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ABSTRACT 
 
Fauley, Stacey M. M.S., Department of Chemistry, Wright State University, 2002. 
Selected Synthetic Studies of NLO π-Bridges and Thermally Stable Monomers. 
 

The molecular weights of two series of PEEK polymers were determined using gel 

permeation chromatography (GPC).  The first series contains oxyalkylene linkages.  The 

other series contains oxyethylene linkages. 

The synthesis of several thermally stable monomers has been investigated.  These 

monomers include 9,9-dihexylfluorene-2,7-dicarboxaldehyde, 2,7-bis(bromomethyl)-9,9-

dibutylfluorene and 2,7-bis(hydroxymethyl)-9,9-diethylfluorene.  These monomers can 

be used to form polymers that will contain short conjugated segments separated by 

nonconjugated segments. 

The synthesis of 50 g of each of the following monomers was accomplished:  bis(3-

methylphenyl)phenylphosphine oxide, bis(4-methylphenyl)phenylphosphine oxide, bis(3-

carboxyphenyl)phenylphosphine oxide and bis(4-carboxyphenyl)phenylphosphine oxide.  

These monomers will be used in a polymerization to form polybenzoxazoles. 

The synthesis of the NLO π-bridge 2,10-dibromo-5,6-diphenyl-11,12-

dihydroindeno[2.1-a] was accomplished.  Alkylation of this compound was attempted, 

but the results were inconclusive.  This project was abandoned due to the consistently 

low yields.  Another NLO π-bridge that was attempted contained the c-fused system, 

however, the initial steps also showed consistently low yields.  Because of low yields, 

this project was also abandoned. 
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INTRODUCTION 

Poly(ether ether ketone)s 

There is a constant search for materials that exhibit properties such as thermal 

stability, chemical resistance and thermooxidative resistance while maintaining electrical 

and mechanical properties.  Poly(arylene ether)s, specifically poly(ether ether ketone)s, 

are a group of materials that exhibit these types of properties.  These materials can be 

used in composite as well as adhesive applications. 

Poly(ether ether ketone)s can be prepared by two methods.  The first is 

nucleophilic substitution of a dihalide with an alkali metal bisphenolate.  The second 

method is by Friedel-Crafts acylation. 

In the past decade, a relationship between structure and property has been 

explored.  Oxyalkylene units and oxyethylene units have been incorporated into the 

monomers that undergo polymerization to form poly(ether ether ketone)s.  The length of 

these units causes a change in the glass transition temperature with little affect on the 

thermal stability of the polymer. 

The objective of this project was to determine the molecular weight of a series of 

poly(ether ether ketone)s using gel permeation chromatography (GPC). 

 

Polybenzoxazoles 

Polymers that contain phosphine oxide linkages, like poly(arylene ether 

phosphine oxide)s (PEPO), are another type of thermoplastic material of interest.  These 
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polymers tend to have a high glass transition temperature1 and thermal stability as well as 

flame retardency and high energy radiation resistance2.  Because of these reasons, these 

materials are being investigated for use in nuclear and or space applications. 

The objective of this project was to synthesize significant amounts of each of the 

following: bis(3-methylphenyl)phenylphosphine oxide, bis(4-

methylphenyl)phenylphosphine oxide, bis(3-carboxyphenyl)phenylphosphine oxide and 

bis(4-carboxyphenyl)phenylphosphine oxide. 

 

Poly(phenylenevinylene) 

Poly(phenylene vinylene)s (PPVs) have been popular since the discovery of their 

electroluminescent properties and their ability to conduct current.  The conductivity of 

these polymers can be altered by doping or by changing the component groups within the 

polymer3. 

Because there is some control over the conductivity of PPVs, they have become a 

candidate for use in light emitting diodes (LEDs).  These polymers can be made using an 

assortment of synthetic routes which can lead to a wide variety of polymers.   

Much research has focused on developing an efficient, stable organic species that 

emits in the blue region for use in light emitting diodes (LEDs).  Red and green emitters 

are readily available, but blue emitters have been a synthetic challenge.  Among the blue 

emitting polymers that have been synthesized are poly(2,7-(9,9-dialkylfluorene))s and 

poly(phenylenevinylene)s4.   

These polymers have been extensively studied for use in light emitting diodes 

(LEDs) because of their electroluminescent and conductive properties3.  Derivatives of 
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PPV have been shown to have emissions in the visible spectrum from green to red5.  Blue 

emission is difficult to achieve with these polymers because the conjugation length must 

be controlled6. 

The objective of this project was to synthesize 9,9-dihexylfluorene-2,7-

dicarboxaldehyde and 2,7-bis(bromomethyl)9,9-dibutylfluorene. 

 

Nonlinear Optical Materials 

In the past several years, nonlinear optical materials have been a popular research 

topic.  These materials have numerous applications including frequency upconverted 

lasers7, optical communication and data storage8 and optical and sensor limiting.  The 

application focused on in this study is optical and sensor limiting.  The nonlinear optical 

materials that undergo two photon absorption are most important to this study.  Two 

photon absorption occurs when a material is irradiated with infrared radiation.  The 

material absorbs two photons simultaneously, undergoes nonradiative decay and then 

emits a photon at a frequency higher than that absorbed.  In designing nonlinear optical 

materials, the 9,9-dialkylfluorene bridge has proven the most suitable based on its two 

photon cross section.9  This is attributed to the planarity and the conjugation length of the 

molecule. 

The focus of this project was to synthesize an indenofluorene molecule for use as 

a polarizable π bridge in these chromophores.  Using an indenofluorene would maintain 

the planarity of the bridge, but increase the conjugation length. 



 4

 
 
 
 
 

HISTORICAL 

 

Poly(ether ether ketone)s with Oxyalkylene linkages10 

 

In 1992, a series of bis(fluorobenzophenone) monomers containing oxyalkylene linkages 

of varying lengths was synthesized by reacting 4-fluoro-4’-hydroxybenzophenone 1 with 1,2-  

 

F

O

OH Br (CH2)n Br

F

O

O(CH2)nO

O

F

+

1

2, n = 2
3, n = 3
4, n = 4
5, n = 5
6, n = 6

7, n = 2
8, n = 3
9, n = 4
10, n = 5
11, n = 6  

 

dibromoethane 2, 1,3-dibromopropane 3, 1,4-dibromobutane 4, 1,5-dibromopentane 5 and 1,6-

dibromohexane 6 to form 1,2-bis(4-(4-fluorobenzoyl)phenoxy)ethane 7, 1,3-bis(4-(4-

fluorobenzoyl)phenoxy)propane 8, 1,4-bis(4-(4-fluorobenzoyl)phenoxy)butane 9, 1,5-bis(4-(4-

fluorobenzoyl)phenoxy)pentane 10 and 1,6-bis(4-(4-fluorobenzoyl)phenoxy)hexane 11, 

respectively. 

A model study was performed using these oxyalkylene containing monomers.  
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F

O

O(CH2)nO

O

F

O

O(CH2)nO

O

O

7, n = 2
8, n = 3
9, n = 4
10, n = 5
11, n = 6

+ 2

13, n = 2
14, n  = 3
15, n = 4
16, n = 5
17, n = 6

OH

O

12

 

 

The monomers 7-11 were reacted with phenol 12 to form 1,2-bis(4-(4-phenoxybenzoyl) 

phenoxy)ethane 13, 1,3-bis(4-(4-phenoxybenzoyl)phenoxy)propane 14, 1,4-bis(4-(4-

phenoxybenzoyl)phenoxy)butane 15, 1,5-bis(4-(4-phenoxybenzoyl)phenoxy)pentane 16 and 1,6-

bis(4-(4-phenoxybenzoyl)phenoxy)hexane 17, respectively. 

 

Table 1 

Melting Points and Yields of Model Oxyalkylene Containing Compounds 

Compound Number of 

Carbons in link 

Melting Point 

(oC) 

Yield 

(%) 

13 2 215 86 

14 3 175 67 

15 4 220 53 

16 5 177 62 

17 6 172 60 
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The melting point of the compounds containing an oxyalkylene linkage with an even number of 

carbons decreases while the odd numbered carbon oxyalkylene linkages cause a slight increase in 

melting point. 

The polymerizations were performed in NMP and toluene with potassium carbonate 

 

F O(CH2)nO F

OO

HO OH

O(CH2)nO O

OO

O

+

n

7, n = 2
8, n = 3
9, n = 4
10, n = 5
11, n = 6

18

19, n = 2
20, n = 3
21, n = 4
22, n = 5
23, n = 6  

 

acting as the base.  The monomers 7-11 were reacted with bisphenol-A 18 to yield poly(oxy-1,4-

phenylene-1-methylethylidene-1,4-phenylene-oxy-1,4-phenylene carbonyl-1,4-phenylene-1,4-

dioxabutylene) 19, poly(oxy-1,4-phenylene-1-methylethylidene-1,4-phenylene-oxy-1,4-

phenylene carbonyl-1,4-phenylene-1,5-dioxapentylene) 20, poly(oxy-1,4-phenylene-1-

methylethylidene-1,4-phenylene-oxy-1,4-phenylene carbonyl-1,4-phenylene-1,6-dioxahexylene) 

21, poly(oxy-1,4-phenylene-1-methylethylidene-1,4-phenylene-oxy-1,4-phenylene carbonyl-1,4-

phenylene-1,7-dioxaheptylene) 22 and poly(oxy-1,4-phenylene-1-methylethylidene-1,4-

phenylene-oxy-1,4-phenylene carbonyl-1,4-phenylene-1,8-dioxaoctylene) 23.  Incorporation of 

the longer oxyalkylene units lead to lower glass transition temperatures (Table 2) and enhanced 

solubility with minimal affect on the thermal stability as measured by thermogravimetric analysis 

(TGA). 
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Table 2 

Glass Transition Temperatures of PEEK Polymers Containing Oxyalkylene Links 

Compound Number of 

Carbons in bridge

Tg (oC) Yield (%) 

19 2 136 84 

20 3 125 73 

21 4 114 82 

22 5 108 82 

23 6 91 97 

 

 

Poly(ether ether ketone)s with Oxyethylene Linkages11 

In 1992, a related series of bis(fluorobenzophenone) monomers containing oxyethylene 

linkages of varying lengths was synthesized by reacting 4-fluoro-4’-hydroxybenzophenone 1 with 

diethylene glycol ditosylate 24, triethylene glycol ditosylate 25, tetraethylene glycol ditosylate 26 

and pentaethylene glycol ditosylate 27 to form bis(4-(4-fluorobenzoyl)phenoxy)ethyl)ether 28,  

 

F OH

O

2 TsO(CH2CH2O)nTs+

KOH
EtOH

1 24, n = 2
25, n = 3
26, n = 4
27, n = 5

28, n = 2
29, n = 3
30, n = 4
31, n = 5

F O(CH2CH2O)n

O

F

O
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1,2-bis(4-(4-fluorobenzoyl)phenoxy)ethoxy)ethyl)ethane 29, bis(4-(4-fluorobenzoyl)phenoxy) 

ethoxy)ethyl)ether 30 and 1,2-bis(4-(4-fluorobenzoyl)phenxy)ethoxy)ethoxy)ethane 31, 

respectively. 

A model study was performed using these oxyethylene containing monomers. The 

monomers 28-31 were reacted with phenol 12 to produce bis(4-(4-phenoxybenzoyl)phenoxy) 

ethyl)ether 32, 1,2-bis(4-(4-phenoxybenzoyl)phenoxy)ethyl)ethane 33, bis(4-(4-phenoxybenzoyl) 

phenoxy)ethoxy)ethyl)ether 34 and 1,2-bis(4-(4-phenoxybenzoyl)phenoxy)ethoxy)ethoxy)ethane 

35, respectively. 

 

28, n = 2
29, n = 3
30, n = 4
31, n = 5

F O(CH2CH2O)n

O

F

O

OH

12

+

O O(CH2CH2O)n

O

O

O

K2CO3
NMP
Toluene

32, n = 2
33, n = 3
34, n = 4
35, n = 5  

 

This study showed that the melting point of these compounds decreased as the length of 

the oxyethylene unit increased (Table 3).   
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Table 3 

Melting Points and Yields of Model Oxyethylene Containing Compounds 

Compound Number of 

Carbons in bridge 

Melting 

Point (oC) 

Yield (%) 

32 2 177-179 82.0 

33 3 148-150 86.6 

34 4 108-110 89.0 

35 5 91-93 98.0 

 

 

This is an indication that the length of the oxyethylene unit will affect the glass transition 

temperature of the polymers in a manner similar to the incorporation of oxyalkylene units. 

The polymerizations were performed in NMP and toluene with potassium carbonate 

acting as the base.  The monomers 28-31 were reacted with bisphenol-A 18 to yield  

 

28, n = 2
29, n = 3
30, n = 4
31, n = 5

F O(CH2CH2O)n

O

F

O

+

O(CH2CH2O)n

O

O

O

K2CO3
NMP
Toluene

36, n = 2
37, n = 3
38, n = 4
39, n = 5

HO OH

18

O
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poly(oxy-1,4-phenylene-1-methylethylidene-1,4-phenylene-oxy-1,4-phenylene carbonyl-1,4-

phenylene-1,4,7-trioxaheptylene 36, poly(oxy-1,4-phenylene-1-methylethylidene-1,4-phenylene-

oxy-1,4-phenylene carbonyl-1,4-phenylene-1,4,7,10-tetraoxadecylene 37, poly(oxy-1,4-

phenylene-1-methylethylidene-1,4-phenylene-oxy-1,4-phenylene carbonyl-1,4-phenylene-

1,4,7,10,13-pentaoxatridecylene 38 and poly(oxy-1,4-phenylene-1-methylethylidene-1,4-

phenylene-oxy-1,4-phenylene carbonyl-1,4-phenylene-1,4,7,10,13,16-hexaoxahexadecylene 39.  

Incorporation of the longer oxyethylene units lead to a lower glass transition temperature (Table 

4) and enhanced solubility with minimal affect on the thermal stability. 

 

Table 4 

Glass Transition Temperatures of PEEK Polymers Containing Oxyethylene Links 

Compound Number of 

Carbons in link 

Tg (oC) Yield 

(%) 

36 2 104 88 

37 3 87 97.8 

38 4 73 98.7 

39 5 63.8 97.9 

 

 

 

Polybenzoxazoles 

Polybenzoxazoles are thermally stable polymers. The first main chain polybenzoxazole 

reported was made by a polycondensation reaction of 3,3'-dihydroxybenzidine 40 and 

isophthaloyl chloride 41 to form the polyamide 42.12  Heating of the polyamide 42 affords the 

polybenzoxazole 43. 
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NH2

OHHO

H2N

40

+ ClCl

OO

41

-HCl

NHC

OHHO

NHC

42

OO

n

Heat
-H2O

O

NN

O
n

43  

Polyphosphoric acid has been useful in polymerizations of diacids with bis(o-

aminophenol)s by acting as a solvent and a dehydrating agent.13  The problem with most of these 

is that the resulting polymers are not soluble in common solvents.  One solution to this problem 

was to incorporate isopropylidene units between the aromatic rings 44.14 

 

44  

The benefits of incorporating isopropylidene units are three-fold.  First, the polymer 

chain is more flexible.  Second, the methyl groups will aid in solubility.  Finally, the polymer 

chain remains thermally stable.  These polymer are slightly more soluble, but still not practical 

enough for many applications.   

Incorporation of the 1,1,1,3,3,3-hexafluoroisopropylidene (6F) unit in polybenzoxazoles instead  
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CF3

CF3

45  

of the isopropylidene unit solved the solubility issue 45.15  Some of the other benefits of using the 

6F unit are high Tg and oxidative resistance. 

Triphenylphosphine oxide 46 is another unit that may be incorporated into 

polybenzoxazoles while maintaining thermal stability and oxidative resistance.2   

 

P

O

46  

 

Poly(phenylene vinylene) 

Poly(phenylene vinylene) (PPV) 47 is an alternating copolymer of acetylene and 

benzene. 

 

n
47  

The first synthesis of PPV was reported in 1960 by McDonald and Campbell using a 

Wittig reaction16.  An aryl bis-phosphorane was reacted with an aromatic dialdehyde compound 

to form a PPV.   
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CH2H2C P(C6H6)3(C6H6)3P
++

2Cl- +

H H

OO

48 49
EtOH
Li/EtOH

HH

OO

n

50  

A reaction of p-xylylene bis(triphosphonium chloride) 48 with terephthalaldehyde 49 produced 

an insoluble, intensely yellow polymer 50 with a melting point of 158-159 oC and a number 

average molecular weight (Mw) of about 1200.  The polymer was converted to the all trans system 

by refluxing in toluene with iodine. 

PPV was also prepared by the reaction of α,α,α’,α’ tetrabromo-p-xylene 51 with methyl 

lithium17. 

 

BrH2C CH2Br LiCH3 n

51 47  

Kanbe and Okawara prepared PPV by the polymerization of p-xylylene 

bis(dimethylsulfonium tetrafluoroborate) 5218. 

 

Me2SH2C CH2SME2 OH-
n

52 47

++
2BF4

-

 

PPV was also synthesized using a dehydrohalogenation reaction19.  A reaction of  

 

CH2ClClH2C

R

R

R

R
53a, R = H
53b, R = OCH3

47, R = H
54, R = OCH3

n
NaH
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p-xylylidene dichloride 53a with sodium hydride formed PPV 47  This reaction was also used to 

produce the methoxy substituted PPV 54 starting with the methoxy substituted p-xylylene 

dichloride 53b. 

The problem with each of these reaction schemes is that although many derivatives can 

be made, the polymers that formed were insoluble with low molecular weights and conductivities.  

A solution to this would be to form a film from a polymer precursor, then proceed with the 

polymerization20.  There are several successful routes to obtaining high molecular weight PPV 

films using this idea.  The first is the polymerization of the monomer p-xylylene 

bis(dimethylsulfonium chloride) 55.  This monomer is prepared from the reaction of p-xylylidene  

CH2ClClH2C

H
C

(H3C)2SH2C CH2S(CH3)2
+ +

2Cl-

S(CH3)

CH2

+
Cl-

n n

(CH3)2S NaOH(aq)

-HCl
-S(CH3)2

53a 55

56
47  

dichloride 53a with excess dimethyl sulfide.Electrical conductivities of the PPVs were similar to 

those of highly doped poly(acetylene) and the molecular weight of the polyelectrolyte 56 was 

found to be 993 Kilodaltons20. 

Another route involves the formation of 58 from tetrahydrothiophene 57 and p-xylylidene  

CH2ClClH2C S2

53a 57 58

+ CH2H2C SS 2Cl-

 

dichloride 53a.Under the same conditions as the previous reaction scheme, 58 forms a PPV20. 

There are currently many synthetic routes to make PPV substituted with different groups.  

A 1,6-polymerization of p-xylylenes will form PPV21.  This method has been shown to work with 

bis-halomethyl, bis-sulfonium, sulfone and xanthate type monomers (Scheme 1).  This method  
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Scheme 121 

 

Nu

LL

.
L L

L

L

-HL Nu:

[X]

[X]

-HL

L = Cl, Br, Sulfonium
     Sulfone or xanthate

Polymer Precursor

PPV

.
n

n
 

has been used to make insoluble polymer thin films21.  The polymer precursor is cast into a film 

then treated with heat or light to eliminate HL and form PPV22.  Using this method, poly(2,3-

diphenyl-p-phenylene vinylene) 61 and its derivatives were made.  

 

ClH2C CH2Cl

R R RCl
n n

t-BuOK Heat

59a, R = H
59b, R = 4-biphenyl

60a, R = H
60b, R = 4-biphenyl

61a, R =H
61b, R = 4-biphenyl  

Diels-Alder reactions were used to make the monomers that would become a series of 

poly(2,3-diphenyl-5-alkyl-p-phenylene vinylene)s 65a-c.21  The Diels-Alder reaction occurs 

between the alkyne and the 2,5-bis-(ethoxycarbonyl)-3,4-diphenylcyclopentadienone 62.  Lithium 

aluminum hydride is then used to reduce the ester 63 to the alcohol 64.  Reaction of 64 with 

thionyl chloride produces the monomer 65.  This monomer is combined with a base and 4-t-

butylbenzyl chloride to produce the polymer 67.  The use of 4-t-butylbenzyl chloride generally 
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allows formation of high molecular weight polymers with a narrow range of molecular weights.21  

The importance of this route is that virtually any flexible side chain can be introduced into a 

monomer.20   

 

CO2EtEtO2C

O (CH2)nH

CO2EtEtO2C HOH2C CH2OH

(CH2)nH

ClH2C CH2Cl

(CH2)nH (CH2)nH

Hn(H2C) LiAlH4

SOCl2
t-BuOK

62 63 64

65

n
ClH2C

66

67a, n = 6
67b, n = 8
67c, n = 10  

 

 

Nonlinear Optical Materials 

Design of Nonlinear Optical Materials 

The focus of much research in this area is structure property relationships.  Generally, the 

chromophores are separated into two groups (Type I or Type II) based on structure.9  Type I 

chromophores consist of a polarizable π bridge linked on both sides to pi electron donors or pi 

electron acceptors (Figure 1).  Type II chromophores also contain a polarizable π bridge, but it is 

linked on one side to an acceptor and on the other to a donor (Figure 1). 
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Type I Chromophores 

π Donor --- Polarizable π Bridge --- π Donor 

π Acceptor --- Polarizable π Bridge --- π Acceptor 

Type II Chromophores 

π Donor --- Polarizable π Bridge --- π Acceptor 

 

Figure 1 Type I and Type II Chromophores 

 

The requirement of these chromophores is that they continue to absorb in the 600 – 800 

nm range in order to emit in the visible region. 

 

The Polarizable π Bridge 

Several molecules have been examined for use as a bridge.  These include 2,6-naphthyl, 

4,4’-biphenyl, 2,7-fluorene and 7,7’-bifluorene.9  In order to compare the effect as a bridge, each 

of these groups was modified to incorporate a diphenylamine group and a 4-vinyl pyridine group.  

N,N-diphenyl-N-[4-[4-[2-(4-pyridyl)ethenyl]phenyl]phenyl]amine 72 was made by 

monosubstitution of 4,4’-dibromobiphenyl 68 with the lithium salt of diphenylamine 69.  The 

result, N,N-diphenyl-N-[4-(4-bromophenyl)phenyl]amine 70 was then reacted with vinyl pyridine 

71 under Heck conditions to yield 72. 
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BrBr

NLi

69

p-(o-tolyl)3Pd(dba)2

N Br

70

N

73

Pd(OA)2, p-(o-tolyl)3
N

N

72  

Starting with 2,7-dibromo-9,9-diethylfluorene 73, N,N-diphenyl-N-[7-[2-(4-

pyridyl)ethenyl]-9,9-diethyl-2-fluorenyl]amine 76 was made by the same reaction scheme.  

Formation of N,N-diphenyl-N-[6-[2-(4-pyridyl)ethenyl]2-naphthyl]amine 81 was accomplished 

by a condensation reaction of 2-bromo-6-hydroxynaphthalene 77 with aniline 78 which was then 

arylated with iodobenzene 79.  Reaction of 6-bromo-N,N-diphenyl-2-naphthylamine 80 with 4-

vinyl pyridine 71 under Heck conditions gives 81. 

 

 

BrBr
BrN

N
N

Pd(OAc)2, p(o-tolyl)3

Pd(OAc)2, p(o-tolyl)3

NLi

N

73
75

76

74

71
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N

N

Pd(OAc)2, p(o-tolyl)3

p-toluenesulfonic acid

N

71

N

Br

HO
Br

I

NH2

Cu, K2CO3

1.

2.
77

80

78

79

81  

 

Preparation of N,N-diphenyl-N-[7-[7-[2-(4-pyridyl)ethenyl]-9,9-diethyl-2-fluorenyl]-9,9-

diethyl-2-fluorenyl]amine 84 was accomplished from the tri-n-butyl tin derivative of N,N-

diphenyl-N-[4-(4-bromophenyl)phenyl] amine 75 by coupling it with 7-bromo-9,9-diethyl-2-[2-

(4-pyridyl)ethenyl]fluorene 83. 

 

BrN SnBu3N

N

n-BuLi
(Bu)3SnCl

Br
N

N

75
82

83

84
PdCl2(PPh3)2
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Examination of compounds 72, 76, 81 and 84 shows they vary only by the polarizable π 

bridge.  Any difference in the optical properties of these compounds would be attributable to the 

bridges.  The optical measurements are listed in Table 5.9   

 

Table. 5 

Nonlinear Optical Measurements of Various Polarizable Bridges 

 

Chromophore

σmax (nm) 

Linear Abs. 

σ cm/GW 

at 0.02 mol/L 

σ2’ (x10-48) 

cm4 sec ph 

molecule 

σ2’/MW (x10-50) 

cm4 sec mol ph 

molecule g 

72 367 1.9 39.0 9.2 

76 388 4.7 97.0 19.7 

81 388 3.3 68.4 17.2 

84 383.5 3.8 79.4 11.1 

 

Sigma, σ, is the two photon absorption coefficient.  σ2 is the molecular two photon cross 

section.  σ2’ is a reproducible coefficient of the material’s two photon activity.9  Comparing the 

values for compounds 72 and 76, it is apparent that 76 is a better choice for the bridge.  This is 

due to the planarity of the fluorene molecule.  Compounds 76 and 81 both contain a planar 

bridge, but the conjugation length of the fluorene molecule is longer making 76 the better choice 

as a polarizable bridge.  Comparison of compounds 76 and 84 shows that again 76 is superior as a 

bridge.  The conjugation length of the bridge is longer in 84, but the molecule loses some of its 

planarity due to the rotation of the second fluorene molecule. 

Using a system that contained indenofluorene instead of fluorene would allow extension 

of the polarizable bridge while maintaining the planarity of the bridge.  Several indenofluorene 

monomers were synthesized for this reason. 



 21

 
 
 
 
 

EXPERIMENTAL 

 

Instrumentation and Chemicals 

An Electrothermal capillary melting point apparatus equipped with a 

thermocouple was used to obtain melting points. Nuclear magnetic resonance (NMR) 

spectra were obtained using a Bruker DMX 300 spectrometer (1H and 13C), with 

tetramethylsilane (TMS) as an internal standard. Infrared spectra (IR) were recorded with 

a Perkin Elmer 1600 Series FTIR spectrometer using KBr pellets.  Mass spectra were 

collected on a Hewlett-Packard 5970B gas chromatogram-mass spectrometer.  GPC 

traces were collected using a Viscotek 300 TDA.  All reagents were purchased from 

Aldrich Chemical Company and used without further purification. 

 

Bis(3-methylphenyl)phenylphosphine oxide 87 

Magnesium (3.65 g, 0.150 mol) was mixed in tetrahydrofuran (25 mL) under nitrogen at 

10oC.  A solution of m-bromotoluene (25.67 g, 0.150 mol) in tetrahydrofuran (25 mL) was added 

dropwise to maintain a gentle reflux.  Additional tetrahydrofuran (100 mL) was added.  The 

mixture was warmed to room temperature and stirred overnight.  The solution was cooled to 5oC, 

and phenylphosphonic dichloride (10.4 mL, 0.073 mol) was added dropwise.  The solution was 

stirred overnight at room temperature.  The mixture was cooled to 10oC and acidified with 10% 

sulfuric acid (5 mL).  The organic phase was isolated and washed with water (50 mL), 10% 

bicarbonate (25 mL) and water (50 mL), dried over magnesium sulfate and evaporated.  

Recrystallization of the residue from heptane yielded a white solid (13.9 g, 90.7%): mp 92.8 – 
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94.0oC (lit. mp 108.5-109 oC)23; 1H NMR δ 2.3 (s, 6H, CH3), 7.5 (m, 13H, Ar-H); 13C NMR ppm 

21.5, 128.6, 129.2, 131.7, 132.1, 132.7, 133.1, 138.4 

 

Bis(4-methylphenyl)phenylphosphine oxide 88 

Magnesium (7.1 g, 0.292 mol) was mixed in tetrahydrofuran (50 mL) under nitrogen at 

10oC.  A solution of p-bromotoluene (50.0 g, 0.292 mol) in tetrahydrofuran (50 mL) was added 

dropwise.  Additional tetrahydrofuran (100 mL) was added.  The mixture was warmed to room 

temperature and stirred overnight.  The solution was cooled to 5oC, and phenylphosphonic 

dichloride (20.3 mL, 0.143 mol) was added dropwise.  The solution was stirred overnight at room 

temperature.  The mixture was cooled to 10oC and acidified with 10% sulfuric acid (10 mL).  The 

organic phase was isolated and washed with water (50 mL), 10% bicarbonate (50 mL) and water 

(50 mL), dried over magnesium sulfate and evaporated.  Recrystallization of the residue from 

hexane yielded a white solid (28.9 g, 96.7%): mp 85.0 – 85.9oC (lit. mp 79.5 oC)24; 1H NMR δ 2.2 

(s, 6H, CH3), 7.9 (m, 13H, Ar-H); 13C NMR ppm 21.6, 128.7, 129.1, 129.3, 131.8, 132.2, 132.4, 

142.4 

 

Bis(3-carboxyphenyl)phenylphosphine oxide 89 

Potassium hydroxide (19.2 g, 0.342 mol), 87 (21.6 g, 0.070 mol) and pyridine (59.8 g, 

0.756 mol) were combined and heated to 95oC.  A solution of potassium permanganate (128.0 g, 

0.810 mol) in water (1000 mL) was added over 2 h maintaining a temperature between 90 – 

100oC.  This solution was stirred at 95oC overnight.  Additional potassium permanganate (10.66 

g, 0.067 mol) was added.  The mixture was refluxed for 4 h, cooled to room temperature and 

poured into ethanol (100 mL).  The precipitate was filtered and discarded.  The aqueous phase 

was extracted with methylene chloride (3 x 200 mL) and acidified with hydrochloric acid to pH 2.  

This was stirred overnight.  The white precipitate was filtered and dried (22.0 g, 85.1%).  1H 
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NMR δ 7.6-8.2 (m, 15H, Ar-H); 13C NMR ppm129.8, 130.5, 132.4, 132.8, 134.9, 136.9, 138.3, 

167.5 

 

Bis(4-carboxyphenyl)phenylphosphine oxide 90 

Potassium hydroxide (26.7 g, 0.476 mol), 88 (30.0 g, 0.98 mol) and pyridine (83.1 g, 

1.051 mol) were combined, and heated to 95oC.  A solution of potassium permanganate (178.0 g, 

1.126 mol) in water (1200 mL) was added over 2 h maintaining a temperature between 90 – 

100oC.  This solution was stirred at 95oC overnight.  Additional potassium permanganate (14.83 

g, 0.094 mol) was added.  The mixture was refluxed for 4 h, cooled to room temperature and 

poured into ethanol (150 mL).  The precipitate was filtered and discarded.  The aqueous phase 

was extracted with methylene chloride (3 x 200 mL) and acidified with hydrochloric acid to pH 2.  

This was stirred overnight.  The white precipitate was filtered and dried (28.0 g, 78.0%).  1H 

NMR δ 7.7-8.2 (m, 15H, Ar-H); 13C NMR ppm 129.9, 130.4, 132.4, 132.8, 133.3, 167.3, 207.5 

 

2,7-Dibromofluorene 92 

Fluorene 91 (80.01 g, 0.481 mol) and iodine (1.41 g, 0.006 mol) were dissolved in 

methylene chloride (508 mL).  Bromine (50.7 mL, 0.984 mol) in methylene chloride (75 mL) was 

added dropwise over 2h.  Sodium bicarbonate (4.06 g, 0.048 mol) in water (130 mL) was added.  

The mixture stirred overnight.  Methylene chloride was evaporated and water was slowly added. 

The precipitate was filtered (149.7 g, 95.9%): mp 162.8 – 163.3oC (lit. mp 215 oC)26 

 

2,7-Dibromo-9,9-dihexylfluorene 93 

Potassium iodide (3.03 g, 0.018 mol), potassium hydroxide (49.43 g, 0.881 mol), 92 (58.5 

g, 0.181 mol) and dimethylsulfoxide (130 mL) were combined.  The solution was cooled to 5oC.  

Hexyl bromide (60 mL, 0.427 mol) was added dropwise.  The solution was stirred overnight at 
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room temperature, poured into water (200 mL) and extracted with chloroform (3 x 50 mL).  The 

chloroform was evaporated.  The residue was recrystallized in hexane to yield brown crystals 

(73.0 g, 82.1%): mass spectrum, m/z (relative intensity) 492 (M+, 87) 

 

9,9-dihexylfluorene-2,7-dicarboxaldehyde 94 

All glassware was dried in the oven overnight. Anhydrous tetrahydrofuran (80 mL) was 

added to 93 (4.00 g, 0.008 mol).  After dissolution, the solution was cooled to –78oC.  n-butyl 

lithium (10.2 mL, 0.016 mol) was added dropwise.  The solution was stirred for 20 min.  A white 

precipitate formed.  Dimethylformamide (1.5 mL, 0.019 mol) was added dropwise.The mixture 

was warmed to room temperature and stirred overnight.  Water (25 mL) was added, and the 

solution was extracted with diethyl ether (3 x 75 mL).  The extracts were dried and the solvent 

removed to yield a yellow oil.  The oil was purified by chromatography (20% ethyl acetate in 

hexane) (2.59 g, 81.6%): mass spectrum, m/z (relative intensity) 390 (M+, 43); 1H NMR δ 0.6 

(m,6H, CH3), 0.8 (t, 4H, CH2), 1.0 (m, 4H, CH2), 2.1 (m, 4H, CH2), 7.4 (m, 4H, Ar-H), 7.9 (s, 2H, 

Ar-H), 10.2 (s, 2H, CHO); 13C NMR ppm 14.4, 22.9, 24.1, 26.0, 30.0, 31.9, 40.5, 121.7, 123.8, 

130.8, 136.9, 146.0, 153.3, 192.6 

 

9,9-dibutylfluorene 95 

All glassware was dried in the oven overnight.  Fluorene 91 (10.0 g, 0.060 mol) was 

dissolved in anhydrous diethyl ether (150 mL).  The solution was then cooled to –78oC.  n-Butyl 

lithium (75.3 mL, 0.120 mol) was added dropwise.  After addition was complete, the solution was 

stirred for 1 h.  Butyl iodide (13.8 mL 0.120 mol) was added dropwise, and the solution was 

stirred for 2 h.  Water (100 mL) was added, the organic phase was separated, washed with water 

(2 x 100 mL) and dried over magnesium sulfate.  The solvent was removed to yield an oil (20.0 g, 

119.4%): mass spectrum, m/z (relative intensity) 278 (M+, 45); 1H NMR δ 0.7 (t, 6H, CH3), 0.9 
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(m, 4H, CH2), 1.4 (m, 4H, CH2), 2.1 (m, 4H, CH2), 7.4 (m, 6H, Ar-H), 7.8 (m, 2H, Ar-H); 13C 

NMR ppm 14.5, 23.1, 26.3, 40.6, 55.3, 120.0, 123.2, 127.3, 141.5, 151.0. 

 

2,7-Bis(bromomethyl)-9,9-dibutylfluorene 96 

Paraformaldehyde (5.40 g, 0.179 mol) and 95 (4.98 g, 0.018 mol) were combined.  The 

mixture was cooled to 0oC while 30% hydrogen bromide in acetic acid (150 mL) was added 

slowly.  The mixture was stirred overnight at a temperature between 60oC – 70oC.  The mixture 

was extracted with methylene chloride.  The solvent was removed to produce a brown oil (3.38 g, 

40.7%): mass spectrum, m/z (relative intensity) 464 (M+, 8); 1H NMR δ 0.6 (m, 6H, CH3), 1.3 

(m, 4H, CH2), 2.0 (m, 4H, CH2), 2.1 (s, 4H, CH2), 4.7 (s, 4H, CH2Br), 7.5 (m, 6H, Ar-H); 13C 

NMR ppm 23.4, 26.3, 34.8, 40.3, 55.5, 120.5, 124.1, 125.6, 128.5, 137.4, 141.2, 152.1 

 

2,7-Bis(hydroxymethyl)-9,9-diethylfluorene 98 

Ethanol (5 mL) and tetrahydrofuran (1 mL) were added to 9,9-diethylfluorene-2,7-

dicarboxyaldehyde 97 (0.25 g, 0.900 mmol).  After dissolution, the solution was cooled to 0oC 

while sodium borohydride (0.051 g, 1.35 mmol) was added over 15 min.  The mixture was stirred 

overnight at room temperature.  Additional sodium borohydride (0.05 g,1.32 mmol) was added to 

ensure complete reduction.  The mixture stirred for an additional 2 h.  The solvent was 

evaporated, and the residue was dissolved in water (20 mL).  Acetic acid (0.1 mL) was added to 

remove excess sodium borohydride.  This solution was stirred for 30 min then extracted with 

methylene chloride (3 x 10 mL).  The methylene chloride was collected, dried, filtered and 

evaporated to yield the diol.  Recrystallization from ethanol:water (8 mL : 2 mL) yielded a white 

solid (0.25 g, 97.3%): mass spectrum, m/z (relative intensity) 282 (M+, 57), 1H NMR δ 0.4 (m, 

6H, CH3), 2.0 (m, 4H, CH2), 4.8 (s, 4H, CH2), 7.3 (m, 4H, Ar-H), 7.7 (d, 2H, Ar-H); 13C NMR 

ppm 8.8, 33.0, 56, 66, 120, 122, 126.3, 140.2, 141.2, 150.9 
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2,2-Bis[4-(bromomethyl)phenyl]propane 100 

Phosphoric acid (5 mL), paraformaldehyde (1.98 g, 0.066 mol), 30% hydrogen bromide 

in acetic acid (12 mL) and 2,2-diphenylpropane (2.5 g, 0.013 mol) were combined.  The mixture 

was heated at 110oC for 6 h.  While the mixture was heated, an additional amount of 30% 

hydrogen bromide in acetic acid (12 mL) was added dropwise.  The mixture was then poured into 

water (150 mL) and stirred overnight.  The solid was filtered and dissolved in methylene chloride 

(50 mL).  The methylene chloride was washed with water (3 x 20 mL), dried over magnesium 

sulfate and evaporated to yield a white wax.  The wax was purified by column chromatography 

using methylene chloride as the eluant and recrystallized three times from hexane to yield a pure 

product (3.93 g, 80.7%):  mp: 76.5 – 78oC (lit mp 116.5-117.5oC)27; mass spectrum, m/z (relative 

intensity) 382 (M+, 9); 1H NMR δ 1.65 (d, 6H, CH3), 4.5 (s, 4H, CH2), 7.3 (m, 8H, Ar-H); 13C 

NMR ppm 31.0, 34.0, 43.3, 126.2, 127.2, 127.7, 128.5, 129.2, 135.6, 151.1 

 

1,3-Bis(4-bromophenyl)-2-propanone 103 

Magnesium oxide (4.12 g, 0.102 mol) and 4-bromophenyl acetic acid (20.0 g, 0.093 mol) 

were combined, crushed with a mortar and pestle, and mixed for 30 min.  The mixture was 

packed into a 25 mL round bottom flask fitted with a distillation apparatus and placed under 

vacuum.  The system was heated to 250oC for 30 min, then to 350-360oC for 4 h.  The system was 

cooled overnight and extracted with methylene chloride.  The methylene chloride was slowly 

removed to yield yellow crystals (5.47g, 32.0%): mp 106.9 – 108.1oC (lit. mp 121-122 oC)28 

 

2,5-Bis(4-bromophenyl)-3,4-diphenylcyclopentadienone 105 

Potassium hydroxide (0.6 g, 0.011 mol) was dissolved in ethanol (3 mL).  Benzil (2.86 g, 

0.021 mol) was combined with 103 (5.00 g, 0.014 mol). and dissolved in hot ethanol (150 mL).  
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A reflux condenser was attached and the potassium hydroxide in ethanol was added slowly.  The 

solution was refluxed for 15 min, then cooled in ice.  The precipitate was filtered and rinsed with 

cold ethanol (10-15 mL) to yield purple crystals (6.04 g, 89.5%): mp 232.9 - 233.4oC (lit. mp 

302.5-303.0 oC)28 

 

3,6-Bis(4-bromophenyl)-3,4-diphenylphthalic anhydride 108 

Maleic anhydride (1.33 g, 0.014 mol), 105 (5.00 g, 0.010 mol) and bromobenzene (9 mL) 

were combined.  This mixture was refluxed at 180 oC overnight.  The mixture was then cooled to 

room temperature.  Bromine (1 mL) in bromobenzene (4 mL) was added.  The mixture was again 

refluxed at 180oC for 3 h.  The mixture was cooled in ice.  The precipitate was filtered.  The 

remaining solution was added dropwise to petroleum ether (200 mL).  The solution was cooled in 

ice, and the precipitate was filtered.  The combined solids were recrystallized from toluene to 

yield a tan solid (3.40 g, 55.5%): mp 287.2 - 288.1oC 

 

5,6-diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1.a]fluorene 110 

Benzene (100mL) was used to dissolve 3,6-Bis(4-phenyl)-3,4-diphenylphthalic anhydride 

(7.91 g, 0.018 mol), aluminum (III) chloride (11.86 g, 0.089 mol) was added and the mixture was 

heated at 90oC for 2 h.  The mixture was then cooled to about 70oC, poured into dilute 

hydrochloric acid (300 mL) and stirred overnight.  The solid was filtered and recrystallized from 

acetic acid to yield an orange solid (0.25 g, 8.3%):  mp 415oC; mass spectrum, m/z (relative 

intensity) 434 (M+, 100) 

 

5,6-diphenyl-11,12-dihydroindeno[2.1.a]fluorene 111 

Potassium hydroxide (7.8 g, 0.137 mol), 110 (3.0 g, 0.007 mol), diethylene glycol (180 

mL) and hydrazine hydrate (7.5 mL) were combined.  The mixture was heated to 140oC 

overnight.  The solution was poured into 0.5M hydrochloric acid (300 mL) and stirred for 30 min.  
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The precipitate was filtered, dried and recrystallized from toluene to yield an orange solid (0.25 g, 

9.0%): mass spectrum, m/z (relative intensity) 406 (M+, 100); 1H NMR δ 4.0 (s, 4H, CH2), 7.2 

(m, 18H, Ar-H) 

 

2,10-dibromo-5,6-diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1.a]fluorene 112 

Benzene (25 mL) was added to 108 (2.0 g, 0.003 mol).  After complete dissolution, 

aluminum (III) chloride (3.0 g, 0.048 mol) was added.  The solution was heated to 90oC for 2 h.  

The solution was then poured into ice water and magnetically stirred overnight.  Recrystallization 

of the precipitate from 1,2-dichloroethane yielded an orange solid (0.86 g, 44.3%). 

 

2,10-dibromo-5,6-diphenyl-11,12-dihydroindeno[2.1.a]fluorene 113 

Potassium hydroxide (2.6 g, 0.046 mol), 112 (0.9 g, 0.002 mol), diethylene glycol (60 

mL) and hydrazine hydrate (2.5 mL) were combined.  The mixture was heated to 160oC until 

completely dissolved, then to 180 – 190oC overnight.  The solution was poured into 0.5M 

hydrochloric acid (100 mL) and stirred for 30 min.  The precipitate was filtered, dried and 

recrystallized from toluene (0.21 g, 24.6%). 

 

1,4-diiodo-2,5-dimethylbenzene 115 

Acetic acid (500 mL) was mixed with 2M sulfuric acid (100 mL), periodic acid (22.4 g, 

0.98 mol), p-xylene 114 (26.08 g, 0.246) and iodine (50.15 g, 0.198 mol).  The solution was 

heated at 70oC for 3 h then cooled to 0oC for 1 h.  The precipitate was filtered and recrystallized 

from 2:5 chloroform:methanol: mp 96.3 – 96.8oC (lit. mp 103-104 oC)29; 1H NMR δ 2.35 (s, 6H, 

CH3), 7.65 (s, 2H, Ar-H) 
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1,4-diphenyl-2,5-dimethylbenzene 118 

Magnesium (4.85 g, 0.200 mol) was stirred in diethyl ether (20 mL).  A solution (10 mL) 

of bromobenzene 116 (31.72 g, 0.202 mol) in diethyl ether (80 mL) was added.  The mixture was 

heated at a gentle reflux while the remaining bromobenzene in diethyl ether was added.  The 

mixture was heated at a gentle reflux for an additional 2 h and cooled to room temperature.  

Nickel (II) acetylacetonate 117 (0.459 g, 0.002 mol) was added slowly.  A solution of 115 (28.81 

g, 0.080 mol) in diethyl ether (200 mL) was added slowly.  The solution was heated at a gentle 

reflux overnight.  The solution was poured into ice (about 1 kg) and stirred with 50% 

hydrochloric acid (200 mL).  After all the ice melted, the aqueous and ether phases were 

separated.  The aqueous phase was extracted with diethyl ether (3 x 200 mL).  The ether phases 

were combined, washed with water and dried over magnesium sulfate.  The liquid was removed 

leaving a solid.  The solid was recrystallized from ethanol to yield a white solid: mp 159.9-

160.2oC (lit. mp 182-184 oC)30; 1H NMR δ 2.25 (s, 6H, CH3), 7.3 (m, 12H, Ar-H) 
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RESULTS AND DISCUSSION 

PEEK Polymer Molecular Weight Determinations 

The samples were prepared at a concentration of approximately 1mg/mL (Table 

6) using degassed nMP with 0.5% lithium bromide as solvent.  The samples were filtered 

using a 0.2µ nylon syringe filter prior to injection into the GPC. 

Gel permeation chromatography (GPC) is a method of determining the number 

average molecular weight (Mn) and the weight average molecular weight (Mw) of a 

polymer.  The number average molecular weight (Mn) is the sum of all the molecular 

weights of the sample divided by the total number of molecules.  The weight average 

molecular weight (Mw) is the ratio of a particular weight of a molecule to the total weight 

of the sample.  Both of these are important in determining the polydispersity of the 

polymer.  The polydispersity is a measure of the distribution of sizes of molecules in the 

sample. 

GPC is a method of separation.  Separation occurs through a series of columns 

that are packed with porous material.  The largest molecules will elute first because they 

will travel the shortest route.  The small molecules will elute last because they will move 

through the pores traveling the longest path.  This is very simplistic view of what is 

occurring in the columns.  The process is more complex, but has not been completely 

determined as of yet.30 

The results of the analysis are reported in Table 6 and Table 7.  The GPC traces 

can be seen in Figures 22-30. 
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O(CH2)O O O

O O

n

19, n = 2
20 ,n = 3
21, n = 4
22, n = 5
23, n = 6  

 

Table 6 

GPC Results for Poly(ether ether ketone)s with Oxyalkylene Linkages 

Compound Number of 

Carbons in bridge 

Concentration 

(mg/mL) 

Mn Polydispersity 

19 2 10.5 39,200 2.964 

20 3 9.5 38,600 1.915 

21 4 9.9 38,800 2.731 

22 5 10.0 47,500 2.053 

23 6 9.8 18,500 2.330 

 

There is a general increase in the molecular weights as the oxyalkylene link 

increases in length.  The polydispersity of the polymers are all greater than one.  This 

means that the there is a larger distribution of sizes in the sample.  A polydispersity of 

one would indicate that all of the molecules are the same size.  As the value increases, 

there is a greater variety of sizes in the sample.   
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O O

O

n

36, n = 2
37, n = 3
38, n = 4
39, n = 5

O(CH2CH2O)n

O

 

 

Table 7 

GPC Results for Poly(ether ether ketone)s with Oxyethylene Linkages 

Compound Number of 

Carbons in bridge 

Concentration 

(mg/mL) 

Mn Polydispersity

36 2 10.5 25,800 1.872 

37 3 9.8 36,400 4.214 

38 4 10.0 55,800 2.143 

39 5 9.7 55,900 2.240 

 

Again, there is an increase in the molecular weight as the oxyethylene link 

increases in length.   

 

Polybenzoxazoles 

Bis(3-methylphenyl)phenylphosphine oxide 87 and bis(4-methylphenyl) 

phenylphosphine oxide 88 were prepared by forming a Grignard from the appropriate 

bromotoluene 85a or 85b.  After complete dissolution of the magnesium,  

 

MgBrBr

85a, meta
85b, para

86

+ Mg THF, 10oC
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phenylphosphonic dichloride was added.  A replacement of the chlorine with 3-

methylphenyl and 4-methylphenyl occurred to form bis(3-methylphenyl)phenylphosphine 

oxide 87 and bis(4-methylphenyl)phenylphosphine oxide 88. 

 

MgBr

86

P

O

87, meta
88, para

1. PhPOCL2, 5oC
2. 10% H2SO4, 10oC

 

Recrystallization in heptane (88) or hexane (87) produced 87 and 88 in high 

yields (97% and 85%, respectively). 

Experimental proton NMR values (Figures 2 and 3 ) correlate with the calculated 

values.  The individual NMR spectra can be seen in Figures 31 and 33. 

 

P
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P
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7.3
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Figure 2 
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Figure 3 

 

There is also good correlation of the experimental 13C NMR shifts to the calculated 

values (Figures 4 and 5).  The NMR spectra can be seen in Figures 32 and 34. 
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Figure 4 
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Figure 5 

 

An oxidation of 87 and 88 was accomplished in basic solution using potassium 

permanganate as the oxidizing agent.  The by-product manganese dioxide was removed 

by filtration.  Partial purification was accomplished by extraction of the product solution 

with methylene chloride.  The carboxylic acid solutions were then acidified with  

 

P

O

87, meta
88, para

P
HOOC COOH

O

89, meta
90, para

1. KOH, pyridine, 95oC
2. KMnO4, H2O
3. HCl

 

hydrochloric acid to pH2.  Precipitation of 89 and 90 allowed collection by filtration.  

Both 89 and 90 were collected in good yield (85% and 78%, respectively).  Fifty grams 

of each were prepared. 

The proton NMR calculated values can be seen below (Figures 6 and 7).  The 

NMR spectra can be seen in Figures 35 and 37.  For both 89 and 90, there was a 

multiplet between 7.7 and 8.2. 
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Figure 6 
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Figure 7 

The experimentally determined carbon NMR values correlate to the calculated values 

(Figures 8 and 9).  The NMR spectra can be seen in Figures 36 and 38. 

P

O

P

O

8989
Calculated 13C NMR Shifts Experimental 13C NMR Shifts

129.5-134.9

130.7 131.2
134.9

134.8128.5

131.5

128.6

129.6
135.0

129.5-134.9

HOOC COOH

172.0

133.1

COOHHOOC

129.5-134.9

129.5-134.9

167.5

 

Figure 8 
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Figure 9 

Poly(phenylene vinylene) 

Fluorene 91 was brominated in methylene chloride using bromine and a catalytic 

amount of iodine to yield 2,7-dibromofluorene 92 in 96% yield.   

 

BrBr1. Br2, CH2Cl2
2. NaHCO3

91 92  

Several derivatives of 2,7-dibromofluorene 92 were synthesized.  These include 

9,9-dihexyl-2,7-dibromofluorene 93 and 9,9-dibutyl-2,7-dibromofluorene 96. 

Preparation of 2,7-dibromo-9,9-dihexylfluorene 93 was accomplished by the 

reaction of 92 in basic DMSO and potassium iodide with n-hexyl bromide.  Water was 

added to quench the reaction.  Purification was achieved by extraction of the reaction  

 

BrBr1. Br2, CH2Cl2
2. NaHCO3

92 93

C6H13C6H13

BrBr
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 mixture with chloroform.  Recrystallization of the residue with hexane afforded 93 at 

82% yield. 

The synthesis of 9,9-dihexylfluorene-2,7-dicarboxyaldehyde 94 was 

accomplished by the reaction of 93 with n-butyl lithium followed by  

 

CHOOHC1. n-BuLi, -78oC
2. DMF, -78oC

94

C6H13C6H13

BrBr

93

C6H13C6H13

 

N,N-dimethylformamide (DMF).  Water was added to quench the reaction.  The 

dialdehyde 94 was extracted into diethyl ether and purified by column chromatography 

using 20% ethyl acetate in hexane as the eluant.  The dialdehyde was collected in 82% 

yield. 

Proton and carbon NMR experimental and calculated values can be seen in 

Figures 10 and 11.  The NMR spectra can be seen in Figures 39 and 40. 
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Figure 10 
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130.1
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128.4

 

Figure 11 

Infrared characterization (Figure 52) of 94 shows the typical aliphatic C-H stretch 

at 2928 cm-1, aromatic C-H at 3055 cm-1, the aldehyde carbonyl at 1694 cm-1 and the 

aldehyde CH at 2729 cm-1. 

Another derivative of 92 that was prepared was 2,7-bis(bromomethyl)-9,9-

dibutylfluorene 96.   

 

C4H9C4H9

1. n-BuLi, -78oC
2. C4H9I

91 95  

Initially, fluorene 91 was reacted with n-butyl iodide using n-butyl lithium in 

diethyl ether to form 9,9-dibutylfluorene 95.  Water was added to quench the reaction.  

The ether phase was collected and dried.  The resulting residue was used without further 

purification. 

Proton and carbon NMR experimental and calculated values are shown below 

(Figures 12 and 13).  The NMR spectra can be seen in Figures 41 and 42. 
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95
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Figure 12 
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Figure 13 

Infrared characterization (Figure 53) of 95 shows the typical aromatic C-H 

stretch at 3064 and 3014 cm-1 and the aliphatic C-H stretch at 2859 cm-1. 

Paraformaldehyde was combined with 95 and cooled to 0oC.  To this reaction 

mixture, 30% hydrogen bromide in acetic acid was added.  The formaldehyde and  

 

C4H9C4H9

1. (CH2)O)3

2. 30%HBr/CH3COOH
96

C4H9C4H9

95
BrBr

 

bromine added to form 2,7-bis(bromomethyl)-9,9-dibutylfluorene 96 at 41% yield. 
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Proton and carbon NMR experimental and calculated values are shown below 

(Figures 14 and 15).  The NMR spectra can be seen in Figures 43 and 44. 
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Figure 14 
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Figure 15 

 

Infrared characterization (Figure 54) of 96 shows the aliphatic C-H stretch at 

2930 and 2955 cm-1 and the aromatic C-H stretch at 3030 cm-1 

A sample of 9,9-diethyl-2,7-dicarboxaldehyde 97 was acquired from WPAFB.  

Compound 97 was used as a model to determine the ease of reduction of 94.  Compound 
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97 was reduced using sodium borohydride to form 2,7-bis(hydroxymethyl)-9,9-

diethylfluorene 98 in 97% yield. 

 

OHC CHO

97

NaBH4

98

HOH2C CH2OH

 

Proton and carbon NMR experimental and calculated values are shown below 

(Figures 16 and 17).  The NMR spectra can be seen in Figures 45 and 46. 
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Figure 16 
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Figure 17 
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Infrared characterization (Figure 55) shows the hydroxyl peak at 3324 cm-1, the 

aromatic C-H stretch at 3023 cm-1 and the aliphatic C-H stretches at 2961, 2927 and 2873 

cm-1. 

Compound 100 was formed from the reaction of 2,2-diphenylpropane 99 with  

 

BrBr

((CH2O)3), H3PO4
30%HBr/CH3COOH

99 100  

paraformaldehyde and hydrogen bromide.  The product 100 was collected in 

approximately 81% yield after purification by chromatography and recrystallization. 

Experimental and calculated proton and carbon NMR values are shown below 

(Figures 18 and 19).  Proton and Carbon NMR spectra can be seen in Figures 47 and 48. 
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Figure 18 
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Figure 19 

 

A polymerization of 2,2-bis[4-(bromomethyl)phenyl]propane 100 was performed. 

 

BrBr

100 101
n

KOtBu, THF

 

Potassium t-butoxide was used as the base and tetrahydrofuran as solvent.  There was no 

formation of a polymer.  These results show the mechanism in Scheme 1 is likely to be 

correct because the conjugation of the monomer is important.  If the conjugation was not 

important, the polymerization of 2,2-bis[4-(bromomethyl)phenyl]propane 100 would 

have formed a polymeric product. 

 

Nonlinear Optical Materials 

The first step in the synthesis of the indenofluorene nonlinear materials involved 

the reaction of magnesium oxide with 4-bromophenyl acetic acid 102 to produce 1,3-

bis(4-bromophenyl)-2-propanone 103. 

 



 45

Br CH2COOH BrBr

O

+ MgO
∆

102
103

 

The yield of this reaction is always low but was slightly improved to 32% when 

the two reagents were ground together with a mortar and pestle.  This yield is consistent 

with the literature27.  This increase in yield is attributed to the increased surface area 

exposed for reaction. 

Benzil 104 and 1,3-bis(4-bromophenyl)-2-propanone 103 were combined31.  To 

this mixture, potassium hydroxide dissolved in ethanol was added slowly.  The resulting  

 

BrBr

O

103

+

O

O

104

O BrBr

∆

105  

precipitate, 2,5-bis(4-bromophenyl)-3,4-diphenylcyclopentadienone 105 was collected at 

90% yield. 

Maleic anhydride 106 was added to 2,5-bis(4-bromophenyl)-3,4-

diphenylcyclopentadienone 105 in bromobenzene.  Upon heating, the maleic anhydride 

added to the cyclopentadienone ring producing a six membered diene ring 107 while 

eliminating carbon monoxide.   
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+

O BrBr

∆, -CO

105

OO O

106

107

Br

O

HH
Br

OO

 

Upon further heating and the addition of bromine, the six membered ring 107 

aromatized after elimination of two hydrogens producing 3,6-bis(4-bromophenyl)-3,4-

diphenylphthalic anhydride 108. 

 

107

Br

O

HH
Br

OO

Br

O

Br

OO

108

∆, Br2

-2H

 

Two related compounds were prepared in the nonbrominated form, namely 5,6-

diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1-a]fluorene 110 and 5,6-diphenyl-11,12-

dihydroindeno[2.1-a]fluorene 111. 
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O OO

109

AlCl3

O O

110  

Aluminum chloride was added to a solution of 3,6-bis(4-phenyl)3,4-

diphenylphthalic anhydride 109 in benzene.  Compound 109 undergoes a Friedel Crafts 

acylation reaction to give 5,6-diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1-a]fluorene 

110. 

To produce 5,6-diphenyl-11,12-dihydroindeno[2.1-a]fluorene 111, 

 

KOH, H2NNH2

O O

110 111

(HOCH2CH2)2O

 

5,6-diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1-a]fluorene 110 was subjected to a 

Wolff-Kishner reaction using the Huang-Minlon modification.  The Wolff-Kishner 

reaction involves the heating of the ketone in hydrazine hydrate with a base.  The Huang-

Minlon modification, in which the reaction is carried out in refluxing diethylene glycol, is 

most commonly used today.32 

The brominated forms of these compounds underwent the same reactions. 

Aluminum chloride was added to a solution of 3,6-bis(4-bromophenyl)3,4-

diphenylphthalic anhydride 108 in benzene.  The 3,6-bis(4-bromophenyl)3,4-
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diphenylphthalic anhydride 108 undergoes a Friedel Crafts acylation reaction to give 

2,10-dibromo-5,6-diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1-a]fluorene 112. 

To produce 2,10-dibromo-5,6-diphenyl-11,12-dihydroindeno[2.1-a]fluorene 113, 

 

KOH, H2NNH2

O O

112 113

(HOCH2CH2)2O
BrBr Br Br

 

2,10-dibromo-5,6-diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1-a]fluorene 112 was 

subjected to a Wolff-Kishner reaction using the Huang-Minlon modification. 

An attempt at alkylating this compound 113 was made, but the results were 

inconclusive.  Alkylation of the fluorene derivatives showed an increase in nonlinear 

optical character.  It was theorized that the increase was due to less aggregation of the 

species.  It was believed that alkylation of the indenofluorene derivatives would also 

follow this example. 

The yields of the Friedel-Crafts acylation reaction and the Wolff-Kishner reaction 

were consistently low for both the nonbrominated (8%, 9%, respectively) and brominated 

(44%, 25%) compounds. 

An additional project involved the synthesis of the c-fused indenofluorene. 

 

I

I

HIO4 2H2O+ I2
70oC

114 115

+
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Periodic acid dihydrate and iodine were added to a solution of p-xylene 114 in 2.5% 

sulfuric acid in acetic acid.  The p-xylene 114 was converted to 1,4-diiodo-2,5-

dimethylbenzene 115 in 98% yield. 

Proton NMR experimental and calculated shifts are shown below (Figure 20).  

The NMR spectrum can be seen in Figure 50. 
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Figure 20 

Conversion of 1,4-diiodo-2,5-dimethylbenzene 115 to 1,4-diphenyl-2,5-

dimethylbenzene 119 was accomplished via a Grignard reaction using nickel (II) 

acetylacetonate 117 as a coupling catalyst. 

Bromobenzene 116 and magnesium in ether were refluxed until the magnesium  

 

Br + Mg

116

117

118115

OO-

Ni
2

I

I

1.

2.

 

was completely dissolved.  The catalyst 117 was added followed by a solution of 1,4-

diiodo-2,5-dimethylbenzene 115 in diethyl ether.  After about 16 hours of reflux, 1,4-

diphenyl-2,5-dimethylbenzene 118 was collected as white needles.  The reaction 
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produced the terphenyl 118 in 9.7% yield.  This project was abandoned due to the 

consistently low yields of this reaction. 

Proton NMR experimental and calculated values are shown below (Figure 21).  

The NMR spectrum can be seen in Figure 51. 
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Figure 21 

 

Conclusions and Future Work 

Polybenzoxazoles 

Each of the following compounds were prepared in 50g quantities for polymerization to 

form polybenzoxazoles: bis(3-methylphenyl)phenylphosphine oxide, bis(4-

methylphenyl)phenylphosphine oxide, bis(3-carboxyphenyl)phenylphosphine oxide and 

bis(4-carboxyphenyl)phenylphosphine oxide. 

 

Poly(phenylene vinylene) 

The compound 9,9-dihexylfluorene-2,7-dicarboxaldehyde 94 was prepared.  In addition, 

2,7-bis(bromomethyl)-9,9-dibutylfluorene 96 was prepared.  These compounds will be 
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used in future work to form isolated segments of conjugation in poly(phenylene vinylene) 

polymers. 

 

Nonlinear Optical Materials 

Each of the following compounds were prepared, but in yields that are not conducive to 

scaled up synthetic processes: 5,6-diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1-

a]fluorene 110, 5,6-diphenyl-11,12-dihydroindeno[2.1-a]fluorene 111, 2,10-dibromo-5,6-

diphenyl-11,12-dioxo-11,12-dihydroindeno[2.1-a]fluorene 112 and 2,10-dibromo-5,6-

diphenyl-dioxo-11,12-dihydroindeno[2.1-a]fluorene 113.  The c-fused system was never 

completed due to the consistently low yields (approximately 10%) in the formation of 

1,4-diphenyl-2,5-dimethylbenzene 118. 
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Figure 24 GPC Trace of 21 
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Figure 26 GPC Trace of 23 
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Figure 28 GPC Trace of 37 
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Figure 30 GPC Trace of 39 
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Figure 32 Carbon NMR of 87 
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Figure 34 Carbon NMR of 88 
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Figure 36 Carbon NMR of 89 
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Figure 38 Carbon NMR of 90 
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Figure 40 Carbon NMR of 94 
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Figure 42 Carbon NMR of 95 
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Figure 44 Carbon NMR of 96 
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Figure 46 Carbon NMR of 98 
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Figure 48 Carbon NMR of 100 
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Figure 50 Proton NMR of 115 
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Figure 52 Infrared Spectrum of 94 
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Figure 54 Infrared Spectrum of 96 
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