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ABSTRACT

Raiford III, Douglas . M.S., Department of Computer Science & Engineering, Wright State Uni-
versity, 2005 . Multivariate analysis of prokaryotic amino acid usage bias: a computational method
for understanding protein building block selection in primitive organisms.

Organisms expend a significant fraction of their overall energy budget in the creation

of proteins, particularly for those that are produced in large quantities. Recent research has

demonstrated that genes encoding these proteins are shaped by natural selection to produce

the proteins with low cost building blocks (amino acids) whenever possible. The negative

correlation between protein production rate and their energetic costs has been established

for two bacterial genomes: Escherichia coli and Bacillus subtilis. This thesis provides

scientific validation of this theory by automating the analysis and extending the research to

additional genomes.

Investigations into building block selection are highly computational in nature. Diverse

methodologies, including principal component analysis, calculation of Mahalanobis dis-

tance, and the execution of Mantel-Haenszel and Bonferroni tests, are required in order to

automate the process.

In order to verify that the cause of the observed trend is energetic cost minimization it is

necessary to eliminate as many alternative explanations as possible. This is accomplished

through demonstration that the trend is not localized to any particular region of the protein’s

primary structure and that the trend is consistent across all genes regardless of functionality.

This investigation of the energetic cost of polypeptide synthesis provides valuable in-

sights into protein building block selection. As an example, parasitic organisms appear

to exhibit no correlation between protein production rate and amino acid cost. When the

costs associated with building blocks that the parasite obtains from its host are removed,

however, a trend once again becomes evident.
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Introduction

1.1 Overview

In biology the protein is paramount. It is ubiquitous. Proteins not only form some of the

basic building blocks in living organisms they also assist or cause many of the essential

chemical reactions that sustain life. Proteins are polymers that are comprised of chains of

amino acids (A polymer is a compound molecule made up of a chain of smaller, simpler

molecules). Some amino acids are more energetically expensive to create than others. It

would stand to reason that, over time, a protein, or rather the gene that encodes the protein,

would accumulate mutations that result in the preferential inclusion of the least expensive

amino acid that would still allow the protein to function properly.

Proteins are very complex, and while they can be described as a simple sequence

of amino acids, this polypeptide chain folds into complicated two and three-dimensional

shapes. A protein’s amino acid sequence determines this shape and the shape determines

the function of the protein. Minor changes can often be introduced into the sequence with-

out disrupting the shape and function of the protein. The changes must be made to amino

acids that, when modified, will have little impact on the tendency of the protein to fold
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into its characteristic shape. It also must not disrupt the way in which the protein interacts

chemically with other substances or the protein will cease to function properly. Amino

acids that can change in this way and not alter the function of the protein can be targeted by

natural selection. Changes where metabolic costs of amino acid biosynthesis are reduced

will allow the organism to preferentially survive in less than optimal situations, such as in

starvation conditions.

Those proteins that are expressed the most; that is, those proteins that are created in

the greatest quantity, will come under the greatest selective pressure. It is in these proteins

that the cost of amino acids is most critical because they are produced so often.

1.2 Existing Solution

Research (Akashi and Gojobori, 2002) has suggested that there is a correlation between the

rate of production for a protein and the metabolic costs of amino acid biosynthesis. This

work indicates that amino acids undergo natural selection for least-cost where possible.

This research was limited in scope to two microbial genomes (single celled organisms)

whose gene expressivity had already been determined.

1.3 Contribution

This thesis expands the study of metabolic efficiency in the biosynthesis of amino acids to

include more genomes while at the same time automating the data acquisition and results
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calculation. The intent is to allow for large scale genomic analysis leading to validation

of the proposition that natural selection acts at the level of amino acid biosynthetic cost in

highly expressed genes.

The existing literature describing research in this area assumes a thorough knowledge

of the techniques employed. Examples include the performance of principal component

analysis and the calculation of Mahalanobis distance. Additionally, many of the specifics

regarding data format, what data to include, which to exclude, thresholds, matching criteria,

etc., were omitted or listed indirectly in cited documents. An important contribution of this

thesis is to make clear the exact calculations and underlying assumptions, decisions, and

criteria used throughout the computational process.

1.3.1 Structure of This Document

The procedure for determining the correlation between the protein production rates and the

associated metabolic costs follows a fairly straightforward flow (Figure 1.1). Each of these

major steps depends upon the preceding steps for successful completion. The linear nature

of the analysis suggests that a similar layout would be appropriate for the thesis.

Acquire 
Genome 
Data 

Cull 
Data 
Set 

Determine 
Major 
Codons 

Determine 
Expressivity 

Statistical 
Analysis 

 

Figure 1.1: Procedural Flow when Performing Analysis

Immediately following this section is a Background chapter describing, in detail, the

3



1.3. CONTRIBUTION July 15, 2005

work done previously in the field of metabolic cost analysis and the efficiency of amino acid

biosynthesis. Following that are chapters on work in the areas of generating and refining

the data set, determining major codons, calculating expressivity, and the statistical analysis

performed. Finally, the content of the thesis concludes with a chapter on Conclusions and

Future Work.

1.3.2 Contributions from the Biomedical Sciences Program

Bioinformatics is, by its very nature, an interdisciplinary branch of research. It combines

the efforts of computer scientists with those of biologists. The research described in this

thesis adheres to this principle. It is the result of a collaborative effort between the Com-

puter Science and the Biomedical Sciences programs of Wright State University.

Once again the linear nature of the analysis leads to relatively clean lines of demar-

cation between the efforts of the Computer Science department and that of the Biomedical

Sciences program (Figure 1.2). The first three stages, acquire genomic data, cull data

set, and determine major codons (Figure 1.1), are performed by the Computer Science de-

partment. The determine expressivity and energetic costs stage and part of the statistical

analysis stage are performed by the Biomedical Sciences program. My counterpart in that

department is Esley Heizer (Heizer, 2005). The statistical analyses performed by Esley

include the Spearman rank correlation analysis on the entire genomic data as well as on the

genomic data stratified by physicochemical property (Chapter 3, Materials and Methods).

Once the Biomedical Sciences program completes their calculations the energetic cost

data is transferred back to the Computer Science department where the rest of the statistical
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analysis is performed. This includes Spearman rank correlation calculated on the genomic

data stratified by functional category and amino acid abundance analysis. The amino acid

abundance analysis includes Spearman rank correlation, Mantel-Haenszel, and Bonferroni

correction analyses. For more detail on these tests see Chapter 3, Materials and Methods.

 
Acquire and refine data 

(GC content, BLAST, Mahalanobis distance, etc) 
 

Determine major codons (PCA)  

 Determine expressivity (percent major codons per gene) 

 Determine metabolic pathways (amino acid cost) 

 Determine ability to manufacture amino acids (BLAST, 
etc) 

 Determine energetic costs (average cost per amino acid) 

 Calculate Spearman rank  

 Stratify data by physicochemical properties 

 Calculate Spearman rank for each category 

Stratify data by functional category  

Calculate Spearman rank for each category  

Calculate amino acid abundance  

Calculate Spearman rank on abundances  

Calculate Mantel-Haenszel on abundances and functional 
category data 

 

  

Department of Computer Science Department of Biomedical Sciences 

 
 

Timeline 

Figure 1.2: Research and Analysis Responsibilities Broken-down by Department and Ar-
ranged by Position on Timeline
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Background and Literature Survey

2.1 Protein Production

In order to examine the relationship between the production rate of a gene and the cost to

produce the corresponding protein it is necessary to have a clear understanding of the pro-

tein production process. Proteins are tied in a very specific way to an organism’s genome.

Each protein is produced by one of the organism’s genes. The following sections will de-

scribe this process in enough detail to ensure an understanding of the subsequent analysis

and computations.

2.1.1 DNA, Chromosomes, and the Genome

The term genome refers to a complete set of chromosomes from a single species with its

associated genes. In microbial organisms there is usually a single circular chromosome.

An organism’s chromosomes are, essentially, long DNA molecules (Figure 2.1). DNA, or

deoxyribonucleic acid, is the now well-known double-helix molecule (Figure 2.2) found in

each of an organism’s cells (Watson and Crick, 1953).

6



2.1. PROTEIN PRODUCTION July 15, 2005

Figure 2.1: Chromosome and Gene

Overview of gene and chromosome structure. Reproduced from (Access Excellence,
2005). Image resides at URL:
http://www.accessexcellence.org/RC/VL/GG/gene.html

While a single molecule of DNA forms a chromosome, DNA itself is comprised of

constituent building blocks known as nucleotides (Figure 2.3). The four nucleotides that

make-up a DNA molecule are each composed of a phosphate group, a ribose sugar, and a

nitrogenous base. The nucleotides are differentiated from each other by the type of base

that each contains. They are guanine, adenine, thymine, and cytosine (Figure 2.2). The

abbreviations G, A, T, and C are often used to describe the nucleotides (McMurry, 1996,

pp. 1143-1146).
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Figure 2.2: DNA and RNA

Overview of composition and structure of DNA and RNA. Reproduced from (Access Ex-
cellence, 2005). Image resides at URL:
http://www.accessexcellence.org/RC/VL/GG/rna2.html
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Figure 2.3: Base-pairing of Nucleotides in Complementary DNA Strands

Adapted from (Access Excellence, 2005). Image resides at URL:
http://www.accessexcellence.org/RC/VL/GG/basePair2.html

2.1.2 Base-Pairs and Strand Orientation

Cellular DNA usually exists as a two-stranded molecule, where the strands are held together

by weak molecular attraction (hydrogen bonds) between pairs of nucleotides. Specifically,

a guanine on one strand will always pair with a cytosine on the opposite strand. Likewise,

thymine is always paired with adenine (Figure 2.3). For this reason the strands are known

as complements. These complementary nucleotides (or bases) are known as base-pairs
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(Lehninger, 1975, p. 864).

Since nucleotides are oriented in opposite directions from one strand to the other,

one strand is said to be the reverse complement of the other. Organic chemists use the

orientation of the carbon atoms in the ribose sugars to differentiate the strands. The carbon

atoms are designated 1’ through 5’ (pronounced one prime through five prime) (Figure 2.4).

Nucleotides in one strand of the DNA molecule are aligned such that the 5’ carbon of one

nucleotide is connected by a covalent bond with the 3’ carbon of the next. If one strand

of the DNA molecule is oriented from its 3’ end to its 5’ end, the adjacent strand will be

oriented in the opposite direction (McMurry, 1996, p. 1145).

Most biological reactions take place in the 5’ to 3’ direction. It is for this reason that

the convention for describing a molecule of DNA is to list the nucleotides on one strand in

the 5’ to 3’ direction. With this knowledge a molecule of DNA can be exactly described by

a string of letters, each an abbreviation representing one nucleotide (Garrett and Grisham,

1995, pp. 191-193) (e.g. GATATTAT...).

2.1.3 The Gene

For the purpose of this investigation a gene is considered to be a sequence of nucleotides

within a strand of DNA that contains the information needed for the synthesis of a pro-

tein. Bacteria, or prokaryotic organisms, generally have a single chromosome with only

a few thousand genes. Eukaryotes are much more complex. They are distinguished from

prokaryotes by the existence of a cellular membrane separating the nucleus from the rest of

the cell. The research in this thesis pertains to the genomes found in microbial, prokaryotic
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Figure 2.4: 1’ through 5’ Carbon Atoms

Nucleotides are added to growing DNA and RNA molecules at their 3’ end.
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organisms. For this reason the discussion will be limited to the genomic composition of

these organisms (Garrett and Grisham, 1995, p. 20).

2.1.4 Codons and Degeneration

As stated before, proteins are chains of amino acids. There are twenty different amino acids

that can combine to make up these chains. It has been noted that proteins are synthesized

by following instructions encoded in genes. How does a gene, with its four constituent

nucleotides, encode a protein with its twenty component amino acids? Each amino acid is

coded by a triplet of consecutive nucleotides, called a codon.

There are sixty-four different triplet combinations formed by the four possible nu-

cleotides (43 = 64). This means that some codons code for the same amino acids as other

codons. This is known as degeneracy in the genetic code (Krane and Raymer, 2002, pp. 9-

11).

In prokaryotes the beginning and end of the contiguous set of nucleotides that form a

gene is easily recognized. A gene generally begins with triplet codon: alanine, threonine,

and glycine (ATG). The tail end of a gene is identified by the combinations TAA, TAG,

or TGA, also known as stop codons. Genes are typically long enough that the absence of

intervening stop codons is statistically unusual (Krane and Raymer, 2002, pp. 11-12).
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Leucine Serine Arginine Valine Alanine Glycine Proline Threonine
UUA UCU CGU GUU GCU GGU CCU ACU
UUG UCC CGC GUC GCC GGC CCC ACC
CUU UCA CGA GUA GCA GGA CCA ACA
CUC UCG CGG GUG GCG GGG CCG ACG
CUA AGU AGA
CUG AGC AGG

Isoleucine Stop Phenylalanine Aspartate Histidine Glutamine Glutamate
AUU UGA UUU GAU CAU CAA GAA
AUC UAA UUC GAC CAC CAG GAG
AUA UAG

Asparagine Lysine Cysteine Tyrosine Tryptophan Methionine
AAU AAA UGU UAU UGG AUG
AAC AAG UGC UAC

Table 2.1: RNA Triplet Codons to Amino Acid Translation

2.1.5 Central Dogma

Protein production is a multi-step process. The first step involves replicating one of the

gene’s DNA strands. This copy is in the form of ribonucleic acid (RNA) and is termed

messenger RNA (mRNA). The process of copying the DNA strand is known as transcrip-

tion. The next step in the process is translation. A ribosome attaches to the mRNA and

builds a chain of amino acids based upon the codons (triplets of nucleotides) in the mRNA

chain. The ribosome does not generate the amino acids but rather uses amino acids that it

encounters in its environment. This is facilitated by another form of RNA known as transfer

RNA (tRNA) (Tropp, 1997, pp. 693-701).

Transfer RNA has two very important regions within its sequence. The first is the 3’

aminoacyl acceptor. It is in this region that a bond is formed between the tRNA and an

amino acid. Each tRNA has an affinity for a specific amino acid and it is in this way that
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tRNA transports the amino acid to the ribosome for translation.

The other region of importance is the anticodon loop. When the ribosome is process-

ing a given codon within the messenger RNA it will bring in a tRNA with a complementary

anticodon (Figure 2.5). This determines the next link in the molecular chain of amino acids

that is the protein.
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Figure 2.5: tRNA Molecule with Amino Acid and Anticodon

The process of generating a protein through transcription then translation (Figure 2.6)

is known as the central dogma of molecular biology (Crick, 1958).
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Figure 2.6: The Central Dogma of Molecular Biology

2.2 Expressivity and Major Codons

The expressivity of a gene is a measure of that gene’s mRNA production rate. Direct

measurement of this rate is non-trivial though there are several techniques for estimating

it (Munoz et al., 2004). These include such techniques as microarray technology (Pease

et al., 1994; Brown and Botstein, 1999; Duggan et al., 1999; Nagpal et al., 2004; Romualdi

et al., 2003; Asyali et al., 2004), sequential analysis of gene expression (SAGE) (Veles-

culescu et al., 1995), various spinoffs of SAGE (Datson et al., 1999; Gowda et al., 2004;

Vilain et al., 2003), enzymatic fragmentation fingerprints (Shimkets et al., 1999), poly-

merase chain reaction (PCR) amplification (Uematsu et al., 2001), RNAi library analysis

(Shirane et al., 2004), and EST abundance (Gitton et al., 2002; Skrabanek and Campagne,

2001; Mu et al., 2001; Sorek and Safer, 2003). These methods are relatively expensive in

terms of time and reagent cost. Due to the difficulty in directly measuring expressivity,

scientists have long sought to determine alternate methods of predicting protein production

rates. One such method that has gained a great deal of attention is the examination of gene

sequence data for indicators of production rates.

Early research noted that genes with high expression rates tend to exhibit a bias in

their choice of codons (Gouy and Gautier, 1982). Most amino acids have several codons

from which they can be formed (for example, each of the codons GUU, GUC, GUA, and

15
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GUG code for the amino acid Valine) (Figure 2.1). In the absence of any bias one would

expect each of the codons to be present in equal numbers. In highly expressed genes there

tends to be a strong bias in codon usage. Those codons that tend to be used preferentially

are known as optimal, preferred, or major codons (Ikemura et al., 1980; Ikemura, 1981a,b,

1985).

If major codons can be identified through sequence analysis then each gene’s usage

of these codons can be used as a measure of the gene’s expressivity (Sharp and LI, 1987).

There have been many methods proposed for determining a gene’s level of bias (Shields

et al., 1988; Wright, 1990; Morton, 1993; Freire-Picos et al., 1994; Sharp and LI, 1987;

Ikemura, 1981b; Gouy and Gautier, 1982). For the purposes of this thesis the method

employed by Kanaya et al. (1999) has been chosen. This was the method used in the previ-

ously described Akashi-Gojobori research which inspired this study (Akashi and Gojobori,

2002). This method involves the use of principal component analysis to determine an over-

all genomic bias followed by the identification of codons that contribute positively to this

overall trend. This will be discussed in detail in the following sections.

2.3 Determining Major Codons

In previous work comparing expressivity of a gene to the cost of synthesizing the associ-

ated protein (Akashi and Gojobori, 2002) the authors relied on existing published results

(Kanaya et al., 1999) for major codon determination. This research extends the investi-

gation of metabolic efficiency by examining several additional genomes. For this reason
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existing data cannot be used. Instead, major codon data for the genomes in question must

be computed.

2.3.1 Principal Component Analysis (PCA)

In order to determine whether a codon contributes positively to the overall bias in an or-

ganism’s codon usage the organism’s bias must first be identified. Principal component

analysis, or PCA, is well suited for this task. It is a multivariate technique whereby the

axes of a data space are rotated until the primary axis extends along the direction of great-

est variance. In this way fewer dimensions can be used for data discrimination and still

capture most of the variation in the original data.

What follows is a high-level description of the process. A more detailed explanation

is provided in Chapter 3, Materials and Methods. The process begins with the creation of a

codon frequency matrix with each gene represented by a row and each codon by a column.

This representation allows a 59 (64 codons less start, stop, and codons with only one syn-

onymous codon) dimensional vector representation of the codon usage for any given gene,

as well as a vector representation of the frequency of use for each codon. The dimension-

ality of a codon vector (that is, the value of n below) is equal to the number of genes in the

organism.
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c1 c2 c3 · · · c59

g1 f1,1 f1,2 f1,3 · · · f1,59

g2 f2,1 f2,2 f2,3 · · · f2,59

g3 f3,1 f3,2 f3,3 · · · f3,59

...
...

...
...

...
...

gn fn,1 fn,2 fn,3 · · · fn,59

A 59 × 59 covariance matrix is generated from this data. Entry i, j in this covariance

matrix is the covariance between codon i (column i in the frequency matrix) and codon j.

The Eigenvalues and Eigenvectors of this matrix are then computed. The first Eigenvector

(the one associated with the greatest Eigenvalue) represents the axis of greatest variance in

the original data (Figure 2.7). The second Eigenvector (the one associated with the next

largest Eigenvalue) represents the axis that is orthogonal to the first Eigenvector, and cap-

tures the greatest possible remaining variance. Each subsequent Eigenvector/Eigenvalue

pair is orthogonal to all the previous axes, and captures decreasing amounts of variance in

the original data.

2.3.2 Data Projection

An Eigenvector is a unit vector. For this reason, taking a dot product with the original

data will yield a projection of the original data onto the new axis representing the single

dimension of highest variation.
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Figure 2.7: Two Dimensional Example of Eigenvector

This can be seen by observing that the formula for finding the projection u on v, given

that they are both nonzero vectors, is:

projvu =
u · v
|v|2 v (2.1)

Since v represents the Eigenvector and it is a unit vector, the denominator is 1 and

the projection formula reduces to the simple dot product of the two vectors. With X as the

original frequency matrix and b1 as the first Eigenvector, the following equation depicts the

operation of projecting the original data onto the axis defined by the Eigenvector.

X · b1 = Z′
1 (2.2)

The contents of the Z′
1 vector represent the gene data in a single dimension along

the axis of greatest variance. It has been shown that this data generally follows a normal
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distribution (Kanaya et al., 1999). This distribution of gene data can be thought of as the

bias to which the organism adheres in the codon space. In the original research (Kanaya

et al., 1996) Z′
1 is distinguished from Z1 in that Z1 is normalized. This data (Z1) is used

strictly to compare distributions, not in the calculation of major codons.

2.3.3 Factor Loading: Correlation with Original Data

If the distribution of a codon’s usage across all genes (vertical column in the frequency

matrix) positively contributes to the overall trend then this codon is deemed a major codon.

This is determined by a straightforward correlation calculation between the codon’s relative

frequency vector and Z′
1 (Figure 2.8). This correlation between a codon’s frequency vector

and Z′
1 is called a factor loading. If the correlation is significant and positive then the codon

is determined to be a major codon.

2.4 Calculating Major Codon Usage

Because the goal of this process is to rank the genes according to their expressivity, the

next step is to calculate the degree to which each gene uses major codons (to the exclusion

of non-major codons). Major codons are those codons selected most frequently in highly

expressed genes. It follows that the more a gene uses these codons the more likely it is that

the gene is highly expressed.

Major codon usage (MCU) of a gene is determined by generating a count of codons

that are major in the gene and dividing that count by the total number of codons in the
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Figure 2.8: Correlation Between Codon and Z′
1 (Factor Loading)

Z′
1 contains the projection of the original relative frequency data matrix (X) onto the first

Eigenvector. Each dimension represents the corresponding gene’s location in the single
dimension described by the first Eigenvector. This correlation between this vector and the
frequency vector for a particular codon indicates the contribution of the codon to the overall
trend. If the contribution is positive (significance of p < .05) then it is a major codon.
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gene. This yields a percentage of codons that are major in the gene. This percentage, or

MCU, can be used to rank the genes. This ranking has been shown to be a strong positive

indicator of the relative expressivity of the gene (Gouy and Gautier, 1982; Ikemura, 1981b;

Post et al., 1979; Post and Nomura, 1980; Nichols and Yanofsky, 1979; Nakamura et al.,

1980; Yokota et al., 1980; Ikemura, 1981a; Ikemura et al., 1980; Fiers et al., 1975; Air

et al., 1976; Efstratiadis et al., 1976).

2.5 Literature Survey: Expressivity Prediction

One of the primary computational challenges of the work described here is the calculation

of MCU. Issues with the effectiveness of PCA, especially in the presence of a high or low

GC content environments (Section 5.3) indicate the need for a better approach to predicting

expressivity. The following sections survey the techniques devised and employed in the

prediction of expressivity.

2.5.1 Frequency of preferred codons (FOP)

The relationship between codon usage bias and expressivity was first documented in 1981

(Ikemura, 1981a). At that time there were only a few dozen genes sequenced for Es-

cherichia coli. Now there are over 4,000 (NC 000913) sequenced protein coding genes in

Escherichia coli. While research had already noted that a bias existed (Fiers et al., 1975;

Air et al., 1976; Efstratiadis et al., 1976) it was Ikemura et al. that identified the underlying

association with expressivity. Their research began by studying the correlation of codon

usage bias and tRNA abundance because it was becoming clear that the bias was “mostly

22



2.5. LITERATURE SURVEY: EXPRESSIVITY PREDICTION July 15, 2005

attributable to the availability of transfer RNA within a cell” (Post et al., 1979; Post and

Nomura, 1980; Nichols and Yanofsky, 1979; Nakamura et al., 1980; Yokota et al., 1980;

Ikemura, 1981a; Ikemura et al., 1980). This hypothesis is known as tRNA adaptation the-

ory (Garel et al., 1970; Chavancy and Garel, 1981). Ikemura et al. found that codon usage

bias did, indeed, adhere to the tRNA adaptation theories but they identified another inter-

esting trend. They wrote a second paper that same year proposing that synonymous codon

usage could be used as a predictor of expression rates (Ikemura, 1981b). The synonymous

codons that are revealed most often in highly expressed genes were termed optimal or pre-

ferred codons. Ikemura et al. found that there was a “tendency that the genes encoding

abundant protein species selectively use the [major codons].” Further, they found that this

choice is strictly constrained by tRNA availability.

This precipitated the identification of four rules that predict the choice of major codons.

Their earlier research (Ikemura, 1981a) yielded the first: thiolation of uridine in the wob-

ble position (the third and most highly variable nucleotide of a codon) of an anticodon

produces a preference for using an A-terminated codon over a G-terminated codon. Other

research (Grosjean et al., 1978) provided a second rule: codons of type (A or U)-(A or

U)-(pyrimidine) would support an optimal interaction strength between a codon and an an-

ticodon when the third nucleotide is C. To these Ikemura added two new constraints. The

first was: the introduction of inosine (a nucleoside formed by the deamination of adeno-

sine. Important because it fails to form specific pair bonds with the other bases) at the

wobble position may produce a possible preference for U- and C- terminated codons over

the A-terminated codon, which must lead to purine-purine wobble pairing. The second
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was: synonymous codon usage is governed by the most highly available tRNA.

These rules and subsequent trends led to the concept of frequency of use of optimal

codons.

FOP =
number of optimal codons

total number of codons in gene
(2.3)

This frequency was found to be highly correlated with protein abundance. All the

rules except tRNA availability were the same from species to species and the translational

efficiency attained through tRNA abundance was presumed to be the driving force behind

the correlation.

2.5.2 Indexes, Statistics, and Clustering

Bennetzen and Hall’s Codon Bias Index (CBI)

Very soon after the publication of Ikemura’s Frequency of use of optimal codons paper,

Bennetzen and Hall published results of their work on a Codon Bias Index (Bennetzen

and Hall, 1982). The research was carried out in parallel with Ikemura’s and drew many

of the same conclusions. They characterized bias as a ratio whose numerator contained

the number of preferred codons in the gene less the number expected if codon usage is

random. The denominator was the total number of codons. In this research preferred

codons were identified by examining highly biased genes. Any codon with usage of 85% or

greater in highly expressed genes was identified as preferred. There were only eight genes

examined in this research, two of which were characterized as highly expressed (alcohol
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dehydrogenase I and glyceraldehyde-3-phosphate dehydrogenase). From the behavior of

these codons four empirical rules were formulated to help identify preferred codons. These

rules were similar to Ikemura’s in that they were related to wobble position nucleotides and

tRNA abundance.

Correspondence Analysis

In 1981 Grantham et al. (1981b,a, 1985) employed correspondence analysis to compare

codon usage with expressivity. The method extracted the first two principal components

and projected the gene frequency data into the two dimensional space defined by these

axes. The genes were then manually labelled as highly or weakly expressed. Two highly

distinct groups of genes emerged from this analysis.

In 1986 additional work was done employing similar methods, though various addi-

tional parameters and relationships were examined (Holm, 1986).

P1 and P2 Index

Soon after this, in October of 1982, research confirmed that “bias in codon usage has two

main components: Correlation with tRNA level in the cell and non random choices be-

tween pyrimidine ending codons” (Gouy and Gautier, 1982). Gouy and Gautier went on to

quantify the relationships by creating two simple indexes based “on the differential usage

of iso-tRNA species during gene translation, the other on choice between Cytosine and

Uracile for [the] third base.” The first index was the average number of tRNA discrimina-

tions per elongation cycle (P1 index) and the second was the frequency of “right choices

between the pyrimidines among codons beginning with AA, AU, UA, UU, CC, CG, GC or
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GG” (P2 index). Once again a large P1 index was strongly correlated to gene expressivity.

Codon Preference Bias

Yet another bias measurement was the Codon Preference Bias (McLachlan et al., 1984). It

calculated codon preference with no a priori knowledge of tRNA activity. It was a statisti-

cal method of measuring the codon preference but it was “defined strictly relative to a given

observed amino acid composition.” In other words, given an organism’s base composition,

how probable was any given gene’s observed codon frequency? The codon frequency bias

was large any time the codon usage pattern was “intrinsically improbable.” The approach

taken was to observe that if a sequence is completely random then the expected frequency

of a codon fc with a fractional base composition bi for base i could be determined by the

following relationship:

fc = bibjbk (2.4)

A multinomial approach was employed to determine the probability of deviation from

this expected frequency. Their results were compared to those achieved by Ikemura and

Bennetzen and Hall and were “well correlated.”

Clustering

In 1986 Sharp et al. (Sharp et al., 1986) used cluster analysis to predict expressivity. The

genes in yeast formed two clusters that could, by inspection, be classified as highly ex-
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pressed and not highly expressed. Their method used a Relative Synonymous Codon Us-

age (RSCU, Equation 2.5) value as entries in a 64-dimensional vector. Each dimension is

associated with a codon while each vector is representative of a gene.

RSCUij =
Xij

1
ni

∑ni

j=1 Xij

(2.5)

Xij is the number of occurrences of the jth codon for the ith amino acid and ni is the

number (from one to six) of alternative codons. These gene data points (vectors) were then

clustered using Ward’s clustering algorithm (Ward, 1963) where the two most similar genes

are found and replaced by the gene that is on the midpoint between them. This process is

repeated until all genes have been replaced. The resulting dendrogram, built during the

clustering process, indicated the presence of two clusters that were subsequently charac-

terized as highly and not highly expressed genes. This characterization was performed by

inspection.

A chi-squared statistic (Equation 2.6) was calculated and used to determine the bias

levels of the genes.

χ2 =

64∑
i=1

(CUi − CUi)
2

σ2
i

(2.6)

CUi is the codon usage for codon i (number of codon i used in the gene) and CUi is

the average codon usage for codon i across the entire genome. The resultant χ2 was then

scaled by two times the number of codons in the gene.
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2.5.3 Codon Adaptation Index CAI

In 1986 Sharp was again involved in the development of a measure of synonymous codon

usage bias. It was called the Codon Adaptation Index (CAI) (Sharp and LI, 1987). The

measure was created to address several perceived weaknesses in the existing measures.

Prior to CAI the more popular measurements were essentially binary – either the codon

in question was optimal or it was not. There was no gradation. Also, it was not possible

to determine whether a codon was optimal in every case. Sometimes codons had to be

excluded because their status was unclear. Finally, Sharp and Li observe that no between-

species comparisons could be performed because the “proportional division of the codon

table into the two categories [differed from species to species].”

An already existing measure known as a codon preference statistic addressed the first

two issues (Gribskov et al., 1984). This statistic is calculated as the probability of finding

a particular codon in a highly expressed gene compared to the probability of finding it in

a random sequence made up of the same nucleotides. Unfortunately the codon preference

statistic could produce two very different results for genes with different amino acid com-

positions even if both used only optimal codons. The codon adaptation index corrected this

deficiency by including normalization. This makes interspecies comparisons possible and

convenient.

The process of calculating CAI required a priori knowledge of expression rates for an

organism’s genes. The gene set that was most highly expressed was known as the reference

set. From the sequences of these genes a table of codon usage values was built. Once again

Relative Synonymous Codon Usage (RSCU) values were used (Equation 2.5).
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The relative adaptiveness (or weight) of a codon wij was:

wij =
RSCUij

RSCUimax

=
Xij

Ximax

(2.7)

Next, a geometric mean was taken of RSCU values to calculate CAI.

CAI =
CAIobs

CAImax
(2.8)

CAIobs = L

√√√√ L∏
k=1

RSCUk (2.9)

CAImax = L

√√√√ L∏
k=1

RSCUkmax (2.10)

2.5.4 Scaled X2

In 1988 a Scaled χ2 measure was introduced as a measure of codon bias (Shields et al.,

1988; Shields and Sharp, 1987). Sharp was involved (from the clustering and CAI methods

(Sharp and LI, 1987; Sharp et al., 1986)) so there were similarities in the methods employed

(e.g. RSCU was used along with the χ2 metric, though this time it was scaled). Drosophila

melanogaster (fruit flies) was the target genome. Drosophila melanogaster is eukaryotic

(vs. the single celled prokaryotic organisms commonly studied) and is, therefore, much

more complex. In this case, clustering was inappropriate since the within-species variation

was continuous rather than discrete.
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A silent site was defined as a synonymously variable position within a codon and their

research uncovered evidence of bias in selecting nucleotides at these positions.

A χ2 calculation was performed that examined deviation of codon usage from ex-

pected values. “Since these values are generally highly correlated with gene length, they

were then scaled by division by the number of codons in the gene (excluding Trp and Met

codons, which do not contribute to chi).”

χ2 =

64∑
i=1

(CUi − CUi)
2

σ2
i

(2.11)

χ2
scaled =

χ2

Ncodons

(2.12)

2.5.5 Effective Number of Codons

The effective number of codons for a gene is a measure of how biased a gene is in favor of a

subset of codons (Wright, 1990). It was developed in 1990 as a means of determining codon

usage bias with sequence information only. No a priori knowledge of tRNA concentrations

or expressivity was required. There are 61 codons that can code for the 20 amino acids. The

index is designed such that uniform usage of codons yields an effective number of codons

of 61. If some codons are used more than others the number of effective codons begins to

decline. If, for each amino acid, a single codon is used to the exclusion of its synonymous

codons, an effective codon number of 20 can be attained.

A set of synonymous codons is analogous to a set of alleles (e.g. an amino acid with

four synonymous codons is analogous to a locus with four alleles). The analogy to alleles
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allows for the use of existing techniques (Kimura and Crow, 1964) in the calculation and

use of homozygosity (F ).

F̂ =

n

(
k∑

i=1

p2
i

)
− 1

n − 1
(2.13)

If ni represents the number of occurrences of codon i then the frequency (pi) of that

codon is ni/(n1 + n2 + . . . + nk) where k is the number of synonymous codons that code

for the associated amino acid. As an example, for an amino acid with four synonymous

codons that exhibit even usage; the homozygosity for each of the four codons would be .25.

If, however, only one codon were used to the exclusion of the other three, the homozygosity

of that codon would be 1. From this statistic the number of effective codons for this amino

acid can be calculated.

Ŝ =
1

F̂
(2.14)

Ŝ is the number of effective codons for a given amino acid. In the above example of

four synonymous codons, balanced usage would yield an effective number of codons equal

to four. Exclusive use would cause an effective number of one. The number of effective

codons across all amino acids is the sum for the 20 amino acids.

2.5.6 Morton’s Codon Bias Index (CBI)

Another Codon Bias Index (CBI) was developed in 1992 by Brian Morton. He created

this index to facilitate his studies of the chloroplast genome (Morton, 1993). Morton was
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clearly influenced by the work of Sharp and Li and even borrowed their wij term from the

codon adaptation index formula (CAI ). This was clearly stated and cited in his paper. He

called this term Rij (see formula 2.15). Of the two CBI’s, Bennetzen and Hall’s is the better

known.

Rij =
nij

nimax
(2.15)

nij is the count of the jth synonymous codon for amino acid i and nimax is the count

of the maximal sibling for that amino acid.

Morton used this term to calculate his codon bias index (CBI) as follows:

CBI =
18∑
i=1

ni

ntot

(
Si∑

j=1

(1 − Rij)
2

Si − 1

)
(2.16)

Si is the number of siblings for the ith amino acid and ni is the count for the ith

amino acid. The ntot term is the total number of residues excluding methionine (Met) and

tryptophan (Trp) since they have only one codon each.

Using this formula a gene exhibiting no bias receives a CBI of 0. A gene that is

extremely biased gets a score approaching 1.

2.5.7 Intrinsic Codon Deviation Index (ICDI)

In 1993 Freire-Picos et al. fashioned an index to address perceived weaknesses with the

previous codon bias indices (Freire-Picos et al., 1994). The new index was known as the
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Intrinsic Codon Deviation Index (ICDI) and required no a priori knowledge of tRNA levels

or expression rates. It was calculated as follows:

ICDI =

∑
S2 + S3 +

∑
S4 +

∑
S6

18
(2.17)

Where Sk is calculated as:

Sk =

k∑
i=1

(ni − 1)2

k(k − 1)
(2.18)

In the above formula ni is the RSCU value (Equation 2.5) of the ith codon and k is the

corresponding value of degeneracy, 2, 3, 4, or 6. Once again 0 is indicative of an absence

of bias while 1 is strongly biased.

2.5.8 Correspondence Analysis Revisited

In 1999 Kanaya et al. used principal component analysis to identify major codons (Sec-

tion 2.3) (Kanaya et al., 1999, 1996). The resultant factor loadings were compared to the

preferred codons derived using the Ikemura 4-rule method (Ikemura, 1981a) in order to val-

idate their findings. No a priori knowledge of tRNA level is required to determine which

are major.

2.5.9 CAI Revisited

In 2003 Carbone et al. took the need for a priori knowledge of gene expressivity out of the

CAI calculation process (Carbone et al., 2003). Theirs was a greedy algorithm that worked
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first to identify the proper reference set of genes and then calculate the CAI for each gene

based upon this reference set. The algorithm is iterative in nature. It starts with a reference

set of all genes and assigns a weight to each codon based upon the codon usage in that

reference set. The weight for a given codon is equal to the count of that codon (within the

subset of genes currently considered the reference set) divided by the count of its sibling

with highest count (the maximal sibling will have a weight of one). The following equation

describes the weight w of the ith codon for the jth amino acid. The x in the numerator is

the count for that codon and the denominator (y) is the count of the maximal sibling for the

amino acid in question.

wij =
xij

yj
(2.19)

Given this weight a CAI score is assigned to all the genes within the current reference

set. CAI is calculated as follows:

CAI(g) = L

√√√√ L∏
i=1

wi (2.20)

L is the length of the gene (number of codons in the gene). The CAI value for a gene

is a geometric average of codon usage within that gene. The list of genes is sorted by CAI

score. The genes in the top half of the list are kept as the new reference set and new w

values are calculated, followed by new CAI values for the genes. This is repeated until the

set of genes equals roughly one percent of the original number of genes.
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2.5.10 Summary

Table 2.2 is an abridged description of the bias measures covered in this literature survey.

The methods described are sorted by submission date as was the coverage in the literature

survey. This was done to facilitate an understanding of the way in which codon usage

measurement techniques have evolved since first employed in 1981.

Measure Date a priori Description Authors

FOP (Frequency of Preferred 
Codons)

1981 Yes FOP = number of optimal codons/total number of codons in gene. Optimal 
codons determined by 4 rules.

Ikemura

CBI (Codon Bias Index)
Bennetzen and Hall

1981 Yes (preferred codons less expected if random)/ total number of codons
Preferred status determined by 4 rules.

Bennetzen and Hall

Correspondance Analysis
Grantham et al.'s 

1981 No Project frequency data on first two principal components. Manually label 
as highly or weakly expressed. Similar to clustering.

Grantham et al.

P1 and P2 Index 1982 Yes P1: average number of tRNA discriminations per elongation cycle 
P2: frequency of right choices between the pyrimidines

Gouy and Gautier

Codon Preference Bias 1984 No Multinomial statistical method of measuring the codon preference. 
Answered question "how probable was any given gene's observed codon 
frequency?"

McLachlan et al

Clustering 1986 No 64 dim vector of RSCU scores. Ward's clustering algorithm followed by 
dendogram examination.

Sharp et al

CAI (Codon Adaptation Index) 
Sharp and Li

1986 Yes Reference set used to identify RSCU values. CAI score then generated for 
each gene using a geometric mean of RSCU values.

Sharp and Li

Scaled χ
2 1988 No Chi squared statistic for codon usage scaled by gene length. Shields et al

Nc (Effective Number of 
Codons)

1990 No 64 effective codons implies balanced usage, only 20 effective codons 
implies extreme bias.

Wright

CBI (Codon Bias Index)
Morton

1992 No Used CAI's w term to calculate. Took frequency of an amino acid and 
scaled it by its deviation from base composition.

Morton

ICDI (Intrinsic Codon Deviation 
Index)

1993 No Deviation from equal use of all codons (as apposed to base composition) Freire-Picos et al.

MCU (Major Codon Usage) 1999 No PCA to reduce codon frequency data to one dimension. Correlation of 
each codon to this distribution as indicator of contribution to bias.

Kanaya et al.

CAI (Codon Adaptation Index)
Carbone et al.

2003 No Treat whole genome as reference set. Calculate CAI of genes. Throw out 
lower half and repeat. Once reference set gets to 1% of original gene set 
stop and give final CAI scores to genes.

Carbone et al.

Table 2.2: Summary of All Described Bias Measures

2.6 Metabolic Costs of Amino Acid Biosynthesis

The ultimate goal of this study is the comparison of gene expressivity with the metabolic

energy required to synthesize the associated protein. The steps up to this point have pro-

vided an alternate measure of expressivity (MCU). Next, the way in which energy costs are
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derived will be examined.

Much of the process of protein synthesis is common to all prokaryotic proteins includ-

ing most of the steps involved in transcription and translation. The differences in energetic

requirements come mostly from the variation in cost for individual amino acids. During the

translation process individual amino acid-tRNA pairs available in the surrounding environ-

ment are assembled into a polypeptide chain. The energy that goes into formulating these

amino acids is the primary variable when calculating the energy required for synthesizing

a protein.

Amino acids are created through a series of chemical reactions. While the exact nature

of the chemical reactions is beyond the scope of this thesis it is important to understand that

the energy required to synthesize any given amino acid can be quantified and that the cost

is a fixed value for entire families of organisms.

The steps required to synthesize an amino acid are well defined. Combined they are

known as metabolic pathways and they can be used to determine the cost to synthesize

any amino acid within an organism. An important part of this calculation is to include the

energy that would have been gained had the amino acid not been formed and the metabolite

(any of the molecules found in the metabolic pathway) been allowed to remain in the energy

producing pathways. This can be thought of as opportunity costs and they are a very real

part of the cost to produce an amino acid (Zubay, 1998; Stanier et al., 1986).

The pathway depicted in Figure 2.9 is used for all chemoheterotrophic and photoau-

totrophic bacteria, which make up the bulk of the organisms studied. There are slight

modifications for other categories of organism, such as thermophiles.
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The cost for each amino acid is presented in units of high-energy phosphate bonds

(∼P). One of the many contributions of Esley Heizer of the Biomedical sciences program

at Wright State University was the pathway determination and energy requirements calcu-

lations (Heizer, 2005). The results are a listing of costs for each amino acid.

2.7 Refining the Data Set

2.7.1 Non-protein Coding Sequences

The discussion up to this point has involved the calculation of both the expressivity and

biosynthesis costs of an organism’s mRNA and protein populations. With this information

a correlation between expressivity and protein production costs can be calculated. What

has not been discussed is which genes were involved in the above analysis. Since the

expressivity of protein coding sequences is being quantified it only make sense to exclude

non-protein coding genes (e.g. tRNA coding genes). There are other genes that need

removal from consideration as well.

2.7.2 Candidates for Horizontal Gene Transfer

Since the assumptions about expressivity are based on each gene’s adherence to an estab-

lished bias within the genome, any genes that have entered the genome recently will not

necessarily have had time to evolve in such a way as to adhere to the bias. It is for this
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Figure 2.9: Metabolic Pathways Involved in Amino Acid Biosynthesis and Energy Produc-
tion

penP, ribose 5-phosphate; PRPP, 5-phosphoribosyl pyrophosphate; eryP, erythrose 4-
phosphate; 3pg, 3-phosphoglycerate;pep, phosphoenolpyruvate; pyr, pyruvate; acCoA,
acetyl-CoA; αkg, α-ketoglutarate; oaa, oxaloacetate; RuBP, ribulose-bisphosphate; TCA,
tricarboxylic acid cycle.

Reproduced from (Heizer, 2005).
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reason that genes that are candidates for horizontal gene transfer (HGT) are removed from

consideration. Horizontal gene transfer can occur in a number of ways. A detailed explana-

tion is outside the scope of this treatment; however, a high-level description of one method

of transfer is provided to enhance understanding.

Some genes are introduced through exposure to viruses or phages. This process is

known as transduction. A virus is essentially a strand of DNA or RNA encapsulated in a

protein membrane. Viruses depend upon the reproduction mechanisms found within living

cells to replicate themselves. Some viruses, or bacteriophages, carry with them the tools

necessary to insert most or all of their genetic material directly into the host’s DNA. The

tools are in the form of genes that express to form enzymes known as transposases. These

proteins enable the virus’s DNA to be inserted into the host’s genome (NCBI, 2005). This

is not as unusual as it may sound. A similar process takes place during the recombination

phase (meiosis) of sex cell creation. Sexually reproducing organisms have chromosomes

that contain a DNA strand from each parent. During sex cell formation portions of each

strand are combined (or re-combined) to form a new, unique, DNA strand. This increases

diversity in the offspring. The process, known as crossover, is similar to the insertion of

alien viral DNA.

Identifying horizontally transferred genes is done in a number of steps. The first is

by comparing the genes to other known phage related genes. Genes known to be phage

related are typically annotated in the sequence files provided by the National Center for

Biotechnology Information (NCBI) (NCBI, 2005). Any genes with these notations can be

easily removed from consideration.
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Another indicator of possible HGT candidacy can be found through the examination of

GC content (Kaplan and Fine, 1998). Given a random choice in nucleotides an organism’s

genome should contain about as many guanines and cytosines (Gs and Cs) as it has adenines

and thymines (As and Ts). Recall that Gs and Cs are complementary pairs and are always

found opposite each other on the DNA strands. This equal distribution is seldom the case.

Over time organisms tend to develop and adhere to a bias in GC content, particularly in the

first and third codon positions. If a gene’s GC1 and GC3 content (GCs found in the first

and third codon locations) are significantly different than those of the rest of the organism’s

genes it can be reasonably concluded that the gene has been recently introduced into the

genome, and thus has not had time to evolve into adherence with the rest of the genome

(known as the amelioration process).

Research in this area (Garcia-Vallvé et al., 2000) selects candidates for HGT by ex-

amining a gene’s GC1 and GC3 deviation from the organism’s norm. If both deviate from

the norm in the same direction and at least one is greater than 1.5 standard deviations from

the mean it is considered a candidate. Using a sliding window of eleven genes, any window

with five or more extraneous genes is an indication of an alien genomic strip. This is an

area in the genome where multiple genes were incorporated in a single event.

Another criteria used to identify candidates for horizontal gene transfer is Maha-

lanobis distance (Mahalanobis, 1936; Kaplan and Fine, 1998; Chou and Zhang, 1995) from

a genome’s average codon usage. Mahalanobis distance can be thought of as the distance

between two points in a multidimensional space normalized by the variance of the overall

data in each dimension. A frequency matrix is generated similar to the one used in the
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MCU calculations. Each row represents a gene and each column a codon. The associated

gene/codon cell is the frequency with which that codon occurs within the gene. Genomic

averages are calculated for each codon frequency. The Mahalanobis distance is calculated

between each gene and the mean of the organism (Chou and Zhang, 1994).

The distances do not follow a normal distribution and so a Monte Carlo procedure

(Gillespie, 1977) is employed that generates a random sample of sequences based upon the

mean and standard deviations of the actual codon usage for the genome. Any that differ by

more than two standard deviations from the mean are considered extraneous. Calculation

of the Mahalanobis distance will be discussed in detail in Section 3.1.5.

2.7.3 Overrepresented Genes

Mutation is an ongoing process in an organism’s genome. While some mutations are the re-

sult of environmental factors (e.g. oxidation and radiation) some are the result of mistakes

in replication or repair. These varieties of mutation can take the form of gene deletion,

duplications, or even inversions. When duplication takes place one gene copy can continue

to fulfill its function while the other copy may begin to undergo mutation without unduly

affecting the survival of the organism. If the resultant gene/protein pair has no deleterious

effect on the organism’s chance of survival the mutated gene will be passed on and prop-

agated in the species. Such a gene is known as a paralog of the original gene (Zimmer,

2002).

To prevent such genes from being overrepresented they are culled, leaving only one

copy in the data set. In order to locate paralogs a sequence-searching tool is employed. The
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tool, known as the basic local alignment tool (BLAST) (Altschul et al., 1990), is capable

of finding sequences within an organism that are similar to a given search string. Previous

research into metabolic efficiency (Akashi and Gojobori, 2002) identifies paralogs by per-

forming BLAST searches using each protein in succession as the query string. All proteins

that are identified as having 60% identity are considered a cluster of paralogs. The member

of the cluster that has GC3 content most similar to the mean GC3 content for the organism

is kept and the rest are removed from the data set.

2.7.4 Short Genes

Another criterion for gene consideration is length. In order for a gene to adhere to a given

major codon induced bias, its resultant protein must contain amino acids that occupy slots

that can be held by several different amino acids without effecting function. Very short

genes tend to generate proteins where virtually every amino acid is specific and important

to the protein’s function. This implies that the gene will have great difficulty adhering to

an organism’s bias (Wang et al., 2001). For this reason, any gene with a length of less than

100 codons is removed from the data set.

2.8 MCU/Energetic Cost Correlation

Because it is unknown whether the underlying distributions of MCU and energetic cost are

normal, research in this area (Akashi and Gojobori, 2002) uses Spearman rank correlation

to examine their relationship. The organisms chosen in this research were limited to those
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for which MCU and HGT had already been calculated. These were Escherichia coli and

Bacillus subtilis.

Spearman rank correlation is performed by sorting the genes by MCU and assigning

each gene an associated rank. Next the gene set is sorted by energy and associated ranks are

assigned. The difference between the two ranks is the distance metric used in the following

equation (Spearman, 1904; Rosner, 2000):

rS = 1 −
6

n∑
i=1

d2

n(n2 − 1)
(2.21)

In order to determine whether the Spearman rank correlation coefficient rS is signif-

icant a T statistic is calculated. The p value is calculated by determining the probability

associated with the T statistic and n−2 degrees of freedom. Significance is set at α = 0.05.

Tstat =
rs ∗

√
n − 2√

1 − r2
s

(2.22)

p = pt(Tstat, n − 2) (2.23)

sig = pt(1 − α/2, n − 2) (2.24)

Utilizing this approach Akashi and Gojobori (2002) found that there is a highly sta-

tistically significant negative correlation between energetic costs and MCU (Spearman

rank correlation, B. subtilis: n = 3, 055, rS = 0.383, Z = 22.92, P < 10−5; E. coli:

n = 3, 397, rS = 0.240, Z = 14.43, P < 10−5). This negative correlation indicates that
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less expensive amino acids are generally used more frequently in those genes that are ex-

pressed the most.

In order to expand upon and validate this research four additional genomes were ex-

amined for similar trends. To accomplish this all the techniques described so far were

brought together and automated. Rather than taking the results of previous research and

applying a statistical test, the genomic data were acquired and refined. MCU, energetic

costs, and correlations were then calculated.

2.9 Additional Statistical Analysis

While the findings regarding correlation between MCU and energetic costs are highly sig-

nificant there are questions that must be examined. Is it expressivity driving the correlation

or is there some other property shared by highly expressed genes driving the selection pro-

cess? To verify that expressivity was the driving factor in the correlation two additional

aspects of the data are examined: physicochemical classes and functional categories.

2.9.1 Physicochemical Classes

One property by which amino acids can be categorized is physicochemical class. Research

in this area divides amino acids into three distinct groups (Zubay, 1998): internal, external,

and ambivalent (Table 2.3). Internal amino acids tend to be hydrophobic (water hating)

and so are found more often in the interior of proteins, away from the surrounding water.
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External amino acids are generally hydrophilic (water loving or strong affinity). Some

amino acids that are found in either region are classified as ambivalent.

Internal External Ambivalent
Phenylalanine, Phe, F Histidine, His, H Tryptophan, Trp, W
Leucine, Leu, L Arginine, Arg, R Tyrosine, Tyr, Y
Isoleucine, Ile, I Lysine, Lys, K Cysteine, Cys, C
Methionine, Met, M Glutamine, Gln, Q Alanine, Ala, A
Valine, Val, V Glutamic acid, Glu, E Serine, Ser, S

Asparagines, Asn, N Glycine, Gly, G
Aspartic acid, Asp, D Praline, Pro, P

Threonine, Thr T

Table 2.3: Physicochemical Classes for Amino Acids

When the genomes were examined with only internal, external, or ambivalent amino

acids included a significantly negative correlation was still observed (Akashi and Gojobori,

2002) (Table 2.3).

Genome Internal External Ambivalent
B. subtilis rS = 0.277 rS = 0.226 rS = 0.204

Z = 15.93 Z = 12.82 Z = 11.54
P < 10−5 P < 10−5 P < 10−5

E. coli rS = 0.091 rS = 0.139 rS = 0.202
Z = 5.31 Z = 8.19 Z = 12.03
P < 0.002 P < 10−5 P < 10−5

Table 2.4: Spearman Correlation Results when Limited to Physicochemical Classes
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2.9.2 Functional Categories

Every protein serves a specific function within an organism. Scientists have defined func-

tional categories into which proteins can be grouped (Tatusov et al., 1997, 2003; Riley,

1993) (Table 2.5). If a protein in a specific functional category were very inexpensive to

synthesize and the genes in the category also happened to exhibit high MCU it would ap-

pear as if there were a correlation between MCU and energetic costs when in reality the

correlation would be between membership in the category and energetic cost. This kind of

hidden contributing component is known as a confounding factor. Researchers in the area

of metabolic efficiency have attempted to eliminate functional categories as confounding

factors.

The method chosen to correct for functional categories as confounding factors is the

Mantel-Haenszel test (Snedecor and Cochran, 1989; Rosner, 2000; Mantel and Haenszel,

1959). Each amino acid is examined separately. A Spearman rank correlation is performed

to see if the abundance of each amino acid is correlated to MCU. One would expect the

abundance of very expensive amino acids to be negatively correlated to MCU and inexpen-

sive amino acids to be positively correlated.

Next the gene data set is stratified by functional category and a 2 × 2 contingency

table is constructed for each of the categories (Figure 2.10). Each gene in the data set is

flagged as either high or low based upon whether it falls in the upper or lower half of a

listing of genes sorted by MCU (above and below the median). The abundance of an amino
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Code Information storage and processing
J Translation, ribosomal structure and biogenesis
K Transcription
L DNA replication, recombination and repair

Cellular processes
D Cell division and chromosome partitioning
O Posttranslational modification, protein turnover, chaperones
M Cell envelope biogenesis, outer membrane
N Cell motility and secretion
P Inorganic ion transport and metabolism
T Signal transduction mechanisms

Metabolism
C Energy production and conversion
G Carbohydrate transport and metabolism
E Amino acid transport and metabolism
F Nucleotide transport and metabolism
H Coenzyme metabolism
I Lipid metabolism
Q Secondary metabolites biosynthesis, transport and catabolism

Poorly characterized
R General function prediction only
S Function unknown

Table 2.5: Gene Functional Categories
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a b

c d

Figure 2.10: 2 × 2 Contingency Table Used in Mantel-Haenszel Test

Cells: a represents count of amino acid that resides in non-highly-expressed genes (below
median). b is count of all other amino acids that reside in highly expressed genes. c and d,
similarly, are counts for the amino acid and all other amino acids except in genes with low
expressivity.

acid within a given functional category that is found within highly expressed genes (high)

is placed into cell a. Cell b is the count of the rest of the amino acids in genes flagged as

having high MCU. Cell c is the count of the given amino acid in genes flagged as low, and

d is the count of the rest of the amino acids in genes flagged as low.

When the process is complete there is a set of contingency tables for each amino acid.

Each set will contain a table for each functional category. The Mantel-Haenszel test is

run on each set of tables for a single amino acid. Intuitively the test can be understood

by examining what happens with an expensive amino acid if it behaves as expected and is

used less in highly expressed genes. The process begins by comparing the cross products. If

aminohigh ∗restlow is the product of the amino acid’s abundance in highly expressed genes

and the abundance of all other amino acids with low expressivity (a ∗ d) and aminolow ∗

resthigh is the product of the amino acids with low expressivity and the abundance of all

other amino acids that are highly expressed (b ∗ c) then the following ratio is generated and

is known as the odds ratio:

OddsRatio =
aminohigh ∗ restlow

aminolow ∗ resthigh
(2.25)
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In the above situation where the abundance of the amino acid goes down the terms

in the numerator of the ratio will tend to be smaller than the denominator. This will yield

an odds ratio of less than one. Should the reverse be the case and the abundance were

to go up then the odds ratio would tend to be greater than one. It can be seen that a

negative correlation is related to odds ratios (ÔR) with values less than one while positive

correlations are related to ÔRs that are greater than one.

There are eighteen functional categories (Table 2.5, (NCBI, 2005)), however func-

tional categories with fewer than 10 genes are excluded from the analyses. Additionally

poorly characterized categories (Table 2.5) are removed from consideration. The ÔRs

across the set of tables should form a Chi Squared Distribution and this characteristic can

be tested to determine if the result is significant. Any confounding factors (one or more of

the tables driving the overall behavior) will disrupt this behavior.

Because each category can be thought of as an experiment and because the signifi-

cance level is set at α = 0.05 it is expected that, randomly, almost one category per test will

(.05 ∗ 16 = .8) exhibit abnormal behavior and cause a rejection of the null hypothesis (sig-

nificance shown where none exists). For this reason a more stringent test for significance is

required. Researchers employ a sequential Bonferroni test (Rice, 1989; Bonferroni, 1936;

Rosner, 2000) to correct for this condition when calculating the probability that the χ2 value

is greater than the .95th quantile the α value is divided by the number of experiments. With

an α of .05 the following equation describes the principle.

P

(
χ2 > quantilechisq

(
1 − α

Ncategories
, 1degreeoffreedom

))
(2.26)
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In order for an amino acid’s abundance to be deemed significantly rising or falling as

a function of MCU both its Spearman rank correlation and Mantel-Haenszel test must be

significant and in agreement as to polarity (positive or negative).

This was a high level description of the procedure that does not wholly capture the

details necessary for an accurate calculation. The exact formulae and steps will be covered

in Section 3.3, Statistical Analysis.
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Materials and Methods

3.1 Acquiring and Refining the Data Set

3.1.1 Challenge

Acquiring the genomic data set and arranging it into a format suitable for analysis presents

several challenges. The nucleotide sequences must be located and an initial culling per-

formed. Only those sequences that code for proteins and that are greater than 300 nu-

cleotides in length (100 codons) are passed on to the next stage of calculation. Phage

related genes, paralogs, and genes that are candidates for horizontal transfer also need to

be eliminated from consideration. The functional category for each gene must be deter-

mined and stored with the gene for future use. Additionally, the necessary development

environment and tools must be chosen in order to perform the analysis and automate the

process.
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3.1.2 Initial Data Acquisition

The sequence data for the microbial organisms were acquired from the National Center for

Biotechnology Information (NCBI) (NCBI, 2005). Fully annotated files were chosen so

that phage relationships and sequences that are protein coding could be determined. See

Figure 3.1 for a sample portion of an annotated file that contains the information about a

protein coding sequence with a phage relationship.

gene 167484..169727
/gene="fhuA"
/locus_tag="b0150"
/note="synonyms: tonA, T5rec"

CDS 167484..169727
/gene="fhuA"
/locus_tag="b0150"
/function="outer membrane protein receptor for
ferrichrome, colicin M, and phages T1, T5, and phi80"
/codon_start=1
/transl_table=11
/product="FhuA"
/protein_id="NP_414692.1"
/db_xref="GI:16128143"
/translation="MARSKTAQPKHSLRKIAVVVATAVSGMSVYAQAAVEPKEDTITV
TAAPAPQESAWGPAATIAARQSATGTKTDTPIQKVPQSISVVTAEEMALHQPKSVKEA
LSYTPGVSVGTRGASNTYDHLIIRGFAAEGQSQNNYLNGLKLQGNFYNDAVIDPYMLE
RAEIMRGPVSVLYGKSSPGGLLNMVSKRPTTEPLKEVQFKAGTDSLFQTGFDFSDSLD
DDGVYSYRLTGLARSANAQQKGSEEQRYAIAPAFTWRPDDKTNFTFLSYFQNEPETGY
YGWLPKEGTVEPLPNGKRLPTDFNEGAKNNTYSRNEKMVGYSFDHEFNDTFTVRQNLR
FAENKTSQNSVYGYGVCSDPANAYSKQCAALAPADKGHYLARKYVVDDEKLQNFSVDT
QLQSKFATGDIDHTLLTGVDFMRMRNDINAWFGYDDSVPLLNLYNPVNTDFDFNAKDP
ANSGPYRILNKQKQTGVYVQDQAQWDKVLVTLGGRYDWADQESLNRVAGTTDKRDDKQ
FTWRGGVNYLFDNGVTPYFSYSESFEPSSQVGKDGNIFAPSKGKQYEVGVKYVPEDRP
IVVTGAVYNLTKTNNLMADPEGSFFSVEGGEIRARGVEIEAKAALSASVNVVGSYTYT
DAEYTTDTTYKGNTPAQVPKHMASLWADYTFFDGPLSGLTLGTGGRYTGSSYGDPANS
FKVGSYTVVDALVRYDLARVGMAGSNVALHVNNLFDREYVASCFNTYGCFWGAERQVV
ATATFRF"

Figure 3.1: Typical Annotation for Phage Related Protein Expressing Gene

3.1.3 Genomes Processed

Research in the area of metabolic efficiency has been limited to just a few genomes (Akashi

and Gojobori, 2002). The goal of this thesis is to expand this capability to any sequenced
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prokaryotic genome. To demonstrate this capacity six genomes were chosen (Table 3.1)

for analysis. The genomes were chosen for their metabolic characteristics. Bacillus subtilis

and Escherichia coli are generalists and tend to synthesize most of their amino acids and

precursor metabolites. They were also the two organisms studied in the original research

performed by Akashi and Gojobori (2002). Mycoplasma genitalium and Chlamydia tra-

chomatis are minimalists and tend to parasitically derive their building blocks from their

host. Thermotoga maritima and Synechococcus sp WH 8102 are thermophilic and photoau-

totrophic respectively. They were chosen in order to examine the impact these strategies

have on selection for energetic costs.

Genomes Metabolic Characteristic
Bacillus subtilis Generalist
Escherichia coli K12 Generalist
Chlamydia trachomatis Parasitic
Mycoplasma genitalium Parasitic
Synechococcus sp WH 8102 Photoautotrophic
Thermotoga maritima Thermaphilic

Table 3.1: Primary Genomes Studied and Their Respective Metabolic Characteristics

In addition to the six primary genomes several others were processed for the purposes

of technique and trend verification. The additional genomes are listed in Table 3.2.

PERL

Because of the textual nature of the data and the requirements to perform regular expression

searches, replacement, and translations PERL was chosen as the scripting language. In the

PERL development environment each block of text that represents the data for a protein

coding sequence (CDS) can easily, and with automation, be located. The sequence then
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Genomes No. Genes No. Codons
Aeropyrum pernix 1,480 426,803
Chlorobium tepidum TLS 1,601 554,660
Clostridium perfringens 2,182 737,591
Helicobacter pylori J99 1,278 451,312
Lactobacillus plantarum WCFS1 2,397 796,876
Mycoplasma penetrans 709 277,093
Mycobacterium tuberculosis CDC1551 3,180 1,111,951
Nitrosomonas europaea ATCC 19718 1,759 603,207
Nostoc sp. PCC 7120 4,126 1,496,674
Prochlorococcus marinus str. MIT 9313 1,737 565,208
Pseudomonas aeruginosa PA01 4,812 1,680,784
Pseudomonas putida KT2440 4,306 1,542,935
Pyrococcus furiosus DSM 3638 1,653 517,495
Staphylococcus aureus subsp. aureus MW2 2,120 706,928
Streptococcus pneumoniae R6 1,410 470,297
Streptomyces coelicolor A3(2) 5,696 1,992,387
Thermoplasma acidophilum 1,204 392,652
Thermosynechococcus elongatus BP-1 1,920 650,933
Thermus thermophilus HB27 1,719 557,721

Table 3.2: Secondary Genomes Studies and Their Associated Gene and Codon Counts
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can be extracted and key words that indicate phage and viral relationships identified.

There are situations where the gene is on the complimentary DNA strand. This is

designated with a complement keyword. Since all sequences are described in terms of the

same strand those that are listed as complements must be reversed and translated to their

complementary sequences in order to generate the proper 5’ to 3’ sequence listing. PERL

is especially good at this form of textual manipulation. The following commands perform

the exact operations necessary for a reverse-complement.

$gene = reverse $gene;
$gene =˜ tr/ACGTacgt/TGCAtgca/;

Another issue is the use of joins. A join is a coding region containing a frameshift.

Such a frameshift is thought to be corrected by ribosomal slippage during translation. A

typical join might look like the following:

CDS join(1080570..1080686,1080677..1081408)

This indicates that the sequence beginning at character 1080570 and continuing to

position 1080686 should be joined to the sequence beginning at 1080677 and continuing to

1081408. Again, PERL is able to perform such substring concatenation procedures easily.

The end result and primary goal of the data acquisition process is to acquire a simple

listing of genes that is suitable for analysis. Each gene must be uniquely identifiable so that

such measures as cost and MCU can be associated. The annotated files employed in this

analysis use two different naming standards for genes. One is an abbreviation of the formal

gene name and termed a functional name. Another, often called a locus tag, is a simple
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alpha/numeric identifier that is specific to the genome being examined and indicates the

position within the overall order of the genes. NCBI’s use of these names is not consistent

between genomes. For this reason the script handles either naming convention. Because

a later stage of processing utilizes the locus tag for gene identification (HGT) the script

looks for that form of identification first and if it is not found the functional name is used.

Following is an example of the two forms for the same gene.

/gene="thrA"
/locus_tag="b0002"

3.1.4 Non-Computational Culling Criteria

Several of the culling criteria are computationally intensive. Horizontal gene transfer, for

example, requires calculation of GC1 and GC3 content, their average values, standard de-

viation, and whether a gene is outside a certain number of standard deviations from the

organism’s norm. Other criteria do not require extensive calculation. Gene length is one

such criterion. Gene length can easily been checked during sequence extraction from the

annotated NCBI file. Any sequences with a length of 306 or less are discarded. This

equates to 102 codons. The start and stop codons are not counted so genes of length less

than 100 codons (excluding start and stop codon) are discarded.

All of these initial culling features are implemented through the use of flags. For

instance, if a gene is less than 100 codons it is flagged as less than 100 codons. The script

used to perform this task is passed parameters that determine whether the gene is actually

discarded or not. An example of such a command follows.
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perl getGenes.pl -noeq -nothree -nophage -len 100 ecoli

The use of flags allows for altering culling criteria at the command line. This is useful

later in the process when it is necessary to build an un-culled data set for use in the BLAST

searches for enzymes used as building blocks for amino acids. The noeq and nothree flags

indicate that any sequence that is not divisible by three or that, when translated, does not

produce the amino acid sequence also contained in the annotated file should be removed

from the data set.

3.1.5 Horizontal Gene Transfer

Genes identified as candidates for horizontal gene transfer are listed in the Horizontal Gene

Transfer Database (HGT-DB) (Garcia-Vallvé et al., 2003). The database contains most

prokaryotic genomes and it is a straightforward process to remove any gene from the data

set that was in the list of candidate HGT genes. Previous research in this area (Akashi and

Gojobori, 2002) used this same methodology in gene identification and removal.

The research described in this thesis includes a broad range of organisms, several

of which are missing from the HGT-DB (e.g. Prochlorococcus marinus str. MIT 9313,

Pseudomonas aeruginosa PAO1, Thermus thermophilus HB27). This precipitated the need

to implement HGT determination. The implementation is based on the same principles

used in producing the HGT-DB (Garcia-Vallvé et al., 2000).

A feature of non-HGT genes is that they adhere to the organism’s tendencies in GC

content and codon usage. Any that vary in a statistically significant manner from the or-
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ganism’s inherent GC content and codon usage characteristics are said to originate from

HGT.

The GC content of an organism is measured in three ways: overall GC, GC1, and

GC3 content. The overall GC content is simply a total of all Gs and Cs divided by the total

number of nucleotides. This yields an average GC content for a gene in the organism. If

a gene deviates by greater than 1.5σ from this value it was considered extraneous to the

genome. Additionally if the average number of Gs and Cs for a gene in the first and third

codon positions (GC1 and GC3) deviate from the organism’s norm by more than 1.5σ and

both deviate in the same direction, then the gene is deemed extraneous.

A series of horizontally transferred genes located near each other on the DNA strand is

evidence that an entire strip of genes was transferred in one operation. An 11-gene sliding

window is used to identify possible alien gene strips. Any window with five or more HGT

genes is considered an alien gene strip. Finally, these strips must be filtered to disregard

short isolated segments and to include genes that were not initially considered extraneous

but that have a deviation of their GC content of the same sign as the deviation of the strip

to which they belong.

Codon usage is measured by examining relative codon frequency in each gene (Chou

and Zhang, 1995). An expected frequency is determined for each codon and if a gene

has significantly different frequencies than this normal gene it is the result of horizontal

gene transfer. The high dimensionality of a gene (61 codon frequencies) makes similarity

metrics somewhat problematic. The measure used to determine whether a gene is similar to

an average gene is Mahalanobis distance (Mahalanobis, 1936; Kaplan and Fine, 1998; Chou
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and Zhang, 1995). This distance metric is similar to Euclidean distance except that each

dimension is adjusted to reflect the amount of variance in that dimension. It can be thought

of as being a normalized distance with respect to variance. Computation of Mahalanobis

distance is facilitated by the use of a covariance matrix. The following formula represents

the covariance matrix S. Xk,i is the frequency of the ith codon in the kth gene, Xi is the

average frequency for the ith codon, and N is the total number of genes.

Sij =
N∑

k=1

[Xk,i − Xi][Xk,j − Xj] (3.1)

The Mahalanobis distance for gene X is calculated using the following formula:

dM(X, X) = (X − X)T S−1(X − X) (3.2)

The current version of the implementation used in this research performs matching on

the first two criteria (overall GC and GC1 and GC3). The latter two are in development

(Mahalanobis distance and alien gene strips). This yields a useful and conservative approx-

imation of those genes that are extraneous. The numbers of genes identified appear to be

similar (relative to genome size) to other species.

These operations are somewhat outside the capabilities of the standard PERL scripting

language. An extension is needed to facilitate matrix and numerically intensive operations.

This same capability will also be required for major codon usage calculations (principal

component analysis, Eigenvector manipulation, etc.). The solution is found in Perl Data

Language (PDL) (PDL-Porters, 2005). It is an open source extension to standard PERL that
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gives it “the ability to compactly store and speedily manipulate the large N-dimensional

data arrays.” It is installed and used as a module and can be downloaded from CPAN

(PAUSE, 2001). The project was begun with version PDL-2.4.1 and finished with PDL-

2.4.2.

PERL Data Language allows for the conversion of standard PERL arrays into objects

known as PDLs (pronounced piddles). Various standard matrix operations are available

that can be performed on PDLs. A few examples include calculating inverses, generating

a transpose of a matrix, and performing an inner product (dot product). See Figure 3.2 for

some sample commands.

#this line converts the array S into a PDL
$Spdl=pdl(@S);

#this line finds the inverse of the covariance matrix S
$invSpdl = inv($Spdl);

#these lines perform dot products
$returnVal = inner($diff,$invSpdl);
$returnVal = inner($returnVal,$diff);

Figure 3.2: Sample PDL Usage

Because the Mahalanobis distances do not tend to follow a normal distribution a ran-

dom (normally distributed) sample of sequences is generated utilizing the mean and stan-

dard deviations of each codon frequency. Any gene with a Mahalanobis distance greater

than 2 σ from the average gene is discarded.
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3.1.6 Paralogs

The next step in refining the data set is to prevent overrepresentation of genes. If all the

genes in any set of homologous genes are included in the calculations then the effects of

that particular gene will be amplified and will skew the results. BLAST is used to identify

paralogs. BLAST can be downloaded from the NCBI (NCBI, 2005) web site and is a

compiled C++ program. PERL allows for the invocation of an external program from

within the script. In this way BLAST is invoked from within the overall driving PERL

script.

BLAST requires a database against which its searches can be performed. The search

can be performed against a nucleotide or amino acids (DNA or protein) database. Akashi

and Gojobori (2002) utilized an amino acid database. In order to maintain consistency and

in order to validate the employed methodology an amino acid database is utilized in the

current research. The paralog search procedure is a simple matter of progressing through

the list of proteins using each as a query, and identifying any similar proteins from the rest

of the list. The result is a cluster of paralog proteins. The protein that is closest to the

organism’s norm in terms of GC content is kept while the rest are discarded.

When BLAST is invoked it requires a query filename to be passed as a parameter. It

also requires a parameter dictating how sensitive the search should be (the more sensitive,

the more hits are returned). The criterion for a valid match, established in Akashi and

Gojobori’s original research (Akashi and Gojobori, 2002) is 60% identity over at least 60

amino acids. To determine an appropriate sensitivity level a randomly permuted protein

was generated. A query was then generated that met the bare minimum standard of simi-
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larity with the randomly permuted protein in the database. Next, the query was run and the

resultant scores examined. The score threshold was set two orders of magnitude lower than

the average value that was returned. In this way the returns were limited while ensuring

that all valid hits were obtained.

The overall process (Figure 3.3) is: 1) read in each protein from the data set, 2) write-

out the protein to a query file, 3) perform the BLAST search, 4) read in the results from

the BLAST output file, 5) determine which of the proteins returned are valid paralogs

(60% identity), 6) determine which protein in the cluster of paralogs to keep (the one with

the GC3 content closest to the organism’s norm), and 7) flag the genes for retention and

removal.
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Figure 3.3: Blast Filtering Process

PERL is well suited for performing these operations. It is a scripting language that
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can easily invoke external programs and capture the resulting screen or file output into

variables. The actual command in the PERL script takes the following form:

$command = "./blastall -p blastp -d ".$genom.".ppp.faa
-i ".$genom."results.qry -o ".$genom."results.out -e 0.01";

The blastp argument indicates that the data is protein data. $genom is the vari-

able in which the genomic name is stored and $genom."results.out" is the file to

which results are sent. ".$genom.".ppp.faa is the filename associated with the pro-

tein database. The sensitivity of the search is set by the -e 0.01 argument.

The command is then invoked by surrounding it with “single left tic marks” the return

of which is the screen output of the invoked command.

$result = ‘$command‘;

The $genom."results.out" file is then examined to determine which proteins

are paralogs. See Figure 3.4 for a partial listing of a sample results file. Only the alignment

for the first hit is shown. Note that there are three hits and the first has a score of 95%

similarity.

3.1.7 Functional Categories

In addition to a culled listing of genes and their associated sequences the analysis of the data

set will require the functional category of each gene. This information, like the annotated

genome listing, is available from the NCBI (NCBI, 2005). There are 18 different functional
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BLASTP 2.2.8 [Jan-05-2004]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query=
(227 letters)

Database: ecoli/ecoli.ppp.faa
3522 sequences; 1,208,941 total letters

Searching........done

Score E
Sequences producing significant alignments: (bits) Value

gi|16003521|ref|NP_413521.1| =b4403= 416 e-118
gi|16002003|ref|NP_412003.1| =b2532= 73 2e-14
gi|16002894|ref|NP_412894.1| =b3651= 35 0.005

>gi|16003521|ref|NP_413521.1| =b4403=
Length = 227

Score = 416 bits (1070), Expect = e-118
Identities = 213/227 (93%), Positives = 213/227 (93%)

Query: 1 RITIILVXXXXXXXXXXXXXXMKTMGFSDLRIVDSQAHLEPATRWVAHGSGDIIDNIKVF 60
RITIILV MKTMGFSDLRIVDSQAHLEPATRWVAHGSGDIIDNIKVF

Sbjct: 1 RITIILVAPARAENIGAAARAMKTMGFSDLRIVDSQAHLEPATRWVAHGSGDIIDNIKVF 60

Query: 61 PTLAESLHDVDFTVATTARSRAKYHYYATPVELVPLLEEKSSWMSHAALVFGREDSGLTN 120
PTLAESLHDVDFTVATTARSRAKYHYYATPVELVPLLEEKSSWMSHAALVFGREDSGLTN

Sbjct: 61 PTLAESLHDVDFTVATTARSRAKYHYYATPVELVPLLEEKSSWMSHAALVFGREDSGLTN 120

Query: 121 EELALADVLTGVPMVADYPSLNLGQAVMVYCYQLATLIQQPAKSDATADQHQLQALRERA 180
EELALADVLTGVPMVADYPSLNLGQAVMVYCYQLATLIQQPAKSDATADQHQLQALRERA

Sbjct: 121 EELALADVLTGVPMVADYPSLNLGQAVMVYCYQLATLIQQPAKSDATADQHQLQALRERA 180

Query: 181 MTLLTTLAVADDIKLVDWLQQRLGLLEQRDTAMLHRLLHDIEKNITK 227
MTLLTTLAVADDIKLVDWLQQRLGLLEQRDTAMLHRLLHDIEKNITK

Sbjct: 181 MTLLTTLAVADDIKLVDWLQQRLGLLEQRDTAMLHRLLHDIEKNITK 227

Figure 3.4: Typical Results File – Output of BLAST. Only First Alignment Shown.
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categories (Table 2.5) with an associated code for identification. In the final culled gene

listing the functional category code from the NCBI source is appended to the gene name.

Figure 3.5 is an example of a portion of the listing found on NCBI for functional categories.

By annotating the gene listing in this way the data can be stratified by functional category

and tested for confounding factors.

Escherichia coli K-12 MG1655 complete genome - 0..4639221 4289
proteins Location Strand Length PID Gene Synonym Code
COG Product

190..255 + 21 1786182 thrL b0001 - - thr operon leader...
337..2799 + 820 1786183 thrA b0002 E COG0527 aspartokinase...

2801..3733 + 310 1786184 thrB b0003 E COG0083 homoserine...
3734..5020 + 428 1786185 thrC b0004 E COG0498 threonine...
5234..5530 + 98 1786186 b0005 b0005 - - orf, hypothetical...
5683..6459 - 258 1786187 yaaA b0006 S COG3022 orf, hypothetical...

Figure 3.5: Sample Portion of Gene Functional Category File. COG file downloaded from
NCBI (NCBI, 2005).

3.1.8 Outcome

The goal of this section (Section 3.1, Acquiring and Refining the Data Set) is to acquire a

genomic data set and arrange it into a format suitable for analysis. This includes culling

unwanted genes and tagging the final set with a functional category. To accomplish this

(Figure 3.6) nucleotide sequences must be located and an initial culling performed. Only

those sequences that code for proteins and that are greater than 300 nucleotides in length are

passed on to the next stage of calculation. Phage related genes, paralogs, and genes that are

candidates for horizontal transfer need to be eliminated from consideration. Additionally

the necessary development environment and tools must be chosen in order to best perform
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the analysis and automate the process.
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Figure 3.6: General Flow during Data Acquisition and Refinement Stage

The final product of the data acquisition and refinement stage is a text file that contains

the names, functional categories, and sequences of all retained genes. This will be the

foundation of all further analysis.

3.2 Determining Major Codons and MCU

3.2.1 Challenge

When analyzing a prokaryotic genome there are literally thousands of genes, each hav-

ing some number of each of the 59 codons being studied (64 less start and stop codons,

and Trp because it has a single synonymous codon). It is very difficult to analyze such

a high-dimensional data set for trends and bias. In order to facilitate analysis, this high

dimensional space is reduced to a single dimension via principal component analysis.
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A genome is described by a matrix of genes and codon frequencies. By shrinking

a gene vector from 59 dimensions to a value in a single dimension a summarized gene

distribution that describes the codon usage trend for the organism can be examined. The

result of the analysis of this trend is a listing of major codons.

While some of the above steps are easily accomplished within the framework of a

PERL scripting environment, some are not. As an example, PCA requires some complex

matrix operations that native PERL cannot handle.

3.2.2 Create Codon Frequency Matrix

The relative frequency with which a codon is selected compared to the other codons that

code for the same amino acid is central to examining codon bias. Codon frequency is

calculated by dividing the number of occurrences of a particular codon by the average for

all its synonymous codons. For example, if there are two codons, c1 and c2, that code for a

particular amino acid and c1’s frequency is being sought, it would look something like:

freqc1 =
count(c1)

(count(c1) + count(c2))/2
(3.3)

The average is used instead of the total so that codons with different numbers of syn-

onymous codons can be compared. This is a form of normalization. Note that this is Sharp

et al.’s relative synonymous codon usage (RSCU, Section 2.5.2).

The next step involves building a matrix that contains the codon frequency for each of

the codons within each of the genes.
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c1 c2 c3 · · · c59

g1 f1,1 f1,2 f1,3 · · · f1,59

g2 f2,1 f2,2 f2,3 · · · f2,59

g3 f3,1 f3,2 f3,3 · · · f3,59

...
...

...
...

...
...

gn fn,1 fn,2 fn,3 · · · fn,59

Any given row can now be treated as a vector representation of the codon frequencies

for a given gene. These vectors represent data points in a hyper-dimensional (59) space that

capture each gene’s codon usage. When principal component analysis is performed upon

this data a single axis described in terms of the original vector space is generated. This

new axis extends in a direction that corresponds to the widest scale of “gene distribution

in codon frequency space” (Kanaya et al., 1996). By projecting the original data (codon

frequency matrix) onto this axis a one-dimensional view of the data is obtained.

The codon frequency matrix is built in a straightforward manner using standard PERL

arrays and functions. Next a covariance matrix is created based upon this original frequency

matrix. The covariance is measured between vertical vectors whose dimensionality equals

the number of genes. The diagonal contains the variance of each of the codons, and the

matrix is symmetric with respect to the diagonal. PERL Data Language (PDL) is used to

create the covariance matrix. It has several tools that enable the calculation of the codon’s

covariance. For instance, general statistics can be extracted from a vector in a PDL. The

following extracts general statistics from a vertical slice of a matrix (PDL).
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c1 c2 c3 · · · c59

c1 var1 cov1,2 cov1,3 · · · cov1,59

c2 cov2,1 var2 cov2,3 · · · cov2,59

c3 cov3,1 cov3,2 var3 · · · cov3,59

...
...

...
...

...
...

c59 cov59,1 cov59,2 cov59,3 · · · var59

Figure 3.7: Covariance Matrix

($mean1, $stdev, $median, $min, $max) = stats($geneFreqMatrix− > slice(“$i, : ”));

The covariance matrix is central to principal component analysis (PCA). The Eigen-

vector with the largest Eigenvalue derived from the covariance matrix is the vector that

extends along the axis of greatest variance in the original vector space.

3.2.3 PCA

The use of PDLs makes the process of generating an Eigenvector trivial. The following

commands extract Eigenvectors from the covariance matrix.
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($ev, $e) = eigens($covMatrix);

$maxIndex = maximumind($e);

$b1 = $ev− > slice(“$maxIndex, : ”);

The first principal component, b1, is a vector that extends in a direction that corre-

sponds to the widest scale (largest λ value) of gene distribution. This vector is treated as a

new axis represented in terms of the old vector space.

To see where the data fall on this new axis a dot product operation is performed be-

tween the codon frequency matrix (X) and the first principal component. The result is a

vector containing the scalar values representing the length of each gene’s projection onto

the new axis, the first principal component.

X · b1 = Z′
1 (3.4)

Using a PDL, this can be obtained by employing the following command:

$Zprime = inner($geneFreqMatrix, transpose($b1));

Each entry in the resultant Z′
1 vector contains the scalar magnitude of the projection

of a gene on the new axis. In other words, Z′
1 represents the location of the data points

(genes) on the new axis. It has been determined that the distribution of the genes in this one
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dimensional space is roughly normal (Kanaya et al., 1996). This is useful when performing

correlation analysis, as parametric techniques can be employed. The distribution of these

codon usage values represents the overall bias in the genome (Figure 4.3 in the Results

chapter).

3.2.4 Factor Loadings

To determine which codons contribute positively to this trend the correlation of each codon’s

frequency across all genes and the values in the Z′
1 vector (Figure 3.3) must be determined.

The codon frequency across all genes can be obtained by treating the columns in the codon

frequency matrix as vectors representing codon usage across all genes. The formula used

is the standard Pearson correlation between the codon frequency vector and Z′
1.

The resultant correlation coefficient is known as a factor loading. If the factor loading

is significantly positive (the codon contributes positively to the overall trend, r is signifi-

cantly positive) then the codon in question is major. Significance is set at α = 0.05. The

following PERL code is used in determining significance:

$Tstat = $correlation ∗ sqrt($numGenes − 2)/sqrt(1 − $correlation ∗ ∗2);

$pval = pt($Tstat, $numGenes − 2);

$sig = qt(1 − $alpha/2, $numGenes − 2);
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Table 3.3: Factor Loading Determination

The vertical column in the frequency matrix headed ci is a vector representation of the ith

codon’s frequency across all genes. Z′ also has a dimensionality equal to the number of
genes. It was derived by projecting each gene vector (the horizontal representation for each
gene in the frequency matrix) onto the first Eigenvector.
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If $correlation is positive and the T statistic ($Tstat) is greater than the $sig value

then it is significant and is considered a major codon.

3.2.5 Eigenvector Direction

While the first principle component (Eigenvector) lies along the axis of greatest variance, its

direction is somewhat arbitrary. The direction in which it extends along this axis depends on

the layout of the data. For this analysis it is necessary to direct the Eigenvector such that the

largest magnitude entry in the vector will be positive – thus if the largest magnitude value

is negative then all values in the Eigenvector are multiplied by negative one. The reasoning

for this can be intuitively understood by recognizing that large values in an Eigenvector

correspond to dimensions with large variance. It is desired that the dimension with the

greatest variance be positive. If the Eigenvector is not flipped when the greatest magnitude

value is negative then the genes using the most highly variable codons will be penalized

in terms of their Z′ value when they should be rewarded. Genes with highly positive Z′

values should be an indication of high variance codon usage and avoidance of low variance

codons.

In order to verify the validity of the choice, the major codons derived by principal

component analysis (PCA) are compared to the weights of those codons when derived by

the codon adaptation index (CAI) methodology. In CAI, codons with weights of one are

maximal siblings, and therefore major. If the sum of the weights of codons identified as

major by PCA divided by the number of those codons yields a number greater than .5

then there is greater than 50% agreement between the two methods and it is assumed that
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the Eigenvector direction is correct (if the value were less than 50% then reversing the

direction of the Eigenvector would yield a value greater than 50%). As evidence of this

method’s suitability there is agreement with CAI in choice of major codons in 25 of 25

genomes examined. Equation 3.5 describes the measurement process where PA is percent

agreement, n is the number of major codons as determined by PCA, ci is the ith codon in

the set of codons identified as major by PCA, and wci
is the weight associated with each of

those codons.

PA =

n∑
i=1

wci
(3.5)

3.2.6 Outcome

In order to determine major codons the dimensionality of the codon frequency matrix is

reduced through PCA to a single dimension described by the first principal component.

The gene vectors are then projected onto this axis to generate a new one dimensional vector

space. Each codon is then examined to determine whether it contributes positively to the

overall trend described by the distribution of data in the new vector space. Supportive

PERL modules are used to enable the above calculations.

The output from the determining major codons stage is a text file listing the major

codons for the organism. This text file is used in the statistical analysis phase to calculate

major codon usage for each of the genes.
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3.3 Statistical Analysis

3.3.1 Challenge

Now that all of the raw data has been accumulated, the challenge in this stage is to deter-

mine whether or not “Amino acid composition . . . reflects the action of natural selection to

enhance metabolic efficiency” (Akashi and Gojobori, 2002). This is done through correla-

tion analysis where expressivity is compared with energetic cost to determine whether any

relationship exists.

The steps include calculation of MCU and average energetic cost per amino acid for

each gene followed by a Spearman rank correlation. While these are easily accomplished

within the framework of a PERL scripting environment, the test for significance presents

a subordinate objective that is not. This step requires the calculation of a probability of a

given T statistic.

In addition to these overarching goals this stage must also attempt to show that metabolic

efficiency is the most likely driving force in the correlation and not some other character-

istic of the environment. Physicochemical classes, individual amino acid behaviors, and

functional categories are all examined as potential confounding factors.
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3.3.2 Correlation Between Expressivity and Amino Acid Cost

Calculating MCU

A gene’s Major codon usage (MCU) is determined by generating a count of codons that

are major and dividing that count by the total number of codons in the gene. This yields

a percentage of codons that are major in the gene. This percentage, or MCU, can be used

to rank the genes. This ranking has been shown to be a strong indicator of the ranking

achieved when examining expressivity (Kanaya et al., 1999). The higher the major codon

usage the higher the expressivity of the gene.

Energetic Cost Calculation

The energetic costs of protein production are largely the same from one protein to another.

The differentiating factor is the synthesis of the amino acid building blocks. Each amino

acid has a cost associated with it, and the cost of producing a protein can be determined by

summing the costs for each of the amino acids in the polypeptide chain. This total cost is

then divided by the number of amino acids yielding an average cost per amino acid.

The costs for each amino acid are determined by various pathways traversed dur-

ing the synthesis and are the same for all organisms within each broad category (e.g. all

chemoheterotrophic organisms generally use the same pathways). As noted previously,

amino acid energy costs were supplied by Esley Heizer of the BMS program at Wright

State University (Heizer, 2005).
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Spearman Rank

At this stage of the analysis each gene has an MCU and Energetic Cost associated with

it. Spearman rank correlation is performed by sorting the genes by MCU and assigning

each gene an associated rank. Next the gene set is sorted by energy and associated ranks

are assigned. The difference between the two ranks is the distance metric d utilized in the

following equation (Spearman, 1904; Rosner, 2000):

rS = 1 −
6

n∑
i=1

d2

n(n2 − 1)
(3.6)

All of these operations are easily performed within PERL. In order to determine

whether the Spearman rank correlation coefficient rS is significant a T statistic must be

calculated. The p value is calculated by determining the probability associated with the T

statistic and n − 2 degrees of freedom (see formulae 3.7 and 3.8). In order to support this

operation in PERL a module must be used that provides for the calculation of probabili-

ties. The module used to accomplish this is the cumulative distribution functions module or

Math::CDF (PAUSE, 2001) module. It is used to generate probabilities and quantiles from

several statistical probability functions.

Tstat =
rs ∗

√
n − 2√

1 − r2
s

(3.7)

p = pt(Tstat, n − 2) (3.8)
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Parasitic Behavior & Correction

In the initial analysis of the parasitic organisms Chlamydia trachomatis and Mycoplasma

genitalium, it was noted that these organisms exhibited no correlation between expressivity

and energetic costs. Upon closer examination it was determined that the reason for this

behavior is that the organism can acquire some of its amino acids and metabolites from the

environment in which it lives. To account for this behavior zero cost is assigned to amino

acids that can be obtained from the host.

In order to determine whether an amino acid is produced by the organism or acquired

from the host, the genome of the parasite is examined to see whether it can produce the

appropriate enzymes to synthesize the amino acid in question. This is done by performing a

BLAST search on an un-culled set of proteins (generated from the organism’s gene listing)

for each enzyme in the associated pathway for a given amino acid. If there are no proteins

with a 30% or better similarity to the associated enzyme then it is assumed that enzyme

cannot be produced by the organism. Further, if more than 50% of the enzymes are missing

from the pathway then it is assumed that the end product amino acid cannot be synthesized.

Effect of Protein Structure

To determine whether physicochemical properties of the amino acids impact the observed

trends, the amino acids are divided into three physicochemical classes, and all but one class

of amino acid are removed from the data before analysis. The three classes are internal,
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external, and ambivalent. The amino acids in each of these classes can be seen in Table 3.4.

Internal External Ambivalent
Phenylalanine, Phe, F Histidine, His, H Tryptophan, Trp, W
Leucine, Leu, L Arginine, Arg, R Tyrosine, Tyr, Y
Isoleucine, Ile, I Lysine, Lys, K Cysteine, Cys, C
Methionine, Met, M Glutamine, Gln, Q Alanine, Ala, A
Valine, Val, V Glutamic acid, Glu, E Serine, Ser, S

Asparagines, Asn, N Glycine, Gly, G
Aspartic acid, Asp, D Praline, Pro, P

Threonine, Thr T

Table 3.4: Physicochemical Classes for Amino Acids

The same MCU data is used in this analysis as in previous steps. If the major codon

usage were recalculated it would change the predicted expression level of the genes, and

that is not the intent of this analysis. The gene should maintain the same MCU value while a

new average cost per amino acid is calculated for the subset of amino acids being examined.

When calculating the new average energetic cost for a gene, only those amino acids in the

class being examined are included in the analysis. In this way it can be determined whether

one or more classes drive the correlations.

3.3.3 Amino Acid Abundance

Some insights into the mutational process may be gained by examining behavior of indi-

vidual amino acids. Intuition would lead one to expect the more expensive residues to have

a negative correlation with respect to expressivity. Consequently, less expensive amino

acids would be forced into a positive correlation. It would also be useful to eliminate gene
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functional category as factors in the analysis. To do these things one must first calculate

amino acid abundance.

The PERL scripts perform this task in an object-oriented fashion. Gene objects are

created that have various attributes, including a sequence attribute and amino acid abun-

dance attribute for each individual amino acid.

The script reads in the list of genes along with their sequences from the previously

generated culled gene set file. For each gene a gene object is created and the gene’s name,

category, and sequence are stored within. The gene objects are then stored in an array of

gene objects.

The original data are nucleotide sequences, so they must be conceptually translated

into polypeptide sequences for the tabulation of amino acid frequencies. PERL’s regular

expression and string replacement capabilities make it well suited for this operation.

Since each individual amino acid will be examined and compared to major codon

usage, an MCU attribute is populated. The script retrieves MCU from another previously

generated file and stores it in the appropriate gene objects. Spearman rank correlation

requires a rank value based upon MCU. To generate this value the gene array is sorted by

the MCU and the corresponding rank value is entered as an attribute of each gene object.

Another pass is made through the gene object array counting the amino acids in their

sequences. These individual counts are then stored in the gene object. Thus, every gene

object has a count attribute for every amino acid.
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Spearman Across Genome

With the array of populated gene objects in place the Spearman rank correlation can be

calculated for each amino acid verses expressivity (MCU). To do this the gene array is

sorted by the first amino acid’s abundance and its rank is stored in a field within the gene

object. The MCU rank is already stored as an attribute of the gene object. Next, that amino

acid’s Spearman rank correlation coefficient is calculated. This process is repeated for each

of the amino acids. During each of these steps a gene’s MCU rank is compared with its

rank based upon the abundance of a particular amino acid. The result is an examination of

amino acid abundance across the entire genome.

To verify that the generated coefficient is significant the associated T-statistic is calcu-

lated. This is done using the following PERL code with an $alpha value of 0.05.

$Tstat = $correlation ∗ sqrt($numGenes − 2)/sqrt(1 − $correlation ∗ ∗2);

$pval = pt($Tstat, $numGenes − 2);

$sig = qt(1 − $alpha/2, $numGenes − 2);

The script stores the Spearman rank coefficients and their associated significance val-

ues in a text file for easy retrieval.

Use of Mantel-Haenszel

Next, a Mantel-Haenszel test is employed to determine whether functional categories are

confounding factors. In the Mantel-Haenszel test the data is first stratified then the effects
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of the strata are removed. In this case the data are the various amino acid abundances and

the strata are the gene categories.

First, all genes are sorted by MCU. The use of the gene objects described previously

is continued during this process. Any genes falling below the median are flagged as low

while those above are flagged as high. If the number of genes is odd then the median

gene is flagged as high. The effect of this assignment is negligible; however it seemed the

conservative choice.

Next, the entire list of genes is traversed accumulating counts. These are stored in 2×2

contingency tables (see the next section, Mantel-Haenszel Calculation for an explanation

as to the specific values that go into the tables).

When the process is complete there is a set of contingency tables for each amino acid.

Each set will contain a table for each functional category. The Mantel-Haenszel test is run

on each of the sets of tables.

Mantel-Haenszel Calculation

To perform the Mantel-Haenszel Test:

1. For each amino acid form k strata based on gene category, and construct a 2×2 table

relating amino acid abundance to MCU for each category. A sample table (Table 3.5)

is shown where a is the count of a given amino acid in genes flagged as high MCU,

and b is the count of the rest of the amino acids in genes flagged as high MCU. c

is the count of the given amino acid in genes flagged as low, and d is the count of
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Count of AA Count of the rest of the AAs

High a b

Low c d

Table 3.5: 2 × 2 Contingency Table Used in Mantel-Haenszel Test

the rest of the amino acids in genes flagged as low. Remember, this table contains

information only pertaining to the abundance of a specific amino acid in those genes

within a single category.

2. Compute the total observed amino acids in the a cell over all strata. Note that there

are 16 categories. The poorly characterized categories (Table 2.5) are not included.

O =
16∑
i=1

ai (3.9)

3. Compute the total expected number of amino acids in the a cell over all strata

E =

16∑
i=1

Ei =

16∑
i=1

(ai + bi)(ai + ci)

ai + bi + ci + di
(3.10)

4. Compute the variance of O.

V =
16∑
i=1

Vi =
16∑
i=1

(ai + bi)(ci + di)(ai + ci)(bi + di)

n2
i (ni − 1)

(3.11)

Note that ni = ai + bi + ci + di.

5. The test statistic is
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χ2
MH =

(|O − E| − .5)2

V
(3.12)

Under the null hypothesis (H0) the test statistic adheres to a chi-squared distribution

with one degree of freedom.

6. For a two-sided test with significance level α reject H0 if

χ2
MH ≤ χ2

1,1−α (3.13)

7. The p-value for this test is given by

p = Pr(χ2
1 > χ2

MH) (3.14)

While the χ2 and p value are adequate to describe the significance of any correlation,

they do not give an indication of the strength of the association. To get a sense of this

strength an Odds Ratio (ÔR) is required. The odds ratio was described in Subsection 2.9.2

including an intuitive reason for why it captures the strength of the relationship.

ÔRMH =

k∑
i=1

aidi/ni

k∑
i=1

bici/ni

(3.15)

The natural log of the odds ratio adheres to a normal distribution. As such, the natural

log of the odds ratio divided by the square root of the variance (σ) will form a Z value

from a standard normal distribution. While the variance cannot be directly calculated the
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variance of the natural log of the odds ratio can be (Robins et al., 1986). Following is a

formula for such a calculation.

V ar(ln ÔRMH) =

∑k
i=1 PiRi

2(
∑k

i=1 Ri)2
+

∑k
i=1 PiSi + QiRi

2(
∑k

i=1 Ri)(
∑k

i=1 Si)
+

∑k
i=1 QiSi

2(
∑k

i=1 Si)2
(3.16)

Where Pi, Qi, Ri, and Si are defined by the following relationships.

Pi =
ai + di

ni
, Qi =

bi + ci

ni
, Ri =

aidi

ni
, Si =

bici

ni
(3.17)

Given these formulae a Z value can be computed as follows.

Z =
ln(ÔRMH)√

V ar(ln(ÔRMH))

(3.18)

3.3.4 Outcome

The challenge during this phase was to determine whether or not “Amino acid composition

. . . reflects the action of natural selection to enhance metabolic efficiency” (Akashi and

Gojobori, 2002). This was accomplished through correlation analysis and the removal of

confounding factors.

The output of this phase of the analysis is various tables and figures depicting correla-

tions and stratified data. These figures and tables are the end result of this research and are,

therefore, the refined output of the overall process. They can be seen in the next chapter,

Results.
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4.1 Data Acquisition and Refinement

The main refinement criteria for the gene sets include eliminating any genes with less than

100 codons, genes that are candidates for horizontal gene transfer, and all but one gene in

a cluster of paralogs. Some additional criteria that emerged as necessary in the analysis

are the removal of genes that have premature stop codons (generally codes for an unusual

amino acid: selenocysteine) or that experienced a frame shift causing the number of nu-

cleotides in the sequence to be indivisible by three. Because these latter situations occurred

infrequently and often required human interaction, the genes matching these criteria were

discarded. Table 4.1 describes the number of genes in the initial data set, how many were

culled, for what reason, and the final number of genes. Some genes qualified for culling

for multiple reasons. In order to ensure that the sum of the number culled in each category

matched the total number culled an order was enforced in the culling process. The first cri-

terion matched is the one assigned to the gene. The order is phage, <100 , non translation

matching, partial codons, candidates for HGT, and finally, clusters of paralogs.
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Organism Num.
of
Genes
in
Genome

Partial
Codons

Genes
<100
codons

Phage
related
genes

Sequence
does
not
match
transla-
tion

HGT paralog Num.
of
Genes
After
Culling

Num.
of
Codons

Bacillus subtilis 4,112 2 488 89 2 433 58 3,040 1,010,337
Escherichia coli K12 4,311 0 433 68 3 288 201 3,318 1,127,136

Chlamydia trachomatis 895 0 66 0 0 33 2 794 297,317
Mycoplasma genitalium 484 0 24 0 0 49 0 411 152,946

Synechococcus sp WH 8102 3,167 0 247 107 0 160 61 2,592 923,920
Thermotoga maritima 1,858 1 166 11 1 176 18 1,485 503,237

Table 4.1: Number of Genes in the Genome and the Number Removed by each Culling
Criteria

NOTE- Num of genes in genome - number of protein coding genes in the genome, par-
tial codons - a codon containing less than three nucleotides, Genes <100 codons - genes
less than 100 codons not including start and stop codons, Phage related - genes that are
phage or transposon related, sequence does not match translation - when translated the nu-
cleotide sequence does not match the given protein sequence, HGT - any gene identified as
a candidate for horizontal gene transfer, paralog - genes identified as paralogous.

4.2 Major Codons and Energetic Costs

4.2.1 Eigenvectors

Table 4.2 contains the Eigenvectors for the six primary genomes. They are generated from

the covariance matrix which is based upon the relative frequency matrix. The Eigenvector

for Bacillus subtilis had to be reversed as per the criteria set forth in Section 3.2.5.

4.2.2 Distribution of Data in New Dimension

Once the first principal component (Eigenvector with largest Eigenvalue) is determined the

original frequency data is projected upon this new axis. The first principal component ex-

tends along the axis of greatest variance. Since the Eigenvector is a unit vector a simple dot
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Codon
Bacillus
subtilis

Escherichia
coli K12

Chlamydia
trachomatis

Mycoplasma
genitalium

Synechococcus
sp WH 8102

Thermotoga
maritima

aaa - 0.053 0.020 - 0.117 0.014 - 0.012 0.018
aac - 0.084 0.141 - 0.081 - 0.020 0.090 0.026
aag 0.053 - 0.018 0.117 - 0.014 0.016 - 0.018
aat 0.085 - 0.139 0.084 0.020 - 0.090 - 0.023
aca - 0.090 - 0.116 0.027 0.046 - 0.139 0.095
acc 0.101 0.173 - 0.175 - 0.046 0.310 0.002
acg 0.132 - 0.106 0.112 - 0.003 - 0.012 - 0.088
act - 0.144 0.050 0.029 0.003 - 0.158 - 0.010
aga 0.229 - 0.094 0.084 0.827 - 0.226 0.759
agc 0.102 0.062 - 0.054 - 0.071 0.089 0.044
agg 0.160 - 0.053 0.068 - 0.140 - 0.101 - 0.588
agt 0.015 - 0.161 0.175 - 0.007 - 0.070 - 0.037
ata 0.051 - 0.075 0.038 0.011 - 0.083 - 0.004
atc - 0.059 0.154 - 0.142 - 0.034 0.076 0.016
att 0.008 - 0.079 0.104 0.024 0.007 - 0.012
caa - 0.088 - 0.080 - 0.128 0.012 - 0.032 0.022
cac - 0.076 0.121 - 0.100 - 0.029 0.085 0.074
cag 0.086 0.082 0.128 - 0.012 0.033 - 0.004
cat 0.093 - 0.121 0.086 0.036 - 0.083 - 0.037
cca - 0.140 - 0.081 0.006 0.016 - 0.157 0.017
ccc 0.072 - 0.130 - 0.098 - 0.032 0.283 - 0.055
ccg 0.221 0.306 0.029 - 0.009 0.017 - 0.029
cct - 0.157 - 0.094 0.064 0.034 - 0.141 0.056
cga 0.075 - 0.121 - 0.029 - 0.041 - 0.152 - 0.046
cgc - 0.265 0.050 - 0.430 - 0.136 0.224 - 0.028
cgg 0.268 - 0.148 0.108 - 0.036 0.293 - 0.034
cgt - 0.459 0.366 0.199 - 0.473 - 0.031 - 0.062
cta - 0.026 - 0.054 - 0.161 - 0.016 - 0.035 0.011
ctc 0.066 - 0.029 - 0.218 - 0.011 0.097 0.081
ctg 0.204 0.488 - 0.037 - 0.018 0.149 - 0.040
ctt - 0.208 - 0.097 - 0.134 0.009 - 0.110 - 0.019
gaa - 0.045 0.027 - 0.123 0.022 0.013 0.041
gac - 0.021 0.074 - 0.084 - 0.012 0.062 0.015
gag 0.045 - 0.027 0.121 - 0.012 - 0.013 - 0.041
gat 0.022 - 0.072 0.091 0.015 - 0.060 - 0.015
gca - 0.045 - 0.024 - 0.014 0.031 - 0.134 0.041
gcc 0.100 - 0.041 - 0.097 - 0.005 0.211 0.016
gcg 0.063 0.031 0.041 - 0.007 0.028 - 0.022
gct - 0.118 0.034 0.069 - 0.018 - 0.105 - 0.036
gga 0.001 - 0.122 - 0.068 0.096 - 0.117 0.045
ggc 0.009 0.092 - 0.103 0.007 0.103 - 0.001
ggg 0.104 - 0.087 0.123 - 0.053 0.034 - 0.056
ggt - 0.114 0.117 0.048 - 0.051 - 0.018 0.010
gta - 0.091 0.002 - 0.003 0.037 - 0.063 0.015
gtc 0.096 - 0.055 - 0.159 - 0.008 - 0.002 0.019
gtg 0.113 0.019 0.056 - 0.015 0.235 - 0.022
gtt - 0.118 0.033 0.105 - 0.013 - 0.171 - 0.011
tac - 0.068 0.109 - 0.106 - 0.022 0.090 0.022
tat 0.079 - 0.107 0.090 0.022 - 0.088 - 0.020
tca - 0.033 - 0.124 - 0.006 0.041 - 0.155 0.028
tcc 0.082 0.139 - 0.210 - 0.016 0.311 0.038
tcg 0.117 - 0.054 0.043 - 0.016 - 0.008 - 0.034
tct - 0.273 0.135 0.053 0.068 - 0.167 - 0.035
tgc 0.060 0.038 - 0.177 - 0.009 0.020 - 0.006
tgt 0.026 - 0.061 0.176 0.027 - 0.019 - 0.002
tta - 0.100 - 0.194 0.245 0.061 - 0.187 - 0.005
ttc - 0.110 0.128 - 0.113 0.003 0.054 0.045
ttg 0.063 - 0.114 0.305 - 0.024 0.087 - 0.029
ttt 0.112 - 0.128 0.107 - 0.003 - 0.055 - 0.045

Table 4.2: Eigenvectors for Primary Genomes

Eigenvectors extend along axis of greatest variance in the codon vector space. As such they
have 59 dimensions, each associated with one of the codons.
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product produces this projection. Figure 4.3 depicts the distributions of relative frequency

data for the six primary genomes in the single dimension represented by their first principal

component.
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Table 4.3: Histogram Depiction of Frequency Data Projected Upon First Principal Compo-
nent – New Axis

Horizontal axis can be thought of as the new axis described by the first principal component
(Eigenvector with greatest Eigenvalue). There is a point on this axis for every gene. The
histograms above show the distribution of these data points.

The data form roughly normal distributions. An interesting exception is the Chlamydia

trachomatis genome. It forms a bimodal distribution and an interesting exercise would be
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to examine the nature of the genes in these two regions to determine possible reasons.

Another interesting finding that seems somewhat related to these distributions is the

selection of directionality for the Eigenvectors. The original derived Eigenvectors for the

six primary genomes all point in the correct direction except Bacillus subtilis and Chlamy-

dia trachomatis. These two genomes also happen to exhibit a negative mean in their Z ′
1

values. This leads to speculation as to the underlying cause and meaning for Bacillus sub-

tilis and Chlamydia trachomatis having negative means.

When the examination extends to the additional 19 genomes (Figure 4.4) the trend

continues to hold. Of the 19 genomes only two of them, Mycoplasma penetrans and My-

cobacterium tuberculosis CDC1551, required modification of Eigenvector direction. Of

the 25 genomes studied four generate default Eigenvectors exhibiting incorrect direction-

ality. Bacillus subtilis and Chlamydia trachomatis continue to be the only organisms that

exhibit a negative mean.

4.2.3 Factor Loadings

The dot product between Eigenvector and the original codon frequency matrix yields the

Z′
1 vector. This represents the original codon frequency data projected onto a vector that ex-

tends along the axis of greatest variance within the codon frequency space. The correlation

between each codon frequency vector (across the entire culled genomic codon frequency

data set) and the Z′
1 vector indicate the degree to which each codon contributes to the over-

all codon frequency trend. Each correlation is known as a factor loading. Table 4.5 depicts
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Table 4.4: Histogram Depiction of Frequency Data (from Supplementary Genomes) Pro-
jected Upon First Principal Component – New Axis
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the factor loading vectors for the primary genomes.

4.2.4 Major Codons

The codons associated with factor loadings that have a significantly positive value are iden-

tified as major. The factor loadings are correlations and so their significance is determined

by its T statistic. In the formulae that follow n is the number of genes in the data set. The

p value is calculated by determining the probability that the that a value is outside the T

statistic with n− 2 degrees of freedom. Tables 4.6 through 4.11 indicate which codons are

major for the six primary genomes.

T = r

√
n − 2√
1 − r2

(4.1)

p = pt(T, n − 2) (4.2)
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Codon
Bacillus
subtilis

Escherichia
coli K12

Chlamydia
trachomatis

Mycoplasma
genitalium

Synechococcus
sp WH 8102

Thermotoga
maritima

aaa 0.286 0.109 0.494 0.494 - 0.049 0.081
aac 0.294 0.560 0.275 0.275 0.323 0.081
aag - 0.289 - 0.101 - 0.494 - 0.494 0.062 - 0.081
aat - 0.299 - 0.554 - 0.278 - 0.278 - 0.321 - 0.071
aca 0.207 - 0.445 - 0.060 - 0.060 - 0.458 0.182
acc - 0.307 0.449 0.457 0.457 0.610 0.000
acg - 0.319 - 0.309 - 0.291 - 0.291 - 0.037 - 0.165
act 0.405 0.177 - 0.061 - 0.061 - 0.399 - 0.022
aga - 0.311 - 0.391 - 0.124 - 0.124 - 0.497 0.941
agc - 0.191 0.132 0.153 0.153 0.180 0.077
agg - 0.330 - 0.316 - 0.203 - 0.203 - 0.246 - 0.821
agt - 0.042 - 0.416 - 0.423 - 0.423 - 0.123 - 0.069
ata - 0.230 - 0.477 - 0.144 - 0.144 - 0.480 - 0.012
atc 0.199 0.536 0.467 0.467 0.251 0.000
att - 0.027 - 0.293 - 0.332 - 0.332 0.000 - 0.045
caa 0.315 - 0.391 0.442 0.442 - 0.137 0.054
cac 0.222 0.402 0.279 0.279 0.210 0.136
cag - 0.310 0.395 - 0.442 - 0.442 0.142 - 0.008
cat - 0.257 - 0.395 - 0.221 - 0.221 - 0.189 - 0.077
cca 0.308 - 0.246 - 0.014 - 0.014 - 0.428 0.000
ccc - 0.199 - 0.450 0.279 0.279 0.546 - 0.102
ccg - 0.382 0.628 - 0.095 - 0.095 0.050 - 0.056
cct 0.308 - 0.309 - 0.117 - 0.117 - 0.375 0.101
cga - 0.163 - 0.436 0.000 0.000 - 0.366 - 0.124
cgc 0.385 0.088 0.696 0.696 0.363 - 0.097
cgg - 0.458 - 0.446 - 0.290 - 0.290 0.459 - 0.127
cgt 0.671 0.602 - 0.314 - 0.314 - 0.058 - 0.180
cta 0.126 - 0.377 0.478 0.478 - 0.118 0.065
ctc - 0.218 - 0.127 0.640 0.640 0.293 0.132
ctg - 0.444 0.849 0.153 0.153 0.394 - 0.084
ctt 0.454 - 0.391 0.368 0.368 - 0.383 - 0.039
gaa 0.237 0.165 0.510 0.510 0.069 0.190
gac 0.092 0.384 0.354 0.354 0.263 0.000
gag - 0.240 - 0.164 - 0.507 - 0.507 - 0.068 - 0.190
gat - 0.094 - 0.368 - 0.361 - 0.361 - 0.254 - 0.050
gca 0.131 - 0.102 0.000 0.000 - 0.496 0.092
gcc - 0.306 - 0.160 0.352 0.352 0.534 0.000
gcg - 0.177 0.107 - 0.155 - 0.155 0.098 - 0.048
gct 0.338 0.154 - 0.176 - 0.176 - 0.324 - 0.078
gga - 0.003 - 0.520 0.153 0.153 - 0.378 0.103
ggc - 0.022 0.285 0.282 0.282 0.281 - 0.003
ggg - 0.328 - 0.357 - 0.307 - 0.307 0.094 - 0.174
ggt 0.353 0.358 - 0.142 - 0.142 - 0.048 0.000
gta 0.285 0.000 0.000 0.000 - 0.226 0.057
gtc - 0.260 - 0.213 0.480 0.480 - 0.007 0.059
gtg - 0.315 0.056 - 0.171 - 0.171 0.488 - 0.054
gtt 0.323 0.110 - 0.258 - 0.258 - 0.442 - 0.031
tac 0.240 0.400 0.338 0.338 0.277 0.070
tat - 0.277 - 0.386 - 0.273 - 0.273 - 0.271 - 0.063
tca 0.066 - 0.359 0.000 0.000 - 0.448 0.055
tcc - 0.199 0.370 0.511 0.511 0.506 0.058
tcg - 0.304 - 0.146 - 0.133 - 0.133 - 0.026 - 0.064
tct 0.508 0.336 - 0.097 - 0.097 - 0.361 - 0.057
tgc - 0.107 0.097 0.414 0.414 0.043 - 0.010
tgt - 0.050 - 0.165 - 0.385 - 0.385 - 0.036 - 0.003
tta 0.235 - 0.611 - 0.517 - 0.517 - 0.428 - 0.022
ttc 0.403 0.529 0.415 0.415 0.214 0.151
ttg - 0.186 - 0.422 - 0.638 - 0.638 0.204 - 0.075
ttt - 0.404 - 0.527 - 0.379 - 0.379 - 0.215 - 0.154

Table 4.5: Factor Loadings for Primary Genomes

Factor loadings have an entry for each codon that represents the correlation of that codon’s
frequency vector (vertical vector in the frequency matrix associated with that codon) and Z′.
A significantly positive value represents a codon that positively contributes to the overall
trend in bias for the organism. Such a codon is considered major.
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Leucine Serine Arginine Valine Alanine Glycine Proline Threonine
UUA UCU CGU GUU GCU GGU CCU ACU
UUG UCC CGC GUC GCC GGC CCC ACC
CUU UCA CGA GUA GCA GGA CCA ACA
CUC UCG CGG GUG GCG GGG CCG ACG
CUA AGU AGA
CUG AGC AGG

Isoleucine Stop Phenylalanine Aspartate Histidine Glutamine Glutamate
AUU UGA UUU GAU CAU CAA GAA
AUC UAA UUC GAC CAC CAG GAG
AUA UAG

Asparagine Lysine Cysteine Tyrosine Tryptophan Methionine
AAU AAA UGU UAU UGG AUG
AAC AAG UGC UAC

Table 4.6: RNA Triplet Codons Identified as Major for Bacillus subtillus

Codons in boldface type are major for the associated amino acid.

Leucine Serine Arginine Valine Alanine Glycine Proline Threonine
UUA UCU CGU GUU GCU GGU CCU ACU
UUG UCC CGC GUC GCC GGC CCC ACC
CUU UCA CGA GUA GCA GGA CCA ACA
CUC UCG CGG GUG GCG GGG CCG ACG
CUA AGU AGA
CUG AGC AGG

Isoleucine Stop Phenylalanine Aspartate Histidine Glutamine Glutamate
AUU UGA UUU GAU CAU CAA GAA
AUC UAA UUC GAC CAC CAG GAG
AUA UAG

Asparagine Lysine Cysteine Tyrosine Tryptophan Methionine
AAU AAA UGU UAU UGG AUG
AAC AAG UGC UAC

Table 4.7: RNA Triplet Codons Identified as Major for Escherichia coli K12

Codons in boldface type are major for the associated amino acid.
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Leucine Serine Arginine Valine Alanine Glycine Proline Threonine
UUA UCU CGU GUU GCU GGU CCU ACU
UUG UCC CGC GUC GCC GGC CCC ACC
CUU UCA CGA GUA GCA GGA CCA ACA
CUC UCG CGG GUG GCG GGG CCG ACG
CUA AGU AGA
CUG AGC AGG

Isoleucine Stop Phenylalanine Aspartate Histidine Glutamine Glutamate
AUU UGA UUU GAU CAU CAA GAA
AUC UAA UUC GAC CAC CAG GAG
AUA UAG

Asparagine Lysine Cysteine Tyrosine Tryptophan Methionine
AAU AAA UGU UAU UGG AUG
AAC AAG UGC UAC

Table 4.8: RNA Triplet Codons Identified as Major for Chlamydia trachomatis

Codons in boldface type are major for the associated amino acid.

Leucine Serine Arginine Valine Alanine Glycine Proline Threonine
UUA UCU CGU GUU GCU GGU CCU ACU
UUG UCC CGC GUC GCC GGC CCC ACC
CUU UCA CGA GUA GCA GGA CCA ACA
CUC UCG CGG GUG GCG GGG CCG ACG
CUA AGU AGA
CUG AGC AGG

Isoleucine Stop Phenylalanine Aspartate Histidine Glutamine Glutamate
AUU UGA UUU GAU CAU CAA GAA
AUC UAA UUC GAC CAC CAG GAG
AUA UAG

Asparagine Lysine Cysteine Tyrosine Tryptophan Methionine
AAU AAA UGU UAU UGG AUG
AAC AAG UGC UAC

Table 4.9: RNA Triplet Codons Identified as Major for Mycoplasma genitalium

Codons in boldface type are major for the associated amino acid.
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Leucine Serine Arginine Valine Alanine Glycine Proline Threonine
UUA UCU CGU GUU GCU GGU CCU ACU
UUG UCC CGC GUC GCC GGC CCC ACC
CUU UCA CGA GUA GCA GGA CCA ACA
CUC UCG CGG GUG GCG GGG CCG ACG
CUA AGU AGA
CUG AGC AGG

Isoleucine Stop Phenylalanine Aspartate Histidine Glutamine Glutamate
AUU UGA UUU GAU CAU CAA GAA
AUC UAA UUC GAC CAC CAG GAG
AUA UAG

Asparagine Lysine Cysteine Tyrosine Tryptophan Methionine
AAU AAA UGU UAU UGG AUG
AAC AAG UGC UAC

Table 4.10: RNA Triplet Codons Identified as Major for Synechococcus sp WH 8102

Codons in boldface type are major for the associated amino acid.

Leucine Serine Arginine Valine Alanine Glycine Proline Threonine
UUA UCU CGU GUU GCU GGU CCU ACU
UUG UCC CGC GUC GCC GGC CCC ACC
CUU UCA CGA GUA GCA GGA CCA ACA
CUC UCG CGG GUG GCG GGG CCG ACG
CUA AGU AGA
CUG AGC AGG

Isoleucine Stop Phenylalanine Aspartate Histidine Glutamine Glutamate
AUU UGA UUU GAU CAU CAA GAA
AUC UAA UUC GAC CAC CAG GAG
AUA UAG

Asparagine Lysine Cysteine Tyrosine Tryptophan Methionine
AAU AAA UGU UAU UGG AUG
AAC AAG UGC UAC

Table 4.11: RNA Triplet Codons Identified as Major for Thermotoga maritima

Codons in boldface type are major for the associated amino acid.
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4.2.5 Energetic Costs

The cost to synthesize an amino acid (number of high-energy phosphate bonds (∼P)) is

derived from its associated metabolic pathway. The costs depicted in Table 4.12 were

provided by the Biomedical Sciences program of Wright State University (Heizer, 2005).

Amino 
Acid

Chemo. 
Cost

Photo. 
Cost

Ala 11.7 11.7 
Gly 11.7 11.7 
Asp 12.7 12.7 
Asn 14.7 14.7 
Glu 15.3 15.3 
Gln 16.3 16.3 
Thr 18.7 18.7 
Pro 20.3 20.3 
Ser 22.7 22.7 
Val 23.3 23.3 
Cys 24.7 24.7 
Arg 27.3 27.3 
Leu 27.3 27.3 
Lys 30.3 30.3 
Ile 32.3 32.3 
Met 34.3 34.3 
His 38.3 40.3 
Tyr 50.0 52.0 
Phe 52.0 54.0 
Trp 74.3 76.3 

Table 4.12: Energetic Costs in high energy Phosphate Bonds (∼P) for Amino Acids within
Chemoheterotrophic and Photoautotrophic Organisms

The chemoheterotrophic costs were used in all the primary organisms except Syne-

chococcus sp WH 8102, photoautotrophic costs were used for this organism.
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4.3 Statistical Analysis

4.3.1 MCU to Energetic Costs Correlation

To determine whether or not “Amino acid composition . . . reflects the action of natural

selection to enhance metabolic efficiency” (Akashi and Gojobori, 2002) the major codon

usage and energetic costs of each gene are compared. If there is a negative correlation –

that is, genes with higher MCU tend to use amino acids with lower energetic costs – it can

be inferred that selective pressure exists such that less expensive amino acids are preferred

in highly expressed genes (those with high MCU). Given the major codons derived earlier,

major codon usage is calculated by dividing the number of major codons found in each

gene by the total number of codons in that gene. The average energetic cost of each gene is

calculated by summing the energetic costs of all the amino acids in the associated protein

and dividing that number by the total number of amino acids.

The resulting MCU/Energy values are plotted. Genes are sorted according to major

codon usage and placed on the horizontal axis. Since there are thousands of genes they are

binned for the purposes of visualization. This also allows easy comparison with previous

research in which the same binning technique was employed (Akashi and Gojobori, 2002).

Although each data point represents a gene, bin size is based upon the total number of

codons accumulated with the addition of each gene. Each bin is allowed to contain 1
20th

of the total number of codons. If the last bin is less than 40% full then they are included

into the previous bin. The results of the binned MCU/Energy comparisons can be seen in

Figure 4.1.
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4.3.2 Physicochemical

To remove the amino acid physicochemical properties as confounding factors, each of the

three physicochemical categories are examined separately to determine whether the neg-

ative correlation is consistent. This is accomplished by removing all but the amino acids

from one category for each of the analyses. See Table 2.3 for a listing of the internal,

external, and ambivalent amino acids. Tables 4.2, 4.3, and 4.4 show the MCU/Energy rela-

tionships with only internal, external, and ambivalent amino acids considered, respectively.

4.3.3 Correlation Coefficients

The results thus far have allowed for graphically visualizing the relationships between

MCU and Energy. In order to determine whether there is a negative correlation and whether

it is significant Spearman rank correlation is performed. Significance is determined by gen-

erating a T statistic and its p value.

Tstat =
rs ∗

√
n − 2√

1 − r2
s

(4.3)

p = pt(Tstat, n − 2) (4.4)
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Figure 4.1: MCU vs. Average Cost

Comparison of average MCU and average cost in high energy phosphate bonds (∼P)
in six bacterial species: (A) Bacillus subtilis; (B) Escherichia coli K12; (C) Chlamydia
trachomatis; (D) Mycoplasma genitalium G-37; (E) Synechococcus sp WH 8102; (F)
Thermotoga maritima MSB8, error bars represent standard error of the means.

Reproduced from (Heizer, 2005).
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Figure 4.2: MCU vs. Average Cost - Internal Amino Acids

Comparison of average MCU and average cost in high energy phosphate bonds (∼P)
among internal amino acids in six bacterial species: (A) Bacillus subtilis; (B) Escherichia
coli K12; (C) Chlamydia trachomatis; (D) Mycoplasma genitalium G-37; (E) Synechococ-
cus sp WH 8102; (F) Thermotoga maritima MSB8, error bars represent standard error of
the means.

Reproduced from (Heizer, 2005).
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Figure 4.3: MCU vs. Average Cost - External Amino Acids

Comparison of average MCU and average cost in high energy phosphate bonds (∼P)
among external amino acids in six bacterial species: (A) Bacillus subtilis; (B) Escherichia
coli K12; (C) Chlamydia trachomatis; (D) Mycoplasma genitalium G-37; (E) Synechococ-
cus sp WH 8102; (F) Thermotoga maritima MSB8, error bars represent standard error of
the means.

Reproduced from (Heizer, 2005).
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Figure 4.4: MCU vs. Average Cost - Ambivalent Amino Acids

Comparison of average MCU and average cost in high energy phosphate bonds (∼P)
among ambivalent amino acids in six bacterial species: (A) Bacillus subtilis; (B) Es-
cherichia coli K12; (C) Chlamydia trachomatis; (D) Mycoplasma genitalium G-37;
(E) Synechococcus sp WH 8102; (F) Thermotoga maritima MSB8, error bars represent
standard error of the means.

Reproduced from (Heizer, 2005).
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The Spearman correlation coefficient for each of the analyses so far can be found in

table 4.13.

Organism rS rS int rS ext rS amb
Bacillus subtilis -0.37 -0.27 -0.2 -0.3

Chlamydia trachomatis -0.1 -0.24 -0.21 0.1
Chlamydia trachomatis + -0.06* -0.16* -0.08* -0.01*

Escherichia coli K12 -0.27 -0.11 -0.16 -0.25
Mycoplasma genitalium -0.15 0.06* -0.05* -0.02*

Mycoplasma genitalium + -0.04* -0.01* -0.08* 0.1
Synechococcus sp WH 8102 -0.26 -0.3 -0.01* -0.26

Thermotoga maritima -0.19 -0.07 -0.07 -0.05*
Thermotoga maritima* -0.21 -0.07 -0.07 -0.07

Table 4.13: Spearman Rank Correlation Over Whole Genome, Internal, External, and Am-
bivalent Amino Acids

Note - * denotes no statistical significance (p>0.05), rS - Spearman rank correlation
overall, rS – Spearman rank correlation internal, rS – Spearman rank correlation external,
rS – Spearman rank correlation ambivalent, number of codons does not include start or
stop codon, + denotes values before adjusting for amino acids that the organism is unable
to produce.

Reproduced from (Heizer, 2005).

While an in-depth analysis was not performed on the extended set of 19 genomes their

Spearman rank correlations were calculated for E vs. MCU (Table 4.14). Of the nineteen

genomes all but seven exhibited the expected negative correlation. It is unknown at this

time why the seven do not conform to the expected negative correlation; however, it is

thought to be related to GC content. Each genome has a mean GC content (percentage)

and an associated standard deviation. All but one of the genomes that exhibited contrary

behavior had GC content means well above two standard deviations from 50% (the one was

1.95 standard deviations from 50%). As will be presented in Section 5.3.1 this may explain
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the non-conformance.

Organism rS

Aeropyrum pernix 0.04*
Chlorobium tepidum TLS -0.03*

Clostridium perfringens -0.51
Helicobacter pylori J99 -0.32

Lactobacillus plantarum WCFS1 0.13
Mycoplasma penetrans -0.42

Mycobacterium tuberculosis CDC1551 0.07
Nitrosomonas europaea ATCC 19718 -0.03*

Nostoc sp. PCC 7120 0.20
Prochlorococcus marinus str. MIT 9313 -0.06

Pseudomonas aeruginosa PA01 0.19
Pseudomonas putida KT2440 0.05

Pyrococcus furiosus DSM 3638 0.05
Staphylococcus aureus subsp. aureus MW2 -0.43

Streptococcus pneumoniae R6 -0.50
Streptomyces coelicolor A3(2) 0.15

Thermoplasma acidophilum -0.07
Thermosynechococcus elongatus BP-1 -0.24

Thermus thermophilus HB27 -0.16

Table 4.14: Spearman Rank Correlation Over Whole Genome for Extended Genomes

Note - * denotes no statistical significance (p>0.05), rS - Spearman rank correlation.

4.3.4 Parasitic Behavior

Note that all of the six primary organisms exhibit a significantly negative correlation be-

tween metabolic costs and expressivity except the two parasitic organisms (Mycoplasma

genitalium and Chlamydia trachomatis) (Table 4.13). These organisms are minimalists and

tend to derive at least some of their amino acids from their host. When amino acids that are

freely available in the parasite’s environment (and that the parasites are unable to produce
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on their own) are removed from the energetic calculations the rS values for their correla-

tions became -0.15 and -0.10 respectively (Table 4.13). Both are statistically significant

using the standard Spearman rank T statistic methodology. Figure 4.5 depicts a side-by-

side comparison of Chlamydia trachomatis adjusted and unadjusted. Figure 4.6 depicts

Mycoplamsa genitalium.

4.3.5 Functional Categories and Spearman

Similar to the way in which the physicochemical properties were removed as confounding

factors, genes within each functional category are examined separately. Table 4.15 portrays

the Spearman rank correlation for the MCU/Energy relationship within each functional

category. As before significance is set for the Spearman rank T statistic at α = 0.05. All

correlations for all functional categories were either negative or not significant.

4.3.6 Amino Acid Abundance

Intuitively, if there is a negative correlation between MCU and energetic costs, one would

expect more expensive amino acids to decrease in abundance in more highly expressed

genes. To see if this holds true amino acid abundance is examined in detail. Instead of

comparing MCU to energetic costs, amino acid abundance is compared to energetic costs.
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Figure 4.5: Chlamydia trachomatis Adjusted vs. non-Adjusted for Amino Acid Biosyn-
thetic Costs

(A) adjusted overall (B) non-adjusted overall (C) adjusted internal (D) non-adjusted
internal (E) adjusted external (F) non-adjusted external (G) adjusted ambivalent (H)
non-adjusted ambivalent

Reproduced from (Heizer, 2005).
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Figure 4.6: Mycoplamsa genitalium Adjusted vs. non-Adjusted for Amino Acid Biosyn-
thetic Costs

(A) adjusted overall (B) non-adjusted overall (C) adjusted internal (D) non-adjusted
internal (E) adjusted external (F) non-adjusted external (G) adjusted ambivalent (H)
non-adjusted ambivalent

Reproduced from (Heizer, 2005).
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Functional Classification Num. Genes rS Num. Genes rS Num. Genes rS Num. Genes rS Num. Genes rS

Translation; ribosomal structure and biogenesis            125 -0.46 137 -0.32 89  -0.04* 118 -0.27 110 -0.26
Transcription                                              232 -0.14 188 -0.39 19    0.22* 61 -0.39 62    0.17*
DNA replication; recombination and repair                  96 -0.38 140 -0.47 52   -0.23* 72 -0.43 60   -0.02*
Cell division and chromosome partitioning                  32   -0.31* 27   -0.27* 9   N.A. 21   -0.31* 15   -0.06*
Posttranslational modification; protein turnover; chaperones 86 -0.53 104 -0.45 25 0.48 109 -0.38 47   -0.10*
Cell envelope biogenesis; outer membrane                   153 -0.34 161   -0.15* 29  -0.02* 145 -0.30 59 -0.28
Cell motility and secretion                                43 -0.39 117   -0.11* 35  -0.28* 23   -0.12* 48   -0.19*
Inorganic ion transport and metabolism                     145 -0.21 134   -0.02* 15  -0.06* 137   -0.13* 60   -0.16*
Signal transduction mechanisms                              113 -0.45 110 -0.47 13   0.43* 153 -0.33 46    0.03*
Energy production and converSion                           143 -0.36 221    0.08* 36  -0.24* 128 -0.20 94  -0.09*
Carbohydrate transport and metabolism                      254 -0.45 302 -0.28 29  -0.14* 95 -0.23 143 -0.38
Amino acid transport and metabolism                         257 -0.30 295 -0.23 46  -0.05* 157 -0.29 142   -0.16*
Nucleotide transport and metabolism                        62   -0.19* 85 -0.32 15   0.13* 54 -0.36 40    0.22*
Coenzyme metabolism                                        97 -0.28 113   -0.10* 31 -0.39 96 -0.24 45   -0.05*
Lipid metabolism                                           80 -0.36 74 -0.36 32   -0.26* 42   -0.22* 18   -0.11*
Secondary metabolites biosynthesis; transport and catabolism 75 -0.28 76 -0.28 4   N.A. 58 -0.02* 16   -0.30*

Thermotoga maritima 
MSB8Bacillus subtilis Escherichia coli K12

Chlamydia 
trachomatis D/UW-

3/CX
Synechococcus sp. 

WH 8102 

Table 4.15: Number of Genes and Spearman Rank Correlation within Functional Cate-
gories of five Bacterial Species

Note - functional categories were obtained from the NCBI website,* denotes no statistical
significance (p>0.05), rS is the Spearman rank correlation, Num. Genes is the number of
genes within each functional category, N.A. – less than 10 genes in this category and thus
is not applicable.

Data is the result of scripts written and executed by this author. Table format repro-
duced from (Heizer, 2005).
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Abundance is calculated for each amino acid in each gene. A Spearman rank correlation is

then calculated for that amino acid’s abundance against the energetic costs for the genes in

the organism. To remove functional categories as possible confounding factors a Mantel-

Haenszel test is performed. If both the Spearman rank coefficient and the Mantel-Haenszel

Z statistic are negative and significant then the amino acid abundance is said to decline

with respect to energetic costs. If they are both positive and significant they are said to rise.

If either is not significant or there is disagreement as to direction of change then they are

identified as having no change. Significance for the Spearman rank correlation coefficient

is set at α = 0.05. Significance in the Mantel-Haenszel test is set at α = 0.05
k

where k is

the number of categories. This is done in order to provide correction using a sequential

Bonferroni test. Table 4.16 contains the Z and rS data on the primary genomes for which

functional category data was available.
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Amino Acid Chemo. Cost Photo. Cost rS Z rS Z rS Z rS Z rS Z
Ala 11.70   11.70   0.06   0.11* 0.08   -0.15   -0.15   -0.30   0.26   0.64   -0.09   -0.37   
Gly 11.70   11.70   -0.06   -0.05* 0.23   0.28   -0.31   -1.02   0.16   0.28   -0.06   -0.39   
Asp 12.70   12.70   0.16   -0.07* 0.18   -0.48   -0.14   0.50   0.07   0.44   0.03* -0.18* 
Asn 14.70   14.70   0.21   0.53   0.04   0.83   0.17   -0.38   -0.18   -0.58   0.19   0.08* 
Glu 15.30   15.30   0.30   0.62   0.20   0.40   -0.12   0.82   0.09   0.48   0.33   0.49   
Gln 16.30   16.30   0.07   0.73   -0.12   1.00   0.13   -0.67   -0.09   -0.36   0.13   1.19   
Thr 18.70   18.70   0.14   0.09*    0.01* -0.36   0.35   0.51      0.03*  0.04* -0.02* 0.41* 
Pro 20.30   20.30   -0.06   0.25   -0.07   0.03* 0.24   1.31    -0.01*  0.02* -0.02* -0.07* 
Ser 22.70   22.70   -0.09   -0.14* -0.22   -0.30   0.10   0.94   -0.14   -0.28   -0.14   -0.13* 
Val 23.30   23.30   0.08   0.17   0.19   0.24   -0.50   -1.53   0.18   0.51   -0.22   -0.46   
Cys 24.70   24.70   -0.14   -1.17   -0.14   -1.15   -0.05* -0.19* -0.06   -0.73   0.10   -0.03* 
Arg 27.30   27.30   -0.08   -0.29   -0.04   -0.01* -0.32   -1.10   0.11   0.39   0.09   0.18* 
Leu 27.30   27.30   -0.27   -0.63   -0.29   -0.85   0.18   0.48   -0.06   -0.29   -0.23   -0.43   
Lys 30.30   30.30   0.32   0.83   0.26   1.28   0.11   0.13* -0.05   -0.11* 0.26   0.65   
Ile 32.30   32.30   -0.15   -0.24   -0.04   -0.10* 0.23   0.61   -0.09   -0.37   -0.23   -0.63   

Met 34.30   34.30   -0.14   -0.38   0.09   0.23* -0.11   -0.86   0.16   0.91   -0.06   -0.51   
His 38.30   40.30   -0.12   -0.51   -0.14   -0.52   0.18   1.16      0.00*  -0.35   0.16   0.72   
Tyr 50.00   52.00   -0.14   -0.14*  -0.01* 0.30   0.06* 0.20* -0.09   -0.49   0.11   0.34   
Phe 52.00   54.00   -0.32   -1.09   -0.10   -0.30   0.07* 0.16* -0.22   -0.91   -0.13   -0.40   
Trp 74.30   76.30   -0.16   -0.90   -0.21   -1.27   -0.06* -1.10   -0.14   -1.17   0.06   0.78   

Thermotoga 
maritima MSB8Bacillus subtilis Esherichia coli K12

Chlamydia 
trachomatis D/UW-

3/CX
Synechococcus sp. 

WH 8102 

Table 4.16: Production Costs of Amino Acids, Spearman Rank Correlation and Z Scores
in Five Bacterial Species

Note * - denotes no statistical significance (p>0.05), rS – Spearman rank correlation,
Z – Mantel-Haenszel Z score, Chemo. Cost - chemoheterotrophic costs, Photo. Cost –
photoautotrophic costs.

Data is the result of scripts written and executed by this author. Table format repro-
duced from (Heizer, 2005).
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Discussion

5.1 Findings

5.1.1 Expansion, Automation, and Clarification

The research described in this thesis has successfully expanded the study of metabolic

efficiency from the original two genomes (Akashi and Gojobori, 2002) to a complete anal-

ysis of four additional genomes and a partial analysis of nineteen supplementary genomes

(Table 3.1). The entire analytic procedure is completely automated. Automation is accom-

plished through the use of PERL scripts operating on data files downloaded from NCBI.

Much of the original research relied directly upon existent data from previous and sep-

arate research and did not actually calculate major codon usage or horizontal gene transfer

candidacy. In order to automate and make clear these activities many concepts and pro-

cedures from disparate research had to be gathered and rigorously codified. This included

such diverse methodologies as correspondence analysis, calculation of gene Mahalanobis

distance, and performance of Mantel-Haenszel tests. These unrelated procedures whose

descriptions reside in various and distinct publications have been brought together into one

cohesive and clearly described package.

Important decisions along the way included determining the precise meaning of state-
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ments such as “Alignments with at least 60% identity over 60 or more amino acids” (Akashi

and Gojobori, 2002). Did this imply a sliding-window examination of the two sequences

looking for 36 exact matches somewhere within the alignment, or was it simply indicating

that the identity metric provided by BLAST (Altschul et al., 1990) should be examined and

a threshold of 60% utilized? Does the statement “The equivalent frequencies of synony-

mous codons are taken to be unity regardless of the synonymous codon numbers (Kanaya

et al., 1996)” hold true even if a particular amino acid is unused (a frequency of 0)? At

each instance of such questions an attempt was made to document within the code and lay-

out in this thesis the decisions and the reasons for which they were made. In many cases

simple reverse engineering techniques were employed while in others correspondence with

the original authors was necessary (see appendix E for documentation referencing author

correspondence).

5.1.2 A Comparison with the Findings of the Original Research

The original studies found that highly expressed genes tended to use less expensive amino

acids sometimes saving millions of high energy phosphate bonds (∼P) during biosynthesis

of macromolecules. Additionally it was found that the contribution of selection for ener-

getic efficiency is prevalent throughout the protein primary structure. That is, expensive

amino acids are used less in highly expressed proteins both in the internal and external

regions of the protein.

The findings of this thesis support those of the early research. As expected, a negative

correlation was found between expressivity and energetic costs associated with protein pro-
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duction for the additional four genomes examined (Figure 4.1). This trend is not localized

to any individual or group of gene functional categories (Table 4.15) and it is isolated from

the constraints of protein primary structure (Table 4.13).

In order to ensure that the techniques employed in this research are in agreement

with those that came before, Bacillus subtilis and Escherichia coli were included in the

analysis. The results differ only slightly from those originally published (Table 5.1) and

those differences can be attributed to the fact that a small number (approximately 10 for

Bacillus subtilis) of new genes have been discovered since the original research and as

many as 25 genes have been discarded (Bacillus subtilis). This reduction in the number of

genes is believed to be due to subsequent decisions regarding the veracity of the original

data.

Original Research rS Current Research rS

Bacillus subtilis -0.351 -0.377
Escherichia coli -0.252 -0.267

Table 5.1: Comparison Between Historical and Current Results

Values are Spearman rank correlation coefficient (rS) scores measuring the correlation be-
tween MCU and average energetic costs for protein production with statistical significance
of p<0.05.

Thermophilic and Photoautotrophic Genomes

As part of the expansion of the metabolic efficiency research, thermophilic and photoau-

totrophic genomes (Thermotoga maritime and Synechococcus sp WH 8102, respectively)
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were examined. These genomes were also consistent in exhibiting a negative correlation

between gene expressivity and protein biosynthesis costs (Figures 4.1 and 5.2). As with

the original research, they demonstrated a lack of localization to any individual or group

of gene functional categories (Table 4.15) and it is isolated from the constraints of protein

primary structure (Table 4.13).

Genome Correlation (rS)
Thermotoga maritima -0.19

Synechococcus sp WH 8102 -0.26

Table 5.2: Thermophilic and Photoautotrophic Results

Values are Spearman rank correlation coefficient (rS) scores measuring the correlation be-
tween MCU and average energetic costs for protein production with statistical significance
of p<0.05.

5.1.3 Data Anomalies in Parasites

In addition to thermophilic and photoautotrophic organisms, two parasitic species were

examined (Mycoplasma genitalium and Chlamydia trachomatis). Neither of these had sta-

tistically significant correlations between expressivity and metabolic costs (Table 4.13).

These organisms are minimalists and tend to derive some of their building blocks from

their host. When amino acids that are freely available in the parasite’s environment (and

that the parasites are unable to produce on their own) are removed from the energetic cal-

culations their rS values become -.15 and -.10 respectively (Table 4.13), both statistically

significant using the standard Spearman rank T statistic methodology. Figure 5.1 depicts

115



5.1. FINDINGS July 15, 2005

a side-by-side comparison of Chlamydia trachomatis adjusted and unadjusted. Figure 5.2

depicts Mycoplamsa genitalium. See Table 5.3 for a listing of the amino acids that are

removed in the above described process.
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Figure 5.1: Chlamydia trachomatis Adjusted vs. non-Adjusted for Amino Acid Biosyn-
thetic Costs

(A) adjusted overall (B) non-adjusted overall

Table reproduced from (Heizer, 2005).

Chlamydia trachomatis Mycoplasma genitalium
HIS ARG
VAL LEU
ISO LYS
THR MET
MET PHE
ARG PRO
ALA TRP

TYR

Table 5.3: Removed Amino Acids from Parasitic Organisms

This is an excellent example of the kinds of discoveries possible during the analysis of
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Mycoplasma genitalium G-37
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Figure 5.2: Mycoplamsa genitalium Adjusted vs. non-Adjusted for Amino Acid Biosyn-
thetic Costs

(A) adjusted overall (B) non-adjusted overall

Table reproduced from (Heizer, 2005).

amino acid selection. A seemingly anomalous result leads to questions of cause followed

by discovery and verification.

5.1.4 Amino Acid Abundance

Intuitively, usage of less energetically costly amino acids should increase in more abundant

proteins. Previous research showed this to be the case for B. subtilis and E. coli (Akashi

and Gojobori, 2002). That same research indicated that it was not the result of membership

in any given functional category of gene. The research described in this thesis supports that

finding (Table 4.16).

Assure Equivalent Methodologies

Once again, to ensure equivalent methodologies Escherichia coli and Bacillus subtilis were

included in the analysis and the results are compared to those that came before. A direct,
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side-by-side, comparison could not be performed between current Mantel-Haenszel results

and those derived earlier. This is because slightly different functional categories (Tatusov

et al., 1997, 2003; Riley, 1993) (Table 2.5) than those originally used were employed.

Clusters of Orthologous Groups of proteins (COGs) listed on NCBI were utilized because

they are standardized across all the target genomes and because they support automation.

Even without the per category comparison the overall result of whether a given amino

acid was confounded by functional categories and whether it was increasing or decreasing

in abundance can be compared. The results agreed very closely with those of previous

researchers. For Escherichia coli the same results were realized as previously achieved

for all amino acids except Asn and Pro. In these two amino acids the only difference was

whether both the change in abundance across the entire genome and the Mantel-Haenszel

results were significant. In order to be classified as increasing or decreasing in abundance

both statistics had to agree in direction and both be significant. In the previous results Asn

had an rS that was not significant and Pro had a Z that was not significant. Both were

significant in the current research. In Bacillus subtilis disagreement exists in three amino

acids; Ala, Gly, and Tyr. In all three cases the Mantel-Haenszel Z statistic did not achieve

significance while theirs did. These minor discrepancies are explained by the utilization

of different functional categories when stratifying the data. The overall trend of using less

expensive amino acids in highly expressed genes is still indicated and is still shown not to

be confounded by functional category.
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Additional Genomes

Included in this analysis were thermophilic and photoautotrophic genomes. Both organ-

isms (Thermotoga maritima and Synechococcus sp WH 8102) exhibited similar amino acid

abundance trends to the chemoheterotrophic organisms (Escherichia coli and Bacillus sub-

tilis). Expensive amino acids generally follow a decreasing trend as expressivity increases

(Table 4.16). Inexpensive amino acids generally follow an increasing trend under the same

circumstances. When the non-produced amino acids are removed from consideration for

the parasitic organisms (Table 5.3 for a listing of these amino acids) they too generally

follow the expected trends.

5.2 Summary and Contribution

From the outset the goal of this research has been to automate, clarify, and expand the

number of genomes examined in the analysis of metabolic efficiency in amino acid biosyn-

thesis. These goals support the terminal objective of allowing for large-scale genomic

analysis leading to validation of the theory of energetic cost as causative explanation for

amino acid selection in highly expressed genes. This has been accomplished. The use of

PERL scripts has automated the analytic process allowing the expansion of the in-depth

examination to six genomes (from two) and the supporting investigation to 19 genomes.

Additional genomes could easily be added.

The techniques and procedures for determining relative expression rates and candi-

dacy for horizontal gene transfer are described in various disparate articles and were not
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implemented by the original metabolic efficiency researchers. Instead, the resultant data

from these articles was used directly to begin their analysis. In order to automate this pro-

cess the procedures described were implemented for the current research. At each step

where there was any question as to the appropriate action to be taken an effort was made

to ascertain the correct procedural task, to correctly implement it, and to clearly document

the reasons for the choice.

The theory of energetic cost as a primary factor in amino acid selection in highly

expressed genes is supported by the research described herein. It holds for the thermophilic,

photoautotrophic, and parasitic organisms in the study.

5.3 Future Work

While this research confirms earlier findings it also uncovered several inconsistencies in

the data. These apparent contradictions point the way to excellent opportunities for future

research.

5.3.1 Data Discrepancies

During the examination of data in a single dimension (determined by first principal com-

ponent) a few genomes exhibited unusual behavior in the form of bimodal distributions

(Figures 4.3 and 4.4). The genomes in question are Prochlorococcus marinus str. MIT

9313, Chlamydia trachomatis, and possibly Lactobacillus plantarum WCFS1. An inter-

esting exercise would be to examine what makes the genes different that fall into these
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distinct modes. Some possible investigative techniques include increasing the dimension-

ality to two or three dimensions to see the gene distribution with increased granularity vs.

the simple distribution density. Certain categories could, perhaps, be displayed with dif-

ferent colors to see if the genes within any given category fall into specific regions of the

cloud. If so it may lead to a category predictive capability using codon frequency data and

some form of classifier.

Also, out of the 25 genomes there were only four in which the standard Eigenvector

derivation did not yield the correct directionality for the new axis. It would be interesting

to determine what it is about these four genomes that requires a reversal in direction for the

Eigenvector.

Finally, there are seven genomes in the 19 supplementary that exhibited a positive

correlation when energetic costs are compared with expressivity. This is unexpected and

raises concerns about the validity of the theory on selection. These organisms should be

a major focus for future study to determine why they do not adhere to the expected trend.

One explanation has been put forth in other research (McHardy et al., 2004). “Overall GC-

content of a genome has been found in a recent, large-scale study of 40 bacterial genomes

to constitute the major influence on codon usage. Expression-level dependent influences

thus may only be present if there is ‘room’ in codon usage and their effect is not overridden

by stronger forces such as maintaining the genomic GC-content in genomes with a biased

base composition.”

It is important to confirm whether or not this is the cause of the discrepancies in the

data. Further, it will be important to quantify just how much GC-content bias must exist in
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order to mask the major codon usage.

5.3.2 Better Means of Predicting Expressivity

Issues with GC bias and with Eigenvector directionality indicate the need for a better

method for predicting expressivity. One approach would be to select the best method from

those already in existence (see Section 2.5, Literature Survey). In order to perform such

a comparison known good data representing actual expression rates for various genomes

will be required. It will then be possible to compare the various rankings generated by the

existent methods and determine which are best.

5.3.3 Eukaryotic Genomes

A rich area for research will be the exploration of the extent to which codon and energetic

requirement biases exist in eukaryotes. While more complex and difficult the payoff to

science is potentially much greater.

5.3.4 Energy Predictor

Over the duration of this research it has become increasingly clear that the energetic cost

trends might be used to uncover interesting phenomena within a given species (e.g. para-

sitic behavior). Additionally, there may be a way in which to identify an intrinsic or per-

ceived energetic cost for any given genome simply by examining a small subset of genes.

This could be used to predict certain behaviors for the organism. As more data is gathered
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more and more classifications of behavior (such as parasitic behavior) could be accumu-

lated.

5.3.5 Increased Automation and Availability

While the procedure is indeed automated more can be done in this area. To make this set

of scripts truly user friendly, and therefore, a tool that can be used by users outside this

researcher’s lab, a much better user interface must be implemented. If a web interface is

employed then remote access to the tool can be achieved and the difficulties of software dis-

tribution avoided. There is room for improvement in speed, efficiency, and standardization.

One method of standardization would be to include the use of BioPERL.
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Appendix A: Degeneration Table
(Codon-Amino Acid-Abbreviation
Cross-reference)

U C A G
U UUU Phenylalanine Phe F UCU Serine Ser S UAU Tyrosine Tyr Y UGU Cysteine Cys C

UUC Phenylalanine Phe F UCC Serine Ser S UAC Tyrosine Tyr Y UGC Cysteine Cys C
UUA Leucine Leu L UCA Serine Ser S UAA Stop UGA Stop
UUG Leucine Leu L UCG Serine Ser S UAG Stop UGG Tryptophan Trp W

C CUU Leucine Leu L CCU Proline Pro P CAU Histidine His H CGU Arginine Arg R
CUC Leucine Leu L CCC Proline Pro P CAC Histidine His H CGC Arginine Arg R
CUA Leucine Leu L CCA Proline Pro P CAA Glutamine Gln Q CGA Arginine Arg R
CUG Leucine Leu L CCG Proline Pro P CAG Glutamine Gln Q CGG Arginine Arg R

A AUU Isoleucine Ile I ACU Threonine Thr T AAU Asparagine Asn N AGU Serine Ser S
AUC Isoleucine Ile I ACC Threonine Thr T AAC Asparagine Asn N AGC Serine Ser S
AUA Isoleucine Ile I ACA Threonine Thr T AAA Lysine Lys K AGA Arginine Arg R
AUG Methionine Met M ACG Threonine Thr T AAG Lysine Lys K AGG Arginine Arg R

G GUU Valine Val V GCU Alanine Ala A GAU Aspartate (Aspartic acid) Asp D GGU Glycine Gly G
GUC Valine Val V GCC Alanine Ala A GAC Aspartate (Aspartic acid) Asp D GGC Glycine Gly G
GUA Valine Val V GCA Alanine Ala A GAA Glutamate (Glutamic acid) Glu E GGA Glycine Gly G
GUG Valine Val V GCG Alanine Ala A GAG Glutamate (Glutamic acid) Glu E GGG Glycine Gly G
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Appendix B: Required PERL Packages

Math::CDF

PDL

PDL::MatrixOps

PDL::Matrix
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Appendix C: Description of PCA

C.1 Covariance Matrix

A vector (first principal component) that extends along the axis of greatest variance is

desired. For this reason it is logical to begin with a covariance matrix.

var(x) =

∑
(xi − x̄)(xi − x̄)

n − 1
(C.1)

cov(x) =

∑
(xi − x̄)(yi − x̄)

n − 1
(C.2)

Cell 1,1 of the covariance matric contains the covariance between codon 1 and codon 1 (i.e.

the variance of codon 1). Cell 1,1 of the covariance matric contains the covariance between

codon 1 and codon 2.

C.2 Eigenvector

Next, generate Eigenvectors and values from the above covariance matrix.

Given a matrix A and an Eigenvector v and an Eigenvalue λ the following formula

holes.

Av = λv (C.3)
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An alternative name for the Eigenvalue is proper or characteristic value. With a little

algebra, the following equation falls out:

Av = λv (C.4)

Av − λv = 0 (C.5)

Av − λIv = 0 (C.6)

(A − λI)v = 0 (C.7)

So given the Eigenvalues one should be able to solve for the Eigenvector using the

above equation. In order to solve for the Eigenvalues a determinant must be utilized.

C.3 Determinants

To solve the above equation a determinant must be employed. Determinants can be used to

determine if a matrix is invertible. The nomenclature is as follows:

A−1 =
1

detA
(C.8)

detA = |A| (C.9)
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C.4 Characteristic Equation and Polynomial

If the reduced equation is presented as a characteristic polynomial:

P (λ) = det(Av − λI)v = 0 (C.10)

As an example if there were an A defined as follows:

A =

⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ (C.11)

Solve for the λ by performing the following operations:

A − λI =

⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠−

⎛⎜⎜⎝ λ 0

0 λ

⎞⎟⎟⎠ (C.12)

=

⎛⎜⎜⎝ a − λ b

c d − λ

⎞⎟⎟⎠ (C.13)

det(A − λI) = ad − aλ − dλ + λ2 − bc = 0 (C.14)

P (λ) = λ2 − (a + d)λ + (ad − bc) = 0 (C.15)

If solve for λ will get 2 roots, λ1 and λ2. Now that the Eigenvalues have been acquired

we can solve for the Eigenvector (v below).

(A − λI)v = 0 (C.16)

Eigenvectors have the useful property of being perpendicular to each other. They are

also of unit length.
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Appendix D: Entire Flow

A large portion of this research involves the manipulation and interrogation of text files

using PERL scripts. The design is modular with outputs of one script used as inputs to

other scripts. Figure D.1 illustrates the flow of data through the entire script network. At

the top left (bottom left if not viewed in the landscape mode) the first annotated sequence

file is fed into the first script. From there the data set is refined and passed through the

many states of analysis until the results are written in the lower right (top right in portrait

mode) portion of the figure.

136



July 15, 2005 

.i
ge

tG
en

e
s 

<
10

0 
ph

ag
e 

pr
eP

ro
ce

ss
 

.o
u

.to

pr
eM

or
e 

cu
ll

Fr
om

L
i

st
 

H
G

T 
fi

le
  

H
G

T.
t

xt
 

.c
gs

 
St

at
s 

re
 

SD
  

.p
pp

 
<

ge
ne

>
 

se
q,

 

cr
ea

te
Fa

a co
nv

er
t 

.p
pp

.f
aa

 
>

gi
 

pe
pt

id
e 

fo
rm

at
d

B
la

st
  

fo
rm

at
te

d 
 

bl
as

tF
il

te
rP

rj
 

B
la

st
.o

E
va

ls
.o

St
op

.f
la

pa
rs

eO
ut

pu
tF

i
le

 

R
em

ov
ed

.o
ut

 
-L

is
t o

f 

G
en

om
e.

ou
t 

-l
is

t o
f 

ge
ne

s 

P
ar

t4

N
C

B
I.p

P
ar

t4
St

ar
t.d

b 
-l

is
t o

f 
ge

ne
s 

 
w

it
h 

co
g 

w
it

h 
se

q 

C
re

at
eM

at
r

M
at

ri
x.

t

am
in

oC
or

l 
-r

ea
d 

an
d 

co
nv

er
t 

-c
ou

nt
 A

A
 

-s
pe

ar
ra

nk
 a

ll
 

-S
R

 a
a 

ab
un

 a
cr

os
s 

en
ti

re
 g

en
om

e 
-S

R
 f

or
 e

ac
h 

ca
t 

he
tm

c
u 

pe
rf

or
m

P
C

A
 P
C

A
ra

w
.o

m
aj

.t

co
st

.t

m
cu

.t

N
um

_c
od

on
s.

t

al
l.o

u

bi n bi
n.

t

-b
ar

s.
cs

v 
(M

H
, t

ab
le

 4
 fi

g 
4)

 
-S

pe
ar

C
at

.c
sv

(R
S 

fo
r e

a 
ca

t, 
ta

bl
e 

2,
3 

-m
h.

cs
v 

(m
or

e 
th

an
 b

ar
s)

 
am

in
oR

S.
da

t(
ab

un
 a

c 
ge

n,
 a

lso
 in

 
ba

rs
 

 

R
en

am e To
 

.p
pp

 

.u
nc

ul
le

d 

B
la

st
_m

et
: U

se
d 

to
 ru

n 
B

la
st

 in
 s

ea
rc

h 
of

 
E

nz
ym

es
 u

se
d 

to
 s

yn
th

es
iz

e 
A

m
in

o 
ac

id
s.

 
T

he
n 

m
an

ua
ll

y 
A

lt
er

 th
e 

co
st

 .t
xt

 f
ile

 

Se
ri

es
 o

f 
qu

er
y 

fi
le

s 

O
ut

pu
t f

il
e.

 J
ud

ge
m

en
t 

al
te

rs
 c

os
ts

 u
se

d 
du

ri
ng

 
he

tm
cu

 s
ta

ge
. 

B
la

st
 

Figure D.1: Detailed View of Data Flow
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Appendix E: Correspondence

E.1 Email to Dr. Hiroshi Akashi, March 04, 2004

From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Thursday,
March 04, 2004 3:03 PM To: akashi@psu.edu Cc: Esley Heizer;
Michael L. Raymer PHD; Dan E. Krane PHD Subject: Request for
intermediate data from metabolic efficiency paper

Dr. Hiroshi Akashi,

I am a graduate student and research assistant for Wright State
University’s Bioinformatics Research Group. In preparation for our
research on metabolic costs in microbial genomes we examined your
paper titled "Metabolic efficiency and amino acid composition in
the proteomes of Escherichia coli and Bacillus subtilis."

We were very impressed with the novelty and effectiveness of your
methods. As a validation step in our work, we would like to
reproduce the results published in your article.

If it would not be too much trouble we would like to see some of
your intermediate results. In particular, a listing of the genes
(for both Escherichia coli and Bacillus subtilis) upon which PCA
was performed and the subsequent listing of factor loadings and
major codons would be most helpful.

Thank you very much for your help in this matter. If you have any
questions or concerns feel free to contact me (or Dr. Michael
Raymer 937-775-5110 or Dr. Dan Krane 937-775-2257) by email or at
the address or phone number below.

Doug Raiford Wright State University (Russ 307) 3640 Colonel Glenn
Highway Dayton, Oh 45435 http://birg.cs.wright.edu/ (lab) (937)
775-5173

E.2 Email from Dr. Hiroshi Akashi, March 10, 2004

From: Hiroshi Akashi [mailto:akashi@psu.edu] Sent: Wednesday,
March 10, 2004 6:50 PM To: Doug Raiford Subject: Re: Request for
intermediate data from metabolic efficiency paper

Dear Doug, The analysis in Akashi and Gojobori did not use PCA. I
could send along the original dna sequence files or a flat file
with codon counts and gene information. All analyses were
conducted on the latter file.
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It will look something like this with 4100 records:

>dnaA
0 410..1750 + L
initiation_of_chromosome_replication_(DNA_synthesis) 1
DNA_replication 0 bc66:- 445
17,4,12,6,8,5,1,8,21,14,5,7,6,9,6,2,8,4,9,0,7,2,2,9,5,4,11,4,9,8,8,
9,7,4,0,0,10,3,13,7,14,7,32,6,22,7,27,9,0,0,0,4,3,3,3,3,2,4,6,2,1,
6,6,4

14,4,10,5,4,5,1,4,18,11,4,6,5,9,5,2,7,3,6,0,6,1,2,8,3,2,9,2,7,5,7,8,
7,4,0,0,6,2,10,3,12,6,23,4,17,6,19,7,0,0,0,2,2,3,3,3,1,3,6,2,0,5,4,
4

>dnaN
0 1939..3075 + L DNA_polymerase_III_(beta_subunit) 1
DNA_replication 0 bc66:- 377
8,6,11,6,10,1,3,7,26,12,1,3,8,7,10,6,6,7,5,1,3,2,6,7,6,5,9,6,5,1,12,
4,6,0,0,0,2,2,8,8,7,8,21,3,17,6,29,4,0,1,0,1,4,5,0,1,6,6,7,0,5,1,7,
2

5,4,9,6,6,1,2,5,19,11,0,1,5,5,6,5,6,5,2,1,1,1,5,6,5,3,7,2,5,1,7,4,4,
0,0,0,2,2,6,7,6,8,16,2,10,5,25,4,0,1,0,1,3,3,0,1,3,5,4,0,4,0,5,1

the fields are:
>geneID
#of alt names

list of names if #>0
location orientation code product #micado_funcat_classes

list of micado_funcat_classes
number of rejection criteria found

list of rejection criteria (i.e., premature termcod, nonATCG)
blast paralog info (’-’ indicates no paralogs found) codon number
codon_cts (I can give you the numbers corresponding to codons)
codon_cts (excluding first and last 50 codons)

cheers, Hiroshi

=========================
Hiroshi Akashi Institute of Molecular Evolutionary Genetics
Department of Biology 208 Mueller Laboratory Penn State University
University Park, PA 16802 USA tel: (814) 865-5013 (office)

(814) 863-8577 (lab)
fax: (814) 865-9131 email: akashi@psu.edu
http://www.bio.psu.edu/people/faculty/akashi/
=========================

E.3 Email to Dr. Hiroshi Akashi, March 12, 2004

From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Friday,
March 12, 2004 9:26 AM To: ’Hiroshi Akashi’ Cc: Esley Heizer
Subject: RE: Request for intermediate data from metabolic
efficiency paper

Dr. Akashi,

Thank you for the kind offer of sending us the data. I think we’ll
take you up on it.

I spoke with the team and we think it will be useful in validating
some of our results.

If you could send both ecoli and bsub it would be most
appreciated. If the data files are too large for email, let me
know and we can setup some kind of FTP server for the transfer.

Thanks again.
----------------------
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Doug Raiford http://birg.cs.wright.edu/ Bioinformatics Research
Group Wright State University Dayton, OH
----------------------

E.4 Email to Dr. Hiroshi Akashi, March 25, 2004

From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Thursday,
March 25, 2004 8:10 PM To: ’Hiroshi Akashi’ Cc: Dan E. Krane PHD;
Michael L. Raymer PHD; raiford.2@wright.edu; ’Esley Heizer’
Subject: Metabolic efficiency: flat file and Z values

Dr. Akashi

Our efforts at replicating your metabolic efficiency results are
coming along nicely. We know that our gene set is slightly
different from yours and so our results are marginally different.
We hope to remedy that when we get the "flat file" from you with
your gene data and codon counts. We will then be able to validate
our methods and procedures. Additionally, we may be able to
improve our culling techniques to better match your gene set.

A question has come-up during our analysis with which you may be
able to help. In our investigations of Spearman rank correlations
and Mantel-Haenszel Stratified Categorical Data Analysis we have
not been able to identify anything that resembles a Z value.

In Spearman Rank we found the correlation coeficient (rs) , rho,
alpha, and a p-value (even an S statistic). For Mantel-Haenszel we
found an X-squared value (Chi-Squared), degrees of freedom (df =
1), a p-value, a confidence interval for the odds ratio, and of
course, the odds ratio.

In your paper you provide a Z value for both the Spearman
Correlation and the Mantel-Haenszel results. Can you help us with
this? How were these Z values derived?

Thanks
----------------------
Doug Raiford http://birg.cs.wright.edu/ Bioinformatics Research
Group Wright State University Dayton, OH

E.5 Email to Dr. Toshimichi Ikemura, April 08, 2004

From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Thursday,
April 08, 2004 1:39 PM To: tikemura@lab.nig.ac.jp Cc: Michael L.
Raymer PHD; Dan E. Krane PHD; Esley Heizer Subject: Request for
gene-list used in your paper "Studies of codon usage..."

Dr. Toshimichi Ikemura,

I am a research assistant in the Bioinformatics Research Group at
Wright State University in Dayton, OH (U.S.).
http://birg.cs.wright.edu/

Our team is doing some research in metabolic efficiency of
microbial organisms following the work of Akashi, Gojobori:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=122586

We would like to replicate the principal component analysis you
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performed in your paper on "Studies of codon usage and tRNA genes
of 18 unicellular organisms and quantification of Bacillus
subtilis tRNAs: gene expression level and species-specific
diversity of codon usage based on multivariate analysis." Dr.
Akashi indicated that they simply used the results from your
paper. We would like to perform the actual analysis.

We believe that we have replicated the process; however, we would
like to perform the principal component analysis on the exact same
gene set that you used for Escherichia coli and Bacillus subtilis
to verify our results.

If it would not be too much trouble, could you send us a list of
the genes that you used for these two genomes?

Thank you, Doug Raiford Wright State University BiRG Lab
(Bioinformatics Research Group)

E.6 Email from Dr. Hiroshi Akashi, April 12, 2004

From: Hiroshi Akashi [mailto:akashi@psu.edu] Sent: Monday, April
12, 2004 10:36 AM To: Doug Raiford Subject: Re: Metabolic
efficiency: flat file and Z values

Dear Doug, Here’s the "raw" data file for Bsub. If it comes
through ok, I will send the E. coli file.

cheers, Hiroshi

=========================
Hiroshi Akashi Institute of Molecular Evolutionary Genetics
Department of Biology 208 Mueller Laboratory Penn State University
University Park, PA 16802 USA tel: (814) 865-5013 (office)

(814) 863-8577 (lab)
fax: (814) 865-9131 email: akashi@psu.edu
http://www.bio.psu.edu/people/faculty/akashi/

E.7 Email from Dr. Hiroshi Akashi, April 12, 2004

From: Hiroshi Akashi [mailto:akashi@psu.edu] Sent: Monday, April
12, 2004 1:31 PM To: Doug Raiford Subject: Re: Metabolic
efficiency: flat file and Z values

Dear Doug, Here are the codons and digit representations. The
codcts are read in order from 1->64. Let me know if you have any
questions about the data files.

Best Wishes, Hiroshi Akashi

=========================
Hiroshi Akashi Institute of Molecular Evolutionary Genetics
Department of Biology 208 Mueller Laboratory Penn State University
University Park, PA 16802 USA tel: (814) 865-5013 (office)

(814) 863-8577 (lab)
fax: (814) 865-9131 email: akashi@psu.edu
http://www.bio.psu.edu/people/faculty/akashi/
=========================
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TTT 1; TTC 2; TTA 3; TTG 4; CTT 5; CTC 6; CTA 7;
CTG 8; ATT 9; ATC 10; ATA 11; ATG 12; GTT 13; GTC 14;
GTA 15; GTG 16;

/*-----------------------------*/
TCT 17; TCC 18; TCA 19; TCG 20; CCT 21; CCC 22; CCA
23; CCG 24; ACT 25; ACC 26; ACA 27; ACG 28; GCT 29; GCC 30;
GCA 31; GCG 32;

/*-----------------------------*/
TAT 33; TAC 34; TAA 35; TAG 36; CAT 37; CAC 38; CAA
39; CAG 40; AAT 41; AAC 42; AAA 43; AAG 44; GAT 45; GAC 46;
GAA 47; GAG 48;

/*-----------------------------*/
TGT 49; TGC 50; TGA 51; TGG 52; CGT 53; CGC 54; CGA
55; CGG 56; AGT 57; AGC 58; AGA 59; AGG 60; GGT 61; GGC 62;
GGA 63; GGG 64;

E.8 Email to Dr. Toshimichi Ikemura, April 19, 2004

From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Monday,
April 19, 2004 10:46 AM To: tikemura@lab.nig.ac.jp Cc: Travis Doom
PhD; Dan E. Krane PHD; Esley Heizer; Michael L. Raymer PHD;
raiford.2@wright.edu Subject: Request for gene-list used in your
paper "Studies of codon usage..."

Dr. Toshimichi Ikemura,

I sent you a request for some data a little over a week ago (see
below). Since I have received no reply I was concerned that the
email might have been lost.

Is there any possibility that you could send us the listing of
genes that you used for Escherichia coli and Bacillus subtilis?

Your work in this area is very impressive and we would like to be
able to reproduce your results.

Thank you Doug Raiford

-----Original Message-----
From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Thursday,
April 08, 2004 1:39 PM To: tikemura@lab.nig.ac.jp Cc: Michael L.
Raymer PHD; Dan E. Krane PHD; Esley Heizer Subject: Request for
gene-list used in your paper "Studies of codon usage..."

Dr. Toshimichi Ikemura,

I am a research assistant in the Bioinformatics Research Group at
Wright State University in Dayton, OH (U.S.).
http://birg.cs.wright.edu/

Our team is doing some research in metabolic efficiency of
microbial organisms following the work of Akashi, Gojobori:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=122586

We would like to replicate the principal component analysis you
performed in your paper on "Studies of codon usage and tRNA genes
of 18 unicellular organisms and quantification of Bacillus
subtilis tRNAs: gene expression level and species-specific
diversity of codon usage based on multivariate analysis." Dr.
Akashi indicated that they simply used the results from your
paper. We would like to perform the actual analysis.
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We believe that we have replicated the process; however, we would
like to perform the principal component analysis on the exact same
gene set that you used for Escherichia coli and Bacillus subtilis
to verify our results.

If it would not be too much trouble, could you send us a list of
the genes that you used for these two genomes?

Thank you, Doug Raiford Wright State University BiRG Lab
(Bioinformatics Research Group)

E.9 Email from Dr. Shigehiko Kanaya, April 22, 2004

From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Thursday,
April 22, 2004 1:44 PM To: kanaya@eie.yz.yamagata-u.ac.jp Cc:
tikemura@lab.nig.ac.jp; Travis Doom PhD; Dan E. Krane PHD; Esley
Heizer; Michael L. Raymer PHD; raiford.2@wright.edu Subject:
Request for gene-list used in your paper "Studies of codon
usage..."

Dr. Shigehiko Kanaya,

I am a research assistant in the Bioinformatics Research Group at
Wright State University in Dayton, OH (U.S.).
http://birg.cs.wright.edu/

My team has been very impressed with your use of principal
component analysis in the study of codon usage (Studies of codon
usage and tRNA genes of 18 unicellular organisms and
quantification of Bacillus subtilis tRNAs: gene expression level
and species-specific diversity of codon usage based on
multivariate analysis).

The paper cited Dr. Toshimichi Ikemura as the principal contact
for additional information. We have attempted to contact Dr.
Ikemura so that we might get a specific listing of the genes used
for Escherichia coli and Bacillus subtilis. With such a listing we
should be able to verify that we are replicating your procedure
properly.

Unfortunately, Dr. Ikemura has not responded and so I fear he is
out of town or otherwise occupied. Would you happen to have a
listing of genes upon which you performed PCA for Escherichia coli
and Bacillus subtilis? If so, we would very much appreciate it if
you could send us the listing. If not, any information that you
think might be useful would be appreciated.

Thank you, Doug Raiford Wright State University BiRG Lab
(Bioinformatics Research Group)

E.10 Email from Dr. Shigehiko Kanaya, April 26, 2004

From: Shigehiko Kanaya [mailto:skanaya@gtc.aist-nara.ac.jp] Sent:
Monday, April 26, 2004 5:45 AM To: raiford.2@wright.edu Subject:
RE:Studies of ...

Dear Doug Raiford Wright State University BiRG Lab (Bioinformatics
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Research Group)

Thank you for your E-mail. Prof. Ikemura has retired in National
Institute of Genetics and He moved the other position called
SOKENDAI (The Graduate Univ. for Advanced Studies).

Unfortunately, data set of Gene papars was lacked. But the all
programs analyzed for CODON USAGE are present in my PC. So I can
re-examined CODON USAGE DIVERSITY for the new data set.

SO if you have a data set to analyzed codon usage. Please send me
this data set. I will re-analyze your data set and return to you.

Thank you very much for you to contact me.

Sincerely yours

Shigehiko Kanaya

E.11 Email to Dr. Shigehiko Kanaya, April 26, 2004

From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Monday,
April 26, 2004 10:43 AM To: ’Shigehiko Kanaya’ Cc: Travis Doom
PhD; Dan E. Krane PHD; Esley Heizer; Michael L. Raymer PHD;
raiford.2@wright.edu Subject: data sets

Dr. Kanaya,

Thank you so much for your kind offer to perform principal
component analysis on our data sets.

I have attached data sets for Escherichia coli and Bacillus
subtilis. We are most interested in the results for Bacillus
subtilis. The data sets are text files with each gene name
followed by its nucleotide sequence.

If you require the data in some other format let me know and we
should be able to accommodate you. I did no pre-culling of the
gene set so if you would like me to remove any that are less than
100 codons in length, etc., just let me know. If your application
performs any gene culling, please let us know what criteria you
use.

Again, thank you very much. The factor loadings are our primary
interest, and if you have time for only one data set please
compute the factor loadings for Bacillus subtilis.

Doug Raiford Bioinformatics Research Group Wright State
University, Dayton OH

E.12 Email to Dr. Shigehiko Kanaya, May 04, 2004

From: Doug Raiford [mailto:raiford.2@wright.edu] Sent: Tuesday,
May 04, 2004 6:26 PM To: ’Shigehiko Kanaya’ Cc: Travis Doom PhD;
Dan E. Krane PHD; Esley Heizer; Michael L. Raymer PHD;
raiford.2@wright.edu Subject: Factor loadings

Dr. Shigehiko Kanaya,
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I sent you an email last week (It was in response to the email
below and was sent on Wednesday). I wanted to, first of all,
ensure that you had received that email. It appeared that the data
sets I sent were too large to send all in one email, so I resent
them in two emails.

Secondly, I wanted to make sure that the data was in the proper
format. If you need the data in some form different than what I
sent please let me know. We can easily change the formatting and
even content.

I look forward to hearing from you.

Thank you, Doug Raiford

-----Original Message-----
From: Shigehiko Kanaya [mailto:skanaya@gtc.aist-nara.ac.jp] Sent:
Monday, April 26, 2004 5:45 AM To: raiford.2@wright.edu Subject:
RE:Studies of ...

Dear Doug Raiford Wright State University BiRG Lab (Bioinformatics
Research Group)

Thank you for your E-mail. Prof. Ikemura has retired in National
Institute of Genetics and He moved the other position called
SOKENDAI (The Graduate Univ. for Advanced Studies).

Unfortunately, data set of Gene papars was lacked. But the all
programs analyzed for CODON USAGE are present in my PC. So I can
re-examined CODON USAGE DIVERSITY for the new data set.

SO if you have a data set to analyzed codon usage. Please send me
this data set. I will re-analyze your data set and return to you.

Thank you very much for you to contact me.

Sincerely yours

Shigehiko Kanaya
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Appendix F: Commands

Following is a list of commands that are invoked to perform the analysis.

perl getGenes.pl -nothree -nophage -len 100 -outfn tout aero/aero
cp aero/aerotout.out aero/aero.out
perl preprocessGenes.pl aero/aero
perl cullFromList.pl aero/aero
perl createFaa.pl aero/aero
chmod +x formatdb
chmod +x blastall
./formatdb -i aero/aero.ppp.faa
perl blastFilterPrj.pl -perc 60 aero/aero
perl parseOutFile.pl aero/aero
perl Part4a.pl aero/aero
perl createMatrix.pl aero/aero
perl performPCA.pl aero/aero
perl hetmcu.pl 1 4 aero/aero
perl aminoCorl.pl aero/aero
cp aero/aeromaj.txt move
cp aero/aerobars.csv move
cp aero/aeroSpearCat.csv move
cp aero/aeroall.out move
cp aero/aeroPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout arab/arab
cp arab/arabtout.out arab/arab.out
perl preprocessGenes.pl arab/arab
perl premoreGenes.pl arab/arab
perl createFaa.pl arab/arab
chmod +x formatdb
chmod +x blastall
./formatdb -i arab/arab.ppp.faa
perl blastFilterPrj.pl -perc 60 arab/arab
perl parseOutFile.pl arab/arab
perl Part4a.pl arab/arab
perl createMatrix.pl arab/arab
perl performPCA.pl arab/arab
perl hetmcu.pl 1 4 arab/arab
perl aminoCorl.pl arab/arab
cp arab/arabmaj.txt move
cp arab/arabbars.csv move
cp arab/arabSpearCat.csv move
cp arab/araball.out move
cp arab/arabPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout Bacillus/Bacillus
cp Bacillus/Bacillustout.out Bacillus/Bacillus.out
perl preprocessGenes.pl Bacillus/Bacillus
perl cullFromList.pl Bacillus/Bacillus
perl createFaa.pl Bacillus/Bacillus
chmod +x formatdb
chmod +x blastall
./formatdb -i Bacillus/Bacillus.ppp.faa
perl blastFilterPrj.pl -perc 60 Bacillus/Bacillus
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perl parseOutFile.pl Bacillus/Bacillus
perl Part4a.pl Bacillus/Bacillus
perl createMatrix.pl Bacillus/Bacillus
perl performPCA.pl Bacillus/Bacillus
perl hetmcu.pl 1 4 Bacillus/Bacillus
perl aminoCorl.pl Bacillus/Bacillus
cp Bacillus/Bacillusmaj.txt move
cp Bacillus/Bacillusbars.csv move
cp Bacillus/BacillusSpearCat.csv move
cp Bacillus/Bacillusall.out move
cp Bacillus/BacillusPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout chlam/chlam
cp chlam/chlamtout.out chlam/chlam.out
perl preprocessGenes.pl chlam/chlam
perl cullFromList.pl chlam/chlam
perl createFaa.pl chlam/chlam
chmod +x formatdb
chmod +x blastall
./formatdb -i chlam/chlam.ppp.faa
perl blastFilterPrj.pl -perc 60 chlam/chlam
perl parseOutFile.pl chlam/chlam
perl Part4a.pl chlam/chlam
perl createMatrix.pl chlam/chlam
perl performPCA.pl chlam/chlam
perl hetmcu.pl 1 4 chlam/chlam
perl aminoCorl.pl chlam/chlam
cp chlam/chlammaj.txt move
cp chlam/chlambars.csv move
cp chlam/chlamSpearCat.csv move
cp chlam/chlamall.out move
cp chlam/chlamPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout chloro/chloro
cp chloro/chlorotout.out chloro/chloro.out
perl preprocessGenes.pl chloro/chloro
perl cullFromList.pl chloro/chloro
perl createFaa.pl chloro/chloro
chmod +x formatdb
chmod +x blastall
./formatdb -i chloro/chloro.ppp.faa
perl blastFilterPrj.pl -perc 60 chloro/chloro
perl parseOutFile.pl chloro/chloro
perl Part4a.pl chloro/chloro
perl createMatrix.pl chloro/chloro
perl performPCA.pl chloro/chloro
perl hetmcu.pl 1 4 chloro/chloro
perl aminoCorl.pl chloro/chloro
cp chloro/chloromaj.txt move
cp chloro/chlorobars.csv move
cp chloro/chloroSpearCat.csv move
cp chloro/chloroall.out move
cp chloro/chloroPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout clostri/clostri
cp clostri/clostritout.out clostri/clostri.out
perl preprocessGenes.pl clostri/clostri
perl cullFromList.pl clostri/clostri
perl createFaa.pl clostri/clostri
chmod +x formatdb
chmod +x blastall
./formatdb -i clostri/clostri.ppp.faa
perl blastFilterPrj.pl -perc 60 clostri/clostri
perl parseOutFile.pl clostri/clostri
perl Part4a.pl clostri/clostri
perl createMatrix.pl clostri/clostri
perl performPCA.pl clostri/clostri
perl hetmcu.pl 1 4 clostri/clostri
perl aminoCorl.pl clostri/clostri
cp clostri/clostrimaj.txt move
cp clostri/clostribars.csv move
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cp clostri/clostriSpearCat.csv move
cp clostri/clostriall.out move
cp clostri/clostriPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout ecoli/ecoli
cp ecoli/ecolitout.out ecoli/ecoli.out
perl preprocessGenes.pl ecoli/ecoli
perl cullFromList.pl ecoli/ecoli
perl createFaa.pl ecoli/ecoli
chmod +x formatdb
chmod +x blastall
./formatdb -i ecoli/ecoli.ppp.faa
perl blastFilterPrj.pl -perc 60 ecoli/ecoli
perl parseOutFile.pl ecoli/ecoli
perl Part4a.pl ecoli/ecoli
perl createMatrix.pl ecoli/ecoli
perl performPCA.pl ecoli/ecoli
perl hetmcu.pl 1 4 ecoli/ecoli
perl aminoCorl.pl ecoli/ecoli
cp ecoli/ecolimaj.txt move
cp ecoli/ecolibars.csv move
cp ecoli/ecoliSpearCat.csv move
cp ecoli/ecoliall.out move
cp ecoli/ecoliPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout helico/helico
cp helico/helicotout.out helico/helico.out
perl preprocessGenes.pl helico/helico
perl cullFromList.pl helico/helico
perl createFaa.pl helico/helico
chmod +x formatdb
chmod +x blastall
./formatdb -i helico/helico.ppp.faa
perl blastFilterPrj.pl -perc 60 helico/helico
perl parseOutFile.pl helico/helico
perl Part4a.pl helico/helico
perl createMatrix.pl helico/helico
perl performPCA.pl helico/helico
perl hetmcu.pl 1 4 helico/helico
perl aminoCorl.pl helico/helico
cp helico/helicomaj.txt move
cp helico/helicobars.csv move
cp helico/helicoSpearCat.csv move
cp helico/helicoall.out move
cp helico/helicoPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout lacto/lacto
cp lacto/lactotout.out lacto/lacto.out
perl preprocessGenes.pl lacto/lacto
perl premoreGenes.pl lacto/lacto
perl createFaa.pl lacto/lacto
chmod +x formatdb
chmod +x blastall
./formatdb -i lacto/lacto.ppp.faa
perl blastFilterPrj.pl -perc 60 lacto/lacto
perl parseOutFile.pl lacto/lacto
perl Part4a.pl lacto/lacto
perl createMatrix.pl lacto/lacto
perl performPCA.pl lacto/lacto
perl hetmcu.pl 1 4 lacto/lacto
perl aminoCorl.pl lacto/lacto
cp lacto/lactomaj.txt move
cp lacto/lactobars.csv move
cp lacto/lactoSpearCat.csv move
cp lacto/lactoall.out move
cp lacto/lactoPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout myco/myco
cp myco/mycotout.out myco/myco.out
perl preprocessGenes.pl myco/myco
perl premoreGenes.pl myco/myco
perl createFaa.pl myco/myco
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chmod +x formatdb
chmod +x blastall
./formatdb -i myco/myco.ppp.faa
perl blastFilterPrj.pl -perc 60 myco/myco
perl parseOutFile.pl myco/myco
perl Part4a.pl myco/myco
perl createMatrix.pl myco/myco
perl performPCA.pl myco/myco
perl hetmcu.pl 1 4 myco/myco
perl aminoCorl.pl myco/myco
cp myco/mycomaj.txt move
cp myco/mycobars.csv move
cp myco/mycoSpearCat.csv move
cp myco/mycoall.out move
cp myco/mycoPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout mycoG/mycoG
cp mycoG/mycoGtout.out mycoG/mycoG.out
perl preprocessGenes.pl mycoG/mycoG
perl cullFromList.pl mycoG/mycoG
perl createFaa.pl mycoG/mycoG
chmod +x formatdb
chmod +x blastall
./formatdb -i mycoG/mycoG.ppp.faa
perl blastFilterPrj.pl -perc 60 mycoG/mycoG
perl parseOutFile.pl mycoG/mycoG
perl Part4a.pl mycoG/mycoG
perl createMatrix.pl mycoG/mycoG
perl performPCA.pl mycoG/mycoG
perl hetmcu.pl 1 4 mycoG/mycoG
perl aminoCorl.pl mycoG/mycoG
cp mycoG/mycoGmaj.txt move
cp mycoG/mycoGbars.csv move
cp mycoG/mycoGSpearCat.csv move
cp mycoG/mycoGall.out move
cp mycoG/mycoGPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout mycoT/mycoT
cp mycoT/mycoTtout.out mycoT/mycoT.out
perl preprocessGenes.pl mycoT/mycoT
perl cullFromList.pl mycoT/mycoT
perl createFaa.pl mycoT/mycoT
chmod +x formatdb
chmod +x blastall
./formatdb -i mycoT/mycoT.ppp.faa
perl blastFilterPrj.pl -perc 60 mycoT/mycoT
perl parseOutFile.pl mycoT/mycoT
perl Part4a.pl mycoT/mycoT
perl createMatrix.pl mycoT/mycoT
perl performPCA.pl mycoT/mycoT
perl hetmcu.pl 1 4 mycoT/mycoT
perl aminoCorl.pl mycoT/mycoT
cp mycoT/mycoTmaj.txt move
cp mycoT/mycoTbars.csv move
cp mycoT/mycoTSpearCat.csv move
cp mycoT/mycoTall.out move
cp mycoT/mycoTPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout nitro/nitro
cp nitro/nitrotout.out nitro/nitro.out
perl preprocessGenes.pl nitro/nitro
perl premoreGenes.pl nitro/nitro
perl createFaa.pl nitro/nitro
chmod +x formatdb
chmod +x blastall
./formatdb -i nitro/nitro.ppp.faa
perl blastFilterPrj.pl -perc 60 nitro/nitro
perl parseOutFile.pl nitro/nitro
perl Part4a.pl nitro/nitro
perl createMatrix.pl nitro/nitro
perl performPCA.pl nitro/nitro
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perl hetmcu.pl 1 4 nitro/nitro
perl aminoCorl.pl nitro/nitro
cp nitro/nitromaj.txt move
cp nitro/nitrobars.csv move
cp nitro/nitroSpearCat.csv move
cp nitro/nitroall.out move
cp nitro/nitroPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout nostoc/nostoc
cp nostoc/nostoctout.out nostoc/nostoc.out
perl preprocessGenes.pl nostoc/nostoc
perl cullFromList.pl nostoc/nostoc
perl createFaa.pl nostoc/nostoc
chmod +x formatdb
chmod +x blastall
./formatdb -i nostoc/nostoc.ppp.faa
perl blastFilterPrj.pl -perc 60 nostoc/nostoc
perl parseOutFile.pl nostoc/nostoc
perl Part4a.pl nostoc/nostoc
perl createMatrix.pl nostoc/nostoc
perl performPCA.pl nostoc/nostoc
perl hetmcu.pl 2 4 nostoc/nostoc
perl aminoCorl.pl nostoc/nostoc
cp nostoc/nostocmaj.txt move
cp nostoc/nostocbars.csv move
cp nostoc/nostocSpearCat.csv move
cp nostoc/nostocall.out move
cp nostoc/nostocPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout prochloro/prochloro
cp prochloro/prochlorotout.out prochloro/prochloro.out
perl preprocessGenes.pl prochloro/prochloro
perl premoreGenes.pl prochloro/prochloro
perl createFaa.pl prochloro/prochloro
chmod +x formatdb
chmod +x blastall
./formatdb -i prochloro/prochloro.ppp.faa
perl blastFilterPrj.pl -perc 60 prochloro/prochloro
perl parseOutFile.pl prochloro/prochloro
perl Part4a.pl prochloro/prochloro
perl createMatrix.pl prochloro/prochloro
perl performPCA.pl prochloro/prochloro
perl hetmcu.pl 1 4 prochloro/prochloro
perl aminoCorl.pl prochloro/prochloro
cp prochloro/prochloromaj.txt move
cp prochloro/prochlorobars.csv move
cp prochloro/prochloroSpearCat.csv move
cp prochloro/prochloroall.out move
cp prochloro/prochloroPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout pseudo/pseudo
cp pseudo/pseudotout.out pseudo/pseudo.out
perl preprocessGenes.pl pseudo/pseudo
perl cullFromList.pl pseudo/pseudo
perl createFaa.pl pseudo/pseudo
chmod +x formatdb
chmod +x blastall
./formatdb -i pseudo/pseudo.ppp.faa
perl blastFilterPrj.pl -perc 60 pseudo/pseudo
perl parseOutFile.pl pseudo/pseudo
perl Part4a.pl pseudo/pseudo
perl createMatrix.pl pseudo/pseudo
perl performPCA.pl pseudo/pseudo
perl hetmcu.pl 1 4 pseudo/pseudo
perl aminoCorl.pl pseudo/pseudo
cp pseudo/pseudomaj.txt move
cp pseudo/pseudobars.csv move
cp pseudo/pseudoSpearCat.csv move
cp pseudo/pseudoall.out move
cp pseudo/pseudoPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout pseudoP/pseudoP
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cp pseudoP/pseudoPtout.out pseudoP/pseudoP.out
perl preprocessGenes.pl pseudoP/pseudoP
perl premoreGenes.pl pseudoP/pseudoP
perl createFaa.pl pseudoP/pseudoP
chmod +x formatdb
chmod +x blastall
./formatdb -i pseudoP/pseudoP.ppp.faa
perl blastFilterPrj.pl -perc 60 pseudoP/pseudoP
perl parseOutFile.pl pseudoP/pseudoP
perl Part4a.pl pseudoP/pseudoP
perl createMatrix.pl pseudoP/pseudoP
perl performPCA.pl pseudoP/pseudoP
perl hetmcu.pl 1 4 pseudoP/pseudoP
perl aminoCorl.pl pseudoP/pseudoP
cp pseudoP/pseudoPmaj.txt move
cp pseudoP/pseudoPbars.csv move
cp pseudoP/pseudoPSpearCat.csv move
cp pseudoP/pseudoPall.out move
cp pseudoP/pseudoPPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout pyro/pyro
cp pyro/pyrotout.out pyro/pyro.out
perl preprocessGenes.pl pyro/pyro
perl cullFromList.pl pyro/pyro
perl createFaa.pl pyro/pyro
chmod +x formatdb
chmod +x blastall
./formatdb -i pyro/pyro.ppp.faa
perl blastFilterPrj.pl -perc 60 pyro/pyro
perl parseOutFile.pl pyro/pyro
perl Part4a.pl pyro/pyro
perl createMatrix.pl pyro/pyro
perl performPCA.pl pyro/pyro
perl hetmcu.pl 1 4 pyro/pyro
perl aminoCorl.pl pyro/pyro
cp pyro/pyromaj.txt move
cp pyro/pyrobars.csv move
cp pyro/pyroSpearCat.csv move
cp pyro/pyroall.out move
cp pyro/pyroPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout staph/staph
cp staph/staphtout.out staph/staph.out
perl preprocessGenes.pl staph/staph
perl cullFromList.pl staph/staph
perl createFaa.pl staph/staph
chmod +x formatdb
chmod +x blastall
./formatdb -i staph/staph.ppp.faa
perl blastFilterPrj.pl -perc 60 staph/staph
perl parseOutFile.pl staph/staph
perl Part4a.pl staph/staph
perl createMatrix.pl staph/staph
perl performPCA.pl staph/staph
perl hetmcu.pl 1 4 staph/staph
perl aminoCorl.pl staph/staph
cp staph/staphmaj.txt move
cp staph/staphbars.csv move
cp staph/staphSpearCat.csv move
cp staph/staphall.out move
cp staph/staphPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout strept/strept
cp strept/strepttout.out strept/strept.out
perl preprocessGenes.pl strept/strept
perl cullFromList.pl strept/strept
perl createFaa.pl strept/strept
chmod +x formatdb
chmod +x blastall
./formatdb -i strept/strept.ppp.faa
perl blastFilterPrj.pl -perc 60 strept/strept

151



July 15, 2005

perl parseOutFile.pl strept/strept
perl Part4a.pl strept/strept
perl createMatrix.pl strept/strept
perl performPCA.pl strept/strept
perl hetmcu.pl 1 4 strept/strept
perl aminoCorl.pl strept/strept
cp strept/streptmaj.txt move
cp strept/streptbars.csv move
cp strept/streptSpearCat.csv move
cp strept/streptall.out move
cp strept/streptPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout streptC/streptC
cp streptC/streptCtout.out streptC/streptC.out
perl preprocessGenes.pl streptC/streptC
perl cullFromList.pl streptC/streptC
perl createFaa.pl streptC/streptC
chmod +x formatdb
chmod +x blastall
./formatdb -i streptC/streptC.ppp.faa
perl blastFilterPrj.pl -perc 60 streptC/streptC
perl parseOutFile.pl streptC/streptC
perl Part4a.pl streptC/streptC
perl createMatrix.pl streptC/streptC
perl performPCA.pl streptC/streptC
perl hetmcu.pl 1 4 streptC/streptC
perl aminoCorl.pl streptC/streptC
cp streptC/streptCmaj.txt move
cp streptC/streptCbars.csv move
cp streptC/streptCSpearCat.csv move
cp streptC/streptCall.out move
cp streptC/streptCPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout synech/synech
cp synech/synechtout.out synech/synech.out
perl preprocessGenes.pl synech/synech
perl cullFromList.pl synech/synech
perl createFaa.pl synech/synech
chmod +x formatdb
chmod +x blastall
./formatdb -i synech/synech.ppp.faa
perl blastFilterPrj.pl -perc 60 synech/synech
perl parseOutFile.pl synech/synech
perl Part4a.pl synech/synech
perl createMatrix.pl synech/synech
perl performPCA.pl synech/synech
perl hetmcu.pl 2 4 synech/synech
perl aminoCorl.pl synech/synech
cp synech/synechmaj.txt move
cp synech/synechbars.csv move
cp synech/synechSpearCat.csv move
cp synech/synechall.out move
cp synech/synechPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout thermoA/thermoA
cp thermoA/thermoAtout.out thermoA/thermoA.out
perl preprocessGenes.pl thermoA/thermoA
perl cullFromList.pl thermoA/thermoA
perl createFaa.pl thermoA/thermoA
chmod +x formatdb
chmod +x blastall
./formatdb -i thermoA/thermoA.ppp.faa
perl blastFilterPrj.pl -perc 60 thermoA/thermoA
perl parseOutFile.pl thermoA/thermoA
perl Part4a.pl thermoA/thermoA
perl createMatrix.pl thermoA/thermoA
perl performPCA.pl thermoA/thermoA
perl hetmcu.pl 1 4 thermoA/thermoA
perl aminoCorl.pl thermoA/thermoA
cp thermoA/thermoAmaj.txt move
cp thermoA/thermoAbars.csv move
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cp thermoA/thermoASpearCat.csv move
cp thermoA/thermoAall.out move
cp thermoA/thermoAPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout thermoE/thermoE
cp thermoE/thermoEtout.out thermoE/thermoE.out
perl preprocessGenes.pl thermoE/thermoE
perl premoreGenes.pl thermoE/thermoE
perl createFaa.pl thermoE/thermoE
chmod +x formatdb
chmod +x blastall
./formatdb -i thermoE/thermoE.ppp.faa
perl blastFilterPrj.pl -perc 60 thermoE/thermoE
perl parseOutFile.pl thermoE/thermoE
perl Part4a.pl thermoE/thermoE
perl createMatrix.pl thermoE/thermoE
perl performPCA.pl thermoE/thermoE
perl hetmcu.pl 1 4 thermoE/thermoE
perl aminoCorl.pl thermoE/thermoE
cp thermoE/thermoEmaj.txt move
cp thermoE/thermoEbars.csv move
cp thermoE/thermoESpearCat.csv move
cp thermoE/thermoEall.out move
cp thermoE/thermoEPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout thermoM/thermoM
cp thermoM/thermoMtout.out thermoM/thermoM.out
perl preprocessGenes.pl thermoM/thermoM
perl cullFromList.pl thermoM/thermoM
perl createFaa.pl thermoM/thermoM
chmod +x formatdb
chmod +x blastall
./formatdb -i thermoM/thermoM.ppp.faa
perl blastFilterPrj.pl -perc 60 thermoM/thermoM
perl parseOutFile.pl thermoM/thermoM
perl Part4a.pl thermoM/thermoM
perl createMatrix.pl thermoM/thermoM
perl performPCA.pl thermoM/thermoM
perl hetmcu.pl 1 4 thermoM/thermoM
perl aminoCorl.pl thermoM/thermoM
cp thermoM/thermoMmaj.txt move
cp thermoM/thermoMbars.csv move
cp thermoM/thermoMSpearCat.csv move
cp thermoM/thermoMall.out move
cp thermoM/thermoMPart4Start.db move
perl getGenes.pl -nothree -nophage -len 100 -outfn tout thermus/thermus
cp thermus/thermustout.out thermus/thermus.out
perl preprocessGenes.pl thermus/thermus
perl premoreGenes.pl thermus/thermus
perl createFaa.pl thermus/thermus
chmod +x formatdb
chmod +x blastall
./formatdb -i thermus/thermus.ppp.faa
perl blastFilterPrj.pl -perc 60 thermus/thermus
perl parseOutFile.pl thermus/thermus
perl Part4a.pl thermus/thermus
perl createMatrix.pl thermus/thermus
perl performPCA.pl thermus/thermus
perl hetmcu.pl 1 4 thermus/thermus
perl aminoCorl.pl thermus/thermus
cp thermus/thermusmaj.txt move
cp thermus/thermusbars.csv move
cp thermus/thermusSpearCat.csv move
cp thermus/thermusall.out move
cp thermus/thermusPart4Start.db move
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Appendix G: Source Code

The following sections contain source code printouts of the code in place as of the pub-

lication of this document. The code is, of course, part of an evolving project and will

undoubtedly change over time. This listing is for archival purposes.

G.1 batchAll.pl

$|=1;#this flushes the buffer after every input
#--------------------------------------------------------------------
# The purpose of this script is to chain together the various scripts
# required to perform the metabolic efficiency analysis. An input
# file is required with a list of genomes to be analyzed. To get a
# view of the many commands performed set $actuallyPerform to 0. This
# will dump the commands to the screen but not execute them.
#
# Because some of the genomes have no entry in the hgt database there
# are conditionals that route those genomes to our implementation of
# those operations. Also mycoG is a special case due to its large
# number of premature stop codons. Removal of all genes with these
# codons would result in a too small data set. Additionally, the
# photoautotrophs require special energetic settings so there is a
# conditional for those genomes as well.
#
# In addition to the script invocations there are numerous house
# keeping commands that must be run. For instance, all executables in
# our system get their permissions routinely set to non executable as a
# security precaution. For this reason the permissions must be changed
# on the BLAST executables before running them. Also, this is a
# collaborative project with the BMS department and certain files get
# routinely shared. To help in this endeavor there are several copy
# commands that place the important files in a holding directory for
# transmittal.
#--------------------------------------------------------------------

$actuallyPerform=0;
#remove arab from ALL list
unless( open(THELIST, "listOfGenomesAll.txt") ) {

print STDERR "Cannot open list file \n\n\n";
exit;
}
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foreach $genome (<THELIST>){
runAllPerlScripts($genome);

}

sub runAllPerlScripts{
my $genome = shift;
chomp $genome;

if($genome != "mycoG\/mycoG"){
$command ="perl getGenes.pl -noeq -nothree -nophage -len 100 -outfn tout ".

$genome."\n";
}
else{
$command ="perl getGenes.pl -nothree -nophage -len 100 -outfn tout ".

$genome."\n";
}
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "cp ".$genome."tout.out ".$genome.".out\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "perl preprocessGenes.pl ".$genome."\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

#these do not have hgt file
if($genome eq "arab\/arab" || $genome eq "prochloro\/prochloro" ||

$genome eq "pseudoP\/pseudoP" || $genome eq "thermus\/thermus" ||
$genome eq "thermoE\/thermoE" || $genome eq "lacto\/lacto" ||
$genome eq "myco\/myco" || $genome eq "nitro\/nitro"){
$command = "perl premoreGenes.pl ".$genome."\n";
if($actuallyPerform){

print ‘$command‘;
}
else{

print $command;
}

}
else{
$command = "perl cullFromList.pl ".$genome."\n";
if($actuallyPerform){

print ‘$command‘;
}
else{

print $command;
}

}

$command = "perl createFaa.pl ".$genome."\n";
if($actuallyPerform){
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print ‘$command‘;
}
else{
print $command;

}

$command = "chmod +x formatdb\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "chmod +x blastall\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "./formatdb -i ".$genome.".ppp.faa\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "perl blastFilterPrj.pl -perc 60 ".$genome."\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "perl parseOutFile.pl ".$genome."\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "perl Part4a.pl ".$genome."\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "perl createMatrix.pl ".$genome."\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}
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$command = "perl performPCA.pl ".$genome."\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

if($genome eq "nostoc\/nostoc" || $genome eq "synech\/synech"){
$command = "perl hetmcu.pl 2 4 ".$genome."\n";
if($actuallyPerform){

print ‘$command‘;
}
else{

print $command;
}

}
else{
$command = "perl hetmcu.pl 1 4 ".$genome."\n";
if($actuallyPerform){

print ‘$command‘;
}
else{

print $command;
}

}

$command = "perl aminoCorl.pl ".$genome."\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "cp ".$genome."maj.txt move\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "cp ".$genome."bars.csv move\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "cp ".$genome."SpearCat.csv move\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

$command = "cp ".$genome."all.out move\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}
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$command = "cp ".$genome."Part4Start.db move\n";
if($actuallyPerform){
print ‘$command‘;

}
else{
print $command;

}

}

sub pcaAndBeyond{
my $genome = shift;
chomp $genome;

$command = "perl performPCA.pl ".$genome."\n";
print ‘$command‘;

if($genome eq "nostoc\/nostoc" || $genome eq "synech\/synech"){
$command = "perl hetmcu.pl 2 4 ".$genome."\n";
print ‘$command‘;

}
else{
$command = "perl hetmcu.pl 1 4 ".$genome."\n";
print "am about to do command: ".$command."\n";
print ‘$command‘;

}

$command = "perl aminoCorl.pl ".$genome."\n";
print ‘$command‘;

$command = "cp ".$genome."maj.txt move\n";
print ‘$command‘;
$command = "cp ".$genome."bars.csv move\n";
print ‘$command‘;
$command = "cp ".$genome."SpearCat.csv move\n";
print ‘$command‘;
$command = "cp ".$genome."all.out move\n";
print ‘$command‘;
$command = "cp ".$genome."Part4Start.db move\n";
print ‘$command‘;

}

sub runJustCull{
my $genome = shift;
chomp $genome;
$command ="perl getGenes.pl -noeq -nothree -nophage -len 100 -outfn tout ".

$genome."\n";
print "performing\n";
print $command;
print ‘$command‘;

$command = "cp ".$genome."tout.out ".$genome.".out\n";
print "will perform the following copy command\n";
print $command;
print ‘$command‘;

$command = "perl preprocessGenes.pl ".$genome."\n";
print ‘$command‘;

if($genome eq "arab\/arab" || $genome eq "prochloro\/prochloro" ||
$genome eq "pseudoP\/pseudoP" || $genome eq "thermus\/thermus" ){
$command = "perl premoreGenes.pl ".$genome."\n";
print ‘$command‘;

}
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else{
$command = "perl cullFromList.pl ".$genome."\n";
print ‘$command‘;

}

$command = "cp ".$genome.".err move\n";
print "will perform this command\n$command\n";
print ‘$command‘;

}

G.2 getGenes.pl

$|=1;
#--------------------------------------------------------------------
# The purpose of this program is to extract gene information from
# an annotated complete genome file downloaded from the gene
# bank.
#
# We are only interested in protein genes because we will be
# working with codons. For this reason the program scans the
# annotated portion of the file looking for the CDS keyword. From
# the CDS line we collect the start and stop location of the gene and
# extract the string of nucleotides from the sequence portion of the
# file.
#
# Occasionally there is a frame shift indicated by a "join" statement
# on the CDS line. The program collects the various strings
# indicated in the join statement and concatenates them together.
# Also, occasionally, the CDS line indicates that the gene is on the
# other strand with the key word "complement" in which case we
# take the reverse complement of the gene sequence.
#
# Every gene is tested against the amino acid protein sequence
# embedded within the annotation. Additionally,
# checked that they are evenly divisible by three.
#--------------------------------------------------------------------

use strict;
use warnings;

# declare and initialize variables
my @annotation = ( ); #storage for first half of genbank file
my $annotation = ’’; #same but in one big string format
my $sequence = ’’; #storage for second half (sequence data)
my $fileroot = ""; #root of in and out file passed in as arg

#store in and out filenames

my $unculledFlag=0;
my $filename = "";
my $outFileSuffix = "";
my $outputfile = "";
my $errorFile = "";
my $MINLEN = 306;
my $shortGene = 0; #counter to track number of short genes
my $noteqGene = 0;
my $firstNum; #each gene has a starting and ending loc
my $secNum;
my $numPhages = 0;
my %genetic_code; #hash to lu aa
my $numArgs = 0; #
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my $NOTHREE = 0; #used as a flag to cull non divisible by 3s (cull if 1)
my $NOPHAGE = 0; #used as a flag to cull phages (don’t cull unless tell)
my $NOEQ = 0; #used as a flag to cull non equals
my $errorMessage = "";
my $tot=0; #counter used to track total number of CDS’s

#can have nothree, nophage, noeq, len num, followed by file name
#loop through all args finding matches and setting Gs
#if ever find an odd ball then exit with a help screen
#get length of argv, last one should be file name
$numArgs = @ARGV;

$errorMessage=
"syntax should be

perl getGenes.pl -nophage -nothree -len 100 -noeq -outfn suffix fileroot
or

perl getGenes.pl -nocull fileroot
\n
nophage culls phage relateds
nothree will cull genes that are not divisible by three
len NUM indicates minimum number of codons (throw out any with smaller number,

start and stop codons are automatically accounted for)
noeq culls genes that do not equal the supplied protein seq. Usually this

is because a stop codon shows up in the middle,
or some other unusual codon occurs.\n\n";

if($numArgs == 0){
print $errorMessage;
exit;

}

#last arg is filename so decrement numargs and it will index fileroot and work
#for < nomenclature in for loop
$numArgs--;
$fileroot = $ARGV[$numArgs]."\n";
chomp($fileroot);
$filename = $fileroot.".in";
$errorFile = $fileroot.".err";

for(my $i=0; $i<$numArgs; $i++){
print "argument $i is $ARGV[$i] \n";
if($ARGV[$i] eq "-nothree"){
$NOTHREE = 1;

}
elsif($ARGV[$i] eq "-nophage"){
$NOPHAGE = 1;

}
elsif($ARGV[$i] eq "-nocull"){
$unculledFlag = 1;

}
elsif($ARGV[$i] eq "-noeq"){
$NOEQ = 1;

}
elsif($ARGV[$i] eq "-len"){
$MINLEN = $ARGV[$i+1]*3+6;#times 3 for codons, the six takes care of stop

#codons
$i++; #this accounts for next argument which is the length

}
elsif($ARGV[$i] eq "-outfn"){
$outFileSuffix=$ARGV[$i+1];
$i++; #this accounts for the next argument which is the file suffix

}
else{
print $errorMessage;
exit;

}
}
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$outputfile = $fileroot.$outFileSuffix.".out";

unless( open(GET_FILE_DATA, $filename) ) {
print STDERR "Cannot open file \"$filename\"\n\n";
exit;
}

open(OUTPUTFILE, ">$errorFile");#open it once to ensure empty
open(OUTPUTFILE, ">$outputfile");

#open input file
print "files open: ".$outputfile." ".$filename."\n";
my @filedata = <GET_FILE_DATA>;#get all data from input file
close GET_FILE_DATA;

my $in_sequence = 0; #used as flag to determine when have entered
#sequence data portion of file

foreach my $line (@filedata) {
if( $line =˜ /ˆ\/\/\n/ ) { # If $line is end-of-record line //\n,

last; #break out of the foreach loop.
} elsif( $in_sequence) { # If we know we’re in a sequence,

$sequence .= $line; # add the current line to $$dna.
} elsif ( $line =˜ /ˆORIGIN/ ) { # If $line begins a sequence,

$in_sequence = 1; # set the $in_sequence flag.
} else{ # Otherwise

push( @annotation, $line); #add the current line to @annotation.
} #and seq, its in BeginPerl use

}

$sequence =˜ s/[\s0-9]//g;#extract white space out of sequence

my $i=0; #count of genes found
my $numNot3=0; #count of genes that are not divisible by three
$annotation = join("",@annotation);#turn array into one big string
buildResList(); #needed when looking up codons, populates

#global var genetic_code

#while( $annotation =˜ / CDS.*?gene="(.*?)"/sgm ) {#look for genes
#the above broke down in thermo cause it sometimes used /gene and
#sometimes used /locus_tag

while( $annotation =˜ / CDS.*?\/translation="/sgm ) {#look for genes
$tot++;
my $complement = 0; #flag used to tell if the gene is comp or not.
my $join = 0; #flag used to tell if encountered a join
my $value = $&;
$value =˜ s/\%/perc_sign/;
#now value has everything from CDS to beginning of sequence
#print $value."\n--------\n";
#print $geneName."\n----------------------------------\n\n";

my $geneName="";
if($value =˜ /locus_tag="(.*?)"/){#do this for locustag
#if($value =˜ /gene="(.*?)"/){#do this for regular gene name
$geneName=$1;

}
elsif($value =˜ /gene="(.*?)"/){#do this second if look for locus first
#elsif($value =˜ /locus_tag="(.*?)"/){
$geneName=$1;

}
elsif($value =˜ /standard_name="(.*?)"/){#do this second if look for locus first
$geneName=$1;

}
elsif($value =˜ /note="(.*?)"/){#do this second if look for locus first
$geneName=$1;

}
elsif($value =˜ /protein_id="(.*?)"/){#do this second if look for locus first
$geneName=$1;

}
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else{
print "ah oh, no gene name\n";
#print $value."\n";
#exit;

}
#print $geneName."\n";

if($value =˜ /complement/){
$complement = 1;#it is the complement

}

if($value =˜ /join\(/){
$join = 1;

}

$value =˜ /[0-9]+/gm;#get start and end locations for gene
$firstNum = $&;
$value =˜ /[0-9]+/gm;
$secNum = $&;
#go get the sequence beginning at the first num and ending at sec
my $gene = substr($sequence, $firstNum-1, $secNum-$firstNum+1);
#print $firstNum." ".$secNum."\n";

if($join){
#print "there was a join\n";
while($value =˜ /,/gm){

$value =˜ /[0-9]+/gm;#get start and end locations for gene
$firstNum = $&;
$value =˜ /[0-9]+/gm;
$secNum = $&;

if( !($firstNum =˜ /[0-9]+/) || !($secNum =˜ /[0-9]+/)) {
print " ah oh \n"."first num ".$firstNum."\n";
print " ah oh \n"."sedonc num ".$secNum."\n";
print "gene is $gene \n";

exit;
}

#go get the sequence beginning at the first num and ending at sec
$gene = $gene.substr($sequence, $firstNum-1, $secNum-$firstNum+1);

}
}

if ($complement){
#print "there was a complement\n";
$gene = reverse $gene;
$gene =˜ tr/ACGTacgt/TGCAtgca/;#complement
}

#print $gene."\n";
my $phageCheckStr=$value;
my $phageFlag = 0;

if ( $phageCheckStr =˜ /phage/i ||
$phageCheckStr =˜ /virus/i ||
$phageCheckStr =˜ /viral/i ||
$phageCheckStr =˜ /transpos/i ){

#print "found a phage\n";
open(OUTPUTFILE, ">>$errorFile");
print OUTPUTFILE $phageCheckStr."\n";
print OUTPUTFILE "---------------------\n";
close(OUTPUTFILE);
open(OUTPUTFILE, ">>$outputfile");
if($NOPHAGE){

$numPhages=$numPhages+1;
$phageFlag = 1;

}
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}

my $shortFlag = 0;
if(length($gene)<$MINLEN){
if(!$phageFlag) {$shortGene = $shortGene+1;}
$shortFlag = 1;

}

my $noteqFlag=0;
my $not3Flag=0;
if(!$shortFlag && !$phageFlag){
#should be a good gene so go ahead and check for even division
if ( (length($gene)%3!=0) ){

open(OUTPUTFILE, ">>$errorFile");
printf OUTPUTFILE "modulus of gene ".$i." ".(length($gene)%3)."\n";
printf OUTPUTFILE "gene name is ".$geneName."\n"."---------"."\n";
close(OUTPUTFILE);
open(OUTPUTFILE, ">>$outputfile");
if($NOTHREE){

$numNot3=$numNot3+1;
$not3Flag=1;

}
} #ok, got gene, now check against protein

#convert nucs to residues

#now it is time to throw away the start codon
$gene = substr($gene,3,length($gene)-3);
my $protein = getSeq($gene); #get real seq from annotation

$annotation =˜ /[A-Z\s]*/sg;
my $realProt = $&;

$realProt =˜ s/\s//g;
$realProt = substr($realProt,1,length($realProt)-1);#start at 1 and go to

#one less than len to
#get rid of start codon

#compare to my version
if($protein ne $realProt){

if($NOEQ){
$noteqFlag=1;#set not equal flag to true
if(!$shortFlag && !$phageFlag && !$not3Flag){$noteqGene=$noteqGene+1;}

}

#print $protein."\n\n\n".$realProt; exit;
open(OUTPUTFILE, ">>$errorFile");

printf OUTPUTFILE "Ah oh, my seq did not match the REAL protein: ".$geneName."\n";
#print $gene."\n\n\n";
#print $protein."\n\n\n";
#print $realProt."\n";
my $compIdx=0;
while( substr($realProt,$compIdx,1)

eq
substr($protein,$compIdx,1)){

$compIdx=$compIdx+1;
}

printf OUTPUTFILE "strings are different at loc ".$compIdx."\n";
printf OUTPUTFILE "the nuc seq was ".substr($gene,$compIdx*3,3)."\n";
printf OUTPUTFILE "---------------\n";
close(OUTPUTFILE);
open(OUTPUTFILE, ">>$outputfile");

}
}

if($unculledFlag){#set these flags to false if do not wish to cull
$noteqFlag = 0;
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$shortFlag = 0;
$phageFlag = 0;

}

if( $geneName =˜ /operon/ ){
print "got an operon $geneName \n";
exit;

}
if( $geneName =˜ /operon/ || $noteqFlag || $shortFlag ||

$phageFlag || $not3Flag) {
#do not output or increment

}

else{
$i=$i+1; #increment gene count but only if it is a gene
#printf "<%s>\n%s\n",$geneName,$gene;
printf OUTPUTFILE "<%s>\n%s\n",$geneName,$gene;

}

if($i%1000==0 && $i!=0){
print $i."\n"; #every thousand genes send output to screen so we

#know the prog is alive
}

}
#output to screen total num of genes
print "Total number of genes (after culling) ".$i."\n";
if($NOTHREE){

print "Total number of genes that are not divisible by 3 ".$numNot3."\n";
}
print "Total number of short genes ".$shortGene."\n";
if($NOPHAGE){

print "Total number of phage relateds ".$numPhages."\n";
}
if($NOEQ){

print "Total number of not equals ".$noteqGene."\n";
}
print "Total number before culling ".$tot."\n";
close(OUTPUTFILE);

open(OUTPUTFILE, ">>$errorFile");
print OUTPUTFILE "Total number of genes ".$i."\n";
if($NOTHREE){

print OUTPUTFILE "Total number of genes that are not divisible by 3 ".$numNot3."\n";
}
print OUTPUTFILE "Total number of short genes (not included) ".$shortGene."\n";
if($NOPHAGE){

print OUTPUTFILE "Total number of phage relateds ".$numPhages."\n";
}
if($NOEQ){

print OUTPUTFILE "Total number of not equals ".$noteqGene."\n";
}
print OUTPUTFILE "Total number before culling ".$tot."\n";

close(OUTPUTFILE);
exit;

sub getSeq
{

my ($passedSeq) = @_;
my $codon = ’’;
my $residue = ’’;
my $len = length($passedSeq);
my $num = 0;
my $protein = ’’;
$passedSeq =˜ s/s/g/; #get rid of quotes
$passedSeq =˜ s/r/g/; #get rid of quotes
$passedSeq =˜ s/y/t/; #get rid of quotes
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$passedSeq =˜ s/n/t/; #get rid of quotes
$passedSeq =˜ s/m/a/; #get rid of quotes
#for each codon
for ($num = 0; $num<$len-2; $num = $num+3)
{
#convert to residue
$codon = substr($passedSeq, $num, 3);

$residue = getRes($codon);
#concat with growing protein
if($residue ne "_"){

$protein = $protein.$residue; } }
return $protein;

}

sub getRes
{

my($codon) = @_; $codon = uc $codon;#converts to uppercase

if(exists $main::genetic_code{$codon}) {
return $main::genetic_code{$codon};

} else {
print STDERR "Bad codon \"$codon\"!!\n";
return ’-’;

}
}

sub buildResList{
%main::genetic_code = (

’TCA’ => ’S’, # Serine
’TCC’ => ’S’, # Serine
’TCG’ => ’S’, # Serine
’TCT’ => ’S’, # Serine
’TTC’ => ’F’, # Phenylalanine
’TTT’ => ’F’, # Phenylalanine
’TTA’ => ’L’, # Leucine
’TTG’ => ’L’, # Leucine
’TAC’ => ’Y’, # Tyrosine
’TAT’ => ’Y’, # Tyrosine
’TAA’ => ’_’, # Stop
’TAG’ => ’_’, # Stop
’TGC’ => ’C’, # Cysteine
’TGT’ => ’C’, # Cysteine
’TGA’ => ’_’, # Stop
’TGG’ => ’W’, # Tryptophan
’CTA’ => ’L’, # Leucine
’CTC’ => ’L’, # Leucine
’CTG’ => ’L’, # Leucine
’CTT’ => ’L’, # Leucine
’CCA’ => ’P’, # Proline
’CCC’ => ’P’, # Proline
’CCG’ => ’P’, # Proline
’CCT’ => ’P’, # Proline
’CAC’ => ’H’, # Histidine
’CAT’ => ’H’, # Histidine
’CAA’ => ’Q’, # Glutamine
’CAG’ => ’Q’, # Glutamine
’CGA’ => ’R’, # Arginine
’CGC’ => ’R’, # Arginine
’CGG’ => ’R’, # Arginine
’CGT’ => ’R’, # Arginine
’ATA’ => ’I’, # Isoleucine
’ATC’ => ’I’, # Isoleucine
’ATT’ => ’I’, # Isoleucine
’ATG’ => ’M’, # Methionine
’ACA’ => ’T’, # Threonine
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’ACC’ => ’T’, # Threonine
’ACG’ => ’T’, # Threonine
’ACT’ => ’T’, # Threonine
’AAC’ => ’N’, # Asparagine
’AAT’ => ’N’, # Asparagine
’AAA’ => ’K’, # Lysine
’AAG’ => ’K’, # Lysine
’AGC’ => ’S’, # Serine
’AGT’ => ’S’, # Serine
’AGA’ => ’R’, # Arginine
’AGG’ => ’R’, # Arginine
’GTA’ => ’V’, # Valine
’GTC’ => ’V’, # Valine
’GTG’ => ’V’, # Valine
’GTT’ => ’V’, # Valine
’GCA’ => ’A’, # Alanine
’GCC’ => ’A’, # Alanine
’GCG’ => ’A’, # Alanine
’GCT’ => ’A’, # Alanine
’GAC’ => ’D’, # Aspartic Acid
’GAT’ => ’D’, # Aspartic Acid
’GAA’ => ’E’, # Glutamic Acid
’GAG’ => ’E’, # Glutamic Acid
’GGA’ => ’G’, # Glycine
’GGC’ => ’G’, # Glycine
’GGG’ => ’G’, # Glycine
’GGT’ => ’G’, # Glycine
);

}

G.3 preprocessGenes.pl

$|=1;
use strict;
use warnings;

my $avgCGPercent; # avgerage percentage of CGs in the gene
my $avgTotCGPercent; # avgerage total percentage of CGs in the geneome
my $codon; # string containing a codon
my $fileRoot; # root name of the file being processed
my $geneCounter; # the number of the gene being processed
my $geneOutFileName; # filename of file containing gene usage data
my $i; # loop counter
my $inOut; # values of IN or OUT designate gene remove based on CG content
my $inputFileName; # name of the input file
my $j; # loop counter
my $k; # loop counter
my $line; # one line of input
my $lineLength; # length of the input line
my $majCodonUse; # major codon usage value
my $stdDev; # the standard deviation of C Gs in the third position
my $sumDiffSqu; # the summation of the square of the difference
my $thirdPosTotCG; # hash containing count of Cs or Gs in third position for the geneome
my $thirdPosTotAT; # hash containing count of As or Ts in third position for the geneome
my $totalOutFileName; # filename of file containing genome codon usage
my $yesNo; # string containing Y for yes and N for no
my %codonTotal; # codon total hash
my %fractSynCodon; # fraction of synonymous codons
my %gene; # hash of the genes
my %geneCGs; # hash of number of C or G in the third position in the gene
my %geneCodon; # gene codon hash
my %geneName; # gene name hash
my %majorCodon; # major codon hash
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my %thirdPosGeneCG; # hash containing count of Cs or Gs in third position of the gene
my %thirdPosGeneAT; # hash containing count of As or Ts in third position of the gene

$fileRoot = $ARGV[0];
$inputFileName = $fileRoot.".out";
print "$inputFileName\n";

# open input file
unless( open(INPUTFILE, $inputFileName) ) {

print STDERR "Cannot open file \"$inputFileName\"\n\n";
exit;

}

# parse the string by gene then by codon and accumulate total codon use
$geneCounter = 0;
while(<INPUTFILE>) {

$line = $_;
chomp($line);
if ($line =˜ /</) { # if true line contains the gene name

$geneCounter++;
$geneName{$geneCounter} = $line;

}
else {

$gene{$geneCounter} = $line;
}

}

#
# Compute total average of C’s and G’s in third position
#

$thirdPosTotCG = 0;
$thirdPosTotAT = 0;
for ($i=1; $i<=$geneCounter; $i++) {

$thirdPosGeneCG{$i} = 0;
$thirdPosGeneAT{$i} = 0;
$lineLength = length($gene{$i});
for ($j=2; $j<=$lineLength; $j=$j+3) {

if (substr($gene{$i},$j,1) eq "c" ||
substr($gene{$i},$j,1) eq "g") {
$thirdPosGeneCG{$i}=$thirdPosGeneCG{$i}+1;
$thirdPosTotCG = $thirdPosTotCG + 1;

}
elsif (substr($gene{$i},$j,1) eq "a" ||

substr($gene{$i},$j,1) eq "t") {
$thirdPosGeneAT{$i}=$thirdPosGeneAT{$i}+1;
$thirdPosTotAT = $thirdPosTotAT + 1;

}
else {

print "ERROR IN CG COUNT gene = $geneName{$i} ";
printf "Position %s = %s\n", $j, substr($gene{$i},$j,1);

}
}

}

#
# Compute the standard deviation of CGs in the third position
#

$sumDiffSqu = 0;
$avgTotCGPercent = $thirdPosTotCG / ($thirdPosTotCG + $thirdPosTotAT);
for ($i=1; $i<=$geneCounter; $i++) {

$avgCGPercent = $thirdPosGeneCG{$i}/
($thirdPosGeneCG{$i} + $thirdPosGeneAT{$i});

$sumDiffSqu = $sumDiffSqu + ($avgCGPercent - $avgTotCGPercent )**2;
}
$stdDev = sqrt($sumDiffSqu / ($geneCounter - 1));
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$geneOutFileName = $fileRoot.".cgs";
open(OUTPUTFILE, ">$geneOutFileName");

printf OUTPUTFILE "%s Standard Deviation=%s CG 3rd Position Avg=%s\n",
$fileRoot, $stdDev, $avgTotCGPercent;

for ($i=1; $i<=$geneCounter; $i++) {
$inOut = "IN";
$avgCGPercent = $thirdPosGeneCG{$i}/

($thirdPosGeneCG{$i} + $thirdPosGeneAT{$i});
if ($avgCGPercent < $avgTotCGPercent-(2*$stdDev)) {

$inOut = "OUT";
}
if ($avgCGPercent > $avgTotCGPercent+(2*$stdDev)) {

$inOut ="OUT";
}
printf OUTPUTFILE "%s, %s, %s\n", $geneName{$i}, $avgCGPercent, $inOut;

}

close(INPUTFILE);
close(OUTPUTFILE);

$geneOutFileName = $fileRoot.".ppp";
open(OUTPUTFILE, ">$geneOutFileName");

printf OUTPUTFILE "%s Standard Deviation=%s CG 3rd Position Avg=%s\n",
$fileRoot, $stdDev, $avgTotCGPercent;

for ($i=1; $i<=$geneCounter; $i++) {
$avgCGPercent = $thirdPosGeneCG{$i}/

($thirdPosGeneCG{$i} + $thirdPosGeneAT{$i});
if ($avgCGPercent > $avgTotCGPercent-(2*$stdDev) &&

$avgCGPercent < $avgTotCGPercent+(2*$stdDev)) {
printf OUTPUTFILE "%s\n", $geneName{$i};
printf OUTPUTFILE "%s\n", $gene{$i};

}
}

close(OUTPUTFILE);

exit;

G.4 premoreGenes.pl

$|=1;
use strict;
use warnings;

my $avg3rdCGPercent; # avgerage percentage of CGs in the gene
my $avg3rdTotCGPerc; # avgerage total percentage of CGs in the geneome
my $codon; # string containing a codon
my $fileRoot; # root name of the file being processed
my $geneCounter; # the number of the gene being processed
my $geneOutFileName; # filename of file containing gene usage data
my $i; # loop counter
my $inOut; # values of IN or OUT designate gene remove based on CG content
my $inputFileName; # name of the input file
my $j; # loop counter
my $k; # loop counter
my $line; # one line of input
my $lineLength; # length of the input line
my $majCodonUse; # major codon usage value
my $stdDev3rd; # the standard deviation of C Gs in the third position
my $sumDiffSqu; # the summation of the square of the difference
my $thirdPosTotCG; # hash containing count of Cs or Gs in third position for the geneome
my $thirdPosTotAT; # hash containing count of As or Ts in third position for the geneome
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my $totalOutFileName; # filename of file containing genome codon usage
my $yesNo; # string containing Y for yes and N for no
my $stdDevTot; # std deviation for entire genome

my $totCG = 0;
my $totAT = 0;
my $firstPosTotCG = 0;
my $firstPosTotAT = 0;

my %totGeneCG;
my %totGeneAT;
my %firstPosGeneCG;
my %firstPosGeneAT;

my $avg1stTotCGPerc;
my $avgTotCGPerc;
my $avg1stCGPercent;
my $stdDev1st;
my $avgCGPercent;

my %codonTotal; # codon total hash
my %fractSynCodon; # fraction of synonymous codons
my %gene; # hash of the genes
my %geneCGs; # hash of number of C or G in the third position in the gene
my %geneCodon; # gene codon hash
my %geneName; # gene name hash
my %majorCodon; # major codon hash
my %thirdPosGeneCG; # hash containing count of Cs or Gs in third position of the gene
my %thirdPosGeneAT; # hash containing count of As or Ts in third position of the gene

my $numKept=0;
my $numTossed=0;

$fileRoot = $ARGV[0];
$inputFileName = $fileRoot.".out";
print "$inputFileName\n";

# open input file
unless( open(INPUTFILE, $inputFileName) ) {

print STDERR "Cannot open file \"$inputFileName\"\n\n";
exit;

}

# parse the string by gene then by codon and accumulate total codon use
$geneCounter = 0;

print "HGT: Reading in gene info from file\n";
while(<INPUTFILE>) {

$line = $_;
chomp($line);
if ($line =˜ /</) { # if true line contains the gene name

$geneCounter++;
$geneName{$geneCounter} = $line;

}
else {

$gene{$geneCounter} = $line;
}

}

#
# Compute total average of C’s and G’s in third position
#

$thirdPosTotCG = 0;
$thirdPosTotAT = 0;
$totCG = 0;
$totAT = 0;
$firstPosTotCG = 0;
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$firstPosTotAT = 0;

print "HGT: calculating GC content\n";
for ($i=1; $i<=$geneCounter; $i++) {

$thirdPosGeneCG{$i} = 0;
$thirdPosGeneAT{$i} = 0;
$totGeneCG{$i} = 0;
$totGeneAT{$i} = 0;
$firstPosGeneCG{$i} = 0;
$firstPosGeneAT{$i} = 0;

$lineLength = length($gene{$i});
for ($j=2; $j<=$lineLength; $j=$j+3) {

#look in third pos
if (substr($gene{$i},$j,1) eq "c" ||

substr($gene{$i},$j,1) eq "g") {
$thirdPosGeneCG{$i}=$thirdPosGeneCG{$i}+1;
$thirdPosTotCG = $thirdPosTotCG + 1;
$totGeneCG{$i}=$totGeneCG{$i}+1;
$totCG=$totCG+1;

}
elsif (substr($gene{$i},$j,1) eq "a" ||

substr($gene{$i},$j,1) eq "t") {
$thirdPosGeneAT{$i}=$thirdPosGeneAT{$i}+1;
$thirdPosTotAT = $thirdPosTotAT + 1;
$totGeneAT{$i}=$totGeneAT{$i}+1;
$totAT=$totAT+1;

}
else {

print "ERROR IN CG COUNT gene = $geneName{$i} ";
printf "Position %s = %s\n", $j, substr($gene{$i},$j,1);

}

#look in first pos
if (substr($gene{$i},$j-2,1) eq "c" ||

substr($gene{$i},$j-2,1) eq "g") {
$firstPosGeneCG{$i}=$firstPosGeneCG{$i}+1;
$firstPosTotCG = $firstPosTotCG + 1;
$totGeneCG{$i} = $totGeneCG{$i}+1;
$totCG=$totCG+1;

}
elsif (substr($gene{$i},$j-2,1) eq "a" ||

substr($gene{$i},$j-2,1) eq "t") {
$firstPosGeneAT{$i}=$firstPosGeneAT{$i}+1;
$firstPosTotAT = $firstPosTotAT + 1;
$totGeneAT{$i}=$totGeneAT{$i}+1;
$totAT=$totAT+1;

}
else {

print "ERROR IN CG COUNT gene = $geneName{$i} ";
printf "Position %s = %s\n", $j, substr($gene{$i},$j,1);

}

#look in second pos
if (substr($gene{$i},$j-1,1) eq "c" ||

substr($gene{$i},$j-1,1) eq "g") {
$totGeneCG{$i} = $totGeneCG{$i}+1;
$totCG=$totCG+1;

}
elsif (substr($gene{$i},$j-1,1) eq "a" ||

substr($gene{$i},$j-1,1) eq "t") {
$totGeneAT{$i}=$totGeneAT{$i}+1;
$totAT=$totAT+1;

}
else {

print "ERROR IN CG COUNT gene = $geneName{$i} ";
printf "Position %s = %s\n", $j, substr($gene{$i},$j,1);
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}

}
}

#
# Compute the standard deviation of CGs in the third position
#

$sumDiffSqu = 0;
$avg3rdTotCGPerc = $thirdPosTotCG / ($thirdPosTotCG + $thirdPosTotAT);
$avg1stTotCGPerc = $firstPosTotCG / ($firstPosTotCG + $firstPosTotAT);
$avgTotCGPerc = $totCG / ($totCG + $totAT);

print "HGT: determining genome wide mean and standard deviation\n";
for ($i=1; $i<=$geneCounter; $i++) {

$avg3rdCGPercent = $thirdPosGeneCG{$i}/
($thirdPosGeneCG{$i} + $thirdPosGeneAT{$i});

$sumDiffSqu = $sumDiffSqu + ($avg3rdCGPercent - $avg3rdTotCGPerc )**2;
}
$stdDev3rd = sqrt($sumDiffSqu / ($geneCounter - 1));

$sumDiffSqu = 0;
for ($i=1; $i<=$geneCounter; $i++) {

$avg1stCGPercent = $firstPosGeneCG{$i}/
($firstPosGeneCG{$i} + $firstPosGeneAT{$i});

$sumDiffSqu = $sumDiffSqu + ($avg1stCGPercent - $avg1stTotCGPerc )**2;
}
$stdDev1st = sqrt($sumDiffSqu / ($geneCounter - 1));

$sumDiffSqu = 0;
for ($i=1; $i<=$geneCounter; $i++) {

$avgCGPercent = $totGeneCG{$i}/
($totGeneCG{$i} + $totGeneAT{$i});

$sumDiffSqu = $sumDiffSqu + ($avgCGPercent - $avgTotCGPerc )**2;
}
$stdDevTot = sqrt($sumDiffSqu / ($geneCounter - 1));

$geneOutFileName = $fileRoot.".cgs";
open(OUTPUTFILE, ">$geneOutFileName");

printf OUTPUTFILE "%s Standard Deviation=%s CG 3rd Position Avg=%s\n",
$fileRoot, $stdDev3rd, $avg3rdTotCGPerc;

#$thirdPosTotCG = 0;
#$thirdPosTotAT = 0;
#$totCG = 0;
#$totAT = 0;
#$firstPosTotCG = 0;
#$firstPosTotAT = 0;

#$thirdPosGeneCG{$i} = 0;
#$thirdPosGeneAT{$i} = 0;
#$totGeneCG{$i} = 0;
#$totGeneAT{$i} = 0;
#$firstPosGeneCG{$i} = 0;
#$firstPosGeneAT{$i} = 0;

print "HGT: building list of genes to throw-out\n";
print "HGT: writing cgs file (gc content of each gene)\n";
for ($i=1; $i<=$geneCounter; $i++) {

$inOut = "IN";

#third and first
$avg1stCGPercent = $firstPosGeneCG{$i}/

($firstPosGeneCG{$i} + $firstPosGeneAT{$i});
$avg3rdCGPercent = $thirdPosGeneCG{$i}/

($thirdPosGeneCG{$i} + $thirdPosGeneAT{$i});
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#must both deviate in same dir, in first case neg
if ($avg3rdCGPercent-$avg3rdTotCGPerc<0 &&

$avg1stCGPercent-$avg1stTotCGPerc<0 &&
( $avg3rdCGPercent < $avg3rdTotCGPerc-(1.5*$stdDev3rd) ||

$avg1stCGPercent < $avg1stTotCGPerc-(1.5*$stdDev1st)) ) {
$inOut = "OUT";

}
if ($avg3rdCGPercent-$avg3rdTotCGPerc>0 &&

$avg1stCGPercent-$avg1stTotCGPerc>0 &&
( $avg3rdCGPercent > $avg3rdTotCGPerc+(1.5*$stdDev3rd) ||

$avg1stCGPercent > $avg1stTotCGPerc+(1.5*$stdDev1st)) ) {
$inOut = "OUT";

}

#total
$avgCGPercent = $totGeneCG{$i}/

($totGeneCG{$i} + $totGeneAT{$i});
if ($avgCGPercent < $avgTotCGPerc-(1.5*$stdDevTot)) {

$inOut = "OUT";
}
if ($avgCGPercent > $avgTotCGPerc+(1.5*$stdDevTot)) {

$inOut ="OUT";
}

printf OUTPUTFILE "%s, %s, %s\n", $geneName{$i}, $avg3rdCGPercent, $inOut;
}

close(INPUTFILE);
close(OUTPUTFILE);

$geneOutFileName = $fileRoot.".ppp";
open(OUTPUTFILE, ">$geneOutFileName");

print "HGT: writing ppp file (file name and seq of all that are kept)\n";
printf OUTPUTFILE "%s Standard Deviation=%s CG 3rd Position Avg=%s\n",

$fileRoot, $stdDev3rd, $avg3rdTotCGPerc;
for ($i=1; $i<=$geneCounter; $i++) {

$avg3rdCGPercent = $thirdPosGeneCG{$i}/
($thirdPosGeneCG{$i} + $thirdPosGeneAT{$i});

if ($avg3rdCGPercent > $avg3rdTotCGPerc-(2*$stdDev3rd) &&
$avg3rdCGPercent < $avg3rdTotCGPerc+(2*$stdDev3rd)) {
$numKept++;
printf OUTPUTFILE "%s\n", $geneName{$i};
printf OUTPUTFILE "%s\n", $gene{$i};

}
else{

$numTossed++;
}

}

print "num kept $numKept num tossed $numTossed\n";
open (ERROUT, ">>".$fileRoot.".err") || die "Unable to open the err file for output";
print ERROUT "the number culled due to HGT is $numTossed\n";
print ERROUT "Now the total number is $numKept\n";
close(ERROUT);

close(OUTPUTFILE);

exit;

G.5 cullFromList.pl
$|=1;
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$genom = $ARGV[0];#root of in and out file passed in as arg
use Gene; #Gene object defined in Gene.pm

open (DB, $genom."tout.out") || die "Unable to open the input file";
open (REM, $genom."HGT.txt") || die "Unable to open the input file";
open (DBOUT, ">".$genom.".ppp") || die "Unable to open the aa file for output";

@genes = ();

$gene_count = 0;
$numCulled = 0;
# read in removal file

foreach $line (<REM>){
chomp($line);
$cullset->{$line}=1;
#print $line."\n";

}
close(REM);

foreach $line (<DB>){
$totInOrigDB++;
if ($line =˜ /ˆ<(.*)>/){
$mygene = Gene->new();
$mygene->name($1);
#printf "gene %8s category %s\n",$mygene->name(),$mygene->cat();

}
else{
if($gene_count%100 == 0){

#print "$genom :generating aa sequence for gene ".$gene_count."\n";
}
#$mygene->seq(convert2AA($line));
$mygene->seq($line);
if($cullset->{$mygene->name()} != 1){

$gene_count++;
#push (@genes, $mygene);
print DBOUT "<".$mygene->name().">\n";
print DBOUT $mygene->seq();

}
else{

#print "I culled I culled\n";
$numCulled++;
#print "culled ".$mygene->name()."\n";
#do nothing just don’t write to file

}
#if($gene_count>20){last;}

}
}

print "The total number of genes $gene_count.\n";
if($totInOrigDB/2!=$gene_count+$numCulled){

print "they didn’t equal!!!\n";
print "tot in orig $totInOrigDB\n";
print "gene count $gene_count num culled $numCulled\n";

}

close(DB);
close(DBOUT);

open (ERROUT, ">>".$genom.".err") || die "Unable to open the err file for output";
print ERROUT "the number culled due to HGT is $numCulled\n";
print ERROUT "Now the total number is $gene_count\n";
close(ERROUT);

exit;
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sub bymcu{
return 1 if ($a->{MCU} > $b->{MCU});
return -1 if ($a->{MCU} lt $b->{MCU});
return 0;

}

sub byabun{
return 1 if ($a->aa($sortbyAmino)/$a->len() > $b->aa($sortbyAmino)/$b->len());
return -1 if ($a->aa($sortbyAmino)/$a->len() < $b->aa($sortbyAmino)/$b->len());
return 0;

}

sub convert2AA()
{

$seq = @_[0];
$seq_len = length($seq);

$new_seq = "";

for ($j = 0; $j < $seq_len; $j += 3)
{
$residue= getRes(substr($seq, $j, 1).substr($seq, $j+1, 1).substr($seq, $j+2, 1));
if($residue ne -1) {$new_seq.=$residue;}#-1 is returned if stop codon

}
$new_seq =˜ s/_//g;
return $new_seq;

}

sub getRes
{

my($codon) = @_;
$codon = uc $codon;#converts to uppercase

my(%genetic_code) = (

’TCA’ => ’S’, # Serine
’TCC’ => ’S’, # Serine
’TCG’ => ’S’, # Serine
’TCT’ => ’S’, # Serine
’TTC’ => ’F’, # Phenylalanine
’TTT’ => ’F’, # Phenylalanine
’TTA’ => ’L’, # Leucine
’TTG’ => ’L’, # Leucine
’TAC’ => ’Y’, # Tyrosine
’TAT’ => ’Y’, # Tyrosine
’TAA’ => ’_’, # Stop
’TAG’ => ’_’, # Stop
’TGC’ => ’C’, # Cysteine
’TGT’ => ’C’, # Cysteine
’TGA’ => ’_’, # Stop
’TGG’ => ’W’, # Tryptophan
’CTA’ => ’L’, # Leucine
’CTC’ => ’L’, # Leucine
’CTG’ => ’L’, # Leucine
’CTT’ => ’L’, # Leucine
’CCA’ => ’P’, # Proline
’CCC’ => ’P’, # Proline
’CCG’ => ’P’, # Proline
’CCT’ => ’P’, # Proline
’CAC’ => ’H’, # Histidine
’CAT’ => ’H’, # Histidine
’CAA’ => ’Q’, # Glutamine
’CAG’ => ’Q’, # Glutamine
’CGA’ => ’R’, # Arginine
’CGC’ => ’R’, # Arginine
’CGG’ => ’R’, # Arginine
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’CGT’ => ’R’, # Arginine
’ATA’ => ’I’, # Isoleucine
’ATC’ => ’I’, # Isoleucine
’ATT’ => ’I’, # Isoleucine
’ATG’ => ’M’, # Methionine
’ACA’ => ’T’, # Threonine
’ACC’ => ’T’, # Threonine
’ACG’ => ’T’, # Threonine
’ACT’ => ’T’, # Threonine
’AAC’ => ’N’, # Asparagine
’AAT’ => ’N’, # Asparagine
’AAA’ => ’K’, # Lysine
’AAG’ => ’K’, # Lysine
’AGC’ => ’S’, # Serine
’AGT’ => ’S’, # Serine
’AGA’ => ’R’, # Arginine
’AGG’ => ’R’, # Arginine
’GTA’ => ’V’, # Valine
’GTC’ => ’V’, # Valine
’GTG’ => ’V’, # Valine
’GTT’ => ’V’, # Valine
’GCA’ => ’A’, # Alanine
’GCC’ => ’A’, # Alanine
’GCG’ => ’A’, # Alanine
’GCT’ => ’A’, # Alanine
’GAC’ => ’D’, # Aspartic Acid
’GAT’ => ’D’, # Aspartic Acid
’GAA’ => ’E’, # Glutamic Acid
’GAG’ => ’E’, # Glutamic Acid
’GGA’ => ’G’, # Glycine
’GGC’ => ’G’, # Glycine
’GGG’ => ’G’, # Glycine
’GGT’ => ’G’, # Glycine
);

if(exists $genetic_code{$codon})
{

return $genetic_code{$codon};
}
else
{

return -1;
exit;
}

}

sub populateAAarray{
$aarray[0]=’A’; # Serine
$aarray[1]=’C’; # Phenylalanine
$aarray[2]=’D’; # Leucine
$aarray[3]=’E’; # Tyrosine
$aarray[4]=’F’; # Cysteine
$aarray[5]=’G’; # Tryptophan
$aarray[6]=’H’; # Leucine
$aarray[7]=’I’; # Proline
$aarray[8]=’K’; # Histidine
$aarray[9]=’L’; # Glutamine
$aarray[10]=’M’; # Arginine
$aarray[11]=’N’; # Isoleucine
$aarray[12]=’P’; # Methionine
$aarray[13]=’Q’; # Threonine
$aarray[14]=’R’; # Asparagine
$aarray[15]=’S’; # Lysine
$aarray[16]=’T’; # Serine
$aarray[17]=’V’; # Arginine
$aarray[18]=’W’; # Valine
$aarray[19]=’Y’; # Alanine
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}

sub buildCategoryArray{

#Information storage and processing
$catArray[0]=’J’; #Translation, ribosomal structure and biogenesis
$catArray[1]=’K’; #Transcription
$catArray[2]=’L’; #DNA replication, recombination and repair

#Cellular processes
$catArray[3]=’D’; #Cell division and chromosome partitioning
$catArray[4]=’O’; #Posttranslational modification, protein turnover, chaperones
$catArray[5]=’M’; #Cell envelope biogenesis, outer membrane
$catArray[6]=’N’; #Cell motility and secretion
$catArray[7]=’P’; #Inorganic ion transport and metabolism
$catArray[8]=’T’; #Signal transduction mechanisms

#Metabolism
$catArray[9]=’C’; #Energy production and conversion
$catArray[10]=’G’; #Carbohydrate transport and metabolism
$catArray[11]=’E’; #Amino acid transport and metabolism
$catArray[12]=’F’; #Nucleotide transport and metabolism
$catArray[13]=’H’; #Coenzyme metabolism
$catArray[14]=’I’; #Lipid metabolism
$catArray[15]=’Q’; #Secondary metabolites biosynthesis, transport and catabolism -

#Poorly characterized
# $catArray[16]=’R’; #General function prediction only -
# $catArray[17]=’S’; #Function unknown -
}

#genes must be in array called genes and be sorted by mcu before call this
sub flagHL{

for ($i=0; $i<=$gene_count/2; $i++){
$genes[$i]->hlflag(’l’);
$genes[$gene_count-($i+1)]->hlflag(’h’);

}
}

G.6 createFaa.pl

$|=1;

$genom = $ARGV[0];#root of in and out file passed in as arg

#Create .faa file

open (GEN, $genom.".ppp") || die "Unable to open the input file";

@genes = ();
@genes_all = ();

$gene_count = 0;
$line = <GEN>;

while ($line)
{

if ($line =˜ /ˆ<(.*)>/)
{
$genes{$gene_count} = {’Name’ => $1, ’Seq’ => ""};
$genes_all{$gene_count++} = {’Name’ => $1, ’Seq’ => ""};

}

$line = <GEN>;
while ($line ne "" and $line !˜ /ˆ<.*>/)
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{
$line =˜ s/\s|\n//g;
$genes{$gene_count-1}->{’Seq’} .= $line;
$genes_all{$gene_count-1}->{’Seq’} .= $line;
$line = <GEN>;

}
}

#>gi|16127995|ref|NP_414542.1| thr operon leader peptide [Escherichia coli K12]

$incr1 = 16000000;
$incr2 = 410000;
open (FAA, ">".$genom.".ppp.faa") || die "Unable to open the helico.ppp.faa file";

for ($i = 0; $i < $gene_count; $i++)
{

if($i%100 == 0){
print "processing gene ".$i." of ".$gene_count."\n";

}
print FAA ">gi|".$incr1++."|ref|NP_".$incr2++.".1| =$genes{$i}->{’Name’}= \n";
print FAA convert2AA($genes{$i}->{’Seq’}), "\n";

}
close (FAA);

sub convert2AA()
{

$seq = @_[0];
$seq_len = length($seq);

$new_seq = "";

for ($j = 0; $j < $seq_len; $j += 3)
{
$new_seq.= getRes(substr($seq, $j, 1).substr($seq, $j+1, 1).substr($seq, $j+2, 1));

}
$new_seq =˜ s/_//g;
return $new_seq;

}

sub getRes
{

my($codon) = @_;
$codon = uc $codon;#converts to uppercase

my(%genetic_code) = (

’TCA’ => ’S’, # Serine
’TCC’ => ’S’, # Serine
’TCG’ => ’S’, # Serine
’TCT’ => ’S’, # Serine
’TTC’ => ’F’, # Phenylalanine
’TTT’ => ’F’, # Phenylalanine
’TTA’ => ’L’, # Leucine
’TTG’ => ’L’, # Leucine
’TAC’ => ’Y’, # Tyrosine
’TAT’ => ’Y’, # Tyrosine
’TAA’ => ’_’, # Stop
’TAG’ => ’_’, # Stop
’TGC’ => ’C’, # Cysteine
’TGT’ => ’C’, # Cysteine
’TGA’ => ’_’, # Stop
’TGG’ => ’W’, # Tryptophan
’CTA’ => ’L’, # Leucine
’CTC’ => ’L’, # Leucine
’CTG’ => ’L’, # Leucine
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’CTT’ => ’L’, # Leucine
’CCA’ => ’P’, # Proline
’CCC’ => ’P’, # Proline
’CCG’ => ’P’, # Proline
’CCT’ => ’P’, # Proline
’CAC’ => ’H’, # Histidine
’CAT’ => ’H’, # Histidine
’CAA’ => ’Q’, # Glutamine
’CAG’ => ’Q’, # Glutamine
’CGA’ => ’R’, # Arginine
’CGC’ => ’R’, # Arginine
’CGG’ => ’R’, # Arginine
’CGT’ => ’R’, # Arginine
’ATA’ => ’I’, # Isoleucine
’ATC’ => ’I’, # Isoleucine
’ATT’ => ’I’, # Isoleucine
’ATG’ => ’M’, # Methionine
’ACA’ => ’T’, # Threonine
’ACC’ => ’T’, # Threonine
’ACG’ => ’T’, # Threonine
’ACT’ => ’T’, # Threonine
’AAC’ => ’N’, # Asparagine
’AAT’ => ’N’, # Asparagine
’AAA’ => ’K’, # Lysine
’AAG’ => ’K’, # Lysine
’AGC’ => ’S’, # Serine
’AGT’ => ’S’, # Serine
’AGA’ => ’R’, # Arginine
’AGG’ => ’R’, # Arginine
’GTA’ => ’V’, # Valine
’GTC’ => ’V’, # Valine
’GTG’ => ’V’, # Valine
’GTT’ => ’V’, # Valine
’GCA’ => ’A’, # Alanine
’GCC’ => ’A’, # Alanine
’GCG’ => ’A’, # Alanine
’GCT’ => ’A’, # Alanine
’GAC’ => ’D’, # Aspartic Acid
’GAT’ => ’D’, # Aspartic Acid
’GAA’ => ’E’, # Glutamic Acid
’GAG’ => ’E’, # Glutamic Acid
’GGA’ => ’G’, # Glycine
’GGC’ => ’G’, # Glycine
’GGG’ => ’G’, # Glycine
’GGT’ => ’G’, # Glycine
);

if(exists $genetic_code{$codon})
{

return $genetic_code{$codon};
}
else
{

#return -1;
return "";

}
}

G.7 blastFilterPrj.pl

$|=1;

#$genom = $ARGV[0];#root of in and out file passed in as arg
$SLIDE=0;
$PERC_ID=60;
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$numArgs = @ARGV;

$errorMessage=
"syntax should be

perl blastFilterPrj.pl -slide fileroot
or
perl blastFilterPrj.pl -perc 60 fileroot

\n
the -slide option causes it to use the sliding 60 window.
the -perc option causes it to use the percent identity method. The

default value is 60 percent\n\n";

if($numArgs == 0){
print $errorMessage;
exit;

}

#last arg is filename so decrement numargs and it will index fileroot and work
#for < nomenclature in for loop
$numArgs--;
$genom = $ARGV[$numArgs]."\n";
chomp($genom);

for(my $i=0; $i<$numArgs; $i++){
print "argument $i is $ARGV[$i] \n";
if($ARGV[$i] eq "-slide"){
$SLIDE = 1;

}
elsif($ARGV[$i] eq "-perc"){
$PERC_ID = $ARGV[$i+1];#times 3 for codons, the six takes care of stop

#codons
$i++; #this accounts for next argument which is the length

}
else{
print $errorMessage;
exit;

}
}

#### Extracting Genes from the output file
open (GEN, $genom.".ppp.faa") || die "Unable to open the ppp.faa file";
open (OUT, ">".$genom."Blast.out") || die "Unable to open Blast.out file";
open (EVALS, ">".$genom."evals.wri") || die "Unable to open the evals.wri file";
open (CHQ, ">".$genom."stop.flag");
close CHQ;
print "opened the $genom amino acid db file\n";

@genes = ();
@genes_all = ();
@genes_hash_index = ();
$gene_count = 0;
$line = <GEN>;
while ($line)
{

if ($line =˜ /ˆ>gi.*=(.*)=/)
{
$genes{$gene_count} = {’Name’ => $1, ’Seq’ => ""};
$genes_all{$gene_count++} = {’Name’ => $1, ’Seq’ => "", ’Valid’ => 1};
$genes_hash_index{$1} = {’Index’ => $gene_count-1};
$counter=$counter+1;

}

$line = <GEN>;
while ($line ne "" and $line !˜ /ˆ>gi.*=(.*)=/)
{

179



G.7. BLASTFILTERPRJ.PL July 15, 2005

$line =˜ s/\s|\n//g;
$genes{$gene_count-1}->{’Seq’} .= $line;
$genes_all{$gene_count-1}->{’Seq’} .= $line;
$line = <GEN>;

}
$genes{$gene_count-1}->{’Seq’} =˜ s/_//;
$genes_all{$gene_count-1}->{’Seq’} =˜ s/_//;
if($genes_all{$gene_count-1}->{’Seq’} eq "" ||

$genes{$gene_count-1}->{’Seq’} eq ""){
print "had an empty sequence: ".$genes{$gene_count-1}->{’Name’}."\n";
exit;

}

}
print "Done loading database\nthere are $gene_count genes in the database\n";

#### End of Extracting Genes

#### Load Major Codon Usage ####
open (GC3D, $genom.".cgs") || die "Unable to open the gc3 FILE";
print "loading the gc3 data for decision making purposes\n";

@genes_gc3 = ();
$line = <GC3D>;
$line =˜ /.*Avg=(.*)/;
$averageGC = $1;
while ($line = <GC3D>)
{

$line =˜ /<(.*)>, (.*),.*/;
$genes_gc3{$1} = {’GC3’ => $2};

}
print "done loading gc3 stuff\n";

#### End Loading gc3 ####

$slide_window = 60;

for ($i = 0; $i < $gene_count ; $i++)
{

$flag_check = pauseCheck(); #this tries to open the stop flag file,
#if anything is in it returns true, I think this
#is so a user could put something in this file
#and pause the program

while ($flag_check == 1)
{
$flag_check = pauseCheck();
sleep (60);

}

print OUT "_START________________________\n";
print OUT "Query Gene: ", $genes{$i}->{’Name’}, "\n";
print "$genom : Query Gene: ", $genes{$i}->{’Name’}, " number ".$i." of ".$gene_count."\n";
open (QRY, ">".$genom."results.qry") || die "Unable to open Query file at Iteration $i";
print QRY $genes{$i}->{’Seq’};

$command = "./blastall -p blastp -d ".$genom.".ppp.faa -i ".$genom.
"results.qry -o ".$genom."results.out -e 0.01";

$result = ‘$command‘;

#the blast command above outputed its results to the following results.out file
open (RSLT, $genom."results.out") || die "Unable to open the results.out file";

@matches = ();
$flag_done = 0;
$line = <RSLT>;
$match_count = 0;
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#print "parsing through results of blast for ".$genes{$i}->{’Name’}."\n";

while ($line ne "" and $flag_done == 0 and $genes_all{$i}->{’Valid’} == 1 )
{
if ($line =˜ /Sequences producing significant alignments:/)
{

$line = <RSLT>;
$line = <RSLT>;

while ($line ne "" and $flag_done == 0)
{

if ($line =˜ /gi.*=(.*)=\s+(\d+)\s+(.*)/){
$matches{$match_count++} = {’Name’ => $1, ’BitScore’ => $2, ’EValue’ => $3};
#!!!$matches{++$match_count} = {’Name’ => $1};
print OUT $line;

}
else{

$flag_done = 1;
}
$line = <RSLT>;

}
}
elsif ($line =˜ /\*\*\*\*\* No hits found \*\*\*\*\*\*/)
{

print OUT " - No Hits found - \n";
close RSLT;
$line = "";
next;

}
$line = <RSLT>;

}

if ($match_count == 1)
{
print OUT "__END________________________\n\n";
next;

}

#the following line was $flag_done == 0; which would seem to do nothing
#I changed it and set it to 0
$flag_done = 0;
@double_hits = ();
$double_hit_cnt = 0;

print $match_count." matches were found for ".$genes{$i}->{’Name’}."\n";

#--------------------------------------
#ok, now need to get each of the strings
#--------------------------------------
open (RSLT, $genom."results.out") || die "Unable to open the results.out file";
$match_count=0;

foreach $line (<RSLT>){

#if contains Database: then done
if($line=˜/ Database:/){

#print "found the old database\n";
last;

}

#if see an > then about to start a (new) string,
elsif($line=˜/>/){

$query{$match_count} = $qseq;
$subject{$match_count} = $sbjctseq;

181



G.7. BLASTFILTERPRJ.PL July 15, 2005

#print "printing query\n".$query{$match_count}."\n";
#print "printing subject\n".$subject{$match_count}."\n";

$match_count++;

#print "getting string $match_count \n";
$qseq="";
$sbjctseq="";

}

#this is added just to see what happens with 60%
elsif($line=˜/Identities/){

$line=˜/\((.*?)%\)/;
#print $1."\n";
$percs{$match_count} = $1;
#print $matches{$match_count+1}->{’Percent’}."\n";
#print $percs{$match_count+1}."\n";

}

elsif($line=˜/Query:/g){
#concat any string that begins Query: # Str #
$line=˜/\s+\d+\s+(.*)\s+\d+/;
$qseq=$qseq.$1;

}

#concat any that say Sbjct: # str #
elsif($line=˜/Sbjct:/g){

#concat any string that begins Query: # Str #
$line=˜/\s+\d+\s+(.*)\s+\d+/;
$sbjctseq=$sbjctseq.$1;

}

}
#have to get the last seq into its storage bin
$query{$match_count} = $qseq;
#if($match_count){print $query{$match_count}."\n";}
$subject{$match_count} = $sbjctseq;
#if($match_count){print $subject{$match_count}."\n";}

#print "about to start sliding window comparisons for ".$genes{$i}->{’Name’}."\n";

for ($k = 1; $k <= $match_count; $k++)
{
#print "looking at match number ".$k."\n";
$first_seq = $query{$k};
$second_seq = $subject{$k};
if (isValid($matches{$k}->{’Name’}))
{

#open (SEQFIRST, ">".$genom."firstseq.txt") || die "Unable to open seq search file";
#open (SEQSEC, ">".$genom."secseq.txt") || die "Unable to open seq search file";
#print SEQFIRST $first_seq;
#print SEQSEC $second_seq;
#exit;

if($SLIDE){
$result = compareSeqs($first_seq, $second_seq);

}
else{

$result = newComp();
}

if ($result == 1)#matches has all matches in it including the query gene
{

$double_hits{$double_hit_cnt++}->{’Name’} = $matches{$k}->{’Name’};
$double_hits{$double_hit_cnt-1}->{’EValue’} = $matches{$k}->{’EValue’};
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print OUT "Gene Passed 60 Sliding Window : ", $matches{$k}->{’Name’}, "\n";
}

}
}

print OUT "\n";

$keep = -1;
$min_gc3 = 1000000;
for ($it = 0; $it < $double_hit_cnt; $it++)
{
if ($min_gc3 > abs ($genes_gc3{$double_hits{$it}->{’Name’}}->{’GC3’} - $averageGC))
{

$min_gc3 = abs ($genes_gc3{$double_hits{$it}->{’Name’}}->{’GC3’} - $averageGC);
$keep = $it;

}
}

#Remove the undesired Genes
for ($it = 0; $it < $double_hit_cnt; $it++)
{
if ($it != $keep)
{

$genes_all{$genes_hash_index{$double_hits{$it}->{’Name’}}->{’Index’}}->{’Valid’} = 0;
print OUT "Gene Removed: ", $double_hits{$it}->{’Name’}, "\n";
print EVALS $double_hits{$it}->{’Name’}." ".$double_hits{$it}->{’EValue’}."\n";

}
else
{

print OUT "Gene Kept: ", $double_hits{$it}->{’Name’}, "\n";
}

}
print OUT "__END________________________\n\n";

}

sub compareSeqs()
{

#print "starting sliding window comparison\n";
my $first = @_[0];
my $second = @_[1];
my $temp = "";

if (length($first) < length($second))
{
$temp = $first;
$first = $second;
$second = $temp;

}
if(length($first<60)){

print "\n\n\n\n\nI had a less than 60!!!\n\n\n\n\n\n\n";
return 0;

}

$start_pos = 0;

for ($h = 0; $h < (length($first) - length($second) + 1); $h++)
{
if(length($first) != length($second)){

print "Genes of unequal lengths ".$genes{$i}->{’Name’}."\n";
exit;
}

$slide_cnt = 0;
@slide_arr = ();
for ($rr = 0; $rr < $slide_window; $rr++)
{

$slide_arr[$rr] = 0;
}
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for ($a = 0; $a < length($second); $a++)
{

$mtch = 0;
if (substr($first, $start_pos + $a, 1) eq substr($second, $a, 1))
{

$mtch = 1;
}
if ($a >= $slide_window)#just stash the match flag in the slide array

#until reach end of the slide window. At that
#time this if statement kicks in, and the
#values in the slide array are all shifted left
#and the new value is put into the last slot

{
@slide_arr = incrArr(@slide_arr, $mtch);

}
else
{

$slide_arr[$a] = $mtch;
}

if (countMtchs(@slide_arr) >= ($slide_window * 0.6))
{

#print "sliding window comparison completed\n";
return 1;

}
}

$start_pos++;
}
#print "sliding window comparison completed\n";
return 0;

}

sub newComp()
{

$returnVar=0;
#print "the percentage is ".$percs{$k}."\n";
if ($percs{$k}>$PERC_ID){
$returnVar=1;

}
#print "the return var will be ".$returnVar."\n";
return $returnVar;

}

#passed this function a slide array 60 in length and a flag
# the flag goes into the last pos and all the rest are shifted
#left
sub incrArr()
{

my(@arr) = @_;
my @temp_arr = ();

for ($rr = 1; $rr < $slide_window ; $rr++)
{
$temp_arr[$rr-1] = $arr[$rr];

}
$temp_arr[$slide_window-1] = $mtch;
return @temp_arr;

}

sub countMtchs()
{

my (@arr) = @_;
my $count = 0;
for ($rr = 0; $rr < $slide_window; $rr++)
{
$count += $arr[$rr];
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}
return $count;

}

sub getSeq4Name()
{

my $name = @_[0];

for ($m = 0; $m < $gene_count; $m++)
{
if ($name =˜ /$genes{$m}->{’Name’}/)
{

return $genes{$m}->{’Seq’};
}

}

}

sub isValid()
{

my $name = @_[0];

for ($m = 0; $m < $gene_count; $m++)
{
if ($name =˜ /$genes_all{$m}->{’Name’}/)
{

return $genes_all{$m}->{’Valid’};
}

}

}

sub pauseCheck()
{

open (CHEQ, $genom."stop.flag") || print "Unable to Open stop.flag file";
$line = <CHEQ>;
close CHEQ;
if (length($line) > 1)
{
return 1;

}
return 0;

}

sub getNextLine()
{

$line = <RSLT>;
while ($line eq "")
{
$line = <RSLT>;

}
return $line;

}

G.8 parseOutFile.pl

$genom = $ARGV[0];

open (OUT, $genom."Blast.out") || die "Unable to open the output file";
open (REM, ">".$genom."removed.out");

@removed = ();
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$removed_count = 0;
while ($line = <OUT>)
{

if ($line =˜ /Gene Removed: (.*)\n/)
{
$name = $1;
$name =˜ s/\s|\n//g;
print REM $1."\n";
$removed{$1} = {’Valid’ => 1};

}
}

#ppp is list of all genes (at least after gc3 cull)
open (OUT2, $genom.".ppp") || die "Unable to open the output file";
open (REM2, ">".$genom."Genome.out");#will hold names of kept genes

$removed_count = 0;
while ($line = <OUT2>)
{

if ($line =˜ /<(.*)>/)
{
if ($removed{$1}->{’Valid’} != 1)
{

$name = $1;
$name =˜ s/\s|\n//g;
print REM2 $1."\n";

}
}

}

G.9 Part4a.pl

#########################################################
#Reads Input from list of genes from end of part III,
#Gets functionality of each gene,
#Output the Gene Name with functionality code embedded,
#and generate output file with name, code and sequence.
#########################################################

$genName = $ARGV[0];

$genesList_file = $genName."NCBI.ptt";

#files needed .ppp, .pttt, .*Genome.out
#Extract Gene names from part III output file.
open (LS, $genName."Genome.out") || die "Unable to open the filtered Genes from PIIIc";
@genesAfterPIII = ();
while ($line = <LS>)#genome.out holds the names of all kept genes
{

if ($line =˜ /(.*)/)
{
$genesAfterPIII{$1} = 1;
#a one indicates that these are to be kept, they are hashed by name

}
}
#End of extracting genes

#### Extracting Genes from the output file
open (GEN, $genName.".ppp") || die "Unable to open the input file";

@genes = ();
$gene_count = 0;
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$line = <GEN>;
@genes_hash_index = ();

#build a list of all genes (to be placed in genes{}), or at least all after gc3
while ($line)
{

if ($line =˜ /ˆ<(.*)>/g)
{
$genes{$gene_count++} = {’Name’ => $1, ’Seq’ => ""};
$genes_hash_index{$1} = {’Index’ => $gene_count-1};

}

$line = <GEN>;#ppp file, output of gc3 culling
while ($line ne "" and $line !˜ /ˆ<.*>/)
{
$line =˜ s/\s|\n//g;
$genes{$gene_count-1}->{’Seq’} .= $line;
$line = <GEN>;

}

$genes{$gene_count-1}->{’Seq’} =˜ s/_//;
}
#### End of Extracting Genes

#this is ptt file
open (genes, $genesList_file) || die "Unable to open ".$genesList_file;
#this is the output of kept genes and their sequences, the main purpose of this
#script
open (OUT, ">".$genName."Part4Start.db");

$geneCount = -1;
#@allGenes = ();
$gLine = <genes>;
#if($genom

while ($gLine = <genes>)
{

$badFlag=0;
#the following is just for strept
if( $gLine =˜ /transposase/ ||

$gLine =˜ /truncation/){
$badFlag=1;

}

if ($gLine =˜ /(\d+)\.\.(\d+)\s*([+-])\s*(\d+)\s*(\d+)\s*([-\w+\.
|truncated \w+]+)\s*([-\w+]+)\s*([-\w+]+)\s*([-\w+]+)\s*(.*)/)

{

#print $6."\n";

#the next is a hashed by name array that holds flags that when =1 means keep
if ( ($genesAfterPIII{$6} == 1 || $genesAfterPIII{$7} == 1) && !$badFlag)
{

if ($genesAfterPIII{$6} == 1)
{

print OUT "<".$6."!_".$8.">\n";
print OUT $genes{$genes_hash_index{$6}->{’Index’}}->{’Seq’}, "\n";
$genesAfterPIII{$6} = 2;

}
else
{

print OUT "<".$7."!_".$8.">\n";
print OUT $genes{$genes_hash_index{$7}->{’Index’}}->{’Seq’}, "\n";
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$genesAfterPIII{$7} = 2;
}

}
#To retrieve data -> print $allGenes{32}->{’Gene’}, "\n";

}
}

print "\nList of Unmatched Genes: \n";

open (LSE, $genName."Genome.out") || die "Unable to open the filtered Genes from PIIIc";
while ($line = <LSE>)
{

if ($line =˜ /(.*)/)
{
if ($genesAfterPIII{$1} != 2)#if it didn’t get dealt with above
{

if($1 ne ""){
print OUT "<".$1."!_->\n";
print $1."\n";
print OUT $genes{$genes_hash_index{$1}->{’Index’}}->{’Seq’}, "\n";
$genesAfterPIII{$1} = 2;

}
}

}
}
print "\nEnd of Unmatched Genes List\n";

G.10 createMatrix.pl

#This program takes a list of gene sequences and generates a matrix that
#contains the codon frequency for each codon, for each gene
# for g1 will yield row1 of c1,c2,c3...c61
# for g2 will yield row1 of c1,c2,c3...c61
# for g3 will yield row1 of c1,c2,c3...c61
# for g4 will yield row1 of c1,c2,c3...c61

$fileRoot = $ARGV[0];
$inputFileName = $fileRoot."Part4Start.db";
$outputFileName = $fileRoot."Matrix.txt";
print "Input file is $inputFileName\n";
print "Output file is $outputFileName\n";

# open input file
unless( open(INPUTFILE, $inputFileName) ) {

print STDERR "Cannot open file \"$inputFileName\"\n\n";
exit;

}

unless( open(OUTPUTFILE, ">".$outputFileName) ) {
print STDERR "Cannot open file \"$outputFileName\"\n\n";
exit;

}

#fill box hash
#fillBox();

# parse the string by gene then by codon and accumulate codon counts
$geneCounter = 0;
while(<INPUTFILE>) {

#
$line = $_;
chomp($line);
$lineLength = length($line);
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$line = substr($line, 0, $lineLength);

# clear % codonTotal and $majorCodon
for ($i=1; $i<=4; $i++) {

for ($j=1; $j<=4; $j++) {
for ($k=1; $k<=4; $k++) {

$codon = dig2Nuc($i).dig2Nuc($j).dig2Nuc($k);
$codonTotal{$codon} = 0;
#$majorCodon{$codon} = 0;

}
}

}

if ($line =˜ /</) { # if true line contains the gene name
$geneCounter++;
$geneName{$geneCounter}=$_;
if($geneCounter%500 == 0) {

print "$geneCounter\n";
}

}

else {#OK, looking at a sequence
$lineLength = length($line);
$numCodonsInGene = $lineLength/3;

#get codon totals for each codon
for ($i=0; $i<$lineLength; $i=$i+3) {

$codon = substr($line, $i, 3);
if (length($codon)<3) {

printf "SHORT CODON ERROR %s in ", $codon;
printf "gene number=%s ", $geneCounter;
printf "gene name=%s ", $geneName{$geneCounter};
printf "gene length=%s\n", $lineLength;

}
$codonTotal{$codon} = $codonTotal{$codon} + 1;

}

#calculate the frequencies of all codons
#this is based upon codon box number and average num
calcFreq();

for ($i=1; $i<=4; $i++) {
for ($j=1; $j<=4; $j++) {

for ($k=1; $k<=4; $k++) {
$codon = dig2Nuc($i).dig2Nuc($j).dig2Nuc($k);
if($codon eq ’tga’ || $codon eq ’tag’ || $codon eq ’taa’ ||

$codon eq ’tgg’ || $codon eq ’atg’){
#do nothing

}
else{

printf OUTPUTFILE "%0.4f",$freqCodon{$codon};
#print $geneName{$geneCounter} ;
#exit();
#if($freqCodon{$codon}==0 && $geneCounter == 1) {
#print "got a zero at codon $codon\n";

#}

if($i == 4 && $j == 4 && $k == 4){
print OUTPUTFILE "\n";

}
else{
print OUTPUTFILE ",";

}
}

}
}

}
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}

}

close(INPUTFILE);
close(OUTPUTFILE);

#
# dig2Nuc returns a nucleotice abreviation corresponding to the
# number passed to it 1->a, 2->c, 3->g, 4->t
#
sub dig2Nuc {

my $val; # the nucleotide abrev to be returned
if ($_[0] == 1) {

$val = "a";
}
elsif ($_[0] == 2) {

$val = "c";
}
elsif ($_[0] == 3) {

$val = "g";
}
elsif ($_[0] == 4) {

$val = "t";
}
else {

print "Invalid input $_[0] in dig2Nuc\n";
}

return $val;
}

sub fillBox{

#
# find Alanine major codon
#
$box{’gca’} = 4;
$box{’gcc’} = 4;
$box{’gcg’} = 4;
$box{’gct’} = 4;

#
# find Arginine major codon
#
$box{’aga’} = 6;
$box{’agg’} = 6;
$box{’cga’} = 6;
$box{’cgc’} = 6;
$box{’cgg’} = 6;
$box{’cgt’} = 6;

#
# find Asparagine major codon
#
$box{’aac’} = 2;
$box{’aat’} = 2;

#
# find Aspartic acid major codon
#
$box{’gac’} = 2;
$box{’gat’} = 2;

#
# find Cysteine major codon
#
$box{’tgc’} = 2;
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$box{’tgt’} = 2;

#
# find Glutamine major codon
#
$box{’caa’} = 2;
$box{’cag’} = 2;

#
# find Glutamic acid major codon
#
$box{’gaa’} = 2;
$box{’gag’} = 2;

#
# find Glycine major codon
#
$box{’gga’} = 4;
$box{’ggc’} = 4;
$box{’ggg’} = 4;
$box{’ggt’} = 4;

#
# find Histidine major codon
#
$box{’cac’} = 3;
$box{’cat’} = 3;

#
# find Isoleucine major codon
#
$box{’ata’} = 3;
$box{’atc’} = 3;
$box{’att’} = 3;

#
# find Leucine major codon
#
$box{’cta’} = 6;
$box{’ctc’} = 6;
$box{’ctg’} = 6;
$box{’ctt’} = 6;
$box{’tta’} = 6;
$box{’ttg’} = 6;

#
# find Lysine major codon
#
$box{’aaa’} = 2;
$box{’aag’} = 2;

#
# set Methionine as a major codon
#
$box{’atg’} = 1;

#
# find Phenylalanine major codon
#
$box{’cca’} = 2;
$box{’ccc’} = 2;

#
# find Proline major codon
#
$box{’cca’} = 4;
$box{’ccc’} = 4;
$box{’ccg’} = 4;
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$box{’cct’} = 4;

#
# find Serine major codon
#
$box{’agc’} = 6;
$box{’agt’} = 6;
$box{’tca’} = 6;
$box{’tcc’} = 6;
$box{’tcg’} = 6;
$box{’tct’} = 6;

#
# find Threonine major codon
#
$box{’aca’} = 4;
$box{’acc’} = 4;
$box{’acg’} = 4;
$box{’act’} = 4;

#
# set Tryptophan as a major codon
#
$box{’tgg’} = 1;

#
# find Tyrosine major codon
#
$box{’tac’} = 2;
$box{’tat’} = 2;

#
# find Valine major codon
#
$box{’gta’} = 4;
$box{’gtc’} = 4;
$box{’gtg’} = 4;
$box{’gtt’} = 4;

#
# find stop major codon
#
$box{’taa’} = 3;
$box{’tag’} = 3;
$box{’tag’} = 3;

}

sub calcFreq{

#
# find Alanine major codon
#

$AlanineAve = ($codonTotal{"gca"}+$codonTotal{"gcc"}+
$codonTotal{"gcg"}+$codonTotal{"gct"})/4;

if ($AlanineAve != 0){
$freqCodon{"gca"} = $codonTotal{"gca"}/$AlanineAve;
$freqCodon{"gcc"} = $codonTotal{"gcc"}/$AlanineAve;
$freqCodon{"gcg"} = $codonTotal{"gcg"}/$AlanineAve;
$freqCodon{"gct"} = $codonTotal{"gct"}/$AlanineAve;
}

else{
$freqCodon{"gca"} = 0;
$freqCodon{"gcc"} = 0;
$freqCodon{"gcg"} = 0;
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$freqCodon{"gct"} = 0;
}

#
# find Arginine major codon
#
$ArginineAve = ($codonTotal{"aga"}+$codonTotal{"agg"}+$codonTotal{"cga"}

+$codonTotal{"cgc"}+$codonTotal{"cgg"}+$codonTotal{"cgt"})/6;

if ($ArginineAve != 0){
$freqCodon{"aga"} = $codonTotal{"aga"}/$ArginineAve;
$freqCodon{"agg"} = $codonTotal{"agg"}/$ArginineAve;
$freqCodon{"cga"} = $codonTotal{"cga"}/$ArginineAve;
$freqCodon{"cgc"} = $codonTotal{"cgc"}/$ArginineAve;
$freqCodon{"cgg"} = $codonTotal{"cgg"}/$ArginineAve;
$freqCodon{"cgt"} = $codonTotal{"cgt"}/$ArginineAve;
}

else{
$freqCodon{"aga"} = 0;
$freqCodon{"agg"} = 0;
$freqCodon{"cga"} = 0;
$freqCodon{"cgc"} = 0;
$freqCodon{"cgg"} = 0;
$freqCodon{"cgt"} = 0;
}

#
# find Asparagine major codon
#
$AsparagineAve = ($codonTotal{"aac"}+$codonTotal{"aat"})/2;

if ($AsparagineAve != 0){
$freqCodon{"aac"} = $codonTotal{"aac"}/$AsparagineAve;
$freqCodon{"aat"} = $codonTotal{"aat"}/$AsparagineAve;
}

else{
$freqCodon{"aac"} = 0;
$freqCodon{"aat"} = 0;
}

#
# find Aspartic acid major codon
#
$AsparticAve = ($codonTotal{"gac"}+$codonTotal{"gat"})/2;

if ($AsparticAve != 0){
$freqCodon{"gac"} = $codonTotal{"gac"}/$AsparticAve;
$freqCodon{"gat"} = $codonTotal{"gat"}/$AsparticAve;
}

else{
$freqCodon{"gac"} = 0;
$freqCodon{"gat"} = 0;
}

#
# find Cysteine major codon
#

$CysteineAve = ($codonTotal{"tgc"}+$codonTotal{"tgt"})/2;

if ($CysteineAve != 0){
$freqCodon{"tgc"} = $codonTotal{"tgc"}/$CysteineAve;
$freqCodon{"tgt"} = $codonTotal{"tgt"}/$CysteineAve;
}

else{
$freqCodon{"tgc"} = 0;
$freqCodon{"tgt"} = 0;
}
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#
# find Glutamine major codon
#

$GlutamineAve = ($codonTotal{"caa"}+$codonTotal{"cag"})/2;

if ($GlutamineAve != 0){
$freqCodon{"caa"} = $codonTotal{"caa"}/$GlutamineAve;
$freqCodon{"cag"} = $codonTotal{"cag"}/$GlutamineAve;
}

else{
$freqCodon{"caa"} = 0;
$freqCodon{"cag"} = 0;
}

#
# find Glutamic acid major codon
#

$GlutamicAve = ($codonTotal{"gaa"}+$codonTotal{"gag"})/2;

if ($GlutamicAve != 0){
$freqCodon{"gaa"} = $codonTotal{"gaa"}/$GlutamicAve;
$freqCodon{"gag"} = $codonTotal{"gag"}/$GlutamicAve;
}

else{
$freqCodon{"gaa"} = 0;
$freqCodon{"gag"} = 0;
}

#
# find Glycine major codon
#

$GlycineAve = ($codonTotal{"gga"}+$codonTotal{"ggc"}+$codonTotal{"ggg"}+
$codonTotal{"ggt"})/4;

if ($GlycineAve != 0){
$freqCodon{"gga"} = $codonTotal{"gga"}/$GlycineAve;
$freqCodon{"ggc"} = $codonTotal{"ggc"}/$GlycineAve;
$freqCodon{"ggg"} = $codonTotal{"ggg"}/$GlycineAve;
$freqCodon{"ggt"} = $codonTotal{"ggt"}/$GlycineAve;
}

else{
$freqCodon{"gga"} = 0;
$freqCodon{"ggc"} = 0;
$freqCodon{"ggg"} = 0;
$freqCodon{"ggt"} = 0;
}

#
# find Histidine major codon
#

$HistidineAve = ($codonTotal{"cac"}+$codonTotal{"cat"})/2;

if ($HistidineAve != 0){
$freqCodon{"cac"} = $codonTotal{"cac"}/$HistidineAve;
$freqCodon{"cat"} = $codonTotal{"cat"}/$HistidineAve;
}

else{
$freqCodon{"cac"} = 0;
$freqCodon{"cat"} = 0;
}

#
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# find Isoleucine major codon
#

$IsoleucineAve = ( $codonTotal{"ata"}+$codonTotal{"atc"}+
$codonTotal{"att"})/3;

if ($IsoleucineAve != 0){
$freqCodon{"ata"} = $codonTotal{"ata"}/$IsoleucineAve;
$freqCodon{"atc"} = $codonTotal{"atc"}/$IsoleucineAve;
$freqCodon{"att"} = $codonTotal{"att"}/$IsoleucineAve;
}

else{
$freqCodon{"ata"} = 0;
$freqCodon{"atc"} = 0;
$freqCodon{"att"} = 0;
}

#
# find Leucine major codon
#

$LeucineAve = ($codonTotal{"cta"}+$codonTotal{"ctc"}+$codonTotal{"ctg"}
+$codonTotal{"ctt"}+$codonTotal{"tta"}+$codonTotal{"ttg"})/6;

if ($LeucineAve != 0){
$freqCodon{"cta"} = $codonTotal{"cta"}/$LeucineAve;
$freqCodon{"ctc"} = $codonTotal{"ctc"}/$LeucineAve;
$freqCodon{"ctg"} = $codonTotal{"ctg"}/$LeucineAve;
$freqCodon{"ctt"} = $codonTotal{"ctt"}/$LeucineAve;
$freqCodon{"tta"} = $codonTotal{"tta"}/$LeucineAve;
$freqCodon{"ttg"} = $codonTotal{"ttg"}/$LeucineAve;
}

else{
$freqCodon{"cta"} = 0;
$freqCodon{"ctc"} = 0;
$freqCodon{"ctg"} = 0;
$freqCodon{"ctt"} = 0;
$freqCodon{"tta"} = 0;
$freqCodon{"ttg"} = 0;
}

#
# find Lysine major codon
#

$LysineAve = ($codonTotal{"aaa"}+$codonTotal{"aag"})/2;

if ($LysineAve != 0){
$freqCodon{"aaa"} = $codonTotal{"aaa"}/$LysineAve;
$freqCodon{"aag"} = $codonTotal{"aag"}/$LysineAve;
}

else{
$freqCodon{"aaa"} = 0;
$freqCodon{"aag"} = 0;
}

#
# set Methionine as a major codon
#

$MethionineAve = $codonTotal{"atg"};

if( $MethionineAve!=0){
$freqCodon{"atg"} = $codonTotal{"atg"}/$MethionineAve;
}

else{
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$freqCodon{"atg"} = 0;
}

#
# find Phenylalanine major codon
#

$PhenylalanineAve = ($codonTotal{"ttc"}+$codonTotal{"ttt"})/2;

if ($PhenylalanineAve != 0){
$freqCodon{"ttc"} = $codonTotal{"ttc"}/$PhenylalanineAve;
$freqCodon{"ttt"} = $codonTotal{"ttt"}/$PhenylalanineAve;
}

else{
$freqCodon{"ttc"} = 0;
$freqCodon{"ttt"} = 0;
}

#
# find Proline major codon
#

$ProlineAve = ($codonTotal{"cca"}+$codonTotal{"ccc"}+$codonTotal{"ccg"}+
$codonTotal{"cct"})/4;

if ($ProlineAve != 0){
$freqCodon{"cca"} = $codonTotal{"cca"}/$ProlineAve;
$freqCodon{"ccc"} = $codonTotal{"ccc"}/$ProlineAve;
$freqCodon{"ccg"} = $codonTotal{"ccg"}/$ProlineAve;
$freqCodon{"cct"} = $codonTotal{"cct"}/$ProlineAve;
}

else{
$freqCodon{"cca"} = 0;
$freqCodon{"ccc"} = 0;
$freqCodon{"ccg"} = 0;
$freqCodon{"cct"} = 0;
}

#
# find Serine major codon
#

$SerineAve = ($codonTotal{"agc"}+$codonTotal{"agt"}+$codonTotal{"tca"}
+$codonTotal{"tcc"}+$codonTotal{"tcg"}+$codonTotal{"tct"})/6;

if ($SerineAve != 0){
$freqCodon{"agc"} = $codonTotal{"agc"}/$SerineAve;
$freqCodon{"agt"} = $codonTotal{"agt"}/$SerineAve;
$freqCodon{"tca"} = $codonTotal{"tca"}/$SerineAve;
$freqCodon{"tcc"} = $codonTotal{"tcc"}/$SerineAve;
$freqCodon{"tcg"} = $codonTotal{"tcg"}/$SerineAve;
$freqCodon{"tct"} = $codonTotal{"tct"}/$SerineAve;
}

else{
$freqCodon{"agc"} = 0;
$freqCodon{"agt"} = 0;
$freqCodon{"tca"} = 0;
$freqCodon{"tcc"} = 0;
$freqCodon{"tcg"} = 0;
$freqCodon{"tct"} = 0;
}

#
# find Threonine major codon
#

$ThreonineAve = ($codonTotal{"aca"}+$codonTotal{"acc"}+
$codonTotal{"acg"}+$codonTotal{"act"})/4;
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if ($ThreonineAve != 0){
$freqCodon{"aca"} = $codonTotal{"aca"}/$ThreonineAve;
$freqCodon{"acc"} = $codonTotal{"acc"}/$ThreonineAve;
$freqCodon{"acg"} = $codonTotal{"acg"}/$ThreonineAve;
$freqCodon{"act"} = $codonTotal{"act"}/$ThreonineAve;
}

else{
$freqCodon{"aca"} = 0;
$freqCodon{"acc"} = 0;
$freqCodon{"acg"} = 0;
$freqCodon{"act"} = 0;
}

#
# find stop major codon
#

$StopAve = ($codonTotal{"taa"}+$codonTotal{"tag"}+$codonTotal{"tga"})/3;

if ($StopAve != 0){
$freqCodon{"taa"} = $codonTotal{"taa"}/$StopAve;
$freqCodon{"tag"} = $codonTotal{"tag"}/$StopAve;
$freqCodon{"tga"} = $codonTotal{"tga"}/$StopAve;
}

else{
$freqCodon{"taa"} = 0;
$freqCodon{"tag"} = 0;
$freqCodon{"tga"} = 0;
}

#!!!
# find Valine major codon
#

$ValineAve = ($codonTotal{"gta"}+$codonTotal{"gtc"}+$codonTotal{"gtg"}+
$codonTotal{"gtt"})/4;

if ($ValineAve != 0){
$freqCodon{"gta"} = $codonTotal{"gta"}/$ValineAve;
$freqCodon{"gtc"} = $codonTotal{"gtc"}/$ValineAve;
$freqCodon{"gtg"} = $codonTotal{"gtg"}/$ValineAve;
$freqCodon{"gtt"} = $codonTotal{"gtt"}/$ValineAve;
}

else{
$freqCodon{"gta"} = 0;
$freqCodon{"gtc"} = 0;
$freqCodon{"gtg"} = 0;
$freqCodon{"gtt"} = 0;
}

#
# set Tryptophan as a major codon
#

$TryptophanAve = $codonTotal{"tgg"};

if( $TryptophanAve!=0){
$freqCodon{"tgg"} = $codonTotal{"tgg"}/$TryptophanAve;
}

else{
$freqCodon{"tgg"} = 0;
}

#
# find Tyrosine major codon
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#

$TyrosineAve = ($codonTotal{"tac"}+$codonTotal{"tat"})/2;

if ($TyrosineAve != 0){
$freqCodon{"tac"} = $codonTotal{"tac"}/$TyrosineAve;
$freqCodon{"tat"} = $codonTotal{"tat"}/$TyrosineAve;
}

else{
$freqCodon{"tac"} = 0;
$freqCodon{"tat"} = 0;
}

}

G.11 performPCA.pl

#perform pca will read in a matrix created by createMatrix
#genes down left, aminos along top

$|=1;#this flushes the buffer after every input
use PDL;
use PDL::MatrixOps;
use PDL::Matrix;
use Codon;
use Math::CDF qw(:all);
use Switch;

$NEG_EIGEN=0;#tried fails on mycoT
$MAX_IS_POS=1;
$MEAN_IS_POS=2;
$AAC_GR_PNT23=3;#tried fails on nostoc
$NONE = 4;
$USE_METH=$MAX_IS_POS;

#$covMatrix=ones(59,59);
#($ev, $e) = eigens($covMatrix);
#$maxIndex=maximum_ind($e);
#$b1 = $ev->slice("$maxIndex,:");
#print $b1->slice("0,:");
#$unity=ones(1,59);
#print $unity."\n";
#print $b1->at(0,0)."\n";
#print $b1->slice(":,:")."\n";
#print transpose($b1)."\n";
#print $b1->at(0,58)."\n";
#print inner($b1,transpose($unity))."\n";
#print sum($b1*$unity)."\n";
#@newArray= ($b1->list());
#print $newArray[1]."\n";
#exit;

$fileRoot = $ARGV[0];
$inputFileName = $fileRoot."Matrix.txt";
print "$inputFileName\n";

# open and read input file
print "loading matrix file\n";
open(MATRIX, $inputFileName) || die "Cannot open $inputFileName\n";
@matrix = <MATRIX>;
close(MATRIX);

print "inserting data into PDL matrix. ";
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$numGenes = @matrix;
print "There are $numGenes genes\n";
$geneNum=0;
$geneFreqMatrix=zeroes(59,$numGenes);
foreach $commaSepLine (@matrix){

@curgene=split(’,’,$commaSepLine);
for($codonNum=0; $codonNum<59; $codonNum++){
$geneFreq[$geneNum][$codonNum]=$curgene[$codonNum];
$geneFreqMatrix->set($codonNum,$geneNum,$curgene[$codonNum]);

}
$geneNum++;

}

#sigmaXY=covariance of X,Y = E[(X-mux)(Y-muy)]=sumx, sumy (x-mux)(y-muy)f(x,y)
#E(XY)-muxmuy
#but if don’t build a joint probability dist, instead assume that each
#element is unique, will have diagnal eq to prob of 1/numgenes with zeros everywhere
#else, so f(x,y) falls out so sumx, sumy (x-mux)(y-muy), but also all those
#zeroes fall out that are not on diagonal so sum sum falls out also, only
#work on the exact pairings that already exist

#setup two loops both 0 to 59
#if eq set cov matrix entry to 1
#for each get array1, get array2
#pass to cov function

#get mean of both arrays
#setup loop of num of genes
#build a sum =sum + (array1-mean1)(array2-mean2)

$covMatrix=mzeroes(59,59);
print "building covariance matrix\n";

for($i=0; $i<59; $i++){
for($j=$i; $j<59; $j++){

#get cov
($result,$dummy) = genCov();#dummy holds the corr
$covMatrix->set($i,$j,$result);
$covMatrix->set($j,$i,$result);

}
print ".";

}
print "\n";

print "building eigen vectors\n";
($ev, $e) = eigens($covMatrix);
$maxIndex=maximum_ind($e);
$b1 = $ev->slice("$maxIndex,:");

$outputFileName = $fileRoot."PCArawout.wri";
open(OUT, ">$outputFileName") || die "Cannot open $outputFileName\n";
print "building Zprime\n";
print OUT "eigen vector is\n";
print OUT $b1."\n";

$Zprime = inner($geneFreqMatrix,transpose($b1));
@posIndexes=split(" ",which($Zprime>0));
$numPos=@posIndexes;

print OUT "the numpos is $numPos\n";
switch ($USE_METH){

case ($MEAN_IS_POS){
if($numPos<.5*$numGenes){

print OUT "changing Zprime orientation. \n";
$Zprime=-1*$Zprime;

}
}
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case ($MAX_IS_POS){
$abs=abs($b1);
$max=max($abs);
$maxind=which($b1==$max);
if($maxind->isempty()){

#the only way this is empty is if the val at maxind is negative
print OUT "changing Zprime orientation. \n";
$Zprime=-1*$Zprime;

}
}

case ($NEG_EIGEN){
#do dot prod with unity vec
$unity=ones(1,59);
#the real inner is sum($b1*$unity)
if(sum($b1*$unity)>0){#this is a real inner, inner by self seems to populate

#a vector full of the answer
print OUT "changing Zprime orientation. \n";
$Zprime=-1*$Zprime;

}
}

case ($AAC_GR_PNT23){
@tempArray=$b1->list();
$AAC=$tempArray[1];

print OUT "the aac val is ".$AAC."\n";
print "the aac val is ".$AAC."\n";
if($AAC<.023){

print OUT "changing Zprime orientation. \n";
$Zprime=-1*$Zprime;

}
}

case ($NONE){
#do nothing

}

else{
print "AH OH failed switch case\n";

}
}

print OUT "Zprime is\n";
print OUT $Zprime."\n";

#loop through 59 cols getting correlations
print "building factorloadings\n";
$factorLoadings = zeroes(59);
for($i=0; $i<59; $i++){

($dummy,$correlation) = genCov(1);#dummy holds cov, one tells to use Zprime
$factorLoadings->set($i,$correlation);

$Tstat = $correlation*sqrt($numGenes-2)/sqrt(1-$correlation**2);
$sig = qt(1-.05/2,$numGenes-2);
$pval=pt($Tstat,$numGenes-2);
print OUT "pval $pval tstat $Tstat sig $sig\n";
if($correlation > 0 && abs($Tstat) < abs($sig)){
print OUT "this one is not sig so setting to 0\n";
$factorLoadings->set($i,0);

}
}

print OUT "Factorloadings are\n";
print OUT $factorLoadings."\n";

$indexesOfPos = which($factorLoadings>0);
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print OUT "indexes of pos are\n";
print OUT $indexesOfPos."\n";
#first and last have []
$indexesOfPos=˜s/\[//;
$indexesOfPos=˜s/\]//;
print OUT "indexes of pos (without the brackets) are\n";
print OUT $indexesOfPos."\n";

@indexesOfPos = split(" ",$indexesOfPos);
print OUT "indexes of pos in array are\n";
print OUT @indexesOfPos."\n";

buildCodons();

close(OUT);
$outputFileName = $fileRoot."maj.txt";
open(OUT, ">$outputFileName") || die "Cannot open $outputFileName\n";

foreach $maj (@indexesOfPos){
print OUT $codons[$maj]->triplet()."\n";

}
close(OUT);

#--------------------------------------------------------------------------
# Subroutines
#--------------------------------------------------------------------------

sub genCov{
#get mean of both arrays
#setup loop of num of genes
#build a sum =sum + (array1-mean1)(array2-mean2)
$useZprimeFlag=0;
if(@_){
#use
$useZprimeFlag=1;

}
$covsum = 0;

($mean1,$stdev1,$median,$min,$max) = stats($geneFreqMatrix->slice("$i,:"));

if($useZprimeFlag){
($mean2,$stdev2,$median,$min,$max) = stats($Zprime);

}
else{
($mean2,$stdev2,$median,$min,$max) = stats($geneFreqMatrix->slice("$j,:"));

}

for ($geneNum = 0; $geneNum < $numGenes; $geneNum++) {
if($useZprimeFlag){

$covsum = $covsum + (($geneFreq[$geneNum][$i] - $mean1) *
($Zprime->at($geneNum) - $mean2));

}
else{

$covsum = $covsum + (($geneFreq[$geneNum][$i] - $mean1) *
($geneFreq[$geneNum][$j] - $mean2));

}
}
$cov = $covsum / $numGenes;
$cor = $cov / ($stdev1 * $stdev2);

return ($cov,$cor);
}

sub buildCodons{
for($i=0; $i<59; $i++){
#create 59 codons
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$mycodon = Codon->new();
#put codon into array
push(@codons, $mycodon);

}

$counter=0;
for($i=0; $i<4; $i++){
for($j=0; $j<4; $j++){

for($k=0; $k<4; $k++){
$tempStr=$i.$j.$k;
$tempStr=˜ s/0/a/g;
$tempStr=˜ s/1/c/g;
$tempStr=˜ s/2/g/g;
$tempStr=˜ s/3/t/g;
if($tempStr ne "taa" && $tempStr ne "tag" && $tempStr ne "tga" &&

$tempStr ne "atg" && $tempStr ne "tgg"){
$codons[$counter]->triplet($tempStr);
$test=$codons[$counter]->triplet();
$counter++;
#print $test."\n";

}
}

}
}

}

G.12 aminoCorl.pl

$genom = $ARGV[0];#root of in and out file passed in as arg
# if read in ecoli.ppp.faa, already has aminos, but not culled

#This script is used to generate all the spearman rank stuff for each
#amino. This script requires the db file plus the HET.out file (for
#energies) Also, it generates counts for mantel hanzel test.

readAndConvert(); #this function is found below. It was modularized for
#readibility. It reads in db info, gets mcu and energy

accumAACounts(); #this func found below. Done for readability. makes
#passes through gene lists counting each amino acid
#and storing its abundances in the gene object

sortAndFlag(); #this sorts the gene list (func found below) by mcu
#and stores the mcu rank in the gene objects. It also
#flags the objects as being either high or low. Will
#need this for the MH below

spearRankAllGenes();
#this func (found below) performans spearman rank upon all
#genes and displays to screen. It is not really needed
#because esley performs this elsewhere so remmed out.

spearAAabunAcrossGenome();
#This function (found below) gathers abundances of each
#of the amino’s

$thereAreCats=0;
foreach $gene (@genes){

#print $gene->cat()."\n";
if($gene->cat() ne "-"){
$thereAreCats=1;
last;

}
}
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if($thereAreCats){
spearRankForCat();#this func (found below) calculates the spearman rank for

#each category of genes.
mantelHaenszel();

}
else{

print "this one has no cats\n";
open (BARS, ">".$genom."bars.csv") || die "Unable to open the aa file for output";
open (SCAT, ">".$genom."SpearCat.csv") || die "Unable to open the aa file for output";
print BARS "this one has no cats\n";
print SCAT "this one has no cats\n";
close(BARS);
close(SCAT);

}

sub mantelHaenszel{
#gather all genes in a category, figure out the median and flag above and below
#for ea amino and each functional category count aminos that ARE the aa and
#those that are not,
# ----------------------------
# Mantel & Haenzel
# Across functional categories
# for each amino acid
# ----------------------------

#already flagged
#@geneByFunc = sort bymcu @geneByFunc;#must sort before flagging hi and low

#open output file
open (MH, ">".$genom."mh.csv") || die "Unable to open the aa file for output";
open (BARS, ">".$genom."bars.csv") || die "Unable to open the aa file for output";
open (MHDET, ">".$genom."MHdetail.csv") || die "Unable to open the aa file for output";
print MH "amino,rs whole genome,tstat,sig,issig,Xsqrd,quantile for 95,".

"reject,p val,odds ratio,ci lo,ci hi\n";
print BARS "amino,rs whole genome,issig,Z,isig,\n";

foreach $amino (@aarray){
foreach $cat (@catArray){

#print "Genning aa cnts for cat $cat :in prep for mantel-haenszel\n";
#empty temporary gene array
while(@geneByFunc){

shift @geneByFunc;
}

#gather appropriate genes (based on function) into an array
foreach $gene (@genes){

if ($gene->cat() eq $cat) {push (@geneByFunc, $gene);}
}

$count = @geneByFunc;
#print "category $cat has $count genes\n";
$totalGenes=$totalGenes+$count;
$loAA=0;
$loNot=0;
$hiAA=0;
$hiNot=0;
#gather all the counts of amino’s
foreach $gene (@geneByFunc){

if($count>10){
if($gene->hlflag() eq ’l’){
$loAA+=$gene->aa($amino);
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$loNot+=$gene->len()-$gene->aa($amino);
}
else{
$hiAA+=$gene->aa($amino);
$hiNot+=$gene->len()-$gene->aa($amino);

}
#just a check. came in handy when was troubleshooting
if ($loAA <0 || $loNot <0 || $hiAA <0 || $hiNot <0){
print "ah oh got a negative\n";
print "category $cat has $count genes\n";
print "loaa $loAA lonot $loNot hiaa $hiAA hinot $hiNot \n";
exit;

}
}

}
#write info to file, don’t need any more since have mh module
#print MH "$cat $amino $loAA $loNot $hiAA $hiNot \n";
push(@hiAAs, $hiAA);
push(@hiNots, $hiNot);
push(@loAAs, $loAA);
push(@loNots, $loNot);

}

#------------------------------------------------
# here is where tried manually
#------------------------------------------------

$k=@hiAAs;
$Obsrv=0;

foreach $observed (@hiAAs){
$Obsrv+=$observed;

}
$Expct=0;
for($i=0; $i<$k; $i++){

if($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]!=0){
$Expct+= ($hiAAs[$i]+$hiNots[$i])*($hiAAs[$i]+$loAAs[$i])/

($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]);
}

}

$varOfObs=0;
for($i=0; $i<$k; $i++){

$n=$hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i];

if($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]!=0){
$varOfObs+= ($hiAAs[$i]+$hiNots[$i])*($loAAs[$i]+$loNots[$i])*

($hiAAs[$i]+$loAAs[$i])*($hiNots[$i]+$loNots[$i])/
(($n**2)*($n-1));

}
}
$Xsquared=((abs($Obsrv-$Expct)-.5)**2)/$varOfObs;

$quantileNineFive=qchisq(1-.05/$k,1);
$rejectMHNull=0;
if($Xsquared>$quantileNineFive){

$rejectMHNull=1;#reject Null hyp,
}
$pvalMH=pchisq($Xsquared,1);

$ORnum=0;
$ORden=0;
for($i=0; $i<$k; $i++){

if($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]!=0){
$ORnum+= $hiAAs[$i]*$loNots[$i]/

($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]);
$ORden+= $hiNots[$i]*$loAAs[$i]/
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($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]);
}

}
$OddsRatio=$ORnum/$ORden;

$Anum=0;
$Rden=0;
$Bnum=0;
$Sden=0;
$Cnum=0;

for($i=0; $i<$k; $i++){
if($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]!=0){

$Pi=($hiAAs[$i]+$loNots[$i])/
($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]);

$Qi=($hiNots[$i]+$loAAs[$i])/
($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]);

$Ri=($hiAAs[$i]+$loNots[$i])/
($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]);

$Si=$hiNots[$i]*$loAAs[$i]/
($hiAAs[$i]+$hiNots[$i]+$loAAs[$i]+$loNots[$i]);

$Anum+= $Pi*$Pr;
$Rden+= $Ri;
$Bnum+= $Pi*$Si+$Qi*$Ri;
$Sden+= $Si;
$Cnum+= $Qi*$Si;

}
}
$varLnOr=$Anum/(2*$Rden**2)+$Bnum/(2*$Rden*$Sden)+$Cnum/(2*$Sden**2);
$low=exp(log($OddsRatio) - qnorm(1-(.05/$k)/2)*sqrt($varLnOr));
$hi=exp(log($OddsRatio) + qnorm(1-(.05/$k)/2)*sqrt($varLnOr));
#note these are the vars to get at spearman rank for amino across genome
# $spearRank{$amino}
# $tstat{$amino}
# $signif{$amino}
# $isSignif{$amino}
$sr=$spearRank{$amino};
$ts=$tstat{$amino};
$sig=$signif{$amino};
$issig=$isSignif{$amino};
my $threeLet=$aa3ray{$amino};
print MH "$amino,$sr,$ts,$sig,$issig,$Xsquared,$quantileNineFive,$rejectMHNull,".

"$pvalMH,$OddsRatio,$low,$hi\n";
my $zed=log($OddsRatio)/sqrt($varLnOr);
#print BARS "amino,rs whole genome,issig,Z,isig,\n";
print BARS "$threeLet,$sr,$issig,$zed,$rejectMHNull\n";

#------------------------------------------------
# here is where tried logrank module
#------------------------------------------------
#@group_1_survival = (99,98,95,90,90,87);
#@group_1_deaths = ( 1, 0, 3, 4, 0, 3);
#@group_2_survival = (100,97,93,90,88,82);
#@group_2_deaths = ( 0, 2, 4, 1, 2, 6);
my $log_rank = new Statistics::LogRank;
#$log_rank->load_data(’group 1 survs’,@group_1_survival);
#$log_rank->load_data(’group 1 deaths’,@group_1_deaths);
#$log_rank->load_data(’group 2 survs’,@group_2_survival);
#$log_rank->load_data(’group 2 deaths’,@group_2_deaths);
$log_rank->load_data(’hiNot’,@hiNots);
$log_rank->load_data(’hiAA’,@hiAAs);
$log_rank->load_data(’loNot’,@loNots);
$log_rank->load_data(’loAA’,@loAAs);
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#perform_log_rank_test(’group 1 survs’,’group 1 deaths’,
#’group 2 survs’,’group 2 deaths’);

my ($log_rank_stat,$p_value) =
$log_rank->perform_log_rank_test(’hiNot’,’hiAA’,’loNot’,’loAA’);

while(@hiAAs){
$hiyes=shift @hiAAs;
$hino= shift @hiNots;
$loyes=shift @loAAs;
$lono=shift @loNots;
print MHDET "$amino,$hiyes,$hino,$loyes,$lono\n";

}

#print "amino $amino mh Test val $log_rank_stat p value $p_value\n";
#print MH "amino $amino mh Test val $log_rank_stat p value $p_value\n";

}
close(MH);
close(MHDET);
#OR is odds ratio

print "\n\ntotal genes = $gene_count total categorized genes $totalGenes \n";
}

sub bymcu{
return 1 if ($a->{MCU} > $b->{MCU});
return -1 if ($a->{MCU} < $b->{MCU});
return 0;

}

sub byE{
return 1 if ($a->{E} > $b->{E});
return -1 if ($a->{E} < $b->{E});
return 0;

}

sub byabun{
return 1 if ($a->aa($sortbyAmino)/$a->len() > $b->aa($sortbyAmino)/$b->len());
return -1 if ($a->aa($sortbyAmino)/$a->len() < $b->aa($sortbyAmino)/$b->len());
return 0;

}

sub getRes
{

my($codon) = @_;
$codon = uc $codon;#converts to uppercase

my(%genetic_code) = (

’TCA’ => ’S’, # Serine
’TCC’ => ’S’, # Serine
’TCG’ => ’S’, # Serine
’TCT’ => ’S’, # Serine
’TTC’ => ’F’, # Phenylalanine
’TTT’ => ’F’, # Phenylalanine
’TTA’ => ’L’, # Leucine
’TTG’ => ’L’, # Leucine
’TAC’ => ’Y’, # Tyrosine
’TAT’ => ’Y’, # Tyrosine
’TAA’ => ’_’, # Stop
’TAG’ => ’_’, # Stop
’TGC’ => ’C’, # Cysteine
’TGT’ => ’C’, # Cysteine
’TGA’ => ’_’, # Stop
’TGG’ => ’W’, # Tryptophan
’CTA’ => ’L’, # Leucine
’CTC’ => ’L’, # Leucine
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’CTG’ => ’L’, # Leucine
’CTT’ => ’L’, # Leucine
’CCA’ => ’P’, # Proline
’CCC’ => ’P’, # Proline
’CCG’ => ’P’, # Proline
’CCT’ => ’P’, # Proline
’CAC’ => ’H’, # Histidine
’CAT’ => ’H’, # Histidine
’CAA’ => ’Q’, # Glutamine
’CAG’ => ’Q’, # Glutamine
’CGA’ => ’R’, # Arginine
’CGC’ => ’R’, # Arginine
’CGG’ => ’R’, # Arginine
’CGT’ => ’R’, # Arginine
’ATA’ => ’I’, # Isoleucine
’ATC’ => ’I’, # Isoleucine
’ATT’ => ’I’, # Isoleucine
’ATG’ => ’M’, # Methionine
’ACA’ => ’T’, # Threonine
’ACC’ => ’T’, # Threonine
’ACG’ => ’T’, # Threonine
’ACT’ => ’T’, # Threonine
’AAC’ => ’N’, # Asparagine
’AAT’ => ’N’, # Asparagine
’AAA’ => ’K’, # Lysine
’AAG’ => ’K’, # Lysine
’AGC’ => ’S’, # Serine
’AGT’ => ’S’, # Serine
’AGA’ => ’R’, # Arginine
’AGG’ => ’R’, # Arginine
’GTA’ => ’V’, # Valine
’GTC’ => ’V’, # Valine
’GTG’ => ’V’, # Valine
’GTT’ => ’V’, # Valine
’GCA’ => ’A’, # Alanine
’GCC’ => ’A’, # Alanine
’GCG’ => ’A’, # Alanine
’GCT’ => ’A’, # Alanine
’GAC’ => ’D’, # Aspartic Acid
’GAT’ => ’D’, # Aspartic Acid
’GAA’ => ’E’, # Glutamic Acid
’GAG’ => ’E’, # Glutamic Acid
’GGA’ => ’G’, # Glycine
’GGC’ => ’G’, # Glycine
’GGG’ => ’G’, # Glycine
’GGT’ => ’G’, # Glycine
);

if(exists $genetic_code{$codon})
{

return $genetic_code{$codon};
}
else
{

return -1;
exit;
}

}

sub populateAAarray{
$aarray[0]=’A’; # Serine
$aarray[1]=’C’; # Phenylalanine
$aarray[2]=’D’; # Leucine
$aarray[3]=’E’; # Tyrosine
$aarray[4]=’F’; # Cysteine
$aarray[5]=’G’; # Tryptophan
$aarray[6]=’H’; # Leucine
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$aarray[7]=’I’; # Proline
$aarray[8]=’K’; # Histidine
$aarray[9]=’L’; # Glutamine
$aarray[10]=’M’; # Arginine
$aarray[11]=’N’; # Isoleucine
$aarray[12]=’P’; # Methionine
$aarray[13]=’Q’; # Threonine
$aarray[14]=’R’; # Asparagine
$aarray[15]=’S’; # Lysine
$aarray[16]=’T’; # Serine
$aarray[17]=’V’; # Arginine
$aarray[18]=’W’; # Valine
$aarray[19]=’Y’; # Alanine

$aa3ray{’A’}="Ala"; # Serine
$aa3ray{’C’}="Cys"; # Phenylalanine
$aa3ray{’D’}="Asp"; # Leucine
$aa3ray{’E’}="Glu"; # Tyrosine
$aa3ray{’F’}="Phe"; # Cysteine
$aa3ray{’G’}="Gly"; # Tryptophan
$aa3ray{’H’}="His"; # Leucine
$aa3ray{’I’}="Ile"; # Proline
$aa3ray{’K’}="Lys"; # Histidine
$aa3ray{’L’}="Leu"; # Glutamine
$aa3ray{’M’}="Met"; # Arginine
$aa3ray{’N’}="Asn"; # Isoleucine
$aa3ray{’P’}="Pro"; # Methionine
$aa3ray{’Q’}="Gln"; # Threonine
$aa3ray{’R’}="Arg"; # Asparagine
$aa3ray{’S’}="Ser"; # Lysine
$aa3ray{’T’}="Thr"; # Serine
$aa3ray{’V’}="Val"; # Arginine
$aa3ray{’W’}="Trp"; # Valine
$aa3ray{’Y’}="Tyr"; # Alanine

}

sub buildCategoryArray{

#Information storage and processing
$catArray[0]=’J’; #Translation, ribosomal structure and biogenesis
$catArray[1]=’K’; #Transcription
$catArray[2]=’L’; #DNA replication, recombination and repair

#Cellular processes
$catArray[3]=’D’; #Cell division and chromosome partitioning
$catArray[4]=’O’; #Posttranslational modification, protein turnover, chaperones
$catArray[5]=’M’; #Cell envelope biogenesis, outer membrane
$catArray[6]=’N’; #Cell motility and secretion
$catArray[7]=’P’; #Inorganic ion transport and metabolism
$catArray[8]=’T’; #Signal transduction mechanisms

#Metabolism
$catArray[9]=’C’; #Energy production and conversion
$catArray[10]=’G’; #Carbohydrate transport and metabolism
$catArray[11]=’E’; #Amino acid transport and metabolism
$catArray[12]=’F’; #Nucleotide transport and metabolism
$catArray[13]=’H’; #Coenzyme metabolism
$catArray[14]=’I’; #Lipid metabolism
$catArray[15]=’Q’; #Secondary metabolites biosynthesis, transport and catabolism -

#Poorly characterized
# $catArray[16]=’R’; #General function prediction only -
# $catArray[17]=’S’; #Function unknown -

#Now will gen category names
#Information storage and processing

$catNames{’J’}="Translation; ribosomal structure and biogenesis";
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$catNames{’K’}="Transcription";
$catNames{’L’}="DNA replication; recombination and repair";

#Cellular processes
$catNames{’D’}="Cell division and chromosome partitioning";
$catNames{’O’}="Posttranslational modification; protein turnover; chaperones";
$catNames{’M’}="Cell envelope biogenesis; outer membrane";
$catNames{’N’}="Cell motility and secretion";
$catNames{’P’}="Inorganic ion transport and metabolism";
$catNames{’T’}="Signal transduction mechanisms";

#Metabolism
$catNames{’C’}="Energy production and conversion";
$catNames{’G’}="Carbohydrate transport and metabolism";
$catNames{’E’}="Amino acid transport and metabolism";
$catNames{’F’}="Nucleotide transport and metabolism";
$catNames{’H’}="Coenzyme metabolism";
$catNames{’I’}="Lipid metabolism";
$catNames{’Q’}="Secondary metabolites biosynthesis; transport and catabolism";

#Poorly characterized
# $catNames{’R’}="General function prediction only";
# $catNames{’S’}="Function unknown";

}

#genes must be in array called genes and be sorted by mcu before call this
sub flagHL{

for ($i=0; $i<=$gene_count/2; $i++){
$genes[$i]->hlflag(’l’);
$genes[$gene_count-($i+1)]->hlflag(’h’);

}
}

# --------------------------
# Read in db file and convert
# seq to aa’s, place in gene
# objects and place
# all genes into a "genes"
# array
# --------------------------
# AND
# --------------------------
# Read in HET file and get
# energy costs. store these
# costs in a hash table hashed
# on the gene name. This is
# done so that can make another
# pass and store the mcu in
# the gene objects
# --------------------------
# AND
# --------------------------
# populate gene objects with
# mcu and energy
# --------------------------

sub readAndConvert{

use Gene; #Gene object defined in Gene.pm
use Math::CDF qw(:all);
use Math::BigInt;
use Statistics::LogRank;
use Statistics::RankCorrelation;
use Data::Dumper;
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open (DB, $genom."Part4Start.db") || die "Unable to open the input file";

@genes = ();

$gene_count = 0;

foreach $line (<DB>){
if ($line =˜ /ˆ<(.*)>/){

$mygene = Gene->new();
$mygene->name($1);
#printf "gene %8s category %s\n",$mygene->name(),$mygene->cat();

}
else{

if($gene_count%100 == 0){
print "$genom :generating aa sequence for gene ".$gene_count."\n";

}
$gene_count++;
$mygene->seq(convert2AA($line));
push (@genes, $mygene);
#if($gene_count>=1000){last;}

}
}
$gene_count;

print "The total number of genes $gene_count.\n";

close(DB);

print "getting energies and mcu’s for genes\n";

# --------------------------
# Read in HET file and get
# energy costs. store these
# costs in a hash table hashed
# on the gene name. This is
# done so that can make another
# pass and store the mcu in
# the gene objects
# --------------------------

open (MCU, $genom."all.out") || die "Unable to open the HET file";
#read in MCU, store in hash by name of gene
foreach $line (<MCU>){
$line =˜ /(.*?)\s/g;
$geneName = $1;
$line =˜ /(.*?)\s(.*?)\s/g;
$mcu = $2;
$energy=$1;
$mcuGenes{$geneName}=$mcu;
$energyGenes{$geneName}=$energy;

}

close(MCU);

print "populating genes with energies and mcu’s\n";

# --------------------------
# populate gene objects with
# mcu and energy
# --------------------------

foreach $item (@genes){
$mcu=$mcuGenes{$item->name()};
$energy=$energyGenes{$item->name()};
$item->mcu($mcu);
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$item->energy($energy);
}

}

sub accumAACounts{
#build an array called $aarray that has each of the aa letters in a cell
#this is found within this file.
#It was proceduralized to improve readability
populateAAarray();

#go through all genes and go through their seq and count the aa’s
foreach $item (@genes){
$sequence = $item->seq();

for ($i=0; $i<=$item->len(); $i++){
#will need to count each aa, also somehow store
#the counts in the gene objects
my $amino = substr($sequence,$i,1);
$item->aa($amino,$item->aa($amino)+1);#add one to the current amino tot

}

}

}

#sort the mcu’s and enter the ranking into the gene objects
sub sortAndFlag{

@genes = sort bymcu @genes;
flagHL(); #this flags all genes below median mcu as low, above as high

#if exactly in middle set as high. This procedure is found
#below. Proceduralized for readability.

$counter=0;
foreach $item (@genes){
$item->mcurank($counter);
#print $item->name()." ".$item->mcurank()."\n";
$counter++;

}
}

#for ea amino calculate that aa’s spearman
# -------------------------
# Spearman Rank Calculation
# Across entire genome for
# each amino acid. Also calc
# T statistic
# -------------------------

sub spearAAabunAcrossGenome{
print "calculating spearman for each amino across entire genome\n";
open (AARS, ">".$genom."aminoRs.dat") || die "Unable to open the aa file for output";

foreach $amino (@aarray){
print "calculating amino $amino\n";
@genes = sort bymcu @genes;
$counter=0;
foreach $gene (@genes){

$gene->mcurank($counter);
$counter++;

}
$sortbyAmino = $amino;
@genes = sort byabun @genes;

$counter=0;
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$distsqrd=0;
foreach $gene (@genes){

$distsqrd=$distsqrd+($gene->mcurank()-$counter)**2;
$counter++;

}

$counter=0;
while (@MCUs){shift @MCUs;}
while (@abundance){shift @abundance;}

foreach $gene (@genes){
$abundance[$counter] = $gene->aa($amino)/$gene->len();
$MCUs[$counter] = $gene->mcu();
$counter++;

}

#my $modRS = Statistics::RankCorrelation->new( \@MCUs, \@abundance );
#my $rs = $modRS->spearman;
#print "the module calculated spearman is for amino $amino is $rs\n";
#had to do manually cause it just kept getting wrong numbers
#seemed to work

$spearRank{$amino} = 1-6*$distsqrd/($counter**3 - $counter);
$rs=$spearRank{$amino};
$n=$counter;
#1 - 6*(sum of dˆ2)/(n(nˆ2-1))=rs
#my $rs = 1-6*$sumdsquared/( $n*($n*$n-1) );
$tstat{$amino} = $rs*sqrt($n-2)/sqrt(1-$rs**2);
$Tstat=$tstat{$amino};
$signif{$amino} = qt(1-.05/2,$n-2);
$pval=pt($tstat,$n-2);
$sig=$signif{$amino};
$isSignif{$amino} = 0;
if(abs($Tstat)>abs($sig)){

$isSignif{$amino} = 1;
}

#printf "amino %1s rs %+2.4f T statistic %2.4f significance %2.4f isSig %d\n",
# $amino, $rs, $Tstat, $sig, $isSignif{$amino};

printf AARS "amino %1s rs %+2.4f T statistic %2.4f significance %2.4f isSig %d\n",
$amino, $rs, $Tstat, $sig, $isSignif{$amino};

}
close(AARS);

}

#
# -------------------------
# Spearman Rank Calculation
# Across entire genome for
# all genes. Don’t really need
# but did for trouble shooting
# purposes and now can use for
# comparison purposes
# -------------------------

sub spearRankAllGenes{
print "-----Genning spearman rank for all genes ---\n";

#get num of genes
$count = @genes;

#Don’t need the following because use a module now

#calculate spearman and t and p and whether significant rs, and Z.
#sort the mcu’s and enter the ranking into the gene objects
#@genes = sort bymcu @genes;
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#$counter=0;

#foreach $item (@genes){
#$item->mcurank($counter);
#print $item->name()." ".$item->mcurank()." ".$item->mcu()."\n";
#$counter++;

#}

#@genes = sort byE @genes;
#$counter=0;
#$sumdsquared=0;

#foreach $item (@genes){
#$item->erank($counter);
#$oldsumsq=$sumdsquared;
#$sumdsquared =
# $sumdsquared + ($counter - $item->mcurank())**2 ;
#if($sumdsquared<$oldsumsq){
# $mcuRank = $item->mcurank();
# print "ahoh, old $oldsumsq new $sumdsquared cntr $counter mcurant $mcuRank \n";
# exit;
#}
#$counter++;

#}

$counter=0;
foreach $item (@genes){
$MCUs[$counter]=$item->mcu();
$Es[$counter]=$item->energy();
$counter++;

}

$modRS = Statistics::RankCorrelation->new( \@MCUs, \@Es );
$rs = $modRS->spearman;
print "spearman for all genes E vs MCU is $rs\n";

if($counter>2){
$n=$counter;
#1 - 6*(sum of dˆ2)/(n(nˆ2-1))=rs

#print "sum d sq $sumdsquared n $n \n";
#$rs = 1-6*$sumdsquared/( $n*($n*$n-1) );

if($rs==1){
$Tstat=0;

}
else{

$Tstat = $rs*sqrt($n-2)/sqrt(1-$rs**2);
}
#print "tstat is $Tstat \n";
$sig = qt(1-.05/2,$n-2);
$isSig = 0;
if(abs($Tstat)>abs($sig)){

$isSig = 1;
}
$curName = $catNames{$cat};
printf ("%4d|%+2.4f|%1.4f|%1.4f|%1d \n",

$count,$rs,$Tstat,$sig,$isSig);
}

}

#gather all genes in a category, Will need col with name, with num of genes,
#rs, and Z.
# ----------------------------
# Spearman within a category
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# ----------------------------

sub spearRankForCat{
print "calculating spearman for E vs MCU for each category\n";
buildCategoryArray(); #builds the catarray so can easily

#cycle through categories. will need for rest
#of calculations.

#open output file
open (SCAT, ">".$genom."SpearCat.csv") || die "Unable to open the aa file for output";
printf SCAT ("%-60s,%4s,%7s,%7s,%6s,%7s,%s \n",

"Category","Cnt","rs","Tstat","sigVal","pval","isSig");
foreach $cat (@catArray){
#print "-----Genning spearman rank for genes in category $cat ---\n";
#empty temporary gene array
while(@geneByFunc){

shift @geneByFunc;
}

#gather appropriate genes (based on function) into an array
foreach $gene (@genes){

if ($gene->cat() eq $cat) {push (@geneByFunc, $gene);}
}

#get num of genes
$count = @geneByFunc;

#calculate spearman and t and p and whether significant rs, and Z.
#sort the mcu’s and enter the ranking into the gene objects
$counter=0;
while (@MCUs){shift @MCUs;}
while (@Es){shift @Es;}
foreach $item (@geneByFunc){

$MCUs[$counter]=$item->mcu();
$Es[$counter]=$item->energy();
$counter++;

}

if($count>=10){
#print "about to do module $cat size of mcu is $count\n";
$modRS = Statistics::RankCorrelation->new( \@MCUs, \@Es );
#print "just did module $cat about to do actual calc\n";
$rs = $modRS->spearman;

$n=$counter;
#1 - 6*(sum of dˆ2)/(n(nˆ2-1))=rs
#$rs = 1-6*$sumdsquared/( $n*($n*$n-1) );#did with above
if($rs==1){

$Tstat=0;
}
else{

$Tstat = $rs*sqrt($n-2)/sqrt(1-$rs**2);
}
#print "tstat is $Tstat \n";
$sig = qt(1-.05/2,$n-2);
$pval = pt($Tstat,$n-2);
$isSig = 0;
if(abs($Tstat)>abs($sig)){

$isSig = 1;
}
$curName = $catNames{$cat};

printf SCAT ("%-60s,%4d,%+2.4f,%+1.4f,%1.4f,%+1.4f,%1d \n",
$curName,$count,$rs,$Tstat,$sig,$pval,$isSig);

}
else {

printf SCAT ("%-60s,had less than ten items (%d)\n",$curName,$count);

214



G.13. GENE OBJECT July 15, 2005

}
}
close(SCAT);

}

sub convert2AA(){
$seq = @_[0];
$seq_len = length($seq);

$new_seq = "";

for ($j = 0; $j < $seq_len; $j += 3)
{
$residue= getRes(substr($seq, $j, 1).substr($seq, $j+1, 1).substr($seq, $j+2, 1));
if($residue ne -1) {$new_seq.=$residue;}#-1 is returned if stop codon

}
$new_seq =˜ s/_//g;
return $new_seq;

}

G.13 Gene Object

package Gene;

##################################################
## the object constructor (simplistic version) ##
##################################################
sub new {

my $self = {};
$self->{NAME} = undef;
$self->{MCU} = 0.0;
$self->{SEQ} = "";
$self->{LEN} = 0;
$self->{ENERGY} = 0;
$self->{CAT} = ’’;
$self->{SORTAA} = ’’;
$self->{ERANK} = 0;
$self->{MCURANK} = 0;
$self->{HLFLAG} = 0;

bless($self); # but see below
return $self;

}

sub name {
my $self = shift;
if (@_) {

#$self->{NAME} = shift;
$holder = shift;
$holder =˜ /!_(.)/;
$self->{CAT} = $1;
$holder =˜ /(.*)!_/;
$self->{NAME} = $1;

}
return $self->{NAME};

}

sub seq {
my $self = shift;
if (@_) {
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$self->{SEQ} = shift;
$self->{LEN} = length($self->{SEQ});
#print $self->{LEN}."\n";

}
return $self->{SEQ};

}

sub mcu {
my $self = shift;
if (@_) {

$self->{MCU} = shift ;
}

return $self->{MCU} ;
}

sub energy {
my $self = shift;
if (@_) {

$self->{ENERGY} = shift ;
}

return $self->{ENERGY} ;
}

sub len {
my $self = shift;
if (@_) { $self->{LEN} = shift}
return $self->{LEN};

}

sub cat {
my $self = shift;
if (@_) { $self->{CAT} = shift }
return $self->{CAT};

}

sub sortaa {
my $self = shift;
if (@_) { $self->{SORTAA} = shift }
return $self->{SORTAA};

}

sub print{
my $self = shift;

print $self->{NAME}."\n";
}

#aa will either be called with the amino letter alone or followed by a num
#if followed by a num then put the num into the hash accessed by the amino
#otherwise return the number currently in the hash
sub aa {

my $self = shift;
my $amino = shift;#will always at least have the amino
if (@_) {
my $count = shift;
$self->{$amino}=$count;

}
return $self->{$amino};

}

sub mcurank {
my $self = shift;
if (@_) { $self->{MCURANK} = shift }
return $self->{MCURANK};

}

sub erank {
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my $self = shift;
if (@_) { $self->{ERANK} = shift }
return $self->{ERANK};

}

sub hlflag {
my $self = shift;
if (@_) { $self->{HLFLAG} = shift }
return $self->{HLFLAG};

}

1;
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