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Abstract

Daily, Jeremy S., M.S. Egr., Department of Mechanical and Materials Engineering, Wright State
University, 2003. Plastic Dissipation Energy in Mixed-Mode Fatigue Crack Growth on Ductile
Bimaterial Interfaces.

A new theory of fatigue crack growth in ductile solids has recently been proposed based
on the total plastic energy dissipation per cycle ahead of the crack. This and previous
energy-based approaches in the literature suggest that the total plastic dissipation per cy-
cle can be closely correlated with fatigue crack growth rates under Mode 1 loading. The
goal of the current study is to extend the dissipated energy approach to steady-state crack
growth under mixed-mode loading conditions, with application to cyclic delamination of
ductile interfaces in layered materials. The total plastic dissipation per cycle is obtained
by 2-D elastic-plastic finite element analysis of a stationary crack in a general mixed-mode
specimen geometry under constant amplitude loading. Both elastic-perfectly plastic and
bi-linear kinematic hardening constitutive behaviors are considered, and numerical results
for a dimensionless plastic dissipation per cycle are presented over the full range of rel-
evant mechanical properties and mixed-mode loading conditions. In addition, numerical
results are presented for the case of fatigue crack growth along a bonded interface between
materials with identical elastic, yet dissimilar plastic properties, including mismatches in

both kinematic hardening modulus and yield strength. Finally, the approach is generalized



to include mismatches in both elastic and plastic properties, and results for the dimension-
less plastic dissipation per cycle are reported over the complete design space of bimaterial
interfaces. The results of this thesis are of interest in soldering, welding, coating, electronic
packaging, and a variety of layered manufacturing applications, where mismatches in both

elastic and plastic properties can exist between the deposited material and the substrate.
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Chapter 1

| ntroduction

1.1 Motivation

Fatigue cracks are a major concern throughout industry, with particular application to the
aerospace community. With older aircraft dominating the service fleet for both military and
civilian populations, the prospect of catastrophic failure due to fatigue cracking becomes
more likely with time. Most work regarding fatigue crack growth has been empirical with
countless tests being conducted through the past century. These tests have been used to
construct fatigue crack growth rate curves and process maps for design purposes, but they
shed little light on the physical mechanism of fatigue crack growth. All the empirical data
from the years of testing can only be used for existing materials.

One proposed mechanism of fatigue crack growth is the total cyclic plastic dissipation
energy®. In a recent paper by Klingbeil [1], the fatigue crack growth rate was shown to

be directly proportional to the cyclic plastic dissipation energy under mode I loading con-

1The term “plastic dissipation energy” and “plastic work” are used interchangeably through out this thesis.
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Debonded Edges Interface Crack

Figure 1.1: Interface cracking in a layered material system.

ditions.2 Most fatigue cracks orient themselves into a pure mode | condition where the
load opens the crack without any sliding along the crack face. As such, the literature and
data recorded for fatigue crack growth is dominated by mode I conditions. There are, how-
ever, instances where cracks will not grow in a pure mode | direction. The case of fatigue
cracking in a bimaterial or a layered manufactured system typically constrains the crack to
the interface of the two layers— regardless of the mode of cracking. This occurs because
the interface fracture toughness is lower than the homogeneous fracture toughness, which
gives the fatigue crack a path of least resistance. Since fatigue crack growth can occur in
mixed mode and the plastic dissipation energy is known to be a driving parameter in mode
I, the mixed mode cyclic plastic dissipation energy is a quantity worth calculating. With
the advent of new materials and material systems, an analytical fatigue crack growth pre-
dictor would prove useful in accelerating the introduction of new material systems. The
plastic dissipation energy is directly related to fatigue crack growth in ductile metals, thus
making it a primary quantity in developing any sort of fatigue crack growth rate predictor
equations.

The numerical results for mixed mode plastic dissipation energy are of interest in weld-

ing, soldering and layered manufacturing applications, where high temperature material

2This study by Klingbeil [1] was conducted for C(T) specimen geometry which is Mode | because the
shearing along the crack plane is zero.
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deposition can result in mismatches in mechanical properties between the deposited ma-
terial and the substrate. Figure 1.1 shows examples of these systems that arise in layered
manufacturing, where a material is deposited on a similar substrate. Processes controlling
the deposition procedure can also influence the strength, resulting an an elastically matched
yet plastically mismatched material. Finally, by considering both elastic and plastic mis-
matches, this thesis provides a general survey of the cyclic plastic dissipation energy for all

possible ductile metal interface systems.

1.2 Literature Review

As previously mentioned, Klingbeil [1] proposed a new theory of fatigue crack growth in
ductile solids based on the total plastic energy dissipation per cycle ahead of the crack. The
results of this and previous energy-based approaches in the literature suggest that the total
plastic dissipation per cycle is a driving force for fatigue crack growth in ductile solids, and
can be closely correlated with fatigue crack growth rates under mode | loading. The goal of
the current paper is to extend the dissipated energy approach to steady-state crack growth
under mixed-mode loading, with application to fatigue delamination of ductile interfaces
in layered materials.

A critical plastic dissipation criterion for fatigue crack extension in ductile solids was
first suggested by Rice [2]. Dissipated energy approaches to fatigue crack growth prediction
have since been the subject of numerous analytical [3,4,5,6,7,8,9,10,11,12, 13] and
experimental [14,15,16,17,18,19,20,21,22] investigations. The current approach considers
the total plastic dissipation per cycle occurring throughout the reversed plastic zone ahead
of the crack, which is a quantity of both theoretical and practical interest. As shown herein,

the total plastic dissipation per cycle is directly related to the range of applied energy release
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rate, which is typically used to correlate fatigue crack growth rates under mixed-mode
loading [23]. Moreover, as opposed to the crack tip stresses and strains, the total plastic
dissipation per cycle is a bounded quantity, which allows for straightforward interpretation
of numerical results. Finally, numerical results for the total plastic dissipation per cycle can
be directly compared to measurements of dissipated energy during fatigue crack growth,
which have been reported in the literature by a number of researchers [14, 15, 16,17, 18,
19,20, 21,22]. While the above cited studies have been restricted to mode | loading, the
results of this work can be compared with subsequent studies of dissipated energy during
sustained mixed-mode crack growth.

As discussed in the review paper by Qian and Fatemi [23], surface flaws and short
cracks in homogeneous materials are typically subject to mixed-mode loading conditions,
yet ultimately orient themselves such that Paris-regime crack growth occurs primarily in
mode I. As such, the majority of the fatigue crack growth literature has focused on mode |
loading. Recent studies of fatigue crack growth under mixed-mode loading have typically
been concerned with the growth of short cracks [24, 25], fatigue crack threshold behavior
[25,26,27], and the effect of mode-mix on crack growth direction [28,29,30]. A noteworthy
investigation of fatigue crack growth in a homogeneous material under sustained mixed-
mode loading has been conducted by Magill and Zwerneman [31].

This thesis considers the plastic energy dissipation associated with steady-state fatigue
crack growth under mixed-mode loading, with particular application to cyclic delamina-
tion of ductile interfaces in layered materials. Fatigue delamination is a potential mode
of failure in a variety of applications involving bonded layers of material, where mixed-
mode crack growth along the bonded interface can be energetically favorable to mode |

crack growth within either bonded layer. Layered material systems are the basis for numer-



CHAPTER 1. INTRODUCTION 5

ous solid freeform fabrication and layered manufacturing applications, and they occur in
welding, soldering, coating, and electronic packaging applications [32, 33, 34, 35]. While
little comprehensive experimental data is available, researchers have begun to investigate
fatigue crack growth along solder joints and other bonded interfaces where mixed-mode

delamination can be a predominant mode of failure [36, 37,38, 39,40,41].

1.3 Modeling Approach

1.3.1 Dissipated Energy Theory

Following the work of Bodner et al [6], Klingbeil [1] has recently proposed a crack growth

law of the form

da 1dw

N 7 dN’ (1.1)
where g—,ﬁ is the fatigue crack growth rate, ¢ is the critical strain energy release rate under
monotonic loading (i.e., the fracture toughness), and ﬂi,\\l’ is the total plastic dissipation per
cycle occurring throughout the reversed plastic zone ahead of the crack tip.2 The proposed
crack growth law assumes that the total energy required to propagate a crack a unit dis-
tance in a given material is independent of the manner in which the energy is dissipated, be
it monotonic or fatigue loading conditions. As outlined in [1], the proposed crack growth
law results in a (AK)* dependence of the fatigue crack growth rate*, and has been shown
to collapse the measured Paris-regime crack growth data for several ductile metals under

constant amplitude, mode | loading conditions. Moreover, numerical results for the plas-

tic dissipation per cycle were shown to be consistent with a variety of dissipated energy

3The plastic dissipation W is per unit width, as required by the units of equation (1.1).
4The work done by Klingbeil [1] shows the plastic dissipation is proportional to the fourth power of the
loading, (AK)*which coincides with the actual measured fatigue crack growth rates.
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measurements reported in the literature.

In theory, the crack growth law of equation (1.1) is applicable to fatigue crack growth
under general mixed-mode loading conditions, where both ¢ and ?ji,\\l’ depend on the mode-
mix ratio. Hence, application of the crack growth law requires numerical calculation of the
quantity ‘é—",\‘,’, which is the total plastic dissipation per cycle integrated over the reversed

plastic zone ahead of the crack:

z—vl\\llz//{fcijdeﬁ}dA. (12)

1.3.2 Stationary Crack Modeling

In the current study, the total plastic dissipation per cycle of equation (1.2) is obtained by
2-D elastic-plastic finite element analysis of a stationary crack in a general mixed-mode
layered specimen geometry. As discussed in [1], a stationary (as opposed to growing)
crack modeling approach neglects the contribution of the actual crack extension to the total
plastic dissipation occurring during any given load cycle. However, for Paris-regime crack
growth in ductile solids, both the plastic work and surface energy contributions associated
with the actual crack extension in any given cycle are negligible compared to the total
plastic dissipation occurring throughout the reversed plastic zone ahead of the crack. As
such, modeling the actual crack extension is unnecessary.

That said, it is important to note that stationary crack modeling is unable to capture the
transient evolution of the cyclic constitutive behavior as the fatigue crack extends through
previously yielded material [42], and neglects the possibility of plasticity-induced crack
closure. In the current study, only elastic-perfectly plastic and bi-linear kinematic harden-

ing constitutive behaviors are considered, each of which predicts plastic shakedown after
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only a single cycle. As such, the results of this work should be viewed as a first approxima-
tion to the stabilized cyclic response under constant amplitude loading, and do not attempt
to account for load ratio effects typically associated with fatigue crack closure.®

It should finally be noted that numerical results presented herein can be interpreted
from a number of standpoints. First, in the context of the fatigue crack growth law of
equation (1.1), the results are applicable to stabilized, self-similar crack extension under
mixed-mode loading conditions. As previously outlined, such results are most applicable
to layered material systems, where sustained mixed-mode crack growth is a potential mode
of failure. However, the results may also be taken at face value, i.e., as simply the plastic
dissipation associated with a single load cycle applied to a stationary crack tip under mixed-
mode loading. In this context, the results of this work may be useful in the development
of energy-based approaches for predicting crack growth direction or mixed-mode fatigue
crack threshold behavior. Finally, the trends in plastic dissipation with mode-mix ratio
presented herein may provide insight into discrepancies between mode | model results and
dissipated energy measurements reported in the literature, which have been attributed in

part to a mix of crack extension modes at the crack tip [22, 1].

1.4 Overview and Contributions

141 Overview

In this thesis, the total plastic dissipation per cycle is determined by 2-D elastic-plastic
finite element modeling of a stationary crack in a general mixed-mode layered specimen

geometry. The merits and limitations of stationary crack modeling are discussed in [1],

%In the absence of crack closure, the applied load ratio R = K yin/Kmax Was shown in [1] to have only a
negligible effect on the total plastic dissipation per cycle, and is not considered further herein.
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and were reviewed in section 1.3.2. Comprehensive numerical results for a dimensionless
plastic dissipation per cycle are presented over the full range of mixed-mode loading for
both elastic-perfectly plastic and bi-linear kinematic hardening materials. The numerical
results reported in Chapter 3 provide significant insight into the role of crack tip constraint,
material hardening behavior, and mode-mix ratio on the dissipated plastic energy during
fatigue crack growth. Results are presented in Chapter 4 for the case of fatigue crack
growth along an interface between bonded layers with identical elastic yet dissimilar plastic
properties, including a mismatch in both yield strength and hardening modulus. Chapter
5 considers the case of elastic mismatch across an interface crack with matching plastic
properties. The results of the numerical analysis presented in this thesis are applied in
Chapter 6 and the pertinent results are summarized in Chapter 7. The Appendix holds
some illustrations of crack tip plastic zones, raw data from the finite element runs, and the
script used to generate the data.

The goal of this thesis is to take the reader through the required background in fracture
mechanics and fatigue crack growth to understand the context of the current research. A
sufficient background is necessary to understand the terms used to describe the mechan-
ics of interface crack problems. The initial analysis was to determine the dependence of
the plastic dissipation energy on the magnitude of the loading which showed a power law
relationship between the plastic work and the strain energy release rate. The plastic dis-
sipation energy was made dimensionless to show the effects of mode, specimen geometry
and plastic constraint for the case where both layers are matched. The plastic mismatch
analysis shows the effect of a yield strength mismatch and hardening modulus mismatch.
The effect of an elastic modulus mismatch on the cyclic plastic dissipation energy is also

shown. Finally, a couple of cases are shown for exemplar bimaterial systems. From these
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results some general design guidelines can be articulated to make interfaces more debond

resistant.

1.4.2 Contributionsof This Thesis

e This thesis gives previously unreported data for the plastic dissipation energy un-
der mixed mode loading for i) homogeneous materials, ii) plastically mismatched

materials, and iii) elastically mismatched materials.

e Insight is provided concerning the contributions of plastic constraint, specimen ge-
ometry, and material hardening behavior to plastic dissipation energy for both layered

and homogeneous systems.

e lllustrations of the plastic zone shape are revealed for different modes and elastic
mismatches. These pictures provide insight into the physical mechanisms of crack

tip mechanics.

e New methods in extracting numerical results for the @ term found in interfacial frac-

ture problems [43,44, 34, 35].

e A complete listing of a Python script used to iterate the finite element analysis.

e Design guidelines to minimize the plastic work per cycle (and reduce the fatigue

crack growth rate).

e Comparison with literature that shows a promising application of the plastic dissipa-

tion energy to predicting the fatigue crack growth rate in bimaterial systems.



Chapter 2

Background

2.1 Linear Elastic Fracture M echanics

2.1.1 Stressintensity Factors

The stress analysis of a crack tip can be found in most texts on fracture mechanics (e.g.
[45]), and reveals the stress fields near a crack tip to be singular. Although non-physical, the

crack tip stress singularity is important in understanding the mechanics of crack extension

(o]
y
L Ty
5 =|_J—~ox
e
0

V< X

\ Crack tip

Figure 2.1: Definition of a coordinate axis at the crack tip.

10
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by fatigue. Figure 2.1 shows the polar coordinates used to derive the stress fields at the
crack tip where, V is the shearing force and P is the normal force. An asymptotic analysis
of this traction prescribed problem show that the stress fields have a series solution where
the first term goesas 1/+/r. Asr — 0 the first term of the series solution becomes dominant.
The stress fields can then be written as a function of 6 and a proportionality constant known
as the stress intensity factor. The analysis of stress results in the following formulas (in

tensor notation):

. K|
fimoiy =/ fi(6) @y
' Kii
r'f(‘)ffiljI = ﬁfij(e)” (2.2)
K
| YR A\ [ PPN

Asr — 0 in equations (2.1-2.3) the values of the stresses become large thus exhibiting
the classic square root singularity. The proportionality constants K have subscripts denoting
the mode of loading: mode I, mode I, and mode Ill. In a linear elastic material, these

stresses can be linearly superposed resulting in a total stress tensor according to:

total |
o = qf’

(1

+oV 4+l (2.4)

The modes correspond to the different ways a crack tip can be loaded as shown in Figure
2.2. For this study only a planar analysis is considered, so there is no out of plane shearing

(mode 11). As such there are two modes under consideration, which leads to a straight
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(symmetric loading) (antisymmetric loading)

Figure 2.2: Schematic of modes for a crack.

forward definition of the mode-mix as:

y=—tan! (%') . (2.5)

The above definition gives an angular representation of the ratio of the mode Il and mode |
stress intensity factors. This is beneficial when reporting results for both mode | and
mode Il on the same plot because the axis defining mode-mix is bound between -90° and
90°. However, due to symmetry arguments, the positive values and negative values of
y yield the same results for elastically matched layers so only half the range is needed to
report results for all possible mode-mix ratios. A negative value of y corresponds to a neg-
ative value of the K;; component, which is a negative value of the shear. For homogenoeus
materials, a negative shear has the same physical effect of a positive shear so it is required

to only report positive values of the mode-mix ratio.
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2.1.2 Strain Energy Release Rate

The strain energy release rate determines how much energy is available for crack extension.

The rate is not a derivative with respect to time, rather with respect to new crack area:

drt
g=-— (2.6)

where IT is the total potential energy. ¢ can be determined experimentally through either
a load controlled test or a displacement controlled test where the details can be found
in [45,46,47].

The stress intensity factors and the strain energy release rate are related with the fol-

lowing expression:
K? + K

%:E,

(2.7)

where E = E for plane stress and E = &z for plane strain (v is Poisson’s ratio). This
relationship provides much needed convenience when analyzing mixed mode problems,
because the loading magnitude can be reported as a single quantity ¢, as opposed to two
different stress intensity factors K; and Kj;. It can also be noted that only two of the four
parameters (K|, Kz, ¢,and y) are independent, and that equations (2.5) and (2.7) provide
the relationships to recover all four values. That being said, reporting mixed mode data

requires either K; and Ky or ¢ and .

2.1.3 J-integral

The J-integral is a path independent contour integral about the crack tip defined as:

I 7{ (Udy T.—ds> 2.8)
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where U is the strain energy density, Ty = ojjn; are the traction vector components, u; are
the displacement components and ds is the incremental contour length around any closed
contour I. Among the details found in [45] is the important conclusion that for a linear
elastic problem, the J-integral is equal to the strain energy release rate ¢. This relationship

allows for a verification procedure of the numerical models as presented in section 3.3.3.

2.1.4 Small ScaleYielding

Since the stress fields exhibit singular behavior near the crack tip, plastic deformation is
inevitable. However, assuming the extent of plasticity is small, the plastic zones near the
crack tip are solely controlled by the stress intensity fields. When the plastic zone becomes
too large, the linear elastic fracture quantities K; and K;; are no longer the sole driving
forces of the crack tip plasticity. The assumption of small scale yielding says linear elastic
fracture mechanics applies to the crack problem, and this can be verified by checking the

analytical solution of ¢ against the numerical result for the J-integral.

2.2 Fatigue Crack Growth

It is not uncommon that machine components in service are known to have existing cracks.
This raises the question of how fast the cracks will grow and when the part will fail. These
questions motivate fatigue crack growth rate studies. Figure 2.3 is an illustration of a crack
growing with respect to the number of cycles. The actual fatigue crack growth rate is the
first derivative of the a vs. N curve. Measurements of fatigue cracks will record crack
length as a function of the number of cycles. If a load controlled experiment is conducted,

then the stress intensity factor will increase as the crack length increases according to the
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Figure 2.3: Growth of a fatigue crack from detection until failure.

definition AK = FAc\/ma where F is a geometry factor. It is also important to note AK =
Kmax — Kmin and the load ratio R = % These equations can, of course, be written in
terms of ¢ by using equation (2.7). However, if the minimum value is not zero,® the
interpretation of the A value changes when switching from stress intensity factors (K) to

strain energy release rate (¢). In other words, care must be taken since AY = Ymax — %min =

Kf%‘axg K #* (KmaX_EKmi”)z. A more detailed discussion of performing fatigue crack growth
experiments can be found in [47].

Fatigue crack growth modeling is dominated by experimental data and empirical curve
fits. The most famous regression equation is from P.C. Paris [48] who observed a power
law dependence for the fatigue crack growth rate of the form

da m
g = CaK)™ (2.9)

Since K and ¢ are related by equation (2.7), the power law can be rewritten in terms of

1The analyses performed herein were conducted with a load ratio R = 0 following reports from [ 1] that
load ratio had a minimal effect on the overall plastic dissipation energy.
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Crack Growth Rate (m/cycle)

Y

logscale  AK Stress Intensity Range, MPa,/m

Figure 2.4: Typical fatigue crack growth rate curve with three distinct regions: 1- Threshold
region, 11— Power law region (dN = C(AK) ) and Il1- unstable rapid crack extension.

4 as
da

aN = C(Ag)™, (2.10)

which is the preferred method of reporting mixed mode fatigue crack growth data [23].
The constants C and mare typically determined experimentally, and reports of these values
often include a 10% error. These values are still useful as engineering constants for a
given material. However, the actual mechanics of fatigue crack growth require analytical

modeling because they are not revealed with these empirical curve fits.
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Figure 2.5: Stress strain curves showing engineering stress and true stress.
2.3 Elastic-Plastic Behavior

Every material has a finite strength so that, when exceeded, it will either rupture or yield.
Because the stresses will increase as r — 0, a plastic zone will appear as a result of the
higher stress. This plasticity will occur even if the global stresses are well under the yield
strength. Knowing that the material at the crack tip will yield, a discussion of some of the
properties and models of plasticity is in order.

Figure 2.5 shows a typical stress-strain diagram for a ductile metal revealing the linear
elastic region and the plastic region. The most significant difference between elastic and
plastic behavior is that the material does not return to its original state after undergoing
plastic deformation. When a material is loaded elastically, it will deform the same each
time with a given amount of stress. The deformation of an elastic material is only dependent
on the application of the stress that created the deformation. Plastic behavior, however,
depends on the load history in addition to the applied loads.

The mechanism for plastic deformation is dislocation motion. A detailed discussion of
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the physical metallurgy behind plastic deformation is beyond the scope of this thesis and
is only briefly summarized here. Dislocation motion in a polycrystalline material (most
ductile metals) involves planes of atoms sliding or gliding over one another. These glissile
motions are characterized by the slip plane and slip direction. During plastic deformation,
these dislocations can accumulate and impede each other resulting in strain hardening [46].

Another important note is that a plastically deforming material has no volume change.
Hydrostatic stresses will not plastically deform a material even when each component is
higher than the uniaxial tensile strength. Yield is governed by the deviatoric stress com-
ponents from which the Von Mises yield criterion is established. Once a material has
exceeded the Von Mises criterion for yield, it will not undergo any more volume change.
This incompressible behavior is equivalent to a Poisson’s ratio of v = % for a plastically
deforming material.

The onset of yielding is determined by the Von Mises criterion? which is recognized as

G = (01~ 022+ (02— 08)2 + (01— 03)?] V2 = (2.11)

V2

where o; are the principal stresses, o is the effective stress. Plastic deformation occurs

when the effective stress value exceeds that of the uniaxial yield strength.

2.3.1 Constitutive models

The microscopic mechanism of plastic deformation is inconsequential to the macroscopic
quantification of energy, which can be obtained from a load-displacement or stress-strain

analysis. The classic stress-strain diagram of engineering materials shows the response of

2Synonyms for the Von Mises yield criterion include: i) J, flow criterion, ii) equivalent distortion energy
criterion, and iii) maximum octahedral shear stress criterion.
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Figure 2.6: ldealized stress-strain diagrams.

materials from which work can be calculated. The engineering stress curve is shown to
distinguish between the two methods of reporting stress-strain data. While the engineering
stress is determined by dividing the force by the initial area, true stress is determined by
dividing the stress by the actual area. The difference in the curves at low values of strain
(< 5%) is small compared to that of larger strains. For all subsequent analysis in this thesis
only true stress-strain relationships are considered.

Figure 2.5 also illustrates the concept of elastic strain £€ and plastic strain €P. The total
strain is the addition of the elastic and plastic strain. The elastic and plastic components
are determined by drawing a line parallel to the initial linear section of the curve from
the point corresponding to the total strain. Where the line intersects the abscissa gives the
plastic strain. Also, the elastic strain will increase as the material strain hardens more.
Understanding these concepts is important when implementing the material properties in a
finite element modeling code as described in section 2.3.3.

For modeling purposes there are a few common idealized stress strain diagrams illus-
trated in Figure 2.6. The rigid-perfectly plastic (Figure 2.6a) model is usually employed

when dealing with large-scale plastic deformation, where the elastic deformation makes up
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a very small contribution to the overall deformation. Since the elastic and plastic strains
near a crack tip under small scale yielding are comparable in magnitude, this model is not
useful herein. Likewise, the rigid-plastic (Figure 2.6b) model assumes large scale yielding
with strain hardening and is also not valid for the analyses herein. However, the elastic-
perfectly plastic (Figure 2.6¢) and bi-linear hardening (Figure 2.6d) models are valid when
considering problems in the elastic-plastic regime. The elastic-perfectly plastic case is also
a special case of the bi-linear hardening model when the tangent modulus E; = 0. It is
recognized that other constitutive models exist and may be more realistic, but the simplic-
ity of the bi-linear hardening model is preferred for this thesis.® The bi-linear hardening
model can account for different strain hardening rates in terms of a single ratio E;/E. So
far, only uniaxial tensile response has been illustrated in Figures 2.5 and 2.6 and the actual

application of these models requires a discussion of cyclic response.

2.3.2 Isotropic Cyclic Hardening

Figure 2.7 shows the stress strain diagram for a material that exhibits isotropic cyclic hard-
ening. The cyclic response involves loading followed by unloading, or loading in the op-
posite direction. As a material is loaded past yield, it will harden and make the material
stronger. Using an isotropic material model says that when the material is unloaded and
reloaded it will yield in compression after the same magnitude of stress is applied (i.e.
Ao = 20") as shown in Figure 2.7. The value ¢’ is the highest value of stress experienced
during the previous loading cycle. Subsequent hardening takes place and further increases

the yield strength. This pattern leads to an always increasing yield strength which, of

3Also, the quantity desired, plastic dissipation energy, is an integrated quantity and the error associated
with using a simplified material model is smoothed and averaged over the whole plastic zone. As a result,
capturing the exact behavior of the material as it transitions from the linear elastic region to the plastic regime
is of limited consequence.
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Figure 2.7: Cyclic isotropic material hardening behavior when loaded to equivalent positive
and negative strain values.
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(00, €0) —

Figure 2.8: Bi-linear kinematic hardening model when loaded to similar positive and neg-
ative strain values. Plastic shakedown occurs after one cycle.

course, is non-physical. When the hardening modulus is low, the material will require
more iterations before moving the yield a similar amount than if the tangent modulus is
higher. Obviously when the material is elastic-perfectly plastic, no hardening is exhibited

and there is no gain in yield strength.

2.3.3 Kinematic Cyclic Hardening

Kinematic hardening predicts that the material will yield in the reverse direction after a
change in stress Ac = 2oy where oy is the initial yield strength. The bi-linear kinematic
hardening model shown in Figure 2.8 is the model of choice for this analysis, and includes
the limiting case of elastic-perfectly plastic (Figure 2.6c¢). In the context of classical small-
strain elastoplasticity, the bi-linear kinematic hardening model can be used to approximate

the stabilized cyclic response during constant amplitude loading. Real materials exhibit
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isotropic behavior for the first few cycles and evolve to kinematic behavior. This trend
toward kinematic behavior is known as plastic shakedown. Figure 2.8 shows that the bi-
linear kinematic hardening model provides for a reduced yield strength upon reversal (the
Bauschinger effect), and predicts plastic shakedown after only a single cycle.

The elastic modulus E, tangent modulus E;, and yield strength oy are the three in-
dependent parameters completely defining the material response for a bi-linear kinematic
hardening model. The tangent modulus can range from a slope of zero to that of Young’s
modulus (0 < E; < E). Obviously a tangent modulus equal to the elastic modulus is far
fetched, so the results of such analysis are included only for academic completeness. With-
out loss of meaning, the tangent modulus is more conveniently expressed as a ratio E;/E,
whose values have the range 0 < E;/E < 1.

The material models previously discussed need to be implemented into a finite element
program. The software used for this for this thesis is ABAQUS, produced by HKS Soft-
ware. The implementation of the kinematic hardening model in the finite element code was
not trivial and is detailed in the next paragraphs.

ABAQUS uses the plastic strains to define the material behavior instead of total strains.
The first data point in the plastic properties table has to be the yield point when the plas-
tic strain is zero. If no other data are given, ABAQUS assumes elastic-perfectly plastic
behavior. To give a non zero value to the tangent modulus, another point must be added
to the plastic behavior definition table. By fixing a value of stress slightly higher than the
yield point, a range of plastic strain components can be computed corresponding to differ-

ent moduli ratios E; /E. Given the bi-linear kinematic hardening model as shown in Figure
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2.8, the slope of the tangent modulus is defined as

E =219 (2.12)
€1 —&

The strain at yield is solely elastic strain, whereas the strain at point 1 has both elastic and
plastic parts. The elastic strain is defined from a simplified Hooke’s law as 2. Given those

simple definitions and dividing equation (2.12) through by Young’s modulus yields
E; o1 — 0y

— = . 2.13
E Eéeip+ 01— 09 ( )

If the yield point and elastic modulus are known, solving equation (2.13) for the plastic
strain is determined by

elp —

1 ((61—60)
E\ EJE

—0'1+60> . (2.14)
The values generated using equation (2.14) are input in the property definition tables of the
finite element software.

The primary goal of these modeling procedures is to account for some type of material
hardening. It is true that a real material does not exhibit bi-linear behavior, but it can be
represented with an equivalent bi-linear model with reasonable accuracy. The procedure

for extracting the plastic dissipation energy will be the same as those presented herein even

if the constitutive model were to be changed.
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Matching Layers

3.1 Global Problem Geometry

Some of the desired qualities of the specimen geometry include the presence of an analyt-
ical solution to verify the numerical results, the ease of implementation of finite element
codes, and the applicability of real world specimens. Examination of the literature lead
to a generalized specimen found in a paper by Suo and Hutchinson [43] and is shown in
Figure 3.1. This specimen has a special case equivalent to the 4-point bend test specimen
proposed by Charalabides et al. in [49].

The mixed-mode layered specimen geometry of Figure 3.1 is composed of two bonded
layers of isotropic materials #1 and #2, which can have different thicknesses (h; and hy),
different elastic properties (Eq, E, v1, and v,) and different plastic properties (oy1, oyz, Et1,
and E;»). In this chapter, both the elastic and plastic properties of materials 1 and 2 are the
same, while mismatches are considered in plastic and elastic properties in Chapters 4 and

5. The relative thickness ratio of the layers n = h—; only changes the mode of the problem,?

1The relative thicknesses also affect ¢, but the end results are normalized by ¢ so this is irrelevant.

25
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Figure 3.1: Specimen geometry for mixed-mode cracking with matching layer thicknesses.

which can also be changed by changing the loads. As a result, the ratio n = % =1is used

in this analysis for ease of implementation in the computer code.

The loading consists of pure bending moments M1 and M, applied to the top and bottom
layers, which are equilibrated by a symmetry condition on the right hand side. The variation
in the bending moments M1 and M, allows consideration of the full range of mode-mix
values, from pure mode I to pure mode II.

In light of the symmetry condition, the modeled length L actually represents half the
total specimen length. Both the length L and the crack length a are sufficiently long to allow
for steady-state conditions at the crack tip, so that the energy release rate is independent
of crack length (see [43, 44] for more details). Also, the slenderness of the layers allows
the specimen to be analyzed using beam theory, which provides a check on the computer
solution. The dimensions used in all numerical analyses discussed in the next sections were

L =50 mm, hy =5 mm, h, =5mm, and a= 25 mm.
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3.2 Analytical Models

As mentioned in section 3.1, a semi-analytical solution for steady-state cracking along
the interface of a general bimaterial specimen configuration, having mismatches in both
layer thickness and elastic properties, has been provided by Suo and Hutchinson [43]. As
detailed in the next few sections, the results of [43] can be reduced to provide an analytical
solution for the specimen configuration considered herein, in which there is no mismatch

in either elastic properties or layer thickness.

3.2.1 General solution

For the case of no mismatch in layer thickness or elastic properties the mode | and mode 11

stress intensity factors for the problem of Figure 3.1 are

K — w (3.1)
Kii = —% (3.2)

It is important to note that in the presence of small scale yielding, the elastic stress intensity
factor solutions of equations (3.1) and (3.2) are valid even in the presence of a mismatch in
plastic properties across the interface, so long as the elastic properties E and v are identical.

Inspection of equations (3.1) and (3.2) reveals that when M1 = My, the K;; component
vanishes leaving pure mode I loading (y = 0°). Also, when M; = —Mj, the K; component
vanishes leaving a pure mode Il condition (v = 90°). Another simplification of (3.1) and

(3.2) occurs when My = 0 (or yw = 41°), which is a special case of the four-point bend test
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specimen geometry commonly used for inter-facial fracture testing of layered materials
[49,32].
Substitution of equations (3.1) and (3.2) into equation (2.7) gives the steady-state en-

ergy release rate for the problem of Figure (3.1a) as

3(7TM2 + 2M; M, + 7TM3)

v = 4ER3

(3.3)

The above result can also be directly determined from the difference in strain energy per
unit crack area far behind and ahead of the crack tip, which is the hallmark of steady-state
delamination problems [43]. The difference in strain energy for the problem of Figure 3.1

can be determined from elementary beam theory, as discussed in the next section.

3.2.2 Beam Theory Solution

The beam theory solution is helpful in providing insight into the mechanics, as well as a
crosscheck for the previous results. As discussed in [32,44], advancing a steady state crack
is the same as taking the amount of crack advance da from ahead of the crack and placing

it behind the crack, as shown in Figure 3.2. The strain energy release rate is then quantified

da
- -
Crack advance
—

s

\J//

Exchange sections

Figure 3.2: Illustration of an equivalent steady state crack advancement.
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by the difference in the strain energy in the piece that was ahead of the crack (whole) and
the same piece behind the crack (split).
Consider a section of the specimen far ahead of the crack in Figure (3.1a). The strain

energy per unit length is given as:
u :/cijgi,-dv. (3.4)

Since the layer thicknesses are equal, the materials are elastically matched and the strains
are linearly distributed across the cross section in the x-direction, the strain energy per unit

length in a section becomes:

du  Mm?
a —_— E. (3-5)
Defining ¢ with equation (2.6) and subbing in equation (3.5) gives
_ [B6(M1—M)2  [(6MZ  6M2
7= ( E(h+H)3 Ens T EH? (3.6)

when dA = Bda and dIT = dUghead — dUpehing- Throughout this thesis B refers to the depth

in the z-direction which is considered unity. Equation (3.6) further reduces to equation (3.3)

3(7TM2 + 2M; M, + 7TM3)

v = 4ER3 :

(3.7)

thus showing a simple beam theory solution and verification of the strain energy release

rate found in Suo and Hutchinson [44,43].
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3.3 Numerical Modeling

3.3.1 Finite Element Analysis
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(a) Undeformed finite element model
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(b) Finite element model with a defomation factor of 1000

Figure 3.3: Finite element mesh, loading, and boundary conditions

The total plastic dissipation per cycle is obtained herein from a 2-D finite element model
of the geometry of Figure 3.1 under constant amplitude, mixed-mode loading. The finite

element mesh, applied loads and boundary conditions are illustrated in Figure 3.3. For
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ease of implementation, the moments M1, and M, are applied in the form of equal and
opposite uniform stress distributions. The loading illustrated in Figure 3.1 results in equal
and opposite bending moments, which corresponds to the case of pure mode I. A pure mode
Il loading would have the applied moments in the same direction. For matching materials,
the full range of mixed-mode loading has been considered by holding M1 constant and
varying My in the range —M; < My < M.

The finite element model uses 8-node bi-quadratic reduced integration elements con-
tained in the commercial software package ABAQUS. The analysis employs classical small-
strain incremental elastoplasticity with Von Mises yield criterion, which is generally appro-
priate for metals and other ductile solids. Reduced integration elements are chosen for their
accuracy during nearly incompressible material response, which results from the pressure-
independent yielding assumed in the elastoplasticity formulation. The elements are highly
biased toward the crack tip, with the smallest element measuring only 0.5 um. As discussed
in [1], such fine mesh resolution is needed to accurately resolve the reversed plastic zone
upon load reversal, and to ensure convergence of the continuum theory solution.? As dis-
cussed in [1], the total plastic dissipation per cycle is insensitive to the choice of crack-tip
elements, so standard (as opposed to quarter-point) elements are used at the crack tip.

One very powerful tool in ABAQUS is the ability to write scripts to automate the finite
runs. Version 6.1 and later of ABAQUS is built on the Python interpreted language and
scripts can be written and recorded to reproduce the exact procedure used to generate a
numerical result. Those steps can then be iterated with a script to set up a parametric study

as shown in Appendix C.

21t should be noted that convergence of the continuum solution does not police its applicability. As such,
care should be taken in applying the results of this work for cases in which the reversed plastic zone is on the
order of the grain size of the material.
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3.3.2 Crack Tip Plasticity

The effect of mode-mix ratio on the evolution of forward and reversed plastic zones during
a complete load cycle (R = %min/%max = 0) is illustrated for both plane stress and plain
strain in Figures 3.4 to 3.6. The material considered is elastic-perfectly plastic (E;/E = 0)
with elastic modulus E = 73.1 GPa, yield strength oy = 300 MPa, and Poisson’s ratio
v = 0.3. For ease of comparison, the applied range of energy release rate is held constant
at AY =200 J/n?,

As shown in Figures 3.4a and 3.4b, both the shape and size of the forward plastic
zones under pure mode | loading are in keeping with expectations from classical fracture
mechanics analyses, as well as with previous results in the literature [45]. In particular,
unconstrained yielding results in a much larger plastic zone in plane stress (Figure 3.4b)
than in plane strain (Figure 3.4a). While the forward plastic zones scale with (AK/cy)Z,
the reversed plastic zones scale with (AK/ZGy)Z, which is in keeping with the plastic su-
perposition argument first put forth by Rice [2]. As such, the greatest extent of the reversed
plastic zones of Figures 3.4c and 3.4d is roughly 1/4 that of the forward plastic zones of
Figures 3.4a and 3.4b.

The asymmetry of crack tip plasticity during mixed-mode loading is evident from Fig-
ure 3.5, where the phase angle of v = 41° represents a nearly equal mix of mode I and Il
loading. More importantly, a comparison of the scale factors in Figures 3.4 and 3.5 reveals
that an increase in mode Il component significantly increases the extent of crack tip plastic-
ity in both plane stress and plane strain. The difference in the plane stress and plane strain
plastic zones reduces with an increasing shearing component. The reason stems from the

definitions of plane stress and plane strain. For plane stress the out of plane principal stress
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Figure 3.4: Forward and reversed plastic zones in pure mode |

73.1 GPa, v = 0.3, oy = 300 MPa, and AG = 200J/n?.
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AG 1

(a) Plane Strain Fwd. (b) Plane Stress Fwd.

AG 1

(c) Plane Strain Rev (d) Plane Stress Rev.

Figure 3.5: Forward and reversed plastic zone when y = 41°
with E = 73.1 GPa, v = 0.3, oy = 300 MPa, and AG = 200J/n?.
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Figure 3.6: Forward and reversed plastic zones in pure mode 11

73.1 GPa, v = 0.3, oy = 300 MPa, and AG = 200J/n?.

with E
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03 =0 (3.8)

and for plane strain the out of plane stress is

o3 =Vv(o1+02) (3.9)

If a material is under pure in-plane shear (pure mode Il), the principal stresses are equal

and opposite, leaving no distinction between equations (3.8) and (3.9).

3.3.3 Veifying Small Scale Yielding

It should be noted that the plastic zone sizes of Figures 3.4-3.6 are well within the range of
small-scale yielding, which has been independently verified for all cases considered herein.
First, J-integral estimates available in ABAQUS have been calculated at maximum load
and directly compared to equation (3.3) (J = ¢ for linear elastic fracture). While crack tip
plasticity invalidates J-integral estimates within the plastic zone, those taken from contours
outside the plastic zone have been found to agree with equation (3.3) to five significant
digits. Such agreement can only be obtained in the presence of small-scale yielding. In
addition, interaction integral estimates for the stress intensity factors have been obtained
from elastic finite element runs of the specimen geometry. The results have been in excel-
lent agreement with the the closed-form solutions of equations (3.1) and (3.2), as well as

with the J-integral estimates obtained from the elastic-plastic analysis.
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Figure 3.7: Representative time history graph of the cumulative plastic dissipation energy
(keyword: ALLPD in ABAQUS).

3.4 Numerical Resultsand Discussion

3.4.1 Preliminary Finite Element Results

Figure 3.7 shows a representative trace of the time history of the plastic dissipation energy
automatically tracked in ABAQUS. As Figure 3.7 shows, the plastic dissipation energy in
the first loading cycle is much larger than in subsequent cycles. Two cycles are necessary
because the plastic deformation during the first load cycle occurs throughout the forward
plastic zone, while plastic deformation in subsequent cycles is restricted to the reversed

plastic zone. Moreover, for both elastically-perfectly plastic and bi-linear kinematic hard-
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ening materials, the plastic dissipation remains constant after the second cycle. As such,
the quantity ﬂi,\\l’ = AWy, represents a steady-state value of QMN in all subsequent cycles. The
cyclic dissipated energy is the value of ALLPD at time step 4 less the value of ALLPD at
time step 23. This further illustrates the concept of plastic shakedown where every cycle
dissipates the same amount of energy.

Representative plane strain finite element results for the total plastic dissipation per
cycle % as a function of applied range of energy release rate A% are plotted over the full
range of mode-mix values in Figure 3.8. As shown in Figure 3.8, a least-square curve fit of

the numerical data results in a power-law relation of the form

Z—VI\\II =C(A9)™. (3.10)
The results of the regression analysis showed that the exponent of the power law relation
for all cases considered was in the range 1.99 < m < 2.04 with R? > 0.99. Thus, to within
numerical error, the exponent of the power law relation is m= 2, and is unaffected by
the mode-mix ratio. In light of equation (1.1), the predicted fatigue crack growth rate
is proportional to A%2, which is within the range of observations of mixed-mode fatigue
crack growth on ductile interfaces [36, 37, 38, 39, 40, 41]. It should also be noted that for
an applied load ratio R= 0, the quantity A%? corresponds directly to A|K|4, or for the case
of mode | loading, AK*. This is in keeping with previous energy-based theories of fatigue

crack growth under mode | loading, and is consistent with fatigue crack growth data for a

variety of ductile metals [1].

3The actual process of extracting the results is automated in the ext ractWork function of the script in
Appendix C.
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dW/dN as a Function of AG for Different Modes
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Figure 3.8: Effect of mode-mix on

v = 0.3, and oy = 300 MPa.

?ji,\\]’ in plane strain when E;/E = 0, E = 73.1 GPa,
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Convergence of f’ji,\‘l’ Mesh Resolution
Time Step Coarse Medium Fine
1 1.1216E-3 | 1.1138E-3 | 1.1138E-3
.05 1.1258E-3 | 1.1184E-3 | 1.1188E-3
.025 1.1281E-3 | 1.1189E-3 | 1.1191E-3

40

Table 3.1: Convergence study of f’ji,\\l’ for pure mode | with matching layers when E;/E = 0,
v =0.3, E =73.1 GPa, o = 300 MPa and A% = 200J/n? .

Convergence of ‘éi,\\l’ Mesh Resolution
Time Step Coarse Medium Fine
1 1.3399E-3 | 1.3422E-3 | 1.3427E-3
.05 1.3491E-3 | 1.3509E-3 | 1.3510E-3
.025 1.3514E-3 | 1.3532E-3 | 1.3531E-3
Table 3.2: Convergence study of % for v = 41° with matching layers when E;/E = 0,

v =0.3, E =73.1 GPa, o = 300 MPa and A¥ = 200J/n? .

3.4.2 Convergence Studies

It should finally be noted that a rigorous convergence study was performed in both time and
space by successively halving both the element edge length and the maximum time step
used in ABAQUS’ automatic time-stepping algorithm. In so doing, the value of QMN from
the production mesh of Figure 3.3 varied less than 1 percent from the value of ?j—w obtained
from the finest mesh. A summary of these studies are presented in Tables 3.1-3.3 with the
production runs being in the middle of the table (medium mesh resolution and time step =

0.05)

3.4.3 Non-Dimensionalization

In order to facilitate a general presentation of results, the plastic dissipation per cycle can be

non-dimensionalized in terms of the yield strength, applied energy release rate and elastic
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Convergence of ?ji,\‘l’ Mesh Resolution
Time Step Coarse | Medium Fine
1 0.012585 | 0.012511 | 0.012507
.05 0.012667 | 0.012586 | 0.012579
025 0.012688 | 0.012608 | 0.012601

41

Table 3.3: Convergence study of ?ji,\\l’ for pure mode 11 with matching layers when E; /E =0,
v =0.3, E=73.1 GPa, o = 300 MPa and A% = 200J/n? .

modulus as
dw*  of dw
dN  EA%2dN’

(3.11)

In light of equation (1.1), the fatigue crack growth rate can be written in terms of the
dimensionless plastic dissipation per cycle as

da EA9?dw*

N~ 02% dN - (3.12)

For a material with matching elastic layers, the dimensionless plastic dissipation ‘é—",i,’* de-

pends on the applied mode-mix ratio y, Poisson’s ratio v, and the hardening ratio E; /E.

3.4.4 Effect of Mode-Mix

Figure 3.9 shows a plot of QMN* vs. y after applying equation 3.11 to the data of Figure
3.8. All ninety points from Figure 3.8 are collapsed to the “S” shaped curve of Figure 3.9
which validates the normalization of the data with equation (3.11). This collapse of the
data shows a definite influence of the mode-mix on the plastic dissipation energy. Clearly,
the plastic dissipation increases significantly with mode-mix, and is between one and two
orders of magnitude greater in mode Il than in mode I. This result might be expected in

light of the increase in plastic zone size with mode-mix illustrated in Figures 3.4-3.6.
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Normalized Plastic Dissipation
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Figure 3.9: Dimensionless plastic dissipation ﬂi,\\l’* vs. mode-mix ratio y for E;/E =0 and
v = 0.3 in plane strain.
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3.45 Effect of Plastic Constraint

A family of curves showing the dimensionless plastic dissipation as a function of mode-mix
over the full range of Poisson’s ratio and for E;/E = 0 is shown in Figure 3.10. Results are
also shown for plane stress, although these are independent of Poisson’s ratio.* As shown
in Figure 3.10, the plastic dissipation is greatest in plane stress, and decreases with increas-
ing plastic constraint (i.e, increasing Poisson’s ratio in plane strain). This result might be
expected based on the relative plastic zone sizes in plane stress and plane strain, and is in
keeping with the mode | results of [1]. The plot of Figure 3.10 also contains the master
curve of Figure 3.9, which corresponds to v = 0.3 in plane strain. Evidently, changes in
Poisson’s ratio (i.e., plastic constraint) result in roughly uniform shifts of the master curve,
although the magnitude of such shifts decreases with increasing plastic constraint. An im-

portant result is that for v > 0.3, values of ‘é—‘,ﬁ,’* vary by less than 0.5%. Thus, for all values
of the mode-mix ratio, the effect of Poisson’s ratio on ‘é—",i,’* is negligible for typical ductile

metals where v > 0.3.

3.4.6 Effect of Hardening Modulus

Numerical results for ?ji,\\l’* vs. y are plotted in Figure 3.11 over the full range of E;/E and
for v = 0.3. The case of E;/E = 0 (elastic-perfectly plastic response) coincides with the
master curve of Figure 3.9, and represents an upper bound on the plastic work per cycle
in plane strain. As should be expected, ‘é—",:,’* decreases with increasing hardening modulus,
and approaches zero for the case of E; /E = 1 (purely elastic response). Thus, for all values

of mode-mix, the effect of increasing material hardening is to decrease the plastic work. In

4Note that for the case of v = 0, plane stress and plane strain are equivalent only in the elastic regime; for
the case of plane strain, the incompressible response assumed and the classical plasticity formulation results
in constrained yielding in the elastic-plastic regime.
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Effect of Plastic Constraint
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Figure 3.10: Dimensionless plastic dissipation energy ‘2‘,—",:,’* vs. mode-mix y in plane stress

and plane strain.
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Effect of Material Hardening
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Figure 3.11: Effect of the tangent modulus ratio on g_w* vs. v for matching layers when

v =0.3.
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an absolute sense, the results of Figure 3.11 indicate that %i,\\l’* is more sensitive to hardening
ratio for high values of y. On the other hand, the effect of mode-mix is substantially more

pronounced for low values of E;/E, which is typical of ductile metals.

3.4.7 Effect of Specimen Geometry

The effects of hardening modulus on the dimensionless plastic dissipation have been con-
sidered for the case of mode I loading (C(T) specimen geometry) in [1]. Different specimen
geometries and loading typically exhibit slight differences in both the shape and size of the
crack tip plastic zones, which is typically attributed to differences in “T-stress” at the crack
tip [45]. In order to investigate the sensitivity of ?ji,\\l’* to specimen geometry, both the cur-
rent results for mode | loading and those of [1] are plotted verses E; /E for both plane stress
and plain strain (v = 0.3) in Figure 3.12. The most measurable difference is for the case
of E;/E = 0 in plane stress; however, this difference decreases with increasing hardening
modulus, and appears to be negligible in plane strain. Hence, results suggest that specimen
geometry has only a limited effect on the total plastic dissipation during plane strain fatigue

crack growth in ductile solids.
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Figure 3.12: Comparison of current specimen results in mode | and C(T) results from [1].



Chapter 4

Plastic Mismatches

4.1 Modeling Procedure

A plastic mismatch is a difference in the hardening modulus and/or yield strength. These
systems occur in layered or functionally graded materials where the elastic properties are
the same and the plastic properties are altered through material processing. Because the
analytical solutions presented in Chapter 3 are only dependent on the elastic properties and
loading, the same equations can be used for interpreting the case for a plastic mismatch. A
schematic of the different property mismatches is shown in Figure 4.1. Figure 4.1a shows
the same hardening modulus with different yield strength and Figure 4.1b shows the same
yield strength with a mismatch in hardening modulus. Both cases are considered in this

chapter.

48
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LA
LA

Figure 4.1: A schematic of different plastic property mismatches.

4.1.1 Déefinition of Yield Strength Mismatch

In this thesis, a yield strength mismatch is defined in terms of the dimensionless parameter

Gyl — Gyz

6= ,
Oyl + Oy2

(4.1)
where all possible values of strength mismatch are bounded between —1 < 6 < 1. If the
top layer of the specimen is largely stronger than the bottom layer then 6 — 1. Likewise,
if the top layer is much weaker than the bottom layer then 6 — —1. The case when 6 =0
means there is no strength mismatch in the material. The cases considered herein use an
elastic-perfectly plastic model when considering the strength mismatch. Also, all cases in

this chapter use v = 0.3 in plane strain.

4.1.2 Déefinition of Hardening M odulus Mismatch

The ratio E;/E is already dimensionless; as such, two parameters are needed to define the
design space for a mismatch in the tangent modulus: Ei1/E and Eq2/E. To this end, full
consideration of the design space requires varying each ratio independently. The higher

values of E;/E are more for academic completion than real application, because most duc-
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tile metals have fairly low hardening moduli (E;/E < 0.1). Since there are three indepen-
dent variables (v, Ei1/E and E;/E) and one dependent variable (ﬂi,\\l’*), a single plot will
no longer suffice to map out the plastic dissipation energy. Instead, a family of curves is

needed to reflect the contributions of each variable.

4.1.3 Numerical Models

The numerical modeling is the same as that outlined in Chapter 3 with the only difference
being the plasticity options for each layer. The plastic properties of each layer have to be
defined independently. Each layer was changed for the FEA using a script similar to the

one found in Appendix C.

4.2 Numerical Resultsand Discussion

4.2.1 Non-Dimensionalization

A modification of equation (3.11) is necessary for a more meaningful presentation of re-
sults. If normalized by the stronger material, the quantity %i,\\l’* will become very large as
6 — +1. As the yield strength used to normalize the data becomes large, then the quan-
tity ‘é—‘,ﬁ,’* also becomes large according to equation (3.11). To alleviate this, ?ji,\\l’ can be
normalized with respect to the weaker material as

aw*_ o dw
dN  EA¥%Z2dN’

(4.2)

where oy = min(oy1, 6y2). Using the minimum yield strength makes for an easier graphical

representation of the extreme values of 6. Also, the weaker material controls the small
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Effect of Yield Strength Mismatch
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Figure 4.2: Illustration of the asymptotic effect of high strength mismatches.

scale yielding assumption. To generate results, the top layer would be assigned a fixed
yield strength and the bottom would be assigned successively stronger materials to generate
results for the values of 6 < 0. Likewise, to generate values of & > 0, the bottom layer is
given a fixed yield strength and the top layer is increased in strength. This ensures small

scale yielding because the plasticity will always be decreasing.
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4.2.2 Yidd Strength Mismatches

Using the new definition of the normalized plastic dissipation defined in equation (4.2), a
plot of the plastic dissipation vs. yield strength mismatch is shown in Figure 4.2. A number
of physical insights are evident in Figure 4.2. First, the effect of a strength mismatch is
small compared to the effect of mode-mix. Second, there is an asymptotic effect of the
yield strength mismatch. In other words, the value of ?ji,\\l’* for extreme values of the yield
strength mismatch are the same as the values for |G| > 0.25 which is equivalent to a yield
strength ratio of 5:3 (~ 1.67).

For all values of v, the effect of ¢ is limited to the region of —0.25 < 6 < 0.25, after
which, ?ji,\\l’* exhibits asymptotic behavior. As the strength mismatch continues to increase,
there is a negligible contribution of plastic work from the stronger material. Thus, whenever
a material is at least 1.67 times as strong as the other, the plastic dissipation energy is
dominated by the weaker material. Figure 4.2 also shows the plastic work per cycle is not
symmetric about 6 = 0 except for when y = 0° and y = 90°.

The normalized plastic dissipation energy ?ji,\\l’* is plotted vs. y and several values of
E:/E and & in Figure 4.3.The case of pure mode | or pure mode Il is expected to be
indifferent to whether the top is stronger or the bottom is stronger. This can easily be
shown by symmetry arguments of the problem. However, as the mode becomes mixed
from mode I, the values of %* are higher when 6 > 0. Conversely, as the mode becomes
mixed from pure mode II, the values of ‘é—",:,’* are lower when 6 > 0. This means there is
another value of v where ‘(’ji,\\l’* is symmetric about the point & = 0. To illustrate this point,
ﬂi,\\l’* is plotte