Wright State University CORE Scholar

Kno.e.sis Publications

The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis)

2015

Value Oriented Big Data Processing with Applications

Krishnaprasad Thirunarayan Wright State University - Main Campus, t.k.prasad@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation

Thirunarayan, K. (2015). Value Oriented Big Data Processing with Applications. . https://corescholar.libraries.wright.edu/knoesis/1087

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

с кпо.**є**.sis

Ohio Excellence

OSH

€ KNO.E.SIS

Engineering

> Russ

Value-Oriented Big Data Processing with Applications Krishnaprasad Thirunarayan (T. K. Prasad) Kno.e.sis – Ohio Center of Excellence in Knowledge-enabled Computing

Outline

- 5 V's of Big Data Research
- Semantic Perception for Scalability and Decision Making
- Lightweight semantics to manage heterogeneity
 Cost-benefit trade-off continuum
- Hybrid Knowledge Representation and Reasoning
 Anomaly, Correlation, Causation

Gartner's 2014 Hype Cycle for Emerging Technologies

5V's of Big Data Research

Volume Velocity Variety Veracity

Big Data => Smart Data

Volume : Assorted Examples

- 25+ billion sensors deployed by 2015, and 50+ billion by 2020.
- Data Universe would double every two years to reach 40 zettabytes (ZB = 10²¹ bytes) by 2020.
- About 250TB of sensor data are generated for a NY-LA flight on Boeing 737.
- Parkinson disease dataset that tracked 16 patients with mobile phone sensors over 8 weeks is 12GB.

Check engine light analogy

Volume : Challenge

• Sensors (due to IoT) offer unprecedented access to granular data that can be transformed into powerful knowledge. *Without an integrated business analytics platform, though, sensor data will just add to information overload and escalating noise.*

http://www.sas.com/en_us/insights/big-data/internet-of-things.html

Volume : (1) Semantic Perception

- Abstracting machine-sensed data
 - E.g., fine-grained to coarse-grained
 - E.g., average, peak, rate of change
- Extracting human-comprehensible features/entities
- Machine perception
 - Derive conclusions using domain models and hybrid abductive/deductive reasoning

Goal: Human accessible situational awareness and actionable intelligence for decision making

Weather Use Case

- Machine-sensed phenomenon
 - temperature, precipitation, humidity, wind speed, etc.
- Human perceived features
 - blizzard, flurry, rain storm, clear, etc.
 - categories of hurricanes (SSHWS)
- Machine perception
 - Using domain models from NOAA
- Ultimately, generate weather alerts ...

Parkinson's Disease Use Case

- Data from mobile phone sensors
 - accelerometer, GPS, compass, microphone, etc.
- Human perceived features
 - tremor, poor balance, disturbed sleep, slurred speech, fall, etc.
- Machine perception
 - Using domain models to be created to diagnose and monitor disease progression

• Ultimately, recommend options to control chronic conditions ...

Heart Failure Use Case

- Machine-sensed data
 - Weight change, heart rate, blood pressure, oxygen level, etc.
- Human perceived features
 - Risk-level for hospital readmission of CHF/ADHF patient
- Machine perception
 - Using domain models to be created to monitor heart condition of a cardiac patient post hospital discharge
- Ultimately, recommend treatments to reduce preventable hospital readmissions ...

Asthma Use Case

- Data from machine-sensors
 - Environmental sensors, physiological sensors, etc.
- Human perceived features
 - Asthma severity / control level gleaned from frequency of asthma attacks, wheezing, coughing, sleeplessness, etc.
- Machine perception
 - Using domain models to be created to monitor asthma patients and their surroundings
- Ultimately, recommend prevention, treatment, and control options ...[EVIDENCE-BASED APPROACH]

Traffic Use Case

- Data from machine-sensors, social media stream, and planned event schedules
 - Traffic flow sensors : link speed, link volume, Eventspecific tweets, etc.
- Human perceived features
 - traffic delays and congestion, etc.
- Machine perception
 - Using domain models to be created to understand traffic patterns in response to events
- Ultimately, recommend traffic management options

June 2015

. . .

Heterogeneity in a Physical-Cyber-Social System

Traffic Data Analysis

street = I-80 E; speedlimit = 80; fromstreet = 4TH ST; tostreet = BAY BRIDGE - WEST SPAN

<u>Relating Sensor Time Series Data</u> to Scheduled/Unscheduled Events

Image credit: http://traffic.511.org/index

Heterogeneity in a Physical-Cyber-Social System

Volume : (2) Exploiting Embarrassing Parallelism

- Cloud Computing
 - –Hardware : Networked Stock PCs
 - Middleware: Replicated storage and restarted computations for fault tolerance
 - E.g., Hadoop file system, Google file system
 - Application Programming: Models / languages for distributed computation
 - E.g., Map-Reduce, PIG, HIVE

Volume with a Twist

Resource-constrained reasoning on mobiledevices

Goal: Boolean encodings to ensure feasibility, efficiency, and economy

Cory Henson's Thesis Statement

Machine perception can he formalized using semantic web technologies to derive abstractions from sensor data using background knowledge on the Web, and efficiently executed on resourceconstrained devices.

Perception Cycle* that exploits background knowledge / domain models

12 A 13 C 14

Duck-rabbit

June 2015

Prior knowledge on the Web

Prior knowledge on the Web

Virtues of Our Approach to Semantic Perception

Blends simplicity, effectiveness, and scalability.

- Declarative specification of explanation and discrimination;
- With contemporary relevant applications (e.g., healthcare);
- Using improved encodings/algorithms that are *significant* (asymptotic order of magnitude gain) and *necessary* ("tractable" resource needs for typical problem sizes); and
- Prototyped using extant PCs and mobile devices.

Evaluation on a mobile device

kno.€.sis

Variety

Syntactic and semantic heterogeneity

- in textual and sensor data,
- in (legacy) materials data
- in (long tail) geosciences data

Idea: Semantics-empowered integration

Variety (What?): Materials/Geosciences Use Case

- Structured Data (e.g., relational)
- Semi-structured, Heterogeneous Documents (e.g., Publications and technical specs, which usually include text, numerics, maps and images)
- *Tabular data* (e.g., *ad hoc* spreadsheets and complex tables incorporating "irregular" entries)

Variety (How?): (1) Granularity of Semantics & Applications

- Lightweight semantics: File and document-level annotation to enable discovery and sharing
- *Richer semantics*: Data-level annotation and extraction for semantic search and summarization
- *Fine-grained semantics*: Data integration, interoperability and reasoning in Linked Open Data

Cost-benefit trade-off continuum

Variety (What?) : Sensor Data Use Case

- Develop/learn domain models to exploit complementary and corroborative information to obtain improved situational awareness
- To relate patterns in multimodal data to "situation"
- To integrate machine sensed and human sensed data
- Example Application:

SemSOS :

Semantic Sensor Observation Service

Variety: (2) Hybrid KRR

Blending data-driven models with declarative knowledge

- Data-driven: Bottom-up, correlation-based, statistical
- Declarative: Top-down, causal/taxonomical, logical
- Refine structure to better estimate parameters

E.g., Traffic Analytics using PGMs + KBs

Variety (Why?): Hybrid KRR

Data can help compensate for our overconfidence in our own intuitions and reduce the extent to which our desires distort our perceptions.

-- David Brooks of New York Times

However, inferred correlations require clear justification that they are not coincidental, to inspire confidence.

Variety (How?): Hybrid KRR

Blending data-driven models with declarative knowledge

- Structure learning from data
- Enhance structure
 - By refining direction of dependency
 - Disambiguation
 - Filtering
 - By augmenting with taxonomy
 - nomenclature and relationships
- Improved Parameter learning from data

E.g., Traffic Analytics using PGMs + KBs

Anomalies, Correlations, Causation

- Due to common cause or origin
 - E.g., Planets: Copernicus > Kepler > Newton > Einstein
- Coincidental due to data skew or misrepres ation
 - f Progress - E.g., Tall policy claims made by politicize
- Coincidental new discovery
 - rarts Sales
- - elicobacter Pyroli : Stomach Ulcers
- Strong correlation The Second And Addition of Angle Correlation of Angle Correlatio of Angle Correlation of Angle Correlation of Angle Correlat $_{1}$ $_{2}$ O_{2} levels and Obesity
- Correlation turning into causations
 - E.g., Pavlovian learning: conditional reflex

Veracity

Lot of existing work on Trust ontologies, metrics and models, and on Provenance tracking

- Homogeneous data: Statistical techniques
- Heterogeneous data: Semantic models

Open Problem:

- Develop (application-specific but defensible) semantics of trust using expressive frameworks that are both declarative and computational
- To make explicit all aspects that go into trust formation, to inspire confidence in inferences

Veracity: Confession of sorts!

Trust is well-known, but is not well-understood. The utility of a notion testifies not to its clarity but rather to the philosophical importance of clarifying it.

> -- Nelson Goodman (Fact, Fíction and Forecast, 1955)

(More on) Value

Learning domain models from "big data" for prediction

E.g., Harnessing Twitter "Big Data" for Automatic Emotion Identification

Idea: Exploit tweets with "emotion-hashtag" as training dataset

(More on) Value

Discovering gaps and enriching domain models using data

E.g., Data driven knowledge acquisition method for domain knowledge enrichment in the healthcare

Idea: Use associations between diseases, symptoms and medications in EMR documents

Conclusions

- Glimpse of our research organized around the 5 V's of Big Data
- Discussed role in harnessing Value
 - Semantic Perception (Volume)
 - Continuum of Semantic models to manage Heterogeneity (Variety)
 - Hybrid KRR: Probabilistic + Logical (Variety)
 - Continuous Semantics (Velocity)
 - Trust Models (Veracity)

Kno.e.sis: Ohio Center of Excellence in Knowledge-enabled Computing

Thank You http://knoesis.wright.edu/tkprasad

Krishnaprasad Thirunarayan, Amit P. Sheth: Semantics-Empowered Big Data Processing with Applications. AI Magazine 36(1): 39-54 (2015)

Special Thanks to: Pramod Anantharam, Dr. Cory Henson

Department of Computer Science and Engineering Wright State University, Dayton, Ohio, USA