Wright State University

CORE Scholar
Browse all Theses and Dissertations Theses and Dissertations
2006

Design and Evaluation of a Discrete Wavelet Transform Based
Multi-Signal Receiver

Tony Chiang
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

6‘ Part of the Electrical and Computer Engineering Commons

Repository Citation

Chiang, Tony, "Design and Evaluation of a Discrete Wavelet Transform Based Multi-Signal Receiver"
(2006). Browse all Theses and Dissertations. 30.
https://corescholar.libraries.wright.edu/etd_all/30

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/30?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

DESIGN AND PERFORMANCE EVALUATION OF A
DISCRETE WAVELET TRANSFORM-BASED MULTI-SIGNAL RECEIVER

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

TONY CHIANG

B.S. ELECTRICAL & COMPUTER ENGINEERING, University of Rochester, 2003

2006

Wright State University

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

[uly 7, 2006

I HEREBY RECOMMEND THAT THE THESIS PREPARED
UNDER MY SUPERVISION BY Tony Chiang ENTITLED Design
and Evaluation of a Discrete Wavelet Transform-Based Multi-
Signal Receiver BE ACCEPTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF Master of
Science in Engineering

Chien-In Henry Chen, Ph.D.
Thesis Director

Fred Garber, Ph.D.
Department Chair
Committee on
Final Examination

Chien-In Henry Chen, Ph.D.

Raymond Siferd, Ph.D.

Marty Emmert, Ph.D.

Dr. Joseph F. Thomas, Jr., Ph.D.
Dean, School of Graduate Studies

il

Abstract

General purpose receivers of today are designed with a broad bandwidth so that
the receiver can accept a wide range of signal frequencies. These receivers
usually accept one signal along with any interference that is included. To
increase the signal detection capabilities of the wideband receiver, a design for a
receiver that can detect two signals is needed. One of the requirements for this
receiver is that the second weak signal needs to be processed in a timely manner
so that the receiver can recognize it. To remedy the problem, a module was
developed using wavelet-based techniques to remove spurs from the incoming
signals to allow easier detection. The main basis for this concentration on
wavelets comes from the way wavelets break down signals into portions (called
resolutions) that allow easier determination of detail importance. Utilizing the
multi-resolution attributes of the discrete wavelet transform, a way to remove
signal spurs is made possible. When removing the signal noise from the signal,
the two signal dynamic range of the system is increased, as this module is
applied to multiple receiver systems for comparison of performance.
Implementation of this system was originally done in C as well as MATLAB, but
later is being implemented in VHDL with simulations done for verification of

functionality.

il

Table of Contents

Chapter 1: Introduction
Chapter 2: Theory and Background
2.1: Haar Wavelet Transform
2.2: Daubechie’s Wavelet Transform Method
2.3: Thresholding and Noise Reduction
2.4: Hardware Implementations
Chapter 3: Methodology
3.1: Data Generation
3.2: ADC Background
3.3: Fourier Transform
3.4: Compensation Matrix

3.5: De-noising Function
3.5.1: Discrete Wavelet Transform
3.5.2: Thresholding
3.5.3: Inverse Wavelet Transform

3.6: Signal Detection (Frequency Selection)
3.7: Hardware Implementation
Chapter 4: Results and Discussion
4.1: Simulation Environment
4.2: Determination of Placement of De-noising Function
4.3: Determination of Threshold Type
4.4: Determining Performance Improvement in Monobit
4.5: Determining Performance Improvement in ROC

4.6: Hardware Implementation
4.6.1: VHDL vs. AMS Verilog
4.6.2: Hardware Implementation of De-noising Module
4.6.2.1: Look Up Table Implementation
4.6.2.2: Decimal Representation in Binary
4.6.2.3: Look Up Table Configuration

4.6.2.4: Simulation

Chapter 5: Conclusion and Recommendations

5.1: Conclusion

5.2: Recommendations
References
Appendix A (MATLAB & C++ DWT Code)
Appendix B (VHDL Code for De-noising Function)
Appendix C (C Code to Generate VHDL)

v

173

1.1:
2.1:
2.2
2.3:
2.4:
3.1:
3.2:
3.3:
3.4:
4.1:
4.2:
4.3:
4.4:
4.5:
4.6:
4.7
4.8:
4.9:

List of Figures

Block Diagram of Receiver Design

Signal, Sample, and Approximation for Haar Wavelet
Daubechie’s Wavelet

Discrete Wavelet Transform Hardware Block Diagram
Lifting Based DWT Design

Block Diagram of Steps

ADC Block Diagram

Discrete Wavelet Transform of a Sinusoidal Signal

Signal Detection Through Thresholding

General Flow of Receiver Design Without De-noising

Flow Chart for Determining Placement of DWT De-noising
Graph of Signal Detection Types, Percentages and Threshold Types
Graph of False Alarms in Mono-bit Receiver Simulations
Graph of Percentage Missed vs. Threshold Type

Signal Detected Using De-noising Function

De-noising Function Interfaces

De-noising Function Details

De-noising Function Block Diagram

4.10: Look Up Table Configuration for DWT LUT and IDWT LUT

4.11: De-noising Function in VHDL Simulation

10
15
16
19
20
23
25
30
31
36
38
40
42
47
48
49
51
55

List of Tables

4.1: Comparison of Second Signal Missed Signal and

False Alarm Based on Placement of DWT De-noising

4.2: Results of Simulations Testing Threshold Values

4.3: Results of Simulations Using Random Generation

of Signals in Mono-bit Receiver

4.4: Table of Results, Specifically False Alarms

4.5: Table of Results, Specifically Missed Signals

4.6: Table of Isolated Cases and Results from New Configuration

4.7: Simulations with De-noising Function, Specifically Second Signal
4.8: Table of Acceptable Results with Different Configurations

4.9: Component Requirements for De-noising Function

vi

32

33
35

37
39
41
42
44
56

Acknowledgements

This work was supported in part by the program of Receiver and Processing

Concepts Evaluation (RAPCEval), DoD, Air Force Research Lab, USA.

I would like to thank my advisor, Dr. Chien-In Henry Chen, for his dedication,
his vision, and his support throughout the thesis process. It has proven to be an

arduous, but worthy rite of passage that has conditioned me for the road ahead.

I would like to also thank the members of the thesis committee in taking time out
of their busy schedules to read and evaluate my thesis. Their advise and help

have proven a key instrument in the completion of this thesis work.

I would also like to thank numerous individuals from the Wright Patterson Air
force Base for giving me the opportunity to work with them and to develop a

technology they may consider for future use.

To the students in the lab, I am especially grateful for all the help and
encouragement that you have given me throughout this process. You've shown

me that research can be fun too!

Last but not least, I would like to thank my family, who has been providing me a
way to worry only about the task on hand. I greatly treasure and appreciate the
time and effort that has gone into giving me peace of mind while working on this

thesis.

vii

Dedication

This thesis is dedicated to my parents, Win and Lancy Chiang, who taught us
that innovation and “thinking outside the box” is what sets one person apart

from the crowd.

viii

Chapter 1: Introduction

General purpose receivers of today are designed with a broad bandwidth so
that the receiver can accept a wide range of signal frequencies. These receivers
usually accept one signal along with any interference that is included. However,
when such a receiver receives two simultaneous main signals compounded with
the noise from both signals, the receiver chooses the signal closest to it so that
only one signal is received while the other signal is simply not processed as a
signal, but rather as interference or noise. To increase the signal capabilities of
the wideband receiver, a design for a receiver that can detect two signals is
needed. One of the requirements for this receiver is that the second main signal
needs to be processed so that it can be recognized by the receiver. To make this
two main signal receiver design for general purpose, the signal frequencies
should be variable, and not known to the system previously. Also, this
wideband receiver must be able to discern a signal from the compounded noise
from two signals. To solve this problem, a wideband receiver requires signal
processing in the forms of modulation or through the process of removal of noise
and signal recognition to successfully detect two signals at the same time.

In digital signal processing, a common way of remedying this problem is to
use modulation through convolution [1]. From this signal, it can be
reconstructed by using the same pattern of impulses when used at the same
frequency. This method allows the noise in the signal to be virtually ignored. In

the case where the frequencies are known, a radio system using FM modulation

is the preferred method for achieving this ability. This solution, however,
requires the prior knowledge of the frequencies that the signals are being
received at, which cannot make this receiver a general-purpose receiver.

To deal with the noise and signal detection in a more direct fashion, there are
many designs for filters that would shape the signal to the function that the filter
is implemented [1]. However, this function is not acceptable for a general-
purpose wideband receiver as the signals themselves would be distorted, and
finding a very weak signal would be impossible. There is a need, then, for a more
dynamic method to which the signal can be directly affected by the processing
without resorting to a signal shaping method.

A method for removing noise from a signal is using two threshold values
obtained from large volume of radar data simulation; the large threshold is used
for detection of the first strong signal and the second threshold is used for
detection of the second weak signal. This method has been used in a mono-bit
receiver design [2], which precedes the general-purpose wideband receiver, and
has moderate performance improvement. However, with the mono-bit receiver,
a strong and a weaker signal can be only detected with very little difference, up
to 5 dB direct range difference, between the strong and weak signal due to the
lower resolution (2 bits) of the ADC in the system. Another method for
removing noise from a signal is the compensation matrix, which has a matrix of
stored coefficients that have been pre-calculated to match the signal behavior and

uses those coefficients to delete the predicted noise from the actual signal,

thereby exposing any weak signals. A further improvement upon the design
brings us to a 1 GHz input bandwidth receiver on a chip (ROC) design. The
ROC design is a design that incorporates all the functions of a receiver onto one
chip, and this particular design utilizes a super-resolution block, which based on

the input signals, suppresses spurious signals and exposes the true signals [3].

Signal Sampler and Formatting Super Resolution and Frequency Measurement
1:16
Window
Sampler
Input from _| 2"2 grz —
RF front end ADC [
s 256 pt Freguency bins,
FFT Compen- Frequency TOA, PW of
d —> | sation || Selection » highest and
/v 12 pt Block Logic 2nd highest
/ |1 kernel amplitude signals
2.5 GHz e
Clock »(CLK/16

Figure 1.1: Block Diagram of Receiver Design

The receiver design can be separated into two areas: the signal sampler and
formatting system, and the super resolution and frequency measurement section
[3]. The signal sampler and formatting system portion comprises of an ADC that
operates at 2.5 times the input bandwidth and samples the signal at 0.4 ns to
produce 4 bit amplitude measurements. Each bit is then passed into a
windowing circuitry, which converts the serial data stream to parallel and slows
down the data rate by a factor of 16. This process is achieved by using a clock
divider to slow the data stream. The slowing of the data rate is necessary to

accommodate the speed at which the detection circuit can receive data.

The super-resolution and frequency measurement system relies on a 256
point FFT, a compensation block and a frequency selection logic block. The 256
point FFT is designed by using a 12 point kernel approximation which is fed the
input data stream from the windows. Once all the data is collected after the FFT,
it is input into the compensation block. The compensation process is essentially
the comparison of a stored pre-calculated value that approximates the first
detected frequency and the associated noise, then subtracts that value from the
original signal response. This method assumes that if the pre-calculated signal
response is the same as the actual signal response, the side lobes and spurs will
be taken out while exposing any signal that is left behind to be detected as a
secondary signal. In actual performance, the compensation must calculate the
response close enough so that there won’t be any kind of misinterpretation on
the part of the detection module that would mistake an uncalculated spur as a
second signal.

It is after the compensation block for which the frequency selection takes
place to detect the signal. This takes place by the selection of a frequency bin that
is closest to the frequency that the signal is detected at. This frequency bin is of a
10 MHz bandwidth [3].

The system performance with the compensation matrix was proven to receive
a signal in acceptable specifications with a strong to weak signal dynamic range
(also known as a two signal dynamic range) of 18 dB [3]. There is a need for the

system performance to increase beyond that of 18 dB, however, to make the

receiver design more robust. This system performance, however, decreases
exponentially when the two signal dynamic range reaches beyond 18 dB. To
improve the performance of the receiver beyond 18 dB is impossible using only
the current compensation matrix. Therefore, a different system approach may be
more applicable to further improve the performance of the wideband receiver so
that any signal, from a strong signal to a weak signal, can be detected.

The main basis for this concentration on wavelets comes from the way
wavelets break down signals into portions (called resolutions) that allow easier
determination of detail importance [4] [5] [6] [7] [8]. There are multiple versions
contained within one wavelet transformation, so there can be a choice of how
many to contain to maintain the details of each. In the example of a picture,
there are many different resolutions that may contain very little information
significant to the picture; therefore, the user can specify the amount of detail
required for the picture by removing the less significant resolutions from the
transform [5]. The same principle can be applied to a 1D signal such as the
signals received by the wideband receiver. A signal can be broken down into
different resolutions, where the signal can be discerned easily from the noise [6]
[7] [8]. From these resolutions, a noise threshold can be specified so that only
signals above the threshold will be kept while the rest of the signal will be
removed or reduced in amplitude [9]. Variations in the threshold types as well
as the variability of the threshold value can be analyzed and customized to fit the

signal condition. When paired with the compensation matrix, an added

performance boost can be expected from this method. Since the application of

this type of technology to a receiver design has not been documented before, the

theory appears to be promising for the further performance boost of the receiver.
This thesis aims to solve the following problems:

1 Implement the discrete wavelet transform and thresholding technology into
a module to be placed into the system to improve receiver system
performance beyond 18 dB two signal dynamic range.

2 Investigate hardware implementations of the system by using simulations to
further verify that the theoretical and experimental data from the software is
viable in the hardware implementation.

3 Consider the hardware implementation of discrete wavelet transform based

module for integration with a receiver on chip design.

Chapter 2: Theory and Background

Wavelets are small waves that are used to derive a signal depiction through
stretching and shrinking the wavelet. Wavelets are localized functions in time
with mean zero; the wavelet basis is derived from the wavelet (small wave) by its
own dilations and translations. A general definition of a wavelet equation is:

-J

w,, (6) =22 w27t -k)

Let the original wavelet (also known as the mother wavelet) start at t = 0 and
end at t = N. The shifted wavelet woy, starts at t = k. and ends at t =k + N. The
rescaled wavelet wjp starts at t =0, and ends at t = N /2i.

The choice of the basis is related to the choice of the filters. The basis must
present two main properties: linear independence and completeness. In the
creation of the wavelet, there are two major components that define the wavelet
transform: the details and the overall structure of the wavelet, based on the
dilations and translations. The complexity of the wavelet transform theory
utilized determines the closeness of the wavelet adhesion to the original signal
depiction [8]. This depiction of a signal requires a criteria for the different
resolutions of the signal in the transform domain to be formed so that the
performance of the wideband receiver will be improved.

There are a few wavelet transform schemes that are available for usage in a
system integration with varying degrees of complexity, making the choice of
transforms a balance between hardware complexity and accuracy to the original

signal, making a thresholding cut a more accurate removal of noise [9].

2.1: Haar Wavelet Transform

This wavelet transform relies on a rectangular function, which utilizes the
basic approximating functions that would estimate the shape and detail of the
waveform that is being transformed [6]. Simplified, the Haar wavelet transform

uses an approximating function that is a variation of a step function.

s
9 o o 9+ e
g 8— ° — L
j 8
6 ° 6 P
41+ ° 4 o
3¢ il S—
1 o |
\ | r 1 1
0 1 0 1 0 1
(@ () ()

Figure 2.1: (a) Signal, (b) Sample (c) Approximation for Haar Wavelet [7].

Haar’s basic transformation expresses the approximating function f with
wavelets by replacing an adjacent pair of steps by one wider step and one
wavelet. The wider step measures the average of the initial pair of steps, while
the wavelet, formed by two alternating steps, measures the difference of the
initial pair of steps [6][7].

This method is the basic wavelet transformation, and is not suitable for higher
definition signals, as is expected in a wideband receiver design. While
acceptable for lower (4 to 6 dB) two signal dynamic ranges, similar performance
at 18+ dB cannot be expected as the resulting signal is depicted as step functions.

This transform method, then, is not a viable candidate for improving system

performance based on a more accurate depiction, and therefore more accurate

de-noising, of the signal spectrum.

2.2 : Daubechies Wavelet Transform Method

Ingrid Daubechies introduced a new series of algorithms that transformed
using wavelets that contrast from Haar’s wavelet transform in that the
Daubechies wavelet transform is a continuous signal rather than Haar’s
discontinuous step design [6] [7] [8]. As a consequence of the continuity,
continuous signals have a more accurate representation; however, this continuity
has the cost of using complex equations and implementations, resulting in more
complex hardware. Some of these functions are based on matrix calculations.

In order to design continuous wavelets that are time-efficient and
implementable in a system use, Daubechies introduced a basic building block or
scaling function as denoted by ¢. An example of how Daubechies” wavelets are

calculated is noted below for initial conditions:

@(0) =0,

(1) = “2‘/5,

1-4/3
2 2

These conditions satisfy the condition that:
®(2) =

@(3):=0.

_1+w/§ 3+\/§ 3—\/5 1—\/5
4 4 4

@(r) 2 @Q2r) + eQ2r-1)+ pQ2r-2)+

@(2r-3). Itis also

required that the initial values add up to 1 so that the values of ¢ may serve as

averaging or weighting factors.

(P(O)+¢(l)+fp(2)+cp(3)=0+1+2ﬁ+1_;/§+0=

The function ¢ serves as the basic building block for its associated wavelet,

denoted by 1, and defined by the following notation:

w(r>:=—“‘F<p(2 1)+ 3+‘F (2)—3 V3

= —h,@Q2r =1)+ ho(2r) - h2q0(2r +1)+ h3<p(2r +2)
= (=D"h_@Q2r -1+ (=DVh_@Q2r-0)+ (-1 h__@Qr-[-11)+ (<) h__,@2r-[-2])

ﬁ @(2r+2)

eRr+1) +

G5

Figure 2.2: Daubechies Wavelet [7]

The Daubechies wavelet is calculated in this fashion. It can be seen that the
Daubechies” wavelet method utilizes vanishing moments. Vanishing moments
are described as a point in the function where it dips below the frequency axis.
Vanishing moments contribute to the smoothness of the transformed wavelet
because they allow the system to compensate for the differences in the transfer
function without sacrificing expensive hardware implementation [8]. The signal
adhesion is more apparent in the Daubechies wavelet transform than that of the
Haar wavelet [10], making the Daubechies wavelet transform one of the more

popular implementations of the discrete wavelet transform. This method for

10

transform and thresholding is much more promising for improving system

performance of the receiver than the Haar wavelet transform.
2.3 : Thresholding and Noise Reduction

As discussed before, the wavelet transform separates the time-based signal
into details and a general form for the signal. It is in the details that most of the
noise creates a problem because the details are so much smaller in terms of
frequency amplitude. Adding a zero where the noisy coefficients are is a
possible solution to create a cleaner signal [9]. The main motivations of this
method can be summarized with the following assumptions and observations:

1. The de-correlating property of the wavelet transform creates a sparse
signal: most of the untouched coefficients are close to zero or at zero.

2. Noise is spread equally throughout all coefficients.

3. The noise level is not too high so that the signal cannot be
differentiated from the noise.

Adding a threshold that adds a zero below a certain value allows the signal to
be cleaned with a simple and efficient design. This simplicity is what makes
thresholding a common solution to reducing noise in a signal.

Replacing small coefficients with a zero if under a certain threshold value is
called hard thresholding. Another method, which coefficients above a coefficient
are reduced by an absolute value, lends itself to more continuity in the
coefficients. There is a clean transition between the noise coefficients and the

signal coefficients. This method, called soft thresholding, is particularly effective

11

in maintaining mathematical controllability; for example, a discontinuous signal
is not useable for use in a system that is made for continuous signals or may
cause some un-desirable results. For these cases, a soft threshold, which
maintains continuity, would be clearly a better choice than the discontinuous
hard threshold method [9].

However, setting the type of threshold is only one parameter that needs to be
set. An important parameter is the threshold selection. This threshold can be
based on a few items: variance deviations, namely mean absolute deviation and
numerical standard estimate; or threshold estimators using mean squared error.
Mean squared error is primarily used as a threshold estimator for soft
thresholding and applications include image processing as well as sound
processing [9].

For this design, however, an absolute median of the signal is used as an
estimator for the threshold. The basis for this design is because per input signal
after the discrete wavelet transform, the majority of the important details (the
main part of the true signal) will be contained in the first half of the transform
while the second half will contain the majority of the details, which includes the
noise in the signals. Following this logic, the second half of the data is sorted,
then a median is found. From the median, the threshold can be estimated
because all the small details should have amplitude with much less fluctuation
than in the first half of the data. Another method that could be used in

estimating the threshold is the use of a statistical standard deviation method.

12

This method is more complicated, and may require more hardware or
computation time. In a system design that requires as little computation as
possible to reduce power consumption as well as hardware real estate, a
simplistic approach using the median would be more appropriate for this

application.
2.4: Hardware Implementations

The major considerations for the design deal with the design of the discrete
wavelet transform itself. In the transform, there are many recursive processes
that occur; these processes rely heavily on memory to store previous values for
recalculation. Another major consideration is the filters that would be used to
implement the discrete wavelet transform. These filters differ based on different
types of wavelet transforms; like in most cases, a more complex filter will
produce better results, but also result in complex filter hardware
implementation, requiring more space and power.

The discrete wavelet transform implemented in this design is a Daubechies
Wavelet Filter, using a 4 -tap design, which is simple to implement because of its
orthogonal properties as well as the simple shortness of the filter. It also satisfies
the perfect reconstruction conditions [7][8]. In designs such as the ones used in
[4] and [12], the filters were implemented directly in the system since they could
vary based on the inputs of the chip. The most important characteristic of the
FIR filters obtained from Daubechies functions is that they are Power Symmetric,

which allows implementation of those filters using a Lattice Structure, as

13

described in chapter 6.4 of [10]. The Lattice Structure has many advantages, such
as better coefficient quantization response as well as a reduction by a factor of
two of the stages needed for a given filter order [11].

Another method of implementing the filters is described in [13], using a
different method for implementing a DWT system, and compares the
convolution-based, lifting-based, and b-spine based designs. For one
dimensional DWT, the architectures are mainly convolution-based and lifting-
based, while other designs, including the b-spline based architecture, is more
suitable for two dimensional DWT. Traditionally, a convolution-based system is
used for the filter system. This system provides an accurate transform and
reconstruction of the signal when processed in a transform and an inverse
transform. However, this method also requires space and some complex
arithmetic to take place; therefore, some other methods are investigated [17].

When composing a DWT design, the input is divided into an even and odd
signal, which is processed so that the output of the transform is a high pass

sequence and a low pass sequence. This concept is illustrated below:

14

Even Signal

He(z)
|. Low Pass Signal
Processing
(Thresholding)
Odd
Signal 1 Ho(2)
Y
Ge(z)
_L. High Pass Signal
Processing
} > (Thresholding)
Go(z)

Figure 2.3: Discrete Wavelet Transform Hardware Block Diagram [16]

The filters here determine the complexity of the circuit. For the lifting-based
concept, factorization of the filter coefficients using a lifting scheme allows for
hardware cost to be reduced and for complexity to also be reduced. However,
the cost for using a lifting-based scheme may result in a longer critical path [15].
This is because the factorization may result in different stages to connect
differently from the convolution-based scheme. Optimized correctly, however,

should maintain the critical path while reducing hardware.

15

Aiol.k ¢ X
—#=(Split Predict Update

Figure 2.4: Lifting-Based DWT Architecture [12]

The lifting based scheme has three simple steps, applied repetitively on the
samples: the split phase, predict phase, and the update phase. The split phase
needs to split the incoming signal into two separate types, ideally, the odd and
even signals. The first stage is called the lazy wavelet transform because it
simply sub samples the signal into even and odd samples. During the Predict
Phase, the even subset is used to predict the odd subset of the system. The
purpose of this predict phase is to eliminate the need for the odd samples by
predicting it using the even samples. To denote correlation differences between
the odd and even channels, the predicted values are subtracted from the actual
values. The more correlation between the even and the odd samples, the better

the calculations. The Update Phase is where the samples are lifted with the help

16

of the neighboring wavelet coefficients so that the mean of the samples is
preserved. The lifting wavelet transform requires less calculations than a
convolution method because it eliminates the need to preserve the odd samples
and uses lifting, which preserves the mean of the values in the transform [12].

There are other methods of implementing the discrete wavelet transform,
including a design that would utilize look up tables (LUT) for storing the values
of the coefficients or possibly the products of the coefficient and a number, which
would be the input address. This method takes advantage of the space efficiency
of the look up tables and is a viable alternative to multipliers, which take up a
large amount of space.

The memory is also used to store the values for the calculation of the
compensation table, so allocating some memory for the calculation of the DWT
and the inverse DWT is easily accomplished. For the threshold estimation, the
temporary storing and replacing of values will require some memory as well, but
these operations may utilize the same memory area and will not require much
more memory. Pipelining of the sorting algorithm blocks, however, may be
needed to compensate for the large amount of data being input into the system
and will also require hardware space, both in terms of the blocks as well as
memory.

Implementations of the discrete wavelet transform are largely done on
FPGAs because FPGAs have integrated multipliers and adders [11][14][15]. This

attribute of FPGAs is attractive because multipliers and memory units are

17

expensive in terms of hardware real estate in ASIC design. Also, FPGAs provide
a faster development cycle than ASIC. However, ASIC provides a faster
performance speed and also takes up less space than the FPGA design. For the
video applications of the DWT, ASIC is a preferable implementation scheme and
provides the throughput that FPGA may not be able to offer [15]. For the
receiver design, either path can be followed, but it remains to be seen which

technology would be more practical for implementation.

18

Chapter 3: Methodology

The methodology for developing a receiver design improvement requires

several different steps, and use of different types of equipment. The advantages

and disadvantages of some of the steps are explained as well as the steps that

were taken for the implementation of the receiver design. The steps are as

follows:

Data Generation

ADC Background

FFT

Compensation Matrix

DWT De-noising

Frequency Selection (Signal Detection)

Analog
Signal
Generation
(MATLAB)

De-noising Function

ADC

Fast Fourier
Transform

Compensation
Matrix

Discrete
Wavelet
Transform

-

Threshold

>

Inverse
Discrete
Wavelet

Transform

Signal
Detection

| (Frequency

Selection)

Figure 3.1: Block Diagram of Steps

The block diagram above depicts the flow of the system as it is being used for

simulations.

Each block is described in the next sections.

The receiver is also

designed and implemented in hardware. The detailed implementation of the

hardware is described in Section 3.7.

19

3.1: Data Generation

The data sets for the simulation of the receiver design are generated
frequencies using MATLAB, ranging from 125 MHz to 1125 MHz. These signals
are generated with a minimum of 10 MHz difference between one another, and
also have one signal generated as a strong signal and another signal generated as
a weak signal. These signals are also generated with random noise added to the

spectrum. This represents a typical signal input data for the receiver.
3.2: ADC Background

The ADC is used to convert the generated continuous time signal into a
digital signal so that it can be processed easier. The highest frequency that can be
received by the ADC is 1.125 GHz, so the 2.5 GHz sampling rate of the ADC
corresponds with the Nyquist rate. In the MATLAB simulations, a simple
quantizer is used for the function that the ADC would perform. However, a
ADC design is required for the hardware implementation, which has the general

design shown Figure 3.2.

Clock
Generator
Analog 1st Order A) .| Offset and Amplitude
Input ' Modulator o LFF 4 Correction

Figure 3.2: ADC Block Diagram

20

The ADC design is programmed in AMS Verilog and interfaces with the FFT

in the receiver design.
3.3: Fourier Transform

The next step is to transform the digital data after the ADC into frequency
domain for processing. The Fast Fourier Transform was chosen for the
implementation of the Fourier Transform. The Fast Fourier Transform (FFT) is
designed to generate 256 points. Each point generated by the FFT is
approximated by a unit circle with 12 points on it and choosing the point closest
to the point generated. This approximation is the 12 point kernel FFT. The 12
point kernel 256 point FFT is designed and written in MATLAB code for

simulation use as well as for ease of numerical handling.
3.4: Compensation Matrix

The incoming 256 points from the FFT is a mirrored spectrum, so half of the
spectrum (128 points) is used for processing the signal. To remove the noise
from the incoming 128 points from the FFT, a compensation matrix, which
contains pre-calculated noise in the matrix, is used to process the signal. This
calculation comes from previous data patterns that were generated and stored in
memory. An algorithm selects the compensation row. The compensation matrix
is implemented in MATLAB code by using variables to denote the memory slots
and implementing a separate algorithm to search and select a specific row for use
in the signal processing. The information in the compensation row is used to

subtract from the FFT signal, theoretically “exposing” any second signal that is

21

possibly overshadowed by the noise in the system. Theoretically, the noise

should be completely removed from the signal, but in reality, this is not the case.
3.5: De-noising Function

The de-noising function is composed of three sections: the discrete wavelet
transform (using the Daubechies implementation), thresholding, and an inverse
wavelet transform. Further removal of signals requires the Daubechies wavelet
transform, thresholding, and an inverse transform. The main inputs of this
system are the filter coefficients, threshold value set by the user, and the signal
from the compensation matrix. The filter coefficients are precalculated and
stored in memory, then input into the de-noising function. The filter coefficients
are calculated using MATLAB code and insert the values generated into the
different components as matrixes.

3.5.1: Discrete Wavelet Transform

The discrete wavelet transform mainly utilizes the filtering coefficients to
process the incoming signal from the compensation matrix. Based on these
inputs, the discrete wavelet transform can calculate the Daubechies wavelet
based on the coefficients that are provided by the user. The software
implementation of this module is in C++ and is compiled in MATLAB for
compatibility with the other modules. Mathematically, the Daubechies wavelet
is calculated as explained in Chapter 2.2. From the mathematical calculation, the
output signal is broken down into a signal like the one shown, using the

coefficients [0.4830, 0.8365, 0.2241, -0.1294]:

22

Sinusoidal Input Signhal

_2 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Discrete Wavelet Transform of the Input Sighal

T T T T T

1 1
0 20 40 60 80 100 120 140

Figure 3.3: Discrete Wavelet Transform of a Sinusoidal Signal

The benefit of using the DWT comes from virtually the second half of the

wavelet signal in that the small details can be removed as “noise” from the

signal. To achieve that, thresholding is required.

3.5.2: Thresholding

The signal is sent to the thresholding section, which has inputs of the signal
and the threshold value that is selected by the user. The user-defined threshold
value, however, is only a component for the application of the threshold to the
wavelet domain. This threshold value is used for estimating the threshold value
that will be cut from the signal. This estimation is done by using the Mean
Average Deviation, which utilizes an absolute median function. The median is

based on the input signal, specifically, the small detail section of the discrete

23

wavelet transform. This used in the threshold by multiplying the value by the
user-defined input to properly define and specify the wavelet domain value.
Once the threshold is properly defined, the values below the threshold are
removed from the signal (replaced by 0). The threshold element is implemented
using MATLAB code that reads the output of the C++ DWT portion and also
reads in the threshold set by the user from the header MATLAB file.
3.5.3: Inverse Wavelet Transform

The signal, now in the wavelet format, is inverse transformed into the original
frequency domain signal. The inverse wavelet transform utilizes the same filter
coefficients which are inversed for perfect reconstruction. The purpose of
performing the inverse transform is to allow the system to recognize and
properly detect peaks in the system. The inverse wavelet transform is
implemented using C++ code and utilizes the same compiler for MATLAB
compatibility. It also reads in the filter coefficients from the header MATLAB
file. The coefficients for the inverse wavelet transform are the same as the filter

coefficients, only reordered and also two coefficients are negated.
3.6: Signal Detection (Frequency Selection)

To detect the two originally transmitted signals, the two highest amplitude
peaks in the compounded signal from the inverse wavelet transform are
assumed to be the originally transmitted signals. However, since sorting the
values in the signal require too much processing, a simpler method of using a

threshold is utilized. The two signals from the compounded signal are detected

24

based on a threshold where frequencies above a certain threshold are assumed to
be detected while the frequencies below the threshold are ignored. For the
signals that are detected, they are still in the frequency domain. Signal detection
is implemented in the software by using MATLAB code, which deals directly
with the output of the C++ inverse transform function. An example of signal

detection through thresholding is shown below:

808l .
2
=
£ 06 i
L]
g
N g4l Threshold =-22 dBM [0.0794] |
£
202+ N il
Iw w M__/J IL\,/—\

0
125 225 325 425 525 625 725 825 925 1025 1125
frequency in MHz

Figure 3.4: Signal Detection Through Thresholding
This figure is an example of signal detection through thresholding, using a
threshold of -22 dBm. As shown above, the two highest peaks are detected as the
two signals.

3.7: Hardware Implementation

Hardware implementation for this receiver is done in two languages, AMS
Verilog and VHDL. The ADC is implemented in AMS Verilog, because AMS
Verilog is able to deal with both the analog and digital portions of the ADC. The
simulations for the hardware are done using Synopsis for VHDL and Cadence

Custom IC tools for AMS Verilog. Cadence Custom IC Software used IBM’s 0.13

25

micron technology for simulation of the receiver as a whole. This software runs
on the Sun machines, using Solaris 8.0. Cadence can use Verilog, AMS-Verilog,
and VHDL among other languages for hardware implementation. Usually, a
receiver receives the signal as an analog signal, then an ADC is used to convert
the analog signal into a digital signal. Both signal processing steps need
simulation for complete system verification. As a result, for simulations with the
whole system, AMS-Verilog was used for it’s flexibility with both the analog and
digital parts of the system. The Fast Fourier Transform, the compensation
matrix, de-noising function, and the frequency selection are all implemented in
VHDL as well, since they all deal with digital signals.

The denoising function is originally implemented in C, but to transfer the
same functionality from C to VHDL requires directly translating the function of
the C code to VHDL using a structural approach. Because the discrete wavelet
transform requires multiplication, look-up tables were used to take the input
value and search for the value in the look up table that would be equal to the
input value multiplied times a coefficient, for example. This eliminated the

requirement of using multipliers with a more hardware efficient result.

26

Chapter 4: Results and Discussion:

4.1: Simulation Environment

A large portion of the simulations required for the design of the receiver on
chip was performed by using MATLAB, an industry and educational standard
tool for math, applied science and engineering. MATLAB has the capability to
work with numerical processing and has many tools and utilities that are highly
suited for signal processing, as well as compatibility with different programming
languages. This makes the MATLAB environment an attractive choice for
prototyping different signal processing designs. The implementations of the
software in the MATLAB environment can be pure MATLAB native code, or a
mixture of MATLAB code and other language code. The native MATLAB code
is a simple design, which each command calls a function that is in the MATLAB
library. However, MATLAB code is an interpreted language, which performs
like a script. For example, each command calls a function in the MATLAB
library, and each value that is achieved is re-inserted into another function. The
nested functions causes the run-time to be relatively slow and processor
intensive, as the functions continuously call one another and swap inputs and
output data. To overcome this deficiency in speed, MATLAB also has the
capability to interpret and use other programming languages, which may be
compiled languages. This provides a significant benefit in speed, as the program
need not call another function in MATLAB, but have all the functionality

available in the compiled program already. This capability is significantly

27

important to complicated computational programs, which does not need to be re-
compiled every simulation run. MATLAB only requires that there be a header
program that simply denotes the inputs and outputs of the function. This is why
there is a mixture of MATLAB code and other code: to allow the interfacing of
MATLAB'’s powerful mathematical capabilities with the practical functionality of
other languages.

From the simulation perspective, any machine could be used for simulation.
MATLAB is a program that is ported to all the major operating systems, so the
simulations were run on three different machines, all using different
configurations. The Sun machines, using a 64-bit architecture but with slower
clock speed, processed simulations about the same speed as an Intel Pentium 3,
which had a higher clock speed, but 32-bit architecture. Running the simulation
on an IBM PowerPC G4 processor yielded similar performance. This
performance similarity can be attributed to the way MATLAB was designed, and
how the GUI interacts with the main core of the program. For the Solaris and
Apple Mac OS X versions, both had a GUI that would access the main core
program with every command. Through the console, both the Solaris and Mac
OS X versions could be accessed through the UNIX prompt and without using
the actual GUIL. This yielded much faster simulation times than the Windows
version, which requires the GUI to interact with the main core system. From this

consideration perspective, using the UNIX based system, such as Mac OS X and

28

Solaris, produced faster simulation runtimes and therefore was the choice of
operating system for MATLAB simulations.

Of the languages that MATLAB can use, the easiest to program with the best
performance results would be C++. Because C++ is a compiled language, the
performance is better than an interpreted language, such as Java. For the signal
processing purposes, C++ was the choice of programming languages to
implement the discrete wavelet transform (DWT) and it’s inverse transform. To
properly use the C++ programs with MATLAB, the programs needed to be
compiled into MATLAB-compatible files (MEX files). Using MATLAB’s C/C++
compiler and MEX file creator, the binaries for the DWT and the IDWT can be
implemented for compatibility with MATLAB.

The choice of programming languages was based on the capabilities of the
languages to deal with the simulation data and to do numerical processing.
MATLAB’s native language is able to deal with the numerical processing from
the different functions that are implemented in the system. However, to access
many of the DWT’s architectural designs without re-compiling the DWT
software each simulation, C++ was used to design the main computationally
intensive modules. Once the modules are compiled, they don’t need to be
compiled again, thus alleviating extra processing.

In the design of the simulations, there are signals to be generated. To
generate the signals to be received by the simulated receiver, two frequencies are

designated at random as the two signals and are generated within a 1GHz

29

bandwidth (from 125 MHz to 1.125 GHz) and have at least 10 MHz separation
between them. The strength of these frequencies are defined based on the
scenario that is being investigated - for example, where the dynamic range
between the highest signal and the second signal is 18 dB, 20 dB, etc. This
dynamic range is called the “two-signal dynamic range.”

Generated with these signals is random noise, which the receiver must be
able to compensate for, especially for greater two signal dynamic ranges (i.e. >18
dB). As mentioned in Chapter 2, scenarios where the noise becomes similar in
amplitude and power as the second signal will require some form of signal
processing for noise reduction. For each simulation, a randomly generated
signal set (1 signal at a “close” range, and 1 signal at a very “far” range, with a
difference in 18+ dB between the close and far signal) is done 1000 times, with
each time recording the statistical data (1t signal detected, missed, 2nd signal
detected, missed, or false alarm). For further proof of concept, a run of 10,000
times is done to further investigate the system performance.

As previously mentioned in Chapter 2, the compensation matrix relies on a
set of calculated outcomes of the FFT, and therefore, subtracts the value that is
pre-calculated from the actual signal data, exposing the second signal and

reducing the actual noise in the signal.

FET o] Compensation - Frequency
o Matrix Selection Logic

Y

Input —#= ADC —» QOutput

Figure 4.1: General Flow of Receiver Design without De-noising

30

The de-noising function utilizes a discrete wavelet transform, a threshold,
and an inverse transform, as covered in Chapter 2. This method of removing
noise from an input signal is based on the use of the inherent properties of the
wavelet transform as well as the thresholding methods, which require the use of
either a hard or soft threshold. Hard (all values below the threshold are set to 0)
and soft (all values are reduced by a certain value) have their own applications
for different cases; for the receiver design, both would be investigated to further
improve results of the simulation.

4.2: Determination of Placement of De-noising Function

Purpose of experiments: To determine the proper placement of the discrete wavelet
transform-based de-noising module for effective use in the receiver design.

The first experiments with the de-noising function that uses the discrete
wavelet transform dealt with verification of the functionality of the module in a
system performance level.

Insert DWT De No
noising Function

Yes

e

e | Y SRS
nolising Function P e

No

Figure 4.2: Flow Chart for Determining Placement of DWT De-noising
As can be observed from the diagram shown in figure 4.2, there are two
methods for the application of this module in the system: placing the module

before the compensation matrix or after the compensation matrix. The reason for

placing the de-noising function in these two different areas is because the signal

31

coming from the fast-Fourier transform is a good signal for which the de-noising
function can work with. Because the wavelet domain is unknown to the
compensation matrix, and thus, renders it useless, there is a need for the FFT to
remain in the design.

For 1,000 runs, a test of the different placements of the de-noising function is
performed. The frequency of missing the second signal by using two
alternatives, placing the de-noising module before or after the compensation
matrix, in the system was counted as “2d Missed” in the 1000 runs. Likewise,
the frequency of mistakenly counting the noise as the second signal was counted

as “2nd False Alarm” in the testing. The results can be seen in Table 4.1.

Before Comp. After Comp Difference (A)
274 Missed 53% 18% 35%
27 False Alarm 30% <1% 29%

Table 4.1: Comparison of Second Signal Missed Signal and False Alarm Based on
Placement of DWT De-noising

Comparing the two configurations, there is a clear difference in performance
between setting the de-noising function before the compensation matrix and
setting the de-noising function after the compensation matrix. According to set
design specifications, the system must have less than 20% second signal missed,
and less than 1% second signal false alarms. As noted by the results above, the
best method for using the de-noising function is to place it after the

compensation matrix to act as an additional filter.

32

4.3: Determination of Threshold Type

Purpose of Experiments: To determine the best threshold type and threshold value for the
best performance in the receiver design.

After observing that the hard thresholding produced more missed signals,
but less false alarms from experimental results, it can be concluded that there is a
balance to be struck, depending on the threshold value and the type of threshold.
In the case of the receiver design, the least number of false alarms is desired, so
the hard thresholding was chosen initially.

The following table shows the results by using the 5 different threshold
values. Each of the threshold values were tested by using 3 sets of 1,000 random
generations of two signal frequencies compounded with random noise using
MATLAB. The various threshold values were tested for performance at a two

signal dynamic range of 18 dB.

‘ Threshold Value ‘ False Alarm % ‘

2.2 1.3 %

123 10.93 % |
2.4 0.68 %

125 10.77 % |
3.0 1.6 %

Table 4.2: Results of Simulations Testing Threshold Values
From Table 2, it is easy to see that the threshold value of 2.4 would be the best
choice for the system to run on at the 18 dB two signal dynamic range. When
running through further 10,000 random signal generations, the results showed

the false alarm percentage at 0.68% and missed signal at 18.21 %. In comparison

33

with the compensation matrix alone (0.9 % false alarm percentage), the de-
noising module is able to effectively aid the performance of the system.

After the threshold value being set, various different experiments were
performed using the new threshold value with higher dynamic ranges and
further exploring the design. However, at this point, an error was discovered
with the compensation matrix, skewing the results so that it would register
unacceptable results. This problem was solved by using a different set of rules
for the compensation table. While the problem was being addressed,
consideration of using the de-noising function with older receiver designs to
further prove the effectiveness of the wavelet-based de-noising function in

different applications.
4.4: Determining Performance Improvement in Mono-bit Receiver

Purpose of Experiments: To determine the performance improvement of the de-noising
function when added to the mono-bit receiver design by examining the false alarm cases.
Previous designs of the receiver utilized either the compensation matrix, or
did not have any additional technology to detect two signals. To further verify
the functionality of the de-noising function in the system, the de-noising function
was put into the previous designs, such as the monobit receiver. The main
performance specification for the mono-bit receiver is the false alarm rate not to
go beyond 1%. There is no specification for the second missed signal as the

signal can always be sent again. The mono-bit receiver design has a 2 bit ADC,

34

and a 4 point kernel FFT. The results for the mono-bit receiver using the de-

noising function are as follows in Table 4.3:

4 24 Hard 99.96% 30.19% 68.96% 0.04% 0.85%
4 24 Soft 99.95% 27.24% 72.47% 0.05% 0.29%
4 1.6 Hard 99.98% 29.83% 69.29% 0.02% 0.88%
4 1.6 Soft 99.99% 27.90% 71.66% 0.01% 0.44%
4 3.0 Soft 99.95% 27.93% 71.82% 0.05% 0.25%
5 24 Hard 99.99% 24.44% 74.73% 0.01% 0.83%
5 24 Soft 99.95% 23.27% 76.50% 0.05% 0.23%
5 1.6 Hard 99.99% 23.47% 75.76% 0.01% 0.77%
5 1.6 Soft 99.99% 23.84% 75.81% 0.01% 0.35%
6 1.6 Hard 99.99% 19.80% 79.38% 0.01% 0.82%
6 1.6 Soft 99.99% 19.77% 79.98% 0.01% 0.25%
6 24 Hard 100% 19.68% 79.69% 0% 0.63%
6 2.4 Soft 99.98% 20.94% 78.71% 0.02% 0.25%
Table 4.3: Results of Simulations Using Random Generation of Signals in Mono-bit
Receiver

From these results it can be seen that the soft threshold seems to create more
missed signals, but less false alarms than hard threshold, which seems to
decrease missed signals, but increase false alarms. The two threshold values
were alternated between 2.4 and 1.6 to further test the validity of having a single

threshold value.

35

4 - 6 dB Two Signal Dynamic Range
100.00% 114 dB 2.4 Hard
90-00‘;/0 W4 dB 2.4 Soft
. gg-ggoﬁ’ 14 dB 1.6 Hard
o . (o]
2 60.00% E4 dB 1.6 Soft
E 50.00% 4 dB 3 Soft
(8]
= ‘3‘8-88‘(’;) 6 dB 1.6 Soft Eg j: i': :afrtd
o . (o] . (o]
5dB 1.6 Soft
20.00% 15 dB 1.6 Hard
10.00% 4 dB 3 Soft W5 dB 1.6 Soft
0.00% '
° == 4 dB 2.4 Hard (16 dB 2.4 Hard
O [7)]
s £ 0 16 dB 2.4 Soft
a = L 16 dB 1.6 Hard
k7 o
signal = ~ 2 16 dB 1.6 Soft
Detection

Figure 4.3: Graph of Signal Detection Types, Percentages and Types of Threshold

Figure 4.3 shows the performance of the system using the de-noising function
in terms of first signal detection and second signal detection for different
threshold values and types of threshold in the mono-bit receiver design. As can
be determined from Figure 4.3, the second signal detection is around 30% while
the second signal false alarms remains less than 1%. Looking closer at the
different thresholds and types of thresholds, the general trend of the results
shows that at 4 dB, the 2.4 hard threshold provides a better result than the 2.4
soft threshold or the 1.6 hard and soft thresholds, as the second missed signal is

the lowest at that setting. But as the two signal dynamic range gets larger, the

36

different types of thresholds provide less and less of a difference. As can be seen

with the 6 dB results in Figure 4.3, the second missed signal is virtually the same,

no matter which threshold setting is used. This shows that as the two signal

dynamic range increases, the difference in using different types of thresholds and

threshold values significantly reduces the effect on simulation results.

A closer look at the behavior of the module in the system reveals a better

comparison as shown in Table 4.4:

DR Threshold Hard/Soft 1st False 2nd False
4dB 24 Hard 0.04% 0.85%
4dB 1.6 Hard 0.02% 0.88%
4dB 24 Soft 0.05% 0.29%
4dB 1.6 Soft 0.01% 0.44%
4dB 3 Soft 0.05% 0.25%
5dB 24 Hard 0.01% 0.83%
5dB 1.6 Hard 0.01% 0.77%
5dB 24 Soft 0.05% 0.23%
5dB 1.6 Soft 0.01% 0.35%
6dB 24 Hard 0% 0.63%
6dB 1.6 Hard 0.01% 0.82%
6dB 24 Soft 0.02% 0.25%
6dB 1.6 Soft 0.01% 0.25%

Table 4.4: Table of Results, Specifically False Alarms

37

4-6 dB Dynamic Range

1.00%
0.90%

0.80% /\ ~ A

0700 |\ [/\
s\]\ 7\
';é; 0.50% \ / \ / \ 1st False
g 0.40% \ A / \ / \ —— 2nd False
& 0% V/ \/ \\// _
0.20%
0.10%
0.00% . |
T D | £ DT & &€ T T | & &
5588385858885 88
24/1.62.4/]1.6 3 2.41.62.4/1.62.4/1.62.4/1.6

4.4 4/ 4 4 55 5 5 6 6|6
dB dB dB dB dB|dB dB dB dB dB dB dB|dB

Signal Definition

)]

Figure 4.4: Graph of False Alarms in Mono-bit Receiver Simulations
The comparison table in Table 4.4 was graphed in Figure 4.4, which clearly
shows a relation between the percentages of false alarm signals when using the
de-noising function. This further narrows the threshold selection and type of
threshold selection for this system, and possibly for the whole system in general.
When the design performance is determined by the second signal false alarms,

the general trend shown in the graph clearly denotes that the 1.6 soft threshold is

the best selection for the monobit receiver design.

38

Purpose of experiments: To determine the performance improvement of the de-noising
function in the mono-bit receiver design by examining the second missed signal.

To further investigate the usefulness of the de-noising function, a close look at
the second signal missed signal rate is needed so that a deficit in performance
would not be present as a result of using the module. Investigations of the

second missed signal reveals the results in Table 4.5 below:

DR Threshold Hard/Soft 2nd Miss

4dB 24 Hard 68.96%
4dB 1.6 Hard 69.29%
4dB 24 Soft 72.47 %
4dB 1.6 Soft 71.66%
4dB 3 Soft 71.82%
5dB 24 Hard 74.73%
5dB 1.6 Hard 75.76%
5dB 24 Soft 76.50%
5dB 1.6 Soft 75.81%
6dB 24 Hard 79.69%
6dB 1.6 Hard 79.38%
6dB 24 Soft 78.71%
6dB 1.6 Soft 79.98%

Table 4.5: Table of Results, Specifically Missed Signals
While the second signal is not detected most of the time, the percentage
missed seems to marginally increase with the use of the soft thresholding. Figure
4.5 shows the percentage of 27 signal missed in various thresholds and
thresholding values. It shows a trend of increasing percentages of 2 signal

missing in the monobit receiver with the increase of 2 signal dynamic range.

39

2nd Signal Missed

82.00% -
80.00%]
T 78.00%
@ 76.00%
Z 74.00%
% 72.00% ~ 2nd Miss
:e; 70.00%
O 68.00%
& 66.00%
64.00%
62.00% . .
T TEEE T T EEDDTELE
S8 FRAEEEAEEEG A
2.41.62.41.6 3 2.41.62.41.62.41.62.41.6
4 4 4 4 4 5555 6 6 6 6
dB/dB dB dB dB dB dB dB dB dB dB dB dB

Signal Definition

Figure 4.5: Graph of Percentage Missed vs. Threshold Type
These simulations were conducted using just one DWT de-noising function
just before normalization (so there is no visible change to the signal). Some
considerations would be to include a combination of hard and soft thresholding
in the middle of the function. However, because the performance concerns and
the space required would be effectively doubled for the including of both types

of thresholds, this idea was abandoned.

40

4.5: Determining Performance Improvement in Receiver on a Chip

Purpose of Experiments: To determine performance improvement of integrating the de-
noising function in the receiver on a chip design by applying isolated cases where the
previous design fails.

After verification that the module works with the monobit receiver in
improving performance, further research was done to see if previously unable to
detect cases could be detected using the de-noising function integrated into the
system. For this, oscilloscope-generated values were imported into the MATLAB

simulation. Table 4.6 represents 9 different cases where the system is tested to

see if the performance increased at 21 dB 2 signal dynamic range.

Freql (MHz) Freq2 (MHz) Detect With Denoise?

1 237.6334 863.8414 Yes, sometimes
2 637.8826 612.5074 No, not at all

3 149.7103 1037.336 Yes, everytime
4 1067.777 143.6644 Yes, everytime
5 129.7335 649.8135 No, not at all

6 852.8769 994.1029 Yes, everytime
7 744.9261 1089.383 Yes, sometimes
8 375.7071 863.9413 Yes, sometimes
9 247.1928 746.8173 Yes, everytime

Table 4.6: Table of Isolated Cases and Results from New Configuration
From Table 4.6, it can be seen that while all 9 cases failed for the receiver
using the compensation table, sometimes or every time, the de-noising function
could detect some of the cases. It further proves that the de-noising function is

effective in detecting signals that the compensation matrix by itself could not.

41

One such case is displayed below in Figure 4.6:

SIGNALS BEFORE APPLYING COMPENSATION

T T
Two Signal Dynamic Range = 21 db
o 08 Minimum differes nals = 10 MHz —
k-]
2 a el 4
B 0B Second signal frequency =836.71 MHz -
=
g
o 04 -
T
E
5
<02 —
e~ A |
0 50 100 150
SIGNALS AFTER APPLYING COMPENSATION
1
T
o 08 -
k-]
2
£ 06 —
<
=
2
=041 Detected Real -
£ 2nd Signal 2nd Signal
2 02b ‘ L// _
0 1
0 50 100 150
10 x frequency in MHz
SIGNALS AFTER APPLYING COMPENSATION AND DENOISE FUNCTION
1
T T
o 08 =
-]
2
206 —
<<
3 Detected
= 04 and Real =
£ 2nd Signal
S
Z 02 ‘ -
0 |
1} 50 100 150

10 x frequency in MHz

Figure 4.6: Signal Detected Using De-noising Function
In figure 4.6, the peak at the frequency bin 90 is the main signal and after
compensation, the peak is removed along with its sidelobes to provide the
processing for the second signal. To investigate the performance boost of the de-
noising function, the second signal detection in general must be taken into
consideration. For this purpose, Table 4.7 displays the results at various two-

signal dynamic ranges.

42

Dynamic Range Threshold = 2nd Detect 2nd Missed 2nd False Alarm

18 dB 1.6 Soft 82.1% 17.1% 0.8%
18 dB 2.4 Hard 80.68% 18.92% 0.4%
19 dB 1.6 Soft 84% 14.4% 1.6%
19 dB 2.4 Hard 79% 19.5% 1.5%
20dB 1.6 Soft 78.7% 18.2% 3.1%
21 dB 1.6 Soft 62.2% 33.4% 4.4%

Table 4.7: Simulations with De-noising Function, Specifically Second Signal

As can be seen from Table 4.7, the performance of the receiver can be pushed
beyond the 18 dB range of the previous design and still meet the specifications of
the design. However, once reaching beyond the 20 dB range, the number of
missed signals increases beyond the specification. As can be seen from the data,
however, the performance can be tweaked using either a hard or soft threshold.

In Table 4.8 the results are summed up for successful simulations of the
receiver design using different components for investigation of the de-noising

method as a viable source for reducing noise.

43

22

21121
20120
19
18
11.5
9
8
7
6
5
4 14 |4
3.5
2-bit ADC VA R A A R A VA v |V
4-bit ADC v v |V VIV
12 pt. kernel 64 |V |V ararari
point FFT
12 pt. kernel VAR AR ARS VAR A v v
256 point FFT
16 pt. kernel v v
256 point FFT
Compensation v VAR A A A RV AR VAN RVAN RVAR RV AN RVEN V4
DWT Denoise |v |V |V |V [V |V |V |V |V |V [V |V |V [V |V |V |V

Table 4.8: Table of Acceptable Results with Different Configurations

44

4.6: Hardware Implementation

As an industry standard, VHDL was used to implement the module in a
hardware description language. VHDL is a language that is used in industry for
describing hardware designs. Therefore, since the signal that is being analyzed
with the de-noising function is digital, VHDL is the logical choice. Synopsis tools
were used to compile and analyze the VHDL code and also for synthesis.
Because the industry standard is to use Synopsis for VHDL synthesis, these tools
were used for implementing the system into hardware.

4.6.1: VHDL vs. AMS Verilog

AMS Verilog is a flexible language that allows top-down and down-up
development techniques for both analog and mixed-signal designs. It is also
flexible in that it allows different levels of abstraction for each block, which gives
an optimized balance between accuracy and speed. Also, another part of AMS
Verilog acts as a script, a command that creates netlists for an entire library. The
netlists are created as AMS Verilog netlists, which means if there is code using
other analog libraries, the analog libraries used are converted automatically and
without destroying any information. Because of this ability, both analog and
digital interfaces for different components in a system are accurately inserted
into the design so that accuracy is maintained throughout simulation. AMS
Verilog also allows for both text and schematic data entry, making either form of

entering information readily available.

45

The environment for entering the AMS Verilog design allows for debugging
the mixed signal, analog and digital signals in the system, while also allowing for
stand-alone simulation. Because AMS Verilog has so many advantages, mostly
based on flexibility, the AMS Verilog language and design environment is very
attractive for implementation uses. = AMS Verilog was used in the
implementation of the ROC, and has direct interface with the de-noising
function, which is described next.

4.6.2: Hardware Implementation of De-noising Module

For the hardware implementation of the module, a behavioural code, based
on the functional C++ code and the MATLAB interface was investigated.
Because VHDL implements vectors and arrays differently than C++ and is more
rigid as a result (only 1 dimensional arrays can be declared and used), a more
structural design was pursued, but still maintaining the behavioural design for
flexibility for working with different types.

The design of the de-noising function is shown as programmed in C++ and

MATLAB in Figure 4.7:

46

Cakulases
Daubachies
Coefficents

Adaer, multiplier,
RAM, sart, alvider,
convolution,
polyromial roots, I

Sum, masnx
rotation by 180

Dencises input signal

Floar, median, dwder

expanentia, min, max
comparaor, absoluse vakie

A
Irput S.;na! from /
Compersation
Matrix /

Derotsed

Signal

Figure 4.7: De-noising Function Interfaces

The diagram in Figure 4.7 shows the different functions that are implemented
outside of the de-noising function, as well as some of the internal functions of
each of the different modules. Most notable are the Daubechie’s coefficient
calculations of the filter coefficients, which includes adders, multipliers, memory,
and some other mathematical operations. These operations, however, are
redundant in this design as only one set of coefficients are generated for this
application, so instead of using the mathematical operations, the coefficients are
stored in memory as an alternative. Further examination of the de-noising

function code shows a design flow as shown below:

47

L 4

Dizcrete Wavelet Transform Soft Threshold
Threshokd Calkulate the spltiing
- = < multiplication with peint for windows
Divider, RAM, mukiplier, Flocre Function P —*| Abscluie value,
absolute value of
counter, adder, recursive = : = . signum, comparator,
signal (estimation) Exponential, civicer
processes subsractor

Qutput Signal

Figure 4.8: De-noising Function Details
The de-noising function is broken down into several blocks, each containing
different elements that would require multiplication, memory and have some
recursive processes. These processes will require many resources, especially
space in terms of multiplication and memory. To design the de-noising function
effectively, considerations of processing intensity and space requirement are
important factors in the design. The de-noising function, then, needs to be
considered from the basic building blocks of the system and to consider different

alternative implementations of each of the different blocks.

The de-noising function is broken up in to 4 separate blocks, as shown below:

48

2x64 2x64
Inputs Xx9b : x9% Output
1o8x8b ™ DWT #| Thresholding »| IDWT |—» 128 x 9b
64 x 9b
9b
Threshold
Estimator

Figure 4.9: De-noising Function Block Diagram

The inputs to the discrete wavelet transform is 128 element set of 8 bit data
from the compensation table. Each element of the data is assumed to be a
positive number because of normalization from the compensation block.
However, after a discrete wavelet transform, there are some coefficients that will
be negative because of the filter coefficient values used. For negative numbers,
the numbers are represented by 2’s complement scheme, so the output of the
discrete wavelet transform requires 9 bits.

After the discrete wavelet transform, there is a high-pass and a low-pass
breakdown of the signal. Both the high-pass and the low-pass signals are
transmitted to the thresholding block, where selection of signal removal takes
place. In addition, the low-pass component also passes into the threshold

estimator unit, which finds the median of the low-pass signal elements and

49

multiplies that value with a separate coefficient. This allows the thresholding
value to be determined for the best possible cut. This value is then passed into
the thresholding unit.

Once the signal has been processed through the thresholding unit, the high-
pass and low-pass signals are passed into the inverse discrete wavelet transform
to bring the signal back from the wavelet domain to the frequency domain. From
the inverse discrete wavelet transform, the signal is then sent to the frequency
selection, which can be easily changed to accommodate the 9 bit outcome of the
de-noising function.
4.6.2.1: Look Up Table Implementation

There are several methods of hardware implementation of the discrete
wavelet transform and it's inverse, as discussed in Chapter 2; however, all the
implementations require repeated multiplications in the process. To alleviate
any use of multipliers, look up tables can be used to accept the 8 bit value as an
address, then output the 9 bit value at the location as the result. This 9 bit value
is the calculated coefficient multiplied times every possible input combination,
each stored in the address that corresponds with the 8 bit combination. Because
look up tables are simpler than multipliers and take up less space, the use of look
up tables for the discrete wavelet transform and it’s inverse is used in this design.

For the implementation of the inverse discrete transform, look up tables are
also used, but in order to access the negative numbers (which are represented

with 2’s complement) in the table, the order of the table has to be changed to

50

match the address that is coming into the look up table, as the look up table only
accesses addresses as unsigned numbers. For example, the number -5 is
“111111011” in 2's complement. When this value is read by the look up table, it
will not consider the number as a 2’s complement, but rather as an unsigned
value, which means the actual value that the look up table interprets the address
as is 507. This means that the value that is at the address 507 must have the
value -5 multiplied times the coefficient stored in that location. Since the value
“100000000” represents the value of negative 0 in 2's complement and is
considered 256 in the look up table, this value is stored at position 256. The other
values, however, appear in reverse order, from -255 down to -1, at look up table

addresses 257 to 511. A diagram of this setup is shown in Figure 4.10.

0-255
cds 9 bit
0-255 —> gbit—| [256 (-0in 2's complement) |
257 - 511

(-255 10 -1 in 2's complement)

- 9 it

(@) (b)
Figure 4.10: Look Up Table Configuration a) DWT LUT, b) IDWT LUT
4.6.2.2: Decimal Representation in Binary
The numbers represented in the system are normalized numbers, meaning
the highest number is 1, being the first signal peak. All the other values are

below 1 in amplitude: there is a requirement, then, for a scheme for representing

51

the values in the 8 bit binary for the signal data. The scheme used for the
compensation matrix number representation is the biased number
representation. For example, the number 0.056202 can be represented with the
binary number 00001110 with a bias of 8. The number 00001110 represents the

value (21+22+23), but with a bias of 8, the formula becomes :

00001110 =
Q'+2*+2)x2" =

Q7 +2°+27)=0.0546875
0.056202 =~ 0.0546875

With this representation scheme, any bias of any number can be used to
represent small numbers of this type. The greater the number of biases, the more
likely the number will match the intended number. However, the cost of using
more bits in a signal is directly proportional to this representation. For the use of
this denoising function, a bias of 8 is chosen for the inputs, as the inputs to the
denoising function are the outputs from the compensation matrix, which have a
bias of 8. For within the look up tables, the values are generated using C code,
which utilizes the values from 0 to 255 (all the possible values from the 8 bit
input) and multiplies those values with the coefficient required. However, to get
the binary representation of the coefficient without hand calculation, the

following process was used:

hy =0.2241

0.2241x 2" =57.3696
57.3696 ~ 57 = (00111001),,,,,,

52

This process takes the coefficient and multiplies it with 256 or 28 (which is the
bias) and rounds off the result to the nearest integer. This is the approximate
binary value of the number using a bias of 8. Throughout the denoising process,
the bias of 8 was used to maintain simplicity in the processing circuitry.
4.6.2.3: Look Up Table Configuration

There are several coefficients required for the transform process. Four
coefficients are from the discrete wavelet transform based on the Daubechie’s
wavelet theory. These coefficients are 0.483, 0.8365, 0.2241, and -0.1294, and are
referred to as hi, hy, hs, and hs, respectively. As previously mentioned, the
representation of the numbers uses a bias of 8. However, since hs is a negative
coefficient, the system requires the use of 2’s complement, and thus requires 9
bits for processing within the denoising function. For the inverse transform,
there are 6 tables required to be created. Four look up tables are represent the
same coefficients as the discrete wavelet transform, but have an addition of 2’s
complement values. Another two look up tables contain the negative coefficients
of hi and hs for reconstruction, as well as the addition of positive values for any
positive value inputs. There is also a look up table for thresholding because
there is a coefficient of 1.6/0.67 or 2.388 that is multiplied with the median of the
incoming 64 samples from the low-pass signal of the DWT. This provides a
viable value to compare the samples from the transform to for cutting. The

VHDL code for the different blocks are included in Appendix B.

53

4.6.2.4: Simulation

To test the functionality of the VHDL, the same inputs for the MATLAB are
put in to the system to see the differentiation from the MATLAB due to bit
truncation. This bit truncation is due to the default bias of 8 in the numbers on
the output of the compensation matrix. Representing the numbers in binary is
similar to how the coefficients are represented in binary. The numbers can be
quickly generated to provide a speedier way to provide a relatively accurate
representation of the number through the same process as how coefficients are
represented in binary. VHDL code can be quickly generated, especially if it is
redundant code, through the use of a program written in C. This program uses
file input and output commands to generate the code, and is included in
Appendix C.

When the data is input into the de-noising function, the peak of the data is
noted first. For this simulation, the second signal that is generated is at 700 MHz,
which corresponds with the 727d frequency bin. The peak in the data, therefore
appears at the 72nd sample. From Figure 4.11 shows below, it is shown that the
peak value from the VHDL implementation of the DWT based de-noising
function is at frequency bin 72, which matches the input data. However, the
spurs in the signal are reduced to very low values due to the thresholding unit in
the de-noising function implemented in the VHDL. The threshold value that was
implemented in the LUT was 1.6, which was observed to be the best overall

threshold value for this application.

54

X! Synopsys Waveform Viewer - TEST_DENOISE.peace.14322.ow:0 - [Untitled]
Fle Edit Marker GoTo View Options Wndow Help

D@ |87 enfoerjocfex z+[=|o] | |«|>|+] 2|2 Sle|

[
|
139400 39500 39600 39700 39800 39900 4000 :
40000 Jf 0 b b b b Lo I8
(TEST_DENOISE/zin_72(7:0) aF -
B (TEST_DENOISE/zin_73(7:0) il i
> [TEST_DENOISE/zout_72(8:0) 00D 00D
& (TEST_DENOISE/zout_73(8:0) 001 001
& /TEST_DENOISE/AUUT/IDWT_PORTS#xout_118(8:0) [|002 00z
& /TEST_DENOISE/UUT/IDWT_PORTS#xout_122(&:0) (|000 000
& [TEST_DENOISE/UUT/IDWT_PORTS#xout_1(8:0) [|oo0 000
[+
s I | [l [l TTwll o] [|
Ready Time = 4000 | Wif=7 Wic=7 Sel=1

Figure 4.11: De-noising Function in VHDL Simulation

From this simulation, it can be seen that the de-noising module is effectively

implemented in VHDL, which can be used for hardware simulation and

implementation on a chip or an FPGA. In terms of hardware cost, the number of

LUTs along with the sizes of each, the size and number of adders, and the size

and number of muxes are the important features to consider. The component

breakdown can be seen in Table 4.9:

55

Module/Component Number Size
DWT:
LUT (8-b in/ 9-b out) 4 256 x 9-b

Adder (8-b) 256

Adder (9-b) 128
Threshold Estimator:

Mux (9-b 2x1) 1
Comparators 128

Thresholding:
LUT (9-b in/ 9-b out) 1 512 x 9-b
Mux (9-b2x1) 128
IDWT:
LUT (9-b in/ 9-b out) 6 512 x 9-b

Adder (9-b) 256
Adder (10-b) 128
Total Component Costs:
LUT (8-bin/ 9-b out) 4 256 x 9-b
Adder (8-b) 256
Adder (9-b) 384
Adder (10-b) 128
LUT (9-bin/ 9-b out) 7 512 x 9-b
Mux (9-b 2x1) 129
Comparators 128
Table 4.9 : Component Requirements for De-noising Function

Storage for the values while processing the different elements are also
required, but can be allocated dynamically with the memory that is allocated for
the compensation matrix operations. The hardware requirements for the de-
noising function can easily be implemented using pipeline structures in ASIC.
Furthermore, the LUTSs can be implemented efficiently in an FPGA configuration,
which would further reduce the hardware implementation requirements so that
the actual hardware cost of the de-noising function in relation to the receiver on
chip design is relatively small, especially when considering the size of the FFT

and compensation matrix.

56

Chapter 5: Conclusion and Recommendations

5.1: Conclusion

For effective signal processing that performs beyond a receiver on chip design
with a compensation table, the discrete wavelet transform-based de-noising
function is a valid solution. The discrete wavelet transform breaks down the
incoming signal into high pass and low pass components. Low pass components
are considered small details while high pass components are considered large
details. Because spurious signals are considered small details in a discrete
wavelet transform domain, thresholding is required to remove the spurious
signals. When the thresholding is completed, the inverse transform reassembles
the signal to the original signal domain. For the receiver on chip design, the de-
noising function is effective for improving performance of the receiver for
detecting the second signal from two-signal dynamic ranges of 18 dB to 22 dB.
This thesis describes the investigation and implementation of a de-noising
module that utilizes a configuration that is effective for increasing the two signal
dynamic range beyond 18 dB. By using look up tables, the de-noising function is
implemented in VHDL in an efficient design that eliminates the need for

multipliers and thus, reduces the hardware cost of the module.
5.2: Recommendations

I recommend an implementation of the discrete wavelet transform with

greater number of bits for better precision and for the design to further improve

57

performance of the receiver on chip design. Because the maximum number of
bits for the coefficients to have perfect precision is 19 bits, I would recommend
that a 19 bit design be pursued to have a complete design. The only drawback to
this design would be that the increase in bits will require a larger space for the
LUTs because the values required will be stored as 256 values, each being 19 bits.
For negative numbers, there will be 512 values, each being 19 bits.

I also recommend implementation of this design in ASIC to investigate the
speed benefits of ASIC design and to also investigate new designs for different
registers, such as double-edge trigger D-flip flops, new ADC designs, and
possibly new compensation matrix calculations. It would be interesting to see
what effect the newer components in the receiver design would have on the de-

noising process.

58

References:

[1] J. Proakis and D. Manolakis. “Digital Signal Processing: Principles,
Algorithms, and Applications, Third Edition” New York: Prentice Hall,
1998.

[2] D. Pok, C.-I. H. Chen,]J. Schamus, C. Montgomery, and J. B. Y. Tsui, “Chip
design for monobit receiver,” IEEE Trans. Microwave Theory Tech., Vol. 45,
No. 12, pp 2283-2295, December 1997.

[3] C. H. Chen, and K. George. “Design and Performance Evaluation of a 2.5-
GSPS Digital Receiver.” IEEE Transactions on Instrumentation and
Measurement. Vol. 54, No. 3, pp 1089-1099, June 2005.

[4] J. Séreld and H. Valpola. “De-noising Source Separation.” Journal of Machine
Learning Research 6. (March 2005): 233-272.

[5] G. Dimitroulakos, M. D. Galanis, A. Milidonis, and C. E. Goutis, “A high-
throughput, memory efficient architecture for computing the tile-based 2D
discrete wavelet transform for the JPEG2000.” Integration, Journal 39, pp 1-
11, 2005.

[6] A. Jensen, and A. la Cour-Harbo. Ripples in Mathematics: The Discrete

Wavelet Transform. New York: Springer-Verlag, 2001.
[7] Y. Nievergelt. Wavelets Made Easy. Boston: Birkhduser, 2001.
[8] D. Walnut. An Introduction to Wavelet Analysis. Boston: Birkh&duser, 2002.

[9] M. Jansen. Noise Reduction by Wavelet Thresholding. New York: Springer-
Verlag, 2001.

[10] P. Vaidyanathan. “Multirate Systems and Filter Banks.” New York: Prentice
Hall, 1993.

[11] V. Herrero, J. Cerda, R. Gadea, M. Martinez, and A. Sebastia.

“Implementation of 1-D Daubechies Wavelet Transform on FPGA.”
[12] G. Kuzmanov and B. Zafarifar. “Reconfigurable DWT Unit Based on
Lifting.”

59

[13] C. Huang, P. Tseng, and L. Chen. “Analysis and VLSI Architecture for 1-D
and 2-D Discrete Wavelet Transform.” IEEE Transactions on Signal
Processing, Vol. 53, No. 4, pp. 1575 - 1586, April 2005.

[14] M. Nibourche, A. Bouridane, F. Murtagh, and O. Nibouche. “FPGA-Based
Discrete Wavelet Transforms System.”

[15] B.-F. Wu and Y.-Q. Hu. “An Efficient VLSI Implementation of the Discrete
Wavelet Transform Using Embedded Instruction Codes for Symmetric
Filters.” IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 13, No. 9, pp. 936 - 943, September 2003.

[16] F. Maire. “Low Power Implementation for a Class of Orthogonal Wavelet
Transform Using Synthesizable VHDL.” Master of Science Thesis in
Electronic System Design, University of Stockholm, Stockholm, Norway,
September 1999.

[17] C.-T. Huang, P.-C. Tseng and L.-G. Chen. “Flipping Structure: An Efficient
VLSI Architecture for Lifting-Based Discrete Wavelet Transform.” 1EEE
Transactions on Signal Processing, Vol. 52, No. 4, pp. 1080 - 1089, April 2004.

60

Appendix A:

Denoising Function MATLAB Code:

function [xd,xn,option] = denoise(x,h,type,option)

% [xd,xn,option] = denoise(x,h,type,option);

%

% DENOISE is a generic program for wavelet based denoising.

% The program will denoise the signal x using the 2-band wavelet
% system described by the filter h using either the traditional

% discrete wavelet transform (DWT) or the linear shift invariant
% discrete wavelet transform (also known as the undecimated DWT
% (UDWT)).

%

% Input:

% X : 1D or 2D signal to be denoised

% h : Scaling filter to be applied

% type :Type of transform (Default: type = 0)

% 0 --> Discrete wavelet transform (DWT)

% 1 --> Undecimated DWT (UDWT)

% option :Default settings is marked with "*":

% *type = 0 --> option =[03.0 000 0]

% type=1-->option=[03.6 010 0]

% option(1) : Whether to threshold low-pass part

% 0 --> Don't threshold low pass component

% 1 --> Threshold low pass component

% option(2) : Threshold multiplier, c. The threshold is
% computed as:

% thld = c*MAD(noise_estimate)).

% The default values are:

% ¢ = 3.0 for the DWT based denoising

% ¢ = 3.6 for the UDWT based denoising

% option(3) : Type of variance estimator

% 0 --> MAD (mean absolute deviation)

% 1 --> STD (classical numerical std estimate)
% option(4) : Type of thresholding

% 0 --> Soft thresholding

% 1 --> Hard thresholding

% option(5) : Number of levels, L, in wavelet decomposition. By
% setting this to the default value '0' a maximal
% decomposition is used.

% option(6) : Actual threshold to use (setting this to

% anything but 0 will mean that option(3)

% is ignored)

%

% Output:

% xd :Estimate of noise free signal

% xn :The estimated noise signal (x-xd)

% option : A vector of actual parameters used by the
P p y

% program. The vector is configured the same way as
% the input option vector with one added element
% option(7) = type.

%File Name: denoise.m

61

%Last Modification Date: 04/15/97 10:44:28

%Current Version: denoisem 2.4

%File Creation Date: Mon Feb 20 08:33:15 1995

%Author: Jan Erik Odegard <odegard@ece.rice.edu>

%

% Copyright (c) 2000 RICE UNIVERSITY. All rights reserved.

% Created by Jan Erik Odegard, Department of ECE, Rice University.
%

%This software is distributed and licensed to you on a non-exclusive
%basis, free-of-charge. Redistribution and use in source and binary forms,
%with or without modification, are permitted.

if(nargin < 2)
error('You need to provide at least 2 inputs: x and h');
end;
if(nargin < 3),
type = 0;
option = [];
elseif(nargin < 4)
option = [];
end;
if(isempty(type)),
type = 0;
end;
if(type == 0),
default_opt=[03.00000];
elseif(type == 1),
default_opt=[03.60100];
else,
error(['Unknown denoising method',10,...
'If it is any good we need to have a serious talk :-)']);
end;
option = setopt(option,default_opt);
[mx,nx] = size(x);
dim = min(mx,nx);
if(dim == 1),
n = max(mx,nx);
else,
n = dim;
end;
if(option(5) == 0),
L = floor(log2(n));

else
L = option(5);
end;
if(type == 0), % Denoising by DWT

xd = mdwt(x,h,L);
if (option(6) == 0),
tmp = xd(floor(mx/2)+1:mx,floor(nx/2)+1:nx);
if(option(3) == 0),
thld = option(2)*median(abs(tmp(:)))/.67;
elseif(option(3) == 1),
thld = option(2)*std(tmp(:));

62

else
error('Unknown threshold estimator, Use either MAD or STD");
end;

else,

thld = option(6);
end;
if(dim ==1)

ix =1m/(2"L);
ykeep = xd(ix);
else
ix = 1:mx/ (2"L);
jx =1mx/(2"L);
ykeep = xd(ix,jx);
end;
if(option(4) == 0),
xd = SoftTh(xd,thld);
elseif(option(4) == 1),
xd = HardTh(xd,thld);
else,
error('Unknown threshold rule. Use either Soft (0) or Hard (1)');
end;
if (option(1) == 0),

if(dim ==1),
xd(ix) = ykeep;
else,
xd(ix,jx) = ykeep;
end;
end;
xd = midwt(xd,h,L);
elseif(type == 1), % Denoising by UDWT
[x1,xh] = mrdwt(x,h,L);
if(dim ==1),
c_offset=1;
else,
c_offset=2*nx + 1;
end;

if (option(6) == 0),
tmp = xh(:,c_offset:c_offset+nx-1);
if(option(3) == 0),
thld = option(2)*median(abs(tmp(:)))/.67;
elseif(option(3) == 1),
thld = option(2)*std(tmp(:));
else
error('Unknown threshold estimator, Use either MAD or STD");
end;
else,
thld = option(6);
end;
if(option(4) == 0),
xh = SoftTh(xh,thld);
if(option(1) == 1),
x1 = SoftTh(xl,thld);
end;

63

elseif(option(4) == 1),
xh = HardTh(xh,thld);
if(option(1) == 1),
x1 = HardTh(x],thld);
end;
else,
error('Unknown threshold rule. Use either Soft (0) or Hard (1)');
end;
xd = mirdwt(xl,xh,h,L);
else, % Denoising by unknown method
error(['Unknown denoising method',10,...
'If it is any good we need to have a serious talk :-)']);
end;
option(6) = thld;
option(7) = type;
xn = X - xd;

Daubechie’s Wavelet Coefficient Calculations:

function [h_0,h_1] = daubcqf(N,TYPE)

% [h_0,h_1] = daubcqf(N,TYPE);

%

% Function computes the Daubechies' scaling and wavelet filters
% (normalized to sqrt(2)).

% Input:
% N :Length of filter (must be even)
% TYPE : Optional parameter that distinguishes the minimum phase,

% maximum phase and mid-phase solutions ('min', 'max', or
% 'mid'). If no argument is specified, the minimum phase

% solution is used.

%

% Output:

% h_0:Minimal phase Daubechies' scaling filter
% h_1:Minimal phase Daubechies' wavelet filter

% Reference: "Orthonormal Bases of Compactly Supported Wavelets",
% CPAM, Oct.89
%
%File Name: daubcqf.m
%Last Modification Date: 01/02/96 15:12:57
%Current Version: daubcqf.m 2.4
%File Creation Date: 10/10/88
%Author: Ramesh Gopinath <ramesh@dsp.rice.edu>
%
% Copyright (c) 2000 RICE UNIVERSITY. All rights reserved.
% Created by Ramesh Gopinath, Department of ECE, Rice University.
%
if(nargin < 2),
TYPE = 'min’;
end;
if(rem(N,2) ~=0),
error('No Daubechies filter exists for ODD length');
end;

64

forj =1:K-1,
a=-a*025*({+K-1)/j;
h_0=[0h_0] + [h_0O0];
p=[0-p] +[pOJ;
p=[0-p] +[pO];
q=1[0q0] +a*p;
end;
q = sort(roots(q));
qt = q(1:K-1);
if TYPE=='mid’,
if rem(K,2)==1,
qt = q([1:4:N-2 2:4:N-2]);
else
qt=q([1 4:4:K-1 5:4:K-1 N-3:-4:K N-4:-4:K]);
end;
end;
h_0 = conv(h_0,real(poly(qt)));
h_0 = sqrt(2)*h_0/sum(h_0); %Normalize to sqrt(2);
if(TYPE=='max),
h_0 = fliplr(h_0);
end;
if(abs(sum(h_0 .* 2))-1 > 1e-4)
error('Numerically unstable for this value of "N".");
end;
h_1=rot90(h_0,2);
h_1(1:2:N)=-h_1(1:2:N);

Discrete Wavelet Transform C++ Code:

/*

File Name: MDWT.c

Last Modification Date: 06/14/95 13:15:44
Current Version: MDWT.c 2.4

File Creation Date: Wed Oct 19 10:51:58 1994
Author: Markus Lang <lang@jazz.rice.edu>

Copyright (c) 2000 RICE UNIVERSITY. All rights reserved.
Created by Markus Lang, Department of ECE, Rice University.

%y = mdwt(x,h,L);

%

% function computes the discrete wavelet transform y for a 1D or 2D input
% signal x.

%

% Input:

% x :finite length 1D or 2D signal (implicitely periodized)

% h :scaling filter

% L :number of levels. in case of a 1D signal length(x) must be

% divisible by 2*L; in case of a 2D signal the row and the

65

% column dimension must be divisible by 2"L.
%
% see also: midwt, mrdwt, mirdwt

*/

#include <math.h>
#include <stdio.h>

#define max(A,B) (A >B? A: B)
#define mat(a, i, j) (*(a + (m*(j)+i))) /* macro for matrix indices */

#ifdef _ STDC__

MDWT(double *x, int m, int n, double *h, int lh, int L, double *y)
#else

MDWT(x, m, n, h, 1h, L, y)

double *x, *h, *y;

intm, n, lh, L;

#endif

double *h0, *h1, *ydummyl, *ydummyh, *xdummy;

long i, j;

int actual_L, actual_m, actual_n, r_o_a, c_o_a, ir, ic, lhm1;
xdummy = (double *)mxCalloc(max(m,n)+lh-1,sizeof(double));
ydummyl = (double *)mxCalloc(max(m,n),sizeof(double));
ydummyh = (double *)mxCalloc(max(m,n),sizeof(double));

h0 = (double *)mxCalloc(lh,sizeof(double));

h1 = (double *)mxCalloc(lh,sizeof(double));

/* analysis lowpass and highpass */

if (n==1)f
n=m;
m=1;

}

for (i=0; i<lh; i++){
hO[i] = h[lh-i-1];
h1[i] =hl[i];

}

for (i=0; i<lh; i+=2)
h1[i] = -h1[i];

Ihml=1h-1;
actual_m = 2*m;
actual_n = 2*n;

/* main loop */
for (actual_L=1; actual_L <= L; actual_L++){

if (m==1)
actual m=1;
elsef{

actual_m = actual_m/2;
r_o_a=actual_m/2;

}

66

actual_n = actual_n/2;
c_o_a=actual_n/2;

/* go by rows */
for (ir=0; ir<actual_m; ir++){ /* loop over rows */
/* store in dummy variable */
for (i=0; i<actual_n; i++)
if (actual_L==1)
xdummy[i] = mat(x, ir, i);
else
xdummy/[i] = mat(y, ir, i);
/* perform filtering lowpass and highpass*/
fpsconv(xdummy, actual_n, h0, h1, lhm1, ydummyl, ydummyh);
/* restore dummy variables in matrices */
ic=c_o_a;
for (i=0;i<c_o_a; i++){
mat(y, ir, i) = ydummyl[i];
mat(y, ir, ict+) = ydummyh([i];
}
}

/* go by columns in case of a 2D signal*/
if (m>1){
for (ic=0; ic<actual_n; ic++){ /* loop over column */
/* store in dummy variables */
for (i=0; i<actual_m; i++)
xdummy/[i] = mat(y, i, ic);
/* perform filtering lowpass and highpass*/
fpsconv(xdummy, actual_m, h0, h1, lhm1, ydummyl, ydummyh);
/* restore dummy variables in matrix */
ir=r_o_a;
for (i=0; i<r_o_a; i++){
mat(y, i, ic) = ydummyl[i];
mat(y, ir++, ic) = ydummyh([i];

#ifdef _ STDC__

fpsconv(double *x_in, int Ix, double *h0, double *h1, int Ihm1,
double *x_outl, double *x_outh)

#else

fpsconv(x_in, 1x, h0, h1, lhm1, x_outl, x_outh)

double *x_in, *h0, *h1, *x_outl, *x_outh;

int1x, Thm1;

#endif

{

int1, j, ind;
double x0, x1;

67

for (i=Ix; i < Ix+lhm1; i++)
x_in[i] = *(x_in+(i-1x));

ind = 0;

for (i=0; i<(Ix); i+=2){
x0 =0;
x1=0;

for (j=0; j<=lhm1; j++){
x0 = x0 + x_in[i+j]*h0[lhm1-j];
x1 = x1 + x_in[i+j]*h1[lhm1+];

}

x_outl[ind] = x0;

x_outh[ind++] = x1;

}
}

Inverse DWT C++ Code:

/*

File Name: MIDWT.c

Last Modification Date: 06/14/95 13:01:15
Current Version: MIDWT.c 2.4

File Creation Date: Wed Oct 12 08:44:43 1994
Author: Markus Lang <lang@jazz.rice.edu>

Copyright (c) 2000 RICE UNIVERSITY. All rights reserved.
Created by Markus Lang, Department of ECE, Rice University.

description of the matlab call:

%y = midwt(x,h,L);

%

% function computes the inverse discrete wavelet transform y for a 1D or 2D
% input signal x.

% Input:

% x :finite length 1D or 2D input signal (implicitely periodized)
% h :scaling filter

% L :number of levels. in case of a 1D signal length(x) must be

% divisible by 2*L; in case of a 2D signal the row and the

% column dimension must be divisible by 2"L.

% see also: mdwt, mrdwt, mirdwt*/

#include <math.h>
#include <stdio.h>

#define max(A,B) (A>B? A: B)
#define mat(a, i, j) (*(a + (m*(j)+i))) /* macro for matrix indices */

#ifdef _ STDC__

MIDWT(double *x, int m, int n, double *h, int lh, int L, double *y)
#else

MIDWT(x, m, n, h, Ih, L, y)

double *x, *h, *y;

68

intm, n, lh, L;

#endif

{
double *g0, *g1, *ydummyl, *ydummyh, *xdummy;
long i, j;
intactual_L, actual_m, actual_n, r_o_a, c_o_a, ir, ic, lhm1, lhhm1, sample_f;
xdummy = (double *)mxCalloc(max(m,n),sizeof(double));
ydummyl = (double *)mxCalloc(max(m,n)+lh/2-1,sizeof(double));
ydummyh = (double *)mxCalloc(max(m,n)+lh/2-1,sizeof(double));
g0 = (double *)mxCalloc(lh,sizeof(double));
gl = (double *)mxCalloc(lh,sizeof(double));

/* synthesis lowpass and highpass */
for (i=0; i<lh; i++){

gO[i] = h(i];

gl[i] = h[lh-i-1];
ior (i=1; i<=lh; i+=2)

gllil = -g1li];

Ihml=1h-1;

Ihhm1 =1h/2-1;

J*2°L*/

sample_f =1;

for (i=1; i<L; i++)
sample_f = sample_f*2;

if (m>1)

actual_m = m/sample_f;
else

actual m =1;
actual_n =n/sample_f;

for (i=0; i<(m*n); i++)
x[i] = y[il;
/* main loop */
for (actual_L=L; actual_L >=1; actual_L--){

r_o_a =actual_m/2;
c_o_a=actual_n/2;

/* go by columns in case of a 2D signal*/

if (m>1){
for (ic=0; ic<actual_n; ic++){ /* loop over column */
/* store in dummy variables */
ir=r_o_a;

for (i=0; i<r_o_a; i++){
ydummyl[i+lhhm1] = mat(x, i, ic);
ydummyh[i+lhhm1] = mat(x, ir++, ic);

69

}
/* perform filtering lowpass and highpass*/

bpsconv(xdummy, r_o_a, g0, g1, Ihml, lhhm1, ydummyl, ydummyh);
/* restore dummy variables in matrix */
for (i=0; i<actual_m; i++)
mat(x, i, ic) = xdummy/[i];
}
}
/* go by rows */
for (ir=0; ir<actual_m; ir++){ /* loop over rows */
/* store in dummy variable */
ic=c_o_a;
for (i=0;i<c_o_a; i++){
ydummyl[i+lhhm1] = mat(x, ir, i);
ydummyh[i+lhhm1] = mat(x, ir, ict++);

/* perform filtering lowpass and highpass*/
bpsconv(xdummy, c_o_a, g0, g1, lhm1,]hhm1, ydummyl, ydummyh);
/* restore dummy variables in matrices */
for (i=0; i<actual_n; i++)
mat(x, ir, i) = xdummy/[i];

}

if (m==1)
actual m=1;
else

actual_m = actual_m*2;
actual_n = actual_n*2;

}

#ifdef _ STDC__

bpsconv(double *x_out, int Ix, double *g0, double *g1, int Ihm1,
int Ihhm1, double *x_inl, double *x_inh)

#else

bpsconv(x_out, Ix, g0, g1, Ihm1, lhhm1, x_inl, x_inh)

double *x_inl, *x_inh, *g0, *g1, *x_out;

int 1x, lhm1, IThhml;

#endif

int1,j, ind, tj;
double x0, x1;

for (i=lhhm1-1;1i > -1; i--){
x_inl[i] = x_inl[Ix+i];
x_inh[i] = x_inh[Ix+i];

}

ind = 0;

for (i=0; i<(Ix); i++){
x0=0;
x1=0;

§=-2
for (j=0; j<=lhhm1; j++){
§+=2;

70

x0 = x0 + x_inl[i+j]*g0[lhm1-1-t] + x_inh[i+j]*g1[lhm1-1-tj] ;
x1 = x1 + x_inl[i+j]*g0[lhm1-tj] + x_inh[i+j]*g1[lhm1-t] ;
}
x_out[ind++] = x0;
x_out[ind++] = x1;
}
}

Hard Thresholding MATLAB Code:
function x = HardTh(y,thld)

% x =HardTh(y,thld);

%

% HARDTH hard thresholds the input signal y with the threshold value

% thld.

%

% Input:

% y :1D or 2D signal to be thresholded
% thld : threshold value

% Output:

% x:Hard thresholded output (x = (abs(y)>thld).*y)

%File Name: HardTh.m

%Last Modification Date: 8/15/95 17:49:37

%Current Version: HardTh.m 24

%File Creation Date: Mon Jan 31 09:42:50 1994

%Author: Haitao Guo <harry@jazz.rice.edu>

%

% Copyright (c) 2000 RICE UNIVERSITY. All rights reserved.

% Created by Haitao Guo, Department of ECE, Rice University.

x = (abs(y) > thld).*y;

Soft Thresholding MATLAB Code:

function x = SoftTh(y,thld)

% x = SoftTh(y,thld);

%

% SOFTTH soft thresholds the input signal y with the threshold value
% thld.

%

% Input:

% y :1D or 2D signal to be thresholded

% thld : Threshold value

%

% Output:

% x:Soft thresholded output (x = sign(y)(|y | -thld)_+)

% Reference:

% "De-noising via Soft-Thresholding" Tech. Rept. Statistics,
% Stanford, 1992. D.L. Donoho.

%

%File Name: SoftTh.m

%Last Modification Date: 8/15/95 17:49:48

% Current Version: SoftTh.m 24

71

%File Creation Date: Mon Mar 7 10:38:45 1994
%Author: Haitao Guo <harry@jazz.rice.edu>

x = abs(y);
x = sign(y).*(x >= thld).*(x - thld);

72

Appendix B:

--Daubechies Wavelet Transform using LUT design
--This design does not incorporate any safety nets for overflow.
-- hl values are in lut hl, lut h2, lut h3, lut h4
-- hO values are in lut h4, lut h3, lut h2, lut hl,

-- the coefficients.

library ieee;

use ieee.std logic 1164.all;
use leee.std logic arith.all;
use leee.std logic signed.all;

entity dwt is
port (

xin O

xin 1

xin 2

xin 3

xin 4

xin 5

xin 6

xin 7

xin 8

xin 9

xin 10
xin 11
xin 12
xin 13
xin 14
xin 15
xin 16
xin 17
xin 18
xin 19
xin 20
xin 21
xin 22
xin 23
xin 24
xin 25
xin 26
xin 27
xin 28
xin 29
xin 30
xin 31
xin 32
xin 33
xin 34
xin 35
xin 36
xin 37
xin 38
xin 39
xin 40
xin 41
xin 42
xin 43
xin 44
xin 45
xin 46
xin 47

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

std logic vector (7
std logic vector (7
std logic vector (7
std logic vector (7
std logic vector (7
std logic vector (7
std logic vector (7
std logic vector (7
std logic vector (7
std logic vector (7
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (

(

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

std logic vector (7

73

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

respectively for each of

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

xin 48
xin 49
xin 50
xin 51
xin 52
xin 53
xin 54
xin 55
xin 56
xin 57
xin 58
xin 59
xin 60
xin 61
xin 62
xin 63
xin 64
xin 65
xin 66
xin 67
xin 68
xin 69
xin 70
xin 71
xin 72
xin 73
xin 74
xin 75
xin 76
xin 77
xin 78
xin 79
xin 80
xin 81
xin 82
xin 83
xin 84
xin 85
xin 86
xin 87
xin 88
xin 89
xin 90
xin 91
xin 92
xin 93
xin 94
xin 95
xin 96
xin 97
xin 98
xin 99

xin 100

xin 101
xin 102
xin 103
xin 104
xin 105
xin 106
xin 107
xin 108
xin 109
xin 110
xin 111

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic_ vector (
std logic vector (
std logic vector (
std logic_ vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(
(
(
(
(
(
(
(
(
(
(
std logic vector (

;
2
2
2
2
2
2
2
2
2
2
2

74

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

xin 112
xin 113
xin 114
xin 115
xin 116
xin 117
xin 118
xin 119
xin 120
xin 121
xin 122
xin 123
xin 124
xin 125
xin 126
xin 12
yl 0 :
vyl 1l:
yl 2
yl 3
yl 4
vyl 5

vl 6

vyl 7

yl 8

yl 9

yl 10
yl 11
yl 12
yl 13
yl 14
yl 15
yl 16
yl 17
yl 18
yl 19
yl 20
yl 21
yl 22
yl 23
yl 24
yl 25
yl 26
yl 27
yl 28
yl 29
yl 30
yl 31
yl 32
yl 33
yl 34
yl 35
yl 36
yl 37
yl 38
yl 39
yl 40
yl 41
yl 42
yl 43
yl 44
yl 45
yl 46
yl 47

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

: in
out s
out s
out s
out s
out s
out s
out s
out s
out s

: out s

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector

(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
std logic vector (7

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

td logic vector (8 downto 0

td logic vector (8 downto 0
td logic vector (8 downto 0
td logic vector (8 downto 0
td logic vector (8 downto 0
td logic vector (8 downto 0
td logic vector (8 downto 0
td logic vector (8 downto 0
td logic vector (8 downto 0
td logic vector (8 downto 0
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto
std logic vector (8 downto

75

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
)i
)i
)i
)i
)i
)i
)i
)i
)i
)i
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

yl 48
yl 49
yl 50
yl 51
yl 52
yl 53
yl 54
yl 55
yl 56
yl 57
yl 58
yl 59
yl 60
yl 61
yl 62
yl 63
yh 0
yh 1
yh 2
yh 3
yh 4
yh 5
vh 6
vh 7

yh 8

yh 9

yh 10
yh 11
yh 12
yh 13
vh 14
yh 15
yh 16
yh 17
yh 18
yh 19
yh 20
yh 21
yh 22
yh 23
vh 24
yh 25
yh 26
yh 27
yh 28
yh 29
yh 30
yh 31
yh 32
yh 33
yh 34
yh 35
yh 36
yh 37
yh 38
yh 39
yh 40
yh 41
vh 42
yh 43
vh 44
yh 45
yh 46
yh 47

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (
std logic vector (

(

(

(

(

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
8
8
8
8
8
8
8
8
8
8
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

76

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

x0_11,
x0 21,
x0 31,
x0_41,
x0 51,
x0 61,
x0 71,

x0 81,

yh 48
yh 49
yh 50
yh 51
yh 52
yh 53
yh 54
yh 55
yh 56
yh 57
yh 58
yh 59
yh 60
yh 61
yh 62
yh 63
)i
end entity;

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector

(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
std logic vector (8

architecture behavioral of dwt is
component lut hl

port (

)

end component;

address : in std logic vector (7
result : out std logic vector (8

component lut h2

port (

)

end component;

address : in std logic vector (7
result : out std logic vector (8

component lut h3

port (

)

end component;

address : in std logic vector (7
result : out std logic vector (8

component lut h4

port (

)

end component;

signal x0 0, x0 1, x0 2, x0 3, x0 4, x0 5, x0 6,

address : in std logic vector (7
result : out std logic vector (8

x0 12, =0 13, x0 14, x0_ 15,
x0 22, x0 23, x0 24, x0 25,
x0 32, x0_33, x0 34, x0_ 35,
x0 42, x0_43, x0 44, x0_45,
x0 52, x0_53, x0 54, x0_55,
x0 62, x0_63, x0 64, x0_65,
x0 72, x0_73, x0_74, x0_75,

x0 82, x0 83, x0_84, x0_85,

71

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

downto 0);
downto 0)

downto 0);
downto 0)

downto 0);
downto 0)

downto 0);
downto 0)

x0 16, x0 17,
x0 26, x0 27,
x0 36, x0 37,
x0 46, x0 47,
%0 56, x0 57,
%0 66, x0_67,
x0 76, x0 77,

x0 86, x0 87,

x0 18,
x0 28,
x0 38,
x0 48,
x0 58,
x0 68,
x0 78,

x0_88,

x0 19,
x0 29,
x0 39,
x0 49,
x0 59,
x0_ 69,
x0 79,

x0_89,

%0 7, x0 8, x0_ 9, x0 10,

x0 20,
x0 30,
x0 40,
x0 50,
x0 60,
x0 70,
x0 80,

x0_90,

x0 91,
B x0 92, x0 93, x0 94, x0 95, x0 96, x0 97, x0 98, x0 99, x0 100,

x0_101,
x0 102, x0 103, x0 104, x0 105, x0 106, x0_107, =0 108, x0_109,

x0_ 110,
- x0 111, x0 112, x0 113, x0 114, x0 115, x0 116, =0 117, x0_118,

x0 119,
x0 120, x0 121, x0 122, x0 123, x0 124, x0 125, x0 126, x0_127,

x0_ 128,
x0 129, x0 130, x0 131, x0 132, x0 133, x0 134, x0 135, x0_136,

x0 137,
- x0 138, x0 139, x0 140, x0 141, x0 142, x0 143, x0 144, x0_145,

x0_146,
x0 147, x0 148, x0 149, x0 150, x0 151, x0 152, x0 153, x0_154,

x0_155,
x0 156, x0 157, x0 158, x0 159, x0 160, x0 161, x0 162, x0_163,

x0_164,
- x0 165, x0 166, x0 167, x0 168, x0 169, x0 170, =0 171, =0 172,

%0 173,
x0 174, x0 175, x0 176, x0 177, x0 178, x0_179, =0 180, x0_181,

x0_182,
x0 183, x0 184, x0 185, x0 186, x0 187, x0_188, x0 189, x0 190,

x0 191,
- x0 192, x0 193, x0 194, x0 195, x0 196, x0 197, x0 198, x0_199,

x0_200,
x0 201, x0 202, x0 203, x0 204, x0 205, x0_206, x0 207, x0_208,

x0_209,
x0 210, x0 211, x0 212, x0 213, x0 214, x0 215, x0 216, =0 217,

%0 218,
- x0 219, x0 220, x0 221, x0 222, x0 223, x0 224, x0 225, x0_226,

%0 227,
x0 228, x0 229, x0 230, x0 231, x0 232, x0 233, x0 234, x0_235,

x0_236,
x0 237, x0 238, x0 239, x0 240, x0 241, x0 242, x0 243, x0_244,

x0_ 245,
- x0 246, x0 247, x0 248, x0 249, x0 250, x0 251, x0 252, x0_253,

x0_254,

x0 255, x1 0, x1 1, x1 2, x1 3, x1 4, x1 5, x1 6, x1 7, x1 8,

x1l 9, x1 10,
xl1 11, x1 12, x1 13, x1 14, x1 15, x1 16, x1 17, x1 18, x1 19,
x1 20, x1 21,
B B x1 22, x1 23, x1 24, x1 25, x1 26, x1 27, x1 28, x1 29, x1 30,
xl 31, x1 32,
x1 33, x1 34, x1 35, x1 36, x1 37, x1 38, x1 39, x1 40, xl1 41,
x1 42, x1 43,
x1 44, x1 45, x1 46, x1 47, x1 48, x1 49, x1 50, x1 51, x1 52,
x1 53, x1 54,
x1 55, x1 56, x1 57, x1 58, x1 59, x1 60, x1 61, x1 62, x1 63,
x1l 64, x1 65,
xl 66, x1 67, x1 68, x1 69, x1 70, x1 71, x1 72, x1 73, x1 74,
x1 75, x1 76,
x1 77, x1 78, x1 79, x1 80, x1 81, x1 82, x1 83, x1 84, xl1 85,
xl 86, x1 87,
x1 88, x1 89, x1 90, x1 91, x1 92, x1 93, x1 94, x1 95, xl1 96,
x1l 97, x1 98,
x1 99, x1 100, x1 101, x1 102, x1 103, x1 104, x1 105, x1 106,
x1 107, x1 108,
x1 109, x1 110, x1 111, x1 112, x1 113, x1 114, x1 115, x1 116,
x1 117, x1 118,
B B x1 119, x1 120, x1 121, x1 122, x1 123, x1 124, x1 125, x1 126,
x1 127, x1 128,
x1 129, x1 130, x1 131, x1 132, x1 133, x1 134, x1 135, x1 136,
x1 137, x1 138,
x1 139, x1 140, x1 141, x1 142, x1 143, x1 144, x1 145, x1 146,

78

x1_147, x1_148,

x1 157, x1 158,
x1l 167, x1 168,
x1 177, x1 178,
x1 187, x1 188,
x1 197, x1 198,
x1 207, x1 208,
x1 217, x1 218,
x1 227, x1 228,
x1 237, x1 238,

x1 247, x1_248,

std logic_vector (8 downto 0);

begin

lut_hl
port map (

x1 149,
x1 159,
x1 169,
x1 179,
x1 189,
x1 199,
x1 209,
x1 219,
x1 229,
x1 239,

x1_249,

x1 150,
x1 160,
x1 170,
x1 180,
x1 190,
x1 200,
x1 210,
x1 220,
x1 230,
x1 240,

x1 250,

address => xin 0, result => x0 0

lut_h2
port map (

address => xin 1, result => x0 1

lut h3
port map (

address => xin 2, result => x0 2

lut_h4
port map (

address => xin 3, result => x0 3

)

vyl 0 <=x0 0 +x0 1+ x0 2 + x0 37

address => xin 2, result => x0 4

address => xin 3, result => x0 5

address => xin 4, result => x0 6

i0 4: lut hl
port map (

)i

i0 5: lut h2
port map (

)i

i0 6: lut h3
port map (

)i

i0 7: lut h4
port map (

address => xin 5, result => x0 7

)

vyl 1 <=x0 4+ x0 5+ x0 6 + x0 7;

10 8: lut_hl

port map (

address => xin 4, result => x0 8

x1_151,
x1_161,
x1_171,
x1_181,
x1_191,
x1_201,
x1 211,
x1_221,
x1_231,
x1_241,

x1_251,

79

x1_152,
x1 162,
x1_ 172,
x1_182,
x1 192,
x1 202,
x1 212,
x1 222,
x1 232,
x1 242,

x1 252,

x1 153,
x1 163,
x1 173,
x1 183,
x1 193,
x1 203,
x1 213,
x1 223,
x1l 233,
x1 243,

x1 253,

x1_154,
x1_164,
x1_174,
x1_184,
x1_194,
x1_204,
x1 214,
x1_224,
x1_234,
x1_244,

x1_254,

x1 155,
x1 165,
x1 175,
x1 185,
x1 195,
x1 205,
x1l 215,
x1 225,
x1l 235,
x1 245,

x1 255

x1 156,
x1 166,
x1l 176,
x1 186,
x1 196,
x1 206,
x1l 216,
x1l 226,
x1l 236,

x1 246,

)i
i0 9: lut h2

port map (

address => xin 5, result => x0 9
)i
i0 10: lut h3

port map (

address => xin 6, result => x0 10
)i
i0 11: lut h4

port map (

address => xin 7, result => x0 11
)i
yl 2 <=x0 8 + x0 9+ x0 10 + x0 11;

i0 12: lut hl

port map (

address => xin 6, result => x0 12
)i
i0 13: lut h2

port map (

address => xin 7, result => x0 13
)i
i0 14: lut h3

port map (

address => xin 8, result => x0 14
)i
i0 15: lut h4

port map (

address => xin 9, result => x0 15
)i
yl 3 <=x0 12 + x0 13 + x0 14 + x0 15;

i0 16: lut hl

port map (

address => xin 8, result => x0 16
)i
i0 17: lut h2

port map (

address => xin 9, result => x0 17
)i
i0 18: lut h3

port map (

address => xin 10, result => x0 18
)i
i0 19: lut h4

port map (

address => xin 11, result => x0 19
)i
yl 4 <= x0 16 + x0 17 + x0 18 + x0 19;

i0 20: lut hl
port map (
address => xin 10, result => x0 20

i0_21: lut h2
port map (
address => xin 11, result => x0 21

i0_22: lut h3
port map (
address => xin 12, result => x0 22

i0 23: lut h4

80

port map (

address => xin 13, result => x0 23

)

yl 5 <=x0 20 + x0 21 + x0 22 + x0 23;

i0 24: lut hl
port map (

address => xin 12,

)i
i0 25: lut h2
port map (

address => xin 13,

)i
i0_26: lut _h3
port map (

address => xin 14,

)i
i0 27: lut h4
port map (

address => xin 15,

)

result => x0 24

result => x0 25

result => x0 26

result => x0 27

yl 6 <= x0 24 + x0 25 + x0 26 + x0 27;

i0 28: lut hl
port map (

address => xin 14,

)i
i0 29: lut h2
port map (

address => xin 15,

)i
i0 _30: lut h3
port map (

address => xin 16,

)i
i0 31: lut h4
port map (

address => xin 17,

)

result => x0 28

result => x0 29

result => x0 30

result => x0 31

yl 7 <= x0 28 + x0 29 + x0 30 + x0 31;

i0 32: lut hl
port map (

address => xin 16,

)i
i0 33: lut h2
port map (

address => xin 17,

)i
i0 34: lut h3
port map (

address => xin 18,

)i
i0 35: lut h4
port map (

address => xin 19,

)

result => x0 32

result => x0 33

result => x0 34

result => x0 35

yl 8 <= x0 32 + x0 33 + x0 34 + x0 35;

i0 36: lut hl
port map (

address => xin 18, result => x0 36

)
10 37: lut h2

81

)

i0_38:

)

i0_39:

)

port map (

address => xin 19, result => x0 37

lut h3
port map (

address => xin 20, result => x0 38

lut_h4
port map (

address => xin 21, result => x0 39

yl 9 <= x0 36 + x0 37 + x0 38 + x0 39;

10_40:

lut_hl
port map (
address => xin 20,

lut_h2
port map (
address => xin 21,

lut h3
port map (
address => xin 22,

lut_h4
port map (
address => xin 23,

result

result

result

result

<= x0 40 + x0 41 + x0 42 +

lut_hl
port map (
address => xin 22,

lut_h2
port map (
address => xin 23,

lut h3
port map (
address => xin 24,

lut_h4
port map (
address => xin 25,

result

result

result

result

<= x0_44 + x0_45 + x0_46 +

lut_hl
port map (
address => xin 24,

lut_h2
port map (
address => xin 25,

lut h3
port map (
address => xin 26,

lut_h4
port map (
address => xin 27,

result

result

result

result

=> x0 40

=> x0 41

=> x0 42

=> x0 43

x0 43;

=> x0 44

=> x0 45

=> x0 46

=> x0 47

x0 47;

=> x0 48

=> x0 49

=> x0 50

=> x0 51

82

<= x0 48 + x0 49 + x0 50 + x0 51;

lut_hl
port map (
address =>

lut_h2
port map (
address =>

lut h3
port map (
address =>

lut_h4
port map (
address =>

xin 26, result

xin 27, result
result

xin 28,

xin 29, result

<= x0 52 + x0 53 + x0 54 +

lut_hl
port map (
address =>

lut_h2
port map (
address =>

lut h3
port map (
address =>

lut_h4
port map (
address =>

xin 28, result

xin 29, result
result

xin 30,

xin 31, result

<= x0 56 + x0 57 + x0 58 +

lut_hl
port map (
address =>

lut_h2
port map (
address =>

lut h3
port map (
address =>

lut_h4
port map (
address =>

xin 30, result

xin 31, result
result

xin 32,

xin 33, result

<= x0 60 + x0 61 + x0 62 +

lut_hl
port map (
address =>

lut_h2
port map (
address =>

xin 32, result

xin 33, result

=> x0 52

=> x0 53

=> x0 54

=> x0 55

x0 55;

=> x0 56

=> x0 57

=> x0 58

=> x0 59

x0 59;

=> x0 60

=> x0 61

=> x0 62

=> x0 63

x0 63;

=> x0 64

=> x0 65

83

lut h3
port map (

address => xin 34, result => x0 66

lut_h4
port map (

address => xin 35, result => x0 67

<= x0 64 + x0 65 + x0 66 + x0 67;

lut_hl
port map (
address =>

lut_h2
port map (
address =>

lut h3
port map (
address =>

lut_h4
port map (
address =>

xin 34,

xin 35,

xin 36,

xin 37,

result => x0 68

result => x0 69

result => x0 70

result => x0 71

<= x0 68 + x0 69 + x0 70 + x0 71;

lut_hl
port map (
address =>

lut_h2
port map (
address =>

lut h3
port map (
address =>

lut_h4
port map (
address =>

xin 36,

xin 37,

xin 38,

xin 39,

result => x0 72

result => x0 73

result => x0 74

result => x0 75

<=x0 72 + x0 73 + x0 74 + x0_75;

lut_hl
port map (
address =>

lut_h2
port map (
address =>

lut h3
port map (
address =>

lut_h4
port map (
address =>

xin 38,

xin 39,

xin 40,

xin 41,

result => x0 76

result => x0 77

result => x0 78

result => x0 79

<=x0 76 + x0 77 + x0_78 + x0_79;

84

lut_hl
port map (
address => xin 40,

lut_h2
port map (
address => xin 41,

lut h3
port map (
address => xin 42,

lut_h4
port map (
address => xin 43,

result

result

result

result

<= x0 80 + x0 81 + x0 82 +

lut_hl
port map (
address => xin 42,

lut_h2
port map (
address => xin 43,

lut h3
port map (
address => xin 44,

lut_h4
port map (
address => xin 45,

result

result

result

result

<= x0 84 + x0 85 + x0 86 +

lut_hl
port map (
address => xin 44,

lut_h2
port map (
address => xin 45,

lut h3
port map (
address => xin 46,

lut_h4
port map (
address => xin 47,

result

result

result

result

<= x0_88 + x0_89 + x0_90 +

lut_hl
port map (
address => xin 46,

lut_h2
port map (

address => xin 47,

lut h3

result

result

=> x0 80

=> x0 81

=> x0 82

=> x0 83

x0_83;

=> x0 84

=> x0 85

=> x0 86

=> x0 87

x0 87;

=> x0 88

=> x0 89

=> x0 90

=> x0 91

x0 91;

=> x0 92

=> x0 93

85

port map (

address => xin 48, result

lut_h4
port map (

address => xin 49, result

lut_hl
port map (
address =>

lut_h2
port map (
address =>

lut h3
port map (
address =>

lut_h4
port map (
address =>

yl 24 <= x0 96 + x0 97 + x0 98 +

i0 100: lut hl
port map (
address =>

: lut h2
port map (
address =>

: lut h3
port map (
address =>

: lut h4
port map (
address =>

yl 25 <= x0 100 +

i0 104: lut hl
port map (
address =>

: lut h2
port map (
address =>

: lut h3
port map (
address =>

: lut h4

port map (
address =>

yl 26 <= x0 104 +

10_108: lut hl

<=x0 92 + x0 93 + x0 94 +

xin 48,

xin 49,

xin 50,

xin 51,

xin 50,

xin 51,

xin 52,

xin 53,

=> x0 94

=> x0 95
x0_ 95;

result => x0 96
result => x0 97
result

=> x0 98

result => x0 99

x0_99;
result => x0 100
result => x0 101
result

=> x0_102

result => x0 103

x0 101 + x0 102 + x0 103;

xin 52,

xin 53,

xin 54,

xin 55,

result => x0 104

result => x0 105

result => x0 106

result => x0 107

x0 105 + x0 106 + x0 107;

86

port map (
address =>

lut h2?
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 27 <= x0 108 +

i0 112: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 28 <= x0 112 +

i0 116: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 29 <= x0 116 +

i0 120: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

xin 54, result =>
xin 55, result =>
xin 56, result =>
xin 57, result =>

x0 109 + x0 110 +

xin 56, result =>

xin 57, result =>

xin 58, result =>

xin 59, result =>

x0 113 + x0 114 +

xin 58, result =>

xin 59, result =>

xin 60, result =>

xin 61, result =>

x0 117 + x0 118 +

xin 60, result =>

xin 61, result =>

xin 62, result =>

x0_108

x0_109

x0_110

x0 111

x0 111;

x0 112

x0 113

x0 114

x0 115

x0 115;

x0 116

x0 117

x0 118

x0 119

x0 119;

x0_120

x0 121

x0 122

87

)i

i0 123: lut h4
port map (
address =>

)i

yl 30 <= x0 120 +

i0 124: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 31 <= x0 124 +

i0 128: lut hl
port map (
address =>

lut h2?
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 32 <= x0 128 +

i0 132: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 33 <= x0 132 +
i0 136: lut hl

port map (
address =>

xin 63, result =>

x0 121 + x0 122 +

xin 62, result =>
xin 63, result =>
xin 64, result =>
xin 65, result =>

x0 125 + x0 126 +

xin 64, result =>
xin 65, result =>
xin 66, result =>
xin 67, result =>

x0 129 + x0 130 +

xin 66, result =>
xin 67, result =>
xin 68, result =>
xin 69, result =>

x0 133 + x0 134 +

xin 68, result =>

x0 123

x0 123;

x0 124

x0_125

x0 126

x0 127

x0 127;

x0_128

x0 129

x0_130

x0 131

x0 131;

x0_132

x0_ 133

x0 134

x0_135

x0_135;

x0_136

88

)i

i0 137: lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 34 <= x0 136 +

i0 140: lut hl
port map (
address =>

lut h2?
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 35 <= x0 140 +

i0 144: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 36 <= x0 144 +

i0 148: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (

address =>

i0 151: lut_h4

xin 69, result =>

xin 70, result =>

xin 71, result =>

x0 137 + x0 138 +

xin 70, result =>
xin 71, result =>
xin 72, result =>
xin 73, result =>

x0 141 + x0 142 +

xin 72, result =>

xin 73, result =>

xin 74, result =>

xin 75, result =>

x0 145 + x0_146 +

xin 74, result =>

xin 75, result =>

xin 76, result =>

x0_137

x0 138

x0_139

x0_139;

x0_140

x0 141

x0 142

x0_143

x0_143;

x0 144

x0_145

x0_146

x0 147

x0 147;

x0_148

x0_149

x0_150

&9

port map (
address =>
)i
yl 37 <= x0 148 +

i0 152: lut hl
port map (
address =>

)i

i0 153: lut h2
port map (
address =>

)i

i0_154: lut _h3
port map (
address =>

)i

i0 155: lut h4
port map (
address =>

)i

yl 38 <= x0 152 +

i0 156: lut hl
port map (
address =>

)i

i0 157: lut h2
port map (
address =>

)i

i0 158: lut h3
port map (
address =>

)i

i0 159: lut h4
port map (
address =>

)i

yl 39 <= x0 156 +

i0 160: lut hl
port map (
address =>

)i

i0 161: lut h2
port map (
address =>

)i

i0_162: lut h3
port map (
address =>

)i

i0 163: lut h4
port map (
address =>

)i

yl 40 <= x0 160 +

i0 164: lut hl
port map (
address =>

)i

i0 165: lut h2

xin 77, result =>

x0 149 + x0 150 +

xin 76, result =>
xin 77, result =>
xin 78, result =>
xin 79, result =>

x0 153 + x0 154 +

xin 78, result =>
xin 79, result =>
xin 80, result =>
xin 81, result =>

x0 157 + x0 158 +

xin 80, result =>
xin 81, result =>
xin 82, result =>
xin 83, result =>

x0 161 + x0_162 +

xin 82, result =>

x0_151

x0 151;

x0_152

x0_153

x0_154

x0_155

x0_155;

x0_156

x0_157

x0_158

x0_159

x0_159;

x0_160

x0_161

x0_162

x0 163

x0_163;

x0_164

90

port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 41 <= x0 164 +

i0 168: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 42 <= x0 168 +

i0 172: lut hl
port map (
address =>

lut h2?
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 43 <= x0 172 +

i0 176: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

xin 83, result =>

xin 84, result =>

xin 85, result =>

x0 165 + x0_166 +

xin 84, result =>
xin 85, result =>
xin 86, result =>
xin 87, result =>

x0 169 + x0 170 +

xin 86, result =>
xin 87, result =>
xin 88, result =>
xin 89, result =>

x0 173 + x0 174 +

xin 88, result =>
xin 89, result =>
xin 90, result =>
xin 91, result =>

x0 165

x0 166

x0_167

x0 167;

x0 168

%0 169

x0_170

x0 171

x0 171;

x0 172

x0 173

x0 174

x0 175

x0 175;

x0 176

x0 177

x0_178

x0 179

91

)
yl 44 <= x0 176 +

i0 180: lut hl
port map (
address =>

)i

i0 181: lut h2
port map (
address =>

)i

i0_182: lut h3
port map (
address =>

)i

i0 183: lut h4
port map (
address =>

)i

yl 45 <= x0 180 +

i0 184: lut hl
port map (
address =>

)i

i0 185: lut h2
port map (
address =>

)i

i0 186: lut h3
port map (
address =>

)i

i0 187: lut h4
port map (
address =>

)i

yl 46 <= x0 184 +

i0 188: lut hl
port map (
address =>

)i

i0 189: lut h2
port map (
address =>

)i

i0 190: lut h3
port map (
address =>

)i

i0 191: lut h4
port map (
address =>

)i

yl 47 <= x0 188 +

i0 192: lut hl
port map (
address =>
)i
i0 193: lut h2
B port map (
address =>

x0 177 + x0 178 +

xin 90, result =>
xin 91, result =>
xin 92, result =>
xin 93, result =>

x0 181 + x0_182 +

xin 92, result =>
xin 93, result =>
xin 94, result =>
xin 95, result =>

x0 185 + x0_186 +

xin 94, result =>
xin 95, result =>
xin 96, result =>
xin 97, result =>

x0 189 + x0_190 +

xin 96, result =>

xin 97, result =>

x0 179;

x0_180

x0_181

x0_182

x0_183

x0_183;

x0_184

x0_185

x0_186

x0_187

x0 187;

x0_ 188

x0_189

x0 190

%0 191

x0 191;

x0_192

x0 193

92

)

10 194:

lut h3
port map (
address =>

: lut h4

port map (
address =>

yl 48 <= x0 192 +

10 196:

lut hl
port map (
address =>

: lut h2

port map (
address =>

: lut h3

port map (
address =>

: lut h4

port map (
address =>

yl 49 <= x0 196 +

10 200:

lut hl
port map (
address =>

: lut h2

port map (
address =>

: lut h3

port map (
address =>

: lut h4

port map (
address =>

yl 50 <= x0 200 +

10 204:

lut hl
port map (
address =>

: lut h2

port map (
address =>

: lut h3

port map (
address =>

: lut h4

port map (
address =>

yl 51 <= x0 204 +

xin 98, result =>

xin 99, result =>

x0 193 + x0 194 +

xin 98, result =>

xin 99, result =>

xin 100,

xin 101,

x0 197 +

xin 100,

xin 101,

xin 102,

xin 103,

x0 201 +

xin 102,

xin 103,

xin 104,

xin 105,

x0 205 +

result

result

x0 198

result

result

result

result

x0_202

result

result

result

result

x0 206

x0 194

x0 195

x0_195;

x0 196

x0_197

=> x0_198

=> x0_199

+ x0_199;

x0_200

x0_201

x0_202

x0 203

+ x0_203;

x0_204

x0_205

x0 206

=> x0_207

+ x0 207;

93

10 208:

lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 52 <= x0 208 +

i0 212:

lut hl
port map (
address =>

lut h2?
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 53 <= x0 212 +

i0 216:

lut hl
port map (
address =>

lut h2?
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 54 <= x0 216 +

10 220:

10 222:

lut hl
port map (
address =>

lut h2
port map (

address =>

lut h3

xin 104,

xin 105,

xin 106,

xin 107,

x0 209 +

xin 106,

xin 107,

xin 108,

xin 109,

x0 213 +

xin 108,

xin 109,

xin 110,

xin 111,

x0 217 +

xin 110,

xin 111,

result

result

result

result

x0_210

result

result

result

result

x0 214

result

result

result

result

x0_218

result

result

x0 208

x0_209

x0_210

x0 211

+ x0 211;

=> x0 212

=> x0 213

=> x0 214

=> x0 215

+ x0 215;

=> x0 216

=> x0 217

=> x0 218

=> x0 219

+ x0 219;

=> x0 220

=> x0 221

94

port map (
address =>

lut hi4
port map (
address =>

yl 55 <= x0 220 +

i0 224: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 56 <= x0 224 +

i0 228: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 57 <= x0 228 +

i0 232: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>
lut hi4

port map (
address =>

yl 58 <= x0 232 +

i0 236: lut hl

xin 112,

xin 113,

x0 221 +

xin 112,

xin 113,

xin 114,

xin 115,

x0 225 +

xin 114,

xin 115,

xin 116,

xin 117,

x0 229 +

xin 116,

xin 117,

xin 118,

xin 119,

x0 233 +

result => x0 222

result => x0 223

x0 222

+ x0 223;

result => x0 224

result => x0 225

result => x0 226

result => x0 227

x0 226

+ x0 227;

result => x0 228

result => x0 229

result => x0 230

result => x0 231

x0 230

+ x0 231;

result => x0 232

result => x0 233

result => x0 234

result => x0 235

x0 234 + x0 235;

95

port map (
address =>

lut h2?
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 59 <= x0 236 +

10 240:

lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 60 <= x0 240 +

10 244:

lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 61 <= x0 244 +

10 248:

lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

xin 118,

xin 119,

xin 120,

xin 121,

x0 237 +

xin 120,

xin 121,

xin 122,

xin 123,

x0 241 +

xin 122,

xin 123,

xin 124,

xin 125,

x0 245 +

xin 124,

xin 125,

xin 126,

result

result

result

result

x0 238

result

result

result

result

%0 242

result

result

result

result

x0_246

result

result

result

=> x0 236

=> x0 237

=> x0_238

=> x0_239

+ x0_239;

x0_240

x0 241

x0 242

%0 243

+ x0 243;

=> x0 244

=> x0 245

=> x0 246

=> x0 247

+ x0 247;

=> x0 248

=> x0 249

=> x0_250

96

)i

i0 251: lut h4
port map (
address =>

)i

yl 62 <= x0 248 +

i0 252: lut hl
port map (
address =>

lut h2
port map (
address =>

lut h3
port map (
address =>

lut hi4
port map (
address =>

yl 63 <= x0 252 +

lut_h4
port map (
address =>

lut h3
port map (
address =>

lut_h2
port map (
address =>

lut_hl
port map (

address => xin 3, result =>

)

xin 127,

x0 249 +

xin 126,

xin 127,

result => x0 251

x0 250 + x0 251;

result => x0 252

result => x0 253

xin 0, result => x0 254

xin 1, result => x0 255

x0 253 +

xin 0, result =>

xin 1, result =>

xin 2, result =>

x0 254 + x0 _255;

x1 0

x1 1

x1 2

x1l 3

vh 0 <=x1 2 +x1 1+ x1 0+ x1 3;

address => xin 2, result =>

address => xin 3, result =>

address => xin 4, result =>

il 4: lut h4
port map(

)i

il 5: lut h3
port map (

)i

il 6: lut h2
port map (

)i

il 7: lut hl
port map (

address => xin 5, result =>

)

x1 4

x1 5

x1 6

x1 7

yh 1 <=x1 6 +x1 5+ x1 4+ x17;

i1 8: lut _h4

port map (

address => xin 4, result =>

x1 8

97

)i
il 9: lut h3

port map (

address => xin 5, result => x1 9
)i
il 10: lut h2

port map (

address => xin 6, result => x1 10
)i
il 11: lut hl

port map (

address => xin 7, result => x1 11
)i
yh 2 <= x1 10 + x1 9 + x1 8 + x1 11;

il 12: lut h4

port map (

address => xin 6, result => x1 12
)i
il 13: lut h3

port map (

address => xin 7, result => x1 13
)i
il 14: lut h2

port map (

address => xin 8, result => x1 14
)i
il 15: lut hl

port map (

address => xin 9, result => x1 15
)i
vh 3 <=x1 14 + x1 13 + x1 12 + x1 15;

il 16: lut h4

port map (

address => xin 8, result => x1 16
)i
il 17: lut h3

port map (

address => xin 9, result => x1 17
)i
il 18: lut h2

port map (

address => xin 10, result => x1 18
)i
il 19: lut hl

port map (

address => xin 11, result => x1 19
)i
vh 4 <=x1 18 + x1 17 + x1 16 + x1 19;

il 20: lut h4
port map (
address => xin 10, result => x1 20

il 21: lut h3
port map (
address => xin 11, result => x1 21

il 22: lut h2
port map (
address => xin 12, result => x1 22

il 23: lut hl

98

port map (

address => xin 13, result => x1 23

)

yh 5 <= x1 22 + x1 21 + x1 20 + x1_23;

il 24: lut h4
port map (

address => xin 12,

)i
il 25: lut h3
port map (

address => xin 13,

)i
il 26: lut h2
port map (

address => xin 14,

)i
il 27: lut hl
port map (

address => xin 15,

)

result => x1 24

result => x1 25

result => x1 26

result => x1 27

yh 6 <= x1 26 + x1 25 + x1 24 + x1 27;

il 28: lut h4
port map (

address => xin 14,

)i
il 29: lut h3
port map (

address => xin 15,

)i
il 30: lut h2
port map (

address => xin 16,

)i
il 31: lut hl
port map (

address => xin 17,

)

result => x1 28

result => x1 29

result => x1 30

result => x1 31

yh 7 <= x1 30 + x1 29 + x1 28 + x1 31;

il 32: lut h4
port map (

address => xin 16,

)i
il 33: lut_h3
port map (

address => xin 17,

)i
il 34: lut h2
port map (

address => xin 18,

)i
il 35: lut hl
port map (

address => xin 19,

)

result => x1 32

result => x1 33

result => x1 34

result => x1 35

yh 8 <= x1 34 + x1 33 + x1 32 + x1 35;

il 36: lut h4
port map (

address => xin 18, result => x1 36

)
il 37: lut h3

99

)

il 38:

)

il 39:

)

port map (

address => xin 19, result => x1 37

lut_h2
port map (

address => xin 20, result => x1 38

lut_hl
port map (

address => xin 21, result => x1 39

yh 9 <= x1 38 + x1 37 + x1 36 + x1 39;

il 40:

lut_h4
port map (
address => xin 20,

lut h3
port map (
address => xin 21,

lut_h2
port map (
address => xin 22,

lut_hl
port map (
address => xin 23,

result

result

result

result

<= x1 42 + x1 41 + x1_40 +

lut_h4
port map (
address => xin 22,

lut h3
port map (
address => xin 23,

lut_h2
port map (
address => xin 24,

lut_hl
port map (
address => xin 25,

result

result

result

result

<= x1_46 + x1_45 + x1_44 +

lut_h4
port map (
address => xin 24,

lut h3
port map (
address => xin 25,

lut_h2
port map (
address => xin 26,

lut_hl
port map (
address => xin 27,

result

result

result

result

=> x1 40

=> x1 41

=> x1 42

=> x1 43

x1 43;

=> x1_44

=> x1 45

=> x1 46

=> x1 47

x1 47;

=> x1 48

=> x1 49

=> x1 50

=> x1 51

100

<= x1 50 + x1 49 + x1 48 + x1 51;

lut_h4
port map (
address =>

lut h3
port map (
address =>

lut_h2
port map (
address =>

lut_hl
port map (
address =>

xin 26,

xin 27,

xin 28,

xin 29,

result

result

result

result

<= x1 54 + x1 53 + x1 52 +

lut_h4
port map (
address =>

lut h3
port map (
address =>

lut_h2
port map (
address =>

lut_hl
port map (
address =>

xin 28,

xin 29,

xin 30,

xin 31,

result

result

result

result

<= x1 58 + x1 57 + x1 56 +

lut_h4
port map (
address =>

lut h3
port map (
address =>

lut_h2
port map (
address =>

lut_hl
port map (
address =>

xin 30,

xin 31,

xin 32,

xin 33,

result

result

result

result

<=x1 62 + x1 61 + x1 60 +

lut_h4
port map (

address => xin 32, result

lut h3
port map (

address => xin 33, result

=> x1_52

=> x1 53

=> x1_54

=> x1 55

x1 55;

=> x1 56

=> x1_57

=> x1 58

=> x1 59

x1l 59;

=> x1 60

=> x1_61

=> x1_62

=> x1 63

x1l 63;

=> x1_64

=> x1 65

101

lut_h2
port map (

address => xin 34, result => x1 66

lut_hl
port map (

address => xin 35, result => x1 67

<=x1 66 + x1 65 + x1 64 + x1 67;

lut_h4
port map (
address =>

lut h3
port map (
address =>

lut_h2
port map (
address =>

lut_hl
port map (
address =>

xin 34,

xin 35,

xin 36,

xin 37,

result => x1 68

result => x1 69

result => x1 70

result => x1 71

<=x1 70 + x1 69 + x1 68 + x1 71;

lut_h4
port map (
address =>

lut h3
port map (
address =>

lut_h2
port map (
address =>

lut_hl
port map (
address =>

xin 36,

xin 37,

xin 38,

xin 39,

result => x1 72

result => x1 73

result => x1 74

result => x1 75

<=x1 74 + x1_73 + x1_72 + x1_75;

lut_h4
port map (
address =>

lut h3
port map (
address =>

lut_h2
port map (
address =>

lut_hl
port map (
address =>

xin 38,

xin 39,

xin 40,

xin 41,

result => x1 76

result => x1 77

result => x1 78

result => x1 79

<=x1 78 + x1_77 + x1_76 + x1_79;

102

lut_h4
port map (
address => xin 40,

lut h3
port map (
address => xin 41,

lut_h2
port map (
address => xin 42,

lut_hl
port map (
address => xin 43,

result

result

result

result

<=x1 82 + x1 81 + x1 80 +

lut_h4
port map (
address => xin 42,

lut h3
port map (
address => xin 43,

lut_h2
port map (
address => xin 44,

lut_hl
port map (
address => xin 45,

result

result

result

result

<= x1 86 + x1 85 + x1 84 +

lut_h4
port map (
address => xin 44,

lut h3
port map (
address => xin 45,

lut_h2
port map (
address => xin 46,

lut_hl
port map (
address => xin 47,

result

result

result

result

<=x1 90 + x1 89 + x1 88 +

lut_h4
port map (
address => xin 46,

lut h3
port map (

address => xin 47,

lut_h2

result

result

=> x1 80

=> x1 81

=> x1_82

=> x1 83

x1 83;

=> x1 84

=> x1 85

=> x1 86

=> x1_87

x1l 87;

=> x1 88

=> x1 89

=> x1 90

=> x1 91

x1l 91;

=> x1_92

=> x1 93

103

port map (
address =>

lut_hl
port map (
address =>

lut_h4
port map (
address =>

lut h3
port map (
address =>

lut_h2
port map (
address =>

lut_hl
port map (
address =>

yh 24 <= x1 98 + x1 97 + x1 96 +

il 100: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 25 <= x1 102 +

il 104: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>
lut hl

port map (
address =>

yh 26 <= x1 106 +

i1 108: lut_h4

<=x1 94 + x1 93 + x1 92 +

xin 48, result =>

xin 49, result =>

xin 48, result =>

xin 49, result =>

xin 50, result =>

xin 51, result =>

xin 50, result =>
xin 51, result =>
xin 52, result =>
xin 53, result =>

x1 101 + x1 100 +

xin 52, result =>
xin 53, result =>
xin 54, result =>
xin 55, result =>

x1 105 + x1 104 +

x1

x1

x1_94

x1 95

95;

x1l 96

x1_97

x1 98

x1 99

99;

x1 100

x1_101

x1 102

x1 103

x1 103;

x1_104

x1 105

x1 106

x1_107

x1 107;

104

port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 27 <= x1 110 +

il 112: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 28 <= x1 114 +

il 116: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 29 <= x1 118 +

il 120: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

xin 54, result =>
xin 55, result =>
xin 56, result =>
xin 57, result =>

x1 109 + x1 108 +

xin 56, result =>

xin 57, result =>

xin 58, result =>

xin 59, result =>

x1 113 + x1_112 +

xin 58, result =>

xin 59, result =>

xin 60, result =>

xin 61, result =>

x1 117 + x1_116 +

xin 60, result =>

xin 61, result =>

xin 62, result =>

x1 108

x1 109

x1_110

x1 111

x1 111;

x1 112

x1 113

x1 114

x1 115

x1 115;

x1 116

x1 117

x1 118

x1 119

x1 119;

x1_120

x1_121

x1 122

105

)i

il 123: lut hl
port map (
address =>

)i

vh 30 <= x1 122 +

il 124: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 31 <= x1 126 +

il 128: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 32 <= x1 130 +

il 132: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 33 <= x1 134 +
i1 136: lut h4

port map (
address =>

xin 63, result =>

x1 121 + x1_120 +

xin 62, result =>
xin 63, result =>
xin 64, result =>
xin 65, result =>

x1 125 + x1_124 +

xin 64, result =>
xin 65, result =>
xin 66, result =>
xin 67, result =>

x1 129 + x1 128 +

xin 66, result =>
xin 67, result =>
xin 68, result =>
xin 69, result =>

x1 133 + x1 132 +

xin 68, result =>

x1 123

x1 123;

x1 124

x1_125

x1 126

x1 127

x1 127;

x1 128

x1 129

x1 130

x1 131

x1 131;

x1 132

x1 133

x1 134

x1 135

x1 135;

x1 136

106

)i

il 137: lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

vh 34 <= x1 138 +

il 140: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 35 <= x1 142 +

il 144: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 36 <= x1 146 +

il 148: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (

address =>

i1 151: lut_hl

xin 69, result =>

xin 70, result =>

xin 71, result =>

x1 137 + x1 136 +

xin 70, result =>
xin 71, result =>
xin 72, result =>
xin 73, result =>

x1 141 + x1_140 +

xin 72, result =>

xin 73, result =>

xin 74, result =>

xin 75, result =>

x1 145 + x1_144 +

xin 74, result =>

xin 75, result =>

xin 76, result =>

x1 137

x1 138

x1 139

x1 139;

x1_140

x1_141

x1 142

x1 143

x1_143;

x1 144

x1_145

x1 146

x1_147

x1 147;

x1 148

x1_149

x1 150

107

port map (
address =>
)i
yh 37 <= x1 150 +

il 152: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 38 <= x1 154 +

il 156: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 39 <= x1 158 +

il 160: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 40 <= x1 162 +

il 164: lut h4
port map (
address =>

)i

il 165: lut h3

xin 77, result =>

x1 149 + x1_148 +

xin 76, result =>
xin 77, result =>
xin 78, result =>
xin 79, result =>

x1 153 + x1 152 +

xin 78, result =>
xin 79, result =>
xin 80, result =>
xin 81, result =>

x1 157 + x1 156 +

xin 80, result =>
xin 81, result =>
xin 82, result =>
xin 83, result =>

x1 161 + x1_160 +

xin 82, result =>

x1 151

x1 151;

x1 152

x1 153

x1 154

x1 155

x1 155;

x1 156

x1_157

x1 158

x1 159

x1 159;

x1 160

x1 161

x1_162

x1 163

x1 163;

x1 164

108

port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 41 <= x1 166 +

il 168: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 42 <= x1 170 +

il 172: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 43 <= x1 174 +

il 176: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

xin 83, result =>

xin 84, result =>

xin 85, result =>

x1 165 + x1_164 +

xin 84, result =>
xin 85, result =>
xin 86, result =>
xin 87, result =>

x1 169 + x1 168 +

xin 86, result =>
xin 87, result =>
xin 88, result =>
xin 89, result =>

x1 173 + x1_172 +

xin 88, result =>
xin 89, result =>
xin 90, result =>
xin 91, result =>

x1 165

x1 166

x1_167

x1 167;

x1 168

x1 169

x1_170

x1 171

x1 171;

x1 172

x1 173

x1 174

x1 175

x1 175;

x1 176

x1 177

x1 178

x1 179

109

)
vh 44 <= x1 178 +

il 180: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 45 <= x1 182 +

il 184: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

vh 46 <= x1 186 +

il 188: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 47 <= x1 190 +

il 192: lut h4
port map (
address =>

)i

il 193: lut h3

port map (

address =>

x1 177 + x1 176 +

xin 90, result =>

xin 91, result =>

xin 92, result =>

xin 93, result =>

x1 181 + x1 180 +

xin 92, result =>
xin 93, result =>
xin 94, result =>
xin 95, result =>

x1 185 + x1 184 +

xin 94, result =>
xin 95, result =>
xin 96, result =>
xin 97, result =>

x1 189 + x1 188 +

xin 96, result =>

xin 97, result =>

x1 179;

x1 180

x1 181

x1 182

x1 183

x1 183;

x1 184

x1 185

x1 186

x1 187

x1 187;

x1 188

x1 189

x1 190

x1 191

x1 191;

x1 192

x1 193

110

)

i1 194:

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 48 <= x1 194 +

i1 196:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 49 <= x1 198 +

i1 200:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 50 <= x1 202 +

i1 204:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 51 <= x1 206 +

xin 98, result =>

xin 99, result =>

x1 193 + x1 192 +

xin 98, result =>

xin 99, result =>

xin 100,

xin 101,

x1 197 +

xin 100,

xin 101,

xin 102,

xin 103,

x1 201 +

xin 102,

xin 103,

xin 104,

xin 105,

x1l 205 +

result

result

x1 196

result

result

result

result

x1 200

result

result

result

result

x1_204

x1_194

x1 195

x1 195;

x1 196

x1 197

=> x1 198

=> x1 199

+ x1 199;

=> x1 200

=> x1 201

=> x1 202

=> x1 203

+ x1 203;

x1 204

x1 205

x1 206

x1 207

+ x1 207;

111

i1 208:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 52 <= x1 210 +

i1 212:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 53 <= x1 214 +

i1 216:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 54 <= x1 218 +

i1 220:

i1 222:

lut hi4
port map (
address =>

lut h3
port map (

address =>

lut h2

xin 104,

xin 105,

xin 106,

xin 107,

x1l 209 +

xin 106,

xin 107,

xin 108,

xin 109,

x1 213 +

xin 108,

xin 109,

xin 110,

xin 111,

x1 217 +

xin 110,

xin 111,

result

result

result

result

x1 208

result

result

result

result

x1 212

result

result

result

result

x1 216

result

result

x1 208

x1 209

x1 210

x1 211

+ x1 211;

=> x1 212

=> x1 213

=> x1 214

=> x1 215

+ x1_215;

=> x1 216

=> x1 217

=> x1 218

=> x1 219

+ x1_219;

=> x1 220

=> x1 221

112

port map (
address =>

lut hl
port map (
address =>

yh 55 <= x1 222 +

il 224: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 56 <= x1 226 +

il 228: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 57 <= x1 230 +

il 232: lut h4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>
lut hl

port map (
address =>

yh 58 <= x1 234 +

i1 236: lut_h4

xin 112,

xin 113,

x1 221 +

xin 112,

xin 113,

xin 114,

xin 115,

x1 225 +

xin 114,

xin 115,

xin 116,

xin 117,

x1 229 +

xin 116,

xin 117,

xin 118,

xin 119,

x1l 233 +

result => x1 222

result => x1 223

x1_220

+ x1_223;

result => x1 224

result => x1 225

result => x1 226

result => x1 227

x1_224

+ x1 227;

result => x1 228

result => x1 229

result => x1 230

result => x1 231

x1_228

+ x1 231;

result => x1 232

result => x1 233

result => x1 234

result => x1 235

x1 232 + x1_235;

113

port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 59 <= x1 238 +

i1 240:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2?
port map (
address =>

lut hl
port map (
address =>

yh 60 <= x1 242 +

i1 244:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

lut hl
port map (
address =>

yh 61 <= x1 246 +

i1 248:

lut hi4
port map (
address =>

lut h3
port map (
address =>

lut h2
port map (
address =>

xin 118,

xin 119,

xin 120,

xin 121,

x1 237 +

xin 120,

xin 121,

xin 122,

xin 123,

x1 241 +

xin 122,

xin 123,

xin 124,

xin 125,

x1 245 +

xin 124,

xin 125,

xin 126,

result

result

result

result

x1l 236

result

result

result

result

x1_240

result

result

result

result

x1_244

result

result

result

=> x1 236

=> x1 237

=> x1 238

=> x1 239

+ x1 239;

x1_240

x1 241

x1 242

x1 243

+ x1_243;

=> x1 244

=> x1 245

=> x1 246

=> x1 247

+ x1 247;

=> x1 248

=> x1 249

=> x1 250

114

)i
il 251: lut hl
port map (

address => xin 127, result => x1 251

)

yh 62 <= x1 250 + x1 249 + x1 248 + x1 251;

il 252: lut h4
port map (

address => xin 126, result => x1 252

il 253: lut h3
port map (

address => xin 127, result => x1 253

il 254: lut h2
port map (

address => xin 0, result => x1 254

il 255: lut hl
port map (

address => xin 1, result => x1 255

yh 63 <= x1 254 + x1 253 + x1 252 + x1_255;

end architecture;

--Look up table for

-- This LUT is used
coefficient

-— hl, which is the
—--— hl has the value
number

-- which is rounded
number for 0.483.

library ieee;

H1l coefficient calculations

to get the results of a bitwise multiplication of a number and the

first coefficient of the DWT Daubechies wavelet transform.
of 0.483. This is encoded by using 0.483 * 256, which will give a

off so that it will give an integer. This integer is the 8 bias

use leee.std logic 1164.all;
use leee.std logic arith.all;
use leee.std logic unsigned.all;

entity LUT hl is
port (

address : in std logic vector (7 downto 0);
result : out std logic vector (8 downto 0)

)i
end entity;

architecture behavioral of LUT hl is

type LUT is array (0

constant lut hlcalc :

"000000000",
"000000000",
"000000000",
"000000001",
"000000001",
"000000010",
"000000010",
"0ooooo0011",
"0ooooo0011",
"000000100",
"000000100",
"0ooooo0101",

to 255) of_std_logic_vector(8 downto 0);
LUT := (

115

"0oooo0101",
"0ooo000110",
"0ooo000110",
"0ooo000111",
"0ooo000111",
"000001000",
"000001000",
"0ooo01001",
"0oooo01001",
"00oo0001010",
"00oo0001010",
"000001011",
"000001011",
"000001100",
"000001100",
"0ooo001101",
"0ooo001101",
"0oo001110",
"0oo001110",
"00oo001111",
"00oo001111",
"00oo001111",
"000010000",
"000010000",
"0ooo1o0001",
"0ooo1o0001",
"0ooo10010",
"0ooo10010",
"0ooo010011",
"0oo010011",
"0ooo10100",
"0ooo10100",
"0ooo010101",
"0ooo010101",
"0ooo10110",
"0ooo10110",
"00o0010111",
"0oo010111",
"0oo0011000",
"0oo0011000",
"oooo011001",
"oooo011001",
"oooo011010",
"oooo11010",
"000011011",
"000011011",
"0ooo011100",
"0ooo011100",
"0ooo011101",
"0ooo011101",
"0ooo011110",
"0ooo011110",
"00o0011111",
"00o0011111",
"00o0011111",
"000100000",
"000100000",
"0oo0100001",
"0oo0100001",
"0o0100010",
"0o0100010",
"0o0100011",
"0o0100011",
"0o0100100",

116

"000100100",
"0o0100101",
"0oo0100101",
"0oo100110",
"0oo100110",
"0o0100111",
"0o0100111",
"000101000",
"000101000",
"0o0101001",
"0o0101001",
"0oo0101010",
"0o0101010",
"000101011",
"000101011",
"0o0101100",
"0o0101100",
"0o0101101",
"00o0101101",
"0o0101110",
"0o0101110",
"0o0101110",
"000101111",
"000101111",
"0o0110000",
"0o0110000",
"0oo110001",
"0oo110001",
"0o0110010",
"0o0110010",
"0o0110011",
"0o0110011",
"0o0110100",
"0o0110100",
"oo0110101",
"ooo110101",
"oo0110110",
"oo0110110",
"000110111",
"000110111",
"0o0111000",
"0o0111000",
"0o0111001",
"oo0111001",
"oo0111010",
"ooo111010",
"000111011",
"000111011",
"ooo0111100",
"ooo0111100",
"oo0111101",
"oo0111101",
"oo0111110",
"oo0111110",
"oo0111110",
"0o0111111",
"0o0111111",
"001000000",
"001000000",
"001000001",
"001000001",
"001000010",
"001000010",
"001000011",

117

"001000011",
"001000100",
"001000100",
"001000101",
"001000101",
"001000110",
"001000110",
"001000111",
"001000111",
"001001000",
"001001000",
"001001001",
"001001001",
"001001010",
"001001010",
"001001011",
"001001011",
"001001100",
"001001100",
"001001101",
"001001101",
"001001101",
"001001110",
"001001110",
"001001111",
"001001111",
"001010000",
"001010000",
"001010001",
"001010001",
"001010010",
"001010010",
"001010011",
"001010011",
"001010100",
"001010100",
"001010101",
"001010101",
"001010110",
"001010110",
"001010111",
"001010111",
"001011000",
"001011000",
"001011001",
"001011001",
"001011010",
"001011010",
"001011011",
"001011011",
"001011100",
"001011100",
"001011101",
"001011101",
"001011101",
"001011110",
"001011110",
"001011111",
"001011111",
"001100000",
"001100000",
"001100001",
"001100001",
"001100010",

118

"001100010",
"001100011",
"001100011",
"001100100",
"001100100",
"001100101",
"001100101",
"001100110",
"001100110",
"001100111",
"001100111",
"001101000",
"001101000",
"001101001",
"001101001",
"001101010",
"001101010",
"001101011",
"001101011",
"001101100",
"001101100",
"001101100",
"001101101",
"001101101",
"001101110",
"001101110",
"001101111",
"001101111",
"001110000",
"001110000",
"001110001",
"001110001",
"001110010",
"001110010",
"001110011",
"001110011",
"001110100",
"001110100",
"001110101",
"001110101",
"001110110",
"001110110",
"001110111",
"001110111",
"001111000",
"001111000",
"001111001",
"001111001",
"001111010",
"001111010",
"001111011",
"001111011");
--signal address int : std logic vector (7 downto 0);
begin
process (address)
variable address int : std logic vector (7 downto 0);
begin
address_int := address;
result <= lut hlcalc(conv_integer (address int));
end process;
end architecture;

configuration config lut hl of lut hl is
for behavioral

119

end for;
end configuration;

—--Look up table for H1 coefficient calculations (idwt)

-— This LUT is used to get the results of a bitwise multiplication of a number and the
coefficient

--— hl, which is the first coefficient of the DWT Daubechies wavelet transform.

—-— hl has the value of 0.483

library ieee;

use ieee.std logic 1164.all;

use leee.std logic arith.all;
use leee.std logic unsigned.all;

entity lut hl idwt is
port (
address : in std logic vector (8 downto 0);
result : out std logic vector (8 downto 0)
)i
end entity;

architecture behavioral of LUT hl idwt is
type lut is array(0 to 511) of std logic vector (8 downto 0);
constant lut hlcalc : lut := (
"000000000",
"000000000",
"000000000",
"000000001",
"000000001",
"000000010",
"000000010",
"000000011",
"000000011",
"000000100",
"000000100",
"000000101",
"000000101",
"000000110",
"000000110",
"000000111",
"000000111",
"000001000",
"000001000",
"000001001",
"000001001",
"000001010",
"000001010",
"000001011",
"000001011",
"000001100",
"000001100",
"000001101",
"000001101",
"000001110",
"000001110",
"000001110",
"000001111",
"000001111",
"000010000",
"000010000",
"000010001",
"000010001",

120

"0ooo10010",
"0ooo10010",
"0oo010011",
"0oo010011",
"0ooo10100",
"0ooo10100",
"0ooo010101",
"0ooo010101",
"0ooo10110",
"0ooo10110",
"0oo0010111",
"0oo010111",
"0oo0011000",
"0oo0011000",
"oooo011001",
"oooo011001",
"oooo011010",
"oooo11010",
"000011011",
"000011011",
"0ooo011100",
"0ooo011100",
"0ooo011100",
"0ooo011101",
"0ooo011101",
"0ooo011110",
"0ooo011110",
"00o0011111",
"0o0011111",
"000100000",
"000100000",
"0oo0100001",
"0o0100001",
"0oo0100010",
"0o0100010",
"000100011",
"000100011",
"0o0100100",
"000100100",
"0o0100101",
"0o0100101",
"0oo100110",
"0oo100110",
"0o0100111",
"0o0100111",
"000101000",
"000101000",
"0o0101001",
"000101001",
"0o0101010",
"0oo0101010",
"0oo0101010",
"000101011",
"000101011",
"0o00101100",
"0o00101100",
"0o0101101",
"0o0101101",
"0o0101110",
"0o0101110",
"000101111",
"000101111",
"0o0110000",
"0o0110000",

121

"0oo110001",
"0oo110001",
"0o0110010",
"0o0110010",
"0o0110011",
"0o0110011",
"0o0110100",
"0o0110100",
"oo0110101",
"ooo110101",
"oo0110110",
"oo0110110",
"000110111",
"000110111",
"0o0111000",
"0o0111000",
"0o0111000",
"oo0111001",
"0o0111001",
"ooo111010",
"oo0111010",
"000111011",
"000111011",
"ooo0111100",
"ooo0111100",
"oo0111101",
"oo0111101",
"oo0111110",
"oo0111110",
"000111111",
"000111111",
"001000000",
"001000000",
"001000001",
"001000001",
"001000010",
"001000010",
"001000011",
"001000011",
"001000100",
"001000100",
"001000101",
"001000101",
"001000110",
"001000110",
"001000111",
"001000111",
"001000111",
"001001000",
"001001000",
"001001001",
"001001001",
"001001010",
"001001010",
"001001011",
"001001011",
"001001100",
"001001100",
"001001101",
"001001101",
"001001110",
"001001110",
"001001111",
"001001111",

122

"001010000",
"001010000",
"001010001",
"001010001",
"001010010",
"001010010",
"001010011",
"001010011",
"001010100",
"001010100",
"001010101",
"001010101",
"001010101",
"001010110",
"001010110",
"001010111",
"001010111",
"001011000",
"001011000",
"001011001",
"001011001",
"001011010",
"001011010",
"001011011",
"001011011",
"001011100",
"001011100",
"001011101",
"001011101",
"001011110",
"001011110",
"001011111",
"001011111",
"001100000",
"001100000",
"001100001",
"001100001",
"001100010",
"001100010",
"001100011",
"001100011",
"001100011",
"001100100",
"001100100",
"001100101",
"001100101",
"001100110",
"001100110",
"001100111",
"001100111",
"001101000",
"001101000",
"001101001",
"001101001",
"001101010",
"001101010",
"001101011",
"001101011",
"001101100",
"001101100",
"001101101",
"001101101",
"001101110",
"001101110",

123

"001101111",
"001101111",
"001110000",
"001110000",
"001110001",
"001110001",
"001110001",
"001110010",
"001110010",
"001110011",
"001110011",
"001110100",
"001110100",
"001110101",
"001110101",
"00l110110",
"00l110110",
"001l110111",
"001110111",
"001111000",
"001111000",
"00l111001",
"00l111001",
"001111010",
"001111010",
"001l111011",--
"000000000",
"110000100",
"110000101",
"110000101",
"110000110",
"110000110",
"110000111",
"110000111",
"110001000",
"110001000",
"110001001",
"110001001",
"110001010",
"110001010",
"110001011",
"110001011",
"110001100",
"110001100",
"110001101",
"110001101",
"110001110",
"110001110",
"110001110",
"110001111",
"110001111",
"110010000",
"110010000",
"110010001",
"110010001",
"110010010",
"110010010",
"110010011",
"110010011",
"110010100",
"110010100",
"110010101",
"110010101",
"110010110",

124

"110010110",
"110010111",
"110010111",
"110011000",
"110011000",
"110011001",
"110011001",
"110011010",
"110011010",
"110011011",
"110011011",
"110011100",
"110011100",
"110011100",
"110011101",
"110011101",
"110011110",
"110011110",
"110011111",
"110011111",
"110100000",
"110100000",
"110100001",
"110100001",
"110100010",
"110100010",
"110100011",
"110100011",
"110100100",
"110100100",
"110100101",
"110100101",
"110100110",
"110100110",
"110100111",
"110100111",
"110101000",
"110101000",
"110101001",
"110101001",
"110101010",
"110101010",
"110101010",
"110101011",
"110101011",
"110101100",
"110101100",
"110101101",
"110101101",
"110101110",
"110101110",
"110101111",
"110101111",
"110110000",
"110110000",
"110110001",
"110110001",
"110110010",
"110110010",
"110110011",
"110110011",
"110110100",
"110110100",
"110110101",

125

"110110101",
"110110110",
"110110110",
"110110111",
"110110111",
"110111000",
"110111000",
"110111000",
"110111001",
"110111001",
"110111010",
"110111010",
"110111011",
"110111011",
"110111100",
"110111100",
"110111101",
"110111101",
"110111110",
"110111110",
"110111111",
"110111111",
"111000000",
"111000000",
"111000001",
"111000001",
"111000010",
"111000010",
"111000011",
"111000011",
"111000100",
"111000100",
"111000101",
"111000101",
"111000110",
"111000110",
"111000111",
"111000111",
"111000111",
"111001000",
"111001000",
"111001001",
"111001001",
"111001010",
"111001010",
"111001011",
"111001011",
"111001100",
"111001100",
"111001101",
"111001101",
"111001110",
"111001110",
"111001111",
"111001111",
"111010000",
"111010000",
"111010001",
"111010001",
"111010010",
"111010010",
"111010011",
"111010011",
"111010100",

126

"111010100",
"111010101",
"111010101",
"111010101",
"111010110",
"111010110",
"111010111",
"111010111",
"111011000",
"111011000",
"111011001",
"111011001",
"111011010",
"111011010",
"111011011",
"111011011",
"111011100",
"111011100",
"111011101",
"111011101",
"111011110",
"111011110",
"111011111",
"111011111",
"111100000",
"111100000",
"111100001",
"111100001",
"111100010",
"111100010",
"111100011",
"111100011",
"111100011",
"111100100",
"111100100",
"111100101",
"111100101",
"111100110",
"111100110",
"111100111",
"111100111",
"111101000",
"111101000",
"111101001",
"111101001",
"111101010",
"111101010",
"111101011",
"111101011",
"111101100",
"111101100",
"111101101",
"111101101",
"111101110",
"111101110",
"111101111",
"111101111",
"111110000",
"111110000",
"111110001",
"111110001",
"111110001",
"111110010",
"111110010",

127

"111110011",
"111110011",
"111110100",
"111110100",
"111110101",
"l111110101",
"111110110",
"111110110",
"111110111",
"111110111",
"111111000",
"111111000",
"111111001",
"111111001",
"111111010",
"111111010",
"111111011",
"l111111011",
"l111111100",
"l111111100",
"l11111101",
"l11111101",
"l111111110",
"l111111110",
"l111111111",
"111111111");
--signal address int : std logic vector (7 downto 0);
begin
process (address)
variable address int : std logic vector (8 downto 0);
begin
address_int := address;
if (conv_integer (address _int) > 256) then
result <= lut hlcalc(conv_integer (address int)) + "000000001";
else
result <= lut hlcalc(conv_integer (address int));
end if;
end process;
end architecture;

configuration config lut hl of lut hl idwt is
for behavioral
end for;

end configuration;

-—threshold estimator using LUT design
--— has an implied threshold of 1.6
library ieee;

use ieee.std logic 1164.all;

use leee.std logic arith.all;

use leee.std logic signed.all;

entity threshold estimator is

port (
x0_in : in std logic vector(8 downto 0);
x1 in : in std logic vector (8 downto 0);
x2_in : in std logic vector (8 downto 0);
x3_in : in std logic vector (8 downto 0);
x4 in : in std logic vector (8 downto 0);
x5 in : in std logic vector (8 downto 0);
x6_in : in std logic vector (8 downto 0);
x7_in : in std logic vector (8 downto 0);
x8 in : in std logic vector(8 downto 0);
x9 in : in std logic vector (8 downto 0);

128

x10 in : in std logic vector (8 downto 0);
x11 in : in std logic vector (8 downto 0);
x12 in : in std logic vector (8 downto 0);
x13 in : in std logic vector (8 downto 0);
x14 in : in std logic vector (8 downto 0);
x15 in : in std logic vector (8 downto 0);
x16 in : in std logic vector (8 downto 0);
x17 in : in std logic vector (8 downto 0);
x18 in : in std logic vector (8 downto 0);
x19 in : in std logic vector (8 downto 0);
x20 in : in std logic vector (8 downto 0);
x21 in : in std logic vector (8 downto 0);
x22 in : in std logic vector (8 downto 0);
x23 in : in std logic vector (8 downto 0);
x24 in : in std logic vector (8 downto 0);
x25 in : in std logic vector (8 downto 0);
x26 in : in std logic vector (8 downto 0);
x27 in : in std logic vector (8 downto 0);
x28 in : in std logic vector (8 downto 0);
x29 in : in std logic vector (8 downto 0);
x30_in : in std logic vector(8 downto 0);
x31 in : in std logic vector (8 downto 0);
x32 in : in std logic vector (8 downto 0);
x33 in : in std logic vector (8 downto 0);
x34 in : in std logic vector (8 downto 0);
x35 in : in std logic vector (8 downto 0);
x36_in : in std logic vector (8 downto 0);
x37 in : in std logic vector (8 downto 0);
x38 in : in std logic vector(8 downto 0);
x39 in : in std logic vector (8 downto 0);
x40 in : in std logic vector (8 downto 0);
x41 in : in std logic vector (8 downto 0);
x42 in : in std logic vector (8 downto 0);
x43 in : in std logic vector (8 downto 0);
x44 in : in std logic vector (8 downto 0);
x45 in : in std logic vector (8 downto 0);
x46 in : in std logic vector (8 downto 0);
x47 in : in std logic vector (8 downto 0);
x48 in : in std logic vector (8 downto 0);
x49 in : in std logic vector (8 downto 0);
x50 _in : in std logic vector (8 downto 0);
x51 in : in std logic vector (8 downto 0);
x52 in : in std logic vector (8 downto 0);
x53 in : in std logic vector(8 downto 0);
x54 in : in std logic vector (8 downto 0);
x55 in : in std logic vector (8 downto 0);
x56_in : in std logic vector (8 downto 0);
x57 in : in std logic vector (8 downto 0);
x58 in : in std logic vector (8 downto 0);
x59 in : in std logic vector (8 downto 0);
x60_in : in std logic vector (8 downto 0);
x61 in : in std logic vector (8 downto 0);
x62 in : in std logic vector (8 downto 0);
x63 in : in std logic vector(8 downto 0);

thld est : out std logic vector (8 downto 0)
)i
end entity;

architecture behavioral of threshold estimator is
component lut threshold
port (

address : in std logic vector (7 downto 0);
result : out std logic vector (8 downto 0)

129

end component;

signal x median :

)

std logic vector (7 downto 0);

type xd array is array (0 to 63) of integer;

begin
process (

x0 in, x1 in, x2 in, x3 in, x4 in, x5 in, x6 in, x7 in,
x8 in, x9 in, x10 in, x11 in, x12 in, x13 in, x14 in,

x15 in, x16 in, x17 in, x18 in,
xX22 in, x23 in, x24 in, x25 in,
x29 in, x30 in, x31 in, x32 in,
x36_in, x37 in, x38 in, x39 in,
x43 in, x44 in, x45 in, x46 in,
x50 in, x51 in, x52 in, x53 in,
x57 in, x58 in, x59 in, x60 in,
)
variable temp: integer;
variable xd : xd array;
begin
xd (0) := abs(conv_integer(x0 in));
xd (1) := abs(conv_integer(xl in));
xd(2) := abs(conv_integer(x2 in));
xd(3) := abs(conv_integer(x3 in));
xd(4) := abs(conv_integer (x4 in));
xd(5) := abs(conv_integer (x5 in));
xd(6) := abs(conv_integer(x6 in));
xd(7) := abs(conv_integer(x7 in));
xd(8) := abs(conv_integer(x8 in));
xd(9) := abs(conv_integer(x9 in));
xd (10) := abs(conv_integer(x1l0 in));
xd(11) := abs(conv_integer(xll in));
xd(12) := abs(conv_integer(xl2 in));
xd(13) := abs(conv_integer(xl3 in));
xd(14) := abs(conv_integer(xl4 in));
xd (15) := abs(conv_integer(xl5 in));
xd(16) := abs(conv_integer(xl6 in));
xd(17) := abs(conv_integer(xl7 in));
xd (18) := abs(conv_integer(x1l8 in));

xd (19) := abs

xd (20) := abs
xd (21) := abs
xd (23) := abs
xd (24) := abs
xd (25) := abs
xd (26) := abs
xd (27) := abs
xd (28) := abs
xd (29) := abs
xd (30) := abs
xd (31) := abs
xd (32) := abs
xd (33) := abs

xd (34) := abs
xd (35) := abs
xd (36) := abs
xd (37) := abs
xd (38) := abs

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
xd (22) := abs
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
xd (39) := abs
(
(
(
(
(

xd (40) := abs
xd (41) := abs
xd (42) := abs
xd (43) := abs
xd (44) := abs

conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer
conv_integer

x19 in));
x20 _in));
x21 in));
xX22 1in));
x23 in));
x24 in));
x25 in));
X26_1in));
x27 in));
x28 in));
x29 in));
x30 _in));
x31 in));
x32_in));
x33 in));
x34 in));
x35 in));
x36_in));
x37 in));
x38 in));
x39 in));
x40 in));
x41 in));
x42 in));
x43 in));
x44 in));

130

x19 in,
X26_in,
x33 in,
x40 in,
x47 in,
x54 in,
x61 in,

x20 in,
x27 in,
x34 in,
x41 in,
x48 in,
x55 in,
xX62 in,

x21 in,
x28 in,
x35_in,
x42 in,
x49 in,
x56_1in,
x63_in

xd (45) := abs(conv_integer(x45 in));

(((
xd (46) := abs(conv_integer(x46 in));
xd (47) := abs(conv_integer(x47 in));
xd (48) := abs(conv_integer(x48 in));
xd (49) := abs(conv_integer(x49 in));
xd (50) := abs(conv_integer (x50 in));
xd (51) := abs(conv_integer (x5l in));
xd (52) := abs(conv_integer(x52 in));
xd (53) := abs(conv_integer(x53 in));
xd (54) := abs(conv_integer(x54 in));
xd (55) := abs(conv_integer(x55 in));
xd (56) := abs(conv_integer(x56 in));
xd (57) := abs(conv_integer(x57 in));
xd (58) := abs(conv_integer(x58 in));
xd (59) := abs(conv_integer(x59 in));
xd (60) := abs(conv_integer(x60 in));
xd (61) := abs(conv_integer(x6l in));
xd (62) := abs(conv_integer(x62 in));
xd (63) := abs(conv_integer(x63 in));

-- Sort the array
for i in 63 downto 0 loop
for j in 1 to i loop
if xd(j-1) > xd(j) then
temp := xd(j-1);
xd(J-1) := xd(3);

xd (j) := temp;
else
-—for eliminating other hardware.
end if;
end loop;

end loop;
x median <= conv_std logic vector (xd(32),8);
end process;
instance_threshold: lut threshold
port map (
address => x median, result => thld est
)i

end architecture;

--Daubechies Inverse Discrete Wavelet Transform
-— Code is generated using C.
-— This design is based on the Look up tables for multiplication.

library ieee;

use ieee.std logic 1164.all;
use leee.std logic arith.all;
use leee.std logic signed.all;

entity idwt is

xout 10 : out std logic vector (8 downto 0);
xout 11 : out std logic vector (8 downto 0);
xout 12 : out std logic vector (8 downto 0);

port (

xout 0 : out std logic vector (8 downto 0);
xout 1 : out std logic vector (8 downto 0);
xout 2 : out std logic vector (8 downto 0);
xout 3 : out std logic vector(8 downto 0);
xout 4 : out std logic vector(8 downto 0);
xout 5 : out std logic vector (8 downto 0);
xout 6 : out std logic vector (8 downto 0);
xout 7 : out std logic vector (8 downto 0);
xout 8 : out std logic vector (8 downto 0);
xout 9 : out std logic vector(8 downto 0);

(

(

(

131

xout 13
xout 14
xout 15
xout 16
xout 17
xout 18
xout 19
xout 20
xout 21
xout 22
xout 23
xout 24
xout 25
xout 26
xout 27
xout 28
xout 29
xout 30
xout 31
xout 32
xout 33
xout 34
xout 35
xout 36
xout 37
xout 38
xout 39
xout 40
xout 41
xout 42
xout 43
xout 44
xout 45
xout 46
xout 47
xout 48
xout 49
xout 50
xout 51
xout 52
xout 53
xout 54
xout 55
xout 56
xout 57
xout 58
xout 59
xout 60
xout 61
xout 62
xout 63
xout 64
xout 65
xout 66
xout 67
xout 68
xout 69
xout 70
xout 71
xout 72
xout 73
xout 74
xout 75
xout 76

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector

132

(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8
(8

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

xout 77
xout 78
xout 79
xout 80
xout 81
xout 82
xout 83
xout 84
xout 85
xout 86
xout 87
xout 88
xout 89
xout 90
xout 91
xout 92
xout 93
xout 94
xout 95
xout 96
xout 97
xout 98
xout 99 :
xout 100
xout 101
xout 102
xout 103
xout 104
xout 105
xout 106
xout 107
xout 108
xout 109
xout 110
xout 111
xout 112
xout 113
xout 114
xout 115
xout 116
xout 117
xout 118
xout 119
xout 120
xout 121
xout 122
xout 123
xout 124
xout 125
xout 126
xout 127

yl 0 : in

yl 1 : in
yl 2 : in
yl 3 : in
yl 4 : in
yl 5 : in
yl 6 : in
yl 7 : in
yl 8 : in
yl 9 : in

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

std

std
std
std
std
std
std
std

std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector (
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector (8

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

logic vector (8 downto 0);
logic vector (8 downto 0);

yl 10 : in std logic vector (8 downto 0);
yl 11 : in std logic vector (8 downto 0);
yl 12 : in std logic vector (8 downto 0);

(

logic vector (8 downto 0);
logic vector (8 downto 0);
logic vector (8 downto 0);
logic vector (8 downto 0);
logic vector (8 downto 0);
logic vector (8 downto 0);
logic vector (8 downto 0);
logic vector (8 downto 0);

(

(

(

133

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

yl 13
yl 14
yl 15
yl 16
yl 17
yl 18
yl 19
yl 20
yl 21
yl 22
yl 23
yl 24
yl 25
yl 26
yl 27
yl 28
yl 29
yl 30
yl 31
yl 32
yl 33
yl 34
yl 35
yl 36
yl 37
yl 38
yl 39
yl 40
yl 41
yl 42
yl 43
yl 44
yl 45
yl 46
yl 47
yl 48
yl 49
yl 50
yl 51
yl 52
yl 53
yl 54
yl 55
yl 56
yl 57
yl 58
yl 59
yl 60
yl 61
yl 62
yl 63
yh 0

yh 1

yh 2

yh 3

yh 4

yh 5

yh 6

yh 7

yh 8

yh 9

yh 10
yh 11
yh 12

in
in
in

std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector

Q0 CO CO CO 0O 0O 0O CO CO GO 0O 0O 00 OO OO OO CO CO CO OO OO OO CO CO CO OO OO OO CO CO CO 0O OO 0O OO QO QO GO 0O 00 OO OO OO CO CO CO O OO OO CO O

~ ~ ~ OO 0O CO O O CO O O CO QO ~ ~ N N~~~ o~ N~~~ e~~~ e~~~ e~~~ e~~~ e~~~ e~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

134

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

8 downto 0);
8 downto 0);
8 downto 0);

yh 13
yh 14
yh 15
yh 16
yh 17
yh 18
yh 19
yh 20
yh 21
yh 22
yh 23
yh 24
yh 25
yh 26
yh 27
yh 28
yh 29
yh 30
yh 31
yh 32
yh 33
yh 34
yh 35
yh 36
yh 37
yh 38
yh 39
yh 40
yh 41
yh 42
yh 43
yh 44
yh 45
yh 46
yh 47
yh 48
yh 49
yh 50
yh 51
yh 52
yh 53
yh 54
yh 55
yh 56
yh 57
yh 58
yh 59
yh 60
yh 61
yh 62
yh 63
)i
end entity;

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8

std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0);
std logic vector (8 downto 0)

architecture behavioral of idwt is

component lut hl idwt

port (

)

end component;

address : in std logic vector (8 downto 0);
result : out std logic vector (8 downto 0)

component lut h2 idwt

135

x0 11,
x0 21,
x0 31,
x0 41,
x0 51,
x0 61,
x0 71,
x0 81,
x0 91,
x0 101,
x0 110,
x0 119,
x0 128,
x0 137,

x0_146,

port (

)

end component;

component lut h3 idwt

port (

)

end component;

component lut h4 idwt

port (

)

end component;

address : in
result : out
address : in
result : out
address : in
result : out

component lut hl idwt neg

port (

end component;

address : in
result : out

)

component lut h3 idwt neg

port (

end component;
signal x0 0, x0 1, x0 2, x0 3, x0 4, x0 5, x0 6,

address : in
result : out

)

x0 12,
x0 22,
x0 32,
x0 42,
x0 52,
x0 62,
x0 72,
x0 82,
x0 92,
x0 102,
x0 111,
x0 120,
x0 129,
x0 138,

x0_ 147,

x0 13, x0 14,
x0 23,
x0 33,
x0 43,
x0 53,
x0 63,
x0 73,
x0 83,
x0 93,
x0 103,
x0 112,
x0 121,
x0 130,
x0 139,

x0_148,

downto
downto

0);
0)

std logic vector (8
std logic vector (8

downto
downto

0);
0)

std logic vector (8
std logic vector (8

downto
downto

std logic vector (8 0);

std logic vector (8

downto
downto

std logic vector (8 0) 7

std logic vector (8

downto
downto

0);
0)

std logic vector (8
std logic vector (8

x0 15, x0 16, x0 17, x0 18, x0 19,

x0 24, x0 25, x0 26, x0 27, x0 28, x0 29,

x0 34, x0 35, x0_36, x0 37, x0 38, x0 39,

x0_44, x0 45, x0 46, x0 47, x0 48, x0_49,

%0 54, x0 55, x0_56, x0 57, x0 58, x0 59,

%0 64, x0_65, x0_66, x0 67, x0 68, x0_69,

x0 74, x0 75, x0 76, x0 77, x0 78, x0 79,

x0 84, x0 85, x0_86, x0 87, x0 88, x0 89,

%0 94, x0 95, x0_96, x0 97, x0 98, x0 99,

x0_104, x0 105, x0_106, x0 107, =0_108,

x0 113, x0 114, x0 115, x0 116, x0 117,

x0 122, x0 123, x0_124, x0 125, x0 126,

x0 131, =0 132, x0 133, x0 134, x0 135,

x0 140, x0 141, x0 142, x0 143, x0 144,

x0 149, x0 150, x0 151, x0 152, x0 153,

136

%0 7, x0 8, x0_ 9, x0 10,

x0 20,
x0 30,
x0 40,
x0 50,
x0 60,
x0 70,
x0 80,
x0 90,
x0 100,
x0 109,
x0 118,
x0 127,
x0 136,
x0 145,

x0_ 154,

x0_155,
%0 156, x0_157, x0_158, x0 159, x0 160, x0 161, x0 162, x0_163,

x0_164,
x0 165, x0 166, x0 167, x0 168, x0 169, x0 170, =0 171, =0 172,

%0 173,
- x0 174, x0 175, x0 176, x0 177, x0 178, x0_179, =0 180, x0_181,

x0_182,
x0 183, x0 184, x0 185, x0_186, x0 187, x0 188, x0_189, x0_190,

x0 191,
x0 192, x0 193, x0 194, x0_195, x0 196, x0 197, x0_198, x0 199,

x0_200,
- x0 201, x0 202, x0 203, x0 204, x0 205, x0_206, x0 207, x0_208,

x0_209,
x0 210, x0 211, x0 212, x0 213, x0 214, x0 215, x0 216, =0 217,

%0 218,
x0 219, x0 220, x0 221, x0 222, x0 223, x0 224, x0 225, x0_226,

%0 227,
- x0 228, x0 229, x0 230, x0 231, x0 232, x0 233, x0 234, x0 235,

x0_236,
x0 237, x0 238, x0 239, x0 240, x0 241, x0 242, x0 243, x0_244,

x0_ 245,
x0 246, x0 247, x0 248, x0 249, x0 250, x0 251, x0 252, x0_253,

x0_254,

x0 255, x1 0, x1 1, x1 2, x1 3, x1 4, x1 5, x1 6, x1 7, x1 8,

x1l 9, x1 10,
xl1 11, x1 12, x1 13, x1 14, x1 15, x1 16, x1 17, x1 18, x1 19,
xl 20, x1 21,
x1 22, x1 23, x1 24, x1 25, x1 26, x1 27, x1 28, x1 29, x1 30,
xl 31, x1 32,
B x1 33, x1 34, x1 35, x1 36, x1 37, x1 38, x1 39, x1 40, xl1 41,
x1 42, x1 43,
x1 44, x1 45, x1 46, x1 47, x1 48, x1 49, x1 50, x1 51, x1 52,
x1 53, x1 54,
x1 55, x1 56, x1 57, x1 58, x1 59, x1 60, x1 61, x1 62, x1 63,
x1l 64, x1 65,
B B xl 66, x1 67, x1 68, x1 69, x1 70, x1 71, x1 72, x1 73, x1 74,
x1 75, x1 76,
x1l 77, x1 78, x1 79, x1 80, x1 81, x1 82, x1 83, x1 84, xl1 85,
xl 86, x1 87,
x1l 88, x1 89, x1 90, x1 91, x1 92, x1 93, x1 94, x1 95, xl1 96,
x1 97, x1 98,
B B x1 99, x1 100, x1 101, x1 102, x1 103, x1 104, x1 105, x1 106,
x1 107, x1 108,
x1 109, x1 110, x1 111, x1 112, x1 113, x1 114, x1 115, x1 116,
x1 117, x1 118,
x1 119, x1 120, x1 121, x1 122, x1 123, x1 124, x1 125, x1 126,
x1 127, x1 128,
B B x1 129, x1 130, x1 131, x1 132, x1 133, x1 134, x1 135, x1 136,
x1 137, x1 138,
x1 139, x1 140, x1 141, x1 142, x1 143, x1 144, x1 145, x1 146,
x1 147, x1 148,
x1 149, x1 150, x1 151, x1 152, x1 153, x1 154, x1 155, x1 156,
x1 157, x1 158,
B B x1 159, x1 160, x1 161, x1 162, x1 163, x1 164, x1 165, x1 166,
x1l 167, x1 168,
x1 169, x1 170, x1 171, x1 172, x1 173, x1 174, x1 175, x1 176,
x1 177, x1 178,
x1 179, x1 180, x1 181, x1 182, x1 183, x1 184, x1 185, xl1 186,
x1 187, x1 188,
B B x1 189, x1 190, x1 191, x1 192, x1 193, x1 194, x1 195, x1 196,
x1 197, x1 198,
x1 199, x1 200, x1 201, x1 202, x1 203, x1 204, x1 205, xl1 206,
x1 207, x1 208,
x1 209, x1 210, x1 211, x1 212, x1 213, x1 214, x1 215, xl1 216,

137

x1 217, x1 218,
x1 219, x1 220, x1 221, x1 222, x1 223, x1 224, x1 225, xl1 226,
x1 227, x1 228,
x1 229, x1 230, x1 231, x1 232, x1 233, x1 234, x1 235, xl1 236,
x1 237, x1 238,
B B x1 239, x1 240, x1 241, x1 242, x1 243, x1 244, x1 245, xl1 246,
x1 247, x1 248,
x1 249, x1 250, x1 251, x1 252, x1 253, x1 254, x1 255
std logic_vector (8 downto 0);
begin

-— even signal

i0 0: lut h3 idwt
port map (
address => yl 0, result => x0 0

i0 1: lut h2 idwt

port map (
address => yh 0, result => x0 1

i0 2: lut hl idwt

B port map (
address => yl 1, result => x0 2

i0 3: lut h4 idwt
port map (
address => yh 1, result => x0 3
)i
xout 0 <= x0 0 + x0 1 + x0 2 + x0 3;
10 4: lut h3 idwt
B pd}t‘ﬁap(
address => yl 1, result => x0 4

i0 5: lut h2 idwt

port map (
address => yh 1, result => x0 5

i0 _6: lut hl idwt

port map (
address => yl 2, result => x0 6

i0 7: lut h4 idwt
port map (
address => yh 2, result => x0 7
)i
xout 2 <= x0 4 + x0 5 + x0 6 + x0 7;
i0 8: lut h3 idwt
port map (
address => yl 2, result => x0 8
)i
i0 9: lut h2 idwt
port map (
address => yh 2, result => x0 9
i0 10: lut hl idwt
port map (
address => yl 3, result => x0 10

i0 11: lut h4 idwt
port map (
address => yh 3, result => x0 11
)i
xout 4 <= x0 8 + x0 9 + x0 10 + x0 11;
i0 12: lut h3 idwt
port map (

138

address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

yl 3, result =>

yh 3, result =>
result =>

vl 4,

yh 4, result =>

xout 6 <= x0 12 + x0 13 + x0 14 + x0 15;

i0_16:

lut h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

yl 4, result =>

yh 4, result =>
result =>

vl 5,

yh 5, result =>

xout 8 <= x0 16 + x0 17 + x0 18 + x0 _19;

i0_20:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout_10 <= x0 20 + x0 21

i0 24:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

yl 5, result =>

yh 5, result =>

yl 6, result =>

yh 6, result =>

+ x0 22 + x0 23;

yl 6, result =>

yh 6, result =>
result =>

vyl 7,

yh 7, result =>

139

x0 12

x0 13

x0 14

x0 15

x0 16

x0 17

x0 18

x0 19

x0 20

x0 21

x0 22

x0 23

x0 24

x0 25

x0 26

%0 27

)

xout 12 <= x0 24 + x0 25 + x0 26 + x0 27;

i0_28:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout 14 <= x0 28 + x0 29

i0_32:

lut_h3 idwt
port map (

address =>
lut h2 idwt
port map (

address =>
lut hl idwt
port map (

address =>
lut h4 idwt
port map (

address =>

)

xout 16 <= x0 32 + x0 33

i0_36:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout 18 <= x0 36 + x0 37

10_40:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

yl 7, result =>

yh 7, result =>

yl 8, result =>

yh 8, result =>

+ x0 30 + x0 317

yl 8, result =>

yh 8, result =>
vyl 9,

result =>

yh 9, result =>

+ x0 34 + %0 35;

yl 9, result =>

result =>

vh_ 9,

yl 10, result =>

yh 10, result =>

+ x0 38 + x0 39;

yl 10, result =>

yh 10, result =>

yl 11, result =>

140

x0 28

x0 29

x0_30

x0 31

x0 32

x0_33

x0_34

x0_35

x0_36

x0 37

x0 38

x0_39

x0 40

x0_41

x0_42

)i
10_43: lut_h4 idwt
port map (
address => yh 11, result => x0 43
)i
xout 20 <= x0 40 + x0 41 + x0 42 + x0 43;
i0 44: lut h3 idwt
port map (
address => yl 11, result => x0 44

10_45: lut _h2 idwt
port map (
address => yh 11, result => x0 45

i0_46: lut _hl idwt
port map (
address => yl 12, result => x0 46

i0 47: lut h4 idwt
port map (
address => yh 12, result => x0 47
)i
xout 22 <= x0 44 + x0 45 + x0 46 + x0 47;
i0 48: lut h3 idwt
port map (
address => yl 12, result => x0 48

10_49: lut h2 idwt
port map (
address => yh 12, result => x0 49

i0 50: lut hl idwt
port map (
address => yl 13, result => x0 50

10_51: lut _h4 idwt
port map (
address => yh 13, result => x0 51
)i
xout 24 <= x0 48 + x0 49 + x0 50 + x0 51;
10 52: lut h3 idwt
B pofE mgp(
address => yl 13, result => x0 52

i0 53: lut h2 idwt
port map (
address => yh 13, result => x0 53

10_54: lut _hl idwt
port map (
address => yl 14, result => x0 54

i0 55: lut h4 idwt
port map (
address => yh 14, result => x0 55
)i
xout 26 <= x0 52 + x0 53 + x0 54 + x0 55;
i0 56: lut h3 idwt
port map (
address => yl 14, result => x0 56
)i
i0 57: lut h2 idwt
port map (
address => yh 14, result => x0 57

141

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout 28 <= x0 56 + x0 57

i0_60:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout 30 <= x0 60 + x0 61

i0_64:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout 32 <= x0 64 + x0 65

i0_68:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout 34 <= x0 68 + x0 69

i0 72:

lut_h3 idwt
port map (
address =>

yl 15, result =>

yh 15, result =>

+ x0 58 + x0 59;

yl 15, result =>

yh 15, result =>

yl 16, result =>

yh 16, result =>

+ x0 62 + x0 63;

yl 16, result =>

yh 16, result =>

yl 17, result =>

yh 17, result =>

+ x0 66 + x0 67;

yl 17, result =>

yh 17, result =>

yl 18, result =>

yh 18, result =>

+ x0 70 + x0 _71;

yl 18, result =>

142

x0_58

x0_59

x0_60

x0 61

x0 62

x0_63

x0 64

x0_65

x0_66

x0 67

x0_68

x0_69

x0 70

x0_71

x0_72

xout 36 <= x0 72 + x0 73

i0 76:

xout 38 <= x0 76 + x0 77

i0_80:

xout 40 <= x0 80 + x0 81

i0 84:

lut h2 idwt
port map (

address => yh 18, result =>

lut hl idwt
port map (

address => yl 19, result =>

lut h4 idwt
port map (

address =>

)

lut h3 idwt
port map (
address
lut h2 idwt
port map (
address
lut hl idwt
port map (
address
lut h4 idwt
port map (
address

)

lut h3 idwt
port map (

address =>

lut h2 idwt
port map (

address =>

lut hl idwt
port map (

address =>

lut h4 idwt
port map (

address =>

)

lut h3 idwt
port map (
address
lut h2 idwt
port map (
address
lut hl idwt
port map (
address
lut h4 idwt
port map (
address

)

yh 19, result =>

+ x0 74 + x0_75;

yl 19, result =>

yh 19, result =>

yl 20, result =>

yh 20, result =>

+ x0 78 + x0 79;

yl 20, result =>

yh 20, result =>

yl 21, result =>

yh 21, result =>

+ x0 82 + x0 83;

yl 21, result =>

yh 21, result =>

yl 22, result =>

yh 22, result =>

143

x0 73

x0_74

x0 75

x0 76

x0_77

x0 78

x0 79

x0_80

x0 81

x0 82

x0_83

x0 84

x0_85

x0_86

x0 87

xout 42 <= x0 84 + x0 85

i0_88:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout 44 <= x0 88 + x0 89

i0_92:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

xout 46 <= x0 92 + x0 93

i0_96:

lut_h3 idwt
port map (
address =>

lut h2 idwt
port map (
address =>

lut hl idwt
port map (
address =>

lut h4 idwt
port map (
address =>

)

+ x0 86 + x0 87;

yl 22, result =>

yh 22, result =>

yl 23, result =>

yh 23, result =>

+ x0 90 + x0 91;

yl 23, result =>

yh 23, result =>

yl 24, result =>

yh 24, result =>

+ x0 94 + %0 95;

yl 24, result =>

yh 24, result =>

yl 25, result =>

yh 25, result =>

xout 48 <= x0 96 + x0 97 + x0 98 + x0 99;
i0_100: lut h3 idwt

)

port map (
address =>

i0 101: lut h2 idwt

)

port map (
address =>

i0 102: lut hl idwt

)

port map (
address =>

yl 25, result =>

yh 25, result =>

yl 26, result =>

144

x0_88

x0_89

x0_90

x0 91

x0 92

x0_ 93

x0 94

x0_95

x0_96

x0 97

x0_98

x0_99

x0_100

x0_101

x0_102

i0 103: lut h4 idwt
port map (
address => yh 26,
)i
xout 50 <= x0 100 + x0 101 + x0
i0 _104: lut h3 idwt
port map (
address => yl 26,
)i
i0 105: lut h2 idwt
port map (
address => yh 26,
)i
i0 106: lut hl idwt
port map (
address => yl 27,
)i
i0 107: lut h4 idwt
port map (
address => yh 27,
)i

result => x0 103

102 + x0 103;

result => x0 104

result => x0 105

result => x0 106

result => x0 107

xout 52 <= x0 104 + x0 105 + x0 106 + x0 107;

i0 _108: lut h3 idwt
port map (
address => yl 27,
)i
i0 109: lut h2 idwt
port map (
address => yh 27,
)i
i0 110: lut hl idwt
port map (
address => yl 28,
)i
i0 111: lut h4 idwt
port map (
address => yh 28,
)i

xout 54 <= x0 108 + x0 109 + x0

i0 112: lut h3 idwt
port map (
address => yl 28,
)i
i0 113: lut h2 idwt
port map (
address => yh 28,
)i
i0 114: lut hl idwt
port map (
address => yl 29,
)i
i0 115: lut h4 idwt
port map (
address => yh 29,
)i

xout 56 <= x0 112 + x0 113 + x0

i0 116: lut h3 idwt
port map (
address => yl 29,
)i
i0 117: lut h2 idwt
port map (
address => yh 29,
)i

result => x0 108

result => x0 109

result => x0 110

result => x0 111

110 + x0 _111;

result => x0 112

result => x0 113

result => x0 114

result => x0 115

114 + x0 115;

result => x0 116

result => x0 117

145

i0 118: lut hl idwt
port map (
address => yl 30, result => x0 118
)i
i0 119: lut h4 idwt
port map (
address => yh 30, result => x0 119
)i
xout 58 <= x0 116 + x0 117 + x0 118 + x0 119;
i0 120: lut h3 idwt
port map (
address => yl 30, result => x0 120
)i
i0 121: lut h2 idwt
port map (
address => yh 30, result => x0 121
)i
i0 122: lut hl idwt
port map (
address => yl 31, result => x0 122
)i
i0 123: lut h4 idwt
port map (
address => yh 31, result => x0 123
)i
xout 60 <= x0 120 + x0 121 + x0 122 + x0 123;
i0 124: lut h3 idwt
port map (
address => yl 31, result => x0 124
)i
i0 125: lut h2 idwt
port map (
address => yh 31, result => x0 125
)i
i0 126: lut hl idwt
port map (
address => yl 32, result => x0 126
)i
i0 127: lut h4 idwt
port map (
address => yh 32, result => x0 127
)i
xout 62 <= x0 124 + x0 125 + x0 126 + x0 127;
i0_128: lut h3 idwt
port map (
address => yl 32, result => x0 128
)i
i0 129: lut h2 idwt
port map (
address => yh 32, result => x0 129
)i
i0 130: lut hl idwt
port map (
address => yl 33, result => x0 130
)i
i0 131: lut h4 idwt
port map (
address => yh 33, result => x0 131
)i
xout 64 <= x0 128 + x0 129 + x0 130 + x0 131;
i0 132: lut h3 idwt
port map (
address => yl 33, result => x0 132
)i

146

i0 133: lut h2 idwt
port map (
address => yh 33, result => x0 133
)i
i0 134: lut hl idwt
port map (
address => yl 34, result => x0 134
)i
i0 135: lut h4 idwt
port map (
address => yh 34, result => x0 135
)i
xout 66 <= x0 132 + x0 133 + x0 134 + x0 135;
i0 136: lut h3 idwt
port map (
address => yl 34, result => x0 136
)i
i0 137: lut h2 idwt
port map (
address => yh 34, result => x0 137
)i
i0 138: lut hl idwt
port map (
address => yl 35, result => x0 138
)i
i0 139: lut h4 idwt
port map (
address => yh 35, result => x0 139
)i
xout 68 <= x0 136 + x0 137 + x0 138 + x0 139;
i0 140: lut h3 idwt
port map (
address => yl 35, result => x0 140
)i
i0 141: lut h2 idwt
port map (
address => yh 35, result => x0 141
)i
i0 142: lut hl idwt
port map (
address => yl 36, result => x0 142
)i
i0 143: lut h4 idwt
port map (
address => yh 36, result => x0 143
)i
xout 70 <= x0 140 + x0 141 + x0 142 + x0 143;
i0 144: lut h3 idwt
port map (
address => yl 36, result => x0 144
)i
i0 145: lut h2 idwt
port map (
address => yh 36, result => x0 145
)i
i0 146: lut hl idwt
port map (
address => yl 37, result => x0 146
)i
i0 147: lut h4 idwt
port map (
address => yh 37, result => x0 147
)i
xout 72 <= x0 144 + x0 145 + x0 146 + x0 147;

147

i0 148: lut h3 idwt
port map (
address => yl 37,
)i
i0 149: lut h2 idwt
port map (
address => yh 37,
)i
i0 150: lut hl idwt
port map (
address => yl 38,
)i
i0 151: lut h4 idwt
port map (
address => yh 38,
)i

result => x0 148

result => x0 149

result => x0 150

result => x0 151

xout 74 <= x0 148 + x0_149 + x0 150 + x0_151;

i0 152: lut h3 idwt
port map (
address => yl 38,
)i
i0 153: lut h2 idwt
port map (
address => yh 38,
)i
i0 154: lut hl idwt
port map (
address => yl 39,
)i
i0 155: lut h4 idwt
port map (
address => yh 39,
)i

xout 76 <= x0 152 + x0 153 + x0_

i0 156: lut h3 idwt
port map (
address => yl 39,
)i
i0 157: lut h2 idwt
port map (
address => yh 39,
)i
i0 158: lut hl idwt
port map (
address => yl 40,
)i
i0 159: lut h4 idwt
port map (
address => yh 40,
)i

xout 78 <= x0 156 + x0 157 + x0

i0 160: lut h3 idwt
port map (
address => yl 40,
)i
i0 161: lut h2 idwt
port map (
address => yh 40,
)i
i0 162: lut hl idwt
port map (
address => yl 41,
)i
i0 163: lut h4 idwt

result => x0 152

result => x0 153

result => x0 154

result => x0 155

154 + x0 155;

result => x0 156

result => x0 157

result => x0 158

result => x0 159

158 + x0 159;

result => x0 160

result => x0 161

result => x0 162

148

port map (
address => yh 41,
)i

xout 80 <= x0 160 + x0 161 + x0
i0_164: lut h3 idwt

)

port map (
address => yl 41,

10_165: lut_h2 idwt

)

port map (
address => yh 41,

10_166: lut_hl idwt

)

port map (
address => yl 42,

i0 167: lut h4 idwt

port map (
address => yh 42,
)i

result => x0 163

162 + x0 163;

result => x0 164

result => x0 165

result => x0 166

result => x0 167

xout 82 <= x0 164 + x0 165 + x0 166 + x0 167;
i0_168: lut h3 idwt

)

port map (
address => yl 42,

10 169: lut_h2 idwt

)

port map (
address => yh 42,

i0 170: lut hl idwt

)

port map (
address => yl 43,

i0 171: lut_h4 idwt

port map (
address => yh 43,
)i

result => x0 168

result => x0 169

result => x0 170

result => x0 171

xout 84 <= x0 168 + x0 169 + x0 170 + x0 171;
i0 172: lut h3 idwt

)

port map (
address => yl 43,

i0 173: lut _h2 idwt

)

port map (
address => yh 43,

10 174: lut_hl idwt

)

port map (
address => yl 44,

i0 175: lut h4 idwt

port map (
address => yh 44,
)i

result => x0 172

result => x0 173

result => x0 174

result => x0 175

xout 86 <= x0 172 + x0 173 + x0 174 + x0 175;
i0_176: lut h3 idwt

)

port map (
address => yl 44,

i0 177: lut _h2 idwt

)

port map (
address => yh 44,

i0 178: lut hl idwt

result => x0 176

result => x0 177

149

port map (
address => yl 45, result => x0 178
)i
i0 179: lut h4 idwt
port map (
address => yh 45, result => x0 179
)i
xout 88 <= x0 176 + x0 177 + x0 178 + x0 179;
i0 180: lut h3 idwt
port map (
address => yl 45, result => x0 180
)i
i0 181: lut h2 idwt
port map (
address => yh 45, result => x0 181
)i
i0 182: lut hl idwt
port map (
address => yl 46, result => x0 182
)i
i0 183: lut h4 idwt
port map (
address => yh 46, result => x0 183
)i
xout 90 <= x0 180 + x0 181 + x0 182 + x0 183;
i0_184: lut h3 idwt
port map (
address => yl 46, result => x0 184
)i
i0 185: lut h2 idwt
port map (
address => yh 46, result => x0 185
)i
i0 186: lut hl idwt
port map (
address => yl 47, result => x0 186
)i
i0 187: lut h4 idwt
port map (
address => yh 47, result => x0 187
)i
xout 92 <= x0 184 + x0 185 + x0 186 + x0 187;
i0 188: lut h3 idwt
port map (
address => yl 47, result => x0 188
)i
i0 189: lut h2 idwt
port map (
address => yh 47, result => x0 189
)i
i0 190: lut hl idwt
port map (
address => yl 48, result => x0 190
)i
i0 191: lut h4 idwt
port map (
address => yh 48, result => x0 191
)i
xout 94 <= x0 188 + x0 189 + x0 190 + x0 191;
i0 192: lut h3 idwt
port map (
address => yl 48, result => x0 192
)i
i0 193: lut h2 idwt

150

port

)

map
address => yh 48, result => x0 193

10 194: lut hl idwt

port

)

map (
address => yl 49, result => x0 194

10 195: lut_h4 idwt

port

)

map
address => yh 49, result => x0 195

xout 96 <= x0 192 + x0 193 + x0 194 + x0 195;
i0_196: lut h3 idwt

port

)

map
address => yl 49, result => x0 196

10 197: lut _h2 idwt

port

)

map
address => yh 49, result => x0 197

10 198: lut_hl idwt

port

)

map
address => yl 50, result => x0 198

10 199: lut_h4 idwt

port

)

map
address => yh 50, result => x0 199

xout 98 <= x0 196 + x0 197 + x0 198 + x0 199;
i0_200: lut h3 idwt

port

)

map (
address => yl 50, result => x0 200

10 201: lut _h2 idwt

port

)

map (
address => yh 50, result => x0 201

10 202: lut_hl idwt

port

)

map
address => yl 51, result => x0 202

10 203: lut_h4 idwt

port

)i
xout 100 <=

map (
address => yh 51, result => x0 203
x0 200 + x0 201 + x0 202 + x0 _203;

i0 204: lut h3 idwt

port

)

map
address => yl 51, result => x0 204

10 205: lut_h2 idwt

port

)

map (
address => yh 51, result => x0 205

10 206: lut_hl idwt

port

)

map (
address => yl 52, result => x0 206

10 207: lut_h4 idwt

port

)i
xout 102 <=

i0_208: lut |

map (
address => yh 52, result => x0 207
x0 204 + x0 205 + x0 206 + x0 _207;

h3_idwt

151

port

port

port

port

)i
xout 104 <=

port

)

map
address =>

lut h2 idwt

map (
address =>

lut hl idwt

map (
address =>

lut h4 idwt

map
address =>

yl 52,

yh 52,

yl 53,

yh 53,

result

result

result

result

x0 208 + x0 209 + x0 210 +
i0 212: lut h3 idwt

map
address =>

i0 213: lut _h2 idwt

port

)

map
address =>

i0 214: lut hl idwt

port

)

map (
address =>

i0 215: lut h4 idwt

port

)

map (
address =>

yl 53,

yh 53,

yl 54,

yh 54,

result

result

result

result

xout 106 <= x0 212 + x0 213 + x0 214 +
i0 216: lut h3 idwt

port

)

map
address =>

10 217: lut_h2 idwt

port

)

map
address =>

i0 218: lut hl idwt

port

)

map (
address =>

i0 219: lut h4 idwt

port

)
xout 108 <=

i0 220: lut

port

)

10 221: lut .

port

)

10 222: lut

port

)

10_223: lut |

port

map (
address =>

yl 54,

yh 54,

yl 55,

yh 55,

result

result

result

result

x0 216 + x0 217 + x0 218 +

h3_idwt
map (

address => yl 55, result

h2_idwt
map (

address => yh 55, result

hl idwt
map (

address => yl 56, result

h4 idwt
map (

152

=> x0_208

=> x0_209

=> x0 210

=> x0 211

x0 211;

=> x0 212

=> x0 213

=> x0 214

=> x0 215

x0_215;

=> x0 216

=> x0 217

=> x0 218

=> x0 219

x0_219;

=> x0 220

=> x0 221

=> x0 222

)i

address => yh 56, result

=> x0 223

xout 110 <= x0 220 + x0 221 + x0 222 + x0_223;
10 224: lut_h3 idwt

port

)

map (
address => yl 56, result

i0 225: lut _h2 idwt

port

)

map
address => yh 56, result

i0 226: lut hl idwt

port

)

map (
address => yl 57, result

10 227: lut_h4_idwt

port

)i
xout 112 <=

map
address => yh 57, result
x0 224 + x0 225 + x0 226 +

i0 228: lut h3 idwt

port

)

map
address => yl 57, result

10 229: lut h2 idwt

port

)

map
address => yh 57, result

10 230: lut_hl idwt

port

)

map (
address => yl 58, result

i0 231: lut h4 idwt

port

)i
xout 114 <=

map (
address => yh 58, result
x0 228 + x0 229 + x0 230 +

10 232: lut h3 idwt

port

)

map
address => yl 58, result

10 _233: lut_h2 idwt

port

)

map (
address => yh 58, result

10 234: lut hl idwt

port

)

map (
address => yl 59, result

10 _235: lut_h4 idwt

port

)i
xout 116 <=

i0_236: lut |

port

)

i0 237: lut |

port

)

10_238: lut |

port

map
address => yh 59, result

x0 232 + x0 233 + x0 234 +
h3 idwt
map (

address => yl 59, result

h2_idwt
map (

address => yh 59, result

hl idwt
map (

153

=> x0 224

=> x0 225

=> x0 226

=> x0 227

x0 227;

=> x0 228

=> x0 229

=> x0_230

=> x0 231

x0 231;

=> x0 232

=> x0_233

=> x0 234

=> x0_235

x0_235;

=> x0_236

=> x0 237

)

address => yl 60, result

10 239: lut_h4 idwt

port

)i
xout 118 <=

map (
address => yh 60, result
x0 236 + x0 237 + x0 238 +

10 240: lut h3 idwt

port

)

map
address => yl 60, result

10 241: lut _h2 idwt

port

)

map
address => yh 60, result

10 242: lut hl idwt

port

)

map
address => yl 61, result

10 243: lut h4 idwt

port

)i
xout 120 <=

map
address => yh 61, result
x0 240 + x0 241 + x0 242 +

10 244: lut h3 idwt

port

)

map (
address => yl 61, result

10 245: lut _h2 idwt

port

)

map
address => yh 61, result

i0 246: lut hl idwt

port

)

map (
address => yl 62, result

10 247: lut_h4_idwt

port

)
xout 122 <=

map
address => yh 62, result

x0 244 + x0 245 + x0 246 +

i0 248: lut h3 idwt

port

)

map (
address => yl 62, result

10 249: lut h2 idwt

port

)

10_250: lut |

port

)

10_251: lut |

port

)i
xout 124 <=

10_252: lut |

port

)

10_253: lut |

port

map (
address => yh 62, result

hl idwt
map
address => yl 63, result

h4 idwt
map (
address => yh 63, result

x0 248 + x0 249 + x0 250 +
h3 idwt
map

address => yl 63, result

h2 idwt
map (

154

=> x0_238

=> x0_239

x0_239;

=> x0 240

=> x0 241

=> x0 242

=> x0 243

x0_243;

=> x0 244

=> x0 245

=> x0 246

=> x0 247

x0 247;

=> x0 248

=> x0 249

=> x0_250

=> x0 251

x0 251;

=> x0_252

)

address => yh 63, result => x0 253

i0 254: lut hl idwt
port map (

)

address => yl 0, result => x0 254

i0 255: lut h4 idwt
port map (

)

address => yh 0, result => x0 255

xout 126 <= x0 252 + x0 253 + x0 254 + x0 255;

--odd signal

il 0: lut h2 idwt
port map (

address => yl 1, result => x1 0

il 1: lut h4 idwt
port map (

address => yl 0, result => x1 1

il 2: lut hl idwt neg
port map (

address => yh 0, result => x1 2

il 3: lut h3 idwt neg
port map (

)

address => yh 1, result => x1 3

xout 1 <=x1 0+ x1 1 + x1 2 + x1 3;
il 4: lut h2 idwt
port map (

address => yl 2, result => x1 4

il 5: lut h4 idwt
port map (

address => yl 1, result => x1 5

il 6: lut hl idwt neg
port map (

address => yh 1, result => x1 6

il 7: lut h3 idwt neg
port map (

)

address => yh 2, result => x1 7

xout 3 <=x1 4+ x1 5+ x1 6 + x1 7;
il 8: lut h2 idwt
port map (

)

address => yl 3, result => x1 8

il 9: lut h4 idwt
port map (

address => yl 2, result => x1 9

il 10: lut_hl idwt neg
port map (

address => yh 2, result => x1 10

il 11: lut_h3 idwt neg
port map (

)

address => yh 3, result => x1 11

xout 5 <= x1 8 + x1 9 + x1 10 + x1 11;

155

lut h2 idwt
port map (
address => yl 4, result =>

lut h4 idwt
port map (
address => yl 3, result =>

lut hl idwt neg
port map (
address => yh 3, result =>

lut h3 idwt neg
port map (

address => yh 4, result =>
)i

xout 7 <= x1 12 + x1 13 + x1_14 + x1_15;

il 16:

lut_h2 idwt
port map (
address => yl 5, result =>

lut h4 idwt
port map (
address => yl 4, result =>

lut hl idwt neg
port map (
address => yh 4, result =>

lut h3 idwt neg
port map (

address => yh 5, result =>
)i

xout 9 <= x1 16 + x1 17 + x1 18 + x1 19;

i1 20:

lut _h2 idwt
port map (
address => yl 6, result =>

lut h4 idwt
port map (
address => yl 5, result =>

lut hl idwt neg
port map (
address => yh 5, result =>

lut h3 idwt neg
port map (

address => yh 6, result =>
)i

xout 11 <= x1 20 + x1_21 + x1 22 + x1_23;

i1 _24:

lut h2 idwt
port map (
address => yl 7, result =>

lut h4 idwt
pofE mgp(
address => yl 6, result =>
lut hl idwt neg
port map (
address => yh 6, result =>

lut h3 idwt neg

156

x1 12

x1 13

x1 14

x1 15

x1l 16

x1 17

x1 18

x1 19

x1 20

x1 21

x1 22

x1 23

x1 24

x1l 25

x1l 26

port map (
address =>

)

xout 13 <= x1 24 + x1 25

i1 28:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 15 <= x1 28 + x1 29

i1 32:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 17 <= x1 32 + x1 33

il 36:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 19 <= x1 36 + x1 37

il 40:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (

address =>

lut_hl idwt neg

yh 7, result =>

+ x1 26 + x1 27;

yl 8, result =>

yl 7, result =>

yh 7, result =>

yh 8, result =>

+ x1 30 + x1 31;

yl 9, result =>

yl 8, result =>

yh 8, result =>

yh 9, result =>

+ x1 34 + x1 35;

x1_27

x1 28

x1l 29

x1 30

x1 31

x1_32

x1 33

x1 34

x1 35

yl 10, result => x1 36

yl 9, result =>

yh 9, result =>

x1_37

x1 38

yh 10, result => x1 39

+ x1 38 + x1 39;

yl 11, result => x1 40

yl 10, result => x1 41

157

port map (
address =>
)i
il 43: lut_h3 idwt neg
port map (
address =>
)i
xout 21 <= x1 40 + x1 41

il 44: lut h2 idwt
port map (
address =>
)i
il 45: lut h4 idwt
port map (
address =>
)i
il 46: lut_hl idwt neg
port map (
address =>
)i
il 47: lut_h3 idwt neg

port map (
address =>
)i
xout 23 <= x1 44 + x1 45

il 48: lut h2 idwt
port map (
address =>
)i
il 49: lut h4 idwt
port map (
address =>
)i
il 50: lut hl idwt neg
port map (
address =>
)i
il 51: lut _h3 idwt neg

port map (
address =>
)i
xout 25 <= x1 48 + x1 49

il 52: lut h2 idwt
port map (
address =>
)i
il 53: lut h4 idwt
port map (
address =>
)i
il 54: lut hl idwt neg
port map (
address =>
)i
il 55: lut h3 idwt neg

port map (
address =>
)i
xout 27 <= x1 52 + x1 53
il 56: lut h2 idwt
port map (
address =>
)i
il 57: lut h4 idwt

yh 10, result =>

yh 11, result =>

+ x1 42 + x1 43;

yl 12, result =>
yl 11, result =>
yh 11, result =>
yh 12, result =>

+ x1 46 + x1 47;

yl 13, result =>
yl 12, result =>
yh 12, result =>
yh 13, result =>

+ x1 50 + x1 51;

yl 14, result =>
yl 13, result =>
yh 13, result =>
yh 14, result =>

+ x1 54 + x1 55;

yl 15, result =>

158

x1_42

x1 43

x1_44

x1 45

x1 46

x1_47

x1 48

x1 49

x1 50

x1 51

x1_52

x1 53

x1_54

x1 55

x1l 56

port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 29 <= x1 56 + x1 57

il 60:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 31 <= x1 60 + x1 61

il 64:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 33 <= x1 64 + x1 65

il 68:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

yl 14, result =>

yh 14, result =>

yh 15, result =>

+ x1 58 + x1 59;

yl 16, result =>
yl 15, result =>
yh 15, result =>
yh 16, result =>

+ x1 62 + x1 63;

yl 17, result =>
yl 16, result =>
yh 16, result =>
yh 17, result =>

+ x1 66 + x1 67;

yl 18, result =>
yl 17, result =>
yh 17, result =>
yh 18, result =>

xout 35 <= x1 68 + x1 69 + x1 70 + x1 71;

i1 72:

lut h2 idwt

159

x1 57

x1 58

x1 59

x1 60

x1_61

x1_62

x1l 63

x1_64

x1l 65

x1l 66

x1_67

x1 68

x1l 69

x1 70

x1 71

port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 37 <= x1 72 + x1 73

i1 76:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 39 <= x1 76 + x1 77

il 80:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 41 <= x1 80 + x1 81

i1 84:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (

yl 19, result =>
yl 18, result =>
yh 18, result =>
yh 19, result =>

+ x1 74 + x1 75;

yl 20, result =>
yl 19, result =>
yh 19, result =>
yh 20, result =>

+ x1 78 + x1 79;

yl 21, result =>
yl 20, result =>
yh 20, result =>
yh 21, result =>

+ x1 82 + x1 83;

yl 22, result =>

yl 21, result =>

yh 21, result =>

160

x1_ 72

x1 73

x1_74

x1 75

x1 76

x1_77

x1 78

x1 79

x1 80

x1 81

x1 82

x1 83

x1_84

x1 85

x1 86

address =>

)i

xout 43 <= x1 84 + x1 85

il 88:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 45 <= x1 88 + x1 89

i1 92:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 47 <= x1 92 + x1 93

il 96:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut_hl idwt neg
port map (
address =>

lut h3 idwt neg
port map (
address =>

)

xout 49 <= x1 96 + x1 97

i1 100:

)

i1 101:

)

i1 102:

lut h2 idwt
port map (
address =>

lut h4 idwt
port map (
address =>

lut hl idwt neg
port map (

yh 22, result =>

+ x1 86 + x1 87;

yl 23, result =>
yl 22, result =>
yh 22, result =>
yh 23, result =>

+ x1 90 + x1 91;

yl 24, result =>
yl 23, result =>
yh 23, result =>
yh 24, result =>

+ x1 94 + x1 95;

yl 25, result =>
yl 24, result =>
yh 24, result =>
yh 25, result =>

+ x1 98 + x1 99;

yl 26, result =>

yl 25, result =>

161

x1_87

x1 88

x1 89

x1 90

x1 91

x1_92

x1 93

x1_94

x1 95

x1l 96

x1_97

x1 98

x1 99

x1 100

x1_101

address => yh 25, result => x1 102
)i
il 103: lut h3 idwt neg
port map (
address => yh 26, result => x1 103
)i
xout 51 <= x1 100 + x1 101 + x1 102 + x1 103;
il 104: lut h2 idwt
port map (
address => yl 27, result => x1 104
)i
il 105: lut h4 idwt
port map (
address => yl 26, result => x1 105
)i
il 106: lut _hl idwt neg
port map (
address => yh 26, result => x1 106
)i
il 107: lut h3 idwt neg
port map (
address => yh 27, result => x1 107
)i
xout 53 <= x1 104 + x1 105 + x1 106 + x1 107;
il 108: lut h2 idwt
port map (
address => yl 28, result => x1 108
)i
il 109: lut h4 idwt
port map (
address => yl 27, result => x1 109
)i
il 110: lut hl idwt neg
port map (
address => yh 27, result => x1 110
)i
il 111: lut h3 idwt neg
port map (
address => yh 28, result => x1 111
)i
xout 55 <= x1 108 + x1 109 + x1 110 + x1 111;
il 112: lut h2 idwt
port map (
address => yl 29, result => x1 112
)i
il 113: lut h4 idwt
port map (
address => yl 28, result => x1 113
)i
il 114: lut hl idwt neg
port map (
address => yh 28, result => x1 114
)i
il 115: lut _h3 idwt neg
port map (
address => yh 29, result => x1 115
)i
xout 57 <= x1 112 + x1 113 + x1 114 + x1 115;
il 116: lut h2 idwt
port map (
address => yl 30, result => x1 116
)i
il 117: lut h4 idwt
port map (

162

address => yl 29, result => x1 117
)i
il 118: lut hl idwt neg
port map (
address => yh 29, result => x1 118
)i
il 119: lut _h3 idwt neg
port map (
address => yh 30, result => x1 119
)i
xout 59 <= x1 116 + x1 117 + x1 118 + x1 119;
il 120: lut h2 idwt
port map (
address => yl 31, result => x1 120
)i
il 121: lut h4 idwt
port map (
address => yl 30, result => x1 121
)i
il 122: lut hl idwt neg
port map (
address => yh 30, result => x1 122
)i
il 123: lut _h3 idwt neg
port map (
address => yh 31, result => x1 123
)i
xout 61 <= x1 120 + x1 121 + x1 122 + x1 123;
il 124: lut h2 idwt
port map (
address => yl 32, result => x1 124
)i
il 125: lut h4 idwt
port map (
address => yl 31, result => x1 125
)i
il 126: lut hl idwt neg
port map (
address => yh 31, result => x1 126
)i
il 127: lut _h3 idwt neg
port map (
address => yh 32, result => x1 127
)i
xout 63 <= x1 124 + x1 125 + x1 126 + x1 127;
il 128: lut h2 idwt
port map (
address => yl 33, result => x1 128
)i
il 129: lut h4 idwt
port map (
address => yl 32, result => x1 129
)i
il 130: lut_hl idwt neg
port map (
address => yh 32, result => x1 130
)i
il 131: lut _h3 idwt neg
port map (
address => yh 33, result => x1 131
)i
xout 65 <= x1 128 + x1 129 + x1 130 + x1 131;
il 132: lut h2 idwt
port map (

163

address =>
)i
il 133: lut h4 idwt
port map (
address =>
)i
il 134: lut hl idwt neg
port map (
address =>
)i
il 135: lut h3 idwt neg
port map (
address =>

)

yl 34,

yl 33,

yh 33,

yh 34,

result

result

result

result

=>

=>

=>

=>

x1 132

x1 133

x1 134

x1 135

xout 67 <= x1_132 + x1 133 + x1 134 + x1_135;

i1 136: lut h2 idwt
port map (
address =>
)i
il 137: lut h4 idwt
port map (
address =>
)i
il 138: lut _hl idwt neg
port map (
address =>
)i
il 139: lut h3 idwt neg
port map (
address =>

)

yl 35,

yl 34,

yh 34,

yh 35,

result

result

result

result

=>

=>

=>

=>

x1 136

x1 137

x1 138

x1 139

xout 69 <= x1 136 + x1 137 + x1 138 + x1 139;

i1 140: lut h2 idwt
port map (
address =>
)i
il 141: lut h4 idwt
port map (
address =>
)i
il 142: lut hl idwt neg
port map (
address =>
)i
il 143: lut _h3 idwt neg
port map (
address =>

)

yl 36,

yl 35,

yh 35,

yh 36,

result

result

result

result

=>

=>

=>

=>

x1_140

x1_141

x1 142

x1_143

xout 71 <= x1_140 + x1_141 + x1 142 + x1_143;

i1 144: lut h2 idwt
port map (
address =>
)i
il 145: lut h4 idwt
port map (
address =>
)i
il 146: lut_hl idwt neg
port map (
address =>
)i
il 147: lut_h3 idwt neg
port map (
address =>

yl 37,

yl 36,

yh 36,

yh 37,

result

result

result

result

164

=>

=>

=>

=>

x1 144

x1_145

x1 146

x1_147

)i
xout 73 <= x1 144 + x1 145 + x1 146 + x1 147;
il 148: lut h2 idwt
port map (
address => yl 38, result => x1 148
)i
il 149: lut h4 idwt
port map (
address => yl 37, result => x1 149
)i
il 150: lut_hl idwt neg
port map (
address => yh 37, result => x1 150
)i
il 151: lut h3 idwt neg
port map (
address => yh 38, result => x1 151
)i
xout 75 <= x1 148 + x1 149 + x1 150 + x1 151;
il 152: lut h2 idwt
port map (
address => yl 39, result => x1 152
)i
il 153: lut h4 idwt
port map (
address => yl 38, result => x1 153
)i
il 154: lut hl idwt neg
port map (
address => yh 38, result => x1 154
)i
il 155: lut h3 idwt neg
port map (
address => yh 39, result => x1 155
)i
xout 77 <= x1 152 + x1 153 + x1 154 + x1 155;
il 156: lut h2 idwt
port map (
address => yl 40, result => x1 156
)i
il 157: lut h4 idwt
port map (
address => yl 39, result => x1 157
)i
il 158: lut _hl idwt neg
port map (
address => yh 39, result => x1 158
)i
il 159: lut h3 idwt neg
port map (
address => yh 40, result => x1 159
)i
xout 79 <= x1 156 + x1 157 + x1 158 + x1 159;
il 160: lut h2 idwt
port map (
address => yl 41, result => x1 160
)i
il 161: lut h4 idwt
port map (
address => yl 40, result => x1 161
)i
il 162: lut hl idwt neg
port map (
address => yh 40, result => x1 162

165

)i
il 163: lut h3 idwt neg
port map (
address => yh 41,
)i

result =>

x1 163

xout 81 <= x1_160 + x1 161 + x1 162 + x1_163;

i1 164: lut h2 idwt
port map (
address => yl 42,
)i
il 165: lut h4 idwt
port map (
address => yl 41,
)i
il 166: lut hl idwt neg
port map (
address => yh 41,
)i
il 167: lut h3 idwt neg
port map (
address => yh 42,
)i

result =>

result =>

result =>

result =>

x1 164

x1 165

x1 166

x1_167

xout 83 <= x1 164 + x1 165 + x1 166 + x1 167;

i1 168: lut h2 idwt
port map (
address => yl 43,
)i
il 169: lut h4 idwt
port map (
address => yl 42,
)i
il 170: lut_hl idwt neg
port map (
address => yh 42,
)i
il 171: lut _h3 idwt neg
port map (
address => yh 43,
)i

result =>

result =>

result =>

result =>

x1 168

x1 169

x1_170

x1 171

xout 85 <= x1 168 + x1 169 + x1 170 + x1 171;

il 172: lut h2 idwt
port map (
address => yl 44,
)i
il 173: lut h4 idwt
port map (
address => yl 43,
)i
il 174: lut hl idwt neg
port map (
address => yh 43,
)i
il 175: lut h3 idwt neg
port map (
address => yh 44,
)i

result =>

result =>

result =>

result =>

x1 172

x1_173

x1 174

x1_175

xout 87 <= x1_172 + x1_173 + x1 174 + x1_175;

il 176: lut h2 idwt
port map (
address => yl 45,
)i
il 177: lut h4 idwt
port map (
address => yl 44,

result =>

result =>

166

x1_176

x1 177

)i
il 178: lut _hl idwt neg
port map (
address => yh 44, result => x1 178
)i
il 179: lut h3 idwt neg
port map (
address => yh 45, result => x1 179
)i
xout 89 <= x1 176 + x1 177 + x1 178 + x1 179;
il 180: lut h2 idwt
port map (
address => yl 46, result => x1 180
)i
il 181: lut h4 idwt
port map (
address => yl 45, result => x1 181
)i
il 182: lut hl idwt neg
port map (
address => yh 45, result => x1 182
)i
il 183: lut h3 idwt neg
port map (
address => yh 46, result => x1 183
)i
xout 91 <= x1 180 + x1 181 + x1 182 + x1 183;
il 184: lut h2 idwt
port map (
address => yl 47, result => x1 184
)i
il 185: lut h4 idwt
port map (
address => yl 46, result => x1 185
)i
il 186: lut_hl idwt neg
port map (
address => yh 46, result => x1 186
)i
il 187: lut h3 idwt neg
port map (
address => yh 47, result => x1 187
)i
xout 93 <= x1 184 + x1 185 + x1 186 + x1 187;
il 188: lut h2 idwt
port map (
address => yl 48, result => x1 188
)i
il 189: lut h4 idwt
port map (
address => yl 47, result => x1 189
)i
i1 190: lut_hl idwt neg
port map (
address => yh 47, result => x1 190
)i
il 191: lut _h3 idwt neg
port map (
address => yh 48, result => x1 191
)i
xout 95 <= x1 188 + x1 189 + x1 190 + x1 191;
il 192: lut h2 idwt
port map (
address => yl 49, result => x1 192

167

)

il 193: lut h4 idwt
port map (

)

address => yl 48,

il 194: lut hl idwt neg
port map (

)

address => yh 48,

il 195: lut h3 idwt neg
port map (

)

address => yh 49,

result => x1 193

result => x1 194

result => x1 195

xout 97 <= x1 192 + x1 193 + x1 194 + x1 195;
il 196: lut h2 idwt
port map (

)

address => yl 50,

il 197: lut h4 idwt
port map (

)

address => yl 49,

i1 198: lut _hl idwt neg
port map (

)

address => yh 49,

il 199: lut h3 idwt neg
port map (

)

address => yh 50,

xout 99 <= x1 196 + x1 197 + x1
il 200: lut h2 idwt
port map (

)

il 201: lut h4 idwt
port map (

)

il 202: lut hl idwt neg
port map (

)

il 203: lut h3 idwt neg
port map (

)i
xout 101 <=

address => yl 51,
address => yl 50,
address => yh 50,
address => yh 51,

il 204: lut h2 idwt
port map (

)

il 205: lut h4 idwt
port map (

)

il 206: lut hl idwt neg
port map (

)

il 207: lut h3 idwt neg
port map (

)

address => yl 52,
address => yl 51,
address => yh 51,
address => yh 52,

result => x1 196
result => x1 197
result => x1 198
result => x1 199

198 + x1 199;

result => x1 200

result => x1 201

result => x1 202

result => x1 203

x1 200 + x1 201 + x1_202 + x1_203;

result => x1 204

result => x1 205

result => x1 206

result => x1 207

168

xout 103 <= x1 204 + x1 205 + x1_206 + x1_207;
i1 208: lut _h2 idwt

port

)

map (
address => yl 53, result

i1 209: lut h4 idwt

port

)

map (
address => yl 52, result

il 210: lut hl idwt neg

port

)

map
address => yh 52, result

il 211: lut h3 idwt neg

port

)i
xout 105 <=

map (
address => yh 53, result
x1 208 + x1 209 + x1 210 +

i1 212: lut_h2 idwt

port

)

map
address => yl 54, result

i1 213: lut h4 idwt

port

)

map
address => yl 53, result

il 214: lut hl idwt neg

port

)

map (
address => yh 53, result

il 215: lut h3 idwt neg

port

)i
xout 107 <=

map
address => yh 54, result
x1 212 + x1 213 + x1 214 +

i1 216: lut h2 idwt

port

)

map (
address => yl 55, result

i1 217: lut_h4_idwt

port

)

map
address => yl 54, result

il 218: lut hl idwt neg

port

)

map
address => yh 54, result

il 219: lut h3 idwt neg

port

)i
xout 109 <=

map (
address => yh 55, result

x1 216 + x1 217 + x1 218 +

i1 220: lut h2 idwt

port

)

i1 221: lut

port

)

i1 222: lut

port

)

map
address => yl 56, result

h4 idwt
map (
address => yl 55, result

hl idwt neg

map (
address => yh 55, result

169

=> x1 208

=> x1 209

= x1 210

= x1 211

x1l 211;

= x1 212

= x1 213

=> x1 214

= x1 215

x1_215;

= x1 216

= x1 217

= x1 218

= x1 219

x1_219;

= x1_220

= x1 221

=> x1 222

il 223: lut h3 idwt neg

port

)

map (

address => yh 56, result => x1 223

xout 111 <= x1 220 + x1 221 + x1_222 + x1_223;
i1 224: lut _h2 idwt

port

)

map (
address =>

i1 225: lut_h4 idwt

port

)

map (
address =>

il 226: lut hl idwt neg

port

)

map (
address =>

il 227: lut _h3 idwt neg

port

)i
xout 113 <=

port

)

map (
address =>

yl 57,

yl 56,

yh 56,

yh 57,

result

result

result

result

x1 224 + x1 225 + x1 226 +
i1 228: lut _h2 idwt

map (
address =>

i1 229: lut_h4 idwt

port

)

map (
address =>

il 230: lut_hl idwt neg

port

)

map (
address =>

il 231: lut h3 idwt neg

port

)i
xout 115 <=

port

)

map (
address =>

yl 58,

yl 57,

yh 57,

yh 58,

result

result

result

result

x1 228 + x1 229 + x1 230 +
i1 232: lut_h2 idwt

map (
address =>

i1 233: lut h4 idwt

port

)

map (
address =>

il 234: lut _hl idwt neg

port

)

map (
address =>

il 235: lut h3 idwt neg

port

)

map (
address =>

yl 59,

yl 58,

yh 58,

yh 59,

result

result

result

result

xout 117 <= x1 232 + x1 233 + x1 234 +

il 236: lut |

port

)

il 237: lut |

port

)

h2_idwt
map (

address => yl 60, result

hd_idwt
map (

address => yl 59, result

170

=> x1 224

=> x1 225

= x1 226

= x1 227

x1 227;

=> x1 228

= x1 229

=> x1 230

= x1 231

x1l 231;

=> x1 232

=> x1 233

=> x1 234

=> x1 235

x1 235;

=> x1 236

=> x1 237

il 238: lut _hl idwt neg

port

)

map
address => yh 59, result

il 239: lut h3 idwt neg

port

)i
xout 119 <=

map
address => yh 60, result
x1 236 + x1 237 + x1 238 +

i1 240: lut _h2 idwt

port

)

map
address => yl 61, result

i1 241: lut_h4 idwt

port

)

map (
address => yl 60, result

il 242: lut hl idwt neg

port

)

map (
address => yh 60, result

il 243: lut _h3 idwt neg

port

)i
xout 121 <=

map
address => yh 61, result
x1 240 + x1 241 + x1 242 +

i1 244: lut _h2 idwt

port

)

map (
address => yl 62, result

i1 245: lut _h4 idwt

port

)

map (
address => yl 61, result

il 246: lut hl idwt neg

port

)

map (
address => yh 61, result

il 247: lut _h3 idwt neg

port

)i
xout 123 <=

map (
address => yh 62, result
x1 244 + x1 245 + x1 246 +

i1 248: lut _h2 idwt

port

)

map (
address => yl 63, result

i1 249: lut h4 idwt

port

)

map (
address => yl 62, result

il 250: lut hl idwt neg

port

)

il 251: lut |

port

)

map (
address => yh 62, result

h3 idwt neg
map
address => yh 63, result

=> x1 238

=> x1 239

x1 239;

=> x1_240

= x1 241

=> x1 242

=> x1 243

x1_243;

=> x1 244

=> x1 245

=> x1 246

=> x1 247

x1 247;

=> x1_248

=> x1 249

=> x1 250

=> x1 251

xout 125 <= x1 248 + x1 249 + x1_250 + x1_251;

il 252: lut |

port

)

h2_idwt
map (

address => yl 0, result => x1 252

171

il 253: lut h4 idwt
port map (
address => yl 63, result => x1 253
)i
il 254: lut hl idwt neg
port map (
address => yh 63, result => x1 254
)i
il 255: lut h3 idwt neg
port map (
address => yh 0, result => x1 255
)i
xout 127 <= x1 252 + x1 253 + x1 254 + x1 255;
end architecture;

172

Appendix C:

C Code to generate LUT Values
#include <iostream>

#include <stdio.h>

#include <math.h>

short decimalZbinary(unsigned long decimal_value, char
binary_value[32])

{

int

short index,significant_digits=0;
unsigned long temp_value;
for(index=31;index>=0;index--)

{
// temp_value=decimal_value/pow(2,index)
temp_value=decimal_value/(l<<index);
if(temp_value>0)
{
binary_value[index]=(Cchar)('0'+temp_value);
// decimal_value=decimal_value%pow(2,index)
decimal_value=decimal_value%(l<<index);
if(!significant_digits)
significant_digits=index;
ks
else
{
binary_value[index]='0";
ks
ks

return significant_digits;

main (int argc, char * const argv[]) {
FILE *fp;

//char *mode = "w";

char outputFilename[] = "out.txt";

int i,3;

short significant_digits,index;
char binary_value[32];

fp = fopen(outputFilename, "w");
for (i = 0; 1 <= 255; i++){
j = int(round(0.2241*256*1));
significant_digits=decimal2binary(j,binary_value);
fprintf(fp,"'");
/*¥if (significant_digits >= 8)
{*/
for (index = 16; index >= (8); index--)

173

fprintf(fp,"%c" ,binary_value[index]);

/*}
else
{
for(index = 7; index >= 0; index--)
fprintf(fp,"%c",binary_value[index]);
*/
fprintf(fp,"',\n");
ks
fclose(fp);

3

C Code to Generate VHDL Code for IDWT Chighpass)
#include <iostream>

#include <stdio.h>

#include <math.h>

int main (int argc, char * const argv[]) {
FILE *fp;
char outputFilename[] = "out.txt";
int i, k;
int counter_in, counter_out;
int counterh;
fp = fopen(outputFilename, "w");
counterh = 4;
counter_in = 0;

k = 0;
for (i = @; i <= 255; i++)
{

fprintf(fp,"il1_");

fprintf(fp, "%u",1i);
fprintf(fp,": lut_h");
fprintf(fp,"%u",counterh);
counterh = counterh - 1;
fprintf(fp,"\n");
fprintf(fp,"\t");

fprintf(fp, "port map(");
fprintf(fp,"\n");
fprintf(fp,"\t");
fprintf(fp,"address => xin_");
fprintf(fp,"%u",counter_in);
counter_in = counter_in + 1;
fprintf(fp,", result => x1_");
fprintf(fp, "%u",1i);
fprintf(fp,"\n");
fprintf(fp,");");
fprintf(fp,"\n");

if (counterh == 0)

174

counterh = 4;
fprintf(fp,"yh_");
fprintf(fp,"%u",counter_out);
counter_out = counter_out + 1;
fprintf(fp," <= x1_");
fprintf(fp,"%u",i-1);
fprintf(fp," + x1_");
fprintf(fp,"%u",i-2);
fprintf(fp," + x1_");
fprintf(fp,"%u",i-3);
fprintf(fp," + x1_");
fprintf(fp, "%u",1i);
fprintf(fp,";\n");
fprintf(fp,"\n");
k = k + 2;
counter_in = k;
}
}
fclose(fp);
}

C Code to Generate Thresholding VHDL code
#include <iostream>

#include <stdio.h>

#include <math.h>

int main (int argc, char * const argv[]) {

FILE *fp;

char outputFilename[] = "out.txt";

fp = fopen(outputFilename, "w");

for (int 1 = 0; 1 <= 63; i++)

{
fprintf(fp,"if yh_");
fprintf(fp, "%u",1i);
fprintf(fp," <= thld then");
fprintf(fp,"\n");
fprintf(fp,"\t");
fprintf(fp, "yhout_");
fprintf(fp, "%u",1i);
/*fprintf(fp," <= yl_");
fprintf(fp,"%u",i);
fprintf(fp," - thld;");*/
fprintf(fp," <= '000000000';");
fprintf(fp,"\n");
fprintf(fp,"else\n");
fprintf(fp,"\t");
fprintf(fp, "yhout_");

175

fprintf(fp, "%u",1i);
fprintf(fp," <= yh_");
fprintf(fp, "%u",1i);
fprintf(fp,";\n");
fprintf(fp,"end if;\n");
fprintf(fp,"\n");

ks

fclose(fp);

176

	Design and Evaluation of a Discrete Wavelet Transform Based Multi-Signal Receiver
	Repository Citation

	Microsoft Word - Thesis - Tony Chiang.doc

