present in the sample. 
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Figure 3.24: Surface morphology of film fabricated using 5% excess copper concentration 

in the colloid 

Figure 3.25: Surface morphology of film fabricated using 10% excess copper 

concentration in the colloid 
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Figure 3.26: Surface morphology of film fabricated using 15% excess copper 

concentration in the colloid 

Figure 3.27: Effect of concentration of copper in the solution on the Tc of the YBCO 

films 
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3.2.8 Fabrication of Thick YBCO films using Nanoparticle Process: 

         There are several different ways to control YBCO film thickness in the 

Nanoparticle method: by varying the concentration of nanoparticles in the coating 

colloid, changing acceleration time and/or spinning rate, and making multiple coatings. 

However, by controlling acceleration time or spinning rate, striation in the gel film is 

observed for spinning rate of over 5000. Then spinning rate was fixed at 3600 rpm and 

film thickness was controlled by varying the concentration of nanoparticles of the coating 

colloids.  

         Films were fabricated using 13% and 18% nanoparticle concentration by spin 

coating the colloid onto LAO single crystal at a rate of 3600rpm for 3 minutes. The cross 

sectional SEM pictures of these films are shown in Fig. 3.29 and Fig. 3.30. The average 

Figure 3.28: Effect of concentration of copper in the solution on the Critical Current of 
the YBCO films 
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coating thickness of the sample fabricated using 13% nanoparticle concentration colloid 

is 0.35 µm where as that for 18 % nanoparticle concentration colloid is 0.63 µ. It is clear 

that the thickness of the film increases with the concentration of the nanoparticles. The Tc 

of the films had no change.  

 

 

 

 

 

Figure 3.29: Cross-sectional view of film fabricated using 13% nano particle solution 
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         In summary, the butanediol based colloids with surfactant inside has successfully 

fabricated dense and continuous YBCO thin films. The porosity has been significantly 

reduced in these films when compared to that of TFA-MOD processed films. The total 

processing time for the fabrication of the precursor film has greatly reduced (~ 6 hrs) 

when compared to that of TFA-MOD process (~ 19 hrs).  Good texturing was observed in 

these films. There is a potential to fabricate thicker films with this method. In spite of 

these good outcomes the problem of low Tc and Ic still exits. The reason might be due to 

the 1, 4 butanediol solvent which might contain some impurities or the surfactant itself. It 

was also reported that viscosity of the solution has an effect on the film quality [57]. For 

all of these reasons, new solvent was used to fabricate the films.  

 

 

 

Figure 3.30: Cross-sectional view of film fabricated using 18% nano particle solution 
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3.2.6 Fabrication of YBCO Thin Film using Decanol Solvent 

 

         The films fabricated using butanediol based colloid did not show substantial 

improvement in the critical current and critical temperature.  The manner in which the 

butanediol solvent behaves with the nanoparticles might have an effect on the film 

properties. It was also reported that viscosity of a solution plays a very important role on 

the final film quality [57]. So a solvent with lower viscosity would be favorable for 

fabricating these thin films. Decanol (CH3 (CH2)9OH) has only one -OH group compared 

to that of butanediol which has 2 -OH groups, so the viscosity of decanol is lower than 

that of butanediol. Moreover, the boiling point of decanol is similar to that of butanediol 

(230 oC) making it a good solvent for these experiments.  

 

         Samples are prepared using dip coating and spin coating with decanol based 12% 

nanoparticle colloid with out surfactant and following the heating profile similar to that 

used for butanediol based nanocolloid. The colloid had very good wetting ability with 

substrate. The surface microstructure of the film is shown in Figure 3.31. The film is 

sightly more porous when compared to that fabricated using a butanediol based solvent.. 

However the porosity is significantly low that that of TFA films. The film has very low 

concentration of a/b-axis grains. XRD data also supports the same (Fig. 3.32). The 

critical temperature (Tc) at R=0 of the film increased to 89 K (Fig. 3.33) which is 

comparable to that of the optimized TFA-MOD processed sample (88.5). From the raw 

quantification data (table 3.3) obtained from XPS it is observed that the stoichiometry of 

the film is very close to the PLD YBCO.  
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         The critical current density of the film measured using the four point method 

was 2 MA/ cm
2 (Fig. 3.34), which is a big achievement in this work as it has taken more 

than a decade for the TFA-MOD processed sample to get to this value.  

 

         The porosity in the film is not desirable since it affects the durability of the film. 

The problem may be solved by fabricating the film with a higher loading of 

nanoparticles. Films were prepared using 16 % YBCO nanoparticles colloid following 

the same heat treatment. Figure 3.35 shows the SEM picture of microstructure of this 

film. The porosity is considerably reduced while retaining the same transport properties. 

From this result it is believed that using decanol as a solvent has a positive effect on the 

superconducting properties of the YBCO film.       

 

 

Figure 3.31: Surface morphology of film fabricated using 12% YBCO nanoparticles 

in a Decanol Solvent 
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Figure 3.32: XRD taken on film fabricated using 12% YBCO nanoparticles in a 

decanol solvent on LAO substrate. 

Tc (onset) = 91 K 
Tc (R=0) = 89 K, 
∆T = 2 K  

Figure 3.33: Tc data for film fabricated using 12% YBCO nanoparticles in a decanol 

solvent on LAO substrate. 
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Atomic % Oxygen Yttrium Barium Copper 

Film made 
with decanol 
based colloid 

 
52.5 

 
8.3 

 
17. 0 

 
22.2 

Film 
Processed 
using PLD 
method 

 
48.7 

 
11.3 

 
15.1 

 
24.9 

Jc = 2 MA/cm2 

77 K, Self-field 

Figure 3.34: Ic measurement on film fabricated using 12% YBCO nanoparticles in a 

decanol solvent on LAO substrate. Film size: 10mm long, 100nm thick with 0.88mm 

bridged width 

Table 3.3: Quantified raw data taken on film prepared by 12% YBCO nanoparticles in a 

decanol solvent on LAO substrate (error percentage - 3 %). 
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3.2.7 Effect of Firing Temperature on Microstructure of YBCO Film 

 

         The effect of firing temperature on the film properties was studied by firing the 

films at 700o C, 750o C, 800o C, 850o C and 900o C. Figures 3.36 – 3.40 show the high 

magnification SEM images of the surface morphology of the respective YBCO films, 

indicating that the film microstructure changes with the firing temperatures. As the firing 

temperature increases, the microstructure became denser and the grains grew further. At 

the temperatures of 700o C and 750o C the surface had lot of a- axis oriented grains and a 

Figure 3.35: Surface morphology of film fabricated using 16% YBCO nanoparticles in 

a Decanol Solvent. This indicates that a dense YBCO film can be processed rapidly 

using the nanoparticle approach. This film had Jc = 2.0 MA/cm2 and Tc = 89 K and 

indicates a new method of forming superconducting oxide using a new liquid phase 

process 
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very porous structure (Fig. 3.36 and Fig 3.37). As the firing temperature increased to 800o 

C and 850o C the number of a-axis grains is greatly reduced (Fig. 3.38 and Fig. 3.39) and 

they disappeared totally at 900 oC (Fig. 3.40). At 900o C the surface became irregular and 

secondary phases formed on the surface. EDX on these particles has shown that they are 

Ba and Cu rich phases. Hence it is believed that at 900 oC YBCO is partially 

decomposed. The variation of grain orientation with firing temperature can be explained 

by lattice mismatch. The variation of Ic for the films with firing temperature is shown in 

Fig. 3.41. The films fabricated have similar dimensions. The Ic has considerably 

increased from 700 to 850 oC and decreased slightly as the firing temperature increased. 

The Ic is not detectable in the case of samples fired at 700 oC and 750 oC, which might be 

due to the a- axis oriented grains. The degradation of Ic at 900 oC seems to be related to 

the secondary phases. The highest Ic was observed for samples fired at 850 oC which can 

be attributed to factors such as enhanced phase purity, texture, moderate film density and 

grain size. 
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Figure 3.36: Surface morphology of YBCO film fired at 700o C for 1 hr after calcining 

at 400o C 

Figure 3.37: Surface morphology of YBCO film fired at 750o C for 1 hr after calcining 

at 400o C 
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Figure 3.38: Surface morphology of YBCO film fired at 800o C for 1 hr after calcining 

at 400o C 

Figure 3.39: Surface morphology of YBCO film fired at 850o C for 1 hr after calcining 

at 400o C 



 78 

 

 
 
 
 

 
 

Figure 3.40: Surface morphology of YBCO film fired at 900o C for 1 hr after calcining 

at 400o C 

Figure 3.41: Effect of Firing Temperature on the Critical Current of the YBCO films 



 79 

         In summary, the use of decanol as a solvent had produced very promising results. 

The colloid had very good wetting ability with the substrate. Hence the use of surfactant 

is totally eliminated in the decanol based process, in turn giving us a better control on the 

process. The films were fired using the same profile as that used for butanediol based 

samples. The films had very good texturing; porosity has been significantly reduced 

when high concentrated colloids were used. The films are dense and continuous. The 

critical temperature (Tc = 89 K) of the superconducting thin film obtained using this 

decanol based colloid is comparable to that of our optimized TFA – MOD (Tc = 88.5 K). 

Critical current densities over 1 MA/cm2 are routinely obtained using this method. The 

best result so far is 2 MA/cm2, which has taken over a decade to achieve for TFA-MOD 

processed sample. Further optimization of the process is needed in order to get better 

results. However, the current results are very promising for the use of the Nanoparticle 

method in fabrication of second generation superconductors.  
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4. SUMMARY & FUTURE WORK 

 

4.1 Summary 

 

         Detailed investigations on the chemical reactions that occur during the fabrication 

of YBCO using the TFA-MOD process have been performed using XPS. It has been 

observed that all the acetates and fluorocarbon groups are removed after calcination 

process. The calcined film mainly consists of Y, Ba, Cu, O, and F, where Yttrium is 

present as Y-O-F, Barium as BaF2, and Copper is in form of CuO. During the early stages 

of firing, Barium is still in fluoride form but after firing all the fluorine is eliminated as 

HF gas leaving Barium in oxide form in the final film. 

 

         The influence of heating rate during the calcining process in TFA-MOD process on 

film chemistry, microstructure, and electrical properties has been investigated. The 

heating rate does not change the overall chemistry of calcined films but the surface 

morphology of the calcined films depends on heating rate. The 3 oC/hr calcined film 

resulted in a uniform, smooth calcined film and good textured final YBCO film, but the 

structure is porous. Heating rate has no significant effect on critical transition temperature 

(Tc), however critical current density (Jc) was found to be higher for 3 oC /hr treated 

sample. The total process time for the optimized TFA-MOD was found to be  28 hrs. 
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There is significant porosity observed in the final YBCO films. The critical current 

density, Jc = 1.3MA/cm2 and Tc = 88.5 K was observed in these films.  

 

         A new method, called Nanoparticle process has been developed with idea of 

fabricating YBCO film by more economical route and at faster processing speed and 

lower porosity. Comparative XPS analysis was performed on samples fabricated using 

TFA-MOD, and Nanoparticle methods. It was observed from XPS spectra analysis that in 

the Nanoparticle process, the calcined film has yttrium and barium ions bonded to 

oxygen, while in the TFA-MOD process, yttrium and barium ions are still bonded to 

fluorine, so additional chemical reaction are required to expel fluorine containing gases, 

thereby resulting in higher porosity in the final film. The fluorine percentage in the 

calcined film, which is one of the major disadvantages in case of TFA-MOD process, is 

very minimal in the Nanoparticle process. Hence the problem of HF evolution is not a big 

concern in Nanoparticle method. 

 

         Surface morphology studies were conducted on samples calcined  at faster rates in 

TFA-MOD method and Nanoparticle method. It was realized that in case of TFA-MOD 

method when the sample was heated at 1 oC/min to 500 oC, the film obtained was 

crumpled, whereas that using Nanoparticle method resulted in a uniform and smooth 

films. 

 

         The Nanoparticle process has successfully fabricated dense, continuous  and well 

textured YBCO thin films. The porosity has been significantly reduced in these films 
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when compared to that of TFA-MOD processed films. The total processing time (~ 6 hrs) 

for the fabrication of the precursor film has greatly reduced when compared to that of 

TFA-MOD process (~ 19 hrs). The Tc of these films was found to be 89 K which is 

comparable to that of TFA-MOD processed films (88.5 K). Self field critical current 

densities over 1 MA/cm2 at 77 K were routinely observed in these Nanoparticle 

processed films. The best result that has been obtained is 2 MA/cm2
 at 77 K in self-field. 

It has to be noted that this value of Jc was attained in less than one year of work on 

Nanoparticle method when compared to that of TFA-MOD method which has taken more 

than a decade of work to get to this value. Hence, it is believed that the value of Jc could 

be improved with further optimization of this process.   

 

4.2 FUTURE WORK 

 

• We have successfully synthesized YBCO films with Jc > 1MA/cm2 in thin films. 

This value could be increased further by optimizing the process variables in this 

method. 

• Films have been successfully fabricated on a single crystal substrate. Next step 

would be to use this Nanoparticles method to grow YBCO thin films on the 

metallic substrates. 

• Nanoparticles colloidal route can be used to inculcate fluxpinning sites in the 

YBCO film to increase the electric performance of YBCO thin film in a 

magnetic field. Initial results on the use of Ceria nanoparticles in TFA-MOD 

method have shown promising results on the use of nanoparticle route for 
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imparting flux pining sites. Further studies have to be done in this direction to 

improve the electrical properties. A new nanoparticle colloid route has to be 

developed to fabricate the buffer layer, YBCO layer and the flux  pinning 

centers. 
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