View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CORE

Wright State University

CORE Scholar

The Ohio Center of Excellence in Knowledge-

Kno.e.sis Publications Enabled Computing (Kno.e.sis)

1997

An Error Handling Framework for the ORBWork Workflow
Enactment Service of METEOR

Davasish Worah

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Krzysztof J. Kochut

John A. Miller

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

b Part of the Bioinformatics Commons, Communication Technology and New Media Commons,
Databases and Information Systems Commons, OS and Networks Commons, and the Science and
Technology Studies Commons

Repository Citation

Worah, D., Sheth, A. P, Kochut, K. J., & Miller, J. A. (1997). An Error Handling Framework for the ORBWork
Workflow Enactment Service of METEOR. .

https://corescholar.libraries.wright.edu/knoesis/627

This Report is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://core.ac.uk/display/80833986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

An Error Handling Framework for the ORBWork Workflow
Enactment Service of METEOR

D. Worah, A. Sheth, K. Kochut, J. Miller
Large Scale Distributed Information Systems Lab (http://LSDIS.cs.uga.edu)
The University of Georgia, Athens, GA 30602-7404

email: {worah,amit,kochut,jam} @es.uga.edu

Abstract

Workflow Management Systems (WFMSs) can be used to re-engineer, streamline, automate,
and track organizational processes involving humans and automated information systems. How-
ever, the state-of-the-art in workflow technology suffers from a number of limitations that pre-
vent it from being widely used in large-scale mission critical applications. Error handling is one
such issue. What makes the task of error handling challenging is the need to deal with errors
that appear in various components of a complex distributed application execution environment,
including various WFMS components, workflow application tasks of different types, and the
heterogeneous computing infrastructure.

In this paper, we discuss a top-down approach towards dealing with errors in the context of
ORBWork, a CORBA-based fully distributed workflow enactment service for the METEOR,
WFMS. The paper discusses the types of errors that might occur including those involving the
infrastructure of the enactment environment, system architecture of the workflow enactment
service. In the context of the underlying workflow model for METEOR, we then present a
three-level error model to provide a unified approach to specification, detection, and runtime
recovery of errors in ORBWork. Implementation issues are also discussed. We expect the model
and many of the techniques to be relevant and adaptable to other WFMS implementations.

1 Introduction

The recent push for streamlining and optimizing of organizational processes has lent to renewed
interest in workflow technology. This has raised challenging requirements for WFMSs in terms of
being required to support large-scale multi-system applications, involving both humans and legacy
systems, in heterogeneous, autonomous and distributed (HAD) environments. Unfortunately, work-
flow products, in their current state, are still immature to address these emerging requirements.
One of the major limitations of commercial workflow products is the lack of reliability in the pres-
ence of errors and failures [GHS95, SGJT96, WS97, AAAM97]. In this paper, we address the issue
of error handling during workflow enactment in the context of the METEOR workflow project.
The related topic of workflow recovery has been discussed in [Wor97].

A workflow is an activity involving the coordinated execution of multiple tasks performed by
different processing entities [KS95]. These tasks could be manual, or automated in nature. A
workflow process is an automated organizational process involving both human (manual) and auto-
mated tasks. A Workflow Management System (WFMS) is a set of tools that provides support for
process definition, workflow enactment, and administration and monitoring of workflow processes
[Hol94]. A workflow enactment service consists of run-time components that provide the execution
environment for the workflow process using one or more workflow engines.

The METEOR; workflow project at the Large Scale Distributed Information Systems Lab., Uni-
versity of Georgia (LSDIS-UGA) builds upon the earlier METEOR [KS95] effort at Bellcore. Re-
search and development work is geared towards developing a multi-paradigm transactional WFMS
capable of supporting large scale, mission critical, inter-enterprise workflow applications in HAD
environments. Several workflow enactment services have been designed and implemented based on
various scheduling paradigms [Wan95, MSKW96, SKM196]. These range from highly centralized
ones to fully distributed implementations using CORBA and Web technologies (either exclusively,
or in combination) as infrastructure for workflow enactment. In this paper, our focus is on the error
handling support provided in ORBWork, a reliable CORBA-based distributed enactment service
for the METEOR,; WFMS.

Errors are a natural occurrence in any software system; WFMSs and the workflow applications
they support are no exceptions. WFMSs, in general, are complex pieces of software; the tasks (also
called activities or steps) that need to be integrated by the WF'MS could be arbitrary applications.
When supporting enterprise-wide or inter-enterprise workflow applications, a WFMS might need
to use or interact with multiple infrastructure technologies (e.g., Web, CORBA). All these factors
lend to different sources of errors that need to be handled by the workflow service in a manner
that conforms to the nature of the organizational process. An open-ended problem, such as error
handling during workflow enactment, needs to be bounded before a viable solution can be suggested.

Error handling in WFMSs involves both specification of errors and runtime error handling
policies. Most of the work discussed in workflow literature has been focused on modifying process
flows to be able to deal with error conditions in a transactional manner. System level issues such
as modeling and reacting to different types of errors (based on infrastructure, tasks, etc) has not
been addressed adequately. These are issues that are crucial to real-world workflow applications.

In this paper, we present a top-down approach towards dealing with the errors in large-scale
WFEFMS. In METEOR;, we define a hierarchical set of error classes that is used as a basis for
partitioning, detecting and handling various types of errors that occur in heterogeneous workflow
enactment environments. The error classes are based on the METEOR, workflow model and are
therefore reusable across all implementations of the METEOR, WEFMS. We also discuss imple-
mentation support for error handling, an issue not yet discussed at comparable level of detail in
the relevant literature on workflow technology. The model and design for the implementation are
reusable across other WFMSs. The use of error classes as a basis for systematically modeling and
handling heterogeneous errors in real-world workflow environments is one of main contributions of
this paper.

In this paper, we will first describe the various types of errors that can occur during workflow
enactment. This is followed by a specification of the requirements for the error handling framework
in METEOR. Error handling has been a topic of research in the domains of database systems,
advanced transaction models (ATMs), and transactional workflow systems. In section 4 we survey
this related work. Next, we present an overview of the METEOR workflow model, the METEOR,
WFMS and the ORBWork workflow enactment service. The error model for the METEOR, WFMS
is presented in section 6. This is followed by a brief discussion of how this error model can be used
to specify errors and error handling mechanisms at build-time. In sections 7, 8 and 9 we present a
detailed discussion of task, task manager and workflow engine errors that have been implemented in
the context of ORBWork. Section 10 briefly outlines the support for human assisted error handling
in ORBWork. Finally, in section 11 we summarize our work and outline potential areas of research.

2 Errors during Workflow Enactment

Before we can define a scheme for dealing with errors in WEFMSs it is important to understand
the types of errors that can result during the workflow enactment process. In this section, we will
focus our attention to workflow enactment errors; build-time errors (i.e., errors occurring during
workflow design) are outside the purview of this paper. We can characterize the types of errors

Workflow SyStem Schedulers Task Recovery Administration
Errors Managers Framework Utilities
I “ I
Application
Errors
Automated User
Task Task
v

Infrastructure == = @ > %}
ORB

Errors ver DBMS Web

£

Human

Figure 1: Workflow Enactment Errors
arising during workflow enactment into three broad categories (see Figure 1):

o Infrastructure errors: these errors result from the malfunctioning of the underlying infras-
tructure that supports the WFMS. These include hardware errors such as computer system
crashes, errors resulting from network partitioning problems, errors resulting from interaction
with the Web (e.g., HTTP errors), errors returned due to failures within the ORB environ-
ment, etc.

o Workflow system errors: these errors result from failures within the WFMS software. Exam-
ples of this include a crash of the workflow scheduler that could lead to errors in enforcing
inter-task dependencies, errors resulting from faulty task managers, or errors in recovering
failed workflow objects after a crash, etc.

o Application and user errors: these errors are closely tied to each of the tasks, or groups of
tasks within the workflow. Due to its dependency on application level semantics, these errors
are also termed as logical errors [KS95]. For example, one such error could involve database
login errors that might be returned to a workflow task that tries to execute a transaction
without having permission to do so at a particular DBMS. A runtime error within a task
caused due to memory leaks would be another example of an application error.

The above categorization is a functional (descriptive) model for partitioning errors for a WEMS.
Large-scale WFMSs typically span across heterogeneous operating environments; each task could be
arbitrarily complex in nature. To be able to detect and handle errors in such a diverse environment,

we need a well-defined error handling approach that would allow us to specify, detect and handle
the errors in a systematic fashion. In section 6 we present our approach towards dealing with
workflow enactment errors.

3 Requirements for the Error Handling Framework in METEOR

The problem of dealing with errors in large-scale HAD environments poses challenging require-
ments. The requirements for handling errors in WFMSs are significantly different from that in
transaction-based systems. WFMSs support multi-system organizational processes governed by
complex business rules, and arbitrary, long-lived tasks in HAD environments [WS97]. Contrary to
errors in programming languages, or structured software environments that are primarily system
oriented, errors in the workflow environment involve not only simple database-like conflicts, but also
organizational causes such as change in business policy, economic adjustments, role adjustments,
etc. WFMSs, therefore, need a well-defined error model and an error recovery mechanism that is
sensitive to the nature of the error and the context in which it occurs.

Based on our experience in modeling and development efforts for real-world workflow applica-
tions (e.g., the state-wide immunization tracking application [SKM96]), our experience in trying
to use flexible transactions in multi-system telecommunication applications [ANRS92], and our
understanding of the current state of the workflow technology and its real-world or realistic ap-
plications [SJ96, SGJT96, WS96], we formulate some of the essential requirements for the error
handling framework in METEOR.

e Support specification for error handling. The WFMS should allow designers of the
workflow process to specify various types of user defined-errors that might occur during en-
actment. For example, in the case of a task that interacts with a DBMS, it should be possible
to define an error type called login error. In addition, it should be possible to define the
error-handling policies that would be employed to deal with various task errors. For example,
in the event of a login error, one might want to retry connecting to the DBMS with new login
information for a maximum number of times. In this case, the workflow designer should sup-
port specification of task-retries with an upper limit. The error-handling framework should
be flexible enough to be able to support error-handling for heterogeneous tasks and workflow
enactment infrastructures.

¢ Support task-specific error handling. Error handling in WFMS should be sensitive to the
errors that are returned by the tasks in the workflow process. The workflow engine need not be
concerned with the internals of the tasks since WFMS are a means for coordination of coarse
grained applications rather than fine grained programming instructions. Unlike DBMSs, the
WEFMS cannot abort a task due to any error that it might return. Workflow tasks, in general,
are more complex than database transactions, and represent a logical activity in the overall
organizational workflow. It is therefore critical to be able to detect the errors returned by
arbitrary tasks and to handle them on a per-error or per-error-group basis.

e Localize errors. This is a feature that prevents errors in one part of the WFMS from
affecting other parts of the enactment system. In general, it is easier to detect errors in
single-process systems rather than systems that are distributed in nature. In ORBWork, we
have tried to capture an error as close to its point of occurrence as possible; the error is then
labeled and managed by the workflow engine in a manner that is specified by the workflow
designer. In addition, we use a hierarchical error handling and failure recovery mechanism in

ORBWork. This allows us to localize errors at various stages within the workflow enactment
service (see section 6 for details).

¢ Support error handling by forward recovery. Workflow applications often involve long-
lived tasks. In real-world workflow applications we have seen most tasks are non-transactional,
thereby not supporting the strict ACID properties of transactions [WS96]. Hence, although
desirable, it might not be possible to recover failed non-transactional tasks using backward
recovery. The use of backward recovery for most human-oriented tasks is not a viable solution
since most erroneous actions once performed cannot be undone. It might be possible for the
human to rectify all the inconsistencies caused due to the error and redo the actions without
affecting other tasks or data objects within in the workflow; however, it would be rare to
expect this behavior for most real-world human-tasks. Backward recovery is useful for purely
data-oriented tasks that are transactional tasks or sub-workflows. We therefore need a forward
error-handling mechanism that would semantically undo (or cleanup), or potentially undo a
partially failed task.

¢ Support human-assisted recovery. WEFMS are software processes. It is impossible to
guarantee the success of error handling mechanism due to the undeterministic nature of errors.
Therefore, the role of the human is critical for resolving erroneous conditions that could not
be dealt by the error handling mechanisms of the WFMS. Also, in the case of dealing with
critical errors (e.g., resulting from failure of the persistence mechanism, partitioning of the
network, hardware failures, etc) the human involvement is a very important element for error
handling (and also for recovery management).

4 Relevant Work

Error handling in database systems has typically been achieved by aborting transactions that result
in an error [GR93]. Aborting or canceling a workflow task, would not always be appropriate or
necessary in a workflow environment. Tasks could encapsulate diverse operations unlike a database
transaction; the nature of the business process could be forgiving to some errors thereby not
requiring an undo operation. Therefore, the error handling semantics of traditional transactional
processing systems are too rigid for workflow systems.

Error models in most Advanced Transaction Models (ATMs) [EIm92] are restricted with respect
to the ACID properties they relax. Nested transactions [Mos82] allows finer grained recovery, and
provides more flexibility in terms of transaction execution. Transaction failure is often localized
within such models using retries and alternative actions. We use a similar approach to localize
errors in ORBWork.

A mechanism for dealing with errors in an ATM for long running activities was proposed
in [DHL90, DHL91]. It supported forward error recovery such that errors occurring in non-
fatal transactions could be overcome by executing alternative transactions. The work on flexible
transactions| ELLR90, ZNBB94] discusses the role of alternate transactions that can be executed
without sacrificing the atomicity of the overall global transaction. A workflow system that imple-
ments a flexible transaction model has been discussed in [AAA196].

In the work on nested process management systems [CD96], the authors present a formal model
of recovery that utilizes relaxed notions of isolation and atomicity within a nested transaction
structure. The recovery model uses backward recovery of some of the child transactions for undoing
the effects of a failed global transaction. The backward recovery approach has limited applicability
in workflow environments in which it is either not possible to strictly reverse some actions, or is

not feasible (from the business perspective) to undo them since this might involve an additional
overhead or conflict with a business policy (e.g., in a banking application). Sagas [GMS87] have
been proposed to address many such issues in which failure atomicity requirements have been
relaxed. Compensation has been applied to tasks and groups of tasks (spheres) to support partial
backward recovery in the context of the FlowMark WFMS [Ley95]. We support compensation
through the use of alternate tasks that would undo the effect of its failed counterpart.

Although ATMs provide models provides well defined constructs for defining alternative flow
of execution in the event of errors, they are restrictive in terms of the types of activities (relaxed
transactions) and the operating environment (a database) that form the long running process and
therefore, do not provide the error modeling capabilities of capturing and dealing with heteroge-
neous workflow errors in real-world applications that METEOR is geared to support.

The role of exceptions in information systems has been discussed at length in [Saa95]. The
author presents a theoretical basis, based on Petrinets, for dealing with different types of exceptions
in organizational settings using a rule-based approach. In addition, a taxonomy for exceptions is
presented. This taxonomy is purely driven by organizational semantics rather than being driven
by a workflow process model. System-level details necessary for specifying, modeling and detecting
heterogeneous workflow enactment errors is not the focus of this work.

The workflow research community, so far, has worked on addressing error handling policies
[DHL90, KS95, Ley95, AAAT96, EL96] that have been based on transactional semantics. Spec-
ification of errors has been done using a flat error model. This approach is not scalable in the
context of large-scale WFMSs that need to be able to deal with different classes of errors in a
flexible manner. In the METEOR; approach, we provide the capability to be able to specifically
categorize errors based on the context in which they occur (e.g., task, task manager, workflow
engine). The error handling capability is also based on this error model and therefore can be tuned
to react to different categories of errors. This model also provides the flexibility to specify default
error-handling capability for a group of similar errors.

In [RSW9T], the authors define a coordination language for specifying task composition, inter-
task dependencies of long-lived, fault-tolerant distributed applications. The model supports spec-
ification of redundant input data sources, and allows tasks to terminate in one of several distinct
output states. It requires usage of a task-specific cleanup mechanisms in the event of failures of non-
transactional tasks. Alternate tasks can be specified as part of a compound task to alter the flow
of execution of the workflow process in case of an error. However, explicit support for specification
of different types of errors is missing from the coordination language.

Capturing of task- or infrastructure-errors within the workflow enactment service has been
neglected by the research community. Encapsulation of heterogeneous tasks into workflow systems
has been discussed in [SJHB96]; however, this work does not discuss the critical problem of reacting
to task-specific errors within the task-wrappers. In the context of real-world applications, this is
a critical issue that needs to be addressed. In this work, we describe an approach that we have
adopted in ORBWork that enables us to detect such errors, and to map them into a form that
is recognizable by the workflow enactment service. Along with the error model, we also provide
implementation support for error handling in the context of a workflow enactment service, unlike
most of the other related research that lacks implementation details.

5 The METEOR;,; Workflow Management System

A WFMS can be described in terms of its build-time (also referred to as design-time) and enact-
ment (also referred to as run-time) components. In this section, we discuss the aspects of these

components of the METEOR; WEFMS that are useful in explaining error handling discussed in the
subsequent sections.

5.1 The METEOR,; Workflow Model

In this section, we review the basic components of the METEOR; workflow model as discussed in
[KS95] and [MSKW96]. These include interfaces, processing entities, tasks, task managers, and the
workflow schedulers. Figure 2 describes the high-level modeling units of the METEOR,; workflow
model using Unified Modeling Language (UML) notation [Rat97].

Scheduler Workflow Engine

enforces

Dependencies

I]
Data Dependency Control Dependency
State
Task Manager (manages the task) uses Data
Control Flow Task Model — L >
contains

Figure 2: The METEOR, Workflow Model

Workflow. A workflow in METEOR, is defined as a collection of tasks and dependencies. It
is represented as a directed graph (also referred to as a workflow map), with tasks represented
by nodes and dependencies by the edges in the graph. We discuss the various types of tasks in
a later section. Dependencies could be in the form of data dependencies or control dependencies.
Workflows could be nested (hierarchical) in nature.

Interface and Processing Entity. A processing entity can be defined as any user, application
system, computing device, or a combination thereof that is responsible for completing or supporting
the execution of a task during a workflow execution. Examples of processing entities include word
processors, DBMSs, script interpreters, image processing systems, auto-dialers, or humans that
could in turn be using application software for performing their tasks.

The term interface denotes the access mechanism that is used by the WFMS and a workflow
task initiated by the WFMS to interact with a processing entity. For example, a task that involves
a database transaction could be submitted for execution using a command line interface to the
DBMS server, or by using an application programming interface from within another application.
In the case of a user task that requires user-input for data processing, the interface could be a
Web browser displaying an HTML form, or it could be a physical switch in the case of a document
management system that would activate the document generation process.

The nature of processing entities and interfaces in terms of their support for error handling and
recoverability is very important when reliability of workflow execution is a concern. For example,

DBMSs support the traditional ACID transaction semantics, and hence recoverability of failed
transactions is possible in transaction processing environments. However, guaranteeing failure
atomicity for tasks that execute on processing entities (e.g., human tasks) that do not guarantee
some or any of the ACID properties is extremely difficult.

Task. A task represents the basic unit of computation within an instance of the workflow enact-
ment process. It could be either transactional or non-transactional in nature [KS95]. Each of these
categories can be further divided based on whether the task is an application, or a user-oriented
task. Application tasks are typically computer programs or scripts that could be arbitrarily complex
in nature. A wuser task involves a human performing certain actions that might entail interaction
with a GUlI-capable terminal. The human interacts with the workflow process by providing the
necessary input for activating a user task.

Tasks are modeled in the workflow system using well-defined task structures [ASSR93, RS95,
KS95] that export the execution semantics of the task to the workflow level. A task structure
is represented as directed graphs with the nodes denoting a set of externally visible states (e.g.,
initial, executing, fail, done), and the edges denoting the permissible transitions between those
states. Several task structures have been developed for modeling various heterogeneous tasks
[KS95, Wan95].

Transactional tasks (see Figure 3a) are used for modeling tasks that minimally obey the atom-
icity property and maximally support all ACID semantics of traditional transactions [GR93] (e.g.,
a DBMS transaction). The externally visible states of a transactional task are initial, execute, abort
and commit.

initial
initial
execute execute
(&) Transactional (b) Non-Transactional

Figure 3: METEOR, Task Structures

A non-transactional task (see Figure 3b) is used for modeling tasks that do not obey the atom-
icity property of supported by transactions. Human (user) tasks are typically non-transactional,
and so are applications that interact with non-transactional resources (e.g., file systems). The
externally visible states of a non-transactional task are initial, execute, fail and done.

Another special type of task structure developed in METEORy; is the 2PC task [Wan95]. This
is useful for modeling two or more distinct tasks that need to take part in a global transaction.
It includes an additional task called the task coordinator that enforces the transactional context
across the various tasks involved in the distributed transaction.

Task Manager. A task manager is associated with every task within the workflow execution
environment!. The task manager acts as an intermediary between the task and the workflow
scheduler. It is responsible for making the inputs to the task available in the desired format, for
submitting the task for execution at the processing entity, and for collecting the outputs (if any)
from the task. The task manager communicates the status of the task to the workflow scheduler.
In addition, we have extended the task manager to perform error handling and recovery functions.
Due to the close coupling between a task and its task manager, a task manager is termed as
transactional, non-transactional, user, or application task manager depending on the task that it is
managing.

In ORBWork, the scheduling mechanism (logic) is fully distributed and is embedded in each of
the task managers. Task managers, therefore, perform four primary functions (for details regarding
functioning of task managers, see [Das97]): (a) task activation, (b) error handling and recovery of
task and its own errors, (c¢) logging of task inputs, outputs, and its internal state, and (d) scheduling
of dependent task managers as defined by the workflow process.

Workflow Scheduler. The workflow scheduler (also referred to as the workflow engine) is re-
sponsible for coordinating the execution of various tasks within a workflow instance by enforcing
inter-task dependencies defined by the underlying business process. Inter-task dependencies are
specified using the METEOR designer [Zhe97]. This design is then translated into the Workflow
Intermediate Language (WIL) [Lin97] which replaces the earlier Workflow Specification Language
(WFSL) and Task Specification Languages (TSL) [KS95] of METEOR.

TASK CORBA TASK TASK
MANAGER »| MANAGER MANAGER

AND

-
[/ [/ [/

/{Web
()

Legacy TASK
Application M A RGER
Human
@ Interaction
Database
Transaction

Figure 4: Distributed Workflow Scheduler in ORBWork

Various scheduling architectures have been designed and implemented [Wan95, MSKW96, Das97],
ranging from highly centralized ones in which the scheduler and task managers reside within a sin-

'In our latest implementation, instances of the same task type of different workflow instances share a task manager
to support better scalability.

gle process, to a fully distributed one in which scheduling components are distributed within each

of the distributed task manager processes (see Figure 4). In this paper, we will be only discuss the
fully distributed architecture that forms the basis for ORBWork.

5.2 Overview of ORBWork

ORBWork is a CORBA and Web based distributed runtime for the METEOR,; WFMS [Das97].
In this section, we will provide an overview of the ORBWork enactment system. During this
discussion, we will point out the contributions of this paper where appropriate.

Infrastructure. The ORBWork enactment system uses the ORB infrastructure for communica-
tion between, and distribution of, workflow components (task managers, data objects, tasks and
recovery components) across host boundaries (see Figure 5). Web browsers and CGI scripts are
used as a standard mechanism for user-interaction with the WFMS. Our rationale for using CORBA
and Web technologies in ORBWork has been discussed at length in [SKMT96].

Host A

Workflow Monitor

Workflow
Host D Administrator
. Host B
oM e
= = [
= x SR
Legacy . !
Application Database
Task
\ Egosws
Legend
“~% Activate Message) !)
«® DataObject I LIS
N{TM Non-transactional Task Manager qu.l ;g:t' % User Task Qﬁ
™ Task Manager
TTM Transactional Task Manger
UTM User Task Manager

Host C
Figure 5: ORBWork Runtime Environment

Task Managers. As discussed earlier, the scheduling logic for the WFMS is distributed within
each of the task managers. Therefore, each task manager performs both workflow scheduling, as
well as task management functions. In addition to these, the task manager also performs error
handling functionality in the form for detecting task errors, logging them, and possibly retrying
tasks and performing alternate tasks. We will discuss these in detail in the Sections 7 and 8.

10

Al

@
P
Task

Activate Next

Activatg

Task

Figure 6: Abstraction of a Task Manager in ORBWork

Task managers communicate with each other via the ORB using IDL [OMG96] method in-
vocations. Due to the location and operating system transparency offered by CORBA, they can
communicate with each other from anywhere within the ORB environment by using the appropriate
object names.

A skeletal version of the task manager code for a non-transactional task manager is shown in
Figures 7. The task manager’s code has been structured in a manner that reflects it’s runtime exe-
cution model (shown alongside with the code in the figure). The error-handling has been performed
using exceptions. This enables us to partition the normal flow of execution from the abnormal one.

/I Non-transactional task manager code
/* Activate method */
void Activate () {
try {
try {
/1 if task precondition satisfied
if (Evaluate()) {
/** NORMAL EXECUTION **/
try {
Execute (...) ; I execute the task
Done (... ; /I success state
}
/** ABNORMAL EXECUTION **/
catch (METEOR2_Error meteor2Err) {
Fail (meteor2Err); // failure state
h
%
catch (WorkflowError wfErr) {
Fail (WFErT); // failure state

b8
catch (...) {
/I default error handling mechanism

}
} /I Activate

Figure 7: Basic Structure of a Task Manager in ORBWork

The design of the corresponding code for transactional task managers is similar, except for the
Done() and Fail() method calls that are replaced by Commit() and Abort() respectively. In
this paper, we have added an extra method called Execute() to enable us to keep the semantics
of the code in parallel with the execution flow depicted by the task models (see figure 7). As

11

shown in the figure, we have separated the normal flow of execution from the abnormal flow
using try-catch blocks (a common mechanism for exception handling in most object oriented
programming languages). Any errors that are encountered in any part of the try block are trapped
and dealt within the catch block. In the normal mode of execution, as shown in the figure, the task
would transition through the Execute() and Done() method calls. Any abnormal (error-prone)
execution would be detected through the exception handling mechanism achieved via the catch
block.

The Execute() method calls DoTask() [Das97] to cause the workflow task to execute (see
figure 11). DoTask() could be implemented as a wrapper for the actual task application that is
executing locally on the same machine as the task manager. It contains code that represents the
task application, or it might be a proxy to a CORBA wrapper object that is responsible for execution
of an application on a remote machine. Also, DoTask() might throw exceptions denoting that an
error has occurred during task execution. If this is the case, it would be caught in one of the catch
blocks in the Execute () method.

The Done () method is responsible for activating the next task managers in the workflow map.
It is also important to note that Done() does not throw any exceptions that need to be handled
from within the Activate() method. All the errors that might arise during activation of the next
task manager(s) are handled within the Done() call. A similar mechanism is used for dealing with
errors in Fail(). This design makes it possible to localize the effects of the errors to logically
distinct parts of the task manager code.

Types of Task Managers. Task managers that have been implemented in ORBWork include
transactional, non-transactional, user, and composite task managers [Das97]. Transactional and
non-transactional task managers have already been discussed in section 5.1 User tasks are managed
by user task managers. User task managers have been specifically designed to allow humans to
initiate the task activation process through the Web interface. This is achieved by using a CGI-
CORBA gateway [Das97] (also known as user-CORBA gateway)®. User tasks have associated
“to-do” worklists that provide a list of pending tasks for the user. User inputs form one of the
implicit dependencies for a user task manager. User (human) tasks communicate with the task
managers via HI'ML forms and HTTP/CGI [WWW97] functionality provided by Web servers. In
our current implementation, CGI scripts are implemented as CORBA clients to user task manager
objects.

Data Objects. Input and output data elements to the tasks are represented as CORBA objects
internal to ORBWork. Data objects could either encapsulate data that is generated internally
to the workflow process (e.g., Patient data that result from a query to a DBMS), or it could
be created by the WFMS due to input from a human (e.g., data submitted via a HTML form is
encapsulated in a CORBA object called a CGI-object [Das97]). These CORBA objects are wrappers
around the actual data elements. This allows workflow data objects to be distributed within the
ORB environment. Task managers logically enforce workflow data dependencies and pass data by
exchanging the object names of the data objects.

“The implementation of the CGl-based user-CORBA gateway is now being replaced by Java (on the front-end)
and CORBA (on the back-end).

12

6 Error Handling in METEOR,
In METEOR,, we address the following key issues to support error handling.

1. We have defined a three-layer error model that extends the workflow model discussed in
section 5.1. This error model is used for partitioning the various types of errors that occur
during runtime into three categories (see Figure 8).

2. The METEOR task model has been extended to a finer-granularity for modeling support so
that error-specific corrective policies can be specified at build-time and corresponding error
handling can be captured during enactment. We will discuss this further in the following
sections.

3. To keep with the requirements for the error handling framework that were discussed in section
3, errors in METEOR; are detected and handled (when possible) as close to the point of
occurrence as possible to prevent their propagation to other, unrelated components of the

WEFMS.
T 1
| Workflow |
| Errors |
I Recovery Framework = e . I
| — Task Manager !
| Errors: I
I = I
I I
It |

I
| Scheduling Enginel ~ § e emmmmefmmm———- . I
| Task 1
I Errors | :
| |
I |
I |
I |
I Administration Unit I
I I
I I
I I
I I
I I
I I
I I
I |
I I
I I

I
I . |

Figure 8: Partitioning Frrors in the METEOR,; Workflow Model

6.1 The METEOR, Error Model

In the previous section, we have characterized the types of errors that can occur within workflow
systems into three broad categories (infrastructure, application and workflow system errors). To

13

provide adequate support for modeling and dealing with these myriad types of errors, we have
adopted an error model for METEOR;. We use a top-down approach towards modeling errors.
Hence, the error model that we have adopted is based on the existing METEOR, workflow model
(see Figure 2) rather than being driven by the broad category (infrastructure, application and
workflow system) of errors that was based on a bottom-up approach. Infrastructure-specific and
task-specific errors are mapped into our error model; this provides a unified mechanism for identi-
fying heterogeneous errors within the workflow enactment service.

The error model is based on three enactment components of our workflow model, namely tasks,
task managers, and the workflow engine (schedulers, recovery framework, administration units,
the communication layer and other units that enable workflow process enactment). This model
allows us to label errors in a manner that is independent of the workflow infrastructure and engine
architecture. It also allows us to deal with errors in a hierarchical manner across the different layers
(task, task manager, and workflow engine) of the workflow enactment service.

METEOR, Error

Task Error Task Manager Error WorkflowEngine Error
Task Errorl Task ErrorN TM Errorl TM ErrorN WF Errorl WF ErrorN

Figure 9: The METEOR, Error Class Hierarchy

The error class hierarchy (see figure 9) that define our error model is used for labeling errors
at runtime. METEOR2 Error forms the base class from the error hierarchy. Task, task manager and
workflow engine errors are derived classes for the base class object. User-defined task errors are
derived from TaskError, all task manager errors are derived from the TaskManagerError class and
various types of workflow engine error objects are derived from the WorkflowEngineError class.
These classes are available with the ORBWork runtime. User-defined task errors are generated
automatically from the workflow design specification (the code-generation process is beyond the
purview of this paper). See section 7 for details on modeling task errors.

14

6.2 Implementation of Error Handling in ORBWork

In ORBWork, all errors are represented as error classesin the code that is generated by the workflow
designer (see figure 10) The METEOR;_Error class forms the base class for all errors as defined in
the error hierarchy 9.

/I Base class for all METEOR?2 errors
class METEOR2_Error {

protected:
ErrorType _errorType; /I enumerated type : {TASK, TASK_MANAGER, WORKFLOW, UNKNOWN)
char* _description; // description of the error
int _id; /I error code

public:

...
METEOR2_Error (char* description, int id)
. _description(description), _id(id) {}

virtual ErrorType errorType() { return UNKNOWN; }
virtual char* description() { return _description; }
virtual int id() { return _id; }

}

/I Base class for all task errors
class TaskError: public METEOR2_Error {
...
ErrorType errorType() { return “TASK"; }
h

/I Base class for all task manager errors
class TaskManagerError: public METEOR2_Error {

...

ErrorType errorType() { return “TASK_MANAGER”; }
I8

/I Base class for all workflow errors
class WorkflowError: public METEOR2_Error
...
ErrorType errorType() { return “WORKFLOW”; }

Figure 10: Declaration for Error classes in ORBWork

In general, errors are detected closest to their point of occurrence. We have used exception
handling mechanisms to deal with errors at run-time. Any piece of code (local call, remote call,
or function) that is error prone is guarded using a try-catch block. A series of catch clauses are
used to trap errors that might be thrown by the error-prone code. For every error that occurs,
the workflow engine (task manager, scheduler, or any engine component) first tries to catch the
specific error that might be returned.

Any error that cannot be handled by a workflow component is dealt with by a default error
handling mechanism defined for all METEOR; errors. This default mechanism can be specified at
build-time through the map designer. The default behavior for TaskErrors is to cause the task to
transition to the fail state; in the case of a TaskManagerError, or a WorkflowEngineError the
default mechanism would be to log the error in the local error log and report it to the workflow
administrator (see section 10.

In the next three sections, we discuss task, task manager and workflow engine errors in detail.

7 Task Errors

The METEOR; WFMS supports integration of disparate tasks (application-oriented or human-
oriented) into the workflow engine. Each of these tasks might return errors, which if not handled

15

properly, could put the WFMS into an non-deterministic state. Hence, it is very important to
identify, detect, and handle task errors in a manner that is based on the overall workflow process.

Task errors are logical errors that are reported by a task during the execution environment that
is external to the task. Examples of task errors include exit codes returned by an application,
runtime error returned by a database application on syntactic failure of a query, and so on.

Earlier, in section 2, we had discussed application and user errors. A task error as defined in
the METEOR; model differs from an application and user error in the sense that the former is not
sensitive to the internal executions of the applications, as long as they are in conformance with the
workflow system, whereas the latter is sensitive to the semantics of the tasks. The problem with
real-world legacy tasks is that it is not feasible to incorporate the semantics of the task into the
workflow model. Therefore, we do not deal with errors that are internal to the task. METEOR,
task errors denote errors (or any indications thereof, e.g., logging of errors to an application error
log) that affect the external runtime environment of a task. On the other hand, a runtime error in
an application leading to a crash would be treated as a physical failure by the WFMS and dealt with
appropriately by the recovery framework for ORBWork (for a detailed discussion of the recovery
framework, refer to [Wor97]).

7.1 Task Error Mapping

To be able to deal with arbitrary errors returned by task managers, we should be able to map
them into constructs (in our case, exceptions) that can be manipulated programmatically and
used internally by the workflow enactment service. This mapping needs to be performed in the
DoTask() wrapper that insulates the actual task from the task manager (see Figure 11). Task-

try { Task Manager
1
normal catch (TaskError_Error Bl
flow Execute()) A
= .. s
abnormal | oTask) v 15 Wrapper
flow WU (Error) => TaskError_Error ;

A
x‘ i Error ;
; 3

Task/Application

Figure 11: Task Error Detection in ORBWork

specific errors should be mapped to the specific TaskError defined by the user. The exact mapping
(1) to be used for performing this operation depends on the nature of errors returned by the task
and needs to be performed in the DoTask() wrapper. Therefore, the relation p for every task ¢ in
the workflow process can be described as:

16

pys Ty — M,y

where Ty = {x | is an error returned by task ¢ to its task manager },
and M; = {y | y is a task error defined for task ¢ at build-time }

Thus we see that the nature of p; is very closely related to the errors returned by ¢, and therefore
to titself. It is the responsibility of the implementor of DoTask() to define u;. To keep the number
of elements in My to a tractable size, it is advisable to perform a many-to-one mapping from 7} to
M.

In this paper, we have used a simple approach to define p;. For every error (or range of errors)
specified in the task designer at build-time, it is possible to generate a unique error id (e.g., by
using an integer counter) for internal use by the workflow engine. The error id is used during the
runtime code-generation process to generate unique class declarations for each error type. The
template for generating the user defined task errors as follows:

// Task error definition template.

class TaskError_<task error id> : public TaskError {
/...

b

For example, Error_ returned by a task is mapped to a class TaskError_: where 7 denotes the
internal error id. Also note that the template ensures that TaskError_: “is a” TaskError due to
the inheritance relationship defined by the METEOR; object-model for errors (see section 6).

7.2 Build-time Specification

Due to the sheer diversity of workflow tasks, it is impossible to predefine all of the task-specific error
handling mechanisms in the workflow engine libraries. At build-time, it is the responsibility of the
workflow designer to specify the task-specific error handling functionality needed by the workflow
engine. Ideally, this detail would be specified using the task designer (and possible extensions in
terms of an error designer). The intent of our design process is to specify the types of errors that
can be returned from a task and the necessary mechanisms needed to deal with them in a manner
that is consistent with the overall organizational process. Based on our earlier discussions in this
paper and the need for defining flexible task-specific error handling mechanics, we have identified
key information that needs to be specified at build-time for each task:

1. A set of errors, T, that are returned by a task and are of significance to the organizational
process outcome.

2. A set of task errors, M, to be used internally by the workflow engine.

3. The mapping relation, ju;, that would be used by the task wrapper (DoTask() in the case
of ORBWork) to map T; to M;. Keeping with the graphical design paradigm adopted by
METEOQOR,, this would be done graphically; however, the description of the approach towards
specification is not the focus of this paper. This relation would be stored in WIL through
automatic code generation [Lin97, Das97] before it is translated to runtime code.

4. Finally, we need to specify a set of rules for dealing with the errors once they have been
detected, transformed using pu;, and thrown to the task manager’s Execute() method or
detected signal handlers in the task manager [MPST97] (in the case of signals returned by a
task).

17

The rules used for task error handling constructs in step 4 above depends on the error handling
technique that is adopted by the workflow and task designer at build-time.

The approaches for defining error handling mechanisms are listed below.
Ad-hoc Approach. At the lowest level, one might want to perform error handling for errors in
the task wrapper (DoTask()) itself. If dealt at this level, the remainder of the task manager code
would not be informed of the occurrence of an error. It is the sole responsibility of the implementor
of the wrapper to ensure correctness and reliability of the error handling procedure. At this level,
the errors are in the domain of 7%; therefore, we do not anticipate supporting specific error handling
mechanisms at this level.
Task Retries. The next level of error handling can be performed in the Execute() method. At
this level, it is possible to specify a maximum number (MAX_RETRIES) of times a task needs to be
retried if a particular error is received. For example, in the task manager code shown in figure 12,
DoTask() would be tried a maximum of MAX NUMBER times if TaskError ERROR1 is encountered.
The boolean condition listed in the while clause in the code discussed above would need to depend
on the number of errors for which the retries are being performed.

/I Task Manager::Execute()

/I called by Task Manager::Activate()

void Execute (..){
...
/* set all retry counters to 0 */
numRetries_TaskError_ERROR1 = 0;
numRetries_TaskManagerError_TASK_EXECUTE = 0;

/I while DoTask needs to be retried.
/I Retry() uses MAX_RETRIES parameter specified in the designer
while (Retry(...)) {
try {
DoTask();
LogTaskState("EXECUTE”, “NO ERROR");

/I call the task wrapper

}

/** catch task errors kel

catch (TaskError_ERROR1& el){
LogTaskState(“EXECUTE", el);
numRetries_TaskError ERROR1++;
continue;

/I defined in designer

/I RETRY option specified

}

catch (TaskError_ERROR2& €2) {
LogTaskState(“EXECUTE”, e2);
throw;

/I defined in designer

/I FAIL option specified

}

...

catch (TaskError& e3) {
LogTaskState(“EXECUTE", e3);
throw;

/I default

}

[** catch task manager errors **]

catch (TaskManagerError_EXECUTE e4) {
LogTaskState (‘EXECUTE", e3);
numRetries_TaskManager_TASK_ERROR++;
continue;

/I specified in designer

/I RETRY option specified

}

...

catch (TaskManagerError €5) {
LogTaskState (“‘EXECUTE”, e5);
throw;

/I default

[** catch all other errors
catch (...) {

throw;

} liwhile
} I[Execute

k]

/I default

LogTaskState("EXECUTE”, “UNKNOWN?");

/I cause execution to FAIL

Figure 12: Dealing with Task Errors using Retries in ORBWork

18

Alternate Tasks. The third type of error handling technique could affect the overall workflow
map. In some situations it might be desirable to use alternate tasks in the event of a failure
of a particular task [KS95]. Alternate tasks could be designed to deal with specific errors. In
the case of using alternate tasks, we do not guarantee atomicity or isolation of the original task
under the presumption that the user realizes the implications of this substitution. In some cases

A

TaskError_el e

TaskError_el

Error Object Workflow Process Specification

Normal process flow:

Task, » Taslg

On <raskError_el>

Task, » EnTaslg » Taslé

Process Flow at Runtime

Eh_Task
(Alternate Task)

Figure 13: Error Handling using Alternate Tasks

(e.g., non-transactional task execution), it might be necessary to undo the effects of a failed task.
This could be achieved by implementing an alternate task in an appropriate manner, and by
designing the workflow map so as to activate the alternate task if the original task results in
failure. Transactional tasks (e.g., DBMS transactions), due to their inherent characteristics, do
not require explicit compensation. In figure 13, the non-transactional task Eh_Tasks has been
specifically defined to deal with TaskError_el that might arise during the execution of Tasks. To
accommodate the effect of repair-and-continue for the overall workflow process, an O R relationship
is established between the original task (Tasks) and it’s error handling task (#h_Tasks) could be
defined as shown in the figure.

7.3 Task Error Handling

In ORBWork, the specification of task errors and their error-handling mechanisms maps into the
final code that is generated for the Activate(), Execute(), DoTask(), and Fail() methods in the
task manager.

19

/I TaskManager::Fail()
/I called by TaskManager::Activate() on FAILURE
void Fail (METEOR2_Error err) {

LogTaskState(“FAIL", err); /I Log the state of the task.
ErrorType errorType = err.errorType(); /I get type of the error
switch (errorType) { /l ERROR HANDLING

/* For each of the categories below perform next task activations
specified at build-time.
Log <“FAIL", NEXT_TASK_ID> after each activation.

*

case TASK: ...

case TASK_MANAGER: ...

case WORKFLOW: ...

case UNKONWN: /I inform administrator

}

Figure 14: Description of a Task Manager’s Fail method in ORBWork

In the event that a task error is handled at runtime within the Execute() method (e.g., by
using retries), no exceptions would be thrown to the Activate() method in the task manager (see
figure 12). In turn, the task manager would follow the normal flow of execution by calling the
Done() method as shown in figure 7.

Let us now discuss the abnormal flow of execution in the event that a task error cannot be dealt
with in the Execute() method. This would effectively lead to a TaskError <error id> begin
raised by Execute(). According to the code shown in figure 7, this error would be caught within
the Activate() code block that catches any errors rooted in the METEOR2 Error class. In terms
of the task model, this situation would lead to the fail (f) state. The Fail() method contains the
necessary constructs to deal with the particular task error by activating alternate error handling
tasks.

8 Task Manager Errors

Task manager errors represent all errors that affect the normal mode of execution of a task manager
in the METEOR; workflow model. Semantic errors within a task manager (e.g., errors resulting
from faulty coding of the DoTask() wrapper) are outside the focus of this paper. The normal mode
of execution of a task manager is discussed in section 5.1. Typical errors that are regarded as task
manager errors include: 1) errors in preparation of task inputs and outputs, 2) errors encountered
during task activation, 3) logging errors arising from recording state of a task manager,, 4) errors
encountered during recovery of failed tasks and the task manager itself, 5) worklist errors, and 6)
other internal errors within the task manager that might result in exceptional conditions.

8.1 Task Manager Error Mapping

In ORBWork, all task manager error classes are are declared as specializations of the TaskManagerError
class (as shown in figure 10). We use a template-based mechanism, similar to that used for task
errors, to declare task manager errors in the code for the workflow engine:

// Task manager error definition template.

20

class TaskManagerError_<tm error id> : public TaskManagerError {
/...
by

The <tm error id> that we have used for ORBWork is an arbitrary choice that is based on
a string-to-integer mapping that we have manually implemented in this version of ORBWork. A
literal string is used as a descriptive means for declaring the TaskManagerError. For example, the
declaration for TaskManagerError TASK ERROR is shown below:

//define string-to-integer mapping
#define TASK_ERROR 1

// declare a specialization of TaskManagerError

class TaskManagerError_TASK_ERROR : public TaskManagerError {
/!

by

Types of Task Manager Errors

In our work, we have identified two basic category of task manager errors. The first category
includes those task manager errors that are independent of the workflow implementation, i.e., they
are solely based on the METEOR; workflow model. The other category consists of task manager
errors that are dependent on the particular implementation of the depends on the architecture,
infrastructure, and recovery mechanisms used.

8.2 Implementation Independent Task Manager Errors
Three of these errors are discussed in detail in this section.

INPUT_FILTER ERROR TASK_EXECUTE ERROR OUTPUT_FILTER ERROR

DoTask()

Input Data Object AP Task

L Output Data Object
Filter

Task Input

Task Manager Errors

Figure 15: Task Manager Errors Raised by the Task Wrapper in ORBWork

Task Output

The task-wrapper component of the task manager (DoTask() in ORBWork) (see Figure 15)
performs low-level task manager functionality in the form of unpacking task input elements from
the input-data objects and filtering them into a form that is expected by the underlying tasks,
executing the tasks, and filtering the task outputs and packing them into the output-data objects
in the WFMS. Any errors that are encountered while performing these functions are also modeled

21

as a specialization of the TaskManagerError object. Below we list the three types of errors that
we have introduced into our model to capture these anomalies:

o TaskManagerError INPUT FILTER: This type of error represents any errors that are encoun-
tered while trying to unpack and filter the input to a task from the workflow data objects

¢ TaskManangerError TASK _EXECUTE: Errors encountered during actual activation (execution)
of a task in its native environment and that cannot be handled within DoTask() are labeled
as TaskManangerError TASK_EXECUTE errors.

e TaskManager OUTPUT_FILTER: This exception is raised if an error is encountered while trying
to map the outputs created from a task to the output data objects.

8.3 Implementation Dependent Task Manager Errors

The architecture used for a workflow engine implementation could affect the functionality of the task
manager in terms of its mode of interaction with its tasks and other workflow system components
[MSKWO96]. For example, a fully distributed architecture would have to deal with errors resulting
from network problems that would otherwise not affect centralized implementations.

Also, the workflow engine infrastructure could affect the types of errors that would need to
be handled within task managers. For example, in the case of using a CORBA environment, the
task manager would need to deal with CORBA System Fxzceptions resulting from remote object
invocations [OMGY6]; in the case of task managers that are implemented as CGI scripts in a Web-
based workflow infrastructure [MPS'97], one would, for example, need to consider HT'TP related
errors that could affect the interaction between the task manager and the Web server.

In the case that extra functionality has been included in the task manager to support features
such as recovery and monitoring capabilities, errors could arise at different stages of depending on
the degree of external interaction required to support these features. For example, the recovery
features for ORBWork require persistence of the task manager state at various points within the
execution process. The logging procedure could result in errors that are returned from the local
database that is being used. In another implementation, one might want to log states by commu-
nicating it via a transactional message queue to a remote DBMS; in this case, the task manager
would need to react to transactional RPC errors that are returned by the message queue manager.

/I In TaskManager
void RegisterWithLocalRecoveryManager (...) {

/I try to bind to the Local Recovery Manager CORBA object

try {
IrmRef = LocalRecoveryManager::_bind (...);

1l register with the Local Recover Manager CORBA object
IrmRef->Register(...);
}
/I catch all CORBA Exceptions
catch (const CORBA::Exception& excep) {

/I throw a semantic exception denoting a REGISTRATION failure
throw new TaskManagerError_REGISTER (...);

Figure 16: Dealing with CORBA Exceptions in ORBWork

22

In ORBWork, a specific set of task manager errors has been introduced to deal with errors
relating to interacting with the recovery framework. In the case of dealing with ORB-based errors,
the task manager catches them directly and raises another TaskManagerError based on the context
in which the ORB-error occurred. For example, in Figure 16, any CORBA exception returned by
the _bind or the Register remote method invocation would be caught, translated, and thrown as
a more meaningful TaskManagerError REGISTER exception.

8.4 Task Manager Error Handling

The rules by which these errors are handled at runtime depends on the specific implementation of
the METEOR; workflow model can be specified at build-time by the workflow designer.

The default rules for dealing with any task manager error in the Execute() (see 12) method
is to log it, and let it and rethrow it to be handled by the Activate() method in a manner that
is compliant with the workflow specification. However, it is possible to override the default error
handling mechanism by specifying a retry option (with a MAX_RETRIES parameter) in a manner
similar to task errors. This is specifically useful to handle the TaskManager TASK_EXECUTE errors
that might have been caused due to the unavailability of a processing entity.

If a task manager error is encountered in the Activate() method of the task manager, it would
be detected in the catch block for METEOR2 Error types (as shown in the Figure 7). This would in
effect lead to passing the resulting exception to the Fail() method (see figure 14) where it would
be dealt with using alternate tasks.

Some task manager errors that cannot be resolved by the rules discussed above might result
in adversely affecting the execution of the overall workflow process (e.g., implementation specific
errors that are not handled by the workflow engine). Such task manager errors eventually result in
a workflow engine error of type WorkflowEngineError SCHEDULING. For example, in ORBWork,
if a task manager is unable to recover (TaskManagerError RECOVER) from its failed state, it is
regarded as corrupt and therefore cannot be scheduled for usage thereby possibly affecting the
normal flow of the workflow process. Another case in which the task manager is unsafe to be used
is if the task manager is unable to register with the recovery components [Wor97]| due to (say) a
communication failure. This would result in a TaskManagerError REGISTRATION error, which if
not resolved through retries would result in WorkflowEngineError SCHEDULING error.

Other task manager errors that cannot be resolved might not affect the overall execution of the
workflow process, but could have future repercussions for the task manager itself. For example,
errors resulting from logging task manager state, errors related to saving the state of the input
and output data objects, etc. are all cases of these types of errors. Resolution of such errors
is first attempted via retrying the operation a maximum of n number of times; if the problem
persists, it is reported to the workflow monitor that should ideally be made available to the workflow
administrator for monitoring the health of the workflow process enactment.

9 Workflow Engine Errors

This class of errors result from failures in either the scheduling, recovery or run-time administration
units of the METEOR;, workflow model (see figure 8). Some of these errors are fall-outs of task
manager errors that could not be handled by the workflow engine (as discussed earlier).
Scheduling-related workflow engine errors include all errors that result from problems in enforc-
ing inter-task dependencies between task managers during workflow enactment. Such an error is

23

represented as a WorkflowEngineError SCHEDULE exception class in ORBWork. It is declared as
a sub-classes of WorkflowEngineError object as:

// declare a specialization of WorkflowEngineError

class WorkflowEngineError_SCHEDULE : public WorkflowEngineError {
/!

b

The cause of scheduling errors could be multifarious. A workflow scheduler might not be able to
activate a task manager due to a memory problem in the case of a centralized scheduler architecture
[MSKW96]. On the other hand, in the case of a distributed workflow architecture, this could be
caused due to communication failures.

Recovery-related workflow engine errors could affect the scheduler, task managers, administra-
tion units, internal data objects, and the recovery framework itself. These errors are defined as
part of the workflow enactment, one for each component of the enactment system. For example,
WorkflowEngineError RECOVER_LRM represents an error in the workflow enactment engine resulting
from the inability restore a failed local recovery manager.

In the case of errors relating to scheduling of task managers on particular hosts, users can specify
alternate hosts on which alternate (or the same) task manager could be started. This redundancy
makes it possible to mask task scheduling errors involving failed machines, or resource limitations
on a particular machine. Errors that cannot be automatically handled by the WFMS are reported
to a human via a workflow monitor with necessary details such as the cause of the error, the name
of the reporting component, and the hostname of the machine where the error occurred.

Other workflow errors include errors caused by humans (e.g., turning a computer off) that could
adversely affect the workflow process. These errors are reported (if detected by the workflow recov-
ery framework) as panic messages to the workflow administrator thorough the workflow monitor.
At this point, it would be the responsibility of the workflow administrator to fix the problem.

Just as in the case of task and task manager errors, there needs to be a mapping that would
translate infrastructure related runtime errors into the WorkflowEngineError types that have been
defined for a particular implementation of the METEOR,; workflow model.

So far, we have not specifically discussed error handling for errors resulting due to loss of
messages (e.g., a CORBA request). We have relied on the infrastructure (e.g., TCP/IP) to support
these guarantees, although we realize that it might not be a safe assumption for most cases. A future
version of ORBWork, could incorporate transactional messaging features using a transactional
message queue or a TP-monitor.

10 Human-Assisted Error Handling

In ORBWork, it might not be possible to mask all errors in an automated fashion. In such cases,
human assisted recovery is required to bring the WFMS to a consistent state. The Workflow
Monitor (see figure 5) is a tool that is used as an administrative utility for critical errors that might
need attention. Error messages that are generated during workflow enactment, are communicated
to the monitor along with details regarding the whereabouts of the problem. The current version
of the workflow monitor recognized three types of messages - status, alert and panic, depending
on the nature of the situation being reported. Status error messages are reported during normal
modes of execution, whereas alert and panic messages are reported during abnormal ones. For
further details regarding the supported message-types and their semantics, refer to [Wor97].

24

11 Conclusion

In this paper, we have described the problem of workflow error handling in the context of the
METEOR project. We first identified the requirements for dealing with errors in heterogeneous
workflow environments. The current state-of-the-art in WFMS does not provide well-defined models
to deal with the different types of errors that can occur during workflow enactment. In this paper,
we have formulated an error handling approach for the METEOR,; WFMS. This approach is unique
to the area of workflow research since it provides the capability to partition workflow enactment
errors in a unified manner based on the workflow model. Moreover, the error model that we
have developed is based on the METEOR workflow model (task, task manager, workflow engine)
rather than on infrastructure-, workflow architecture- or task-specific errors. This makes the error
handling mechanism adaptable across different workflow infrastructures and engine architectures
and is therefore applicable across different implementations of the METEOR, WFMS.

Our error handling mechanism is based on a top-down approach. It involves mapping het-
erogeneous infrastructure- and task-specific errors into an error model that we have defined for
METEOR;. Task-retries and alternate tasks that have been discussed in previous work in ME-
TEOR [KS95] have been integrated with the error model to provide a complete solution for dealing
with errors encountered during workflow enactment. In addition, we have provided support for
human-assisted error handling for situations that cannot be dealt automatically by the workflow
enactment services. We have applied the error model and error handling mechanisms to ORBWork,
the distributed workflow enactment service for the METEOR, WFMS.

In light of the overall problem of error handling and recovery in WIFMSs, this paper provides
a solution to dealing with errors that are infrastructure specific (e.g., CORBA, Web), architecture
specific (e.g., ORBWork) and model-specific (e.g, METEOR workflow model) errors in a systematic
manner. Qur current error handing framework is limited to the context of workflow enactment
services. Some of the areas that remain to be addressed in future work include providing better
support for dealing with organizational errors (e.g., role-errors, security errors, etc) using dynamic
and adaptive workflow systems. The error handling framework that we have presented in this paper
provides a suitable infrastructure for developing higher-level error handling constructs in WFMSs.

Acknowledgements

This research was partially done under a cooperative agreement between the National Institute of Standards
and Technology Advanced Technology Program (under the HIIT contract, number TONANB5H1011) and the
Healthcare Open System and Trials, Inc. consortium. See URL: hitp://www.scra.org/hitt. html. Additional
partial support and donations are provided by Visigenic, Informix, lona, Hewlett-Packard Labs, and Boeing.

References

[AAAT96] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, and R. Gunthor. Advanced Transaction
Models in Workflow Contexts. In Proc. of 12th. IEEE Intl. Conference on Data Engineering,
pages b74-581, New Orleans, LA, February 1996.

[AAAMIT] G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan. Functionalities and Limitations of Current
Workflow Management Systems. Technical report, IBM Almaden Research Center, 1997. To
appear in IEEE Expert, Special Issue on Cooperative Information Systems.

[ANRS92] M. Ansari, L. Ness; M. Rusinkiewicz, and A. Sheth. Using Flexible Transactions to Support
Multi-system Telecommunication Applications. In Proc. of the 18th Intl. Conference on Very
Large Data Bases, pages 65-76, Vancouver, Canada, August 1992.

25

[ASSR93] P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and Enforcing Intertask Depen-

[CDY6]
[Das97]
[DHLYO]

[DHLY1]

[Dog96]

[EL96]

dencies. In Proc. of the 19th Intl. Conference on Very Large Data Bases, pages 134-145, Dublin,
Ireland, 1993.

Q. Chen and U. Dayal. A Transactional Nested Process Management System. In Proc. of 12th.
IEFEE Intl. Conference on Data Engineering, pages 566-573, New Orleans, LA February 1996.

S. Das. ORBWork: A Distributed CORBA-based Engine for the METEOR:2 Workflow Manage-
ment System. Master’s thesis, University of Georgia, Athens, GA, March 1997.

U. Dayal, M. Hsu, and R. Ladin. Organizing Long-Running Activities with Triggers and Trans-
actions. In Proc. of the ACM SIGMOD Conference on Management of Data, 1990.

U. Dayal, M. Hsu, and R. Ladin. A Transactional Model for Long-running Activities. In Proc. of
the 17th. Intl. Conference on Very Large Data Bases, pages 113122, Barcelona, Spain, September
1991.

A. Dogac. Special-Theme Issue: Multidatabases. In Journal of Database Management. Idea Group
Publishing, Harrisburg, PA, Winter 1996.

J. Eder and W. Liebhart. Workflow Recovery. In Proc. of the 1st. IFCIS Conference on Cooperative
Information Systems, Brussels, Belgium, June 1996.

[ELLR90] A. K. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz. A Multidatabase Transaction Model

[Elm92]

[GHS95]

[GMS87]
[GR93]
[Hol94]
[JK9T]
[KS95]

[Ley95]

[Lin97]

[Mos82]

for InterBase. In Proc. of the 16th. Intl. Conference on Very Large Data Bases, pages 507-518,
Brisbane, Australia, August 1990.

A. Elmagarmid, editor. Database Transaction Models for Advanced Applications. Morgan Kauf-
mann Publishers, San Mateo, CA, 1992.

D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel Databases,
3(2):119-154, April 1995.

H. Garcia-Molina and K. Salem. Sagas. In Proc. of ACM SIGMOD Conference on Management
of Data, pages 249-259, San Francisco, CA, May 1987.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann

Publishers, San Mateo, CA, 1993.

D. Hollingsworth. The Workflow Reference Model. Technical Report TC00-1003, Issue 1.1, The
Workflow Management Coalition, Brussels, Belgium, November 1994.

S. Jajodia and L. Kerschberg, editors. Advanced Transaction Models and Architectures. Kluwer
Academic Publishers, 1997. To be published.

N. Krishnakumar and A. Sheth. Managing Heterogeneous Multi-system Tasks to Support
Enterprise-wide Operations. Distributed and Parallel Databases, 3(2):155-186, April 1995.

F. Leymann. Supporting Business Transactions via Partial Backward Recovery in Workflow Man-
agement Systems. In GI-Fachtagung Datenbanken wn Buro Technik und Wissenchaft, Dresden,
Germany, 1995. Springer-Verlag.

C. Lin. A Graphical Workflow Designer for the METEOR, Workflow Management System. Mas-
ter’s thesis, University of Georgia, Athens, GA, 1997. In preparation.

J. Moss. Nested Transactions and Reliable Distributed Computing. In Proc. of the 2nd. Symposium
on Reliability in Distributed Software and Database Systems, pages 33-39, Pittsburgh, PA, July
1982. IEEE CS Press.

[MPS*97] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh. WebWork: METEOR,’s Web-

based Workflow Management System. Technical Report UGA-CS-TR-97-002, University of Geor-
gia, April 1997.

[MSKW96] J. A. Miller, A. P. Sheth, K. J. Kochut, and X. Wang. CORBA-based Run-Time Architectures

for Workflow Management Systems. [Dog96], 7(1):16-27, Winter 1996.

26

[OMGY6]

[Rat97]
[RS95]

[RSW97]

[Saa95]

[SGIT96]

[S396]

[STHBYG]

OMG. CORBA2.0/TIOP Specification. Technical report, Object Management Group, August
1996.

Rational. UML Users Guide. Rational Software Corporation, 1.0 edition, January 1997.

M. Rusinkiewicz and A. Sheth. Specification and Execution of Transactional Workflows. In
W. Kim, editor, Modern Database Systems: The Object Model, Interoperability and Beyond. ACM
Press, New York, NY, 1995.

F. Ranno, S. Shrivastava, and S. Wheater. A system for specifying and coordinating the execution
of reliable distributed applications. Technical report, The University of Newcastle upon Tyne,
England, 1997.

H. Saastamoinen. On the Handling of Exceptions in Information Systems. PhD thesis, University
of Jyvaskyla, 1995.

A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, and A. Wolf.
Report from the NSF Workshop on Workflow and Process Automation in Information Sys-
tems. Technical report, University of Georgia, UGA-CS-TR-~96-003, July 1996. URL: http://
LSDIS.cs.uga.edu/activities/NSF-workflow.

A. Sheth and S. Joosten. Workshop on Workflow Management: Research, Technology, Products,
Applications and Experiences, August 1996.

H. Schuster, S. Jablonski, P. Heinl, and C. Bussler. A General Framework for the Execution of
Heterogeneous Programs in Workflow Management Systems . In Proc. of the 1st. TFCS Ininl.
Conference on Cooperative Information Systems, Brussels, Belgium, June 1996.

[SKMT96] A. Sheth, K. J. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J. Lynch, and

[Wan95]
[Wor97]

[WS96]

[WS97]

I. Shevchenko. Supporting State-Wide Immunization Tracking using Multi-Paradigm Workflow
Technology. In Proc. of the 22nd. Intnl. Conference on Very Large Data Bases, Bombay, India,
September 1996.

X. Wang. Implementation and Performance Evaluation of CORBA-Based Centralized Workflow
Schedulers. Master’s thesis, University of Georgia, August 1995.

D. Worah. Error Handling and Recovery for the ORBWork Workflow Enactment Service in
METEOR. Master’s thesis, University of Georgia, Athens, GA, May 1997.

D. Worah and A. Sheth. What do Advanced Transaction Models Have to Offer for Workflows? In
Proc. of Intl. Workshop on Advanced Transaction Models and Architectures, Goa, India, August
1996.

D. Worah and A. Sheth. Transactions in Transactional Workflows. In [JK97], chapter 1. Kluwer
Academic Publishers, 1997.

[WWW97] The World Wide Web Consortium, 1997. URL: http://www.w3.org/.

[Zhe97]

K. Zheng. Designing Workflow Processes in the METEOR, Workflow Management System. Mas-
ter’s thesis, University of Georgia, Athens, GA, 1997.

[ZNBB94] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. Ensuring Relaxed Atomicity for Flexible

Transactions in Multidatabase Systems. In Proc. 1994 SIGMOD International Conference on
Management of Data, pages 67-78, 1994.

27

	An Error Handling Framework for the ORBWork Workflow Enactment Service of METEOR
	Repository Citation

	tmp.1409946269.pdf.s881T

