
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

1999

InfoHarness: Managing Distributed, Heterogeneous Information InfoHarness: Managing Distributed, Heterogeneous Information

Kshitij Shah

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Shah, K., & Sheth, A. P. (1999). InfoHarness: Managing Distributed, Heterogeneous Information. IEEE
Internet Computing, 3 (6), 18-28.
https://corescholar.libraries.wright.edu/knoesis/815

This Article is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

A
PP

LI
CA

TI
O

N
S

Using metadata extraction

methods, InfoHarness provides

integrated, rapid access

to huge amounts of

heterogeneous information,

regardless of type,

representation, location,

and medium.

INFOHARNESS:
Managing
Distributed,
Heterogeneous
Information

KSHITIJ SHAH AND AMIT SHETH

University of Georgia, Large-Scale Distributed Information Systems Lab

Today, important information is scattered in so many places, formats,
and media, that getting the right information at the right time and
place is an extremely difficult task. Developing a single software

product, for example, includes the creation of documents ranging from
the requirements specification and project schedules to marketing pre-
sentations, multimedia tutorials, and more. Each document may be cre-
ated by a different person using a different tool, and each may be stored
in a different place.

InfoHarness is an information integration system, platform, and tool
set that addresses these problems, managing huge amounts of heteroge-
neous information in a distributed environment. Through a powerful,
consistent user interface, InfoHarness provides rapid search of and access
to information assets including documents and parts of documents, mail
messages, images, code files, video clips, Web pages with URLs, InfoHar-
ness queries, and views of relational tables. The system makes all these arti-
facts available without relocating, restructuring, or reformatting the data.

Instead, InfoHarness associates each original artifact with an extensi-
ble set of metadata—for example, the artifact’s type, location, access rights,
owner, and creation date. Using the metadata, the system rapidly, and
largely automatically, creates information repositories accessible through
any HTTP-compliant browser. Users can browse or query a repository for
items of interest.

In this article, we explain the InfoHarness approach to metadata extrac-
tion and heterogeneous information management. We also describe Visu-
alHarness, which extends the basic system to accommodate visual data.
Finally, we describe how to use InfoHarness tools and hooks to create other
Web-based, information-intensive applications.

18 NOVEMBER • DECEMBER 1999 h t tp ://computer.org/ in te rne t/ 1089-7801/ 9 9 /$10.00 ©1999 IEEE IEEE INTERNET COMPUTING

I N F O H A R N E S S

19IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1999

METADATA-CENTERED
APPROACH
Other researchers have investigated the use of
metadata to support runtime access to original
information1 and data warehousing and mining
for automatic metadata extraction.2 In building
InfoHarness, we refined and synthesized these
ideas to provide advanced search and browsing
capabilities without imposing constraints on infor-
mation suppliers or creators. Moreover, users can
logically model the information space to best fit
their needs.

Our goals with InfoHarness were to

� provide integrated access to a networked het-
erogeneous information source without forc-
ing information relocation or reformatting,

� create and manage metadata for easy retrieval
and decision support,

� categorize related information items into col-
lections to provide a logical information
organization,

� allow scalable searches,
� create and manage relationships among groups

of information items without affecting the
information artifact contents,

� perform programmatic actions on retrieved
information, and

� make information access and dissemination
easy, low-cost, and ubiquitous.

We translated these high-level requirements into a
scalable, extensible architecture.

Metadata Classification
We classify pieces of metadata by how successfully
they capture the data and information content of
documents from various media types. Metadata can
be content-dependent, content-descriptive (a spe-
cial case of content dependence), or content-inde-
pendent. In modeling application domain-specif-
ic information, it is crucial to capture the semantic
content at a level of abstraction similar to that a
human would employ.

Content-dependent metadata depend only on
the original data’s content. It is easy to process
text to identify such metadata, usually represent-
ed as keywords, but for visual information it is
very hard to extract. When this kind of metadata
is not extracted automatically from the content
itself, we call it content-descriptive. Content-
descriptive metadata come from an analysis of the
content. When this is not possible, they are

derived intellectually. An example would be to
identify that a flower in an image has a “sweet
and rosy” fragrance. Examples of content-descrip-
tive metadata are the document vectors in Latent
Semantic Indexing3 and the complete inverted
Wide Area Information Services index4—these
list the frequency and position of text units in a
document.

Content-descriptive metadata can be domain-
dependent or -independent. Identifying that a par-
ticular shape of an object in an image is that of a
particular type of an airplane, for example, is
domain-dependent metadata. A description of the
structure of a multimedia document is domain-
independent metadata.

Creating content-independent metadata is like
attaching a tag to the data regardless of its contents.
Examples are a document’s creation date and
location.

InfoHarness Metadata Infrastructure
InfoHarness is basically a metadata management
system with a generic metadata storage system as
its metabase. The system extracts metadata from
information artifacts and then creates metadata
objects that represent the original artifacts with
related attributes.

The system uses these metadata attributes to per-
form various tasks. For example, InfoHarness tools
could use a keyword list associated with an arti-
fact—a content-dependent attribute—to build a
keyword index. In addition to full-text and keyword
searches, InfoHarness lets users perform searches on
metadata attributes. These prove especially useful
when the user has some knowledge about the infor-
mation artifacts’ metadata semantics.

The system’s metabase consists of InfoHarness
objects that encapsulate the physical data repre-
sented in the metabase. Each IHO can have any
number of metadata attributes. The InfoHarness
server uses the metabase at runtime to build the
user interface, browsing structure, and so forth.

InfoHarness is a metadata
management system with a

generic metadata storage system
as its metabase.

F E A T U R E

20 NOVEMBER • DECEMBER 1999 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Metadata Extraction and
Management
InfoHarness can preprocess information artifacts
to generate metadata, or it can extract the metada-
ta at runtime. The system’s extractors automatical-
ly generate metadata based on the media type. For
example, a text extractor filters out relevant words
and indexes them. Metadata extractors for dates
and subjects generated from mail messages return
lines starting with the keywords date and subject. C
or C++ extractors recognize logical constructs such
as functions, classes, and subclasses.

Extracting domain- and content-dependent
metadata from images would involve anticipating
the range of user queries and is not feasible except
for cases when a domain is highly controlled and
well understood. Instead, one could extract
domain-independent but content-dependent meta-
data such as color and shape during preprocessing
and other information such as patterns and outlines
at access time.5 Content-independent metadata
such as size and location are of course available dur-

ing preprocessing. Metadata such as container hier-
archies for multimedia can either be extracted or
explicitly supplied by the metabase designer. We are
currently working on automatic or semiautomatic
generation of domain-dependent metadata, which
helps in associating semantics with the contents.

Extracting any type of metadata is dependent on
the range of user queries. For example, a query
might use the size of the data as a retrieval criteri-
on when transport costs are important. Also, meta-
data could control the presentation and dynamic
composition of retrieved information.

An InfoHarness prototype used Illustra to inves-
tigate how an object-relational database could be
more effective for querying the metadata itself and
letting the user browse stored metadata prior to
building queries. Systems set up this way also let
users manipulate metadata in different media types

intuitively. For example, we might use metadata to
relate unstructured data such as images with their
structured data representations. In such cases it
would be advantageous to store the metadata as
annotations to the original information.

If InfoHarness stores the metadata this way, it
can easily modify the metadata to reflect changes
in the information contents or the content descrip-
tions—location, for example. Such systems can also
encapsulate type-specific functions along with the
metadata to allow associative searches for unstruc-
tured information by using the metadata repre-
senting its features. An example would be to asso-
ciate an image-processing function for land cover
identification with a certain type of satellite map.
The content-descriptive metadata that the system
stores—container hierarchies for a multimedia
object, for example—determine how the user
browses the information.

Another issue in metadata storage is the meta-
data’s location for remote queries. The system can
store metadata locally or at remote sites, or it can
prefetch the metadata for a query and then use it
to intelligently analyze the query. For example, if
the system determines from the metadata that the
querying site cannot handle the size of the results, it
can take appropriate action rather than retrieving
the information and then failing.

Logical Structuring and Browsing
The InfoHarness metabase has an object layer over
it, which it manages as a relational database. This
metabase represents real-world information arti-
facts as encapsulated metadata IHOs, and it
includes constructs that allow arbitrary typed rela-
tionships between IHOs. The IHOs can be simple,
directly encapsulating real-world information arti-
facts, or abstract, representing existing InfoHarness
structures. One such abstract IHO type is collec-
tion, a logical grouping that the InfoHarness server
interprets to provide a browsing and searching
structure. That is, the browsing structure with
which the user navigates the InfoHarness reposito-
ry is equivalent to the collection hierarchy. The
metabase is available to multiple InfoHarness
servers and remains persistent between their mul-
tiple instances.

Because the metabase uses a traditional database
management system, it can handle concurrent
updates and can be dynamically extended and mod-
ified while the InfoHarness servers are running. This
dynamic, persistent metabase has a clean interface to
the server on one end and the InfoHarness admin-

InfoHarness provides a
metabase infrastructure for

Web-based information
insensitive applications.

I N F O H A R N E S S

21IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1999

istrative tools on the other. However, as extractors
return objects and InfoHarness stores them in a rela-
tional database, the system faces the limitations and
complexities of any object-relational mapping.

LOGICAL METADATA-BASED
INFORMATION SPACE
STRUCTURING
Artifacts become available through InfoHarness
after the system registers them. During registration,
the system extracts metadata from the artifact and
creates an IHO encapsulating various pieces of
metadata about it. The IHO serves as a handle for
the actual artifact. Each IHO contains several
attributed metadata—some mandatory and main-
tained by the system, such as document type,
object ID, and artifact location. There is no fixed
schema of attribute names in InfoHarness, so appli-
cation builders can create new attributes as need-
ed without modifying the code.

Each IHO has a particular object type attribute
indicating the representation or format of the bytes
making up the artifact’s information and the seman-
tics interpreting this representation. For example, a
document type called Bellcore-FrameMaker-Doc-
ument might have a FrameMaker binary storage
format and semantics designated by one of the Bell-
core standard Frame templates. InfoHarness can
handle any document type that represents a class of
documents. The document type’s specification
declares important information such as how to
extract metadata and text from an artifact and what
legal actions a user can perform on an IHO.

Each document type has an extractor that pulls
out a certain fixed set of metadata attributes. For
example, the HTML extractor pulls out a docu-
ment title, while a Frame extractor pulls out addi-
tional values based on FrameMaker variables. The
extractors can be any script or executable on the
system, but they must be wrapped to conform to
the standard administrative interface. For example,
a thin Perl script could wrap an existing troff extrac-
tor, reformatting the extractor’s output into the
InfoHarness message exchange format.

We mentioned earlier that there is no fixed
schema over an entire InfoHarness repository. In
addition, there is no fixed schema for a single docu-
ment type. Different documents of the same type
might have different sets of attributes, none of which
are ever enumerated in any document type schema.
This flexibility lets an application builder create
applications that use new metadata attributes with-
out having to modify system schemas.

When InfoHarness registers an artifact, it stores
the artifact’s IHO in a repository. Most sites have a
single repository holding all IHOs, but some cre-
ate multiple repositories for large-scale partitions
of their information space. Two groups sharing the
same InfoHarness software installation might create
a repository for each project. Each installation has
a single metabase storing all metadata.

InfoHarness uses collections as modeling con-
structs to organize the IHOs in a repository’s infor-
mation space. A collection represents a set of other
related IHOs. For example, a user could create a
collection containing all design documents for a

particular software package release. Collections can
also contain other collections; this nesting forms a
repository’s collection graph. The collection model
consists of sets of relationship structures imposed
upon a repository rather than containment struc-
tures in which to place and store objects. Collec-
tions do not encapsulate information artifacts but
participate in relationships with other IHOs or col-
lections; this lets the user build arbitrary logical
models. A collection-membership relationship
exists between each collection object and member
object. InfoHarness understands this kind of rela-
tionship and can interpret it during browsing and
searching. The application-building tools could
interpret these relationships in any context a
designer desires.

Users can set up annotation relationships among
artifacts or relationships correlating all documents
about a certain subject without explicitly including
them in a collection. Each IHO can also participate
in multiple relationships and be part of multiple col-
lections. This lets users impose more than one log-
ical view on a given set of IHOs. For example, cer-
tain users might want to browse a company
personnel repository by departments and groups,
whereas others might want to browse the same

VisualHarness extends
InfoHarness to provide keyword,

attribute, and content-based
access on textual, structure,

and visual data.

F E A T U R E

22 NOVEMBER • DECEMBER 1999 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

repository by subject expertise. We could impose
both these views—and collection structures—on
the same repository.

An administrator can designate that a collection
build a content index from the text of the collected
documents. In this case, the extractors pull out the
text body or a selected segment of the text from
appropriate document types and pass them back to
the administrative system. The system then uses the
extracted text bodies to build the keyword index.
Upon locating any of these text bodies through a
keyword search, InfoHarness automatically refers the
user to the IHO that encapsulates the information
artifact associated with the text body. For such col-
lections, the user can submit a content-based query,
which uses the index to find documents that contain
user-specified, keyword-based search criteria.

System Architecture
Figure 1 depicts a client-server system in which the
clients are HTTP-compliant Web browsers and the
servers are InfoHarness servers providing access to doc-
uments registered with a particular repository. When
a user connects to an InfoHarness server, the system
dynamically produces HTML pages that constitute
the user interface. By activating links and using

HTML forms, the user can navigate, search, and
access the information maintained by that server.

In response to user requests, the server can invoke
multiple associated methods for each IHO. For any
document type, users can define type-specific meth-
ods for displaying the artifact associated with an
IHO. The simplest method involves using an
appropriate MIME type to display the original arti-
fact on the client browser. In a more complex
method, a user might click on an object, and Info-
Harness could send the underlying artifact as an e-
mail attachment. Other methods might translate
the artifacts into HTML to allow the clients to dis-
play them inline. Methods also let users perform
tasks such as sending a document to the printer or
sending a facsimile of the document to another user.

A single IHO can be associated with multiple
methods; the user can choose among them at run-
time. For example, to display IHOs encapsulating
Unix manual (man) pages, the user could choose
the Unix utility xman or have InfoHarness trans-
late the pages to HTML and display them within
the Web client.

InfoHarness also has an extensive set of admin-
istrative tools for managing authorization and
security.

Internet

InfoHarness server

InfoHarness
administrative

tools Metadata repositories

Figure 1. High-level InfoHarness architecture showing the three main system components.

I N F O H A R N E S S

23IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1999

VISUALHARNESS: VISUAL
INFORMATION MANAGEMENT
The VisualHarness system extends the basic Info-
Harness to deal with visual data, giving users the
ability to search and access distributed repositories
of text, images, and other types of data, including
structured databases. In addition to keyword and
attribute-based queries, it also supports content-
based queries over images, involving color, texture,
composition, and structure. A VisualHarness
metabase can consist of indices (for example, a full-
text index for textual data and a feature-based index
for image data) and attribute-value pairs. The
attribute-value pairs support attribute- and con-
tent-based access of visual data using a novel
approach that converts feature vectors into struc-
tured metadata. Like InfoHarness, VisualHarness
has an open and extensible architecture that pro-
vides hooks for using various third-party indexing
engines for textual data and visual information
retrieval (VIR) engines, such as Virage’s.5

Figure 2 shows a high-level view of the Visual-
Harness architecture. The InfoHarness server
accepts a user query as a client request from a brows-
er, and the query engine module of the query-pro-
cessing unit (QPU) creates subrequests for the rele-

vant search components. The search components
use metadata (precomputed and stored in the
metabase or computed at runtime) to determine ref-
erences to the relevant data and then provide them
to the QPU’s result composition module. The QPU
normalizes, rescales, and formats the result, which
the InfoHarness server then displays to the user.
When the user selects one or more data objects for
display, the server directly accesses the appropriate
repositories to retrieve the data.

The query-processing subsystem uses weighting
strategies for a scalable approach. That is, a user can
assign different weights to different kinds of simi-
larity. The system then restricts database informa-
tion retrieval according to the assigned weights.
Suppose the VIR engine supports three proper-
ties—P1, P2, and P3. The user can assign each of
these properties different weights—i1, i2, and i3—
so that the VIR bases its retrieval on

i1P1 + i2P2 + i3P3, where 0.0 < i1,i2,i3 < 1.0.

The VIR normalizes and scales the resulting values
to rank each of the objects retrieved. This access
method applies if the system can access and under-
stand feature vectors. Because VisualHarness has

Internet InfoHarness
server

VIR

InfoHarness
administrative

tools Metadata repositories

Result
composition

unit

Keyboard-,
attribute-,

and
image-based

search

Comprehensive
InfoHarness

search

Figure 2. The VisualHarness architecture showing the use of VIR as a black box.

F E A T U R E

24 NOVEMBER • DECEMBER 1999 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

neither access to the actual feature vectors of an
image object nor a way of interpreting them, it uses
the VIR engine as a black box.

The Black-Box Approach for
Content-Dependent Metadata
Feature vectors from an image refer to the features
extracted from different topological spaces. To rank
the similarity of objects to a given query object, a
system requires distances between the objects and
the input query object. The black-box approach
compares objects based on their differences with a
reference image.

If R is a reference image and O1, O2, ..., On are
the objects in the database, the feature distance (the
distance between any two objects O1 and O2 in the
feature space) equals the absolute value (Euclidean
distance, denoted by abs) of the difference between
each object compared with the reference image for
a particular property. That is,

D(O1,O2) = abs[D(O1,R) – D(O2,R)].

Feature vectors of the object sequence in the data-
base based on different properties of an image are
mapped to a point in the feature space; a query
with tolerance e becomes a sphere of radius e.

The black-box approach allows high scalability
because it does not limit information retrieval to a
particular VIR engine and its corresponding image
database. Runtime computation is not expensive,
because the system precomputes the distance
between each object and the reference image for
each of its properties and stores these values in a
metabase. Runtime computation basically involves

retrieving the appropriate results from the
database by converting the user query
image, Q, into a database query D(Q,R)—
the distance between image Q and the ref-
erence image.

Without this approach, during runtime
the system would have to sequentially com-
pute the distance between the query image
and each image object in the databases. The
black-box approach also lets us use different
weighting strategies to combine the dis-
tances obtained in comparing each object
with the reference image in that topological
space. Because we are using normalized dis-
tances, we can also combine features com-
puted using different engines.

Our initial black-box strategy was to use
a null image as the reference. We chose an

entirely black or an entirely white image, hypoth-
esizing that such an image has no specific features
and hence no properties of its own, and we
obtained quite decent results. However, we con-
tinued to seek a reference image that would yield
results more accurate than those obtained using the
VIR engine directly. In our second strategy, the ref-
erence image is the “centroid” of the feature space.
Ideally, this object should be equidistant from all
the other objects. Because such an object would be
difficult to construct, we chose an existing object
close to the ideal location in the feature space.

We also investigated improving results by
semantically correlating various objects into seman-
tic groups. Members of such a group would have
some binding feature, and objects could belong to
multiple semantic groups. That is, we could
“thread” objects based on some predefined seman-
tics. By semantically correlating the objects, we
make an effort toward better understanding the
intent of the query. We investigated both content
semantics and context semantics. Grouping based
on content semantics relies purely on statistical
principles and can be mathematically formulated,
whereas context-based grouping might be auto-
mated, manual, or knowledge-driven. For further
discussion of the black-box approach and various
strategies for selecting reference images, including
quantitative evaluations, see our other work.6

Figure 3 shows an example of the comprehen-
sive search screen. A user could adopt any of the
three search strategies (keyword-, attribute-, con-
tent-based) or combine them using relative weights.
For images, within the content-based search, the
user could add color, structure, texture, and com-

Figure 3. Comprehensive search screen in the VisualHarness system.

I N F O H A R N E S S

25IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1999

position to the search criteria. Iterative refinements
are also possible.

APPLICATION BUILDING
The InfoHarness platform supports a wide range
of customizations, such as additional document
formats and screen layouts. An organization could
customize the user interface headers and footers, or
it could build a periodically running script that
looks for expired documents and notifies the
authors or a responsible administrator by e-mail.
In addition, InfoHarness hooks let users create
entirely new applications that work with a docu-
ment control system, use a new indexing technol-
ogy, or integrate with a billing and ordering system.

The major steps in using InfoHarness to build
an application are

� Model and create InfoHarness collections and
relationships.

� Decide which documents are part of which col-
lections.

� Set application parameters.
� Design the process by which the application

keeps information up-to-date.
� Design screen templates and widgets, imple-

menting extractors if necessary.

This job requires a thorough understanding of
information content and flow within the applica-
tion’s scope. The application builder must under-
stand how the end user wants to find and access
information, keeping in mind special requirements
such as authorization and security.

For those who wish to extend the predefined sys-
tem’s functionality, InfoHarness gives system inte-
grators an API to add programs or scripts. System
integrators can, for example, enhance the applica-
tion with additional document types or actions on
document types, or add support for a new indexing
package. Because document type methods can be
any arbitrary script or wrapper, many integration
scenarios are possible. Specific extractors and run-
time methods let the application builder integrate
legacy data, systems, and applications. These lega-
cy systems could be wrapped and encapsulated as
IHOs to suit the particular Web-based application.

Now let’s take a step back to examine the activ-
ities that are likely to be involved in building an
application.

Information Inventory and Modeling
Taking inventory of the most valuable information

can be as simple as consulting project documenta-
tion control or as difficult as creating a special-pur-
pose committee for the task. Several items are use-
ful at this stage:

� a draft inventory of all frequently used resources,
� a scenario describing expected information con-

sumers and usage patterns,
� a list of entry points into the organization for

new information, and
� a few friendly users who agree to provide feed-

back on the application.

Information modeling involves defining the
structure through which users will find resources.
This organization is important in the applica-
tion’s perceptual ease of use. We suggest these
guidelines:

� Depth versus width. A primary decision will be
how much information to put at any given level
and how many levels to create. Deep applica-
tions need many specific collections, while
broad applications need fewer general collec-
tions. The more clicks it takes for users to find
what they are looking for, the more likely it is
that they will end up in the wrong place.

� Customer focus. Information-modeling interests
will conflict, but the most frequent and impor-
tant users should expect the smoothest ride. If
technical people are the intended primary users,
then technical collections should be at the top
level. If managers or customers are the prima-
ry users, technical details might be several levels
down, available when necessary.

� Frequency of use. Make a collection of hot items
that people refer to most frequently. This could
contain, for example, project status reports,
templates, or subject matter expert lists.

� Indexes at appropriate levels. Global indexes are
useful for shot-in-the-dark searches, but they
may not be focused enough for experts hunt-
ing for a specific detail. Consider, for example,
a software-engineering repository that contains
collections for designs, code segments, require-
ments, test cases, and so on. A developer search-
ing for reusable components will be better off
searching an index of the code collection rather
than the entire repository.

� Learning by example. Survey related informa-
tion systems and study their organization.
Many information applications on the Internet
illustrate good ways to model data.

F E A T U R E

26 NOVEMBER • DECEMBER 1999 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Once you have drafted the collection structure, you
might prototype a subset of the application and
have friendly users provide feedback.

Resource Translation
Although InfoHarness includes a wide variety of
ready-to-use extractors, these cannot cover every
conceivable application need. Writing new extrac-
tors can be trivial, provided you have the necessary
technology to parse the given document type.
Then, you simply plug in the new extractor.
Recompiling the InfoHarness server is not neces-
sary, although you may have to recompile the
extractor if it is not written in a scripting language.

The logical application model need not have any
relation to the physical distribution of the original
documents. Once you set up the logical model,
InfoHarness completely shields the user from the
underlying physical structure. In rare cases, the
application builder might move data to a more cen-
tral location or convert it to a single format. This
makes building an application simpler, but Info-
Harness can bring together widely distributed
information as well.

Interface Design
Users usually require help or additional details.
Place necessary guidelines, help screens, hypertext
links, method launch links, and contact informa-
tion in strategic places. For example, the server uses
screen templates or widgets to dynamically gener-
ate the search screens; the application builder could
customize these templates to the users’ needs.

Initial Repository Creation
Bring the application resources (or the metadata)
into a single place, possibly with searchable index-
es for some or all sets of data. This involves using a
set of administrative tools to build up a set of
objects and relationships in the metabase. Use the
InfoHarness tool set to write higher level scripts
that define the repository structure and determine
how collections are built.

Repository Maintenance Mechanism
When an application demands timely update of
resources, establish automated procedures to find
new resources, translate them if desired, and add
them to the repository in the correct groupings.
Maintenance scripts exist, but these do not auto-
matically update resources or find new resources.
You will have to write your own daemon (or agent)
for that.

System Integration
If you are integrating one or more existing systems
or interfaces, you must supply specific wrappers.
InfoHarness has a well-defined flexible interface,
which can bring different systems together. Con-
sider a personnel application that has its original
artifacts in a legacy system. The system integrator
has access to scripts that can run as clients on the
Unix side and that execute queries on the main-
frame back end. The extractors could be wrappers
for these Unix scripts.

Suppose an IHO corresponds to an employee:
Given an employee identification number, the
extractor wrapper could invoke the existing scripts
and return metadata from the legacy system that,
after reformatting, would be encapsulated and
inserted into the metabase. At runtime, a similar
wrapper would invoke the existing scripts to dis-
play employee information to the user. Employees
could be included in multiple collections based on
group, department, or other factors.

Client Configuration
Setting up the Web browsers with the proper view-
ing utilities can be a major consideration, depend-
ing on which data formats the application will use.
Unix machines cannot view PC-created documents
without considerable translation or sophisticated
tools. InfoHarness cannot directly aid in this phase,
but its support of extensible methods can make the
task simpler.

The InfoHarness commercial version (see the
sidebar, “Related Work”) has a PC patch called PC-
AdaptX, which provides extractors for Microsoft
Office and other documents. However, PC-AdaptX
uses the InfoHarness utilities provided on Unix, so
you should have a PC network file system (PC-NFS)
set up to cross-mount your PC file system on your
Unix platform.

ONGOING WORK
This article does not cover all of our work on Info-
Harness. One InfoHarness extension provides
access to relational databases. This lets users browse
and have keyword- and attribute-based access to
collections of objects defined over relational tables
from multiple DBMSs. The extended system also
supports audio, video, 3D, and other spatial data.
Other recent work on InfoHarness has extended
the query subsystem to let users combine attribute,
keyword, and image feature searches over InfoHar-
ness repositories. We also researched the issue of
scalability by allowing access to and combining

I N F O H A R N E S S

27IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1999

results from multiple data partitions, each with its
own independent and possibly different indexer.
We have also made infrastructure layer extensions
to allow the use of CORBA for distributing the
InfoHarness repositories themselves.

Taking the second-generation InfoHarness con-
cepts7 a step further leads us to the InfoQuilt sys-
tem,8 a third generation of information interoper-

ability and integration that we are currently at work
on. InfoQuilt’s purpose is to provide intelligent
analysis, mining, fusion, and dissemination of het-
erogeneous media data. Its architecture has three
layers—data, metadata, and user/domain models
or ontologies. With extensive support for metada-
ta and user models, InfoQuilt will define context,
support user profiles and models, use media-inde-

Fulcrum, a commercial system that serves mainly as a full-
text–indexing engine (see http://www.pcdocs.com/), does
text and attribute searches and has an extensive library for
different file types. However, unlike InfoHarness, it requires all
non-HTML documents to be converted to HTML. Fulcrum’s
structured attribute-searching capability resembles the Info-
Harness metabase from an interface perspective, but Fulcrum
treats the attributes as tags associated with the document,
whereas InfoHarness provides a more object-oriented view.
Fulcrum does not attempt to provide an integration platform
for heterogeneous data. Another similar commercial platform
is Verity (see http://www.verity.com/).

Many commercial DBMS vendors have integrated full-
text searches with their engines, as Oracle has with Con-
text. Context enables full-text indexes over text bodies in the
DBMS. Informix Universal Server provides text datablades
that enable full-text searches over large text bodies. These
approaches allow keyword and attribute searching but
require the user to import the text into the DBMS.

Harvest is an integrated set of tools that gather and dis-
tribute indexing information; support the easy construction
of many different types of indexes customized to particular
information collections; and provide caching and replication
support to alleviate bottlenecks. Harvest also includes a dis-
tributed set of components for extraction and indexing. Like
InfoHarness, it supports metadata extraction and index-
ing/searching, but it doesn’t allow construction of logical
browsing models. The Netscape Catalog Server is very sim-
ilar to Harvest and shares the same architecture.

Rufus uses an object-oriented database to store descrip-
tive information about a user’s data and a full-text retrieval
database to provide access to the data’s textual content (see
http://www.almaden.ibm.com/cs/showtell/rufus/overview.
html). Rufus uses extractors to pull out metadata and builds
browsable structures similar to InfoHarness collections. It has
a good type recognition system, but it is not very extensible.
Unlike InfoHarness, Rufus does not support dynamic exten-
sions to the object schemas. In addition, Rufus does not allow
users to plug in third-party indexers, and it uses a propri-

etary information retrieval system.
The Interspace system, based on the encapsulation of

information units, allows interobject relationship linking and
composite objects (see http://anshar.grainger.uiuc.edu/
interspace.html). This system’s primary purpose is heteroge-
neous document management, and it shares many of the
concepts used in InfoHarness. It is still an evolving prototype.

Hyper-G/Hyperwave IS combines the DBMS approach
with open Web technology (see http://www.hyperwave.de/).
This system offers dynamic hyperlink management, hyperlinks
from and to arbitrary documents, integrated text and attribute
indexes, and integrated user rights and session management.
However, this system does not have an extensive metadata
extraction system. Type support is limited and not extensible.
Also, it restricts the object schema to a predefined set of attrib-
utes, and it uses a proprietary indexing system. The user inter-
face is quite dynamic and fully configurable.

Finally, several existing systems1,2 manage metadata
about large, diverse sets of data, such as those from satel-
lite, environmental, and weather studies. These systems have
tools for metadata extraction, but they are usually based
upon information extraction from DBMS objects like tables,
schemas, transactions, and data values. They address a
range of problems very different from those that InfoHar-
ness addresses.

InfoHarness has been used as a platform for two
research projects3—see http://lsdis.cs.uga.edu/proj/
iit/iit.html and http://lsdis.cs.uga.edu/proj/iit/iit_pub.html.
The system’s commercial version is called Adapt/X Harness.

REFERENCES
1. L. Mark and N. Roussopoulos, “Metadata Management,” Computer,

Vol. 19, No. 12, Dec. 1986, pp. 26-36.

2. S. Cammarata et al., “A Metadata Management System to Support

Data Interoperability, Reuse, and Sharing,” J. Database Management,

Vol. 5, No. 2, 1995, pp. 30-40.

3. L. Shklar et al., “New Approaches to Cataloguing, Querying, and

Browsing Geospatial Metadata,” Proc. Second IEEE Metadata Conf.,

IEEE Press, Piscataway, N.J., 1997.

RELATED WORK

F E A T U R E

28 NOVEMBER • DECEMBER 1999 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

pendent correlation to represent media-indepen-
dent semantic relationships,9 and eventually sup-
port multiple domain-specific ontologies.10 Info-
Quilt will allow traditional keyword-based queries
as well as high-level information requests involving
attribute-based, iconic, mixed-media, and concept-
based information requests. This will involve dis-
tributed management and correlation of heteroge-
neous media stored at different locations. The
system will also support information analysis and
fusion at a higher semantic level with the help of
human-directed browsing, searching, accessing, and
correlation of heterogeneous media data. �

ACKNOWLEDGMENTS
InfoHarness is a trademark of Telcordia Technologies Inc. Partial

support for this research came from the Massive Digital Data

Systems program. We thank Satish Thatte, the product manag-

er for the initial prototype and the commercial versions; Leon

Shklar for the first prototype; the InfoHarness team (Bret

Gorsline, Paul Hughes, Steve Ince, Vipul Kashyap, Tom Mok,

Bob Mowry, and Andy Werth); and the VisualHarness team

(Srilekha Mudumbai and Krishnan Parasuraman). Tarcisio Lima

provided extensive help in editing this article to its current

length. We also thank Virage and Informix for software dona-

tions to the VisualHarness project.

REFERENCES
1. A. Sheth and W. Klas, eds., Multimedia Data Managing,

Using Metadata to Integrate and Apply Digital Media,

McGraw-Hill, New York, 1998.

2. U. Fayyad et al., eds., Advances in Knowledge Discovery and

Data Mining, MIT Press, Cambridge, Mass., 1996.

3. S. Deerwester et al., “Indexing by Latent Semantic Index-

ing,” J. Am. Soc. Information Science, Vol. 41, No. 6, 1990.

4. B. Kahle and A. Medlar, “An Information System for Cor-

porate Users: Wide Area Information Servers,” Connex-

ions—The Interoperability Report, Vol. 5, No. 11, Nov. 1991.

5. A. Gupta, Visual Information Retrieval: A Virage Perspective,

tech. report, Virage, San Mateo, Calif., 1995.

6. A. Sheth et al., “Searching Distributed and Heterogeneous

Digital Media: The VisualHarness Approach,” Proc. IFIP

2.6 Working Conf. Database Semantics, North-Holland,

Amsterdam, 1999, pp. 311-330.

7. A. Sheth, “Changing Focus on Interoperability in Infor-

mation Systems: From System, Syntax, Structure to Seman-

tics,” Interoperating Geographic Information Systems, M.F.

Goodchild et al., eds., Kluwer Academic, Boston, 1999.

8. V. Kashyap and A. Sheth, “Semantic Heterogeneity in

Global Information Systems: The Role of Metadata, Con-

text and Ontologies,” Cooperative Information Systems: Cur-

rent Trends and Directions, M. Papazoglou and G.

Schlageter, eds., Academic, 1997, pp. 139-178.

9. K. Shah and A. Sheth, “Logical Information Modeling of

Web-Accessible Heterogeneous Digital Assets,” Proc. Forum

on Research and Technology Advances in Digital Libraries, IEEE

Computer Soc. Press, Los Alamitos, Calif., 1998, pp. 266-275.

10. E. Mena et al., “OBSERVER: An Approach for Query Pro-

cessing in Global Information Systems Based on Interop-

eration Across Pre-existing Ontologies,” Proc. First IFCIS

Int’l Conf. Cooperative Information Systems, IEEE CS Press,

Los Alamitos, Calif., 1996, pp. 14-25.

ADDITIONAL READING
� M. Carey et al., “Towards Heterogeneous Multimedia Infor-

mation Systems: The Garlic Approach,” Proc. RIDE-DOM,

IEEE CS Press, Los Alamitos, Calif., 1995, pp. 124-131.

� V. Kashyap and A. Sheth, “Schematic and Semantic Simi-

larities between Database Objects: A Context-based

Approach,” The VLDB J., Vol. 5, No. 4, 1996, pp. 276-304.

� J. McCarthy, “Metadata Management for Large Statistical

Databases,” Proc. Eighth Int’l Conf. Very Large Data Bases,

IEEE Press, Piscataway, N.J., 1992, pp. 234-243.

� L. Shklar et al., “InfoHarness: Use of Automatically Gener-

ated Metadata for Search and Retrieval of Heterogeneous

Information,” Proc. CAiSE-95, Springer-Verlag, Berlin, 1995.

Kshitij Shah is currently a senior consultant at BEA Systems.

From 1994 to 1996, he was member of the technical staff at

Bellcore, where he served as chief architect and developer

of AdaptX/Harness. In 1997, he worked at the LSDIS lab

as a research assistant professor in the Department of Com-

puter Science at the University of Georgia. In 1998, he

served as the senior solutions architect and senior project

manager at SoftPlus Inc. Shah received an MS in comput-

er science from Rutgers University.

Amit Sheth is a professor of computer science and director of

the Large-Scale Distributed Information Systems Lab at the

University of Georgia. Previously, he worked in R&D

groups at Honeywell, Unisys, and Bellcore. Several research

efforts he has initiated and led have resulted in commercial

usage or products, in part through the companies he found-

ed—Infocosm Inc. (http://www.infocosm.com) and Taalee

Inc. His interests include semantic interoperability and inte-

gration involving digital media, information brokering, and

enterprise-wide and multiorganizational processes. Sheth

received a BE from BITS, Pilani, India, and an MS and a

PhD from Ohio State University.

Readers may write to Kshitij Shah at BEA Systems WebXpress

Division, 2315 North First St., San Jose, CA 95131;

kjshah@beasys.com; http://www.beasys.com/. Amit Sheth is at

the Large-Scale Distributed Information Systems Lab, Univer-

sity of Georgia, Athens, GA 30602-7404; amit@cs.uga.edu;

http://lsdis.cs.uga.edu.

	InfoHarness: Managing Distributed, Heterogeneous Information
	Repository Citation

	tmp.1411676751.pdf.rXiR3

