
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

1997

An Error Handling Framework for the ORBWork Workflow An Error Handling Framework for the ORBWork Workflow

Enactment Service of METEOR Enactment Service of METEOR

Davasish Worah

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Krzysztof J. Kochut

John A. Miller

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Worah, D., Sheth, A. P., Kochut, K. J., & Miller, J. A. (1997). An Error Handling Framework for the ORBWork
Workflow Enactment Service of METEOR. .
https://corescholar.libraries.wright.edu/knoesis/627

This Report is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/80833986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

An Error Handling Framework for the ORBWork WorkowEnactment Service of METEORD. Worah, A. Sheth, K. Kochut, J. MillerLarge Scale Distributed Information Systems Lab (http://LSDIS.cs.uga.edu)The University of Georgia, Athens, GA 30602-7404email: fworah,amit,kochut,jamg@cs.uga.eduAbstractWorkow Management Systems (WFMSs) can be used to re-engineer, streamline, automate,and track organizational processes involving humans and automated information systems. How-ever, the state-of-the-art in workow technology su�ers from a number of limitations that pre-vent it from being widely used in large-scale mission critical applications. Error handling is onesuch issue. What makes the task of error handling challenging is the need to deal with errorsthat appear in various components of a complex distributed application execution environment,including various WFMS components, workow application tasks of di�erent types, and theheterogeneous computing infrastructure.In this paper, we discuss a top-down approach towards dealing with errors in the context ofORBWork, a CORBA-based fully distributed workow enactment service for the METEOR2WFMS. The paper discusses the types of errors that might occur including those involving theinfrastructure of the enactment environment, system architecture of the workow enactmentservice. In the context of the underlying workow model for METEOR, we then present athree-level error model to provide a uni�ed approach to speci�cation, detection, and runtimerecovery of errors in ORBWork. Implementation issues are also discussed. We expect the modeland many of the techniques to be relevant and adaptable to other WFMS implementations.1 IntroductionThe recent push for streamlining and optimizing of organizational processes has lent to renewedinterest in workow technology. This has raised challenging requirements for WFMSs in terms ofbeing required to support large-scale multi-system applications, involving both humans and legacysystems, in heterogeneous, autonomous and distributed (HAD) environments. Unfortunately, work-ow products, in their current state, are still immature to address these emerging requirements.One of the major limitations of commercial workow products is the lack of reliability in the pres-ence of errors and failures [GHS95, SGJ+96, WS97, AAAM97]. In this paper, we address the issueof error handling during workow enactment in the context of the METEOR workow project.The related topic of workow recovery has been discussed in [Wor97].A workow is an activity involving the coordinated execution of multiple tasks performed bydi�erent processing entities [KS95]. These tasks could be manual, or automated in nature. Aworkow process is an automated organizational process involving both human (manual) and auto-mated tasks. A Workow Management System (WFMS) is a set of tools that provides support forprocess de�nition, workow enactment, and administration and monitoring of workow processes[Hol94]. A workow enactment service consists of run-time components that provide the executionenvironment for the workow process using one or more workow engines.1

The METEOR2 workow project at the Large Scale Distributed Information Systems Lab., Uni-versity of Georgia (LSDIS-UGA) builds upon the earlier METEOR [KS95] e�ort at Bellcore. Re-search and development work is geared towards developing a multi-paradigm transactional WFMScapable of supporting large scale, mission critical, inter-enterprise workow applications in HADenvironments. Several workow enactment services have been designed and implemented based onvarious scheduling paradigms [Wan95, MSKW96, SKM+96]. These range from highly centralizedones to fully distributed implementations using CORBA and Web technologies (either exclusively,or in combination) as infrastructure for workow enactment. In this paper, our focus is on the errorhandling support provided in ORBWork, a reliable CORBA-based distributed enactment servicefor the METEOR2 WFMS.Errors are a natural occurrence in any software system; WFMSs and the workow applicationsthey support are no exceptions. WFMSs, in general, are complex pieces of software; the tasks (alsocalled activities or steps) that need to be integrated by the WFMS could be arbitrary applications.When supporting enterprise-wide or inter-enterprise workow applications, a WFMS might needto use or interact with multiple infrastructure technologies (e.g., Web, CORBA). All these factorslend to di�erent sources of errors that need to be handled by the workow service in a mannerthat conforms to the nature of the organizational process. An open-ended problem, such as errorhandling during workow enactment, needs to be bounded before a viable solution can be suggested.Error handling in WFMSs involves both speci�cation of errors and runtime error handlingpolicies. Most of the work discussed in workow literature has been focused on modifying processows to be able to deal with error conditions in a transactional manner. System level issues suchas modeling and reacting to di�erent types of errors (based on infrastructure, tasks, etc) has notbeen addressed adequately. These are issues that are crucial to real-world workow applications.In this paper, we present a top-down approach towards dealing with the errors in large-scaleWFMS. In METEOR2, we de�ne a hierarchical set of error classes that is used as a basis forpartitioning, detecting and handling various types of errors that occur in heterogeneous workowenactment environments. The error classes are based on the METEOR2 workow model and aretherefore reusable across all implementations of the METEOR2 WFMS. We also discuss imple-mentation support for error handling, an issue not yet discussed at comparable level of detail inthe relevant literature on workow technology. The model and design for the implementation arereusable across other WFMSs. The use of error classes as a basis for systematically modeling andhandling heterogeneous errors in real-world workow environments is one of main contributions ofthis paper.In this paper, we will �rst describe the various types of errors that can occur during workowenactment. This is followed by a speci�cation of the requirements for the error handling frameworkin METEOR. Error handling has been a topic of research in the domains of database systems,advanced transaction models (ATMs), and transactional workow systems. In section 4 we surveythis related work. Next, we present an overview of the METEOR workow model, the METEOR2WFMS and the ORBWork workow enactment service. The error model for the METEOR2 WFMSis presented in section 6. This is followed by a brief discussion of how this error model can be usedto specify errors and error handling mechanisms at build-time. In sections 7, 8 and 9 we present adetailed discussion of task, task manager and workow engine errors that have been implemented inthe context of ORBWork. Section 10 briey outlines the support for human assisted error handlingin ORBWork. Finally, in section 11 we summarize our work and outline potential areas of research.2

2 Errors during Workow EnactmentBefore we can de�ne a scheme for dealing with errors in WFMSs it is important to understandthe types of errors that can result during the workow enactment process. In this section, we willfocus our attention to workow enactment errors; build-time errors (i.e., errors occurring duringworkow design) are outside the purview of this paper. We can characterize the types of errors
Infrastructure
Errors DBMS Web HumanORBServer

Application
Errors

Schedulers

Automated
Task

User
Task

Task
Managers

Administration
Utilities

Recovery
Framework

Workflow System
Errors

Figure 1: Workow Enactment Errorsarising during workow enactment into three broad categories (see Figure 1):� Infrastructure errors: these errors result from the malfunctioning of the underlying infras-tructure that supports the WFMS. These include hardware errors such as computer systemcrashes, errors resulting from network partitioning problems, errors resulting from interactionwith the Web (e.g., HTTP errors), errors returned due to failures within the ORB environ-ment, etc.� Workow system errors: these errors result from failures within the WFMS software. Exam-ples of this include a crash of the workow scheduler that could lead to errors in enforcinginter-task dependencies, errors resulting from faulty task managers, or errors in recoveringfailed workow objects after a crash, etc.� Application and user errors: these errors are closely tied to each of the tasks, or groups oftasks within the workow. Due to its dependency on application level semantics, these errorsare also termed as logical errors [KS95]. For example, one such error could involve databaselogin errors that might be returned to a workow task that tries to execute a transactionwithout having permission to do so at a particular DBMS. A runtime error within a taskcaused due to memory leaks would be another example of an application error.The above categorization is a functional (descriptive) model for partitioning errors for a WFMS.Large-scale WFMSs typically span across heterogeneous operating environments; each task could bearbitrarily complex in nature. To be able to detect and handle errors in such a diverse environment,3

we need a well-de�ned error handling approach that would allow us to specify, detect and handlethe errors in a systematic fashion. In section 6 we present our approach towards dealing withworkow enactment errors.3 Requirements for the Error Handling Framework in METEORThe problem of dealing with errors in large-scale HAD environments poses challenging require-ments. The requirements for handling errors in WFMSs are signi�cantly di�erent from that intransaction-based systems. WFMSs support multi-system organizational processes governed bycomplex business rules, and arbitrary, long-lived tasks in HAD environments [WS97]. Contrary toerrors in programming languages, or structured software environments that are primarily systemoriented, errors in the workow environment involve not only simple database-like conicts, but alsoorganizational causes such as change in business policy, economic adjustments, role adjustments,etc. WFMSs, therefore, need a well-de�ned error model and an error recovery mechanism that issensitive to the nature of the error and the context in which it occurs.Based on our experience in modeling and development e�orts for real-world workow applica-tions (e.g., the state-wide immunization tracking application [SKM+96]), our experience in tryingto use exible transactions in multi-system telecommunication applications [ANRS92], and ourunderstanding of the current state of the workow technology and its real-world or realistic ap-plications [SJ96, SGJ+96, WS96], we formulate some of the essential requirements for the errorhandling framework in METEOR.� Support speci�cation for error handling. The WFMS should allow designers of theworkow process to specify various types of user de�ned-errors that might occur during en-actment. For example, in the case of a task that interacts with a DBMS, it should be possibleto de�ne an error type called login error. In addition, it should be possible to de�ne theerror-handling policies that would be employed to deal with various task errors. For example,in the event of a login error, one might want to retry connecting to the DBMS with new logininformation for a maximum number of times. In this case, the workow designer should sup-port speci�cation of task-retries with an upper limit. The error-handling framework shouldbe exible enough to be able to support error-handling for heterogeneous tasks and workowenactment infrastructures.� Support task-speci�c error handling. Error handling in WFMS should be sensitive to theerrors that are returned by the tasks in the workow process. The workow engine need not beconcerned with the internals of the tasks since WFMS are a means for coordination of coarsegrained applications rather than �ne grained programming instructions. Unlike DBMSs, theWFMS cannot abort a task due to any error that it might return. Workow tasks, in general,are more complex than database transactions, and represent a logical activity in the overallorganizational workow. It is therefore critical to be able to detect the errors returned byarbitrary tasks and to handle them on a per-error or per-error-group basis.� Localize errors. This is a feature that prevents errors in one part of the WFMS froma�ecting other parts of the enactment system. In general, it is easier to detect errors insingle-process systems rather than systems that are distributed in nature. In ORBWork, wehave tried to capture an error as close to its point of occurrence as possible; the error is thenlabeled and managed by the workow engine in a manner that is speci�ed by the workowdesigner. In addition, we use a hierarchical error handling and failure recovery mechanism in4

ORBWork. This allows us to localize errors at various stages within the workow enactmentservice (see section 6 for details).� Support error handling by forward recovery. Workow applications often involve long-lived tasks. In real-world workow applications we have seen most tasks are non-transactional,thereby not supporting the strict ACID properties of transactions [WS96]. Hence, althoughdesirable, it might not be possible to recover failed non-transactional tasks using backwardrecovery. The use of backward recovery for most human-oriented tasks is not a viable solutionsince most erroneous actions once performed cannot be undone. It might be possible for thehuman to rectify all the inconsistencies caused due to the error and redo the actions withouta�ecting other tasks or data objects within in the workow; however, it would be rare toexpect this behavior for most real-world human-tasks. Backward recovery is useful for purelydata-oriented tasks that are transactional tasks or sub-workows. We therefore need a forwarderror-handling mechanism that would semantically undo (or cleanup), or potentially undo apartially failed task.� Support human-assisted recovery. WFMS are software processes. It is impossible toguarantee the success of error handling mechanism due to the undeterministic nature of errors.Therefore, the role of the human is critical for resolving erroneous conditions that could notbe dealt by the error handling mechanisms of the WFMS. Also, in the case of dealing withcritical errors (e.g., resulting from failure of the persistence mechanism, partitioning of thenetwork, hardware failures, etc) the human involvement is a very important element for errorhandling (and also for recovery management).4 Relevant WorkError handling in database systems has typically been achieved by aborting transactions that resultin an error [GR93]. Aborting or canceling a workow task, would not always be appropriate ornecessary in a workow environment. Tasks could encapsulate diverse operations unlike a databasetransaction; the nature of the business process could be forgiving to some errors thereby notrequiring an undo operation. Therefore, the error handling semantics of traditional transactionalprocessing systems are too rigid for workow systems.Error models in most Advanced Transaction Models (ATMs) [Elm92] are restricted with respectto the ACID properties they relax. Nested transactions [Mos82] allows �ner grained recovery, andprovides more exibility in terms of transaction execution. Transaction failure is often localizedwithin such models using retries and alternative actions. We use a similar approach to localizeerrors in ORBWork.A mechanism for dealing with errors in an ATM for long running activities was proposedin [DHL90, DHL91]. It supported forward error recovery such that errors occurring in non-fatal transactions could be overcome by executing alternative transactions. The work on exibletransactions[ELLR90, ZNBB94] discusses the role of alternate transactions that can be executedwithout sacri�cing the atomicity of the overall global transaction. A workow system that imple-ments a exible transaction model has been discussed in [AAA+96].In the work on nested process management systems [CD96], the authors present a formal modelof recovery that utilizes relaxed notions of isolation and atomicity within a nested transactionstructure. The recovery model uses backward recovery of some of the child transactions for undoingthe e�ects of a failed global transaction. The backward recovery approach has limited applicabilityin workow environments in which it is either not possible to strictly reverse some actions, or is5

not feasible (from the business perspective) to undo them since this might involve an additionaloverhead or conict with a business policy (e.g., in a banking application). Sagas [GMS87] havebeen proposed to address many such issues in which failure atomicity requirements have beenrelaxed. Compensation has been applied to tasks and groups of tasks (spheres) to support partialbackward recovery in the context of the FlowMark WFMS [Ley95]. We support compensationthrough the use of alternate tasks that would undo the e�ect of its failed counterpart.Although ATMs provide models provides well de�ned constructs for de�ning alternative owof execution in the event of errors, they are restrictive in terms of the types of activities (relaxedtransactions) and the operating environment (a database) that form the long running process andtherefore, do not provide the error modeling capabilities of capturing and dealing with heteroge-neous workow errors in real-world applications that METEOR is geared to support.The role of exceptions in information systems has been discussed at length in [Saa95]. Theauthor presents a theoretical basis, based on Petrinets, for dealing with di�erent types of exceptionsin organizational settings using a rule-based approach. In addition, a taxonomy for exceptions ispresented. This taxonomy is purely driven by organizational semantics rather than being drivenby a workow process model. System-level details necessary for specifying, modeling and detectingheterogeneous workow enactment errors is not the focus of this work.The workow research community, so far, has worked on addressing error handling policies[DHL90, KS95, Ley95, AAA+96, EL96] that have been based on transactional semantics. Spec-i�cation of errors has been done using a at error model. This approach is not scalable in thecontext of large-scale WFMSs that need to be able to deal with di�erent classes of errors in aexible manner. In the METEOR2 approach, we provide the capability to be able to speci�callycategorize errors based on the context in which they occur (e.g., task, task manager, workowengine). The error handling capability is also based on this error model and therefore can be tunedto react to di�erent categories of errors. This model also provides the exibility to specify defaulterror-handling capability for a group of similar errors.In [RSW97], the authors de�ne a coordination language for specifying task composition, inter-task dependencies of long-lived, fault-tolerant distributed applications. The model supports spec-i�cation of redundant input data sources, and allows tasks to terminate in one of several distinctoutput states. It requires usage of a task-speci�c cleanup mechanisms in the event of failures of non-transactional tasks. Alternate tasks can be speci�ed as part of a compound task to alter the owof execution of the workow process in case of an error. However, explicit support for speci�cationof di�erent types of errors is missing from the coordination language.Capturing of task- or infrastructure-errors within the workow enactment service has beenneglected by the research community. Encapsulation of heterogeneous tasks into workow systemshas been discussed in [SJHB96]; however, this work does not discuss the critical problem of reactingto task-speci�c errors within the task-wrappers. In the context of real-world applications, this isa critical issue that needs to be addressed. In this work, we describe an approach that we haveadopted in ORBWork that enables us to detect such errors, and to map them into a form thatis recognizable by the workow enactment service. Along with the error model, we also provideimplementation support for error handling in the context of a workow enactment service, unlikemost of the other related research that lacks implementation details.5 The METEOR2 Workow Management SystemA WFMS can be described in terms of its build-time (also referred to as design-time) and enact-ment (also referred to as run-time) components. In this section, we discuss the aspects of these6

components of the METEOR2 WFMS that are useful in explaining error handling discussed in thesubsequent sections.5.1 The METEOR2 Workow ModelIn this section, we review the basic components of the METEOR2 workow model as discussed in[KS95] and [MSKW96]. These include interfaces, processing entities, tasks, task managers, and theworkow schedulers. Figure 2 describes the high-level modeling units of the METEOR2 workowmodel using Uni�ed Modeling Language (UML) notation [Rat97].
Control Dependency

State

Control Flow

Scheduler

Task Model

Data Dependency

Dependencies

Workflow Engine

enforces

Task Manager (manages the task)

contains

DatausesFigure 2: The METEOR2 Workow ModelWorkow. A workow in METEOR2 is de�ned as a collection of tasks and dependencies. Itis represented as a directed graph (also referred to as a workow map), with tasks representedby nodes and dependencies by the edges in the graph. We discuss the various types of tasks ina later section. Dependencies could be in the form of data dependencies or control dependencies.Workows could be nested (hierarchical) in nature.Interface and Processing Entity. A processing entity can be de�ned as any user, applicationsystem, computing device, or a combination thereof that is responsible for completing or supportingthe execution of a task during a workow execution. Examples of processing entities include wordprocessors, DBMSs, script interpreters, image processing systems, auto-dialers, or humans thatcould in turn be using application software for performing their tasks.The term interface denotes the access mechanism that is used by the WFMS and a workowtask initiated by the WFMS to interact with a processing entity. For example, a task that involvesa database transaction could be submitted for execution using a command line interface to theDBMS server, or by using an application programming interface from within another application.In the case of a user task that requires user-input for data processing, the interface could be aWeb browser displaying an HTML form, or it could be a physical switch in the case of a documentmanagement system that would activate the document generation process.The nature of processing entities and interfaces in terms of their support for error handling andrecoverability is very important when reliability of workow execution is a concern. For example,7

DBMSs support the traditional ACID transaction semantics, and hence recoverability of failedtransactions is possible in transaction processing environments. However, guaranteeing failureatomicity for tasks that execute on processing entities (e.g., human tasks) that do not guaranteesome or any of the ACID properties is extremely di�cult.Task. A task represents the basic unit of computation within an instance of the workow enact-ment process. It could be either transactional or non-transactional in nature [KS95]. Each of thesecategories can be further divided based on whether the task is an application, or a user-orientedtask. Application tasks are typically computer programs or scripts that could be arbitrarily complexin nature. A user task involves a human performing certain actions that might entail interactionwith a GUI-capable terminal. The human interacts with the workow process by providing thenecessary input for activating a user task.Tasks are modeled in the workow system using well-de�ned task structures [ASSR93, RS95,KS95] that export the execution semantics of the task to the workow level. A task structureis represented as directed graphs with the nodes denoting a set of externally visible states (e.g.,initial, executing, fail, done), and the edges denoting the permissible transitions between thosestates. Several task structures have been developed for modeling various heterogeneous tasks[KS95, Wan95].Transactional tasks (see Figure 3a) are used for modeling tasks that minimally obey the atom-icity property and maximally support all ACID semantics of traditional transactions [GR93] (e.g.,a DBMS transaction). The externally visible states of a transactional task are initial, execute, abortand commit.
(a) Transactional (b) Non-Transactional

execute

abort commit

initial

execute

fail done

initial

Figure 3: METEOR2 Task StructuresA non-transactional task (see Figure 3b) is used for modeling tasks that do not obey the atom-icity property of supported by transactions. Human (user) tasks are typically non-transactional,and so are applications that interact with non-transactional resources (e.g., �le systems). Theexternally visible states of a non-transactional task are initial, execute, fail and done.Another special type of task structure developed in METEOR2 is the 2PC task [Wan95]. Thisis useful for modeling two or more distinct tasks that need to take part in a global transaction.It includes an additional task called the task coordinator that enforces the transactional contextacross the various tasks involved in the distributed transaction.8

Task Manager. A task manager is associated with every task within the workow executionenvironment1. The task manager acts as an intermediary between the task and the workowscheduler. It is responsible for making the inputs to the task available in the desired format, forsubmitting the task for execution at the processing entity, and for collecting the outputs (if any)from the task. The task manager communicates the status of the task to the workow scheduler.In addition, we have extended the task manager to perform error handling and recovery functions.Due to the close coupling between a task and its task manager, a task manager is termed astransactional, non-transactional, user, or application task manager depending on the task that it ismanaging.In ORBWork, the scheduling mechanism (logic) is fully distributed and is embedded in each ofthe task managers. Task managers, therefore, perform four primary functions (for details regardingfunctioning of task managers, see [Das97]): (a) task activation, (b) error handling and recovery oftask and its own errors, (c) logging of task inputs, outputs, and its internal state, and (d) schedulingof dependent task managers as de�ned by the workow process.Workow Scheduler. The workow scheduler (also referred to as the workow engine) is re-sponsible for coordinating the execution of various tasks within a workow instance by enforcinginter-task dependencies de�ned by the underlying business process. Inter-task dependencies arespeci�ed using the METEOR designer [Zhe97]. This design is then translated into the WorkowIntermediate Language (WIL) [Lin97] which replaces the earlier Workow Speci�cation Language(WFSL) and Task Speci�cation Languages (TSL) [KS95] of METEOR.
AND

TASK
TASK TASK

TASK

Web

Database
Transaction

TASK
MANAGER

TASK
MANAGER

TASK
MANAGER

TASK
M A N AGER

CORBA

Legacy
Application

Human
InteractionFigure 4: Distributed Workow Scheduler in ORBWorkVarious scheduling architectures have been designed and implemented [Wan95, MSKW96, Das97],ranging from highly centralized ones in which the scheduler and task managers reside within a sin-1In our latest implementation, instances of the same task type of di�erent workow instances share a task managerto support better scalability. 9

gle process, to a fully distributed one in which scheduling components are distributed within eachof the distributed task manager processes (see Figure 4). In this paper, we will be only discuss thefully distributed architecture that forms the basis for ORBWork.5.2 Overview of ORBWorkORBWork is a CORBA and Web based distributed runtime for the METEOR2 WFMS [Das97].In this section, we will provide an overview of the ORBWork enactment system. During thisdiscussion, we will point out the contributions of this paper where appropriate.Infrastructure. The ORBWork enactment system uses the ORB infrastructure for communica-tion between, and distribution of, workow components (task managers, data objects, tasks andrecovery components) across host boundaries (see Figure 5). Web browsers and CGI scripts areused as a standard mechanism for user-interaction with the WFMS. Our rationale for using CORBAand Web technologies in ORBWork has been discussed at length in [SKM+96].

Host C

Object Request Broker
(CORBA)

TTM

Application
Task

Web Server

Web

Database
 Task

User Task

DBMS

Host A

Host D

Host B

U T M NtTM

NtTM Non-transactional Task Manager
TM Task Manager
TTM Transactional Task Manger
UTM User Task Manager

 Data Object
 Activate Message

Workflow Monitor

Legacy
Application

NtTM

Legend

Workflow
Administrator

Figure 5: ORBWork Runtime EnvironmentTask Managers. As discussed earlier, the scheduling logic for the WFMS is distributed withineach of the task managers. Therefore, each task manager performs both workow scheduling, aswell as task management functions. In addition to these, the task manager also performs errorhandling functionality in the form for detecting task errors, logging them, and possibly retryingtasks and performing alternate tasks. We will discuss these in detail in the Sections 7 and 8.10

AND

Activate1

Activate2

Activate3

Activ
ate

 Next1

Activate Next2

Activate Next3

Task
Manager

Task

DoTask ()DoTask ()

Inputs Outputs / ErrorsFigure 6: Abstraction of a Task Manager in ORBWorkTask managers communicate with each other via the ORB using IDL [OMG96] method in-vocations. Due to the location and operating system transparency o�ered by CORBA, they cancommunicate with each other from anywhere within the ORB environment by using the appropriateobject names.A skeletal version of the task manager code for a non-transactional task manager is shown inFigures 7. The task manager's code has been structured in a manner that reects it's runtime exe-cution model (shown alongside with the code in the �gure). The error-handling has been performedusing exceptions. This enables us to partition the normal ow of execution from the abnormal one.
// Non-transactional task manager code

/* Activate method */

void Activate (...) {

try {

try {

// if task precondition satisfied

if (Evaluate()) {

/** NORMAL EXECUTION **/

try {

Execute (...) ; // execute the task

Done (...) ; // success state

}

/** ABNORMAL EXECUTION **/

catch (METEOR2_Error meteor2Err) {

Fail (meteor2Err); // failure state

};

};

catch (WorkflowError wfErr) {

Fail (wfErr); // failure state

};

catch (...) {

// default error handling mechanism

}

} // Activate

abnormal
flow

i

e

f d

normal
flow

Figure 7: Basic Structure of a Task Manager in ORBWorkThe design of the corresponding code for transactional task managers is similar, except for theDone() and Fail() method calls that are replaced by Commit() and Abort() respectively. Inthis paper, we have added an extra method called Execute() to enable us to keep the semanticsof the code in parallel with the execution ow depicted by the task models (see �gure 7). As11

shown in the �gure, we have separated the normal ow of execution from the abnormal owusing try-catch blocks (a common mechanism for exception handling in most object orientedprogramming languages). Any errors that are encountered in any part of the try block are trappedand dealt within the catch block. In the normal mode of execution, as shown in the �gure, the taskwould transition through the Execute() and Done() method calls. Any abnormal (error-prone)execution would be detected through the exception handling mechanism achieved via the catchblock.The Execute() method calls DoTask() [Das97] to cause the workow task to execute (see�gure 11). DoTask() could be implemented as a wrapper for the actual task application that isexecuting locally on the same machine as the task manager. It contains code that represents thetask application, or it might be a proxy to a CORBA wrapper object that is responsible for executionof an application on a remote machine. Also, DoTask() might throw exceptions denoting that anerror has occurred during task execution. If this is the case, it would be caught in one of the catchblocks in the Execute() method.The Done() method is responsible for activating the next task managers in the workow map.It is also important to note that Done() does not throw any exceptions that need to be handledfrom within the Activate() method. All the errors that might arise during activation of the nexttask manager(s) are handled within the Done() call. A similar mechanism is used for dealing witherrors in Fail(). This design makes it possible to localize the e�ects of the errors to logicallydistinct parts of the task manager code.Types of Task Managers. Task managers that have been implemented in ORBWork includetransactional, non-transactional, user, and composite task managers [Das97]. Transactional andnon-transactional task managers have already been discussed in section 5.1 User tasks are managedby user task managers. User task managers have been speci�cally designed to allow humans toinitiate the task activation process through the Web interface. This is achieved by using a CGI-CORBA gateway [Das97] (also known as user-CORBA gateway)2. User tasks have associated\to-do" worklists that provide a list of pending tasks for the user. User inputs form one of theimplicit dependencies for a user task manager. User (human) tasks communicate with the taskmanagers via HTML forms and HTTP/CGI [WWW97] functionality provided by Web servers. Inour current implementation, CGI scripts are implemented as CORBA clients to user task managerobjects.Data Objects. Input and output data elements to the tasks are represented as CORBA objectsinternal to ORBWork. Data objects could either encapsulate data that is generated internallyto the workow process (e.g., Patient data that result from a query to a DBMS), or it couldbe created by the WFMS due to input from a human (e.g., data submitted via a HTML form isencapsulated in a CORBA object called a CGI-object [Das97]). These CORBA objects are wrappersaround the actual data elements. This allows workow data objects to be distributed within theORB environment. Task managers logically enforce workow data dependencies and pass data byexchanging the object names of the data objects.2The implementation of the CGI-based user-CORBA gateway is now being replaced by Java (on the front-end)and CORBA (on the back-end). 12

6 Error Handling in METEOR2In METEOR2, we address the following key issues to support error handling.1. We have de�ned a three-layer error model that extends the workow model discussed insection 5.1. This error model is used for partitioning the various types of errors that occurduring runtime into three categories (see Figure 8).2. The METEOR task model has been extended to a �ner-granularity for modeling support sothat error-speci�c corrective policies can be speci�ed at build-time and corresponding errorhandling can be captured during enactment. We will discuss this further in the followingsections.3. To keep with the requirements for the error handling framework that were discussed in section3, errors in METEOR2 are detected and handled (when possible) as close to the point ofoccurrence as possible to prevent their propagation to other, unrelated components of theWFMS.
i

e

ca

Task
Errors

Task Manager
Errors

Workflow
Errors

Scheduling Engine

Recovery Framework

Administration Unit

Figure 8: Partitioning Errors in the METEOR2 Workow Model6.1 The METEOR2 Error ModelIn the previous section, we have characterized the types of errors that can occur within workowsystems into three broad categories (infrastructure, application and workow system errors). To13

provide adequate support for modeling and dealing with these myriad types of errors, we haveadopted an error model for METEOR2. We use a top-down approach towards modeling errors.Hence, the error model that we have adopted is based on the existing METEOR2 workow model(see Figure 2) rather than being driven by the broad category (infrastructure, application andworkow system) of errors that was based on a bottom-up approach. Infrastructure-speci�c andtask-speci�c errors are mapped into our error model; this provides a uni�ed mechanism for identi-fying heterogeneous errors within the workow enactment service.The error model is based on three enactment components of our workow model, namely tasks,task managers, and the workow engine (schedulers, recovery framework, administration units,the communication layer and other units that enable workow process enactment). This modelallows us to label errors in a manner that is independent of the workow infrastructure and enginearchitecture. It also allows us to deal with errors in a hierarchical manner across the di�erent layers(task, task manager, and workow engine) of the workow enactment service.
METEOR2 Error

Task Error Task Manager Error WorkflowEngine Error

Task Error1 Task ErrorN TM Error1 TM ErrorN WF Error1 WF ErrorN

...Figure 9: The METEOR2 Error Class HierarchyThe error class hierarchy (see �gure 9) that de�ne our error model is used for labeling errorsat runtime. METEOR2 Error forms the base class from the error hierarchy. Task, task manager andworkow engine errors are derived classes for the base class object. User-de�ned task errors arederived from TaskError, all task manager errors are derived from the TaskManagerError class andvarious types of workow engine error objects are derived from the WorkflowEngineError class.These classes are available with the ORBWork runtime. User-de�ned task errors are generatedautomatically from the workow design speci�cation (the code-generation process is beyond thepurview of this paper). See section 7 for details on modeling task errors.14

6.2 Implementation of Error Handling in ORBWorkIn ORBWork, all errors are represented as error classes in the code that is generated by the workowdesigner (see �gure 10) The METEOR2 Error class forms the base class for all errors as de�ned inthe error hierarchy 9.
 // Base class for all METEOR2 errors

 class METEOR2_Error {

 protected:

ErrorType _errorType; // enumerated type : {TASK, TASK_MANAGER, WORKFLOW, UNKNOWN)

char* _description; // description of the error

int _id; // error code

 public:

 // ...

METEOR2_Error (char* description, int id)

 : _description(description), _id(id) {}

virtual ErrorType errorType() { return UNKNOWN; }

virtual char* description() { return _description; }

virtual int id() { return _id; }

 };

 // Base class for all task errors

 class TaskError: public METEOR2_Error {

 // ...

ErrorType errorType() { return “TASK”; }

 };

 // Base class for all task manager errors

 class TaskManagerError: public METEOR2_Error {

// ...

ErrorType errorType() { return “TASK_MANAGER”; }

 };

 // Base class for all workflow errors

 class WorkflowError: public METEOR2_Error

// ...

ErrorType errorType() { return “WORKFLOW”; }

 }; Figure 10: Declaration for Error classes in ORBWorkIn general, errors are detected closest to their point of occurrence. We have used exceptionhandling mechanisms to deal with errors at run-time. Any piece of code (local call, remote call,or function) that is error prone is guarded using a try-catch block. A series of catch clauses areused to trap errors that might be thrown by the error-prone code. For every error that occurs,the workow engine (task manager, scheduler, or any engine component) �rst tries to catch thespeci�c error that might be returned.Any error that cannot be handled by a workow component is dealt with by a default errorhandling mechanism de�ned for all METEOR2 errors. This default mechanism can be speci�ed atbuild-time through the map designer. The default behavior for TaskErrors is to cause the task totransition to the fail state; in the case of a TaskManagerError, or a WorkflowEngineError thedefault mechanism would be to log the error in the local error log and report it to the workowadministrator (see section 10.In the next three sections, we discuss task, task manager and workow engine errors in detail.7 Task ErrorsThe METEOR2 WFMS supports integration of disparate tasks (application-oriented or human-oriented) into the workow engine. Each of these tasks might return errors, which if not handled15

properly, could put the WFMS into an non-deterministic state. Hence, it is very important toidentify, detect, and handle task errors in a manner that is based on the overall workow process.Task errors are logical errors that are reported by a task during the execution environment thatis external to the task. Examples of task errors include exit codes returned by an application,runtime error returned by a database application on syntactic failure of a query, and so on.Earlier, in section 2, we had discussed application and user errors. A task error as de�ned inthe METEOR2 model di�ers from an application and user error in the sense that the former is notsensitive to the internal executions of the applications, as long as they are in conformance with theworkow system, whereas the latter is sensitive to the semantics of the tasks. The problem withreal-world legacy tasks is that it is not feasible to incorporate the semantics of the task into theworkow model. Therefore, we do not deal with errors that are internal to the task. METEOR2task errors denote errors (or any indications thereof, e.g., logging of errors to an application errorlog) that a�ect the external runtime environment of a task. On the other hand, a runtime error inan application leading to a crash would be treated as a physical failure by the WFMS and dealt withappropriately by the recovery framework for ORBWork (for a detailed discussion of the recoveryframework, refer to [Wor97]).7.1 Task Error MappingTo be able to deal with arbitrary errors returned by task managers, we should be able to mapthem into constructs (in our case, exceptions) that can be manipulated programmatically andused internally by the workow enactment service. This mapping needs to be performed in theDoTask() wrapper that insulates the actual task from the task manager (see Figure 11). Task-
Task/Application

DoTask()

µ(Error i) => TaskError_Error i

Error
i

Execute()

try {

}

catch (TaskError_Error i){

}

1

2
3

4

Task Manager

5

i

e

f d

normal
flow

abnormal
flow

Wrapper

Figure 11: Task Error Detection in ORBWorkspeci�c errors should be mapped to the speci�c TaskError de�ned by the user. The exact mapping(�) to be used for performing this operation depends on the nature of errors returned by the taskand needs to be performed in the DoTask() wrapper. Therefore, the relation � for every task t inthe workow process can be described as: 16

�t: Tt ! Mtwhere Tt = fx j x is an error returned by task t to its task manager g,and Mt = fy j y is a task error de�ned for task t at build-time gThus we see that the nature of �t is very closely related to the errors returned by t, and thereforeto t itself. It is the responsibility of the implementor of DoTask() to de�ne �t. To keep the numberof elements in Mt to a tractable size, it is advisable to perform a many-to-one mapping from Tt toMt.In this paper, we have used a simple approach to de�ne �t. For every error (or range of errors)speci�ed in the task designer at build-time, it is possible to generate a unique error id (e.g., byusing an integer counter) for internal use by the workow engine. The error id is used during theruntime code-generation process to generate unique class declarations for each error type. Thetemplate for generating the user de�ned task errors as follows:// Task error definition template.class TaskError_<task error id> : public TaskError {// ...}For example, Error i returned by a task is mapped to a class TaskError i where i denotes theinternal error id. Also note that the template ensures that TaskError i \is a" TaskError due tothe inheritance relationship de�ned by the METEOR2 object-model for errors (see section 6).7.2 Build-time Speci�cationDue to the sheer diversity of workow tasks, it is impossible to prede�ne all of the task-speci�c errorhandling mechanisms in the workow engine libraries. At build-time, it is the responsibility of theworkow designer to specify the task-speci�c error handling functionality needed by the workowengine. Ideally, this detail would be speci�ed using the task designer (and possible extensions interms of an error designer). The intent of our design process is to specify the types of errors thatcan be returned from a task and the necessary mechanisms needed to deal with them in a mannerthat is consistent with the overall organizational process. Based on our earlier discussions in thispaper and the need for de�ning exible task-speci�c error handling mechanics, we have identi�edkey information that needs to be speci�ed at build-time for each task:1. A set of errors, Tt, that are returned by a task and are of signi�cance to the organizationalprocess outcome.2. A set of task errors, Mt, to be used internally by the workow engine.3. The mapping relation, �t, that would be used by the task wrapper (DoTask() in the caseof ORBWork) to map Tt to Mt. Keeping with the graphical design paradigm adopted byMETEOR2, this would be done graphically; however, the description of the approach towardsspeci�cation is not the focus of this paper. This relation would be stored in WIL throughautomatic code generation [Lin97, Das97] before it is translated to runtime code.4. Finally, we need to specify a set of rules for dealing with the errors once they have beendetected, transformed using �t, and thrown to the task manager's Execute() method ordetected signal handlers in the task manager [MPS+97] (in the case of signals returned by atask). 17

The rules used for task error handling constructs in step 4 above depends on the error handlingtechnique that is adopted by the workow and task designer at build-time.The approaches for de�ning error handling mechanisms are listed below.Ad-hoc Approach. At the lowest level, one might want to perform error handling for errors inthe task wrapper (DoTask()) itself. If dealt at this level, the remainder of the task manager codewould not be informed of the occurrence of an error. It is the sole responsibility of the implementorof the wrapper to ensure correctness and reliability of the error handling procedure. At this level,the errors are in the domain of Tt; therefore, we do not anticipate supporting speci�c error handlingmechanisms at this level.Task Retries. The next level of error handling can be performed in the Execute() method. Atthis level, it is possible to specify a maximum number (MAX RETRIES) of times a task needs to beretried if a particular error is received. For example, in the task manager code shown in �gure 12,DoTask() would be tried a maximum of MAX NUMBER times if TaskError ERROR1 is encountered.The boolean condition listed in the while clause in the code discussed above would need to dependon the number of errors for which the retries are being performed.
// Task Manager::Execute()

// called by Task Manager::Activate()

void Execute (...) {

// ...

/* set all retry counters to 0 */

numRetries_TaskError_ERROR1 = 0;

numRetries_TaskManagerError_TASK_EXECUTE = 0;

// while DoTask needs to be retried.

// Retry() uses MAX_RETRIES parameter specified in the designer

while (Retry(...)) {

try {

DoTask(); // call the task wrapper

LogTaskState(“EXECUTE”, “NO ERROR”);

}

/** catch task errors **/

catch (TaskError_ERROR1& e1){ // defined in designer

LogTaskState(“EXECUTE”, e1);

numRetries_TaskError_ERROR1++;

continue; // RETRY option specified

}

catch (TaskError_ERROR2& e2) { // defined in designer

LogTaskState(“EXECUTE”, e2);

throw; // FAIL option specified

}

// ...

catch (TaskError& e3) { // default

LogTaskState(“EXECUTE”, e3);

throw;

}

/** catch task manager errors **/

catch (TaskManagerError_EXECUTE e4) { // specified in designer

LogTaskState (“EXECUTE”, e3);

numRetries_TaskManager_TASK_ERROR++;

continue; // RETRY option specified

}

// ...

catch (TaskManagerError e5) { // default

LogTaskState (“EXECUTE”, e5);

throw;

/** catch all other errors **/

catch (...) { // default

LogTaskState(“EXECUTE”, “UNKNOWN”);

 throw; // cause execution to FAIL

}

} //while

} //Execute Figure 12: Dealing with Task Errors using Retries in ORBWork18

Alternate Tasks. The third type of error handling technique could a�ect the overall workowmap. In some situations it might be desirable to use alternate tasks in the event of a failureof a particular task [KS95]. Alternate tasks could be designed to deal with speci�c errors. Inthe case of using alternate tasks, we do not guarantee atomicity or isolation of the original taskunder the presumption that the user realizes the implications of this substitution. In some cases
i

e

f d

TaskError_e1

TaskA i

e

f d

TaskB

Normal process flow:
TaskA » TaskB

On <TaskError_e1> :
TaskA » EhTaskA » TaskB

i

e

f d

Eh_TaskA
(Alternate Task)

TaskError_e1

OR

Workflow Process Specification

Process Flow at Runtime

Error Object

Figure 13: Error Handling using Alternate Tasks(e.g., non-transactional task execution), it might be necessary to undo the e�ects of a failed task.This could be achieved by implementing an alternate task in an appropriate manner, and bydesigning the workow map so as to activate the alternate task if the original task results infailure. Transactional tasks (e.g., DBMS transactions), due to their inherent characteristics, donot require explicit compensation. In �gure 13, the non-transactional task Eh TaskA has beenspeci�cally de�ned to deal with TaskError e1 that might arise during the execution of TaskA. Toaccommodate the e�ect of repair-and-continue for the overall workow process, an OR relationshipis established between the original task (TaskA) and it's error handling task (Eh TaskA) could bede�ned as shown in the �gure.7.3 Task Error HandlingIn ORBWork, the speci�cation of task errors and their error-handling mechanisms maps into the�nal code that is generated for the Activate(), Execute(), DoTask(), and Fail() methods in thetask manager. 19

// TaskManager::Fail()

// called by TaskManager::Activate() on FAILURE

void Fail (METEOR2_Error err) {

LogTaskState(“FAIL”, err); // Log the state of the task.

ErrorType errorType = err.errorType(); // get type of the error

switch (errorType) { // ERROR HANDLING

 /* For each of the categories below perform next task activations

 specified at build-time.

 Log <“FAIL”, NEXT_TASK_ID> after each activation.

 */

case TASK: // ...

case TASK_MANAGER: // ...

case WORKFLOW: // ...

case UNKONWN: // inform administrator

}

}; Figure 14: Description of a Task Manager's Fail method in ORBWorkIn the event that a task error is handled at runtime within the Execute() method (e.g., byusing retries), no exceptions would be thrown to the Activate() method in the task manager (see�gure 12). In turn, the task manager would follow the normal ow of execution by calling theDone() method as shown in �gure 7.Let us now discuss the abnormal ow of execution in the event that a task error cannot be dealtwith in the Execute() method. This would e�ectively lead to a TaskError <error id> beginraised by Execute(). According to the code shown in �gure 7, this error would be caught withinthe Activate() code block that catches any errors rooted in the METEOR2 Error class. In termsof the task model, this situation would lead to the fail (f) state. The Fail() method contains thenecessary constructs to deal with the particular task error by activating alternate error handlingtasks.8 Task Manager ErrorsTask manager errors represent all errors that a�ect the normal mode of execution of a task managerin the METEOR2 workow model. Semantic errors within a task manager (e.g., errors resultingfrom faulty coding of the DoTask() wrapper) are outside the focus of this paper. The normal modeof execution of a task manager is discussed in section 5.1. Typical errors that are regarded as taskmanager errors include: 1) errors in preparation of task inputs and outputs, 2) errors encounteredduring task activation, 3) logging errors arising from recording state of a task manager,, 4) errorsencountered during recovery of failed tasks and the task manager itself, 5) worklist errors, and 6)other internal errors within the task manager that might result in exceptional conditions.8.1 Task Manager Error MappingIn ORBWork, all task manager error classes are are declared as specializations of the TaskManagerErrorclass (as shown in �gure 10). We use a template-based mechanism, similar to that used for taskerrors, to declare task manager errors in the code for the workow engine:// Task manager error definition template.20

class TaskManagerError_<tm error id> : public TaskManagerError {// ...}The <tm error id> that we have used for ORBWork is an arbitrary choice that is based ona string-to-integer mapping that we have manually implemented in this version of ORBWork. Aliteral string is used as a descriptive means for declaring the TaskManagerError. For example, thedeclaration for TaskManagerError TASK ERROR is shown below://define string-to-integer mapping#define TASK_ERROR 1// declare a specialization of TaskManagerErrorclass TaskManagerError_TASK_ERROR : public TaskManagerError {// ...}Types of Task Manager ErrorsIn our work, we have identi�ed two basic category of task manager errors. The �rst categoryincludes those task manager errors that are independent of the workow implementation, i.e., theyare solely based on the METEOR2 workow model. The other category consists of task managererrors that are dependent on the particular implementation of the depends on the architecture,infrastructure, and recovery mechanisms used.8.2 Implementation Independent Task Manager ErrorsThree of these errors are discussed in detail in this section.
DoTask()

Input Data Object Output Data Object

Task Input Task Output

Task

Input
Filter Task

Execute
Output
Filter

INPUT_FILTER ERROR TASK_EXECUTE ERROR OUTPUT_FILTER ERROR

Task Manager ErrorsFigure 15: Task Manager Errors Raised by the Task Wrapper in ORBWorkThe task-wrapper component of the task manager (DoTask() in ORBWork) (see Figure 15)performs low-level task manager functionality in the form of unpacking task input elements fromthe input-data objects and �ltering them into a form that is expected by the underlying tasks,executing the tasks, and �ltering the task outputs and packing them into the output-data objectsin the WFMS. Any errors that are encountered while performing these functions are also modeled21

as a specialization of the TaskManagerError object. Below we list the three types of errors thatwe have introduced into our model to capture these anomalies:� TaskManagerError INPUT FILTER: This type of error represents any errors that are encoun-tered while trying to unpack and �lter the input to a task from the workow data objects� TaskManangerError TASK EXECUTE: Errors encountered during actual activation (execution)of a task in its native environment and that cannot be handled within DoTask() are labeledas TaskManangerError TASK EXECUTE errors.� TaskManager OUTPUT FILTER: This exception is raised if an error is encountered while tryingto map the outputs created from a task to the output data objects.8.3 Implementation Dependent Task Manager ErrorsThe architecture used for a workow engine implementation could a�ect the functionality of the taskmanager in terms of its mode of interaction with its tasks and other workow system components[MSKW96]. For example, a fully distributed architecture would have to deal with errors resultingfrom network problems that would otherwise not a�ect centralized implementations.Also, the workow engine infrastructure could a�ect the types of errors that would need tobe handled within task managers. For example, in the case of using a CORBA environment, thetask manager would need to deal with CORBA System Exceptions resulting from remote objectinvocations [OMG96]; in the case of task managers that are implemented as CGI scripts in a Web-based workow infrastructure [MPS+97], one would, for example, need to consider HTTP relatederrors that could a�ect the interaction between the task manager and the Web server.In the case that extra functionality has been included in the task manager to support featuressuch as recovery and monitoring capabilities, errors could arise at di�erent stages of depending onthe degree of external interaction required to support these features. For example, the recoveryfeatures for ORBWork require persistence of the task manager state at various points within theexecution process. The logging procedure could result in errors that are returned from the localdatabase that is being used. In another implementation, one might want to log states by commu-nicating it via a transactional message queue to a remote DBMS; in this case, the task managerwould need to react to transactional RPC errors that are returned by the message queue manager.
// In TaskManager

void RegisterWithLocalRecoveryManager (...) {

...

// try to bind to the Local Recovery Manager CORBA object

try {

lrmRef = LocalRecoveryManager::_bind (...);

…

// register with the Local Recover Manager CORBA object

lrmRef->Register(...);

}

// catch all CORBA Exceptions

catch (const CORBA::Exception& excep) {

...

// throw a semantic exception denoting a REGISTRATION failure

throw new TaskManagerError_REGISTER (...);

}

...

}; Figure 16: Dealing with CORBA Exceptions in ORBWork22

In ORBWork, a speci�c set of task manager errors has been introduced to deal with errorsrelating to interacting with the recovery framework. In the case of dealing with ORB-based errors,the task manager catches them directly and raises another TaskManagerError based on the contextin which the ORB-error occurred. For example, in Figure 16, any CORBA exception returned bythe bind or the Register remote method invocation would be caught, translated, and thrown asa more meaningful TaskManagerError REGISTER exception.8.4 Task Manager Error HandlingThe rules by which these errors are handled at runtime depends on the speci�c implementation ofthe METEOR2 workow model can be speci�ed at build-time by the workow designer.The default rules for dealing with any task manager error in the Execute() (see 12) methodis to log it, and let it and rethrow it to be handled by the Activate() method in a manner thatis compliant with the workow speci�cation. However, it is possible to override the default errorhandling mechanism by specifying a retry option (with a MAX RETRIES parameter) in a mannersimilar to task errors. This is speci�cally useful to handle the TaskManager TASK EXECUTE errorsthat might have been caused due to the unavailability of a processing entity.If a task manager error is encountered in the Activate() method of the task manager, it wouldbe detected in the catch block for METEOR2 Error types (as shown in the Figure 7). This would ine�ect lead to passing the resulting exception to the Fail() method (see �gure 14) where it wouldbe dealt with using alternate tasks.Some task manager errors that cannot be resolved by the rules discussed above might resultin adversely a�ecting the execution of the overall workow process (e.g., implementation speci�cerrors that are not handled by the workow engine). Such task manager errors eventually result ina workow engine error of type WorkflowEngineError SCHEDULING. For example, in ORBWork,if a task manager is unable to recover (TaskManagerError RECOVER) from its failed state, it isregarded as corrupt and therefore cannot be scheduled for usage thereby possibly a�ecting thenormal ow of the workow process. Another case in which the task manager is unsafe to be usedis if the task manager is unable to register with the recovery components [Wor97] due to (say) acommunication failure. This would result in a TaskManagerError REGISTRATION error, which ifnot resolved through retries would result in WorkflowEngineError SCHEDULING error.Other task manager errors that cannot be resolved might not a�ect the overall execution of theworkow process, but could have future repercussions for the task manager itself. For example,errors resulting from logging task manager state, errors related to saving the state of the inputand output data objects, etc. are all cases of these types of errors. Resolution of such errorsis �rst attempted via retrying the operation a maximum of n number of times; if the problempersists, it is reported to the workow monitor that should ideally be made available to the workowadministrator for monitoring the health of the workow process enactment.9 Workow Engine ErrorsThis class of errors result from failures in either the scheduling, recovery or run-time administrationunits of the METEOR2 workow model (see �gure 8). Some of these errors are fall-outs of taskmanager errors that could not be handled by the workow engine (as discussed earlier).Scheduling-related workow engine errors include all errors that result from problems in enforc-ing inter-task dependencies between task managers during workow enactment. Such an error is23

represented as a WorkflowEngineError SCHEDULE exception class in ORBWork. It is declared asa sub-classes of WorkflowEngineError object as:// declare a specialization of WorkflowEngineErrorclass WorkflowEngineError_SCHEDULE : public WorkflowEngineError {// ...}The cause of scheduling errors could be multifarious. A workow scheduler might not be able toactivate a task manager due to a memory problem in the case of a centralized scheduler architecture[MSKW96]. On the other hand, in the case of a distributed workow architecture, this could becaused due to communication failures.Recovery-related workow engine errors could a�ect the scheduler, task managers, administra-tion units, internal data objects, and the recovery framework itself. These errors are de�ned aspart of the workow enactment, one for each component of the enactment system. For example,WorkflowEngineError RECOVER LRM represents an error in the workow enactment engine resultingfrom the inability restore a failed local recovery manager.In the case of errors relating to scheduling of task managers on particular hosts, users can specifyalternate hosts on which alternate (or the same) task manager could be started. This redundancymakes it possible to mask task scheduling errors involving failed machines, or resource limitationson a particular machine. Errors that cannot be automatically handled by the WFMS are reportedto a human via a workow monitor with necessary details such as the cause of the error, the nameof the reporting component, and the hostname of the machine where the error occurred.Other workow errors include errors caused by humans (e.g., turning a computer o�) that couldadversely a�ect the workow process. These errors are reported (if detected by the workow recov-ery framework) as panic messages to the workow administrator thorough the workow monitor.At this point, it would be the responsibility of the workow administrator to �x the problem.Just as in the case of task and task manager errors, there needs to be a mapping that wouldtranslate infrastructure related runtime errors into the WorkflowEngineError types that have beende�ned for a particular implementation of the METEOR2 workow model.So far, we have not speci�cally discussed error handling for errors resulting due to loss ofmessages (e.g., a CORBA request). We have relied on the infrastructure (e.g., TCP/IP) to supportthese guarantees, although we realize that it might not be a safe assumption for most cases. A futureversion of ORBWork, could incorporate transactional messaging features using a transactionalmessage queue or a TP-monitor.10 Human-Assisted Error HandlingIn ORBWork, it might not be possible to mask all errors in an automated fashion. In such cases,human assisted recovery is required to bring the WFMS to a consistent state. The WorkowMonitor (see �gure 5) is a tool that is used as an administrative utility for critical errors that mightneed attention. Error messages that are generated during workow enactment, are communicatedto the monitor along with details regarding the whereabouts of the problem. The current versionof the workow monitor recognized three types of messages - status, alert and panic, dependingon the nature of the situation being reported. Status error messages are reported during normalmodes of execution, whereas alert and panic messages are reported during abnormal ones. Forfurther details regarding the supported message-types and their semantics, refer to [Wor97].24

11 ConclusionIn this paper, we have described the problem of workow error handling in the context of theMETEOR project. We �rst identi�ed the requirements for dealing with errors in heterogeneousworkow environments. The current state-of-the-art in WFMS does not provide well-de�ned modelsto deal with the di�erent types of errors that can occur during workow enactment. In this paper,we have formulated an error handling approach for the METEOR2 WFMS. This approach is uniqueto the area of workow research since it provides the capability to partition workow enactmenterrors in a uni�ed manner based on the workow model. Moreover, the error model that wehave developed is based on the METEOR workow model (task, task manager, workow engine)rather than on infrastructure-, workow architecture- or task-speci�c errors. This makes the errorhandling mechanism adaptable across di�erent workow infrastructures and engine architecturesand is therefore applicable across di�erent implementations of the METEOR2 WFMS.Our error handling mechanism is based on a top-down approach. It involves mapping het-erogeneous infrastructure- and task-speci�c errors into an error model that we have de�ned forMETEOR2. Task-retries and alternate tasks that have been discussed in previous work in ME-TEOR [KS95] have been integrated with the error model to provide a complete solution for dealingwith errors encountered during workow enactment. In addition, we have provided support forhuman-assisted error handling for situations that cannot be dealt automatically by the workowenactment services. We have applied the error model and error handling mechanisms to ORBWork,the distributed workow enactment service for the METEOR2 WFMS.In light of the overall problem of error handling and recovery in WFMSs, this paper providesa solution to dealing with errors that are infrastructure speci�c (e.g., CORBA, Web), architecturespeci�c (e.g., ORBWork) and model-speci�c (e.g, METEOR workow model) errors in a systematicmanner. Our current error handing framework is limited to the context of workow enactmentservices. Some of the areas that remain to be addressed in future work include providing bettersupport for dealing with organizational errors (e.g., role-errors, security errors, etc) using dynamicand adaptive workow systems. The error handling framework that we have presented in this paperprovides a suitable infrastructure for developing higher-level error handling constructs in WFMSs.AcknowledgementsThis research was partially done under a cooperative agreement between the National Institute of Standardsand Technology Advanced Technology Program (under the HIIT contract, number 70NANB5H1011) and theHealthcare Open System and Trials, Inc. consortium. See URL: http://www.scra.org/hiit.html. Additionalpartial support and donations are provided by Visigenic, Informix, Iona, Hewlett-Packard Labs, and Boeing.References[AAA+96] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, and R. Gunthor. Advanced TransactionModels in Workow Contexts. In Proc. of 12th. IEEE Intl. Conference on Data Engineering,pages 574{581, New Orleans, LA, February 1996.[AAAM97] G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan. Functionalities and Limitations of CurrentWorkow Management Systems. Technical report, IBM Almaden Research Center, 1997. Toappear in IEEE Expert, Special Issue on Cooperative Information Systems.[ANRS92] M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth. Using Flexible Transactions to SupportMulti-system Telecommunication Applications. In Proc. of the 18th Intl. Conference on VeryLarge Data Bases, pages 65{76, Vancouver, Canada, August 1992.25

[ASSR93] P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and Enforcing Intertask Depen-dencies. In Proc. of the 19th Intl. Conference on Very Large Data Bases, pages 134{145, Dublin,Ireland, 1993.[CD96] Q. Chen and U. Dayal. A Transactional Nested Process Management System. In Proc. of 12th.IEEE Intl. Conference on Data Engineering, pages 566{573, New Orleans, LA, February 1996.[Das97] S. Das. ORBWork: A Distributed CORBA-based Engine for the METEOR2 Workow Manage-ment System. Master's thesis, University of Georgia, Athens, GA, March 1997.[DHL90] U. Dayal, M. Hsu, and R. Ladin. Organizing Long-Running Activities with Triggers and Trans-actions. In Proc. of the ACM SIGMOD Conference on Management of Data, 1990.[DHL91] U. Dayal, M. Hsu, and R. Ladin. A Transactional Model for Long-running Activities. In Proc. ofthe 17th. Intl. Conference on Very Large Data Bases, pages 113{122, Barcelona, Spain, September1991.[Dog96] A. Dogac. Special-Theme Issue: Multidatabases. In Journal of Database Management. Idea GroupPublishing, Harrisburg, PA, Winter 1996.[EL96] J. Eder and W. Liebhart. Workow Recovery. In Proc. of the 1st. IFCIS Conference on CooperativeInformation Systems, Brussels, Belgium, June 1996.[ELLR90] A. K. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz. A Multidatabase Transaction Modelfor InterBase. In Proc. of the 16th. Intl. Conference on Very Large Data Bases, pages 507{518,Brisbane, Australia, August 1990.[Elm92] A. Elmagarmid, editor. Database Transaction Models for Advanced Applications. Morgan Kauf-mann Publishers, San Mateo, CA, 1992.[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workow Management: FromProcess Modeling to Workow Automation Infrastructure. Distributed and Parallel Databases,3(2):119{154, April 1995.[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Proc. of ACM SIGMOD Conference on Managementof Data, pages 249{259, San Francisco, CA, May 1987.[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan KaufmannPublishers, San Mateo, CA, 1993.[Hol94] D. Hollingsworth. The Workow Reference Model. Technical Report TC00-1003, Issue 1.1, TheWorkow Management Coalition, Brussels, Belgium, November 1994.[JK97] S. Jajodia and L. Kerschberg, editors. Advanced Transaction Models and Architectures. KluwerAcademic Publishers, 1997. To be published.[KS95] N. Krishnakumar and A. Sheth. Managing Heterogeneous Multi-system Tasks to SupportEnterprise-wide Operations. Distributed and Parallel Databases, 3(2):155{186, April 1995.[Ley95] F. Leymann. Supporting Business Transactions via Partial Backward Recovery in Workow Man-agement Systems. In GI-Fachtagung Datenbanken in Buro Technik und Wissenchaft, Dresden,Germany, 1995. Springer-Verlag.[Lin97] C. Lin. A Graphical Workow Designer for the METEOR2 Workow Management System. Mas-ter's thesis, University of Georgia, Athens, GA, 1997. In preparation.[Mos82] J. Moss. Nested Transactions and Reliable Distributed Computing. In Proc. of the 2nd. Symposiumon Reliability in Distributed Software and Database Systems, pages 33{39, Pittsburgh, PA, July1982. IEEE CS Press.[MPS+97] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh. WebWork: METEOR2's Web-based Workow Management System. Technical Report UGA-CS-TR-97-002, University of Geor-gia, April 1997.[MSKW96] J. A. Miller, A. P. Sheth, K. J. Kochut, and X. Wang. CORBA-based Run-Time Architecturesfor Workow Management Systems. [Dog96], 7(1):16{27, Winter 1996.26

[OMG96] OMG. CORBA2.0/IIOP Speci�cation. Technical report, Object Management Group, August1996.[Rat97] Rational. UML Users Guide. Rational Software Corporation, 1.0 edition, January 1997.[RS95] M. Rusinkiewicz and A. Sheth. Speci�cation and Execution of Transactional Workows. InW. Kim, editor, Modern Database Systems: The Object Model, Interoperability and Beyond. ACMPress, New York, NY, 1995.[RSW97] F. Ranno, S. Shrivastava, and S. Wheater. A system for specifying and coordinating the executionof reliable distributed applications. Technical report, The University of Newcastle upon Tyne,England, 1997.[Saa95] H. Saastamoinen. On the Handling of Exceptions in Information Systems. PhD thesis, Universityof Jyvaskyla, 1995.[SGJ+96] A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, and A. Wolf.Report from the NSF Workshop on Workow and Process Automation in Information Sys-tems. Technical report, University of Georgia, UGA-CS-TR-96-003, July 1996. URL: http://LSDIS.cs.uga.edu/activities/NSF-workow.[SJ96] A. Sheth and S. Joosten. Workshop on Workow Management: Research, Technology, Products,Applications and Experiences, August 1996.[SJHB96] H. Schuster, S. Jablonski, P. Heinl, and C. Bussler. A General Framework for the Execution ofHeterogeneous Programs in Workow Management Systems . In Proc. of the 1st. IFCS Intnl.Conference on Cooperative Information Systems, Brussels, Belgium, June 1996.[SKM+96] A. Sheth, K. J. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J. Lynch, andI. Shevchenko. Supporting State-Wide Immunization Tracking using Multi-Paradigm WorkowTechnology. In Proc. of the 22nd. Intnl. Conference on Very Large Data Bases, Bombay, India,September 1996.[Wan95] X. Wang. Implementation and Performance Evaluation of CORBA-Based Centralized WorkowSchedulers. Master's thesis, University of Georgia, August 1995.[Wor97] D. Worah. Error Handling and Recovery for the ORBWork Workow Enactment Service inMETEOR. Master's thesis, University of Georgia, Athens, GA, May 1997.[WS96] D. Worah and A. Sheth. What do Advanced Transaction Models Have to O�er for Workows? InProc. of Intl. Workshop on Advanced Transaction Models and Architectures, Goa, India, August1996.[WS97] D. Worah and A. Sheth. Transactions in Transactional Workows. In [JK97], chapter 1. KluwerAcademic Publishers, 1997.[WWW97] The World Wide Web Consortium, 1997. URL: http://www.w3.org/.[Zhe97] K. Zheng. Designing Workow Processes in the METEOR2 Workow Management System. Mas-ter's thesis, University of Georgia, Athens, GA, 1997.[ZNBB94] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. Ensuring Relaxed Atomicity for FlexibleTransactions in Multidatabase Systems. In Proc. 1994 SIGMOD International Conference onManagement of Data, pages 67{78, 1994.
27

	An Error Handling Framework for the ORBWork Workflow Enactment Service of METEOR
	Repository Citation

	tmp.1409946269.pdf.s881T

