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Executing Multidatabase Transactions

Mansoor Ansari, Marek Rusinkiewicz
Department of Computer Science

University of Houston
Houston, TX 77204

Abstract

In a multidatabase environment, the traditional trans-
action model has been found to be too restrictive.
Therefore, several extended transaction models have
been proposed in which some of the requirements of
transaction, such as isolation or atomicity, are op-
tional. In this paper, we describe one of such ex-
tensions, the Flexible Transaction model and discuss
the scheduling of transactions involving multiple au-
tonomous database systems managed by heteroge-
neous DBMSs.

The scheduling algorithm for Flexible Transactions
is implemented using L.0, a logically parallel lan-
guage which provides a framework for concisely speci-
fying the multidatabase transactions and for schedul-
ing them. The key aspects of a Flexible Transaction
specification, such as subtransaction execution depen-
dencies and transaction success criteria, can be natu-
rally represented in L.0. Furthermore, scheduling in
L.0 achieves maximal parallelism allowed by the speci-
fications of transactions, which results in the improve-
ment of their response times.

To provide access to multiple heterogeneous hard-
ware and software systems, we use the Distributed
Operation Language (DOL). DOL approach is based
on providing a common communication and data ex-
change protocol and uses Local Access Managers to
protect the autonomy of member software systems.
When L.0 determines that a subtransaction is ready
to execute, it hands it through an interface to the DOL
system for execution. The interface between L.0 and
DOL provides the former with the execution status of
subtransactions.

The work described in this paper has been per-
formed in the course of a joint research project in-
volving Bellcore and the University of Houston.

1 Introduction

The need to access data stored in multiple autonomous
and possibly heterogeneous databases has led to
the development of federated multidatabase systems
[HM85, LA86, SL90]. One of the major issues in such
systems is the management of multidatabase transac-
tions. Since multidatabase transactions frequently in-
volve long-running activities, some of the requirements
of traditional transactions such as atomicity, isolation,
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and durability [Gra78] may become too restrictive for
such transactions. Therefore, there have been several
attempts to introduce a transaction model that would
be more suitable for multidatabase environment.

In this paper, we discuss the execution of Flezi-
ble Transactions based on a multidatabase transaction
model in which atomicity and isolation requirements
of traditional transactions are relaxed. A Flexible
Transaction [RELL90], is a collection of subtransac-
tions related by a set of ezecution dependencies. As-
sociated with each Flexible Transaction is a set of ac-
ceptable states corresponding to a successful comple-
tion of the global transaction.

The scheduling of Flexible Transactions is more
complex than in the case of nested transactions, be-
cause the scheduler must keep track of execution de-
pendencies and the acceptable states. Scheduling of
Flexible Transactions using extended Petri Nets has
been discussed in [ELLR90] and [LEBS0]. Another
scheduling mechanism for Flexible Transactions using
VPL (Vienna Parallel Logic Language) is proposed in
[KPE91].

The approach described in this paper uses an exe-
cutable temporal logic language. The main advantage
of using such a language to implement the scheduler
is that its underlying semantics corresponds closely to
the semantics of Flexible Transactions, thus allowing
to achieve the maximum intra-transaction parallelism
allowed by the specification of the Flexible Transac-
tion. Unlike the proposals referenced above, the sched-
uler described here has been implemented and success-
fully applied to the scheduling of real telecommunica-
tion applications.

The Ezecutor of Flexible Transactions accepts the
specification of a transaction as an input, and sched-
ules the subtransactions until the success or failure
conditions of the transaction are satisfied. The pro-
cessing of the scheduled subtransactions is supervised
by the execution monitor. Two main software tools
are used to implement the Executor. For scheduling
subtransactions, L.0, a logical parallel language devel-
oped at Bellcore [CCG191, Nes90a, Nes90b], is used.
Since L.0 does not provide the facility to directly ac-
cess databases, we use DOL (Distributed Operation
Language) [ROEL90], developed at the University of
Houston, for performing such tasks. The development
of the interface between L.0 and DOL is an important
task in the design of the Executor.

The implementation of the scheduler and the exe-



cution monitor was the first phase of a joint research
project involving Bellcore and the University of Hous-
ton. During the second phase of the project, we
have used the Flexible Transaction paradigm to spec-
ify a telecommunication application involving multiple
database systems. The implementation of the sched-
uler has provided us with a better understanding of
the Flexible Transaction model, revealing a number of
issues which were not discussed in the original spec-
ifications. This has lead to several additions to the
model and resulted in more precise specifications. We
believe that the experiences gathered in developing
our applications will allow us to gain a deeper insight
into both the strengths and weaknesses of the model
for this class of applications.

The rest of the paper is organized as follows. In
section 2, we review the transaction model, and dis-
cuss some extensions that allow us to capture more
semantics of a transaction. In section 3, we discuss
the implementation of the Executor and describe the
software tools which are used. We also explain the ad-
vantages of using L.0 as the language of the scheduler.
Section 4 presents the conclusions. Appendix A illus-
trates an L.0 specification of a Flexible Transaction.
Appendix B gives details of the scheduler. Appendix
C shows how a subtransaction can be expressed as a
DOL program.

2 Flexible Transaction Model

We assume that each (global) transaction in the Flex-
ible Transaction model can be specified by provid-
mi the following information [RELL90]: (a) a set of
subtransactions, (b) (scheduling) preconditions asso-
ciated with each subtransaction, and (c) a set of con-
ditions defining the success of the global transaction.
The model allows both compensable [Gra81] and non-
compensable subtransactions to coexist within a sin-
gle Flexible Transaction. We may take advantage of
the compensability of a subtransaction to increase the
availability of data and decrease the possibility of a
deadlock [GMS87].

Most nested transaction models use commitment
protocols to assure that all subtransactions consti-
tuting a global transaction are either committed or
aborted. Typically, they assume the existence of a
prepared to commit state. A subtransaction which has
finished all its operations can wait in this state for
a commit or abort signal from the global transaction
manager. However, some DBMSs do not offer a visible
prepared to commit state (e.g. IMS). Execution of a
noncompensable subtransaction in such a DBMS can
violate the consistency of the system. In such systems,
we can execute compensable subtransactions, with the
understanding that they will be compensated, when a
global transaction aborts. In addition, since multi-
database transactions are frequently long-running ac-
tivities, holding the lock on data by the subtransac-
tions pending in the prepared to commit state, lowers
the availability of the data. A compensable subtrans-
action can commit locally and release the lock on data,
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without waiting for a decision from the global transac-
tion, assuming that it can be compensated if necessary.

The preconditions associated with subtransactions
determine when they can be scheduled for execution.
The precondition for a subtransaction is either an ez-
ecution dependency, a temporal dependency, or a com-
bination of both. A subtransaction with an execution
dependency can be executed only in the case of a suc-
cess and/or failure of one or more subtransactions. A
dependency on the success of other subtransactions
is referred to as positive dependency. A dependency
on the failure of other subtransactions is referred to
as negative dependency. A subtransaction with tem-
poral dependency can be executed only before/after
specific time. Subtransactions that do not have exe-
cution dependencies and have temporal dependency of
time zero, the time at which global transaction starts
to execute, are referred to as primary subtransactions.

Figure 1 illustrates a simple dependency among
eight subtransactions of a Flexible Transaction. ST1
and ST6 are primary subtransactions and may start
concurrently. ST2 is scheduled when ST1 succeeds. If
ST2 fails, ST3 is scheduled, and if ST2 succeeds, ST5
is scheduled. ST5 can also be scheduled when ST4
succeeds.

In some situations, several subtransactions can
achieve the same subgoal. This property of mul-
tidatabase transactions is called function replication
[ELLR90]. Consider the following example.

A travel agent is planning a trip from Los Angeles
to Houston. She has two subgoals to achieve: to find
a seat on a flight to Houston and to reserve a car in
a car rental agency. She has several options for each
part. If she is not able to find a seat on a flight to
Houston, it is useless to rent a car. So renting a caris
positively dependent on finding a seat. Notice that the
failure of a subtransaction such as getting a seat on a
Delta flight does not effect the execution of renting a
car in Avis. Semantically, it is the failure of the sub-
goal finding a seat that affects the subgoal renting a
car. Let us assume that each subgoal can be achieved
by successfully executing any of n subtransactions. In
this case, execution dependencies exist between each
of n rent a cer options and each of the n find a seat
options which means up to n * n dependency specifi-
cations. This becomes more complicated, if there are
more subgoals with multiple options.

To simplify specification of such dependencies
among subtransactions we introduce the notion of a
cluster. A cluster is a group of subtransactions that
can achieve a given subgoal of a global transaction.
Thus, execution dependencies may involve individual
subtransactions or clusters. Associated with each clus-
ter, is a condition for the success of the cluster. A sub-
transaction with a positive/negative dependency on a
cluster can be executed only after success/failure of a
cluster.

The conditions for the success of a Flexible Trans-
action can be specified by providing a set of accept-
able states, defined in terms of the states of each of
the subtransactions. An acceptable state of a Flexible
Transaction is specified in disjunctive normal form.

Four execution states of a subtransaction are: Not
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Figure 1. An Execution Dependency Graph

ezecuted (N), Ezecuting (E), Success (5), and Fuailure
(F). The notion of success or failure of a subtransac-
tion has different semantics than commit or abort. We
regard the execution state of a subtransaction which is
prepared to commit or is locally committed as S. We
regard the execution state of a subtransaction which
is locally aborted or is compensated as F. These four
execution states can be specified as a state of a sub-
transaction in the set of acceptable states. In addition,
we use two additional states that can be assigned to
subtransactions in the set of acceptable states. These
two are described in the following paragraphs.

In some acceptable states, specifying the success or
failure of a subset of subtransactions is sufficient for
the determination of the success of a global transac-
tion. In such cases, since the execution state of re-
maining subtransactions has no effect on determinin
the success of a transaction, we assign Don’t care (Ds
to the state of such subtransactions. D implies any
of four previously discussed execution states. It is
used to simplify the specification of a set of accept-
able states.

In some situations, it might be desirable to con-
currently run several subtransactions with the same
objective, but to allow only one of them to succeed.
Consider concurrent execution of two subtransactions
for reserving seats on two different airlines, each of
which is selling a limited number of tickets at a special
fare for a limited time. The success of one subtrans-
action is necessary as a part of an acceptable state.
However, success of both subtransactions is undesir-
able. Such conflict can be resolved by requiring that
if one of the two subtransactions succeeds, the other
must fail and leave no effect on the database. To sup-
port concurrent execution of such subtransactions, we
assign S to one of the subtransactions, and Must fail
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(M) to the rest. A subtransaction that is assigned S is
given a higher priority and is used to resolve conflicts
when an acceptable state is reached.l.

Both D and M have no effect on determining
whether an acceptable state has been reached. When
an acceptable state is reached, no further action is
taken for subtransactions whose state is designated as
D in the accepted state. However, all the subtransac-
tions designated as M in the accepted state are com-
pleted as follows. Before the global transaction com-
mits, all subtransactions with state M which have been
executed and not failed, must fail. If a subtransaction
is in a prepared to commit state or if it is still exe-
cuting, it is forced to abort. If a subtransaction has
committed, its compensating transaction is scheduled
for execution. In the simple two flight reservation ex-
ample, the maximum concurrency can be achieved by
specifying (S, M), (N, S), (E, S), (F, S) as the set
of acceptable states.

A possible set of acceptable states corresponding to
the dependency graph of Figure 1 is shown below as
an example.

The Flexible Transaction starts executing by

scheduling the primary subtransactions. Upon the
success or failure of a subtransaction, it checks
whether an acceptable state is reached. If not, it

1This simple priority based conflict resolution can be fur-
ther extended to include more complex conflict resolution
mechanisms.
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Figure 2. The structure of the Executor.

schedules further subtransactions which have execu-
tion dependencies on the finished subtransaction. The
Flexible Transaction succeeds if any of the acceptable
states is reached. This state is referred to as accepted
state. It fails if there is no subtransaction to be sched-
uled, no subtransaction is executing, and no accept-
able state is reached.

3 Execution of Flexible Trans-
actions

There are two major tasks in the implementation of an
Executor for Flexible Transactions. The first task is
to schedule subtransactions and determine the success
or failure of global transaction. The second task is to
execute subtransactions in the local database systems.

The scheduling algorithm for Flexible Transactions
is implemented using L.0 which allows concise specifi-
cation of the scheduling constraints on the subtrans-
actions [CNS91]. The Scheduler receives the specifi-
cation of a Flexible Transaction consisting of a set of
subtransactions, their dependency set, and the set of
acceptable states?. Appendix A shows the specifica-
tion of a Flexible Transaction, expressed in L.0. It
corresponds to the Flexible Transaction shown in Fig-
ure 1.

To control the execution of the scheduled subtrans-
actions, we use the Distributed Operation Language,
DOL, which has been designed to access multiple and

2The specification of a Flexible Transaction can be expressed
in a pseudo language. In this case, the specification must be
translated to L.0 before being passed to the scheduler. The
translation can be done either manually or by a program. In
the latter case, a graphical interface to the user can be designed
to accept the specification, and translate it to L.0. This would
eliminate the user’s need for knowing how to specify a Flex-
ible Transaction in L.0, and the existence of L.0 will become
transparent.
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heterogeneous hardware and software systems. By in-
terfacing L.0 and DOL, we allow the scheduler to co-
operate with the execution monitor in executing Flex-
ible Transactions. The structure of the Executor is
illustrated in Figure 2.

3.1 Execution of the subtransactions

Figure 3 shows the state transition diagram for sub-
transactions during scheduling. Some state transitions
are determined by the Executor and some by the mem-
ber database systems. Once a precondition of a sub-
transaction becomes true, it is scheduled for execution.
Upon the failure of a subtransaction (determined by
the member DBMS), its state changes to Local Abort.
Upon the success of a subtransaction (also determined
by the member DBMS), its state changes to Local
Commit, if it has committed, or to Prepared to Com-
mit, if it waits at the prepared to commit point. At
any of these two points (i.e., Local Commit or Pre-
pared to Commit), the subtransaction state does not
change until the success or failure of global transaction
is determined.

If the global transaction succeeds, the following
state transitions occur. If a subtransaction is in a Pre-
pared to Commit state and its success is part of the
accepted state, then it commits and its state becomes
Local Commit. If a subtransaction is in a Prepared
to Commit state and its success is conflicts with the
accepted state, it aborts and its state becomes Local
Abort. If a subtransaction is in a Local Commit state
and its success is a part of the accepted state, its state
remains unchanged. If a subtransaction is in a Local
Commit state and its success is contradictory to the
accepted state, it is compensated (providing that it is
compensable) and its state become Compensated.

If the global transaction fails, the following state
transitions occur. If a subtransaction is in a Prepared
to Commit state, it is aborted and its state becomes
Local Abort. If a subtransaction is in a Local Commit
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Figure 3. State Transition Diagram for subtransactions

state, it is compensated (providing that it is compens-
able) and its state becomes Compensated.

3.2 Using L.0 to implement the scheduler

L.0is a rule-based language, which was designed to al-
low fast prototyping of software and hardware proto-
cols [CCG*91]. Such protocols constrain the behavior
of a number of different agents or components, so that
when they act together, as prescribed by the protocol,
a common goal is achieved, such as reliable transmis-
sion of data, fair resource allocation, recovery from an
error state, correct execution of a hardware circuit, or
success or failure of a Flexible Transaction.

Often these protocols are stated as sets of guarded
commands (rules). Each set of guarded commands
specifies the behavior of a particular agent or compo-
nent. In hardware, all of the components are active
simultaneously and forever. In the case of Flexible
Transactions, each subtransaction may be viewed as
an agent, and the whole Flexible Transaction may be
viewed as a protocol for coordinating the behavior of
each of these subtransactions. The agents (subtrans-
actions) need to be active only until success or failure
of the whole Flexible Transaction is detected. In Flex-
ible Transactions, the protocol each agent is supposed
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to follow, is basically the same. Thus, it can be de-
scribed via a parameterized set of guarded commands,
which is instantiated once for each subtransaction, us-
ing the data particular to that subtransaction. In gen-
eral in software protocols, only some of the agents need
to be active simultaneously at each phase, and often
there are a number of different groups of similar agents
acting simultaneously.

To ease specification of such systems, the funda-
mental semantics of L.0 is synchronous execution of
guarded predicates. At each L.0 step, all of the guards
in all of the sets of guarded commands, which are cur-
rently active, are evaluated. Then, in the second phase
of the same step, all of the actions, whose guards were
true are taken. These actions appear to be simultane-
ous to the user. The guards in L.0 are usually referred
to as causes, and the actions as effects.

For example in the scheduler of Flexible Transac-
tion (whose code is in Appendix B), for each subtrans-
action, there is one guarded command of the form:

whenever
<precondition for execution>
&
<the state of the subtransaction
is "Not_Executing">
then



<assign state of subtransaction
to be "Executing">

&

<invoke DOL to start execution
of that subtransaction>;

The semantics of L.0 implies at each step, all of
the subtransactions, which have not been executed yet
and whose preconditions are true, will be scheduled for
execution by DOL.

To permit different sets of guarded commands to
be active at different times, an until construct is pro-
vided, which can be used to remove one set of guarded
commands and activate other set(s) of guarded com-
mands.

In the scheduler, an until construct is used to re-
move the set of guarded commands specifying the
state transitions of the subtransactions when either
an acceptable state is reached or the global transac-
tion fails.

L.0 has only one data type, a tree with labeled
edges. The size of the tree is logically unlimited. Dec-
laration of variables is not required. Figure 4 illus-
trates an L.0 tree structure. The tree structure per-
mits a hierarchical organization of data. The Flexi-
ble Transaction model may be viewed as a data type
which can be realized within this L.0 type. Thus, each
Flexible Transaction is represented as an instance of
this data type. Two types of basic queries are permit-
ted on this data type. One basic query is a test for
the existence or non-existence of a path from the root.
The other basic query is a test for equality between
trees. The legal cause predicates are formed from the
basic queries by combining them by the usual boolean
operators, and possibly quantifying them universally
or existentially. A tree may either be explicitly de-
scribed, computed by a function written in C , or, if
it is a subtree of the current or previous state tree,
may be referred to by giving the path leading from its
root. There are two basic types of updates permitted
on this data type. One type of update, whose syntax is
< pathname >=< treedescription >, adds the path
name from the root of the current context if it does
not already exist, and assigns the tree described to be
its subtree (replacing the tree that might have already
been there). The other type of update deletes a leaf
edge. Intuitively path names from the root of a tree
may be thought of as variable names. Conjunctions of
these updates may be used in effects. In addition, an
effect may calla number of procedures (called capsules
in L.0), or a number of instances of one L.0 capsule,
or both. The L.0-DOL interface is an interesting ex-
ample of the exploitation of side-effects of C functions
permitted in L.0.

Parameters may be passed by value or by reference
in L.0. Parameter names are path names in the local
tree. Reference parameters set up equalities between
the values of path names in two different trees, referred
to in a procedure and a procedure it calls.

L.0 also has quantification parameters, which can
be viewed as in-line pass-by-value parameters. They
are instantiated by a restricted form of universal quan-
tification. Quantification is the key to the design of the
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scheduler, as illustrated in Appendix B. The syntax for
quantification parameters in L.0 is ? < label >. The
restricting predicate for each quantification parame-
ter, determines the set of possible label values that
the parameter may assume. For example, in the ex-
pression below, the values of ?subtrans are restricted
to be names of subtransactions of the Flexible Trans-
action:

forall (?subtrans) st
{exists(Trans:7subtrans);}

Here Trans is the path name (of length one) leading to
the tree which contains the specification of the Flexible
Transaction. So Trans can be viewed as the variable
whose (tree) value, is the specification of the Flexible
Transaction. Technically, L.0 does not have a notion
of variable.

The guarded commands for subtransactions are im-
plemented in the scheduler using whenever cause-
effect rules. Appendix B.1 shows these cause-effect
rules for scheduling subtransactions. By using forall
quantification, cause-effect rules are executed for all
subtransactions. Guarded commands to determine
the success or failure of the Flexible Transactions are
implemented using until deactivator (Appendix B.2).
Once the cause of any of the until deactivators be-
comes true, all other rules are deactivated and are
removed from the rule space. Upon the completion of
the effect of the until rule, it is also removed from the
rule space and the execution stops.

Using L.0 to implement the scheduler has several
advantages. The basic idea underlying L.0 is syn-
chronous execution of quantified guarded predicates.
The synchronous execution allows modeling of maxi-
mal parallelism. The parallelism may further be re-
stricted according to the dependency constraints and
the limitations of the execution environment.

Another important advantage is that some features
of L.0 such as quantification and cause-effect rules are
very expressive, and therefore permit an easy imple-
mentation of the scheduler. Furthermore, the spec-
ification of Flexible Transaction fits the nature of
L.0’s data structure and can be expressed easily using
this data structure. Interfacing to DOL is straight-
forward, since L.0 provides the facility to call functions
written in C.

3.3 Basic concepts of DOL

DOL can be used to specify a distributed execution
of a global application in a heterogeneous computing
environment [ROEL90]. Its major components are the
Execution Engine, Service Directory, and LAMs (Lo-
cal Access Managers).

The Engine is responsible for the execution of the
DOL programs. Internally, it plays the role of a task
controller and information flow controller. For each
task to be performed at a site, it checks with Service
Directory to determine how that site can be accessed.
Then, it spawns an instance of a LAM on that site
to perform the task. It supplies the LAM with all the
necessary information, including commands and input
data. Upon the termination of the task, it receives



T
Dependency
ST8
7
None dependentl dependentl dependent2 dependentl
ﬁg 5
ST1 ST2 ST4 S ST7
SQ SSL) (bS SB F
o 6 0

Figure 4.

An L.0 tree structure corresponding to

Execution Dependency Graph of Figure 1.

possible output and the status of the task from the
LAM.

A LAM acts as a proxy user for the software system
it manages, encompassing it in a sort of logical shell.
Fach LAM knows how to communicate with the En-
gine and with its local software system. 1t provides to
the local software system commands and data which
it receives from the Engine and returns back to the
Engine the output produced by the local software sys-
tem. It also provides the Engine with the status of the
performed task.

This architecture allows an easy addition of soft-
ware systems to DOL. To incorporate a new system,
we need to design a LAM for it and add its access in-
formation, such as its network address, to the Service
Directory.

3.4 Interfacing L.0 to DOL

The main concern in designing the L.0 interface to
DOL was to allow the asynchronous execution of the
DOL programs (subtransactions) so that L.0 program

(scheduler) did not have to wait for each DOL program
to finish before it would continue its scheduling job.
The design of the interface is illustrated in Figure 5.

Four C functions: DoTrans, GetState, Com-
mitTrans, and AbortTrans are added to the L.0 C-
library to interface it with DOL. They are described
as below.

DoTrans is in charge of establishing the communi-
cation channel and starting the Interface process. It
first establishes a socket for communication between
L.0 and Interface. Then, it creates a child process and
initiates an instance of the Interface in the child pro-
cess. It passes the communication information and the
name of the file containing DOL program (a subtrans-
action) to be executed, as the arguments to the Inter-
face. Finally, without waiting for the child process to
finish, it returns back to the L.0. It returns the com-
munication information of the established channel.

GetState reports the current state of a subtransac-
tion, upon the request from L.0 program (the sched-
uler). It works as follows. It checks whether there is
any returned result from the Interface or the LAM, in
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the socket. If there is any new result of the execut-
ing subtransaction, that is LocalCommait, LocalAbort
or PreparedToCommit, it reports it back to L.0. Oth-
erwise, it reports Ezecuting as the current state of the
subtransaction. If the subtransaction has locally com-
mitted or aborted, it closes the socket so that it can be
reused. However, if the state is prepared to commit,
it keeps the channel alive, so that it can be used for a
commit or abort signal later in the program.

CommitTrans and AbortTrans are used for the sub-
transactions which are in the prepared to commit
state. If the scheduler decides to commit the pend-
ing subtransaction, it calls the CommitTrans. The
CommitTrans uses the already established channel to
signal the subtransaction to commit. Similarly, Abort-
Trans is used if the scheduler decides to abort the
pending subtransaction.

The DOL Interface is a process started by DoTrans.
It creates a child process to execute a subtransaction
and waits for the result. It communicates with its child
through a pipe. If a subtransaction fails or succeeds
without waiting in a prepared to commit state, the
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DOL Engine reports the state of the subtransaction
back to the Interface. The DOL Engine reports any
kind of failure such as failing to connect to a service
or aborting a subtransaction in the DBMS as Failure.
In case of success, Interface records any output in a
file and reports local commit to the L.0. In each case,
Interface plays the role of a filter. The implementation
permits complex filtering depending on data returned
by a subtransaction as well as on the state information.

If a subtransaction reaches a prepared to commit
state, LAM reports this to L.0. At this point, the
subtransaction waits for a commit or abort signal from
the scheduler before it resumes its execution.

4 Conclusions

In this paper, we have described the specification and
execution of Flexible Transactions. L.0, an executable
temporal logic language, is used for specifying a Flex-
ible Transaction and scheduling its subtransactions.
DOL is used for executing each scheduled subtransac-



tion on databases which are accessed through LAMs.

L.0 supports synchronous execution of quantified
guarded predicates. The guarded predicates preceded
by the keyword whenever, contain the precondi-
tions specifying dependencies among subtransactions.
All such guarded predicates are evaluated within the
scope of a forall command that allows simultaneous
scheduling of all subtransactions whose preconditions
are satisfied. This allows maximal parallelism permit-
ted by the specification of the Flexible Transaction.
The until deactivator is used to determine global suc-
cess and failure of a Flexible Transaction and to ter-
minate it. L.0’s data structure allows straight-forward
specification of a Flexible Transaction. Since L.0 pro-
vides the facility to call functions written in C, the
interface between L.0 and communication modules as
well as DOL (including the Local Access Manager in-
terfaces to heterogeneous DBMSs) are easily specified.
The complete L.0-DOL interface described in this pa-
per has been implemented.

This work has led us to a better understanding of
the Flexible Transaction model. We have extended
the Flexible Transaction model in some aspects. By
clustering subtransactions, we can simplify the spec-
ification of dependencies in cases where several sub-
transactions are intended to achieve the same subgoal.
By using Must Fail as a state of a subtransaction, we
allow more concurrency among alternative subtrans-
actions that achieve the same subgoal.

Currently, we are investigating use of the multi-
database transaction paradigm for meeting transac-
tion management needs of a telecommunication appli-
cation. Our implementation will serve as a prototyp-
ing tool.
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Appendix A: Specification of a Flexible Transaction in L.0

In this appendix, the L.0 specification of the Flexible Transaction
specification consists of specification of each subtransaction, each compensating subtransaction, dependencies
among subtransactions, and the set of acceptable states. The specification of a subtransaction consists of its code
and its compensation information. The code for each subtransaction is stored in a file (e.g., dpi contains the code
for subtransaction STi). These files are not accessed during scheduling but are needed by DOL for executing a
subtransaction after it has been scheduled.

of Figure 1 is given. The global transaction

Specification of subtransactions:

Ti=:{ Sle{filename:dpi;type:"Compensable”;CompensableBy:CTll};
ST2:{filename:dp2;type:"Compensable";CompensableBy:CT12};
ST3:{filename:dp3;type: "NonCompensable"};
ST4:{fi1ename:dp4;type:"Compensable";CompensableBy:CT14};
ST5:{filename:dp5;type: "NonCompensable"};
ST6:{filename:dp6;type: "NonCompensable"};
ST7:{filename:dp7;type:"Compensable";CompensableBy:CTi?};
ST8:{fi1ename:dp8;type:"Compensable";CompensableBy:CTlB} };

Specification of compensating transactions:

CompensatingTrans=:{ CT11:{filename:dp11};
CT12:{filename:dp12};
CT14:{filename:dp14};
CT17:{filename:dp17};
CT18:{filename:dp18} };
Dependency specification (see Figure 4):
Dependency=:{ ST1:"None";
ST2:{dependent1:{ST1:S}};
ST3:{dependent1:{ST2:F}};
ST4:{dependent1:{ST3:S}};
ST5:{dependent1:{ST2:S}; dependent2:{ST4:S}};
ST6:"None";
ST7:{dependent1:{ST6:S}};
ST8:{dependent1:{ST7:F}} };
Set of acceptable states:

SetAcceptables=:{ statel:{S;S;N;N;S;M;M;M};
state2:{S;F;S;S;S;M;M;M};
state3:{M;D;D;D;M;S;S;N};
state4:{M;D;D;D;M;S;F;S} };

Appendix B: Scheduling Flexible Transactions

In this appendix, parts of the code for the scheduler are presented. In Section B.1, the code for scheduling
subtransactions is shown. In Section B.2, the code for determining global success or failure is shown.

s

forall (?subtrans) st {exists (Trans: ?subtrans);}

B.1: Scheduling Subtransactions

Whenever clause expresses precondition

cause in L.0) for each subtransaction,
schedules the subtransaction whose precon

then clause (ef fect in L.0)
ition is satisfied. (see subsection 3.4).

{* If the subtransaction’s execution guard is true,
execute it, if it has not already been executed *}
whenever
(Trans:?subtrans:state=N) &
( (forsome (?PrimaryTrans) st {exists (Dependency: ?PrimaryTrans:None) ; }
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{ 7PrimaryTrans=?subtrans } ) |
(forsome (?dep) st {exists (Dependency: ?subtrans: 7dep) ;}
{ forall (?subdep) st {exists (Dependency: 7subtrans : ?dep: ?subdep) ;
{ Dependency:?subtrans:?dep:?subdep=Trans:?subdep:result 132D
then
{ Trans:7subtrans:state=E;
Trans:?subtrans:CommInfo=DoTrans(Trans:?subtrans:iilename’); };

{* Check to see if the result of the subtramsaction is arrived yet and if so,
receive the new state (local commit or abort, or prepared to commit) *}
whenever
Trans:?subtrans:state=E
then
Trans:?subtrans:state=GetState(Trans:?subtrans:CommInfo:socketno’);

{* If the state is prepared to commit or local commit, set the result to success *}
whenever
( (Trans:?subtrans:state="PreparedToCommit") |
(Trans:?subtrans:state="LocalCommit") ) &
(Trans:?subtrans:result="ﬂone")
then
Trans:?subtrans:result=S;

{* If the state is local abort, set result of subtransaction to failure *}
whenever

(Trans:?subtrans:state="LocalAbort") &

(Trans:?subtrans:result="None")
then

Trans:?subtrans:result=F; };

B.2: Determining Global Success or Failure

The code for determining global success or failure is shown below.

Global Success predicates:

{* If an acceptable state has been satisfied, conclude the state transition
of subtransactions (Figure 3), and then commit the Flexible Transaction.*}

until
(forsome (?AcceptState) st {exists (SetAcceptables: ?AcceptState);}
{ ( (forall (?SuccTrans) st {exists (SetAcceptables:?AcceptState: ?SuccTrans:S);}
{ Trans:?SuccTrans:result=S }) |
(forall (?SuccTrans) st {exists (SetAcceptables: ?AcceptState: ?SuccTrans);}
{ '(SetAcceptables:?AcceptState:?SuccTrans=S) Mk
( (forall (?FailTrans) st {exists (SetAcceptables:?AcceptState:?FailTrans:F);}
{ Trans:?FailTrans:result=F })
(forall (?FailTrans) st {exists (SetAcceptables: ?AcceptState:?FailTrans);}
{ ~(SetAcceptables:?AcceptState: ?FailTrans=F) )&
( (forall (?NotExecTrans) st {exists
(SetAcceptables:?AcceptState:?NotExecTrans:N);}
{ Trans:?NotExecTrans:state=N }) |
(forall (?NotExecTrans) st {exists
(SetAcceptables:?AcceptState:?NotExecTrans);}
{ '(SetAcceptables:?AcceptState:?NotExecTrans=N) 13323
then
{ {* Conclude the state transition of subtransactions (Figure 3) and commit *} };

Global failure predicate:
{* If no more subtransaction can be scheduled and no more is executing and

no acceptable state is satisfied then conclude the state transition of
subtransactions, and abort the Flexible Transaction. *}
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until

{* No subtransaction is executing *}

(forall (?SubTransaction) st {exists (Trans:?SubTransaction:state);}

{ “(Trans:?SubTransaction:state=E) &

“(((Trans:?SubTransaction:state="LocalCommit") |

(Trans:?SubTransaction:state="LocalAbort") |
(Trans:?SubTransaction:state="PreparedToCommit") ) &
(Trans: ?SubTransaction:result="None"))})

& {* No subtransaction can be scheduled *}
(forall (?SubTransaction) st {exists (Dependency:?SubTransaction:Nome);}
{ "(Trans:?SubTransaction:state=N) }) &
( (forall (7SubTransaction) st {exists (Trans:?SubTransaction:state);}
{ ~(Trans:7SubTransaction:state=N) }) |
(forall (?SubTransaction) st {exists (Trans:?SubTransaction:state:N);}
{ “(forsome (?dep) st {exists (Dependency:?SubTransaction:?dep);}
{ forall (7subdep) st {exists (Dependency:?SubTransaction:?dep:?subdep);?}
{ Dependency: ?SubTransaction: ?dep: ?subdep= Trans:?subdep:result }})}))

& {* No acceptable state is satisfied *}
“(forsome (?AcceptState) st {exists (SetAcceptables:?AcceptState);}
{ ( (forall (?SuccTrans) st {exists (SetAcceptables:?AcceptState:?SuccTrans:S);}
{ Trans:?SuccTrans:result=S }) |
(forall (?SuccTrans) st {exists (SetAcceptables:?AcceptState:?SuccTrans);}
{ “(SetAcceptables:?AcceptState:?SuccTrans=S) })) &
( (forall (?FailTrans) st {exists (SetAcceptables:?AcceptState:?FailTrans:F);}
{ Trans:?FailTrans:result=F })
(forall (?FailTrans) st {exists (SetAcceptables:?AcceptState:?FailTrans);}
{ “(SetAcceptables:7AcceptState: ?FailTrans=F) })) &
( (forall (?NotExecTrans) st {exists
(SetAcceptables:?AcceptState:?NotExecTrans:N);}
{ Trans:?NotExecTrans:state=N }) |
(forall (?NotExecTrans) st {exists
(SetAcceptables: ?AcceptState:?NotExecTrans) ;}
{ ~(SetAcceptables:?AcceptState:?NotExecTrans=N) }))})
then
{ {* Conclude the state transition of subtransactions (Figure 3) and commit *} };

Appendix C: A Subtransaction expressed in DOL

The following is an example of expressing a subtransaction as a DOL program. This subtransaction can be
executed at site climax. The service is requested for Ingres DBMS.

BEGIN
OPEN (ingres) at climax as 4
SCOPE A
<subtransaction>
ENDSCOPE to output
CLOSE A
END.

346



	Executing Multidatabase Transactions
	Repository Citation

	tmp.1412003504.pdf.QPezt

