
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

9-2007

SA-REST and (S)mashups: Adding Semantics to RESTful Services SA-REST and (S)mashups: Adding Semantics to RESTful Services

Jonathan Lathem

Karthik Gomadam
Wright State University - Main Campus

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Lathem, J., Gomadam, K., & Sheth, A. P. (2007). SA-REST and (S)mashups: Adding Semantics to RESTful
Services. Proceedings of the International Conference on Semantic Computing, 469-476.
https://corescholar.libraries.wright.edu/knoesis/707

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/80833997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F707&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F707&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F707&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F707&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F707&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F707&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F707&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu

SA-REST and (S)mashups : Adding Semantics to RESTful Services

Jon Lathem
Department of Computer Science

University of Georgia
Athens, GA, USA

lathem@cs.uga.edu

Karthik Gomadam and Amit P. Sheth
kno.e.sis center

Department of Computer Science and Engineering
Wright State University, Dayton, OH

{gomadam-rajagopal.2, amit.sheth}@wright.edu

Abstract

The evolution of the Web 2.0 phenomenon has led to
the increased adoption of the RESTful services paradigm.
RESTful services often take the form of RSS/Atom feeds and
AJAX based light weight services. The XML based messag-
ing paradigm of RESTful services has made it possible to
compose various services together. Such compositions of
RESTful services is widely referred to as Mashups. In this
paper, we outline the limitations in current approaches to
creating mashups. We address these limitations by propos-
ing a framework called as SA-REST. SA-REST adds seman-
tics to RESTful services. Our proposed framework builds
upon the original ideas in WSDL-S, our W3C submission,
which was subsequently adapted for Semantic Annotation of
WSDL (SAWSDL), now a W3C proposed recommendation.
We demonstrate use of microformats for semantic annota-
tion of RESTful services and then the use of such semanti-
cally enabled services with better support for interoperabil-
ity for creating dynamic mashups called SMashups.

1. Introduction

The evolution of the Web 2.0 phenomenon has led to
the increased adoption of the RESTful services paradigm.
RESTful services often take the form of RSS/Atom feeds
and AJAX based light weight services. The XML based
messaging paradigm of RESTful services has made it pos-
sible to bring discrete data from services together and cre-
ate more meaningful datasets. This is being referred to as
building a mashup. A mashup is the creation of a new ser-
vice from two or more existing services. In other words,
a mashup can be described as a composition of RESTful
services.

Mashups really embrace the idea of a customizable web.
A user is most likely not going to want to browse Craigs
list and look it the map for each location he finds on the
list. On the other hand mashups do not embrace the idea

of a read/write web. The reason for this is that it is diffi-
cult for the average user with technical training to create a
mashup. Typically there is a lot of programming that goes
into creating a mashup and the user would need to not only
understand how to write code but understand the API of all
the services that need to be included in the mashup. This is
a time consuming task and impossible for the typical web
user. To solve this problem, leading companies are now ac-
tively developing tools that can be used to create a mashup
and require little to no programming knowledge form the
user. These tools typically facilitate a way to select some
number of RESTful web services or other web resource and
chain them together by piping one services output into the
next services input while filtering content and making slight
format changes. Three of the leaders in this field are Yahoo!
Pipes, Google Mashup Editor, and IBMs QEDWiki.

The drawback of these tools is that they are limited in
the number of services that they can interact with. These
tools normally deal with services that are internal to the
company that the tool was developed from (Google Mashup
Editor can use Google Maps) or to services that have stan-
dard types of outputs such as RSS or ATOM. This leaves
out a vast number of services that cannot be utilized via
these tools for the creation of mashups. This is an under-
standable limitation because it would be extremely difficult
to work with a service whose inputs and outputs are in a
nonstandard form. This makes it difficult to address issues
related to data mediation. It is true that that if one of these
companies wanted to add a new service that did not have a
standard output or was not an internal service to their tool,
it would be possible by making modifications to the exist-
ing tooling in order to incorporate the interface of the new
service. However, this is not a scalable solution due to the
rate at which new services are coming online. The need to
change the tool itself also removes the ideal of a customiz-
able web.

We propose to address the limitations in both complex-
ity and scalability, by adding semantics to the descriptions
of RESTful services. The proposed SA-REST framework is

a derivative of SAWSDL [11], the W3C PR for adding se-
mantics to WSDL. SA-REST borrows the idea of grounding
service descriptions to semantic meta-models using model-
reference annotations. In this paper we discuss adding an-
notations using RDFa and GRDDL. SA-REST captures an-
notations for service inputs, outputs, operations and faults.
In addition to these elements, SAREST also captures the
type of the request. The SA-REST approach is discussed in
detail in section 3.

We illustrate the role of SA-REST in the context of a
user-friendly, customizable and scalable approach to creat-
ing mashups, called Semantic Mashups (Smashups). The
idea behind creating Smashups is to exploit the explicit se-
mantics modeled in SA-REST to demonstrate the use of se-
mantics in the creation and the customization of mashups.

Rest of the paper is organized as follows. In section 2, we
motivate the need for our approach by illustrating the lim-
itations of the current mashups. We discuss the SA-REST
framework in Section 3. Section 4 discusses creation of
mashups using the SA-REST framework. We present our
conclusions and future work in Section 5.

2. Limitations in Current Mashups

In this section we outline the limitations in current
mashups. We consider the housing maps mashup as an ex-
ample [5]. The housing maps mashup integrates real estate
data from Craigslist.com [1] service and the location infor-
mation from the Google map [3] web service. Now, it is
conceivable that for a given geography, there can be other
alternate real estate service providers along with other map
service providers. In the current housing maps application,
it is not possible for users to change either the real estate ser-
vice (Craigslist) or the map service (Google maps). Further
it is also not possible for an user to to integrate a service that
provides information about the traffic in a given locality, in
this application. This example illustrates the limitations in
the current mashups. The service providers are bound to the
application, thereby making it very difficult to switch be-
tween different service providers. It is also very difficult to
add or remove services from a given mashup. Even though
efforts such as Yahoo Pipes [13] and Google Mashup Ed-
itor [4], have tried to alleviate the latter problem, they are
only partially successful. In these above mentioned appli-
cations, the choice of services that a user can add is limited
to a set of few services. In this paper, we identify the issues
that lead to these limitations and propose a framework to
address them.

In the next section, we discuss the SA-REST approach
to adding semantics to RESTful services.

3. SA-REST

In this section we present the SA-REST approach to add
semantics to RESTful Web services. Adding semantic an-
notations to a RESTful web service yields many benefits
and alleviates many of problems associated with RESTful
web services. In this section, we discuss why, what and how
of adding semantic annotation to RESTful services. We call
this idea Semantic Annotation of RESTful web services or
SA-REST.

There have been a number of efforts to add formal se-
mantics to traditional Web services including OWL-S [8],
WSMO [12] and WSDL-S [9]. Driven primarily by the
W3C member input of our METEOR-S research group
at LSDIS lab and Kno.e.sis Center, and in association
with IBM [9], a W3C work group has recently released a
candidate recommendation called Semantic Annotation of
WSDL or SAWSDL. We have developed SA-REST from
many of the ideas that were first presented in WSDL-S and
then adapted in SAWSDL. The idea behind SAWSDL is
to add semantic annotations to the WSDL that describes
service. The basic annotations that SAWSDL adds are in-
puts, outputs, operation, interfaces, and faults. In terms of
SAWSDL, semantic annotations are simply bits of xml that
are embedded as properties in the WSDL. These properties
are URIs of ontology objects. This means that the annota-
tion of a concept in SAWSDL or SA-REST is a way to tie
together the concept out of the SAWSDL or SA-REST to a
class that exists in ontology. An ontology is a conceptual-
ization of a domain represented in terms of concepts and the
relationships between those concepts. Furthermore, it em-
bodies an agreement among its users and provides a com-
mon nomenclature to improve interoperability. Since the
adoptions of OWL (the Web Ontology Language,[6]) and
RDF (Resource Description Framework, [7]) with the as-
sociated language of RDFS for RDF schemas as languages
for ontology representation and semantic Web data, ontolo-
gies are most frequently represented in OWL or RDF. As
with SAWSDL, SA-REST does not enforce the choice of a
language for representing ontology or a conceptual model,
but does allow use of OWL or RDF for representing ontolo-
gies or conceptual models. Since SAWSDL and SA-REST
are more concerned with the data structure than with the
relationships between objects and reasoning, RDF, as the
simpler of the two languages, is likely to be used more fre-
quently in the near future. For example, the output message
in a WSDL may be annotated with a URI to an ontology
class that logically represents that output. Taking the lead of
SAWSDL, SA-REST annotates outputs, inputs, operations,
and faults, along with the type of request that it needed to
invoke the service. The latter is not required in SAWSDL
because it deals with traditional SOAP-based services that
primarily transmit messages via an HTTP Post because of

the size of the payload, whereas RESTful Web services, be-
ing much lighter weight, can use either an HTTP POST re-
quest or an HTTP GET request. Later we will see that since
SA-REST is in once sense a directive of SAWSDL, we can
translate a SAWSDL service into a SA-REST service.

3.1 Data Mediation

The point of adding annotations to the inputs and outputs
of a service is to facilitate data mediation. Data mediation is
effected in SAWSDL and in SA-REST not only by specify-
ing the ontology concept that its message represents but also
by specifying a lifting and lowering schema. What a lifting
and lowering schema does is to translate the data structure
that represents the input and output to the data structure of
the ontology, which we call the grounding schema. This
grounding schema is needed is because it would be impos-
sible to get everyone on the Web to agree on a single data
structure for a concept. Furthermore, to force a data struc-
ture for a concept would hurt the flexibility of the service
and the ideology of a read/write web. Lifting and lowering
schemas are XSLTs or XQueries that can take an instance
of an implementation-level data structure and turn it into
an ontology-compliant data structure. By implementation-
level data structure we mean the data structure that the ser-
vice expects in the format that the service expects. This
is a scalable data mediation solution because the service
provider need provide only one lifting schema, which trans-
lates the output of the server to the grounding schema that
logically represents the object, and one lowering schema
that translates the grounding schema to the input of the ser-
vice. This solution contrasts to having to provide a transla-
tion or mapping from one service to every other service that
plans to utilize that service. In terms of an object-oriented
style language, the lifting schema should be thought of as
an up cast and the lower schema should be considered a
down cast, where the ontology class plays the role of the
parent object and the service input and output plays the role
of child object.

The first significant benefit of adding semantic annota-
tion to RESTful Web services is data mediation. This is
a key benefit since RESTful Web services have no way
to specify the format of the inputs or outputs of the ser-
vice. The following example illustrates the problem faced
by standard (non-annotated) RESTful services: a user wants
to plot the output of a service that tells the address of homes
for rent on a map. Logically the real estate service returns
a list of locations but the output is represented in XML. As-
sume that address constitutes an address line 1 field and an
address line 2 field. The map service logically takes in a
list of locations but the input needs to be represented in
JSON and only has one address line. Logically these ser-
vices should be able to work together with little effort, but

they cannot; some work must go mediating the data to be
used between these two services. We propose to address
this problem by annotating all inputs and outputs of the ser-
vice with a URI to concepts related to address described
in ontology. It is important to note that the annotation of
the services inputs and outputs does not change the input
or output of the service, nor does it place a restriction on
the format. The annotation of a service is simply a way of
attaching metadata to the service to be used later to glean in-
formation about the service. These metadata act as a loose
standardization or normalization for data in the messages of
the service.

Now assuming that the output of the real estate service
points to a location object in an ontology and that the map
service points to the same location object, data mediation
could be done as follows: The first schema would not only
point to the ontology for the output of the service but would
also specify a lifting schema that could translate the output
of the service into a form compliant to the ontology. It is im-
portant to note that the actual fields of the data structures are
not annotated. The high-level concepts that the data struc-
tures represent are annotated. Likewise the mapping service
will specify a lowering schema that would take data in the
form of the ontology item and translate it into the form the
service requires for input. In this way, the code for that
mashup would invoke the real estate service, lift the out-
put to the ontology form, lower the output the form for the
mapping service, and invoke the mapping service. This bit
of code would be general for all mashups. The solution is
scalable, because for each service that is created the author
need supply only a single lifting and lowing schema and not
a mapping to all other services that may want to use this ser-
vice in the future. By contrast the tools currently available
require that all data mediation go on within the tool itself.
The key role that ontologies play in our approach will be
described later. Figure 1 demonstrates the process outlined
above.

3.2 Service Invocation

The second problem that adding semantic annotations
to RESTful services solves is to automatically determine
how services are invoked. Traditional SOAP bases services
are invoked via an HTTP Post request. This is because the
HTTP Get requests are restricted in size and the amount of
data that is present in an SOAP envelope can easily exceed
this limit. Since RESTful web services do not suffer for the
bloating that SOAP services suffer from, the style of invo-
cation reflect more traditional view of HTTP Get and HTTP
Post. Traditionally a HTTP Get request should be used
when the request will not cause any changes to the serve
where at a HTTP Post request could cause some change on
the server. The issue for a tool to invoke a service would

First Service Second Service

Service 1
Output

Service 2
Input

Lifting
Schema

<?xml v
 <ref:
 <gr

XML

Lowering
Schema

<?xml v
 <ref:
 <gr

XML

Ontology
Schema

Figure 1. A demonstration of Lifting and Low-
ering Schemas

be which type of request to choose. This is why in SA-
REST we annotate the service with the type of request that
should be used. The current tools that are being used to
create mashups circumvent this problem by always using a
HTTP Get on external services. This is possible because the
external services that are allowed are normally feeds such as
RSS and the retrieval of a feed does not cause a change on
the server.

3.3 Annotation techniques and languages

So far we have only shown what kind of annotations need
to be added to make a RESTful web service in to a SA-
REST service but have not stated how or where to attach
the annotations. In SAWSDL the semantic annotations that
describe the service were added in the WSDL for that ser-
vice. This was a very logical place to add the annotation
because typically there is a one to one correlation between
a WSDL and a traditional SOAP based web service. Most
if RESTful web services to not have WSDLs. This is be-
cause one of the main objectives behind REST is simplicity
and since WSDLs are complex along with creating another
artifact of the service that must be kept up-to-date as the
service changes. Also the simplicity of RESTful web ser-
vices is sufficient to not require a WSDL, whose primary
use currently is to facilitate tooling support. Most RESTful
web services have HTML pages that describe to the users
what the service does and how to invoke the service. This
is in a way the equivalent of a WSDL for RESTful web ser-
vices so would be an ideal place to add our semantic anno-
tations. The problem with treating a HTML as a WSDL is
that HTML is meant to be human readable where a WSDL

was designed to be machine readable. This is where mi-
cro formats come in. Micro formats are a way to add se-
mantic metadata to human readable text is such a way that
machines can glean the semantics. Micro formats come in
many different competing forms. Recently the W3C has
worked on the standardization of two different technologies
called GRDDL[2] and RDFa[10]. GRDDL (Gleaning Re-
source Descriptions from Dialects of Languages) is a way
for the author of the human readable text to choose any mi-
cro format and also specify a translation, normally an XSLT,
that translates the human readable text into machine read-
able text. RDFa is a way to embed RDF triples in to an
XML, HTML, or XHTML document. As a preferred im-
plementation of SA-REST we recommend the use of RDFa
as a micro format because it is standardized by the W3C
and as it is a subset of RDFa, it has built in support URIs
and namespaces. We will first discuss how annotations will
be added to an HTML page using RDFa and then we will
discuss the more general case of using GRRDL.

We embed our semantic annotations in RDFa into the
HTML page that describes the service making the page
both a human readable and machine readable description
of the service while also creating a single place to do an
update if the service ever changes. This in contrast to
attaching a separate document that contains the annota-
tions so that when the service is updated the HTML(the
human readable document) must be updated and the for-
mal description (the machine readable document) also up-
dated. The RDF triples that can be extracted from the
XHTML via parsers or XSLTs. SA-REST leaves it up
to the user on how and where to embed the triples– they
could be intermingled into the HTML or clustered all to-
gether and not rendered by the web browser. The subject
of the triple should be the URL at which you would in-
voke the service; the predicate of the triple should be either
sarest:input, sarest:output, sarest:operation, sarest:lifting,
sarest:lowering, or sarest:fault where sarest is the alias to
SA-REST namespace. The object of the triple should be
either a URI or a URL to a resource depending on the pred-
icate of the triple. Figure 2 and 3 give a detailed example
of a SA-REST document for a Web service to search for
houses on Craigs List.

To allow the author more flexibility and to have a lower
barrier of entry we allow the user to use GRDDL to attach
annotations. To annotate a HTML page with GRDDL the
author fist needs to embed the annotations in any micro for-
mat. To the head tag in the HTML document a profile at-
tribute must be added that is the URL of the GRDDL pro-
file. This tells agents that come to this HTML page that it
has been annotated using GRDDL. The final step in adding
annotations is to inside the head element add a link tag that
contains the URL of the translation document. Though any
format may be used to add annotations to this page the re-

<html xmlns:sarest="http://lsdis.cs.uga.edu/SAREST#">
…

<meta about=" http://craigslist.org/search/">
<meta property="sarest:input"

content=
"http://lsdis.cs.uga.edu/
ont.owl#Location_Query"/>

<meta property="sarest:output"
content=
"http://lsdis.cs.uga.edu/ont.owl#Location"/>

<meta property="sarest:action" content="HTTP GET"/>

<meta property="sarest:lifting" content=
"http://craigslist.org/api/lifting.xsl"/>

<meta property="sarest:lowering" content=
"http://craigslist.org/api/lowering.xsl"/>

<meta property="sarest:operation" content=
"http://lsdis.cs.uga.edu/
ont.owl#Location_Search"/>

</meta>
…

Figure 2. An annotated Web page to search
for houses on Craigs List. Annotations not
mixed with content

<html xmlns:sarest="http://lsdis.cs.uga.edu/SAREST#">
…

<p about=" http://craigslist.org/search/">
The logical input of this service is an

http://lsdis.cs.uga.edu/ont.owl#Location_Query

object. The logical output of this service is a list

of

http://lsdis.cs.uga.edu/ont.owl#Location

objects. This service should be invoked using an

HTTP GET

<meta property="sarest:lifting" content=

"http://craigslist.org/api/lifting.xsl"/>

<meta property="sarest:lowering" content=
"http://craigslist.org/api/lowering.xsl"/>

<meta property="sarest:operation" content=
"http://lsdis.cs.uga.edu/
ont.owl#Location_Search"/>

</p>

Figure 3. An annotated Web page to search
for houses on Craigs List. Annotations mixed
with content

Annotated
HTML

Abstract
XML

SAWSDL with
REST Binding

RDFa Extractor

XSLT + Ontology

XSLT + Ontology

XSLT

Figure 4. Translating from SA-REST to
SAWDL and back

sulting data that is extracted after the translation is applied
to the document must result in RDF triples that are identical
to the ones that would be generated via RDFa embedding.
That is to say a page that is annotated with GRDDL still
needs to produce triples whose subject is the URL to which
is used to invoke the service, whose predicated is the type of
SA-REST annotation that is , and whose object is the URI
or URL that is the resource that the predicate refers to.

GRDDL has the advantage that it is less intrusive then
RDFa. GRDDL allows the user to embed annotations in
any way that is convenient; this could be a pre-existing mi-
cro format or a new micro format only known by the user.
It would also be possible using GRDDL for the user to em-
bed no extra data in the HTML page which is not required
by GRDDL and have all the metadata that is specific to
SA-REST be contained in the translation. The advantage
of RDFa is that the annotations are self contained in the
HTML page. The user only needs to create and maintain
one document. In contrast, GRDDL forces the user to cre-
ate two documents, the HTML page and translation docu-
ment. RDFa also has the advantage that it is a standardized
micro format. The standardization makes it simpler for a
developer to maintain and understand a page that has been
created by someone else.

3.4 From SA-REST To SAWSDL and
Back

Due to the fact that SA-REST is a derivative of SAWSDL
it follows that a SAWSDL can be generated from an SA-
REST annotated page. This idea would be useful because
there are many tools that have been designed for SASWDL.
These tools include programs for workflow automation, ser-
vice discovery, and service publication. All there tools rely
heavily on the annotated WSDL. This means that these tools
could not cover REST services since they lack a WSDL.
Given the above mentioned annotation scheme we can cre-
ate a SAWSDL from a SA-REST page. The ability to create
this mapping between SAWSDL and SA-REST shows that
SA-REST has similar semantic support as that of SAWSDL.

The main part of a SA-REST HTML page that is used
for computation is the RDF triples. These triples can easily
be translated in to a simple XML by the application of an
XSLT, the use of an RDFa extractor, or a GRDDL agent.

These RDF triples can be converted into an abstract XML
that describes the SA-REST service. The WSDL 2.0 stan-
dard defines a REST binding which for purposes of this
manuscript is a normal WSDL binding but does not include
the SOAP envelope. We can create a simple XSLT that
is a template for a SAWSDL that has a WSDL 2.0 REST
binding. If this XSLT is applied to the abstract XML doc-
ument, the input, output, schema mappings, and operations
would be filled in to create a complete SAWSDL document.
The input and output messages in the SAWSDL describe the
data structures and since the abstract XML does not include
data structure information, only the concepts about the mes-
sages, we must pull this information from the grounding
schema of the ontology class that represents the concept.

In a similar way we can move from a SAWSDL to an
annotated HTML page for a SA-REST service. We could
use a simple XSLT to translate from the SAWSDL to the
abstract XML. With this XML we could use another XSLT
to translate to HTML. It would be difficult to write a use-
ful HTML page only knowing the RDF triples. For this
reason we add more data to the XSLT from the ontology. If
the ontology contains comments about the concept, they are
added. If the concept is a subclass of a different concept we
add this to the XSLT along with any comments it may have.

The newly created SAWSDL contains the generic data
structures for input and output messages instead of the data
structures that the service expects. This could cause valida-
tion errors when the service is invoked. For this reason the
client invoking the service must know that data mediation
via the lowering schema mapping must be done before in-
voking the service. As an alternative solution, a SA-REST
service could validate the incoming message to see if it is
in the service specific form or in format that is compliant to
the ontology. If the data is in the generic form the service
itself could do the data mediation. This would be a more
flexible approach because only the server code would have
to be changed instead of changing the code for every client.
The reason we propose both solutions is because the user
may not always have access to the server code or the client
code.

4. Creating (S)Mashups using SA-REST

One of the most popular applications of RESTful web
services is mashups, which are basically a web site that
aggregates content from different providers. The popular-
ity of mashups has arisen partly due to the simplicity of
RESTful web services since the languages used for pro-
gramming web pages is typically lightweight or scripting
languages. A mashup uses RESTful web services to query
the providers to get content in results typically in XML for-
mat. Due to difference in data definitions and representa-
tions of different providers, a semantic approach is needed

User Input
to mashup

Output of
mashup

Simple Service Chain of a
mashup

RESTful Web
Service 1

RESTful Web
Service 2

Output of
Service 1

Input of
Service 2

Data
Mediation

Figure 5. The typical architecture of a
mashup that uses two services

for seamless integration of the data. Using semantics to
integrate and coordinate mashups gives us SMashups (Se-
mantic Mashups) [18]. As mentioned earlier, a key diffi-
culty in creating mashups is the amount of coding and diffi-
culty in automating its creation. Much of the coding needed
to create a mashup is to do mediation between the different
data definitions and representations. The key differences
between a mashup and a SMashup are the underlying ser-
vices that are used. A traditional mashup would use REST-
ful web services where as SMashups use RESTful web ser-
vices that are annotated with SA-REST annotations. This
gives SMashups the ability to know more about what the
service is going and what the inputs and outputs are so that
data mediation can be done automatically with out human
intervention. In this section we describe a system that we
have created to aid a user to create mashups without having
to know any programming language or doing any program-
ming. In these SMashups, we use semantics to do automatic
data mediation.

In Figure 5 we show the typical architecture of a mashup
that uses two RESTful web services. The key component
of the system that is not the scaleable or flexible is the data
mediation. The data mediation is the part of in traditional
mashups that is time consuming and requires human inter-
vention. Our system attempts to automate that component
of mashup architecture. In our system we allow the user to
first specify the chain of services that need to be invoked.
That is to say the user specifies the URLs of the annotated
HTML pages that describe the SA-REST services that are
to be invoked in the SMashup in the order they are to be
invoked. The system then sends a request per SA-REST
service to the proxy server which in turns downloads the
requested annotated webpage and forwards it back to the
client. If three SA-REST services were to be used in a
particular SMashup then three URLs to annotated HTML
pages would have to supplied by the user and three requests
to the proxy server would be submitted. The reason for the
proxy server is to circumvent the javascript security pol-
icy. The javascript security policy states that a webpage
can not programmatically download a resource from a do-
main different from the domain from which the code was

downloaded from. This means that if a user downloads
code to create SMashups from one server they cannot down-
load a webpage from a different server. This is why we
funnel all requests through the server that we downloaded
the smashup code from. This means that the proxy server
is only used to host the smashup code and relay messages
from the client and that for the creation of a SMashup only
one proxy server can be used.

When the annotated HTML page is back on the client, an
XSLT is applied to extract the RDF triples. These triples are
then used to create a description of the service and display
the description to the user. At this time the user can go
though and specify where all the inputs should be gathered
from. The user can specify that the inputs can be an input
to the service or the inputs can be an output of any service
that is higher up in the chain. That is to say that if a the
first service returns a location object as an output the input
to the second service can either be obtained as an input to
the smashup or be the location object from the first service.
When we say that two objects match we are referring to
the objects having being annotated with the same ontology
concept or have the service earlier in the chain use a child
concept of the object that is later in the chain. That is to
say that one object is extended from another. Also at this
point the user is allowed to specify which objects are to the
outputs of the SMashup.

After all inputs and outputs have been specified the user
can prepare the service to be executed. At this step the sys-
tem takes what objects that are to be used as input to the
service and creates an HTML form to prompt the user with.
The way the system knows what fields to create is by going
to the ontology and finding the attributes of the concept and
recursively go through the attributes until you only primitive
attributes are left. We are calling this the grounding schema.
The name of these primitive attributes is what is presented
to the user for inputs to the smashup. It is important to
note that these fields may not match up with any of the in-
put fields for a service that will be invoked. After the user
has entered all the information the user can start the execu-
tion of the service. At this point the HTML fields that were
created will be turned into a XML that will closely match
what is in the descriptions of objects in the ontology. These
XML fragments, there is one for each input, are placed in
an intermediate object hash map and saved for later use.

After inputs are entered by the user and execution of the
smashup starts, each service in the execution chain will be
executed. This means that the engine will look up the inputs
that the service needs in the intermediate object hash map.
The objects in the hash map are in the form of the grounding
schema that reflects that ontology. The lowering schema is
then used to convert the data from the grounding schema to
the concrete level format this is needed to invoke the ser-
vice. This format may be XML, JSON, or a query string.

Client Machine

Proxy Server

Service Provider

Annotated
HTML

Lifting and Lowering

<?xml v
 <ref:
 <gr

XML SA
-R

ES
T

Se
rv

ice

Ontology

Smashup
Editor

Figure 6. High level preferred architecture of
a SMashup

If the service is to be invoked via a HTTP Get request the
out put from the translation from grounding schema to im-
plementation schema is appended to the URL for which the
service should be invoked at. This string is then passed to
the proxy sever who in turn downloads the resource from
the URL. The result is then passed back to the client where
the lifting schema is applied to convert the output to the
grounding schema. This grounding schema XML is then
placed in the intermediate objects hash map. Now this pro-
cess is repeated for the next service in the execution chain.

After all services have been executed the engine loops
through all possible outputs of the service and finds all ob-
jects that user requested to be returned as outputs and dis-
plays them to the user. Note that at this time the output ob-
jects that are being displayed to the user are in the grounding
schema format and not implementation level format. Pos-
sible output formats could be HTML, XML, JSON or even
javascript.

5. Conclusions and Future Work

In this paper we have presented an technique to add se-
mantics to RESTful services. SA-REST, presented in the
paper adds semantics to RESTful services by adding RDFa
annotations. The approach to adding annotations is de-

rived from our earlier work on adding semantics to WSDL
(WSDL-S). We also discussed a system we designed to cre-
ate semantic mashups or SMashups using SA-REST. Our
approach seeks to alleviate the two main drawbacks in terms
of customizability and scalability of the current approaches
to creating mashups.

References

[1] Craigs List. http://www.craigslist.com.
[2] Gleaning Resource Descriptions from Dialects of Lan-

guages (GRDDL). http://www.w3.org/tr/grddl/.
[3] Google Maps. http://www.map.google.com.
[4] Google Mashup Editor. http://editor.googlemashups.com/.
[5] Housing Maps. http://www.housingmaps.com.
[6] I.Horrocks, P. Patel Schneider, and F. van Harmelen. From

shiq and rdf to owl: The making of a web ontology language.
In Journal of Web Semantics, 2003.

[7] Ora Lassila and Ralph R. Swick. Resource description
framework (rdf) model and syntax specification.

[8] OWL-S. http://www.daml.org/services/owl-s/.
[9] R.Akkiraju, J.Farrell, J.Miller, M.Nagarajan, M.Schmidt,

A.Sheth, and K. Verma. Web service semantics –
wsdl-s, a w3c member submission, nov. 7, 2005,
http://www.w3.org/submission/wsdl-s/.

[10] RDFa. http://www.w3.org/2006/07/swd/rdfa/syntax/.
[11] Semantic Annotations for WSDL working group. Semantic

annotations for wsdl and xml schema.
[12] Web Services Modelling Ontology. http://www.wsmo.org.
[13] Yahoo Pipes. http://pipes.yahoo.com.

	SA-REST and (S)mashups: Adding Semantics to RESTful Services
	Repository Citation

	tmp.1410898328.pdf.ykYVt

