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Abstract— Now that a draft sequence of the human ge-
nome is nearly complete, questions regarding both the in-
formation contained within our genetic blueprints as well 
as the manner in which that information content changes 
over time can be addressed in ways that had not previ-
ously been possible.  By their very nature, some of the nu-
cleotide sequences present within our genome allow de-
tailed examination of the mode and pattern of evolution 
that has shaped our genetic instructions over time spans of 
tens of millions of years. Alu repeats are one example. Us-
ing these relatively short, ubiquitous DNA sequences we 
explore the problem of attempting to predict the relative 
abundance of a variety of different possible substitution 
events that have accumulated over the past 20 million 
years. To perform well when applied to biological se-
quence data, computational methods must have the ability 
to tolerate both natural variation in the data and noise 
introduced in data measurement. As a result and due to 
their ability to search complex, noisy search spaces, Evolu-
tionary computation techniques are particularly promis-
ing for the analysis of nucleotide sequence data and other 
biological data sets. We have used these techniques to ad-
dress a key question in understanding the process of evolu-
tion: the effect of genomic context on substitutions (the 
degree to which the genomic information surrounding a 
particular region of a chromosome affects the changes to 
that region over time). We utilized genetic programming 
to predict changes in these DNA sequences over time. 
These approaches reveal that a significant proportion of 
DNA nucleotide substitutions within a given region are 
governed by a model that takes into consideration only the 
GC-content of the DNA sequences surrounding the region 
being considered. 
 

Index Terms—Alu Repeats, Bioinformatics, Classification, Ge-
netic Programming, Substitution Rates 
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I. INTRODUCTION 

A. Exploring the Human Genome 
 genome is the sum total of an organism’s heritable in-
formation that can be passed from one generation to the 

next.  The bulk of that information is stored in the specific 
order in which four different chemical units (commonly ab-
breviated as G, A, T and C) called nucleotides are linked to-
gether in long chains to make DNA molecules.  With the de-
termination of the sequence of roughly three billion nucleo-
tides that comprise the human genome nearly complete, we 
are presented with new opportunities to examine our funda-
mental makeup. One such problem is exploring and identify-
ing factors that govern how our genome has changed and is 
continuing to change over time. We can determine the 
changes that have taken place by comparing a sequence of our 
own genome with a homologous region ( a region that is de-
rived from a single sequence in a common ancestor) in an-
other organism. DNA sequences that are functionally con-
strained change very little due to the fact that a mutation often 
limits (in extreme cases, by death) the affected organism’s 
ability to pass that mutation onto subsequent generations. Se-
quences that are not functionally constrained are free to 
change. Analyses of homologous sequences, such as those of 
Alu repeats, which are free of selective constraint, have the 
potential to give insights into underlying boundaries associ-
ated with mutational processes. 
 
B. Alu Repeats 

The genome of every mammalian order (such as primates, 
rodents, carnivores, and artiodactyls) studied to date have 
been found to possess their own characteristic family of short 
interspersed repetitive elements (SINEs) (reviewed in Dein-
inger and Batzer, 1993).  Alu repeats are the predominant 
SINE in primate genomes (Deininger and Batzer, 1993).  Like 
typical SINEs, Alu repeats have an average length of about 
280 bp and account for roughly 10% of the primate genomes 
where they are found (Houck, Rinehart and Schmid, 1979; 
Sun et al., 1984; Hwu et al., 1986).  

Alu repeats, like other SINEs, have been propagated 
throughout primate evolution by a process known as retro-
transposition (Schmid and Shen, 1985; Weiner, Deininger and 
Efstradiatis, 1986) in which a “master” copy of the repeat is 
transcribed (made into an RNA copy by an enzyme called 
RNA polymersase), reverse transcribed (by an enzyme called 
reverse transcriptase such as those typically associated with 
retroviruses like HIV) and then reinserted into the genome at a 
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distant site.  The result has been an expansion to an estimated 
500,000 to 1,000,000 copies of Alu repeats (Rinehart et al., 
1981; Jurka et al., 1993) within the human genome.  Copies of 
these Alu repeats are generally free of selective constraint 
(Labuda and Striker, 1989; Batzer et al., 1990) and remain 
stably inserted for at least tens of millions of years (Koop et 
al., 1986; Sawada and Schmid, 1986).  
 
C. Predicting Substitution Rates 

Over time, errors in DNA replication and repair introduce 
changes into a genome. At the level of the four possible nu-
cleotides at any particular position within a genome, only a 
relatively small number of changes in state (substitutions) can 
be observed. Our goal is to produce a function capable of ac-
cusatively predicting the number of such changes in a given 
region (over time).  Such a function could provide significant 
insight into the biological factors that drive substitutions 
across the entire genome and have implications for the study 
of disease-causing mutations that continue to accumulate. 

For each of the twelve possible changes of state (G to A, T, 
or C; C to A, G, or T, etc.) the number of changes is predicted. 
Correct predictions are classified by simple difference, using 
the test below:  

| PREDICTED SUBSTITUTIONS – ACTUAL SUBSTITUTIONS | < 0.5 
 
Rounding will account for any absolute error less than 0.5.  A 
fitness function can utilize either the absolute error or the       
classification rate (percentage of substitutions correctly     
predicted). 
 
D. Feature Selection and Extraction 
 Since all members of a particular Alu subfamily of repeats 
are considered to have begun with exactly the same nucleotide 
sequence at the time of its propagation, no information about 
the progenitor itself is used in predicting the type and quantity 
of substitutions for a given repeat. Rather, each Alu repeat is 
characterized according to 16 features of the repeat itself and 
its genomic context: the length of the repeat, the number of 
A’s, G’s, C’s, and T’s within the repeat copy, the GC-content 
of the repeat itself, and the GC-content (the fraction of nucleo-
tides that were either G or C as opposed to A or T) of ten 
flanking regions of various sizes. 

II.  METHODS 
 CENSOR (Jurka et al., 1996; GIRI, 2003) was utilized to 
identify Alu repeats in the human genome (GenBank release 
133.0). 6,749 repeats belonging to the Alu-Y subfamily were 
obtained from the 274,400,000 bp of sequence available from 
human chromosome 1. All changes in the Alu-Y family were 
recorded as well as the GC-content for five flanking regions 
on each side of the repeat (500, 1000, 5000, 10000, and 20000 
nucleotides). 
 
2.1 Genetic Programming 

Genetic programming (GP) attempts to create an equation 

that solves a given problem by creating several randomly gen-
erated expression trees.  

 
 
 
 
 

 
Figure 2.1.1: A GP tree for the expression (I5 * (7 + I3)) 

 
GP expression trees are made up of input, operator, and con-
stant nodes (see Figure 2.1.1). Inputs are features that are 
evaluated directly from the data set. Operators come from a 
predefined list of possible operations that can be performed 
inside an equation. Like genetic algorithms, GP employs mu-
tation and crossover during reproduction. Crossover randomly 
chooses two GP expressions, randomly cuts a link in each 
tree, and combines the results, forming a new expression. Mu-
tation replaces a randomly chosen node with a new randomly 
generated node of the same type.  

GP provides a very flexible environment for optimizing 
discriminant functions for pattern classification, in that it does 
not require a fixed form for the equations that it creates (Bäck 
and Schwefel, 1996; Koza, 1992). A wide variety of nodes 
can be utilized to create an equation tree of any complexity. 
This flexibility has allowed GP-based classifiers to be devel-
oped for a variety of biological data types (Raymer et al., 
1996). Other methods of evolutionary computation are being 
used to solve biological problems as well (Raymer et al., 
1997). Genetic Programming also offers dimensionality reduc-
tion by selecting the features that provide the greatest fitness 
(Raymer et al., 1997, Raymer et al., 2000). For this applica-
tion, the fitness function utilized the absolute value of the er-
ror between the number of substitutions predicted by the GP 
and the number of actual substitutions, which were previously 
calculated in the data set. 

 
2.2  Functions and Terminals 

The types of nodes available dictate what type of equation 
can be created. The traditional operations of add, subtract, 
multiply, and divide form the base of the set. The following 
functions were also included: 

 
Min – returns the minimum of two nodes or subtrees 
 
Max – returns the maximum of two nodes or subtrees 
 
Cos – if the connected nodes are x and y, it returns x * Cos(y) 
 
Sin – if the connected nodes are x and y, it returns x * Sin(y) 
 
Ave – if the connected nodes are x and y, it returns (x + y)/2 
  
Log– if the connected nodes are x and y, it returns x * Log(y) 
   
2.3  Mask Operator Terminals 

In addition, a set of mask operator terminals was added. 

I5

*

I3 7

+
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Each terminal contains a mutable binary mask that selects the 
features to be used. Mask operator nodes only occur in the 
leaves of a tree and do not contain any leaves of their own. 
The mask operator terminals are as follows: 
 
Summation: ∑

i
iimf  

 
Multiplication: ∏

i
iimf  

 

SumSquareRoot: ∑
i

ii mf  

 
Where m is a binary mask vector of length 16.  Each bit in m 
is associated with a particular feature.  For example, if m = 
[0000000000001111] for a summation node, the value of the 
node would be the sum of the feature values for features 13 
through 16. 
 
2.4  Initial GP Experiments 

The data set of 6,749 examples was broken into 5,000 ex-
amples for training and 1,749 examples for holdout testing. 
The fitness function was the absolute average error across all 
training examples. The first classification problem attempted 
was predicting the number of C’s that were previously G’s. 
Classification rates were observed around 46% in the first few 
generations. Unfortunately, little improvement of the initial 
classification rates was realized during subsequent genera-
tions. The classification rate remained at around 46% and the 
average of the absolute error (the fitness value) converged at 
around 0.75. 
 
2.5  Theta Correction: The Offset Factor 

The average absolute error value of 0.75 was nonetheless 
encouraging, because an absolute error of ≤ 0.5 can be cor-
rected by rounding each predicted value to the nearest integer. 
Thus, if the average absolute error was lessened by only 0.26, 
many more examples would possibly be classified correctly.  

If an equation is consistently 0.75 off of the desired result, 
then we can achieve the correct result by simply applying a 
constant bias to all predicted results. The fitness function was 
changed to the following for a correct classification: 

| | RESULT – DESIRED |  -  OFFSET |   <  0.5 
 
An offset of 0.30 was used as an initial test to see how well 
the examples would be classified. The change was dramatic, 
as the classification rate jumped to around 66%, indicating 
that the theta correction factor was performing as intended. 

Determining the offset factor could be done experimentally, 
through a mutation operator, or simply exhaustively. The lat-
ter was chosen because the ideal offset is likely between zero 
and one as the solution converges. With each tree evaluation, 
the fitness is calculated with every possible theta between 0 

and 1 in 0.01 intervals. The theta that results in the most cor-
rectly classified training examples is used.  
 
2.6 Experiments Utilizing the Theta Offset Factor 

The previous experiment of predicting the number of G to C 
substitutions was performed using the theta offset factor. 
Training and testing data sets were chosen at random at the 
start of each experiment. A population and offspring size of 
700 individuals each was utilized. Initial experiments yielded 
trees with fewer than 10 nodes, so a mutation rate of 0.20 was 
used. Initial trees were chosen to be between 3 and 50 nodes. 
The GP consistently chose an offset between 0.5 and 0.6 and 
resulted in a classification rate converging at 79%. 
 

     Progenitor Sequence 
 A C G T 

A - 76, 76 23, 21 94, 95
C 96, 96 - 76, 76 80, 79
G 81, 82 79, 79 - 96, 96A

lu
 R

ep
ea

t 

T 91, 91 28, 28 66, 66 - 
 
Figure 2.6.1: Classification rates for all substitutions.  
                          Classification rates listed as [training rate, test rate]. 
 

Further experiments yielded impressive results for classify-
ing other possible substitutions (see Figure 2.6.1). Nine out of 
twelve holdout classification rates were above 75%, with four 
above 90%. The two lowest classification rates (C to T and G 
to A) can be accounted for due to these changes of state oc-
curring primarily as a result of a distinct and separate substitu-
tion process related to methylation of human DNA sequences. 
Substitutions involving 5’-CG-3’ dinucleotides are known to 
be heavily influenced by methylation-related mutagenesis 
(Coulondre et al., 1978; Razin and Riggs, 1980).  Methylation 
within the human genome occurs only at the C’s of 5’-CG-3’ 
dinucleotides. Oxidative deamination (a common form of 
DNA damage) of methylated C’s typically causes T’s to be 
put in place of those C’s or A’s in place of their associated 
G’s during the process of DNA replication. 
 
2.7 Narrowing the Feature Set 
 Examining the expression trees from the previous experi-
ments showed that there was a heavy reliance on flanking GC-
content. This suggested the intriguing idea that perhaps all 
substitutions could be predicted through context information 
alone.  All twelve experiments were redone, this time using 
only the GC-content of 10 flanking regions. 

 

  Progenitor Sequence 
A C G T 

A - 
76, 76 

(91, 91) 
20, 19 
(49,51) 94, 95 

A
lu

 R
ep

ea
t 

C 96, 96 - 
73, 73 
(80,80) 80, 79 
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G 81, 82 
78, 76 

(91, 91) - 96, 96 
 

T 91, 91 
22, 25 

(60, 64) 
66, 66 

(86, 85) - 
 
Figure 2.7.1: Classification rates based on GC context.  Classification rates 

listed as [training rate, test rate].  Classification rates in pa-
rentheses are classifying CpG masked rates. 

 
The classification rates remained largely the same as the pre-

vious experiments, demonstrating that content information of 
the repeat itself is largely an unimportant feature of the 
predictive model (see Figure 2.7.1). The only changes in clas-
sification were in classifying C to G substitutions (from 79, 79 
to 78, 76) and G to C substitutions (from 76, 76 to 73, 73). 
There was no apparent bias as to which scale of flanking GC-
content was preferred, and these values are in fact highly cor-
related with one another. 

As in previous experiments, the CpG-dinucleotides again 
proved to be a problem, this time resulting in even lower pre-
diction rates. Masking CpG-dinucleotides from the analysis 
resulted in a substantial improvement in the classification 
rates. Classification accuracy for C to T substitutions jumped 
from (22, 25) to (60, 64) and accuracy for G to A substitutions 
went from (20, 19) to (49, 50). The increases were fairly sub-
stantial, but their rates still constituted the lowest of all twelve 
predictions.  Interestingly, G to C substitutions were classified 
with 80% accuracy, and both C to G substitution and C to A 
substitution classification rates were above 90%.  G’s to T’s, 
which was previously the third lowest classification rate, in-
creased to (85, 86), placing it in the same range as the other 
prediction rates. In fact, the overall classification rates were 
80% or above for ten out of twelve predictions, with six 
reaching more than 90%.  

Surprisingly, the size of the GP trees did not balloon as the 
number of generations increased (a problem common to GP).  
The smallest tree consisted of only three nodes, while the 
largest contained 25. The average tree size for all twelve sub-
stitution models was ten nodes.   

III. CONCLUSIONS 
  The GP-optimized discriminant functions illustrated that the 
most important features available for classification of substitu-
tion rates were the region’s flanking GC-contents. No infor-
mation on the Alu repeat itself was needed to predict the re-
peat’s substitution pattern, a fact both surprising and illumi-
nating. These results suggest that Alu’s must either undergo 
specific changes that are dependent upon their surroundings or 
Alu’s are inserted in specific locations based on their current 
configuration (an alternative that is substantially at odds with 
the current model of how the repeats are retrotransposed from 
a single master progenitor).  
 Substitutions from A or T were fairly consistent, while 
those from C or G were much more varied. Much of this has 
to do with independent, competing trends, such as methyla-
tion-related mutagenesis. Masking CG-dinucleotides im-

proved classification rates dramatically.  
 We are currently exploring Alu repeats in other families 
throughout the entire genome to see if the same classification 
trends can be established. We are also working on comparing 
the models generated by the GP to see if any generalizations 
can be made about mutation processes. Genetic algorithms are 
also being explored as a means to solve this problem. The 
work will be presented in a later manuscript. 

Alu repeats are often thought of as “junk” DNA in that they 
do not seem to add anything to the functionality of organisms 
in which they are found, but they contain a wealth of informa-
tion about the evolutionary history of primates. Interpreting 
that information in these regions free of selective constraint 
can also provide insights into the changes that have taken 
place in functionally constrained regions, such as those asso-
ciated with genes. Ultimately, a better appreciation of the con-
straints on models of the substitution process should yield 
improved understanding of the mutation and evolution process 
that has operated and continues to operate upon the nucleotide 
sequences of the human genome.  
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