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Abstract

Daily, Jeremy S., M.S. Egr., Department of Mechanical and Materials Engineering, Wright State
University, 2003. Plastic Dissipation Energy in Mixed-Mode Fatigue Crack Growth on Ductile
Bimaterial Interfaces.

A new theory of fatigue crack growth in ductile solids has recently been proposed based

on the total plastic energy dissipation per cycle ahead of the crack. This and previous

energy-based approaches in the literature suggest that the total plastic dissipation per cy-

cle can be closely correlated with fatigue crack growth rates under Mode I loading. The

goal of the current study is to extend the dissipated energy approach to steady-state crack

growth under mixed-mode loading conditions, with application to cyclic delamination of

ductile interfaces in layered materials. The total plastic dissipation per cycle is obtained

by 2-D elastic-plastic finite element analysis of a stationary crack in a general mixed-mode

specimen geometry under constant amplitude loading. Both elastic-perfectly plastic and

bi-linear kinematic hardening constitutive behaviors are considered, and numerical results

for a dimensionless plastic dissipation per cycle are presented over the full range of rel-

evant mechanical properties and mixed-mode loading conditions. In addition, numerical

results are presented for the case of fatigue crack growth along a bonded interface between

materials with identical elastic, yet dissimilar plastic properties, including mismatches in

both kinematic hardening modulus and yield strength. Finally, the approach is generalized

iii
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to include mismatches in both elastic and plastic properties, and results for the dimension-

less plastic dissipation per cycle are reported over the complete design space of bimaterial

interfaces. The results of this thesis are of interest in soldering, welding, coating, electronic

packaging, and a variety of layered manufacturing applications, where mismatches in both

elastic and plastic properties can exist between the deposited material and the substrate.
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Chapter 1

Introduction

1.1 Motivation

Fatigue cracks are a major concern throughout industry, with particular application to the

aerospace community. With older aircraft dominating the service fleet for both military and

civilian populations, the prospect of catastrophic failure due to fatigue cracking becomes

more likely with time. Most work regarding fatigue crack growth has been empirical with

countless tests being conducted through the past century. These tests have been used to

construct fatigue crack growth rate curves and process maps for design purposes, but they

shed little light on the physical mechanism of fatigue crack growth. All the empirical data

from the years of testing can only be used for existing materials.

One proposed mechanism of fatigue crack growth is the total cyclic plastic dissipation

energy1. In a recent paper by Klingbeil [1], the fatigue crack growth rate was shown to

be directly proportional to the cyclic plastic dissipation energy under mode I loading con-

1The term “plastic dissipation energy” and “plastic work” are used interchangeably through out this thesis.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Interface cracking in a layered material system.

ditions.2 Most fatigue cracks orient themselves into a pure mode I condition where the

load opens the crack without any sliding along the crack face. As such, the literature and

data recorded for fatigue crack growth is dominated by mode I conditions. There are, how-

ever, instances where cracks will not grow in a pure mode I direction. The case of fatigue

cracking in a bimaterial or a layered manufactured system typically constrains the crack to

the interface of the two layers– regardless of the mode of cracking. This occurs because

the interface fracture toughness is lower than the homogeneous fracture toughness, which

gives the fatigue crack a path of least resistance. Since fatigue crack growth can occur in

mixed mode and the plastic dissipation energy is known to be a driving parameter in mode

I, the mixed mode cyclic plastic dissipation energy is a quantity worth calculating. With

the advent of new materials and material systems, an analytical fatigue crack growth pre-

dictor would prove useful in accelerating the introduction of new material systems. The

plastic dissipation energy is directly related to fatigue crack growth in ductile metals, thus

making it a primary quantity in developing any sort of fatigue crack growth rate predictor

equations.

The numerical results for mixed mode plastic dissipation energy are of interest in weld-

ing, soldering and layered manufacturing applications, where high temperature material

2This study by Klingbeil [1] was conducted for C(T) specimen geometry which is Mode I because the
shearing along the crack plane is zero.
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deposition can result in mismatches in mechanical properties between the deposited ma-

terial and the substrate. Figure 1.1 shows examples of these systems that arise in layered

manufacturing, where a material is deposited on a similar substrate. Processes controlling

the deposition procedure can also influence the strength, resulting an an elastically matched

yet plastically mismatched material. Finally, by considering both elastic and plastic mis-

matches, this thesis provides a general survey of the cyclic plastic dissipation energy for all

possible ductile metal interface systems.

1.2 Literature Review

As previously mentioned, Klingbeil [1] proposed a new theory of fatigue crack growth in

ductile solids based on the total plastic energy dissipation per cycle ahead of the crack. The

results of this and previous energy-based approaches in the literature suggest that the total

plastic dissipation per cycle is a driving force for fatigue crack growth in ductile solids, and

can be closely correlated with fatigue crack growth rates under mode I loading. The goal of

the current paper is to extend the dissipated energy approach to steady-state crack growth

under mixed-mode loading, with application to fatigue delamination of ductile interfaces

in layered materials.

A critical plastic dissipation criterion for fatigue crack extension in ductile solids was

first suggested by Rice [2]. Dissipated energy approaches to fatigue crack growth prediction

have since been the subject of numerous analytical [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and

experimental [14,15,16,17,18,19,20,21,22] investigations. The current approach considers

the total plastic dissipation per cycle occurring throughout the reversed plastic zone ahead

of the crack, which is a quantity of both theoretical and practical interest. As shown herein,

the total plastic dissipation per cycle is directly related to the range of applied energy release
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rate, which is typically used to correlate fatigue crack growth rates under mixed-mode

loading [23]. Moreover, as opposed to the crack tip stresses and strains, the total plastic

dissipation per cycle is a bounded quantity, which allows for straightforward interpretation

of numerical results. Finally, numerical results for the total plastic dissipation per cycle can

be directly compared to measurements of dissipated energy during fatigue crack growth,

which have been reported in the literature by a number of researchers [14, 15, 16, 17, 18,

19, 20, 21, 22]. While the above cited studies have been restricted to mode I loading, the

results of this work can be compared with subsequent studies of dissipated energy during

sustained mixed-mode crack growth.

As discussed in the review paper by Qian and Fatemi [23], surface flaws and short

cracks in homogeneous materials are typically subject to mixed-mode loading conditions,

yet ultimately orient themselves such that Paris-regime crack growth occurs primarily in

mode I. As such, the majority of the fatigue crack growth literature has focused on mode I

loading. Recent studies of fatigue crack growth under mixed-mode loading have typically

been concerned with the growth of short cracks [24, 25], fatigue crack threshold behavior

[25,26,27], and the effect of mode-mix on crack growth direction [28,29,30]. A noteworthy

investigation of fatigue crack growth in a homogeneous material under sustained mixed-

mode loading has been conducted by Magill and Zwerneman [31].

This thesis considers the plastic energy dissipation associated with steady-state fatigue

crack growth under mixed-mode loading, with particular application to cyclic delamina-

tion of ductile interfaces in layered materials. Fatigue delamination is a potential mode

of failure in a variety of applications involving bonded layers of material, where mixed-

mode crack growth along the bonded interface can be energetically favorable to mode I

crack growth within either bonded layer. Layered material systems are the basis for numer-
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ous solid freeform fabrication and layered manufacturing applications, and they occur in

welding, soldering, coating, and electronic packaging applications [32, 33, 34, 35]. While

little comprehensive experimental data is available, researchers have begun to investigate

fatigue crack growth along solder joints and other bonded interfaces where mixed-mode

delamination can be a predominant mode of failure [36, 37, 38, 39, 40, 41].

1.3 Modeling Approach

1.3.1 Dissipated Energy Theory

Following the work of Bodner et al [6], Klingbeil [1] has recently proposed a crack growth

law of the form
da
dN

�
1
�c

dW
dN

� (1.1)

where da
dN is the fatigue crack growth rate, �c is the critical strain energy release rate under

monotonic loading (i.e., the fracture toughness), and dW
dN is the total plastic dissipation per

cycle occurring throughout the reversed plastic zone ahead of the crack tip.3 The proposed

crack growth law assumes that the total energy required to propagate a crack a unit dis-

tance in a given material is independent of the manner in which the energy is dissipated, be

it monotonic or fatigue loading conditions. As outlined in [1], the proposed crack growth

law results in a �∆K�4 dependence of the fatigue crack growth rate4, and has been shown

to collapse the measured Paris-regime crack growth data for several ductile metals under

constant amplitude, mode I loading conditions. Moreover, numerical results for the plas-

tic dissipation per cycle were shown to be consistent with a variety of dissipated energy

3The plastic dissipation W is per unit width, as required by the units of equation ( 1.1).
4The work done by Klingbeil [1] shows the plastic dissipation is proportional to the fourth power of the

loading, �∆K�4which coincides with the actual measured fatigue crack growth rates.
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measurements reported in the literature.

In theory, the crack growth law of equation (1.1) is applicable to fatigue crack growth

under general mixed-mode loading conditions, where both �c and dW
dN depend on the mode-

mix ratio. Hence, application of the crack growth law requires numerical calculation of the

quantity dW
dN , which is the total plastic dissipation per cycle integrated over the reversed

plastic zone ahead of the crack:

dW
dN

�
� � ��

σi jdε p
i j

�
dA� (1.2)

1.3.2 Stationary Crack Modeling

In the current study, the total plastic dissipation per cycle of equation (1.2) is obtained by

2-D elastic-plastic finite element analysis of a stationary crack in a general mixed-mode

layered specimen geometry. As discussed in [1], a stationary (as opposed to growing)

crack modeling approach neglects the contribution of the actual crack extension to the total

plastic dissipation occurring during any given load cycle. However, for Paris-regime crack

growth in ductile solids, both the plastic work and surface energy contributions associated

with the actual crack extension in any given cycle are negligible compared to the total

plastic dissipation occurring throughout the reversed plastic zone ahead of the crack. As

such, modeling the actual crack extension is unnecessary.

That said, it is important to note that stationary crack modeling is unable to capture the

transient evolution of the cyclic constitutive behavior as the fatigue crack extends through

previously yielded material [42], and neglects the possibility of plasticity-induced crack

closure. In the current study, only elastic-perfectly plastic and bi-linear kinematic harden-

ing constitutive behaviors are considered, each of which predicts plastic shakedown after
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only a single cycle. As such, the results of this work should be viewed as a first approxima-

tion to the stabilized cyclic response under constant amplitude loading, and do not attempt

to account for load ratio effects typically associated with fatigue crack closure.5

It should finally be noted that numerical results presented herein can be interpreted

from a number of standpoints. First, in the context of the fatigue crack growth law of

equation (1.1), the results are applicable to stabilized, self-similar crack extension under

mixed-mode loading conditions. As previously outlined, such results are most applicable

to layered material systems, where sustained mixed-mode crack growth is a potential mode

of failure. However, the results may also be taken at face value, i.e., as simply the plastic

dissipation associated with a single load cycle applied to a stationary crack tip under mixed-

mode loading. In this context, the results of this work may be useful in the development

of energy-based approaches for predicting crack growth direction or mixed-mode fatigue

crack threshold behavior. Finally, the trends in plastic dissipation with mode-mix ratio

presented herein may provide insight into discrepancies between mode I model results and

dissipated energy measurements reported in the literature, which have been attributed in

part to a mix of crack extension modes at the crack tip [22, 1].

1.4 Overview and Contributions

1.4.1 Overview

In this thesis, the total plastic dissipation per cycle is determined by 2-D elastic-plastic

finite element modeling of a stationary crack in a general mixed-mode layered specimen

geometry. The merits and limitations of stationary crack modeling are discussed in [1],

5In the absence of crack closure, the applied load ratio R � Kmin�Kmax was shown in [1] to have only a
negligible effect on the total plastic dissipation per cycle, and is not considered further herein.
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and were reviewed in section 1.3.2. Comprehensive numerical results for a dimensionless

plastic dissipation per cycle are presented over the full range of mixed-mode loading for

both elastic-perfectly plastic and bi-linear kinematic hardening materials. The numerical

results reported in Chapter 3 provide significant insight into the role of crack tip constraint,

material hardening behavior, and mode-mix ratio on the dissipated plastic energy during

fatigue crack growth. Results are presented in Chapter 4 for the case of fatigue crack

growth along an interface between bonded layers with identical elastic yet dissimilar plastic

properties, including a mismatch in both yield strength and hardening modulus. Chapter

5 considers the case of elastic mismatch across an interface crack with matching plastic

properties. The results of the numerical analysis presented in this thesis are applied in

Chapter 6 and the pertinent results are summarized in Chapter 7. The Appendix holds

some illustrations of crack tip plastic zones, raw data from the finite element runs, and the

script used to generate the data.

The goal of this thesis is to take the reader through the required background in fracture

mechanics and fatigue crack growth to understand the context of the current research. A

sufficient background is necessary to understand the terms used to describe the mechan-

ics of interface crack problems. The initial analysis was to determine the dependence of

the plastic dissipation energy on the magnitude of the loading which showed a power law

relationship between the plastic work and the strain energy release rate. The plastic dis-

sipation energy was made dimensionless to show the effects of mode, specimen geometry

and plastic constraint for the case where both layers are matched. The plastic mismatch

analysis shows the effect of a yield strength mismatch and hardening modulus mismatch.

The effect of an elastic modulus mismatch on the cyclic plastic dissipation energy is also

shown. Finally, a couple of cases are shown for exemplar bimaterial systems. From these
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results some general design guidelines can be articulated to make interfaces more debond

resistant.

1.4.2 Contributions of This Thesis

� This thesis gives previously unreported data for the plastic dissipation energy un-

der mixed mode loading for i) homogeneous materials, ii) plastically mismatched

materials, and iii) elastically mismatched materials.

� Insight is provided concerning the contributions of plastic constraint, specimen ge-

ometry, and material hardening behavior to plastic dissipation energy for both layered

and homogeneous systems.

� Illustrations of the plastic zone shape are revealed for different modes and elastic

mismatches. These pictures provide insight into the physical mechanisms of crack

tip mechanics.

� New methods in extracting numerical results for the ω term found in interfacial frac-

ture problems [43, 44, 34, 35].

� A complete listing of a Python script used to iterate the finite element analysis.

� Design guidelines to minimize the plastic work per cycle (and reduce the fatigue

crack growth rate).

� Comparison with literature that shows a promising application of the plastic dissipa-

tion energy to predicting the fatigue crack growth rate in bimaterial systems.



Chapter 2

Background

2.1 Linear Elastic Fracture Mechanics

2.1.1 Stress Intensity Factors

The stress analysis of a crack tip can be found in most texts on fracture mechanics (e.g.

[45]), and reveals the stress fields near a crack tip to be singular. Although non-physical, the

crack tip stress singularity is important in understanding the mechanics of crack extension

Crack tip

σy

σx

τxy

r

x

P

V

y

θ

Figure 2.1: Definition of a coordinate axis at the crack tip.
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by fatigue. Figure 2.1 shows the polar coordinates used to derive the stress fields at the

crack tip where, V is the shearing force and P is the normal force. An asymptotic analysis

of this traction prescribed problem show that the stress fields have a series solution where

the first term goes as 1�
�

r� As r� 0 the first term of the series solution becomes dominant.

The stress fields can then be written as a function of θ and a proportionality constant known

as the stress intensity factor. The analysis of stress results in the following formulas (in

tensor notation):

lim
r�0

σ I
i j �

KI�
2πr

fi j�θ�I (2.1)

lim
r�0

σ II
i j �

KII�
2πr

fi j�θ�II (2.2)

lim
r�0

σ III
i j �

KIII�
2πr

fi j�θ�III (2.3)

As r � 0 in equations (2.1-2.3) the values of the stresses become large thus exhibiting

the classic square root singularity. The proportionality constants K have subscripts denoting

the mode of loading: mode I, mode II, and mode III. In a linear elastic material, these

stresses can be linearly superposed resulting in a total stress tensor according to:

σ �total�
i j � σ �I�

i j �σ �II�
i j �σ �III�

i j � (2.4)

The modes correspond to the different ways a crack tip can be loaded as shown in Figure

2.2. For this study only a planar analysis is considered, so there is no out of plane shearing

(mode III). As such there are two modes under consideration, which leads to a straight
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Mode I
Opening

(symmetric loading)
In−Plane Shear

Mode II

(antisymmetric loading)

Mode II
Out−of−Plane Shear

Figure 2.2: Schematic of modes for a crack.

forward definition of the mode-mix as:

ψ �� tan�1
�

KII

KI

�
� (2.5)

The above definition gives an angular representation of the ratio of the mode II and mode I

stress intensity factors. This is beneficial when reporting results for both mode I and

mode II on the same plot because the axis defining mode-mix is bound between -90Æ and

90Æ. However, due to symmetry arguments, the positive values and negative values of

ψ yield the same results for elastically matched layers so only half the range is needed to

report results for all possible mode-mix ratios. A negative value of ψ corresponds to a neg-

ative value of the KII component, which is a negative value of the shear. For homogenoeus

materials, a negative shear has the same physical effect of a positive shear so it is required

to only report positive values of the mode-mix ratio.
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2.1.2 Strain Energy Release Rate

The strain energy release rate determines how much energy is available for crack extension.

The rate is not a derivative with respect to time, rather with respect to new crack area:

� ��dΠ
dA

(2.6)

where Π is the total potential energy. � can be determined experimentally through either

a load controlled test or a displacement controlled test where the details can be found

in [45, 46, 47].

The stress intensity factors and the strain energy release rate are related with the fol-

lowing expression:

� �
K2

I �K2
II

Ē
� (2.7)

where Ē � E for plane stress and Ē � E
1�ν2 for plane strain (ν is Poisson’s ratio). This

relationship provides much needed convenience when analyzing mixed mode problems,

because the loading magnitude can be reported as a single quantity � � as opposed to two

different stress intensity factors KI and KII. It can also be noted that only two of the four

parameters (KI� K2� � �andψ) are independent, and that equations (2.5) and (2.7) provide

the relationships to recover all four values. That being said, reporting mixed mode data

requires either KI and KII or � and ψ .

2.1.3 J-integral

The J-integral is a path independent contour integral about the crack tip defined as:

J �
�

Γ

�
Udy�Ti

∂ui

∂x
ds

�
� (2.8)
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where U is the strain energy density, Ti � σi jn j are the traction vector components, ui are

the displacement components and ds is the incremental contour length around any closed

contour Γ. Among the details found in [45] is the important conclusion that for a linear

elastic problem, the J-integral is equal to the strain energy release rate � . This relationship

allows for a verification procedure of the numerical models as presented in section 3.3.3.

2.1.4 Small Scale Yielding

Since the stress fields exhibit singular behavior near the crack tip, plastic deformation is

inevitable. However, assuming the extent of plasticity is small, the plastic zones near the

crack tip are solely controlled by the stress intensity fields. When the plastic zone becomes

too large, the linear elastic fracture quantities KI and KII are no longer the sole driving

forces of the crack tip plasticity. The assumption of small scale yielding says linear elastic

fracture mechanics applies to the crack problem, and this can be verified by checking the

analytical solution of � against the numerical result for the J-integral.

2.2 Fatigue Crack Growth

It is not uncommon that machine components in service are known to have existing cracks.

This raises the question of how fast the cracks will grow and when the part will fail. These

questions motivate fatigue crack growth rate studies. Figure 2.3 is an illustration of a crack

growing with respect to the number of cycles. The actual fatigue crack growth rate is the

first derivative of the a vs. N curve. Measurements of fatigue cracks will record crack

length as a function of the number of cycles. If a load controlled experiment is conducted,

then the stress intensity factor will increase as the crack length increases according to the
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Figure 2.3: Growth of a fatigue crack from detection until failure.

definition ∆K � F∆σ
�

πa where F is a geometry factor. It is also important to note ∆K �

Kmax�Kmin and the load ratio R � Kmax
Kmin

. These equations can, of course, be written in

terms of � by using equation (2.7). However, if the minimum value is not zero,1 the

interpretation of the ∆ value changes when switching from stress intensity factors (K) to

strain energy release rate (� ). In other words, care must be taken since ∆� ��max��min �

K2
max�K2

min
Ē �� �Kmax�Kmin�

2

Ē . A more detailed discussion of performing fatigue crack growth

experiments can be found in [47].

Fatigue crack growth modeling is dominated by experimental data and empirical curve

fits. The most famous regression equation is from P.C. Paris [48] who observed a power

law dependence for the fatigue crack growth rate of the form

da
dN

�C�∆K�m� (2.9)

Since K and � are related by equation (2.7), the power law can be rewritten in terms of

1The analyses performed herein were conducted with a load ratio R � 0 following reports from [ 1] that
load ratio had a minimal effect on the overall plastic dissipation energy.
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Figure 2.4: Typical fatigue crack growth rate curve with three distinct regions: I– Threshold
region, II– Power law region

�
da
dN �C�∆K�m

�
, and III– unstable rapid crack extension.

� as
da
dN

�C�∆� �m� (2.10)

which is the preferred method of reporting mixed mode fatigue crack growth data [23].

The constants C and m are typically determined experimentally, and reports of these values

often include a 10% error. These values are still useful as engineering constants for a

given material. However, the actual mechanics of fatigue crack growth require analytical

modeling because they are not revealed with these empirical curve fits.
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True Stress

Rupture Stress

Engineering Stress

σy

σ

E

ε

E

ε p εe

Figure 2.5: Stress strain curves showing engineering stress and true stress.

2.3 Elastic-Plastic Behavior

Every material has a finite strength so that, when exceeded, it will either rupture or yield.

Because the stresses will increase as r � 0, a plastic zone will appear as a result of the

higher stress. This plasticity will occur even if the global stresses are well under the yield

strength. Knowing that the material at the crack tip will yield, a discussion of some of the

properties and models of plasticity is in order.

Figure 2.5 shows a typical stress-strain diagram for a ductile metal revealing the linear

elastic region and the plastic region. The most significant difference between elastic and

plastic behavior is that the material does not return to its original state after undergoing

plastic deformation. When a material is loaded elastically, it will deform the same each

time with a given amount of stress. The deformation of an elastic material is only dependent

on the application of the stress that created the deformation. Plastic behavior, however,

depends on the load history in addition to the applied loads.

The mechanism for plastic deformation is dislocation motion. A detailed discussion of
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the physical metallurgy behind plastic deformation is beyond the scope of this thesis and

is only briefly summarized here. Dislocation motion in a polycrystalline material (most

ductile metals) involves planes of atoms sliding or gliding over one another. These glissile

motions are characterized by the slip plane and slip direction. During plastic deformation,

these dislocations can accumulate and impede each other resulting in strain hardening [46].

Another important note is that a plastically deforming material has no volume change.

Hydrostatic stresses will not plastically deform a material even when each component is

higher than the uniaxial tensile strength. Yield is governed by the deviatoric stress com-

ponents from which the Von Mises yield criterion is established. Once a material has

exceeded the Von Mises criterion for yield, it will not undergo any more volume change.

This incompressible behavior is equivalent to a Poisson’s ratio of ν � 1
2 for a plastically

deforming material.

The onset of yielding is determined by the Von Mises criterion2 which is recognized as

σ̄ �
1�
2

�
�σ1�σ2�

2 ��σ2�σ3�
2 ��σ1�σ3�

2�1�2
� σy (2.11)

where σi are the principal stresses, σ̄ is the effective stress. Plastic deformation occurs

when the effective stress value exceeds that of the uniaxial yield strength.

2.3.1 Constitutive models

The microscopic mechanism of plastic deformation is inconsequential to the macroscopic

quantification of energy, which can be obtained from a load-displacement or stress-strain

analysis. The classic stress-strain diagram of engineering materials shows the response of

2Synonyms for the Von Mises yield criterion include: i) J2 flow criterion, ii) equivalent distortion energy
criterion, and iii) maximum octahedral shear stress criterion.
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Figure 2.6: Idealized stress-strain diagrams.

materials from which work can be calculated. The engineering stress curve is shown to

distinguish between the two methods of reporting stress-strain data. While the engineering

stress is determined by dividing the force by the initial area, true stress is determined by

dividing the stress by the actual area. The difference in the curves at low values of strain

(� 5%) is small compared to that of larger strains. For all subsequent analysis in this thesis

only true stress-strain relationships are considered.

Figure 2.5 also illustrates the concept of elastic strain ε e and plastic strain ε p. The total

strain is the addition of the elastic and plastic strain. The elastic and plastic components

are determined by drawing a line parallel to the initial linear section of the curve from

the point corresponding to the total strain. Where the line intersects the abscissa gives the

plastic strain. Also, the elastic strain will increase as the material strain hardens more.

Understanding these concepts is important when implementing the material properties in a

finite element modeling code as described in section 2.3.3.

For modeling purposes there are a few common idealized stress strain diagrams illus-

trated in Figure 2.6. The rigid-perfectly plastic (Figure 2.6a) model is usually employed

when dealing with large-scale plastic deformation, where the elastic deformation makes up
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a very small contribution to the overall deformation. Since the elastic and plastic strains

near a crack tip under small scale yielding are comparable in magnitude, this model is not

useful herein. Likewise, the rigid-plastic (Figure 2.6b) model assumes large scale yielding

with strain hardening and is also not valid for the analyses herein. However, the elastic-

perfectly plastic (Figure 2.6c) and bi-linear hardening (Figure 2.6d) models are valid when

considering problems in the elastic-plastic regime. The elastic-perfectly plastic case is also

a special case of the bi-linear hardening model when the tangent modulus Et � 0. It is

recognized that other constitutive models exist and may be more realistic, but the simplic-

ity of the bi-linear hardening model is preferred for this thesis.3 The bi-linear hardening

model can account for different strain hardening rates in terms of a single ratio Et�E. So

far, only uniaxial tensile response has been illustrated in Figures 2.5 and 2.6 and the actual

application of these models requires a discussion of cyclic response.

2.3.2 Isotropic Cyclic Hardening

Figure 2.7 shows the stress strain diagram for a material that exhibits isotropic cyclic hard-

ening. The cyclic response involves loading followed by unloading, or loading in the op-

posite direction. As a material is loaded past yield, it will harden and make the material

stronger. Using an isotropic material model says that when the material is unloaded and

reloaded it will yield in compression after the same magnitude of stress is applied (i.e.

∆σ � 2σ �� as shown in Figure 2.7. The value σ � is the highest value of stress experienced

during the previous loading cycle. Subsequent hardening takes place and further increases

the yield strength. This pattern leads to an always increasing yield strength which, of

3Also, the quantity desired, plastic dissipation energy, is an integrated quantity and the error associated
with using a simplified material model is smoothed and averaged over the whole plastic zone. As a result,
capturing the exact behavior of the material as it transitions from the linear elastic region to the plastic regime
is of limited consequence.
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Figure 2.7: Cyclic isotropic material hardening behavior when loaded to equivalent positive
and negative strain values.
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Figure 2.8: Bi-linear kinematic hardening model when loaded to similar positive and neg-
ative strain values. Plastic shakedown occurs after one cycle.

course, is non-physical. When the hardening modulus is low, the material will require

more iterations before moving the yield a similar amount than if the tangent modulus is

higher. Obviously when the material is elastic-perfectly plastic, no hardening is exhibited

and there is no gain in yield strength.

2.3.3 Kinematic Cyclic Hardening

Kinematic hardening predicts that the material will yield in the reverse direction after a

change in stress ∆σ � 2σy where σy is the initial yield strength. The bi-linear kinematic

hardening model shown in Figure 2.8 is the model of choice for this analysis, and includes

the limiting case of elastic-perfectly plastic (Figure 2.6c). In the context of classical small-

strain elastoplasticity, the bi-linear kinematic hardening model can be used to approximate

the stabilized cyclic response during constant amplitude loading. Real materials exhibit
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isotropic behavior for the first few cycles and evolve to kinematic behavior. This trend

toward kinematic behavior is known as plastic shakedown. Figure 2.8 shows that the bi-

linear kinematic hardening model provides for a reduced yield strength upon reversal (the

Bauschinger effect), and predicts plastic shakedown after only a single cycle.

The elastic modulus E, tangent modulus Et , and yield strength σy are the three in-

dependent parameters completely defining the material response for a bi-linear kinematic

hardening model. The tangent modulus can range from a slope of zero to that of Young’s

modulus (0 � Et � E). Obviously a tangent modulus equal to the elastic modulus is far

fetched, so the results of such analysis are included only for academic completeness. With-

out loss of meaning, the tangent modulus is more conveniently expressed as a ratio Et�E,

whose values have the range 0� Et�E � 1.

The material models previously discussed need to be implemented into a finite element

program. The software used for this for this thesis is ABAQUS, produced by HKS Soft-

ware. The implementation of the kinematic hardening model in the finite element code was

not trivial and is detailed in the next paragraphs.

ABAQUS uses the plastic strains to define the material behavior instead of total strains.

The first data point in the plastic properties table has to be the yield point when the plas-

tic strain is zero. If no other data are given, ABAQUS assumes elastic-perfectly plastic

behavior. To give a non zero value to the tangent modulus, another point must be added

to the plastic behavior definition table. By fixing a value of stress slightly higher than the

yield point, a range of plastic strain components can be computed corresponding to differ-

ent moduli ratios Et�E. Given the bi-linear kinematic hardening model as shown in Figure
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2.8, the slope of the tangent modulus is defined as

Et �
σ1�σ0

ε1� ε0
� (2.12)

The strain at yield is solely elastic strain, whereas the strain at point 1 has both elastic and

plastic parts. The elastic strain is defined from a simplified Hooke’s law as σ1
E . Given those

simple definitions and dividing equation (2.12) through by Young’s modulus yields

Et

E
�

σ1�σ0

Eε1p �σ1�σ0
� (2.13)

If the yield point and elastic modulus are known, solving equation (2.13) for the plastic

strain is determined by

ε1p �
1
E

�
�σ1�σ0�

Et�E
�σ1 �σ0

�
� (2.14)

The values generated using equation (2.14) are input in the property definition tables of the

finite element software.

The primary goal of these modeling procedures is to account for some type of material

hardening. It is true that a real material does not exhibit bi-linear behavior, but it can be

represented with an equivalent bi-linear model with reasonable accuracy. The procedure

for extracting the plastic dissipation energy will be the same as those presented herein even

if the constitutive model were to be changed.
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Matching Layers

3.1 Global Problem Geometry

Some of the desired qualities of the specimen geometry include the presence of an analyt-

ical solution to verify the numerical results, the ease of implementation of finite element

codes, and the applicability of real world specimens. Examination of the literature lead

to a generalized specimen found in a paper by Suo and Hutchinson [43] and is shown in

Figure 3.1. This specimen has a special case equivalent to the 4-point bend test specimen

proposed by Charalabides et al. in [49].

The mixed-mode layered specimen geometry of Figure 3.1 is composed of two bonded

layers of isotropic materials #1 and #2, which can have different thicknesses (h1 and h2),

different elastic properties (E1, E2, ν1, and ν2) and different plastic properties (σy1, σy2, Et1,

and Et2). In this chapter, both the elastic and plastic properties of materials 1 and 2 are the

same, while mismatches are considered in plastic and elastic properties in Chapters 4 and

5. The relative thickness ratio of the layers η � h1
h2

only changes the mode of the problem,1

1The relative thicknesses also affect � , but the end results are normalized by � so this is irrelevant.

25
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Figure 3.1: Specimen geometry for mixed-mode cracking with matching layer thicknesses.

which can also be changed by changing the loads. As a result, the ratio η � h1
h2

� 1 is used

in this analysis for ease of implementation in the computer code.

The loading consists of pure bending moments M1 and M2 applied to the top and bottom

layers, which are equilibrated by a symmetry condition on the right hand side. The variation

in the bending moments M1 and M2 allows consideration of the full range of mode-mix

values, from pure mode I to pure mode II.

In light of the symmetry condition, the modeled length L actually represents half the

total specimen length. Both the length L and the crack length a are sufficiently long to allow

for steady-state conditions at the crack tip, so that the energy release rate is independent

of crack length (see [43, 44] for more details). Also, the slenderness of the layers allows

the specimen to be analyzed using beam theory, which provides a check on the computer

solution. The dimensions used in all numerical analyses discussed in the next sections were

L � 50 mm, h1 � 5 mm, h2 � 5mm, and a � 25 mm.
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3.2 Analytical Models

As mentioned in section 3.1, a semi-analytical solution for steady-state cracking along

the interface of a general bimaterial specimen configuration, having mismatches in both

layer thickness and elastic properties, has been provided by Suo and Hutchinson [43]. As

detailed in the next few sections, the results of [43] can be reduced to provide an analytical

solution for the specimen configuration considered herein, in which there is no mismatch

in either elastic properties or layer thickness.

3.2.1 General solution

For the case of no mismatch in layer thickness or elastic properties the mode I and mode II

stress intensity factors for the problem of Figure 3.1 are

KI �

�
3�M1 �M2�

h3�2
(3.1)

KII ��3�M1�M2�

2h3�2
� (3.2)

It is important to note that in the presence of small scale yielding, the elastic stress intensity

factor solutions of equations (3.1) and (3.2) are valid even in the presence of a mismatch in

plastic properties across the interface, so long as the elastic properties E and ν are identical.

Inspection of equations (3.1) and (3.2) reveals that when M1 � M2, the KII component

vanishes leaving pure mode I loading (ψ � 0Æ). Also, when M1 ��M2, the KI component

vanishes leaving a pure mode II condition (ψ � 90Æ). Another simplification of (3.1) and

(3.2) occurs when M1 � 0 (or ψ � 41Æ), which is a special case of the four-point bend test
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specimen geometry commonly used for inter-facial fracture testing of layered materials

[49, 32].

Substitution of equations (3.1) and (3.2) into equation (2.7) gives the steady-state en-

ergy release rate for the problem of Figure (3.1a) as

� �
3�7M2

1 �2M1M2 �7M2
2�

4Ēh3 � (3.3)

The above result can also be directly determined from the difference in strain energy per

unit crack area far behind and ahead of the crack tip, which is the hallmark of steady-state

delamination problems [43]. The difference in strain energy for the problem of Figure 3.1

can be determined from elementary beam theory, as discussed in the next section.

3.2.2 Beam Theory Solution

The beam theory solution is helpful in providing insight into the mechanics, as well as a

crosscheck for the previous results. As discussed in [32,44], advancing a steady state crack

is the same as taking the amount of crack advance da from ahead of the crack and placing

it behind the crack, as shown in Figure 3.2. The strain energy release rate is then quantified
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Exchange sections

Crack advance

da

Figure 3.2: Illustration of an equivalent steady state crack advancement.
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by the difference in the strain energy in the piece that was ahead of the crack (whole) and

the same piece behind the crack (split).

Consider a section of the specimen far ahead of the crack in Figure (3.1a). The strain

energy per unit length is given as:

U �
�

σi jεi jdV� (3.4)

Since the layer thicknesses are equal, the materials are elastically matched and the strains

are linearly distributed across the cross section in the x-direction, the strain energy per unit

length in a section becomes:
dU
da

�
M2

2ĒI
� (3.5)

Defining � with equation (2.6) and subbing in equation (3.5) gives

� ��
�

6�M1�M2�
2

Ē�h�H�3 �
�

6M2
1

Ēh3 �
6M2

2

ĒH3

��
(3.6)

when dA � Bda and dΠ � dUahead�dUbehind . Throughout this thesis B refers to the depth

in the z-direction which is considered unity. Equation (3.6) further reduces to equation (3.3)

� �
3�7M2

1 �2M1M2 �7M2
2�

4Ēh3 � (3.7)

thus showing a simple beam theory solution and verification of the strain energy release

rate found in Suo and Hutchinson [44, 43].
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3.3 Numerical Modeling

3.3.1 Finite Element Analysis

y

L

x

h

h

(a) Undeformed finite element model

y

L

x

h

h

(b) Finite element model with a defomation factor of 1000

Figure 3.3: Finite element mesh, loading, and boundary conditions

The total plastic dissipation per cycle is obtained herein from a 2-D finite element model

of the geometry of Figure 3.1 under constant amplitude, mixed-mode loading. The finite

element mesh, applied loads and boundary conditions are illustrated in Figure 3.3. For
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ease of implementation, the moments M1 and M2 are applied in the form of equal and

opposite uniform stress distributions. The loading illustrated in Figure 3.1 results in equal

and opposite bending moments, which corresponds to the case of pure mode I. A pure mode

II loading would have the applied moments in the same direction. For matching materials,

the full range of mixed-mode loading has been considered by holding M1 constant and

varying M2 in the range �M1 �M2 �M1.

The finite element model uses 8-node bi-quadratic reduced integration elements con-

tained in the commercial software package ABAQUS. The analysis employs classical small-

strain incremental elastoplasticity with Von Mises yield criterion, which is generally appro-

priate for metals and other ductile solids. Reduced integration elements are chosen for their

accuracy during nearly incompressible material response, which results from the pressure-

independent yielding assumed in the elastoplasticity formulation. The elements are highly

biased toward the crack tip, with the smallest element measuring only 0�5 µm. As discussed

in [1], such fine mesh resolution is needed to accurately resolve the reversed plastic zone

upon load reversal, and to ensure convergence of the continuum theory solution.2 As dis-

cussed in [1], the total plastic dissipation per cycle is insensitive to the choice of crack-tip

elements, so standard (as opposed to quarter-point) elements are used at the crack tip.

One very powerful tool in ABAQUS is the ability to write scripts to automate the finite

runs. Version 6.1 and later of ABAQUS is built on the Python interpreted language and

scripts can be written and recorded to reproduce the exact procedure used to generate a

numerical result. Those steps can then be iterated with a script to set up a parametric study

as shown in Appendix C.

2It should be noted that convergence of the continuum solution does not police its applicability. As such,
care should be taken in applying the results of this work for cases in which the reversed plastic zone is on the
order of the grain size of the material.
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3.3.2 Crack Tip Plasticity

The effect of mode-mix ratio on the evolution of forward and reversed plastic zones during

a complete load cycle (R � �min��max � 0) is illustrated for both plane stress and plain

strain in Figures 3.4 to 3.6. The material considered is elastic-perfectly plastic (Et�E � 0)

with elastic modulus E � 73�1 GPa, yield strength σy � 300 MPa, and Poisson’s ratio

ν � 0�3. For ease of comparison, the applied range of energy release rate is held constant

at ∆� � 200 J�m2.

As shown in Figures 3.4a and 3.4b, both the shape and size of the forward plastic

zones under pure mode I loading are in keeping with expectations from classical fracture

mechanics analyses, as well as with previous results in the literature [45]. In particular,

unconstrained yielding results in a much larger plastic zone in plane stress (Figure 3.4b)

than in plane strain (Figure 3.4a). While the forward plastic zones scale with �∆K�σy�
2,

the reversed plastic zones scale with �∆K�2σy�
2, which is in keeping with the plastic su-

perposition argument first put forth by Rice [2]. As such, the greatest extent of the reversed

plastic zones of Figures 3.4c and 3.4d is roughly 1/4 that of the forward plastic zones of

Figures 3.4a and 3.4b.

The asymmetry of crack tip plasticity during mixed-mode loading is evident from Fig-

ure 3.5, where the phase angle of ψ � 41Æ represents a nearly equal mix of mode I and II

loading. More importantly, a comparison of the scale factors in Figures 3.4 and 3.5 reveals

that an increase in mode II component significantly increases the extent of crack tip plastic-

ity in both plane stress and plane strain. The difference in the plane stress and plane strain

plastic zones reduces with an increasing shearing component. The reason stems from the

definitions of plane stress and plane strain. For plane stress the out of plane principal stress
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Figure 3.4: Forward and reversed plastic zones in pure mode I
with E � 73�1 GPa, ν � 0�3, σy � 300 MPa, and ∆G � 200J�m2.
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Figure 3.5: Forward and reversed plastic zone when ψ � 41Æ

with E � 73�1 GPa, ν � 0�3, σy � 300 MPa, and ∆G � 200J�m2.
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Figure 3.6: Forward and reversed plastic zones in pure mode II
with E � 73�1 GPa, ν � 0�3, σy � 300 MPa, and ∆G � 200J�m2.
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is

σ3 � 0 (3.8)

and for plane strain the out of plane stress is

σ3 � ν�σ1 �σ2� (3.9)

If a material is under pure in-plane shear (pure mode II), the principal stresses are equal

and opposite, leaving no distinction between equations (3.8) and (3.9).

3.3.3 Verifying Small Scale Yielding

It should be noted that the plastic zone sizes of Figures 3.4-3.6 are well within the range of

small-scale yielding, which has been independently verified for all cases considered herein.

First, J-integral estimates available in ABAQUS have been calculated at maximum load

and directly compared to equation (3.3) (J � � for linear elastic fracture). While crack tip

plasticity invalidates J-integral estimates within the plastic zone, those taken from contours

outside the plastic zone have been found to agree with equation (3.3) to five significant

digits. Such agreement can only be obtained in the presence of small-scale yielding. In

addition, interaction integral estimates for the stress intensity factors have been obtained

from elastic finite element runs of the specimen geometry. The results have been in excel-

lent agreement with the the closed-form solutions of equations (3.1) and (3.2), as well as

with the J-integral estimates obtained from the elastic-plastic analysis.
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Figure 3.7: Representative time history graph of the cumulative plastic dissipation energy
(keyword: ALLPD in ABAQUS).

3.4 Numerical Results and Discussion

3.4.1 Preliminary Finite Element Results

Figure 3.7 shows a representative trace of the time history of the plastic dissipation energy

automatically tracked in ABAQUS. As Figure 3.7 shows, the plastic dissipation energy in

the first loading cycle is much larger than in subsequent cycles. Two cycles are necessary

because the plastic deformation during the first load cycle occurs throughout the forward

plastic zone, while plastic deformation in subsequent cycles is restricted to the reversed

plastic zone. Moreover, for both elastically-perfectly plastic and bi-linear kinematic hard-
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ening materials, the plastic dissipation remains constant after the second cycle. As such,

the quantity dW
dN � ∆W24 represents a steady-state value of dW

dN in all subsequent cycles. The

cyclic dissipated energy is the value of ALLPD at time step 4 less the value of ALLPD at

time step 23. This further illustrates the concept of plastic shakedown where every cycle

dissipates the same amount of energy.

Representative plane strain finite element results for the total plastic dissipation per

cycle dW
dN as a function of applied range of energy release rate ∆� are plotted over the full

range of mode-mix values in Figure 3.8. As shown in Figure 3.8, a least-square curve fit of

the numerical data results in a power-law relation of the form

dW
dN

�C �∆� �m � (3.10)

The results of the regression analysis showed that the exponent of the power law relation

for all cases considered was in the range 1�99� m� 2�04 with R2 � 0�99. Thus, to within

numerical error, the exponent of the power law relation is m � 2, and is unaffected by

the mode-mix ratio. In light of equation (1.1), the predicted fatigue crack growth rate

is proportional to ∆� 2, which is within the range of observations of mixed-mode fatigue

crack growth on ductile interfaces [36, 37, 38, 39, 40, 41]. It should also be noted that for

an applied load ratio R � 0, the quantity ∆� 2 corresponds directly to ∆ �K�4, or for the case

of mode I loading, ∆K4. This is in keeping with previous energy-based theories of fatigue

crack growth under mode I loading, and is consistent with fatigue crack growth data for a

variety of ductile metals [1].

3The actual process of extracting the results is automated in the extractWork function of the script in
Appendix C.
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Figure 3.8: Effect of mode-mix on dW
dN in plane strain when Et�E � 0, E � 73�1 GPa,

ν � 0�3, and σy � 300 MPa.
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Convergence of dW
dN Mesh Resolution

Time Step Coarse Medium Fine
.1 1.1216E-3 1.1138E-3 1.1138E-3
.05 1.1258E-3 1.1184E-3 1.1188E-3

.025 1.1281E-3 1.1189E-3 1.1191E-3

Table 3.1: Convergence study of dW
dN for pure mode I with matching layers when Et�E � 0,

ν � 0�3, E � 73�1 GPa, σ � 300 MPa and ∆� � 200J�m2 .

Convergence of dW
dN Mesh Resolution

Time Step Coarse Medium Fine
.1 1.3399E-3 1.3422E-3 1.3427E-3
.05 1.3491E-3 1.3509E-3 1.3510E-3

.025 1.3514E-3 1.3532E-3 1.3531E-3

Table 3.2: Convergence study of dW
dN for ψ � 41Æ with matching layers when Et�E � 0,

ν � 0�3, E � 73�1 GPa, σ � 300 MPa and ∆� � 200J�m2 .

3.4.2 Convergence Studies

It should finally be noted that a rigorous convergence study was performed in both time and

space by successively halving both the element edge length and the maximum time step

used in ABAQUS’ automatic time-stepping algorithm. In so doing, the value of dW
dN from

the production mesh of Figure 3.3 varied less than 1 percent from the value of dW
dN obtained

from the finest mesh. A summary of these studies are presented in Tables 3.1-3.3 with the

production runs being in the middle of the table (medium mesh resolution and time step =

0.05)

3.4.3 Non-Dimensionalization

In order to facilitate a general presentation of results, the plastic dissipation per cycle can be

non-dimensionalized in terms of the yield strength, applied energy release rate and elastic
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Convergence of dW
dN Mesh Resolution

Time Step Coarse Medium Fine
.1 0.012585 0.012511 0.012507

.05 0.012667 0.012586 0.012579
.025 0.012688 0.012608 0.012601

Table 3.3: Convergence study of dW
dN for pure mode II with matching layers when Et�E � 0,

ν � 0�3, E � 73�1 GPa, σ � 300 MPa and ∆� � 200J�m2 .

modulus as
dW
dN

�

�
σ 2

y

Ē∆� 2

dW
dN

� (3.11)

In light of equation (1.1), the fatigue crack growth rate can be written in terms of the

dimensionless plastic dissipation per cycle as

da
dN

�
Ē∆� 2

σ 2
y �c

dW
dN

�

� (3.12)

For a material with matching elastic layers, the dimensionless plastic dissipation dW
dN

�

de-

pends on the applied mode-mix ratio ψ , Poisson’s ratio ν , and the hardening ratio Et�E.

3.4.4 Effect of Mode-Mix

Figure 3.9 shows a plot of dW
dN

�

vs. ψ after applying equation 3.11 to the data of Figure

3.8. All ninety points from Figure 3.8 are collapsed to the “S” shaped curve of Figure 3.9

which validates the normalization of the data with equation (3.11). This collapse of the

data shows a definite influence of the mode-mix on the plastic dissipation energy. Clearly,

the plastic dissipation increases significantly with mode-mix, and is between one and two

orders of magnitude greater in mode II than in mode I. This result might be expected in

light of the increase in plastic zone size with mode-mix illustrated in Figures 3.4-3.6.
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Figure 3.9: Dimensionless plastic dissipation dW
dN

�

vs. mode-mix ratio ψ for Et�E � 0 and
ν � 0�3 in plane strain.
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3.4.5 Effect of Plastic Constraint

A family of curves showing the dimensionless plastic dissipation as a function of mode-mix

over the full range of Poisson’s ratio and for Et�E � 0 is shown in Figure 3.10. Results are

also shown for plane stress, although these are independent of Poisson’s ratio.4 As shown

in Figure 3.10, the plastic dissipation is greatest in plane stress, and decreases with increas-

ing plastic constraint (i.e, increasing Poisson’s ratio in plane strain). This result might be

expected based on the relative plastic zone sizes in plane stress and plane strain, and is in

keeping with the mode I results of [1]. The plot of Figure 3.10 also contains the master

curve of Figure 3.9, which corresponds to ν � 0�3 in plane strain. Evidently, changes in

Poisson’s ratio (i.e., plastic constraint) result in roughly uniform shifts of the master curve,

although the magnitude of such shifts decreases with increasing plastic constraint. An im-

portant result is that for ν � 0�3, values of dW
dN

�

vary by less than 0.5%. Thus, for all values

of the mode-mix ratio, the effect of Poisson’s ratio on dW
dN

�

is negligible for typical ductile

metals where ν � 0�3.

3.4.6 Effect of Hardening Modulus

Numerical results for dW
dN

�

vs. ψ are plotted in Figure 3.11 over the full range of Et�E and

for ν � 0�3. The case of Et�E � 0 (elastic-perfectly plastic response) coincides with the

master curve of Figure 3.9, and represents an upper bound on the plastic work per cycle

in plane strain. As should be expected, dW
dN

�

decreases with increasing hardening modulus,

and approaches zero for the case of Et�E � 1 (purely elastic response). Thus, for all values

of mode-mix, the effect of increasing material hardening is to decrease the plastic work. In

4Note that for the case of ν � 0, plane stress and plane strain are equivalent only in the elastic regime; for
the case of plane strain, the incompressible response assumed and the classical plasticity formulation results
in constrained yielding in the elastic-plastic regime.
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Figure 3.10: Dimensionless plastic dissipation energy dW
dN

�

vs. mode-mix ψ in plane stress
and plane strain.
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an absolute sense, the results of Figure 3.11 indicate that dW
dN

�

is more sensitive to hardening

ratio for high values of ψ . On the other hand, the effect of mode-mix is substantially more

pronounced for low values of Et�E, which is typical of ductile metals.

3.4.7 Effect of Specimen Geometry

The effects of hardening modulus on the dimensionless plastic dissipation have been con-

sidered for the case of mode I loading (C(T) specimen geometry) in [1]. Different specimen

geometries and loading typically exhibit slight differences in both the shape and size of the

crack tip plastic zones, which is typically attributed to differences in “T-stress” at the crack

tip [45]. In order to investigate the sensitivity of dW
dN

�

to specimen geometry, both the cur-

rent results for mode I loading and those of [1] are plotted verses Et�E for both plane stress

and plain strain (ν � 0�3) in Figure 3.12. The most measurable difference is for the case

of Et�E � 0 in plane stress; however, this difference decreases with increasing hardening

modulus, and appears to be negligible in plane strain. Hence, results suggest that specimen

geometry has only a limited effect on the total plastic dissipation during plane strain fatigue

crack growth in ductile solids.



CHAPTER 3. MATCHING LAYERS 47

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Effect of Specimen Geometry

Plane Stress, C(T) Specimen

Plane Strain, C(T) Specimen, = 0.3

Plane Stress, Fig. 1

Plane Stain, Fig. 1, = 0.3

dW*
dN

E
t
/E
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Chapter 4

Plastic Mismatches

4.1 Modeling Procedure

A plastic mismatch is a difference in the hardening modulus and/or yield strength. These

systems occur in layered or functionally graded materials where the elastic properties are

the same and the plastic properties are altered through material processing. Because the

analytical solutions presented in Chapter 3 are only dependent on the elastic properties and

loading, the same equations can be used for interpreting the case for a plastic mismatch. A

schematic of the different property mismatches is shown in Figure 4.1. Figure 4.1a shows

the same hardening modulus with different yield strength and Figure 4.1b shows the same

yield strength with a mismatch in hardening modulus. Both cases are considered in this

chapter.

48
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Figure 4.1: A schematic of different plastic property mismatches.

4.1.1 Definition of Yield Strength Mismatch

In this thesis, a yield strength mismatch is defined in terms of the dimensionless parameter

σ̂ �
σy1�σy2

σy1 �σy2
� (4.1)

where all possible values of strength mismatch are bounded between �1 � σ̂ � 1. If the

top layer of the specimen is largely stronger than the bottom layer then σ̂ � 1. Likewise,

if the top layer is much weaker than the bottom layer then σ̂ ��1. The case when σ̂ � 0

means there is no strength mismatch in the material. The cases considered herein use an

elastic-perfectly plastic model when considering the strength mismatch. Also, all cases in

this chapter use ν � 0�3 in plane strain.

4.1.2 Definition of Hardening Modulus Mismatch

The ratio Et�E is already dimensionless; as such, two parameters are needed to define the

design space for a mismatch in the tangent modulus: Et1�E and Et2�E. To this end, full

consideration of the design space requires varying each ratio independently. The higher

values of Et�E are more for academic completion than real application, because most duc-
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tile metals have fairly low hardening moduli (Et�E � 0�1). Since there are three indepen-

dent variables (ψ , Et1�E and Et2�E) and one dependent variable (dW
dN

�

), a single plot will

no longer suffice to map out the plastic dissipation energy. Instead, a family of curves is

needed to reflect the contributions of each variable.

4.1.3 Numerical Models

The numerical modeling is the same as that outlined in Chapter 3 with the only difference

being the plasticity options for each layer. The plastic properties of each layer have to be

defined independently. Each layer was changed for the FEA using a script similar to the

one found in Appendix C.

4.2 Numerical Results and Discussion

4.2.1 Non-Dimensionalization

A modification of equation (3.11) is necessary for a more meaningful presentation of re-

sults. If normalized by the stronger material, the quantity dW
dN

�

will become very large as

σ̂ ��1. As the yield strength used to normalize the data becomes large, then the quan-

tity dW
dN

�

also becomes large according to equation (3.11). To alleviate this, dW
dN can be

normalized with respect to the weaker material as

dW
dN

�

�
σ̄y

2

Ē∆� 2

dW
dN

� (4.2)

where σ̄y � min�σy1�σy2�. Using the minimum yield strength makes for an easier graphical

representation of the extreme values of σ̂ . Also, the weaker material controls the small



CHAPTER 4. PLASTIC MISMATCHES 51

0.000

0.020

0.040

0.060

0.080

0.100

0.120

-1 -0.5 0 0.5 1

Effect of Yield Strength Mismatch

 = 0

 = 7

 = 16

 = 27

 = 41

 = 55

 = 68

 = 81

 = 90

 = (
y1

 - 
y2

)/(
y1

 + 
y2

)

dW*

dN

^

Figure 4.2: Illustration of the asymptotic effect of high strength mismatches.

scale yielding assumption. To generate results, the top layer would be assigned a fixed

yield strength and the bottom would be assigned successively stronger materials to generate

results for the values of σ̂ � 0. Likewise, to generate values of σ̂ � 0, the bottom layer is

given a fixed yield strength and the top layer is increased in strength. This ensures small

scale yielding because the plasticity will always be decreasing.
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4.2.2 Yield Strength Mismatches

Using the new definition of the normalized plastic dissipation defined in equation (4.2), a

plot of the plastic dissipation vs. yield strength mismatch is shown in Figure 4.2. A number

of physical insights are evident in Figure 4.2. First, the effect of a strength mismatch is

small compared to the effect of mode-mix. Second, there is an asymptotic effect of the

yield strength mismatch. In other words, the value of dW
dN

�

for extreme values of the yield

strength mismatch are the same as the values for �σ̂ � � 0�25 which is equivalent to a yield

strength ratio of 5:3 (	 1�67).

For all values of ψ , the effect of σ̂ is limited to the region of �0�25 � σ̂ � 0�25, after

which, dW
dN

�

exhibits asymptotic behavior. As the strength mismatch continues to increase,

there is a negligible contribution of plastic work from the stronger material. Thus, whenever

a material is at least 1.67 times as strong as the other, the plastic dissipation energy is

dominated by the weaker material. Figure 4.2 also shows the plastic work per cycle is not

symmetric about σ̂ � 0 except for when ψ � 0Æ and ψ � 90Æ.

The normalized plastic dissipation energy dW
dN

�

is plotted vs. ψ and several values of

Et�E and σ̂ in Figure 4.3.The case of pure mode I or pure mode II is expected to be

indifferent to whether the top is stronger or the bottom is stronger. This can easily be

shown by symmetry arguments of the problem. However, as the mode becomes mixed

from mode I, the values of dW
dN

�

are higher when σ̂ � 0. Conversely, as the mode becomes

mixed from pure mode II, the values of dW
dN

�

are lower when σ̂ � 0. This means there is

another value of ψ where dW
dN

�

is symmetric about the point σ̂ � 0. To illustrate this point,

dW
dN

�

is plotted vs. ψ for σ̂ � 0 and σ̂ � �1 in Figure 4.4. This shows the two extreme

values of σ̂ crossing near ψ � 41Æ, which, coincidentally, is very close to the mode for the

four point bend specimen [49]. As the absolute values of σ̂ become closer to zero, the point
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Figure 4.3: Plastic work shown for a combination of yield strength mismatches.
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of intersection moves to a different location (see Figure 4.5 where σ̂ ��0�05).

In addition to the crossing points, the plots of Figure 4.3 illustrate that the effect of yield

strength mismatch is negligible compared to mode-mix. Even the extreme yield strength

mismatches still follow the same shape and roughly the same magnitude of the homoge-

neous plot of Figure 3.11. The existence of these crossing points has very little consequence

since the overall effect of the yield strength mismatch on the plastic dissipation energy is

dominated by the mode. The crossing point plots do, however, illustrate the asymmetry of

the mixed mode problem.

4.2.3 Hardening Modulus Mismatch

A second case of plastic mismatch, illustrated in Figure 4.1b, has the same yield strength

between layers and different hardening ratios, Et�E. Figure 4.6 shows a family of plots,

each with a family of curves, with dW
dN

�

plotted vs. ψ for different combinations of Et1�E,

and Et2�E. The effect of Et1�E for fixed Et2�E increases with the mode II component. It

is easy to note that each of these plots contains a curve which matches that of Figure 3.11

when the corresponding tangent modulus ratios are equal. Also, the first plot of Figure 4.6

contains the curve from the master plot of Figure 3.9. When the tangent modulus ratio of

one material is unity, no plastic work is done in that material. As a result, all the work is

being done in the softer material. It should be noted that even with a unity tangent modulus

ratio in one material, the quantity of plastic work is not half the work when the tangent

moduli are equal. The interface is still elastic and acts to distribute the loads differently

than if the two materials were the same. As the tangent modulus ratio of one material

departs from unity, more plastic work is allowed to occur.

In Figure 4.6, the effects on dW
dN

�

become more pronounced as the hardening of the
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Figure 4.4: An illustration of asymmetric properties of a strength mismatch when Et�E � 0
and ν � 0�3.
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Figure 4.5: Translation of crossing points for different strength mismatches when Et�E � 0
and ν � 0�3.
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Figure 4.6: Family of plots showing dW
dN

�

in mixed mode with differing tangent modulus
ratio (Et1�E and Et2�E) values.
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bottom layer is increased, i.e. Et2�E � 1. In the extreme case when Et2�E � 1, the

bottom material does not yield. This is the same physical result as having σ̂ ��1, just as

Et1�E � 1 corresponds to σ̂ ��1. This is confirmed by comparison of Figures 4.4 and 4.7.

These plots are of different FEA runs, the first being an analysis of strength mismatches and

the second being an analysis of a hardening modulus mismatch. It can also be noted from

Figure 4.7 that the same “crossing point” phenomenon exists for mismatches in hardening

modulus as that for strength mismatches.
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Chapter 5

Elastic Mismatches

5.1 Analytical Models

The previous chapters considered an elastically homogeneous material with mismatches in

only plastic properties. An elastic mismatch (shown in Figure 5.1) is significantly more

complicated. Like any other plane elasticity problem, the elastic solution must satisfy the

equations of elasticity. To this end, numerous studies have been performed concerning the

asymptotic analysis of bonded bimaterial interfaces. The accepted conclusion is that the

stress fields near an interface crack tip have oscillatory behavior in the singular dominated

zone. This result, however non-physical it may seem, is important to quantifying a mode-

mix ratio applicable to the general case. The solution procedure used to report the mode-

mix is presented by Suo and Hutchinson [43, 44].

When there exists a mismatch in the elastic properties, the elastic modulus, shear mod-

ulus, and Poisson’s ratio can all differ. Since only two of these parameters are independent,

an elastic mismatch can be rewritten in terms of two parameters, as originally observed by

60
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ε

E2

E1

σy

σ

Figure 5.1: Schematic of an elastic mismatch with equal plastic properties (both Et�E �
0 and σ̂ � 0).

Dundurs [50]. The Dundurs’ parameters used in this research are defined as

α �
Γ�κ2 �1�� �κ1 �1�
Γ�κ2 �1���κ1 �1�

(5.1)

β �
Γ�κ2�1�� �κ1�1�
Γ�κ2 �1���κ1 �1�

(5.2)

where κ � 3� 4ν for plane strain and κ � �3�ν���1�ν� for plane stress. Furthermore,

the ratio of the shear moduli is defined as Γ� µ1
µ2

where the subscripts refer to the respective

layers in Figure 3.1. The parameter α can also be written as

α �
Ē1� Ē2

Ē1 � Ē2
� (5.3)

where Ē � E��1�ν2� for plane strain and Ē � E for plane stress. The permissible values

describing an elastic mismatch are �1 � α � 1 and α�1
4 � β � α�1

4 . Whenever α � 0 the

top material is more compliant. Likewise, whenever α � 0 the top material is more stiff,

and there is no mismatch when α � 0. Also, switching the layers results in a sign change

of α . The design space for all possible elastic material mismatches is shown in Figure 5.2.
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Figure 5.2: Permissible values for Dundurs’ parameters in plane strain.

The quantity β � α
4 corresponds to both materials having a Poisson’s ratio ν � 1

3 in plane

strain, which is convenient since the results shown in Figure 3.10 indicate no significant

difference in dW
dN

�

after ν � 0�3. For all subsequent analyses, ν � 1
3 and for both layers so

β � α
4 . The following table gives a physical interpretation of the Dundurs parameter α that

is useful in interpreting the data presented in this chapter.

α -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

E1
E2

1
9

1
4

3
7

2
3 1 3

2
7
3 4 9

5.1.1 Equivalent loading and superposition

Consider the geometry of Figure 5.3b as an equivalent loading on the same specimen used

in the finite element runs (Figure 3.1). Superposition arguments can be used to simplify the

loading into two load parameters (P and M) as shown in equations (5.4) and (5.5) [43].

P � P1�C1P3�C2
M3

h
(5.4)

M � M1�C3M3 (5.5)
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Figure 5.3: A generalized mixed mode specimen and corresponding equivalent loading
obtained by superposition [43].
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where,

C1 � Σ
Ao

C2 � Σ
Io

�
1
η �∆� 1

2

	

C3 � Σ
12Io

�

(5.6)

Here Σ is an elastic modulus mismatch defined as Σ � c2
c1

� 1�α
1�α , where ci �

κi�1
µi

. Also,

the following terms are derived from elementary beam theory for a composite beam:

Ao � 1
η �Σ

Io � 1
3

�
Σ



3
�

∆� 1
η

	2
�3

�
∆� 1

η

	
�1

�
�3 ∆

η

�
∆� 1

η

	
� 1

η3

�

∆ � 1�2Ση�Ση2

2η�1�Ση� � δ
h

(5.7)

where η � h
H � 1 for the case under consideration and δ refers to the offset of the neutral

axis in a composite beam. Using equations (5.6) and (5.7) in equations (5.4) and (5.5) will

give an equivalent loading for any generalized specimen.

5.1.2 Strain Energy Release Rate

The strain energy release rate reported in [43] for the geometry of Figure 5.3b is

� �
c1

16



P2

Ah
�

M2

Ih3 �2
PM�
AIh2

sinγ
�

(5.8)

with

sinγ � 6Ση2�1�η�
�

AI

where A � 1
1�Σ�4η�6η2�3η3�

and I � 1
12�1�Ση3�

. For an elastically matched geometry,

Σ � 1andη � 1 which yields sinγ �
�

3
7 . Making the appropriate substitutions yields
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the previous results of equation (3.3).

5.1.3 Interface Stress Intensity Factors

In order to discuss interface stress intensity factors, it is necessary to introduce a bimaterial

constant or an oscillation index ε defined as:

ε �
1

2π
ln

1�β
1�β

� (5.9)

The interface crack tip stress field have the form

�σyy � iσxy� �θ�0�
�K1 � iK2�riε

�
2πr

(5.10)

The oscillations in the stress field occur because the asymptotic solution for the stress

fields yield a complex solution in the form K �K1� iK2 � �K�eiψ . The stress fields oscillate

for nonzero values of ε , therefore, the ratio K1�K2 does not correspond directly to the ratio

σyy�σxy. In order to define a consistent measure of mode-mix, it is useful to consider the

quantity Khiε , where

Khiε � K1 cos�ε lnh��K2 sin�ε lnh�� i�K2 cos�ε lnh��K1 sin�ε lnh��� (5.11)

Here, h is any characteristic length, usually taken as the thickness of the thinnest layer. For

the problem of Figure 5.3, the real and imaginary parts of Khiε are [32, 43]:

Re�Khiε � �
p�
2



P�
Ah

cosω �
M�
Ih3

sin�ω � γ�
�

(5.12)
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Im�Khiε � �
p�
2



P�
Ah

sinω� M�
Ih3

cos�ω � γ�
�

(5.13)

where p �
�

1�α
1�β 2 . Equations (5.12) and (5.13) contain a function ω�α�β �η� that is tabu-

lated in [43] and ranges from 37Æ � ω � 65Æ.

The phase angle or mode-mix ratio ψ is redefined as

ψ �� tan�1
�

Im�Khiε �

Re�Khiε �

�
� (5.14)

When there is no elastic mismatch or when β � 0, then the computation of equation (5.14)

yields the same result as the previous definition of the mode-mix ratio in equation (2.5). It

is also important to note that the value of the phase angle depends on the reference distance

h. This implies that the mode will change depending on size of the specimen or if the stress

intensity factors are normalized with respect to some other value (e.g. the length or the

total height). However, this freedom of choice for the normalization length comes from the

ability to define a phase transformation to change the normalization from one length h1 to

another length h2 using a formula from [44],

ψ2 � ψ1 � ε ln

�
h2

h1

�
� (5.15)

5.2 Numerical Models

The basic extraction of the plastic dissipation energy remains the same as in previous chap-

ters, however, defining the mode is not as straight forward. The first challenge is extracting

the ω�α�β �η� function for use in the finite element code. The tabulated data in [43] con-
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tains only values of α at intervals of 0.2 and values of β at intervals of 0.1 for η � 1. When

using β � α
4 , the published values of ω only exist at 5 locations. The published values of

ω were tabulated using numerical solutions to cumbersome integral equations, and an al-

ternative method of approximating them was desired. Some built in functions in ABAQUS

allowed for the extractions of the stress intensity factors, from which ω can be inferred.

5.2.1 Interaction Integrals

ABAQUS has a built in feature called the interaction integral. It is invoked using the

*CONTOUR INTEGRAL, CONTOURS = N, TYPE = K FACTORS option similar to the compu-

tation of the J-Integral. The output of the interaction integral is given as K1 and K2 which

are the mode I and mode II stress intensity factors. However, when there is an elastic mis-

match, this computation gives the real and imaginary parts of the complex stress intensity

factors defined in equations (5.12) and (5.13).

The interaction integral method uses a normalization length of 1 as defined in the

ABAQUS Theory Manual [51] and requires a transformation according to equation (5.15).

Since the model reference height used herein is h � 5, the phase transformation is ψ2 �

ψ1 � ε ln�h� where ψ2 is the normalized mode-mix ratio and ψ1 � � tan�1
�

K2
K1

	
from the

interaction integrals. Once ψ , K1, and K2 are known, ω can be found using a root finding

method in conjunction with equations 5.12 and 5.13. Incidentally, this method for calcu-

lating ω agreed closely with the tabulated data found in [43].

5.2.2 Spanning All Modes

While being able to determine ω is a nice result, the real interest lies in trying to span all

the modes for the current problem. Doing this requires applying bending moments on the
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end of each layer in a ratio unique to each mode. There is no simplified expression for

Re�Khiε � or Im�Khiε �, so the choices for loading conditions for the pure mode I and pure

mode II cases are not straightforward as they were in Chapter 3.

To determine a ratio of the loads f � M2
M1

, a search algorithm, shown in the findfactor

function of the master script in Appendix C, was used to determine the moments for each

value of α . Only half the values of α had to be determined because values of f were in-

verted when α changed sign (i.e. f �α� � f ��α��1). Once the factor data were gathered,

an 8th order polynomial regression was performed to quantify the trends. The results are

interpreted as a factor of the bending moment M1 (i.e. f � M2
M1

) and shown in Figure 5.4.

The regression data can then be used in a script to solve for the extreme loading conditions

for any value of α . This technique can calculate the loading factors for any given mode

accurately, however, once the results were fitted with the polynomial, some of the accuracy

was sacrificed for convenience. Overall, the pure modes were calculated within a degree

for all combinations of elastic mismatch. Dividing the difference between the mode II and

mode I load ratio into even sections allowed generation of the full range of the mode-mix

values reported in the plots. Table 5.1 shows the values of the mode-mix ratio �ψ� for each

load ratio � f � and elastic mismatch (α). The case for no elastic mismatch corresponds

closely to the results of Chapter 3, with the only difference coming from the slight errors

due to the regression.

5.2.3 Constant Loading Amplitude

For comparison across modes for a given elastic mismatch, a constant magnitude for the

stress intensity factors (or strain energy release rate) is necessary. To that end, some al-

gebraic manipulation of the equations presented in this chapter will give a formula for the
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α ��0�9

f ψ �Æ�
-7.47 89.9
-5.99 82.0
-4.50 72.2
-3.02 60.8
-1.53 48.2

-0.049 35.6
1.436 24.1
2.920 14.4
4.405 6.42
5.889 0.04

α ��0�8

f ψ �Æ�
-4.269 89.6
-3.409 82.5
-2.549 72.9
-1.689 61.4
-0.829 48.8
0.031 36.0
0.890 24.3
1.751 14.4
2.611 6.2
3.471 0.2

α ��0�7

f ψ �Æ�
-2.993 89.3
-2.382 81.5
-1.772 72.0
-1.161 60.8
-0.550 48.5
0.061 36.1
1.672 24.7
1.283 14.9
1.893 6.9
2.504 0.4

α ��0�6

f ψ �Æ�
-2.417 90.0
-1.919 82.2
-1.420 72.6
-0.922 61.3
-4.24 48.8
0.075 36.1
0.573 24.5
1.070 14.6
1.570 6.5
2.068 0.0

α ��0�5

f ψ �Æ�
-4.269 89.6
-3.409 82.5
-2.549 72.9
-1.689 61.4
-0.829 48.8
0.031 36.0
0.890 24.3
1.751 14.4
2.611 6.2
3.471 0.2

α ��0�4

f ψ �Æ�
-1.729 89.6
-1.365 82.5
-1.000 72.8
-0.635 61.4
-0.271 48.7
0.094 35.9
0.458 24.2
0.823 14.3
1.187 6.2
1.552 0.3

α ��0�3

f ψ �Æ�
-1.466 89.7
-1.152 81.8
-0.839 72.1
-0.525 60.7
-0.212 48.1
0.101 35.6
0.415 24.2
0.728 14.5
1.042 6.5
1.355 0.1

α ��0�2

f ψ �Æ�
-1.265 89.3
-0.991 81.3
-0.716 71.5
-0.442 60.1
-0.167 47.7
0.107 35.3
0.382 24.1
0.656 14.5
0.931 6.7
1.205 0.4

α ��0�1

f ψ �Æ�
-1.122 89.6
-0.875 81.5
-0.629 71.6
-0.382 60.0
-0.136 47.4
0.111 35.0
0.357 23.7
0.604 14.2
0.850 6.4
1.097 0.2

α � 0

f ψ �Æ�
-1.010 89.7
-0.786 82.1
-0.561 72.0
-0.337 60.2
-0.112 47.3
0.112 34.7
0.337 23.3
0.561 13.7
0.786 5.9
1.010 0.2

Table 5.1: Load ratio and corresponding mode-mix ratio. The load ratios corresponding to
the positive values of α can be determined by inverting the load ratio shown in this table.
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bending moment M1 as

M1 �
h3�K�2�3α2�4��β 2�1��

3
�
�h3�K�2�3α2�4����6α�7��α�1�2� f 2�α �1�2�6α�7��2 f �α2�1���β 2�1�

� (5.16)

Similarly, equation (5.16) can be written in terms of the strain energy release rate because

�K�2 � � Ē . This equation is particularly useful when comparing the plastic zones because

each picture of a plastic zone will have the same magnitude of loading for a given value of

α . When α � β � 0, equation (5.16) was reduced and used to generate the plots in Figures

3.4 - 3.6 in Chapter 3.

5.3 Numerical Results and Discussion

5.3.1 Normalizing the Data

Equation (3.11) uses the elastic modulus to define the dimensionless plastic dissipation

energy, thus creating a choice of which moduli to use in the case of an elastic mismatch.

Either modulus is useful and the choice of one or the other only changes the way the full

range of the data is represented. For consistency, the top layer is used to normalize the data.

5.3.2 Effects of Elastic Mismatch

Figure 5.5 shows the response of the dimensionless plastic dissipation energy in plane strain

and with β � α�4 as a function of mode for �0�8� α � 0�8, and normalized with respect

to the top layer. Figure 5.5 contains a curve for α � 0 which is identical to the master

curve from Figure 3.8. The effect of mode-mix is seemingly uniform across the values of
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Figure 5.5: Dependence of plane strain dW
dN

�

on mode for a complete range of elastic mod-
ulus mismatch when β � α

4 and normalized with respect to the elastic modulus of the top
layer.
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α for large mode II components. However, this uniformity diminishes as ψ � 0. There are

distinctive peaks for negative values of α when the top layer is more compliant than the

bottom layer. Also, there are less distinguishable minima for the cases when α � 0. Those

maxima and minima locations are best explained with the aid of illustrations of the plastic

zones from the finite element run.1 The pictures of the plastic zones for α = -0.8, -0.4, 0.0,

0.4, 0.8 are found in Appendix A. The case of no elastic mismatch shows a geometrically

symmetric plastic zone about the x-axis for both ψ � 90Æ and ψ � 0Æ. Those plastic zones

are symmetric only at the pure modes (when α � 0) and occur when the plastic work is

at either a maximum or a minimum value. The shape of the pure mode II plastic zone (as

shown in Figure 3.6) corresponds to a maximum in the dimensionless plastic dissipation

energy. Likewise, the shape of the pure mode I plastic zone (as shown in Figure 3.4)

corresponds to a minimum in the dimensionless plastic dissipation.

The degree of symmetry of the plastic zone determines the proximity to an extrema of

the plastic work, given no plastic mismatches. To show that this statement has validity,

examination of the pictures in Appendix A.2 shows a shift in the symmetry when 72Æ �

ψ � 82Æ, with a closer resemblance to Figure 3.6 when ψ � 82Æ. Remarkably, Figure 5.5

shows a maximum value of dW
dN

�

near ψ � 82Æ. As a result, the extrema can be inferred

from the geometry of the plastic zone. This technique works on all the cases presented in

this chapter and provides some physical explanation for the extrema.

Figure 5.5 is normalized such that if the stiffness of the top layer is fixed, then as α

increases, the bottom layer is becoming more compliant and the plastic dissipation energy

is decreasing. Similarly, If the bottom layer material properties are fixed, then increasing

the stiffness of the top layer will decrease the plastic dissipation. These conclusions are

1It should be noted that the plastic zones just illustrate the onset of yielding and do not necessarily predict
the amount of plastic dissipation energy.
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directly applicable to a scenario when a designer is given the choice of a substrate for a

given material to be deposited.

The elastic mismatch and the mode-mix are the dominant factors driving the plastic

dissipation energy, whereas the plastic mismatch plays a secondary role. This observation

is apparent when comparing the amount of fluctuation of dW
dN

�

in the figures of Chapter 4

to that of Figure 5.5. However, the pictures of the plastic zones indicate that the effect of

a high strength mismatch will influence the shape of the elastic mismatch curves (Figure

5.5) by eliminating the contribution of the plasticity of one layer or the other. A complete

examination of all possible elastic and plastic mismatches is cumbersome and the results

are to be determined through studies of specific layered material systems.



Chapter 6

Application of Results

6.1 Combined Elastic-Plastic Mismatch

Two common bimaterial systems, one of a brass-solder interface [39] and the other of a

stainless steel-copper interface [32], have been analyzed to determine the response of dW
dN

�

under mixed-mode loading for both elastic and plastic mismatch conditions. Table 6.1

shows the material properties for these bimaterial systems, and the numerical results are

plotted in Figure 6.1, where the first entry in the legend corresponds to the top layer. Since

the yield strength mismatch σ̂ � 1�67, the yield strength mismatch has the same effect for

each example case (see Section 4.2.2). Because no strain hardening rates were reported

in [39, 32] the analysis neglected strain hardening and assumed an elastic-perfectly plastic

response (Et � 0).

The curves of Figure 6.1 are similar in shape to the curves of Figure 5.5. This similarity

leads to the conclusion that the elastic mismatch is the dominant parameter influencing the

shape and magnitude of the dW
dN

�

vs ψ curve when both elastic and plastic mismatches are

present. The yield strength mismatch slightly changes the shape of the curve, so it does not

75
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Figure 6.1: Representative curves of dW
dN

�

vs. ψ for two different material interfaces in
plane strain when normalized by the top layer.
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Brass 63Sn–37Pb Solder

E 101 GPa 30 GPa
ν 0.35 0.324
σy 70 MPa 22.6 MPa

α �0�3166
β �0�0309
σ̂ �0�576

Stainless-Steel Copper

E 190 GPa 120 GPa
ν 0.267 0.364
σy 260 MPa 70 MPa

α �0�193
β �3�12
10�4

σ̂ �0�521

Table 6.1: Material properties for the bimaterial layers. The sign on the Dundurs’ param-
eters and yield strength mismatch change depending on which layer is labeled as the top
layer.

fit evenly within the curves of Figure 5.5. The effect of the yield strength mismatch on dW
dN

�

is small compared to the variation to the elastic modulus mismatch and the mode-mix. The

results shown in Figure 5.5 also reaffirm the conclusion that the plastic dissipation energy

decreases when the softer material is on the top layer (α � 0). The interpretaion of this

problem is reversed if the sign of the mode mix changes , since this is equivalent to flipping

the problem upside down and switching M1 and M2. The magnitude of ψ will change when

a problem is reversed due to the asymmetry of the elastic layers.

6.2 Comparison with Previous Literature

The numerical results show that the dominant factor in the dimensionless plastic dissipation

energy is the mode-mix ratio. Higher modes have more plastic dissipation energy, which

would lead us to believe, according to equation (1.1), that the fatigue crack growth rate

would be higher in a mixed mode condition than in mode I. It is known that this is not true

and that the mode I fatigue crack growth rates typically represent a worst case scenario in

terms of fatigue crack growth rate. What is missing from equation (1.1) is the interfacial

fracture toughness �c, which also increases sharply with higher mode-mix ratios. There
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is a limited amount of fatigue crack growth rate and fracture toughness data for mixed-

mode loading, and comparison of experimental results to this theory would certainly be of

interest.

In order to compare the results found in the literature, it is convenient to define a “uni-

versal” fatigue crack growth law [1] as

da
dN

�

� �∆� ��2 (6.1)

where
da
dN

�

�
da
dN�

�c
σ2

y

	
dW
dN

�
(6.2)

and ∆� � � ∆�
�c

. These equations stem from equation (3.11) and provide a means of com-

paring the result of this thesis, through equation (1.1), to physical results in the literature.

Another method of comparing data is by predicting the fatigue crack growth rate using

equation (3.12) and plotting the predicted curves on the existing data.

There is a recent paper by Nayeb-Hashemi and Yang [39] that reports the critical strain

energy release rate �c, mode-mix ψ , and fatigue crack growth rate da
dN for a brass-solder

interface. The geometry used in [39] (shown in Figure 6.2) is not the same as the lay-

ered specimen geometry used in this thesis. Instead, a sandwich specimen was used with

a thin middle layer of solder between two brass substrates. However, as the middle layer

of the sandwich became larger, the local stress field will be more similar to that of the

problem herein. Nayeb-Hashemi and Yang only reported three modes corresponding to

ψ � �0Æ� 14Æ� 26Æ�� The results of that study showed that in pure mode I the fracture tough-

ness is low and the fatigue crack growth rate is high. As the mode increases, the fracture

toughness becomes similar and, as predicted by equation (1.1), the fatigue crack growth
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Figure 6.2: Sandwich specimen geometry considered by Nayeb-Hashemi and Yang [39].

rate is higher for the higher mode. This only happened when the sandwiched layer was

1.0mm. Incidentally, the other layer thicknesses reported in [39] were 0.1mm, 0.25mm

and 0.5 mm. The correlation with this experimental study is promising, since the plastic

dissipation energy approach is able to account for some less intuitive results in the reported

data. A conclusion from [39] is that the exponent of the power law relationship 1�m� 3�5

which indicates an agreement with the ∆� 2 relationship predicted in Chapter 3.

Even in the absence of a comparison with sustained mixed-mode crack growth data,

the results of this work are useful for comparison with dissipated energy measurements

during fatigue crack growth. In particular, Ranganathan [22] has reported dissipated energy

measurements under mode I loading which are substantially higher than those predicted by

finite element models. Such discrepancies had been attributed in part to a mix of crack

extension modes associated with the deformation mechanism at the crack tip. In light

of the current work, the presence of a mode II component can significantly increase the

dissipated energy at a fatigue crack tip, which tends to support the observation in [22].

Perhaps subsequent experimental studies of dissipated energy under sustained mixed-mode

crack growth will allow a more thorough comparison with the results of this work.
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Figure 6.3: Four point bend test specimen.

6.3 Design Guidelines

The results presented in this thesis can be used to provide design guidelines for debond-

resistant bimaterial systems. A debond resistant bimaterial will have the least amount of

plastic dissipated energy and the highest interfacial fracture toughness. Assume the inter-

facial fracture toughness plateaus and remains fairly consistent for ψ � 10Æ, then the only

driving force will be the plastic dissipation energy. Minimizing the plastic dissipation en-

ergy can be achieved by stacking the layer in the correct sequence relative to the applied

load. An applied load will give a specific value of ψ which can used to locate and predict

the amount of plastic dissipation per cycle. For positive values of ψ , if the bottom layer

is made more stiff with respect to the top layer (with respect to the loads), then the plastic

dissipation will increase thus making the interface more likely to debond.

If a layered system interface is subjected to a four point bending test as shown in Fig-

ure 6.3, then layer #1 should be the stiffer layer to have a lower plastic dissipation energy

per cycle and thus a slower fatigue crack growth rate. This, of course, assumes the same

magnitude of loading would be applied to either case. A complete set of design guidelines

would require the interface fracture toughness to also be known. With both these values, a
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design could be optimized with the fatigue crack growth rate as a cost function. The edu-

cated hypothesis would be the midrange values of mode (15Æ � ψ � 50Æ) would have the

highest fracture toughness and the least amount of plastic dissipation energy, thus making

that loading combination optimal.

6.4 Future Research

The extent of this study is currently constrained to planar numerical models. The goal was

to determine trends in the plastic dissipation energy for all possible combinations of ductile

metals. Equation (1.1) asserts that the fatigue crack growth rate is directly proportional to

the plastic work per cycle. To validate this assertion, some fatigue crack growth studies

need to be conducted in mixed-mode. The difficulty, of course is measuring a pure mode II

condition and accounting for the energy due to friction between the faces in the wake of the

crack. The end result is to be able to use continuum finite element models (i.e. the results

of this thesis) to model and predict the fatigue crack growth rate when given only material

property data (E� �c� σy� Et) for each layer. This has promising application to accelerated

introduction of next-generation materials.

To this end, physical experiments can be conducted to determine the critical strain en-

ergy release rate, yield strengths, and the fatigue crack growth rate for the four point bend

test specimen. Recall this specimen is a special case of the geometry analyzed herein with

ψ 	 41Æ. The goal of such research would be to generate mixed mode fatigue and frac-

ture data with the hopes of validating equation (1.1) for mixed mode fatigue of ductile

bimaterial interfaces.



Chapter 7

Conclusion

This study reports previously unpublished numerical results for the cyclic plastic dissipa-

tion energy in ductile materials under mixed-mode loading conditions. These conditions

occur in layer manufactured systems, welding, soldering, or any other application where a

material is deposited onto a substrate. From the numerical results presented herein, it can

be concluded that:

� The plastic dissipation energy follows a power law relation with respect to the strain

energy release rate with the power law exponent m � 2.

� The plastic work can be reported as a dimensionless parameter to account for yield

strength, elastic modulus, and the magnitude of loading (∆� ).

� The mode-mix ratio is the dominant factor influencing the plastic work per cycle for

all cases.

� Changes in Poisson’s ratio affect each mode equally with a substantial increase in

dissipated energy for plane stress conditions. In plane strain, the effect of Poisson’s

82
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ratio is negligible for ν � 0�3, which is typical of most ductile metals.

� The effect of specimen geometry in mode I under plane strain is small (less than

0.5%).

� Increasing the hardening (tangent) modulus will decrease the plastic dissipation en-

ergy. Also, an increased hardening modulus will mitigate the effect the mode-mix

ratio has on dW
dN

�

.

� Introducing a yield strength mismatch shows a decrease in the normalized plastic

dissipation energy when normalizing with respect to the smallest yield strength.

� The effect of a yield strength mismatch is confined to relatively small ratios of mis-

match. In other words, the effect of a yield strength mismatch is the same if one layer

is stronger than the other by a factor of about 1.67 or more (σ̂ � 0�25�.

� A hardening modulus mismatch will decrease the plastic dissipation energy per cy-

cle, but not to the same degree as if there were no mismatch. The softer hardening

material becomes the dominant producer of dissipated energy.

� Given a plastic mismatch, the response of dW
dN

�

to ψ depends on the order of the layers

(or the direction of the moments) for all but three cases: pure mode I, pure mode II

and a mode in the middle that is a function of the mismatch parameters.

� Introducing an elastic mismatch required redefining the mode-mix ratio with respect

to the complex elastic solution for a bimaterial crack.

� The dimensionless plastic dissipation energy will increase or decrease with an elastic

modulus mismatch depending by which layer dW
dN

�

is normalized.
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� Only an elastic mismatch will change the general shape of the dW
dN

�

vs ψ curve by

introducing extrema away from the pure modes.

� The minimum and maximum values of dW
dN

�

are at the pure modes I and II only for

no elastic mismatches. The extrema will shift with the introduction of an elastic

mismatch.

� The effects of plastic mismatches seem negligible compared to an elastic mismatch

when investigating real world specimens.

� For a given mode-mix and equal plastic properties, increasing the elastic modulus of

the bottom layer with respect to the top layer (decrease α) will increase the plastic

dissipation energy. Likewise, decreasing the bottom layer stiffness with respect to

the top layer (increase α) will result in a decrease of the plastic dissipation energy.

The bottom layer defined herein is the more “contracting” layer at the interface.

� The maximum plastic work occurs in a bimaterial system when the plastic zones are

geometrically symmetrical about the crack plane.



Appendix A

Plane Strain Plastic Zones

Plastic zones are generated in ABAQUS by plotting contours of the active yield flag. In

an elastic-plastic analysis, each element has a bit (or flag) that is set whenever the stress

exceeds the yield stress given in the material definition. These flags only indicate the onset

of yielding and do not quantify the magnitude. For example, the plastic zone shapes are the

same for any value of Et�E, given everything else is the same. Still, the plastic zones give

some insight into the physical aspects of the interface crack problem.

These plastic zones are representatives of the the actual data corresponding to the elastic

mismatch results in section 5.3. The forward plastic zones are about four times as large as

the reverse zones shown on the following pages. The interesting feature of these plastic

zones is how they shift as they go through the modes. The case where there is no mismatch

(α � 0) shows a geometrically symmetric plastic zone for pure mode I and pure mode II.

These modes are also the minima and maxima for the plastic work. As seen by Figure 5.5,

the maxima and minima are not at the pure modes. Comparing the phase ψ of the maxima

from Figure 5.5 to the plastic zones shows the maxima correspond to the case where the

plastic zone is symmetric about the x-axis.
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A.1 Reverse Plastic Zones when α ��0�8

x

y

200 mµ
α = -0.8
ψ = 0.000
G = 10.667 J/m/m

Rev. Zone:

x

y

200 mµ
α = -0.8
ψ = 6.475
G = 10.667 J/m/m

Rev. Zone:

x

y

200 mµ
α = -0.8
ψ = 14.543
G = 10.667 J/m/m

Rev. Zone:

x

y

400 mµ
α = -0.8
ψ = 24.418
G = 10.667 J/m/m

Rev. Zone:
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x

y

400 mµ
α = -0.8
ψ = 35.994
G = 10.667 J/m/m

Rev. Zone:

x

y

400 mµ
α = -0.8
ψ = 48.618
G = 10.667 J/m/m

Rev. Zone:

x

y

400 mµ
α = -0.8
ψ = 61.160
G = 10.667 J/m/m

Rev. Zone:

x

y

800 mµ
α = -0.8
ψ = 72.533
G = 10.667 J/m/m

Rev. Zone:
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x

y

800 mµ
α = -0.8
ψ = 82.162
G = 10.667 J/m/m

Rev. Zone:

x

y

800 mµ
α = -0.8
ψ = 90.000
G = 10.667 J/m/m

Rev. Zone:
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A.2 Reverse Plastic Zones when α ��0�4

x

y

100 mµ
α = -0.4
ψ = 0.000
G = 14.143 J/m/m

Rev. Zone:

x

y

100 mµ
α = -0.4
ψ = 6.455
G = 14.143 J/m/m

Rev. Zone:

x

y

100 mµ
α = -0.4
ψ = 14.498
G = 14.143 J/m/m

Rev. Zone:

x

y

200 mµ
α = -0.4
ψ = 24.348
G = 14.143 J/m/m

Rev. Zone:
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x

y

200 mµ
α = -0.4
ψ = 35.906
G = 14.143 J/m/m

Rev. Zone:

x

y

400 mµ
α = -0.4
ψ = 48.526
G = 14.143 J/m/m

Rev. Zone:

x

y

400 mµ
α = -0.4
ψ = 61.082
G = 14.143 J/m/m

Rev. Zone:

x

y

400 mµ
α = -0.4
ψ = 72.480
G = 14.143 J/m/m

Rev. Zone:
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x

y

400 mµ
α = -0.4
ψ = 82.136
G = 14.143 J/m/m

Rev. Zone:

x

y

400 mµ
α = -0.4
ψ = 90.000
G = 14.143 J/m/m

Rev. Zone:
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A.3 Reverse Plastic Zones when α � 0�0

x

y

100 mµ
α = 0.0
ψ = 0.000
G = 20.000 J/m/m

Rev. Zone:

x

y

100 mµ
α = 0.0
ψ = 6.178
G = 20.000 J/m/m

Rev. Zone:

x

y

100 mµ
α = 0.0
ψ = 13.898
G = 20.000 J/m/m

Rev. Zone:

x

y

200 mµ
α = 0.0
ψ = 23.413
G = 20.000 J/m/m

Rev. Zone:
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x

y

200 mµ
α = 0.0
ψ = 34.715
G = 20.000 J/m/m

Rev. Zone:

x

y

400 mµ
α = 0.0
ψ = 47.269
G = 20.000 J/m/m

Rev. Zone:

x

y

400 mµ
α = 0.0
ψ = 60.000
G = 20.000 J/m/m

Rev. Zone:

x

y

400 mµ
α = 0.0
ψ = 71.742
G = 20.000 J/m/m

Rev. Zone:
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x

y

400 mµ
α = 0.0
ψ = 81.787
G = 20.000 J/m/m

Rev. Zone:

x

y

400 mµ
α = 0.0
ψ = 90.000
G = 20.000 J/m/m

Rev. Zone:
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A.4 Reverse Plastic Zones when α � 0�4

x

y

50 mµ
α = 0.4
ψ = 0.000
G = 14.143 J/m/m

Rev. Zone:

x

y

50 mµ
α = 0.4
ψ = 5.802
G = 14.143 J/m/m

Rev. Zone:

x

y

50 mµ
α = 0.4
ψ = 13.075
G = 14.143 J/m/m

Rev. Zone:

x

y

50 mµ
α = 0.4
ψ = 22.118
G = 14.143 J/m/m

Rev. Zone:
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x

y

100 mµ
α = 0.4
ψ = 33.035
G = 14.143 J/m/m

Rev. Zone:

x

y

100 mµ
α = 0.4
ψ = 45.457
G = 14.143 J/m/m

Rev. Zone:

x

y

100 mµ
α = 0.4
ψ = 58.404
G = 14.143 J/m/m

Rev. Zone:

x

y

200 mµ
α = 0.4
ψ = 70.634
G = 14.143 J/m/m

Rev. Zone:
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x

y

200 mµ
α = 0.4
ψ = 81.258
G = 14.143 J/m/m

Rev. Zone:

x

y

200 mµ
α = 0.4
ψ = 90.000
G = 14.143 J/m/m

Rev. Zone:
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A.5 Reverse Plastic Zones when α � 0�8

x

y

25 mµ
α = 0.8
ψ = 0.000
G = 10.667 J/m/m

Rev. Zone:

x

y

25 mµ
α = 0.8
ψ = 5.274
G = 10.667 J/m/m

Rev. Zone:

x

y

25 mµ
α = 0.8
ψ = 11.914
G = 10.667 J/m/m

Rev. Zone:

x

y

25 mµ
α = 0.8
ψ = 20.265
G = 10.667 J/m/m

Rev. Zone:
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x

y

25 mµ
α = 0.8
ψ = 30.573
G = 10.667 J/m/m

Rev. Zone:

x

y

25 mµ
α = 0.8
ψ = 42.708
G = 10.667 J/m/m

Rev. Zone:

x

y

50 mµ
α = 0.8
ψ = 55.898
G = 10.667 J/m/m

Rev. Zone:

x

y

50 mµ
α = 0.8
ψ = 68.847
G = 10.667 J/m/m

Rev. Zone:
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x

y

50 mµ
α = 0.8
ψ = 80.392
G = 10.667 J/m/m

Rev. Zone:

x

y

50 mµ
α = 0.8
ψ = 90.000
G = 10.667 J/m/m

Rev. Zone:



Appendix B

Raw Data from an Elastic Mismatch

These data were used in generating the plots and conclusions in Chapter 5.
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Appendix C

Scripts

The finite element software, ABAQUS version 6, was written to be used with the python

language. The graphical user interface called ABAQUS/CAE (Complete ABAQUS Envi-

ronment) uses the python language to record the user inputs. These recorded files can be

replayed to recover from system crashes, run macros for repeated tasks, or be modified and

run independently. This capability of building unique scripts allows users to iterate design

processes and use the finite element analysis as a “module” in part of a larger script to

analyze data. This automation, while convenient, must also be scrutinized at all the means

and extremes of the results to insure validity and convergence of the output. All the scripts

used in this appendix are written in python and can be run in ABAQUS/CAE version 6.3.

The scripts have been commented with a hash (#) in order to understand their function-

ality. Python uses indentation for its loop and conditional structures and that structure is

preserved as best as possible given the limitations of the present format.
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Master Script

from abaqus import *
from sketch import *
from part import *
from material import *
from section import *
from assembly import *
from load import *
from visualization import *
from interaction import *
from step import *
from mesh import *
from job import *
from odbAccess import *
from shutil import *

import assembly
import regionToolset
import displayGroupMdbToolset as dgm
import part
import step
import interaction
import load
import mesh
import job
import visualization
import xyPlot
import displayGroupOdbToolset as dgo
import material
import section
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #
#This is the main module that sets all the input parameters and executes the elastic function to determine the
mode-mix first, followed by the plastic case to do the actual analysis for each iteration.#
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #
def main():

#The first part of the name of all the files
name = ’alpha’

#Set all the result files with a blank file (overwrites with a ’w’ and appends with an ’a’)

results = open(name + ’.txt’, ’w’)

results.close()

results = open(name + ’-elastic.txt’, ’w’)
results.close()
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jobnumber = 0 #initialize the job counter

spaces = 9. # Spaces between the pure mode 1 and pure mode 2

plasticzones = ’no’ #bit to toggle printing the plastic zones

h = 5. #layer height in mm

L = 50. #specimen length in mm
elm = 0.0002 #smallest element in mm

Einit = 73.1E3 #Initial elastic modulus in newtons per mm

vinit = 1/3. #Poisson’s Ratio
initialyieldstr = 300. #newtons per mm

etlist = [1e-25] #A list of desired tangent modulus ratios (can’t be zero)

sighatlist = [0] #A list of desired strength mismatches
alphalist = [-.8, -.6, -.4, -.2, 0., .2, .4, .6, .8] #A list of desired

elastic modulus mismatches

for meshsize in [2]: #Add more values to do a convergence study in space

for timestep in [1.]: #Add more values to do a convergence study
in time

elasticCase(h, L, meshsize, timestep, elm,
alphalist, name, jobnumber, initialyieldstr,
spaces, Einit, vinit)

plasticCase(h, L, meshsize, timestep, elm,
alphalist, name, jobnumber, sighatlist,
etlist, initialyieldstr, spaces, Einit,
vinit, plasticzones)

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #
def submitJobs(name, number, G, factor, mode):

"This function submits jobs"

mymodel = mdb.model[’ModeMix’]
a = mdb.model[’ModeMix’].rootAssembly

print(’The job with the name ’ + name + ’-’ + ‘number‘ + ’ is processing...’)

myjob = mdb.Job(name = name + ’-’ + ‘number‘, model = mymodel.name,
type = ANALYSIS, explicitPrecision = SINGLE, nodalOutputPrecision
= SINGLE, description = ’G = ’ + ‘G‘ + ’, Mode2factor = ’ + ‘factor‘
+ ’, Phase = ’ + ‘mode‘, userSubroutine = ”, numCpus = 1, preMemory
= 740.0, standardMemory = 740.0, standardMemoryPolicy = MODERATE,
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scratch = ”, echoPrint = OFF, modelPrint = OFF, contactPrint
= OFF, historyPrint = OFF)

a.regenerate()

myjob.submit()

myjob.waitForCompletion()

print (’Done!’)

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def plasticCase(h, L, meshsize, timestep, elm, alphalist, name, jobnumber,
sighatlist, etlist, initialyieldstr, spaces, Einit, vinit, plasticzones):

initjobnum = jobnumber

#the following lines open a file and read the contents that were written during the elastic

analysis. The reason for doing this is to eliminate the need to run the elastic case if only

the plastic properties are changing or a n analysis isn’t completed.

data = open(’mode1ratio’, ’r’)

Mode1ratioarray = []

line = data.readline()

line = float(line[:-1])
Mode1ratioarray.append(line)

while line:

line = data.readline()

if line:

line = float(line[:-1])
Mode1ratioarray.append(line)

data.close()

print (’Mode1ratioarray = ’ + ‘Mode1ratioarray‘)

data = open(’mode2ratio’, ’r’)

Mode2ratioarray = []

line = data.readline()

line = float(line[:-1])
Mode2ratioarray.append(line)

while line:
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line = data.readline()

if line:

line = float(line[:-1])
Mode2ratioarray.append(line)

data.close()

print (’Mode2ratioarray = ’ + ‘Mode2ratioarray‘)

data = open(’modearray’, ’r’)

modearray = []

line = data.readline()

line = float(line[:-1])
modearray.append(line)

while line:

line = data.readline()

if line:

line = float(line[:-1])
modearray.append(line)

data.close()
print (’modearray = ’ + ‘modearray‘)

elastic = ’no’ #Turn the elastic bit off because the analyses are slightly different in
some modules

h1, h2 = buildModel(h, L, meshsize, timestep, elm, elastic)#call the
function to build the model in ABAQUS. Building the model each time guarantees unifor-
mity for each analysis.

alphacount = 0

results = open(name + ’.txt’, ’a’)

results.write(’Job \talpha \tbeta \tsighat \tEt/E \tM1 \tM2 \tM2

Ratio \tG \tJ1 \tJ2 \tdW/dN \tModeMix \tdW/dN* (bottom) \tdW/dN*

(top)\n’)
results.close()

header = ”
data = []

for alpha in alphalist:
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beta = alpha/4.

epsilon = 1/(2*pi)*log((1-beta)/(1 + beta))

eta = h1/h2

inveta = 1 / eta

SIGMA = (1 + alpha)/(1-alpha)

A = 1 / ( 1 + SIGMA*( 4*eta + 6*eta**2 + 3*eta**3 )

)

I = 1 / ( 12*( 1 + SIGMA*eta**3 ) )

#Elastic Properties

vtop = vinit

vbot = (alpha*(2 - 3*vtop) + 4*beta*(vtop - 1) + vtop)/(1

+ alpha*(3 - 4*vtop) + 4*beta*(vtop - 1))

Etopbar = Einit/(1-vtop**2)

Ebotbar = Etopbar/SIGMA

Etop = (1-vtop**2)*Etopbar

Ebot = (1-vbot**2)*Ebotbar
header = header + ’phase\ta = ’ + ‘alpha‘ + ’\t’

for sighat in sighatlist:
for et in etlist:

assignMaterials(elastic, et, sighat, initialyieldstr,
Etop, vtop, Ebot, vbot)

MyLoads = createLoads(elastic, initialyieldstr,

spaces,
Mode1ratioarray[alphacount], Mode2ratioarray[alphacount],

name)
line = 0
for load in MyLoads:

jobnumber = jobnumber + 1
line = line + 1

results = open(name + ’.txt’, ’a’)

results.write(name + ‘jobnumber‘

+ ’\t’ + ‘alpha‘ + ’\t’ + ‘beta‘

+ ’\t’ + ‘sighat‘ + ’\t’ + ‘et‘

+ ’\t’)
results.close()
G, factor = setLoads(name, jobnumber,

elastic, load)
submitJobs(name, jobnumber, G, factor,

modearray[jobnumber-1-initjobnum])
dwdn, dwdnstar, dwdnstarbot = extractWork(name,
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jobnumber, Etop, Ebot, G)
if plasticzones == ’yes’:

printfig(name, jobnumber,
alpha, factor, modearray[jobnumber-1-initjobnum],
G)

results = open(name + ’.txt’,

’a’)

results.write(‘dwdn‘ + ’\t’ + ‘modearray[jobnumber-1-

initjobnum]‘ + ’\t’ + ‘dwdnstarbot‘

+ ’\t’ + ‘dwdnstar‘ + ’\n’)
results.close()

#Change this line to extract normalizations wrt

the top or bottom.
data.append(‘modearray[jobnumber-1-initjobnum]‘

+ ’\t’ + ‘dwdnstar‘ + ’\t’)
cleanfiles(name, jobnumber)

alphacount = alphacount + 1

mdb.saveAs(name + ’.cae’)

graph = open(’kgraph.txt’, ’a’)

graph.write(header + ’\n’)

index = 0
for row in range(len(Myloads)):

index = row
for column in range(alphacount):

graph.write(data[index])
index = index + len(MyLoads)

graph.close()

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def elasticCase(h, L, meshsize, timestep, elm, alphalist, name, elasticjobnumber,
initialyieldstr, spaces, Einit, vinit):
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results = open(name + ’-elastic.txt’, ’a’)

results.write(’\nTime increment = ’ + ‘0.05/timestep‘ + ’\nMesh

resolution = ’ + ‘meshsize/2.‘ + ’x\n’)
results.close()

results = open(name + ’-elastic.txt’, ’a’)

results.write(’Job \tM1 \tM2 \tRatio \talpha \tbeta \tomega (mode1)

\tomega (mode2) \tG \tJ-Integral \tJ from K \tK1 \tK2 \tmodemix

\tepsilon \trealKh \timagKh \tphase \tadjustedmode\n’)
results.close()

elastic = ’yes’

h1, h2 = buildModel(h, L, meshsize, timestep, elm, elastic)

modearray = []

Mode1ratioarray = []

Mode2ratioarray = []
alphacount = 0

for alpha in alphalist:

beta = alpha/4.

epsilon = 1/(2*pi)*log((1-beta)/(1 + beta))

eta = h1/h2

inveta = 1 / eta

SIGMA = (1 + alpha)/(1-alpha)

A = 1 / ( 1 + SIGMA*( 4*eta + 6*eta**2 + 3*eta**3 )

)
I = 1 / ( 12*( 1 + SIGMA*eta**3 ) )

#Elastic Properties

vtop = vinit

vbot = (alpha*(2 - 3*vtop) + 4*beta*(vtop - 1) + vtop)/(1

+ alpha*(3 - 4*vtop) + 4*beta*(vtop - 1))

Etopbar = Einit/(1-vtop**2)

Ebotbar = Etopbar/SIGMA

Etop = (1-vtop**2)*Etopbar

Ebot = (1-vbot**2)*Ebotbar
assignMaterials(elastic, 1, 0, initialyieldstr, Etop,

vtop, Ebot, vbot)

if alpha == 0.:

Mode1ratio, Mode2ratio = 1., -1.

else:
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Mode1ratio, Mode2ratio = findfactor(epsilon,
alpha)

omega1, omega2 = determineOmega(Mode1ratio, Mode2ratio,

alpha)

Mode1ratioarray.append(Mode1ratio)
Mode2ratioarray.append(Mode2ratio)

MyLoads = createLoads(elastic, initialyieldstr, spaces,
Mode1ratio, Mode2ratio, name + ’-elastic’)

for load in MyLoads:

elasticjobnumber = elasticjobnumber + 1

results = open(name + ’-elastic.txt’, ’a’)

results.write(name + ’-elastic-’ + ‘elasticjobnumber‘

+ ’\t’ + ‘alpha‘ + ’\t’ + ‘beta‘ + ’\t’

+ ‘omega1‘ + ’\t’ + ‘omega2‘ + ’\t’)
results.close()
G, factor = setLoads(name + ’-elastic’, elasticjobnumber,

elastic, load)
submitJobs(name + ’-elastic’, elasticjobnumber,

G, factor, 9999)
modemix, realKh, imagKh = extractMode(name

+ ’-elastic’, elasticjobnumber, h, epsilon)
modearray.append(modemix)
cleanfiles(name + ’-elastic’, elasticjobnumber)

alphacount = 1 + alphacount

mdb.saveAs(name + ’-elastic.cae’)

data = open(’mode1ratio’, ’w’)
for item in Mode1ratioarray:

data.write(‘item‘ + ’\n’)

data.close()

data = open(’mode2ratio’, ’w’)
for item in Mode2ratioarray:

data.write(‘item‘ + ’\n’)
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data.close()

data = open(’modearray’, ’w’)
for item in modearray:

data.write(‘item‘ + ’\n’)

data.close()

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def determineOmega(mode1ratio, mode2ratio, alpha):

mymodel = mdb.model[’ModeMix’]
a = mdb.model[’ModeMix’].rootAssembly

#extract y-coordinates and measure height

y_top = a.sets[’top-right-corner’].vertices[0].pointOn[0][1]

y_bot = a.sets[’bottom-right-corner’].vertices[0].pointOn[0][1]

y_tip = a.sets[’Tip’].vertices[0].pointOn[0][1]

h1 = y_top - y_tip

h2 = y_tip - y_bot

h = h1
eta = h1/h2

#extract elastic material properties

top_material = mdb.model[’ModeMix’].material[’Top’]

bottom_material = mdb.model[’ModeMix’].material[’Bot’]

E1 = top_material.elastic.table[0][0]

E2 = bottom_material.elastic.table[0][0]

v1 = top_material.elastic.table[0][1]

v2 = bottom_material.elastic.table[0][1]

define the shear modulus

shear1 = E1 / (2*(1 + v1))

shear2 = E2 / (2*(1 + v2))

#kappa for plane strain

k1 = 3-4*v1

k2 = 3-4*v2

#Modulus from plane stress to plane strain

E1 = E1 / (1-v1**2)

E2 = E2 / (1-v2**2)
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#Evaluate the quantities reported in Suo and Hutchinson [ 43]

c1 = (k1 + 1)/shear1

c2 = (k2 + 1)/shear2

SIGMA = c2/c1

A = 1. / ( 1. + SIGMA*( 4*eta + 6*eta**2 + 3*eta**3 ) )

I = 1. / ( 12*( 1. + SIGMA*eta**3 ) )

delta = h1*( 1 + 2*SIGMA*eta + SIGMA*eta**2 ) / ( 2*eta* ( 1 + SIGMA*eta

) )

DELTA = delta/h1

Ao = 1 / eta + SIGMA

Io = (1/3.)*( SIGMA*(3*(DELTA - 1/eta)**2 - 3*(DELTA - 1/eta) +

1) + 3*DELTA/eta*(DELTA-1/eta) + 1/eta**3 )

C1 = SIGMA / Ao

C2 = (SIGMA / Io )*( 1/eta - DELTA + 1./2.)

C3 = SIGMA / (12*Io)

siny = 6*SIGMA*eta**2*( 1 + eta)*(A*I)**0.5

gamma = asin(siny)

P1 = 0

P2 = 0

M1 = 1.
for M2 in [mode2ratio, mode1ratio]:

P3 = P1 - P2 #eqn (1.1)

M3 = ( M1 - M2 + P1*(h1/2. + h2 - delta) + P2*(delta

- h2/2.) ) #eqn (1.1)

P = P1 - C1*P3 - C2*M3/h1 # eqn (1.2)

M = M1 - C3*M3

lamda = (I/A)**0.5*P*h/M

err = 100

tol = 0.0001

omega = [49.0*pi/180., 50.0*pi/180.]

lhs = []
for k in range(2):

if M2 == mode2ratio:

lhs.append(lamda*cos(omega[k]) +

sin(omega[k] + gamma))
err = abs(lhs[k])

if M2 == mode1ratio:
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lhs.append(lamda*sin(omega[k])-cos(omega[k]

+ gamma))
err = abs(lhs[k])

if err < tol:

break

while err > tol:

omega.append(omega[k] - (lhs[k]*(omega[k]

- omega[k-1]))/(lhs[k]-lhs[k-1]) )

k = k + 1
if M2 == mode2ratio:

lhs.append(lamda*cos(omega[k]) +

sin(omega[k] + gamma))
print ’mode2’

if M2 == mode1ratio:

lhs.append(lamda*sin(omega[k])-cos(omega[k]

+ gamma))
print ’mode1’

print (’k = ’ + ‘k‘)

print (’lhs = ’ + ‘lhs‘)
err = abs(lhs[k])

if M2 == mode2ratio:

omega2 = omega[k]*180/pi
print (’omega2 = ’ + ‘omega2‘)

if M2 == mode1ratio:

omega1 = omega[k]*180/pi
print (’omega1 = ’ + ‘omega1‘)

omega = (omega1 + omega2)/2.

print (’OMEGA = ’ + ‘omega‘)
return omega1, omega2



APPENDIX C. SCRIPTS 117

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def findfactor(epsilon, alpha):

print "Finding Pure Moment Ratios Using the Secant Method..."

mymodel = mdb.model[’ModeMix’]

a = mdb.model[’ModeMix’].rootAssembly

#extract y-coordinates and measure height

y_top = a.sets[’top-right-corner’].vertices[0].pointOn[0][1]

y_bot = a.sets[’bottom-right-corner’].vertices[0].pointOn[0][1]

y_tip = a.sets[’Tip’].vertices[0].pointOn[0][1]

h1 = y_top - y_tip

h2 = y_tip - y_bot

h = h1

#generate Loading conditions

m1 = 1.e3
for mode in [1, 2]:

err = 100.

tol = .5
if mode == 1:

point1 = (( 1.0 - 0.831*alpha + 0.00187*alpha**2
- 3.01*alpha**3 + 5.03*alpha**4 + 8.32*alpha**5
-12.7*alpha**6 - 10.1*alpha**7 + 12.7*alpha**8))

else:

point1 = (( -1.0 + 1.06*alpha - 0.143*alpha**2
+ 3.92*alpha**3 -6.70*alpha**4 -11.1*alpha**5
+ 17*alpha**6 + 3.4*alpha**7 -17.0*alpha**8))

point = [point1, point1*.95]

MyLoads = [[m1, point[0]*m1], [m1, point[1]*m1]]

K1 = []

K2 = []

realKh = []

imagKh = []

k = 0
for load in MyLoads: #vary loads to change modes
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M1 = load[0]

M2 = load[1]

factor = M2/M1

print(’alpha = ’ + ‘alpha‘)

print(’k = ’ + ‘k‘)

print(’M1 = ’ + ‘M1‘)

print(’M2 = ’ + ‘M2‘)

print(’M2 factor = ’ + ‘factor‘)
if M2 == 0.:

M2 = 1e-15

# Begin Applying forces to model

topcouple = 4*M1/h1**2

bottomcouple = 4*M2/h2**2

mymodel.load[’Load-1’].setValues(magnitude

= topcouple)

mymodel.load[’Load-2’].setValues(magnitude

= -topcouple)

mymodel.load[’Load-3’].setValues(magnitude

= -bottomcouple)

mymodel.load[’Load-4’].setValues(magnitude

= bottomcouple)

#submit the job and wait for completion

myjob = mdb.Job(name = ’findfactor’, model

= mymodel.name, type = ANALYSIS, explicitPrecision

= SINGLE, nodalOutputPrecision = SINGLE,

description = ’G = ’ + ‘G‘ + ’ mode2factor

= ’ + ‘factor‘, userSubroutine = ”,numCpus

= 1, preMemory = 512.0, standardMemory

= 512.0, standardMemoryPolicy = MODERATE,

scratch = ”, echoPrint = OFF, modelPrint

= OFF, contactPrint = OFF, historyPrint

= OFF)

name = myjob.name

a.regenerate()

myjob.submit()

myjob.waitForCompletion()

o3 = session.openOdb(name + ’.odb’)

odb = session.odb[name + ’.odb’]

#J Integrals
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session.XYDataFromHistory(name = ’Jintegral’,

odb = odb, outputVariableName = ’J-integral

at of contour 10 on

crackfront node set L 5: J for Whole Model’,

steps = (’Load’, ))

session.XYDataFromHistory(name = ’JfromK’,

odb = odb, outputVariableName = ’J-integral

estimated from Ks at of contour 10 on crackfront

node set L 5: JfK for Whole Model’, steps

= (’Load’, ))

session.XYDataFromHistory(name = ’K1’, odb

= odb, outputVariableName = ’Stress intensity

factor K1 at of contour 10 on crackfront

node set L 5: K1 for Whole Model’, steps

= (’Load’, ))

session.XYDataFromHistory(name = ’K2’, odb

= odb, outputVariableName = ’Stress intensity

factor K2 at of contour 10 on crackfront

node set L 5: K2 for Whole Model’, steps

= (’Load’, ))

JfromK = session.xyDataObjects[’JfromK’].data[0][1]

J = session.xyDataObjects[’Jintegral’].data[0][1]

K1.append(session.xyDataObjects[’K1’].data[0][1])

K2.append(session.xyDataObjects[’K2’].data[0][1])

odb.close()

o3.close()

print (’G analyical = ’ + ‘G‘)

print(’J Integral = ’ + ‘J‘)

print(’J from K = ’ + ‘JfromK‘)

print(’K1 = ’ + ‘K1[k]‘)

print(’K2 = ’ + ‘K2[k]‘)

tanpsi = (K2[k]/K1[k])

modemix = atan(K2[k]/K1[k])*180/pi

print(’mode-mix = ’ + ‘modemix‘)

realKh.append(K1[k]*cos(epsilon*log(h)) -

K2[k]*sin(epsilon*log(h)))

imagKh.append(K2[k]*cos(epsilon*log(h)) +

K1[k]*sin(epsilon*log(h)))

phase = atan(imagKh[k]/realKh[k])*180/pi

adjustedmode = modemix + epsilon*log(h)*180/pi
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print(’realKh = ’ + ‘realKh[k]‘)

print(’imagKh = ’ + ‘imagKh[k]‘)

print(’phase = ’ + ‘phase‘)

print(’adjustedmode = ’ + ‘adjustedmode‘)

#clean files

home = ’c:/Abaqus/’

filetypes = (’.stt’, ’.023’, ’.res’, ’.sta’,

’.log’, ’.prt’, ’.inp’, ’.ipm’, ’.mdl’,

’.com’)
for extension in filetypes:

file = open(name + extension, ’w’)

file.close()
os.remove(name + extension)

morefiletypes = (’.odb’, ’.msg’, ’.dat’)
for extension in morefiletypes:

file = open(name + extension, ’w’)

file.close()
os.remove(name + extension)

if mode == 1:

err = (abs(imagKh[k]))

else:

err = (abs(realKh[k]))

print (’err = ’ + ‘err‘)

print (’tol = ’ + ‘tol‘)
if err < tol:

print (’this should break!!!!!!!!!!!!!!’)
break

if len(realKh)<2:

k = k + 1

while err > tol:

print(’alpha = ’ + ‘alpha‘)
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print(’k = ’ + ‘k‘)
if mode == 2:

point.append( point[k] - (realKh[k]*(point[k]
- point[k-1]))/(realKh[k]-realKh[k-1])
)

else:

point.append( point[k] - (imagKh[k]*(point[k]
- point[k-1]))/(imagKh[k]-imagKh[k-1])
)

k = k + 1

M1 = m1

M2 = point[k]*m1

factor = M2/M1

print(’M1 = ’ + ‘M1‘)

print(’M2 = ’ + ‘M2‘)

print(’M2 factor = ’ + ‘factor‘)
if M2 == 0.:

M2 = 1e-15

# Begin Applying forces to model

topcouple = 4*M1/h1**2

bottomcouple = 4*M2/h2**2

mymodel.load[’Load-1’].setValues(magnitude

= topcouple)

mymodel.load[’Load-2’].setValues(magnitude

= -topcouple)

mymodel.load[’Load-3’].setValues(magnitude

= -bottomcouple)

mymodel.load[’Load-4’].setValues(magnitude

= bottomcouple)

#submit the job and wait for completion

myjob = mdb.Job(name = ’findfactor’, model

= mymodel.name, type = ANALYSIS, explicitPrecision

= SINGLE, nodalOutputPrecision = SINGLE,

description = ’G = ’ + ‘G‘ + ’ mode2factor

= ’ + ‘factor‘, userSubroutine = ”, numCpus

= 1, preMemory = 512.0, standardMemory

= 512.0, standardMemoryPolicy = MODERATE,
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scratch = ”, echoPrint = OFF, modelPrint

= OFF, contactPrint = OFF, historyPrint

= OFF)

name = myjob.name

a.regenerate()

myjob.submit()

myjob.waitForCompletion()

o3 = session.openOdb(name + ’.odb’)

odb = session.odb[name + ’.odb’]

#J Integrals

session.XYDataFromHistory(name = ’Jintegral’,

odb = odb, outputVariableName = ’J-integral

at of contour 10 on crackfront node set

L 5: J for Whole Model’, steps = (’Load’,

))

session.XYDataFromHistory(name = ’JfromK’,

odb = odb, outputVariableName = ’J-integral

estimated from Ks at of contour 10 on crackfront

node set L 5: JfK for Whole Model’, steps

= (’Load’, ))

session.XYDataFromHistory(name = ’K1’, odb

= odb, outputVariableName = ’Stress intensity

factor K1 at of contour 10 on crackfront

node set L 5: K1 for Whole Model’, steps

= (’Load’, ))

session.XYDataFromHistory(name = ’K2’, odb

= odb, outputVariableName = ’Stress intensity

factor K2 at of contour 10 on crackfront

node set L 5: K2 for Whole Model’, steps

= (’Load’, ))

JfromK = session.xyDataObjects[’JfromK’].data[0][1]

J = session.xyDataObjects[’Jintegral’].data[0][1]

K1.append(session.xyDataObjects[’K1’].data[0][1])

K2.append(session.xyDataObjects[’K2’].data[0][1])

odb.close()

o3.close()

print (’G analyical = ’ + ‘G‘)

print(’J Integral = ’ + ‘J‘)

print(’J from K = ’ + ‘JfromK‘)

print(’K1 = ’ + ‘K1[k]‘)
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print(’K2 = ’ + ‘K2[k]‘)

tanpsi = (K2[k]/K1[k])

modemix = atan(K2[k]/K1[k])*180/pi

print(’mode-mix = ’ + ‘modemix‘)

realKh.append(K1[k]*cos(epsilon*log(h)) -

K2[k]*sin(epsilon*log(h)))

imagKh.append(K2[k]*cos(epsilon*log(h)) +

K1[k]*sin(epsilon*log(h)))

phase = atan(imagKh[k]/realKh[k])*180/pi

adjustedmode = modemix + epsilon*log(h)*180/pi

print(’realKh = ’ + ‘realKh[k]‘)

print(’imagKh = ’ + ‘imagKh[k]‘)

print(’phase = ’ + ‘phase‘)

print(’adjustedmode = ’ + ‘adjustedmode‘)

#clean files

home = ’c:/Abaqus/’

filetypes = (’.stt’, ’.023’, ’.res’, ’.sta’,

’.log’, ’.prt’, ’.inp’, ’.ipm’, ’.mdl’,

’.com’)
for extension in filetypes:

file = open(name + extension, ’w’)

file.close()
os.remove(name + extension)

morefiletypes = (’.odb’, ’.msg’, ’.dat’)
for extension in morefiletypes:

file = open(name + extension, ’w’)

file.close()
os.remove(name + extension)

if mode == 1:

err = (abs(imagKh[k]))

else:

err = (abs(realKh[k]))

print (’points = ’ + ‘point‘)

print (’RealK = ’ + ‘realKh‘)

print (’ImagK = ’ + ‘imagKh‘)
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if mode == 1:

Mode1Ratio = point[k]
print(’Mode1Ratio = ’ + ‘Mode1Ratio‘)

else:

Mode2Ratio = point[k]
print(’Mode2Ratio = ’ + ‘Mode2Ratio‘)

print "Done!"
return Mode1Ratio, Mode2Ratio

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def setLoads(name, number, elastic, load):

print "Setting Loads..."

mymodel = mdb.model[’ModeMix’]

a = mdb.model[’ModeMix’].rootAssembly

#extract y-coordinates and measure height

y_top = a.sets[’top-right-corner’].vertices[0].pointOn[0][1]

y_bot = a.sets[’bottom-right-corner’].vertices[0].pointOn[0][1]

y_tip = a.sets[’Tip’].vertices[0].pointOn[0][1]

h1 = y_top - y_tip

h2 = y_tip - y_bot

eta = h1/h2

#extract elastic material properties

top_material = mdb.model[’ModeMix’].material[’Top’]

bottom_material = mdb.model[’ModeMix’].material[’Bot’]

E1 = top_material.elastic.table[0][0]

E2 = bottom_material.elastic.table[0][0]

v1 = top_material.elastic.table[0][1]

v2 = bottom_material.elastic.table[0][1]

#define the shear modulus

shear1 = E1 / (2*(1 + v1))

shear2 = E2 / (2*(1 + v2))

#kappa for plane strain

k1 = 3-4*v1
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k2 = 3-4*v2

#Modulus from plane stress to plane strain

E1 = E1 / (1-v1**2)

E2 = E2 / (1-v2**2)

c1 = (k1 + 1)/shear1

c2 = (k2 + 1)/shear2

SIGMA = c2/c1

A = 1 / ( 1 + SIGMA*( 4*eta + 6*eta**2 + 3*eta**3 ) )

I = 1 / ( 12*( 1 + SIGMA*eta**3 ) )

delta = h1*( 1 + 2*SIGMA*eta + SIGMA*eta**2 ) / ( 2*eta* ( 1 + SIGMA*eta

) )

DELTA = delta/h1

M1 = load[0]

M2 = load[1]
if M2 == 0.:

M2 = 1e-15

if M1 == 0.:

M1 = 1e-15

factor = M2/M1

print(’M2 factor = ’ + ‘factor‘)

P1 = 0

P2 = 0

P3 = P1 - P2 #eqn (1.1)

M3 = ( M1 - M2 + P1*(h1/2. + h2 - delta) + P2*(delta - h2/2.) )

#eqn (1.1)

Ao = 1 / eta + SIGMA

Io = (1/3.)*( SIGMA*(3*(DELTA - 1/eta)**2 - 3*(DELTA - 1/eta) +

1) + 3*DELTA/eta*(DELTA-1/eta) + 1/eta**3 )

C1 = SIGMA / Ao

C2 = (SIGMA / Io )*( 1/eta - DELTA + 1./2.)

C3 = SIGMA / (12*Io)

P = P1 - C1*P3 - C2*M3/h1 # eqn (1.2)

M = M1 - C3*M3

siny = 6*SIGMA*eta**2*( 1 + eta)*(A*I)**0.5

gamma = asin(siny)
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#eqn (2.7)

G = (c1/16.0)*( P**2/(A*h1) + M**2/(I*h1**3) + 2*P*M*siny/((A*I)**0.5*h1**2)

)
print (’G = ’ + ‘G‘)

topcouple = 4*M1/h1**2

bottomcouple = 4*M2/h2**2

mdb.model[’ModeMix’].load[’Load-1’].setValues(magnitude = topcouple)

mdb.model[’ModeMix’].load[’Load-2’].setValues(magnitude = -topcouple)

mdb.model[’ModeMix’].load[’Load-3’].setValues(magnitude = -bottomcouple)

mdb.model[’ModeMix’].load[’Load-4’].setValues(magnitude = bottomcouple)
if elastic! = ’yes’:

mdb.model[’ModeMix’].load[’Reload-1’].setValues(magnitude

= topcouple)

mdb.model[’ModeMix’].load[’Reload-2’].setValues(magnitude

= -topcouple)

mdb.model[’ModeMix’].load[’Reload-3’].setValues(magnitude

= -bottomcouple)
mdb.model[’ModeMix’].load[’Reload-4’].setValues(magnitude

= bottomcouple)

results = open(name + ’.txt’, ’a’)

results.write(‘M1‘ + ’\t’ + ‘M2‘ + ’\t’ + ‘factor‘ + ’\t’ + ‘G‘

+ ’\t’)

results.close()

print "Done..."
return G, factor

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def assignMaterials(elastic, Et, sighat, initialyieldstr, Etop, vtop, Ebot,
vbot):

"This Assigns the materials according to the properties"

print (’Assigning Materials...’)

mymodel = mdb.model[’ModeMix’]
if elastic == ’yes’:
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mymodel.material[’Top’].Elastic(table = ((Etop, vtop),

))
mymodel.material[’Bot’].Elastic(table = ((Ebot, vbot),

))

else:

mymodel.material[’Top’].Elastic(table = ((Etop, vtop),

))

mymodel.material[’Bot’].Elastic(table = ((Ebot, vbot),

))

#Plastic Properties

EttopoverE = Et

EtbotoverE = Et
if sighat > 0:

yieldstr = initialyieldstr*(1. + sighat)/(1-sighat)

else:

yieldstr = initialyieldstr

stress = yieldstr*1.0002

topplastictable = [(yieldstr, 0.0)]

plasticstrain = ((stress-yieldstr)/EttopoverE - stress

+ yieldstr)/Etop

totalstrain = stress/Etop + plasticstrain

topplastictable.append((stress, plasticstrain))

top_material = mymodel.Material(name = ’Top’)

mymodel.material[’Top’].Elastic(table = ((Etop, vtop),

))

mymodel.material[’Top’].Plastic(table = topplastictable

)
mymodel.material[’Top’].plastic.setValues(hardening

= KINEMATIC)

if sighat < 0:

yieldstr = initialyieldstr*(1.-sighat)/(1
+ sighat)

else:
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yieldstr = initialyieldstr

stress = yieldstr*1.0002

botplastictable = [(yieldstr, 0.0)]

plasticstrain = ((stress-yieldstr)/EtbotoverE - stress

+ yieldstr)/Ebot

totalstrain = stress/Ebot + plasticstrain

botplastictable.append((stress, plasticstrain))

bottom_material = mymodel.Material(name = ’Bot’)

mymodel.material[’Bot’].Elastic(table = ((Ebot, vbot),

))

mymodel.material[’Bot’].Plastic(table = botplastictable

)
mymodel.material[’Bot’].plastic.setValues(hardening

= KINEMATIC)

#assign material to section

section1 = mymodel.section[’Top’]

section2 = mymodel.section[’Bottom’]

section1.setValues(material = top_material.name, thickness = 1.0)

section2.setValues(material = bottom_material.name, thickness =

1.0)
print (’Done!’)

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def createLoads(elastic, initialyield, spaces, Mode1ratio, Mode2ratio, name):

print (’Creating Loads...’)

mymodel = mdb.model[’ModeMix’]

a = mdb.model[’ModeMix’].rootAssembly

top_material = mdb.model[’ModeMix’].material[’Top’]

bottom_material = mdb.model[’ModeMix’].material[’Bot’]

#extract elastic material properties

E1 = top_material.elastic.table[0][0]

E2 = bottom_material.elastic.table[0][0]

v1 = top_material.elastic.table[0][1]

v2 = bottom_material.elastic.table[0][1]

#extract y-coordinates and measure height
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y_top = a.sets[’top-right-corner’].vertices[0].pointOn[0][1]

y_bot = a.sets[’bottom-right-corner’].vertices[0].pointOn[0][1]

y_tip = a.sets[’Tip’].vertices[0].pointOn[0][1]

h1 = y_top - y_tip

h2 = y_tip - y_bot
if elastic == "yes":

yield1 = initialyield
yield2 = initialyield

else:

yield1 = top_material.plastic.table[0][0]

yield2 = bottom_material.plastic.table[0][0]

sigmahat = (yield1 - yield2) / (yield1 + yield2)

#extract plastic material properties for top layer

stress1top = top_material.plastic.table[1][0]

stress0top = top_material.plastic.table[0][0]

plstrain1top = top_material.plastic.table[1][1]

plstrain0top = top_material.plastic.table[0][1]

totstrain1top = plstrain1top + stress1top/E1

totstrain0top = plstrain0top + stress0top/E1

Ettop = (stress1top-stress0top)/(totstrain1top-totstrain0top)

EttopoverE = Ettop/E1

#extract plastic material properties for bottom layer

stress1bot = bottom_material.plastic.table[1][0]

stress0bot = bottom_material.plastic.table[0][0]

plstrain1bot = bottom_material.plastic.table[1][1]

plstrain0bot = bottom_material.plastic.table[0][1]

totstrain1bot = plstrain1bot + stress1bot/E2

totstrain0bot = plstrain0bot + stress0bot/E2

Etbot = (stress1bot-stress0bot)/(totstrain1bot-totstrain0bot)
EtbotoverE = Etbot/E2

#define the shear modulus

shear1 = E1 / (2*(1 + v1))

shear2 = E2 / (2*(1 + v2))

#kappa for plane strain

k1 = 3-4*v1
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k2 = 3-4*v2

#Modulus from plane stress to plane strain

E1 = E1 / (1-v1**2)

E2 = E2 / (1-v2**2)

#extract heights from the model

#define parts

top = mdb.model[’ModeMix’].part[’Top’]

bottom = mdb.model[’ModeMix’].part[’Bottom’]

#define the quantities in eqn (2.8)

# define the compliance parameters eqn (2.5)

c1 = (k1 + 1)/shear1

c2 = (k2 + 1)/shear2

SIGMA = c2/c1

#Calculate eta

eta = h1/h2

inveta = 1 / eta

#Calculate A, I and siny from eqn (2.8)

A = 1 / ( 1 + SIGMA*( 4*eta + 6*eta**2 + 3*eta**3 ) )

I = 1 / ( 12*( 1 + SIGMA*eta**3 ) )

siny = 6*SIGMA*eta**2*( 1 + eta)*(A*I)**0.5

gamma = asin(siny)

# eqns AIII.1

delta = h1*( 1 + 2*SIGMA*eta + SIGMA*eta**2 ) / ( 2*eta* ( 1 + SIGMA*eta

) )

DELTA = delta/h1 #big DELTA is Normalized

# eqn AIII.3

Ao = 1 / eta + SIGMA

Io = (1/3.)*( SIGMA*(3*(DELTA - 1/eta)**2 - 3*(DELTA - 1/eta) +

1) + 3*DELTA/eta*(DELTA-1/eta) + 1/eta**3 )

#eqns AIII.6

C1 = SIGMA / Ao

C2 = (SIGMA / Io )*( 1/eta - DELTA + 1./2.)

C3 = SIGMA / (12*Io)

#define Dundurs’ parameters: (eqn 2.1)

GAMMA = shear1/shear2

alpha = ( GAMMA*(k2 + 1) - (k1 + 1) ) / ( GAMMA*(k2 + 1) + (k1 +

1) )

beta = ( GAMMA*(k2 - 1) - (k1 - 1) ) / ( GAMMA*(k2 + 1) + (k1 +

1) )

start = Mode1ratio
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finish = Mode2ratio

delt = (finish - start)/spaces

MyLoads = []
for index in range(spaces + 1): #Add one because range() returns 0 as the first

value

for level in [2]: #use this loop to change the load levels

factor = start + delt*index

#yield from #1 of separated beam

m1e = yield1*(h1**3/12.)/(level*h1/2.)

#yield from #2 of separated beam

m1f = yield2*(h2**3/12.)/(level*factor*h2/2.

+ 1e-15)

m1 = (min(m1e**2, m1f**2))**.5

#use Mag K as a common factor

Gin = .2

magKsquared = Gin*min(E1, E2)

m1 = (h1**3*magKsquared*(3*alpha**2 - 4)*(beta**2

- 1))/((sqrt(3)*(-h1**3*magKsquared*(3*alpha**2

- 4)*(-(6*alpha 7)*(alpha - 1)**2 + factor**2*(alpha

+ 1)**2*(6*alpha - 7) + 2*factor*(alpha**2

- 1))*(beta**2 - 1))**0.5))
MyLoads.append([m1, m1*factor])

if elastic ! = ’yes’:

results = open(name + ’.txt’, ’a’)

results.write(’\nMaterial Properties:\nEtop \tEbot \talpha

\tbeta \tv1 \tv2 \th1 \t h1 \tyield1 \t yield2 \tEttop

\tEtbot \n’)

results.write(’%10.4E’ %E1 + ’\t%10.4E’ %E2 + ’\t’ +

‘alpha‘ + ’\t’ + ‘beta‘ + ’\t’ + ‘v1‘ + ’\t’ + ‘v2‘

+ ’\t’ + ‘h1‘ + ’\t’ + ‘h2‘ + ’\t’ + ‘yield1‘ + ’\t’

+ ‘yield2‘ + ’\t’ + ‘Ettop‘ + ’\t’ + ‘Etbot‘ + ’\n\n’)
results.close()

print (’Done!’)
return MyLoads
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#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def extractMode(origname, number, h, epsilon):

print (’Extractiong Mode...’)

name = origname + ’-’ + ‘number‘

o3 = session.openOdb(name + ’.odb’)

odb = session.odb[name + ’.odb’]

#J Integrals

session.XYDataFromHistory(name = ’Jintegral’, odb = odb, outputVariableName

= ’J-integral at of contour 10 on crackfront node set L 5: J

for Whole Model’, steps = (’Load’, ))

session.XYDataFromHistory(name = ’JfromK’, odb = odb, outputVariableName

= ’J-integral estimated from Ks at of contour 10 on crackfront

node set L 5: JfK for Whole Model’, steps = (’Load’, ))

session.XYDataFromHistory(name = ’K1’, odb = odb, outputVariableName

= ’Stress intensity factor K1 at of contour 10 on crackfront

node set L 5: K1 for Whole Model’, steps = (’Load’, ))

session.XYDataFromHistory(name = ’K2’, odb = odb, outputVariableName

= ’Stress intensity factor K2 at of contour 10 on crackfront

node set L 5: K2 for Whole Model’, steps = (’Load’, ))

JfromK = session.xyDataObjects[’JfromK’].data[0][1]

J = session.xyDataObjects[’Jintegral’].data[0][1]

K1 = session.xyDataObjects[’K1’].data[0][1]

K2 = session.xyDataObjects[’K2’].data[0][1]

odb.close()

o3.close()

print (’G analyical = ’ + ‘G‘)

print(’J Integral = ’ + ‘J‘)

print(’J from K = ’ + ‘JfromK‘)

print(’K1 = ’ + ‘K1‘)

print(’K2 = ’ + ‘K2‘)

tanpsi = (K2/K1)

modemix = atan(K2/K1)*180/pi

print(’mode-mix = ’ + ‘modemix‘)

realKh = K1*cos(epsilon*log(h))-K2*sin(epsilon*log(h))

imagKh = K2*cos(epsilon*log(h)) + K1*sin(epsilon*log(h))

phase = atan(imagKh/realKh)*180/pi

adjustedmode = modemix + epsilon*log(h)*180/pi
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print(’realKh = ’ + ‘realKh‘)

print(’imagKh = ’ + ‘imagKh‘)

print(’phase = ’ + ‘phase‘)

print(’adjustedmode = ’ + ‘adjustedmode‘)

results = open(origname + ’.txt’, ’a’)

results.write(‘J‘ + ’\t’ + ‘JfromK‘ + ’\t’ + ‘K1‘ + ’\t’ + ‘K2‘

+ ’\t’ + ’%4.2f’ %modemix + ’\t’ + ‘epsilon‘ + \t’ + ‘realKh‘

+ ’\t’ + ‘imagKh‘ + ’\t’ + ‘phase‘ + ’\t’ + ‘adjustedmode‘ +

’\n’)

results.close()

print (’Done!’)
return phase, realKh, imagKh

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def extractWork(origname, jobnumber, E1, E2, G):

print (’Extractiong Work...’)

name = mdb.job[origname + ’-’ + ‘jobnumber‘].name

top_material = mdb.model[’ModeMix’].material[’Top’]

bottom_material = mdb.model[’ModeMix’].material[’Bot’]

yield1 = top_material.plastic.table[0][0]

yield2 = bottom_material.plastic.table[0][0]

myodb = session.openOdb(name + ’.odb’)

odb = session.odb[name + ’.odb’]
for stepname in myodb.step.keys():

history = myodb.step[stepname].historyRegion[’Assembly

ASSEMBLY’]

pddata = history.historyOutput[’ALLPD’].data
if stepname == myodb.step.keys()[1]:

w2 = pddata[-1][-1]

if stepname == myodb.step.keys()[3]:

w4 = pddata[-1][-1]

if yield2<yield1:
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dWdNStartop = (w4-w2)*yield2**2 / (G**2 * E1)
dWdNStarbot = (w4-w2)*yield2**2 / (G**2 * E2)

else:

dWdNStartop = (w4-w2)*yield1**2 / (G**2 * E1)
dWdNStarbot = (w4-w2)*yield1**2 / (G**2 * E2)

dwdn = w4-w2

#open and close the output file so real time access is enabled

#J Integrals
for k in range(1, 50):

if k < 10:

session.XYDataFromHistory(name = ’J’ + ‘k‘,
odb = odb, outputVariableName = ’J-integral
at of contour ’ + ‘k‘ + ’ on crackfront
node set L 5: J for Whole Model’, steps
= (’Load’, ’Unload’, ’Reload’, ’Reunload’,
) )

if k > 9:

session.XYDataFromHistory(name = ’J’ + ‘k‘,
odb = odb, outputVariableName = ’J-integral
at of contour ’ + ‘k‘ + ’ on crackfront
node set L 5: J for Whole Model’, steps
= (’Load’, ’Unload’, ’Reload’, ’Reunload’,
) )

for k in range(1, 50):

J = session.xyData[’J’ + ‘k‘].data

for i in range(len(J)):

if J[i][0] == 1.0:

J1 = J[i][1]

elif J[i][0] == 3.0:
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J2 = J[i][1]

myodb.close()

print (’dW/dN = ’ + ‘dwdn‘)

print (’dW*/dN* (top) = ’ + ‘dWdNStartop‘)

print (’dW*/dN* (bot) = ’ + ‘dWdNStarbot‘)

print ’J Integrals’

print ‘J1‘ + ’ ’ + ‘J2‘

results = open(origname + ’.txt’, ’a’)

results.write(‘J1‘ + ’\t’ + ‘J2‘ + ’\t’)

results.close()

print (’Done!’)
return dwdn, dWdNStartop, dWdNStarbot

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def printfig(name, number, alpha, factor, mode, G):

print (’Printing Plastic Zones...’)

o0 = session.openOdb(name + ’-’ + ‘number‘ + ’.odb’)

session.viewports[’Viewport: 1’].setValues(displayedObject = o0)
for key in session.text.keys():

del session.text[key]

for key in session.arrow.keys():

del session.arrow[key]

session.viewport[’Viewport: 1’].odbDisplay.setPlotMode(CONTOUR)

for zoomfactor in [200, 400, 800., 1600.]:
for stepnumber in [0, 3]:

session.viewport[’Viewport: 1’].odbDisplay.setFrame(step

= 0, frame = 1)

session.viewport[’Viewport: 1’].odbDisplay.contourOptions.

setValues( numIntervals = 2, spectrumType = WHITE_TO_BLACK,
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outsideLimitsAboveColor = ’Grey60’, outsideLimitsBelowColor

= ’White’, deformationScaling = UNIFORM, uniformScaleFactor

= 1, maxAutoCompute = OFF, maxValue = 0.15, minAutoCompute

= OFF, minValue = 0.1, )

session.viewport[’Viewport: 1’].odbDisplay.contourOptions.

setValues( modelShape = UNDEFORMED)

session.viewport[’Viewport: 1’].odbDisplay.setPrimaryVariable(

variableLabel = ’AC YIELD’, outputPosition = INTEGRATION_POINT

)

session.viewport[’Viewport: 1’].setValues(origin =

(0.0, 0.0), width = 160, height = 164)

session.viewport[’Viewport: 1’].view.zoom(zoomFactor

= zoomfactor, mode = ABSOLUTE)

session.viewport[’Viewport: 1’].viewportAnnotationOptions.

setValues(triad = OFF, legend = OFF,

legendBox = OFF, title = OFF, state = OFF)

session.textDefaults.setValues(color = ’Black’)

session.arrowDefaults.setValues(color = ’Black’)

session.textDefaults.setValues( font = ’-*-times-medium-i-normal

-*-*-240-*-*-p-*-*-*’)

session.Arrow(name = ’Left Dim’, startPoint = (60.,

-6.), endPoint = (2., -6.))

session.Arrow(name = ’Right Dim’, startPoint = (100.,

-6.), endPoint = (158., -6.))

session.Arrow(name = ’X Axis’, startPoint = (80., 80.),

endPoint = (170., 80.))

session.Arrow(name = ’Y Axis’, startPoint = (80.0, 80.0),

endPoint = (80.0, 170.))

session.Text(name = ’X Label’, origin = (166., 83.),

text = ’x’)

session.Text(name = ’Y label’, origin = (83., 166.),

text = ’y’)

session.Text(name = ’Dimension’, origin = (66., -8),

text = ‘64000/zoomfactor‘)

session.Text(name = ’Unit1’, origin = (90., -8.), text

= ’m’)

session.textDefaults.setValues( font = ’-*-symbol-medium-i-normal

-*-*-240-*-*-p-*-*-*’)

session.Text(name = ’Unit2’, origin = (86., -8.), text

= ’m’)
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session.textDefaults.setValues(font = ’-*-arial-medium-r-normal

-*-*-240-*-*-p-*-*-*’)

session.Text(name = ’Left Tick’, origin = (0., -9.),

text = ’I’)

session.Text(name = ’Right Tick’, origin = (158., -9.

), text = ’I’)

session.epsOptions.setValues(imageSize = (2.50, 3.0),

units = INCHES, resolution = DPI_300, fontType =

PS_IF_AVAILABLE)

session.printOptions.setValues(rendition = GREYSCALE,

vpDecorations = OFF, vpBackground = OFF)

session.Text(name = ’Text: 1’, origin = (44., -18),

text = ’a’)

session.Text(name = ’Text: 2’, origin = (51, -18),

text = ’ = ’ + ‘alpha‘)

session.Text(name = ’Text: 3’, origin = (44, -28),

text = ’y’)

session.Text(name = ’Text: 4’, origin = (51, -28),

text = ’ = %4.3f’ %mode)

session.Text(name = ’Text: 5’, origin = (44, -38),

text = ’G = %5.3f’ %(100.*G))

session.Text(name = ’Text: 6’, origin = (83, -38),

text = ’J/m/m’)
if stepnumber == 0:

session.Text(name = ’Text: 7’, origin = (0,
-18), text = ’Fwd. Zone:’)

else:

session.Text(name = ’Text: 7’, origin = (0,
-18), text = ’Rev. Zone:’)

session.texts[’Text: 3’].setValues( font = ’-*-symbol

-medium-r-normal-*-*-240-*-*-p-*-*-*’)

session.texts[’Text: 1’].setValues( font = ’-*-symbol

-medium-r-normal-*-*-240-*-*-p-*-*-*’)

session.texts[’Text: 5’].setValues( font = ’-*-times

new roman-medium-r-normal-*-*-240-*-*-p-*-*-*’)

session.texts[’Text: 4’].setValues( font = ’-*-times

new roman-medium-r-normal-*-*-240-*-*-p-*-*-*’)
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session.texts[’Text: 2’].setValues( font = ’-*-times

new roman-medium-r-normal-*-*-240-*-*-p-*-*-*’)

session.texts[’Text: 6’].setValues( font = ’-*-times

new roman-medium-i-normal-*-*-240-*-*-p-*-*-*’)

session.texts[’Text: 7’].setValues( font = ’-*-times

new roman-medium-r-normal-*-*-240-*-*-p-*-*-*’)
if stepnumber == 0:

file = name + ’-’ + ‘number‘ + ’-load-’ +
‘zoomfactor‘ + ’.eps’

else:

file = name + ’-’ + ‘number‘ + ’-unload-’
+ ‘zoomfactor‘ + ’.eps’

session.printToFile(fileName = file, format = EPS,
canvasObjects = ( session.texts[’Text: 7’], session.texts[’Text:
6’], session.texts[’Text: 5’], session.texts[’Text:
4’], session.texts[’Text: 3’], session.texts[’Text:
2’], session.texts[’Text: 1’], session.texts[’Right
Tick’], session.texts[’Left Tick’], session.texts[’Unit2’],
session.texts[’Unit1’], session.texts[’Dimension’],
session.texts[’Y label’], session.texts[’X Label’],
session.arrows[’Y Axis’], session.arrows[’X Axis’],
session.arrows[’Right Dim’], session.arrows[’Left
Dim’], session.viewports[’Viewport: 1’]))

o0.close()
print (’Done!’)

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def buildModel(h, L, meshsize, timestep, elm, elastic):

"This function builds a model"

#create the model database

Mdb

#create the model

mymodel = mdb.Model(’ModeMix’)
if mdb.model.keys()[0] == ’Model-1’:
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del mdb.model[’Model-1’]

#create the sketech profile

s = mymodel.Sketch(name = ’__profile__’, sheetSize = L)

g, v, d = s.geometry, s.vertex, s.dimension

s.setPrimaryObject(option = STANDALONE)

s.rectangle(point1 = (-L/2., 0.0), point2 = (L/2., h))

#create the top part

p = mymodel.Part(name = ’Top’, dimensionality = TWO_D_PLANAR, type

= DEFORMABLE_BODY)

p.BaseShell(sketch = s)

s.unsetPrimaryObject()

#delete the sketch profile

del mdb.model[’ModeMix’].sketch[’__profile__’]

#begin defining partitions

p0 = mdb.model[’ModeMix’].part[’Top’]

f, e, d0 = p0.face, p0.edge, p0.datum

t = p0.MakeSketchTransform(sketchPlane = f[0], sketchPlaneSide =

SIDE1)

s0 = mdb.model[’ModeMix’].Sketch(name = ’__profile__’, sheetSize

= L, gridSpacing = 10.0, transform = t)

g, v, d = s0.geometry, s0.vertex, s0.dimension

s0.setPrimaryObject(option = SUPERIMPOSE)

p0 = mdb.model[’ModeMix’].part[’Top’]

p0.projectReferencesOntoSketch(sketch = s0, filter = COPLANAR_EDGES)

r, r0 = s0.referenceGeometry, s0.referenceVertex

#draw the horizontal partition

s0.Line(point1 = (-L/2., 0.0), point2 = (L/2.0, 0.0))

#draw the vertical partition

s0.Line(point1 = (0.0, h/2.), point2 = (0.0, -h/2.))

#draw the biasing box

s0.rectangle(point1 = (-h/2., h/2.), point2 = (h/2., -h/2.))

#draw the crack tip box

s0.rectangle(point1 = (-4*elm, -h/2. + 4*elm), point2 = (4*elm,

-h/2.))

#draw the radials

s0.Line(point1 = (4*elm, -h/2. + 4*elm), point2 = (h/2., 0.0))

s0.Line(point1 = (-h/2., 0.0), point2 = (-4*elm, -h/2. + 4*elm))

f, e, d0 = p0.face, p0.edge, p0.datum

faces = (f[0], )
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p0.PartitionFaceBySketch(faces = faces, sketch = s0)

s0.unsetPrimaryObject()

del mdb.model[’ModeMix’].sketch[’__profile__’]

#Copy top to bottom

mdb.model[’ModeMix’].Part(’Bottom’, mdb.model[’ModeMix’].part[’Top’])

#create-materials

mdb.model[’ModeMix’].Material(’Top’)

mdb.model[’ModeMix’].Material(’Bot’)

mdb.model[’ModeMix’].HomogeneousSolidSection(name = ’Top’, material

= ’Top’, thickness = 1.0)

mdb.model[’ModeMix’].HomogeneousSolidSection(name = ’Bottom’, material

= ’Bot’, thickness = 1.0)

#create assembly

a = mdb.model[’ModeMix’].rootAssembly

a.DatumCsysByDefault(CARTESIAN)

p = mdb.model[’ModeMix’].part[’Bottom’]

a.Instance(name = ’Bottom-1’, part = p)

p2 = a.instance[’Bottom-1’]

p2.rotateAboutAxis(axisPoint = (0.0, 0.0, 0.0), axisDirection =

(0.0, 0.0, 1.0), angle = 180.0)

p = mdb.model[’ModeMix’].part[’Top’]

a.Instance(name = ’Top-1’, part = p)

p1 = mdb.model[’ModeMix’].part[’Top’]

f = p1.face

faces = f[0:12]

region = (faces, )

p0 = mdb.model[’ModeMix’].part[’Top’]

p0.assignSection(region = region, sectionName = ’Top’)

p1 = mdb.model[’ModeMix’].part[’Bottom’]

f = p1.face

faces = f[0:12]

region = (faces, )

p0 = mdb.model[’ModeMix’].part[’Bottom’]

p0.assignSection(region = region, sectionName = ’Bottom’)

#define surface sets

e1 = a.instances[’Bottom-1’].edges

edges1 = e1[16:17] + e1[19:21]

a.Surface(side1Edges = edges1, name = ’right-bottom-interface’)

e1 = a.instances[’Bottom-1’].edges

edges1 = e1[6:7] + e1[24:25] + e1[26:27]
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a.Surface(side1Edges = edges1, name = ’left-bottom-interface’)

e1 = a.instances[’Top-1’].edges

edges1 = e1[6:7] + e1[24:25] + e1[26:27]

a.Surface(side1Edges = edges1, name = ’right-top-interface’)

e1 = a.instances[’Top-1’].edges

edges1 = e1[16:17] + e1[19:21]

a.Surface(side1Edges = edges1, name = ’left-top-interface’)

e1 = a.instances[’Top-1’].edges

edges1 = e1[7:9]

e2 = a.instances[’Bottom-1’].edges

edges2 = e2[13:14] + e2[15:16]

a.Set(edges = edges1 + edges2, name = ’right-side’)

v1 = a.instances[’Bottom-1’].vertices

verts1 = v1[11:12]

a.Set(vertices = verts1, name = ’bottom-right-corner’)

v1 = a.instances[’Top-1’].vertices

verts1 = v1[8:9]

a.Set(vertices = verts1, name = ’top-right-corner’)

v1 = a.instances[’Top-1’].vertices

verts1 = v1[3:4]

a.Set(vertices = verts1, name = ’top-middle-point’)

e1 = a.instances[’Top-1’].edges

edges1 = e1[13:14]

a.Surface(side1Edges = edges1, name = ’left-edge-1’)

e1 = a.instances[’Top-1’].edges

edges1 = e1[15:16]

a.Surface(side1Edges = edges1, name = ’left-edge-2’)

e1 = a.instances[’Bottom-1’].edges

edges1 = e1[7:8]

a.Surface(side1Edges = edges1, name = ’left-edge-3’)

e1 = a.instances[’Bottom-1’].edges

edges1 = e1[8:9]

a.Surface(side1Edges = edges1, name = ’left-edge-4’)

v1 = a.instance[’Top-1’].vertex

verts1 = v1[16:17]

v2 = a.instance[’Bottom-1’].vertex

verts2 = v2[16:17]

a.GeometrySet(vertexSeq = (verts1, verts2, ), name = ’Tip’)

#extract y-coordinates and measure height

y_top = a.sets[’top-right-corner’].vertices[0].pointOn[0][1]
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y_bot = a.sets[’bottom-right-corner’].vertices[0].pointOn[0][1]

y_tip = a.sets[’Tip’].vertices[0].pointOn[0][1]

h1 = y_top - y_tip

h2 = y_tip - y_bot

print(’h1 = ’ + ‘h1‘)

print(’h2 = ’ + ‘h2‘)
if elastic == ’yes’:

mdb.model[’ModeMix’].StaticStep(name = ’Load’, previous
= ’Initial’, initialInc = 0.05/timestep, maxInc =
.05/timestep)

else:

mdb.model[’ModeMix’].StaticStep(name = ’Load’, previous

= ’Initial’, initialInc = 0.05/timestep, maxInc =

0.05/timestep)

mdb.model[’ModeMix’].StaticStep(name = ’Unload’, previous

= ’Load’, initialInc = 0.05/timestep, maxInc =0.05/timestep)

mdb.model[’ModeMix’].StaticStep(name = ’Reload’, previous

= ’Unload’, initialInc = 0.05/timestep, maxInc =

.05/timestep)
mdb.model[’ModeMix’].StaticStep(name = ’Reunload’, previous

= ’Reload’, initialInc = 0.05/timestep, maxInc =
.05/timestep)

#interactions

region1 = a.surfaces[’right-top-interface’]

region2 = a.surfaces[’right-bottom-interface’]

mymodel.Tie(name = ’bond’, master = region1, slave = region2,

positionToleranceMethod = COMPUTED, adjust = ON, ieRotations =

ON)

#Boundary Conditions

region = a.sets[’right-side’]

mymodel.DisplacementBC(name = ’BC-1’, createStepName = ’Initial’,

region = region, u1 = SET, u2 = UNSET, ur3 = UNSET, amplitude

= UNSET, distribution = UNIFORM, localCsys = None)

region = a.sets[’bottom-right-corner’]
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mymodel.DisplacementBC(name = ’BC-2’, createStepName = ’Initial’,

region = region, u1 = UNSET, u2 = SET, ur3 = UNSET, amplitude

= UNSET, distribution = UNIFORM, localCsys = None)

#create loading

a = mdb.model[’ModeMix’].rootAssembly

region = a.surfaces[’left-edge-1’]

mdb.model[’ModeMix’].Pressure(name = ’Load-1’, createStepName =

’Load’, region = region, distribution = UNIFORM, magnitude =

-1000.0, amplitude = UNSET)

region = a.surfaces[’left-edge-2’]

mdb.model[’ModeMix’].Pressure(name = ’Load-2’, createStepName =

’Load’, region = region, distribution = UNIFORM, magnitude =

-1000.0, amplitude = UNSET)

region = a.surfaces[’left-edge-3’]

mdb.model[’ModeMix’].Pressure(name = ’Load-3’, createStepName =

’Load’, region = region, distribution = UNIFORM, magnitude =

-1000.0, amplitude = UNSET)

region = a.surfaces[’left-edge-4’]

mdb.model[’ModeMix’].Pressure(name = ’Load-4’, createStepName =

’Load’, region = region, distribution = UNIFORM, magnitude =

-1000.0, amplitude = UNSET)
if elastic ! = ’yes’:

mdb.model[’ModeMix’].Load(’Reload-4’, mdb.model[’ModeMix’].

load[’Load-4’])

mdb.model[’ModeMix’].Load(’Reload-1’, mdb.model[’ModeMix’].

load[’Load-1’])

mdb.model[’ModeMix’].Load(’Reload-3’, mdb.model[’ModeMix’].

load[’Load-3’])

mdb.model[’ModeMix’].Load(’Reload-2’, mdb.model[’ModeMix’].

load[’Load-2’])

mdb.model[’ModeMix’].load[’Load-1’].deactivate(’Unload’)

mdb.model[’ModeMix’].load[’Load-2’].deactivate(’Unload’)

mdb.model[’ModeMix’].load[’Load-3’].deactivate(’Unload’)

mdb.model[’ModeMix’].load[’Load-4’].deactivate(’Unload’)

mdb.model[’ModeMix’].load[’Reload-1’].move(’Load’, ’Unload’)

mdb.model[’ModeMix’].load[’Reload-1’].move(’Unload’,

’Reload’)

mdb.model[’ModeMix’].load[’Reload-2’].move(’Load’, ’Unload’)

mdb.model[’ModeMix’].load[’Reload-2’].move(’Unload’,
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’Reload’)

mdb.model[’ModeMix’].load[’Reload-3’].move(’Load’, ’Unload’)

mdb.model[’ModeMix’].load[’Reload-3’].move(’Unload’,

’Reload’)

mdb.model[’ModeMix’].load[’Reload-4’].move(’Load’, ’Unload’)

mdb.model[’ModeMix’].load[’Reload-4’].move(’Unload’,

’Reload’)

mdb.model[’ModeMix’].load[’Reload-1’].deactivate(’Reunload’)

mdb.model[’ModeMix’].load[’Reload-2’].deactivate(’Reunload’)

mdb.model[’ModeMix’].load[’Reload-3’].deactivate(’Reunload’)
mdb.model[’ModeMix’].load[’Reload-4’].deactivate(’Reunload’)

#create mesh

a0 = mdb.model[’ModeMix’].rootAssembly

f01 = a0.instance[’Bottom-1’].face

f02 = a0.instance[’Top-1’].face

regions = (f01[0], f01[1], f01[2], f01[3], f01[4], f01[5], f01[6],

f01[7], f01[8], f01[9], f01[10], f01[11], f02[0], f02[1], f02[2],

f02[3], f02[4], f02[5], f02[6], f02[7], f02[8], f02[9], f02[10],

f02[11])

a0.setMeshControls(regions = regions, technique = FREE)

elemType1 = ElemType(elemCode = CPE8R)

elemType2 = ElemType(elemCode = CPE8R)

f1 = a0.instance[’Bottom-1’].face

faces1 = f1[0:12]

f2 = a0.instance[’Top-1’].face

faces2 = f2[0:12]

regions = ((faces1, faces2, ), )

a0.setElementType(regions = regions, elemTypes = (elemType1, elemType2))

a0 = mdb.model[’ModeMix’].rootAssembly

e01 = a0.instance[’Top-1’].edge

e02 = a0.instance[’Bottom-1’].edge

edges = (e01[0], e01[2], e01[8], e01[10], e01[13], e01[14], e01[15],

e01[5], e01[7], e02[14], e02[15], e02[0], e02[2], e02[8], e02[10],

e02[13], e02[5], e02[7], e02[29], e02[30], e02[1], e02[3], e01[1],

e01[3], e01[29], e01[30])

a0.seedEdgeByNumber(edges = edges, number = 2*meshsize, constraint

= FIXED)

e11 = a0.instance[’Bottom-1’].edge

e12 = a0.instance[’Top-1’].edge
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end1Edges = (e11[4], e11[6], e12[12], e11[12], e12[4], e12[6])

end2Edges = (e11[9], e12[11], e12[16], e11[11], e11[16], e12[9])

edges = ((end1Edges, END1), (end2Edges, END2))

a0.seedEdgeByBias(edges = edges, ratio = 5.0, number = 6*meshsize,

constraint = FIXED)

e01 = a0.instance[’Top-1’].edge

e02 = a0.instance[’Bottom-1’].edge

end1Edges = (e01[25], e01[24], e02[25], e02[24])

end2Edges = (e01[18], e01[28], e02[19], e02[18], e02[28], e01[19])

edges = ((end1Edges, END1), (end2Edges, END2))

a0.seedEdgeByBias(edges = edges, ratio = 1.0, number = 20*meshsize,

constraint = FIXED)

e11 = a0.instance[’Bottom-1’].edge

e12 = a0.instance[’Top-1’].edge

edges = (e11[26], e11[27], e12[20], e12[22], e12[17], e12[21], e12[23],

e11[20], e11[22], e12[26], e12[27], e11[17], e11[21], e11[23])

a0.seedEdgeByNumber(edges = edges, number = 2*meshsize, constraint

= FIXED)

e01 = a0.instance[’Top-1’].edge

e02 = a0.instance[’Bottom-1’].edge

end1Edges = (e01[25], e01[24], e02[25], e02[24])

end2Edges = (e01[18], e01[28], e02[19], e02[18], e02[28], e01[19])

edges = ((end1Edges, END1), (end2Edges, END2))

a0.seedEdgeByBias(edges = edges, ratio = h/(elm*10.), number = 20*meshsize)

f01 = a0.instances[’Bottom-1’].faces

f02 = a0.instances[’Top-1’].faces

regions = (f01[1], f01[2], f01[3], f01[4], f02[1], f02[2], f02[3],

f02[4])

a0.setMeshControls(regions = regions, technique = STRUCTURED)

partInstances = (a0.instance[’Bottom-1’], a0.instance[’Top-1’],

)

a0.generateMesh(regions = partInstances)

#Generate output requests

mdb.model[’ModeMix’].fieldOutputRequest[’F-Output-1’].setValues(

variables = ( ’S’, ’E’, ’PE’, ’PEEQ’, ’U’, ’RF’, ’CF’), frequency

= LAST_INCREMENT)

mdb.model[’ModeMix’].historyOutputRequest[’H-Output-1’].setValues(

variables = (’ALLPD’, ), frequency = LAST_INCREMENT )

#Display the model in the current viewport
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session.viewport[’Viewport: 1’].assemblyDisplayOptions.setValues(

datumPoints = OFF, datumAxes = OFF, datumPlanes = OFF, datumCoordSystems

= OFF)

session.viewport[’Viewport: 1’].setValues(displayedObject = a)

session.viewport[’Viewport: 1’].view.fitView()

#Add specific keywords for the interface crack analysis
if elastic == ’yes’:

mymodel.keywordBlock.synchVersions()

mymodel.keywordBlock.insert(83, """

*CONTOUR INTEGRAL, CONTOURS = 10, TYPE = K Factors

Tip, 1, 0""")

mymodel.keywordBlock.insert(84, """

*CONTOUR INTEGRAL, CONTOURS = 10, TYPE = J
Tip, 1, 0""")

else:

mdb.model[’ModeMix’].keywordBlock.synchVersions()

mdb.model[’ModeMix’].keywordBlock.insert(78, """

*Contour Integral, contours = 50, type = J

Tip, 1, 0""")

mdb.model[’ModeMix’].keywordBlock.insert(103, """

*Contour Integral, contours = 50, type = J

Tip, 1, 0""")

mdb.model[’ModeMix’].keywordBlock.insert(124, """

*Contour Integral, contours = 50, type = J

Tip, 1, 0""")

mdb.model[’ModeMix’].keywordBlock.insert(146, """

*Contour Integral, contours = 50, type = J
Tip, 1, 0""")

return h1, h2

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
def cleanfiles(name, number):
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“This Deletea all output files except the ODB file”

name = name + ’-’ + ‘number‘

filetypes = (’.stt’, ’.023’, ’.res’, ’.sta’, ’.log’, ’.prt’, ’.inp’,

’.ipm’, ’.mdl’, ’.com’)
for extension in filetypes:

file = open(name + extension, ’w’)

file.close()
os.remove(name + extension)

morefiletypes = (’.msg’, ’.dat’)
for extension in morefiletypes:

file = open(name + extension, ’w’)

file.close()
os.remove(name + extension)

#...............................................................................................#
#...............................................................................................#
#...............................................................................................#
main() #this starts the program after all functions are defined
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