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DistEL: A Distributed EL+ Ontology Classifier

Raghava Mutharaju, Pascal Hitzler, and Prabhaker Mateti

Kno.e.sis Center, Wright State University, Dayton, OH, USA

Abstract. OWL 2 EL ontologies are used to model and reason over data
from diverse domains such as biomedicine, geography and road traffic.
Data in these domains is increasing at a rate quicker than the increase
in main memory and computation power of a single machine. Recent
efforts in OWL reasoning algorithms lead to the decrease in classification
time from several hours to a few seconds even for large ontologies like
SNOMED CT. This is especially true for ontologies in the description
logic EL+ (a fragment of the OWL 2 EL profile). Reasoners such as Pellet,
Hermit, ELK etc. make an assumption that the ontology would fit in the
main memory, which is unreasonable given projected increase in data
volumes. Increase in the data volume also necessitates an increase in
the computation power. This lead us to the use of a distributed system,
so that memory and computation requirements can be spread across
machines. We present a distributed system for the classification of EL+

ontologies along with some results on its scalability and performance.

1 Introduction

The OWL 2 EL profile [4] is used for modeling in several domains like biomedi-
cine,1 sensors and road traffic [7], and herein we work on a subset called EL+

[1]. Even though there are not yet any existing very large ontologies in the EL+

profile, we can very well imagine ontologies with large ABoxes in those domains.2

Consequently, reasoners should be able to handle very large amounts of data.
And although there are some very efficient reasoners available [3, 6], there is only
so much a single machine can provide for.

In this paper, we describe a distributed approach to EL+ ontology classifi-
cation. Similar to other distributed systems, the design decisions and the per-
formance of our distributed system, DistEL3 involve answering the following
questions effectively.

Synchronization Is synchronization among the distributed processes required?
If so, how is it achieved?

Termination What is the termination condition for the distributed processes
and how is it detected?

1 http://bioportal.bioontology.org
2 EL+ extended with ABoxes can be handled with essentially the same algorithm.
3 The source code is available at https://github.com/raghavam/DistEL.



Communication How do the distributed processes communicate and how can
this be minimized?

Data Duplication Is data duplication required? How many copies are main-
tained?

Result Collection After all the processes terminate, will the results be spread
across the cluster?

Note that several other characteristics of a distributed system such as fault
tolerance, transparency, etc. have been excluded since they are not yet supported
by our system. In the following sections, we describe how our system solves the
issues mentioned above, and show that our system can handle large ontologies.

The plan of the paper is as follows. In Section 2 we recall preliminaries
concerning EL+. In Section 3 we describe our distributed approach. In Section
4 we present and discuss our experimental evaluation. In Section 5 we discuss
limitations of our approach and future work. In Section 6 we discuss related
work, and in Section 7 we conclude.

2 Preliminaries

EL+ Profile We present a brief introduction to the EL+ profile. For further
details, please refer to [1]. Concepts in the description logic EL+ are formed
according to the grammar

C ::= A | > | C uD | ∃r.C,

where A ranges over concept names, r over role names, and C,D over (possibly
complex) concepts. An ontology in EL+ is a finite set of general concept inclusions
C v D and role inclusions r1 ◦ · · · ◦ rn v r, where r, r1, . . . , rn are role names,
n ∈ Z+. For a general introduction to description logics, and for the formal
semantics of the constructors available in EL+, please refer to [5].

Classification Classification is one of the standard reasoning tasks. The clas-
sification of an ontology refers to the computation of the complete subsumption
hierarchy involving all concept names occurring in the ontology.

A classification algorithm for EL+ using forward-chaining rules is given in [1],
and Table 1 presents a slightly modified set of completion rules which is easily
checked to be sound and complete as well [10]. We use these rules to compute
the classification of input EL+ ontologies. For our modification, we divided the
rule R3 from [1] into R3-1 and R3-2, as follows.

R3-1: If A ∈ S(Y ) and ∃r.A v B ∈ O, then ∃r.Y v B
R3-2: If ∃r.Y v B and (X,Y ) ∈ R(r), then S(X) := S(X) ∪ {B}
This helps in the division and distribution of work that needs to be done

by our reasoner. The axioms in the ontology are in one of the normal forms
given on the left column of Table 1. S(X) contains all the subsumers of X i.e.,
A ∈ S(X) means X v A. Likewise, R(r) stands for {(X,Y )|X v ∃r.Y }. Our

18



Normal Form Completion Rule

A v B R1-1 If A ∈ S(X), A v B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A1 u · · · uAn v B R1-2 If A1, . . . , An ∈ S(X), A1 u · · · uAn v B ∈ O, B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) 6∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B R3-1 If A ∈ S(Y ), ∃r.A v B ∈ O
then P = P ∪ {∃r.Y v B}

∃r.A v B R3-2 If (X,Y ) ∈ R(r), ∃r.Y v B ∈ P and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

r v s R4 If (X,Y ) ∈ R(r), r v s ∈ O, and (X,Y ) 6∈ R(s)
then R(s) := R(s) ∪ {(X,Y )}

r ◦ s v t R5 If (X,Y ) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O, (X,Z) 6∈ R(t)
then R(t) := R(t) ∪ {(X,Z)}

Table 1. Axioms (in normal forms) and modified completion rules of CEL

Algorithm 1 Pseudocode for CEL classification fixpoint iteration

S(X)← {X,>}, for each concept X in the ontology.
R(r)← {}, for each role r in the ontology.
P ← {}
repeat

Used below, Old.S(X) stands for S(X) now, and Old.R(r) stands for R(r) and
Old.P stands for P ;

S(X)← apply R1-1 using S(X);
S(X)← apply R1-2 using S(X);
R(r)← apply R2 using S(X) and R(r);
P ← apply R3-1 using S(X);
S(X)← apply R3-2 using R(r) and P ;
R(r)← apply R4 using R(r);
R(r)← apply R5 using R(r);

until ((Old.S(X) = S(X)) and (Old.R(r) = R(r)) and (Old.P = P ))

goal is to compute S(X) for each concept X in the ontology O. The R(r) is used
in deriving all such subclass relationships. P is a set which holds the axioms
generated by rule R3-1. Instead of representing these axioms by P , the other
option is to add these axioms back in the ontology O, but we would like to keep
the ontology read only.

For classifying EL+ ontologies, all the rules from Table 1 are processed iter-
atively until no new output is generated, as shown in Algorithm 1.

Notations We use U(X) to refer to the “inverse” of S(X) i.e., U(X) = {A |
X w A}. The advantage and performance benefit that is obtained by using U(X)
instead of S(X) is explained later in Section 3. It is typical in computer science
to think of U(X) as applying the definition of a function U to the argument X
and thus U(X) does not yield different results on repeated use. In constrast with
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Fig. 1. Node assignment to rules and dependency among the completion rules. Each
oval is a collection of nodes (rectangles).

this, we use U [X] to stand for the value stored in an associative array U indexed
by a possibly non-integer value X. The same applies to R(r). Hence U [X] and
R[r] are conceptually treated as associative arrays, but implementation details
might vary. In the rest of the paper we use U [X] and R[r] instead of S(X) and
R(r). Sometimes, we refer to all R[r] collectively as R-data.

3 Distributed Approach

Architecture Each group of nodes in the cluster (see Figure 1) is dedicated
to work on only one particular completion rule Ri, i.e., on axioms belonging to
Ri’s normal form. Axioms of the ontology are split into disjoint collections based
on their normal form. Each disjoint set of axioms are assigned to a particular
group, Gi, responsible for processing rule Ri. Within each group, axioms are
again split among the nodes of the group. Nodes of Group11, Group12, Group32
produce results which are collected by a single node. We use a set of key-value
pairs to represent the axioms and the sets U [X], R[r] that are distributed over
the cluster. Figure 1 also shows the dependency among the completion rules i.e.,
the axioms that are to be processed in the next iteration are determined by the
updates done by other nodes. For example, the axioms that will be considered
in rule R2 in the next iteration will depend on the output from rules R1-1, R1-2
and R3-2. This is explained further in the optimization section.
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Algorithm 2 Pseudocode for rule R1-1
K ← 0
for all axioms of the form A v B do

K ← K + (U [B] ∪= U [A]) //add U[A] to U[B]
end for
return K

Algorithm 3 Pseudocode for rule R1-2
K ← 0
for all axioms of the form A1 u · · · uAn v B do

K ← K + (U [B] ∪= U [A1] ∩ · · · ∩ U [An])
end for
return K

Algorithm 4 RolePairHelper({r, X}, B)

K ← Send triplet ({r, B}, X) to Group32 //send to D1

if there exists s such that r v s then
K ← Send ({r, X}, B) to Group4 //send to D1

end if
if there exist s and t such that r ◦ s v t then

K ← Send ({r, B}, X) to Group5 //send to D0

end if
if there exist s and t such that s ◦ r v t then

K ← Send ({s, X}, B) to Group5 //send to D1

end if
return K

Key-Value Store Redis4 is an open source, high performance key-value store
implementation. It provides several data structures like sets, sorted sets, hash,
lists. It also supports atomic operations and server-side Lua5 scripting along with
client-side sharding. All these features are used in our implementation. Redis
runs on each node of the cluster holding the axioms, R[r] and U [X] values.

We use a Java client named Jedis6 to interact with Redis.

Pseudocode for completion rules Pseudocode for some rules use a notation
such as D0, D1. They denote databases of Redis. Each Redis instance can have
several databases associated with it. If not mentioned specifically then all the
data goes into database-0 (or D0). Pseudocode for all the rules captures the total
number of updates made and returns this number.

The pseudocode of R1-1 is given in Algorithm 2. The operator ∪= per-
forms the set union and returns the number of elements that were added to
the destination set – the latter is needed for termination checking, discussed

4 http://redis.io
5 http://www.lua.org
6 https://github.com/xetorthio/jedis
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Algorithm 5 Pseudocode for rule R2
K ← 0
for all axioms of the form A v ∃r.B do

for all X ∈ U [A] do
K ← K + RolePairHelper({r, X}, B)

end for
end for
return K

Algorithm 6 Pseudocode for rule R3-1
K ← 0
for all r, A, B in axioms of the form ∃r.A v B do

for all Y ∈ U [A] do
K ← K + (Send axiom ∃r.Y v B to Group32)

end for
end for
return K

Algorithm 7 Pseudocode for rule R3-2
K ← 0
for all axioms of the form ∃r.Y v B received from R3-1 do

Tr := {X | ({r, Y }, X) ∈ D1}; //received from RolePairHelper
K ← K + (U [B] ∪= Tr)

end for
return K

Algorithm 8 Pseudocode for rule R4
K ← 0
T3 := set of triplets received from RolePairHelper();
Tr := {r | ({r,X}, Y ) ∈ T3};
for all r ∈ Tr do

for all roles s such that r v s is an axiom do
K ← K + RolePairHelper({s, X}, Y)

end for
end for
return K

below. All U [X] are stored on the result node. So ∪= also implicitly involves
contacting the result node for read (U [A]) and write (U [X]) operations.

The pseudocode of R1-2 is given in Algorithm 3. As mentioned below, it suf-
fices to find the intersection of all U [A] involved in the conjuncts, i.e., A1 . . . An.

Expanding on these two rules, let us briefly come back to an issue mentioned
earlier, namely why we chose to use U [X] instead of S[X] for our implementation.

Let O be an ontology and let K u L uM v N ∈ O. Furthermore, assume
that there are five concepts in the ontology, K,L,M,N and P . During some
iteration of the classification assume S(K) = {K,L,N,>}, S(L) = {L,P,M,>},
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Algorithm 9 Pseudocode for rule R5
K ← 0
T0 := set of triplets received from RolePairHelper(); //in D0

for all ({r, Y }, X) ∈ T0 do
Tr := {r | ({r, Y }, Z) ∈ D1};
for all t ∈ axioms r ◦ s v t do

K ← K + RolePairHelper({t, X}, Z)
end for

end for
return K

S(M) = {M,N,K,>}, S(N) = {N,>}, and S(P ) = {P,K,L,M,>}. Now,
according to rule R1-2, we have to check for the presence of K,L and M in each
of the five S(X), where X = K,L,M,N, P . Since only S(P ) has K,L,M , we
have to add N to S(P ).

On the other hand, use instead U [K] = {K,M,P}, U [L] = {L,K,P},
U [M ] = {M,L, P}, U [N ] = {N,K,M,P}, U [P ] = {P,L}. In this case, instead
of checking all U [X], we can compute the intersection of U [K], U [L], U [M ],
which is P . So, P v N which means U [N ] ∪= {P}. In large ontologies, the
number of concepts would be in the millions or more, but the number of con-
juncts in axioms like A1 u · · · u An v B would be very less in number. So the
performance is better by using U [X] since set intersection needs to be performed
only on a very small number of sets in this case.

Rules R2, R4 and R5 deal with R[r] values. RolePairHelper, with pseudocode
given in Algorithm 4, provides functionality that is common to these three rules.
The R-data, R[.], is an associative array indexed by roles. RolePairHelper({role
r, concept X}, concept B) is invoked in rules R2, R4 and R5. RolePairHelper() in-
forms all nodes (namely Group32, Group4 and Group5) of these updates. Group4
does not care to know the updates to R[r] unless role r has a super role s, that
is for some s, r v s. Similarly, Group5 does not care to know of these updates
unless there exist roles s and t such that r ◦ s v t. Note that the R[.] across all
the nodes will, in general, not be the same because of these selective updates.
Note also that replicating R[.] across all nodes causes no semantic harm. This
is done to facilitate local reads of R-data on nodes dealing with role axioms,
i.e., Group32, Group4 and Group5. The Send primitive in Algorithms 4 and 6,
returns 0 if the message sent is duplicate, or 1 otherwise.

Nodes handling rule R2, i.e., Group2, do not make use of R[r] values. So
they do not need to be stored locally on Group2 nodes as shown in Algorithm 5.
Rules R2, R4 and R5 potentially add new entries to the R-data, and every such
update implies a triggering of rules R3-2, R4, and R5. RolePairHelper({r, X},
B) broadcasts such updates.

The pseudocode for rule R3-1 is given in Algorithm 6. Here, newly formed
axioms do not need to be sent to all the nodes in Group32 but can be sent to
only a specific node. For the sake of clarity, this is not shown in the pseudocode
and is explained in the section on optimizations.
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Algorithm 10 Modeling of One Iteration, OIPi(D)

K ← apply rule Ri using (D)
if K == 0 then

return true
else

return false
end if

Algorithm 11 Modeling of a Process, Pi

repeat
isNew← OIPi(D)
broadcast isNew to all Pj

receive tj from all Pj

t← t1 ∨ t2 ∨ ... ∨ tj
until ¬t

The pseudocode for rule R3-2 is given in Algorithm 7. Here, database-1 (D1)
is queried with key {r, Y } and Tr holds all such X.

Regarding R4, in Algorithm 8, T3 receives only such triples whose r partici-
pates in an axiom of the form r v s. Tr is formed for each r found in T3.

Concerning R5, in Algorithm 9, using the key {r, Y }, the database D1 is
queried and the results are referenced by Tr. All axioms of the form r ◦ s v t
in which r participates in, are retrieved. Note, that the value of s does not
matter, since it is already taken care of in RolePairHelper. The following example
illustrates how Algorithms 4 and 9 are connected. Let k,m and n be roles, where
k ◦m v n, (X,Y ) ∈ R(k), (Y,Z) ∈ R(m). RolePairHelper({k, X}, Y) sends ({k,
Y}, X) to D0 of Group5. RolePairHelper({m, Y}, Z) sends ({k, Y}, Z) to D1 of
Group5. In Algorithm 9, Tk contains ({k, Y}, X). D1 is queried with {k, Y} as
the key and ({n, X}, Z) is produced. n is obtained from the Rolechain axiom.

Termination One iteration of the process, OIP, is modeled by the pseudocode
shown in Algorithm 10. Each OIP reads and writes to a Redis instance D
(database).

The appropriate pseudocode for rule Ri is processed and the return value
is collected in K, which holds the number of updates made. Depending on the
value of K, either true or false is returned.

Each process Pi performs the computations in Algorithm 11. The receive()
is a blocking operation; i.e., until a message is received, the calling process (Pi)
does not proceed to the next state. However, even though the pseudocode does
not show it, we assume that the messages from Pj can be received in any order.

On each node, Ni, the process Pi processes all the axioms local to it and
keeps track of whether this resulted in any changes (isNew) to either its local
Redis database or to the one on other nodes. This boolean value is broadcast
to all the processes. When all the isNew messages are received, each process on
all the nodes knows whether any of the other process made some updates or
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not. If at least one process makes an update then all the processes continue with
the next iteration. If none of the processes makes an update then all processes
terminate.

All the nodes in the cluster keep processing the axioms over several iterations
until no new output is generated by any of the nodes. In sequential computation,
this is fairly easy to check, but in a distributed system, all the nodes should be
coordinated in order to check whether any of them have produced a new output.

The coordination among the processes on all nodes is achieved by message
passing. Process Pi on each node is associated with a channel Ci. At the end of
each iteration, Pi broadcasts its status message to channels on all the nodes. It
then does a blocking wait until it receives messages from all the processes on its
channel. This is generally known as barrier synchronization.7 If all the messages
that Pi receives are false, i.e., none of the processes made an update to any of
the key-value pairs, then Pi terminates.

Optimizations The following optimizations were put in place to speed up the
processing of rules.

1. All the concepts and roles in the ontology are assigned numerical identifiers.
This saves space and is easier to process.

2. If X v A, normally this would be stored in a set whose key would be X and
value would be A. But we reverse it, and make A the key and X its value.
This makes the check A ∈ S(X), a single read call. This check is required in
rules R1-1, R1-2, R2 and R3-1.

3. As shown in Figure 1, the output of a rule can affect the processing of
another rule. For example, rule R2 works on axioms of the form A v ∃r.B.
R2 then depends on the rules which affect A, which are R1-1, R1-2 and R3-2.
If R1-1, R1-2 and R3-2 do not make any changes to U [A], then the axiom
A v ∃r.B need not be considered in the next iteration. We keep track of
these dependencies and thereby reduce the number of axioms to work on in
subsequent iterations.

4. Extending on the optimization just mentioned, if there is a change in U [A],
then not all elements of U [A] need to be considered again. In fact, we need to
consider only the newly added elements. This can be achieved by assigning
scores to each element in the set U [A]. A node working on rule R2 and axiom
A v ∃r.B keeps track of the scores of elements in U [A], i.e., up to what it
has read in the previous iteration, and only considers elements whose scores
are greater than that.

5. In the pseudocode of Algorithm 6 and Algorithm 4, it is shown that the
newly formed axiom and the triple is sent to all the nodes of a particular
group. Instead, they can only be sent to a particular node in the group, and
this node is selected based on the key. For the same key within the same
group, however, we can ensure that always the same node gets selected. This
reduces duplication of data.

7 http://en.wikipedia.org/wiki/Barrier_(computer_science)
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Ontology #Logical Axioms #Concepts #Roles

Not-Galen 8,015 4,242 413
GO 28,897 20,465 1
NCI 46,870 27,653 70
SNOMED 1,038,481 433,106 62
SNOMED-DUP-2 2,076,962 866,212 124
SNOMED-DUP-3 3,115,443 1,299,318 186
SNOMED-GALEN-GO 1,075,393 456,319 476

Table 2. Sizes of (normalized) ontologies we used

4 Evaluation

To evaluate our implementation, we made use of the seven ontologies that
are listed in Table 2. The numbers in Table 2 are obtained after normaliz-
ing the ontologies. The first three ontologies have been obtained from http:

//lat.inf.tu-dresden.de/~meng/toyont.html. SNOMED is from http://

www.ihtsdo.org/snomed-ct. SNOMED-DUP-2 and SNOMED-DUP-3 are on-
tologies with axioms from SNOMED, but each axiom replicated twice and thrice,
respectively, while concept and role names are systematically renamed for each
copy. SNOMED-GALEN-GO is a merge of the three ontologies, SNOMED, Not-
Galen and GO, which was obtained synthetically as follows: Upon normalization
of each of these ontologies, new class names and role names were created which
were assigned to a local namespace. However, class names and role names intro-
duced in the normalization are shared between the ontologies. We thus obtain a
merged ontology which, albeit the merge is synthetic, retains some of the real-life
character of each of these ontologies.

DistEL is implemented in Java and makes use of Redis for storage. Our cluster
consists of 13 Linux nodes, but our implementation scales to larger clusters. Each
node has two quad-core AMD Opteron 2300MHz processors with 16GB RAM.
DistEL treats a Redis instance as a node, so in order to show the scalability
aspect of our implementation, we ran 2-3 Redis instances on a single node.
This allowed us to effectively run tests for more than 13 nodes on the cluster.
Since each node has 8 cores, and data on an instance of Redis generally doesn’t
go beyond 5GB (for our experiments), running 2-3 Redis instances does not
adversely affect the evaluation.

Table 3 has the classification time of ontologies when run on Pellet (version
2.3.0), jCEL (0.18.2) and ELK (version 0.3.2). Heap space given to run all the
ontologies is 12GB. Timeout limit given was 2 hours. All the reasoners are in-
voked through the OWL API. Time taken by the OWL API to load the ontology
is not taken into consideration. Note that SNOMED-GALEN-GO could not be
processed by any of the state-of-the-art systems. This is remarkable because the
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Ontology Pellet jCEL ELK

Not-Galen 12.0 3.0 1.0
GO 5.0 5.0 2.0
NCI 6.0 7.0 3.0
SNOMED 1,845.0 327.0 24.0
SNOMED-DUP-2 OutOfMemory 687.0 64.0
SNOMED-DUP-3 OutOfMemory 1149.0 93.0
SNOMED-GALEN-GO OutOfMemory TIME OUT TIME OUT

Table 3. Classification time of ontologies using Pellet, jCEL and ELK

Ontology 7 nodes 9 nodes 12 nodes 15 nodes 18 nodes

Not-Galen 6.76 6.44 6.67 6.67 7.09
GO 11.58 11.65 11.74 12.59 12.51
NCI 21.13 21.57 21.53 22.15 22.80

SNOMED 382.77 385.09 392.09 398.07 393.57
SNOMED-DUP-2 774.34 767.85 787.10 798.58 826.50
SNOMED-DUP-3 2,160.00 2,160.00 2,113.57 2,194.80 2,233.12

SNOMED-GALEN-GO — — — — 411.72

Ontology 21 nodes 25 nodes 28 nodes 32 nodes

Not-Galen 6.78 6.83 6.74 6.77
GO 12.30 12.46 12.87 12.93
NCI 22.53 22.63 22.66 22.15

SNOMED 396.66 405.94 410.07 412.39
SNOMED-DUP-2 803.43 805.81 828.55 828.78
SNOMED-DUP-3 2,177.13 2315.19 2163.17 2257.94

SNOMED-GALEN-GO 416.99 418.99 419.58 428.43
Table 4. Load times (in seconds) of DistEL

ontology is hardly larger than SNOMED itself.8 In fact, it shows that realis-
tic handcrafted ontologies of a size which cannot be handled by state-of-the-art
reasoners are not far out of reach.

Pre-processing times (in seconds) for the ontologies on DistEL are given in
Table 4. Pre-processing includes the time taken by the OWL API9 to load the
ontology in-memory and the time taken to insert the axioms into the nodes
of the cluster, and it is approximately constant with respect to the number of
nodes. Time taken by SNOMED-GALEN-GO is not mentioned for 7, 9, 12 and
15 nodes because the classification time on these nodes times out.

Table 5 shows the classification times of DistEL with varying numbers of
nodes, and a corresponding visualization is given in Figure 2. For the larger
ontologies, i.e., SNOMED and larger, we see a steady decrease of classification
time with increasing number of nodes used. Note that, for the larger ontologies,

8 We are not entirely certain yet what causes this explosion. Our guess is that it is
caused by the large number of role chains in Galen, together with the sheer size of
SNOMED.

9 http://owlapi.sourceforge.net
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Ontology 7 nodes 9 nodes 12 nodes 15 nodes 18 nodes

Not-Galen 43 42.27 41.06 39.12 36.70
GO 46.20 49.39 51.83 52.44 53.62
NCI 275 168.96 157.36 156.45 156.82

SNOMED 1,610.00 1,355.81 865.89 886.44 613.53
SNOMED-DUP-2 3,238.19 2,687.75 1,699.73 1,765.31 1,255.87
SNOMED-DUP-3 4,880.78 4,052.00 2,570.29 2,644.40 1,825.51

SNOMED-GALEN-GO TIME OUT TIME OUT TIME OUT TIME OUT 1,336.28

Ontology 21 nodes 25 nodes 28 nodes 32 nodes

Not-Galen 37.51 36.69 36.11 35.09
GO 51.89 56.76 39.70 50.80
NCI 155.19 154.75 161.41 160.12

SNOMED 529.30 441.74 442.81 383.01
SNOMED-DUP-2 1,064.44 887.19 893.96 755.38
SNOMED-DUP-3 1,571.43 1278.62 1286.50 1146.71

SNOMED-GALEN-GO 1,241.96 702.02 693.51 618.18
Table 5. Classification time (in seconds) of DistEL

the effect of parallelization is very good indeed. E.g., using twice the number of
nodes almost halves the runtime in most cases – so the effect of the parallelization
is indeed near optimal.

As expected, for the smaller ontologies, the parallelization does not have
much effect as soon as a certain threshold is reached. We see, however, that
even when using many more nodes than necessary to reach optimal runtime, we
do not get a significant amount of additional time lost due to communication
overhead.

After having retrieved the runtime figures just discussed, we noticed that
some of the measured times for 15 nodes were in fact higher than those of 12
nodes, and a similar effect showed for 28 versus 25 nodes. When additional
nodes are added to the cluster, they should ideally be assigned to the slowest
processing nodes. But if this is not the case, then we do not see any noticeable
improvement in performance. On the contrary, there is a possibility of reduction
in performance because of additional communication overhead. Since we are
currently assigning nodes by intuition and rule-of-thumb, we have to expect to
get such performance drops sometimes.

To further check on this effect, we repeated the run of SNOMED on 15 nodes
using a different assignment of nodes to rules, and it resulted in a classification
time of 606.05 seconds, which is a significant improvement compared to the
timing obtained by the node assignment in Table 5. In fact, it is better than
using 18 nodes in the previous assignment. This shows that our manual rule-of-
thumb assignments are likely not optimal, and that, in fact, a signifcantly better
performance should be achievable by automating the node assignment, or by
using methods for dynamic load balancing. However, in this paper we only want
to show that significant parallelization can be achieved, and do not yet focus on
a most efficient implementation. This is left for future work.
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Fig. 2. Visualization of number of nodes vs runtimes

Correctness of the results produced by DistEL is verified by comparing the
output with that of ELK, in the cases where ELK does not time out.

There is a significant difference in performance between our distributed im-
plementation and ELK. One of the primary reasons for this difference is that
our implementation requires cross-node communication (key-value pairs are sent
across the nodes) and among the nodes. On the other hand, our architecture can
be extended by adding more nodes, and thus can scale up to datasets which ELK
cannot handle, such as SNOMED-GALEN-GO.

We list some further insights which we gained from our implementation and
system.

1. For our manual assignment of nodes to rules, it is very important to figure
out the slowest processing nodes in the cluster, so that, if additional nodes
are available, it would be easy to determine, to which group these new nodes
should be assigned to.
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2. The majority of the time is in fact spent on reading and writing to local as
well as remote databases. Design choices and architecture should be formu-
lated in such a way so as to reduce cross-node communication.

3. We cannot estimate the runtime or node assignment to rules just by counting
the number of axioms. Some axioms are harder to process than others al-
though their number might be less. A case in point is SNOMED-GALEN-GO
compared with SNOMED-DUP-3.

5 Limitations and Future Work

Some of the limitations and planned next steps are presented below.

1. Compared to other popular distributed frameworks like Hadoop,10 our ar-
chitecture does not currently provide support for fault tolerance.

2. Axioms are distributed across the cluster by type rather than load. This
leads to improper load balancing. To improve load balancing we plan to
implement work stealing so that the idle nodes can work on axioms from
other nodes.

3. Completion rules are assigned to nodes manually, for now. This could be
done automatically by considering ontology statistics such as the number of
role axioms and subclass axioms, or other measures.

4. The OWL API is used to read the axioms from an ontology, and by design
it loads the entire ontology into memory. With the size of ontologies that we
hope to deal with using our work, this becomes a bottleneck. Going forward,
we plan to use a streaming API for XML11 to read the axioms.

5. We plan to extend our work to include ABox reasoning [11] where there is
a greater scope of getting large ontologies and our distributed system could
be put to test.

6. We also intend to use multicore threading to take advantage of the number
of cores in modern machines.

7. Another possible line of future work is to apply our distributed approach
to other EL+classification algorithms such as the materialization procedure
used by ELK.

6 Related Work

Most of the distributed reasoning approaches in the literature are focussed on
RDFS inference but there are a few that deal with a fragment of OWL, namely
OWL Horst. In [17], Urbani et al., use MapReduce for reasoning over OWL
Horst. They look to carry over their work from distributed reasoning over RDFS
to OWL Horst, which was possible only to a certain extent. Soma et al., [15]
investigate partitioning approaches for parallel inferencing in OWL Horst. Al-
though not distributed, a backward chaining approach [16] is used to scale up

10 http://hadoop.apache.org
11 http://en.wikipedia.org/wiki/StAX
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to a billion triples in the OWL Horst fragment. A distributed approach to fuzzy
OWL Horst reasoning has also been investigated in [8].

Distributed resolution techniques were used by Stuckenschmidt et al., to
achieve scalability of various OWL fragments such as ALC [12] and ALCHIQ
[13]. There have been attempts at achieving distributed reasoning on the EL+pro-
file in [10] and [14], but they do not provide any evaluation results. Distribution
of OWL EL ontologies over a peer-to-peer network and algorithms based on
distributed hash table have been attempted in [2], but again, no evaluation
results are provided. Reasoning over Fuzzy-EL+ ontologies using MapReduce
[18] has also been attempted but implementation and experiment details are not
provided.

We have tried several distributed approaches for EL+ontology classification,
some of which have been unsuccessful. Here, we presented an approach which
gave encouraging results due to increase in the number of axioms that are pro-
cessed locally and decrease in the cross-node communication, when compared to
our previous approaches [9]. Our earlier approaches include use of MapReduce
(involved many redundant computations) and distributed queue (distribution of
CEL’s queue approach). The latter approach involves a lot of cross-node com-
munication.

7 Conclusions

With ever increasing data generation rates, large ontologies challenge reasoners
from the perspective of memory and computation power. In such scenarios, dis-
tributed reasoners offer a viable solution. We presented our distributed approach
to EL+ ontology classification, called DistEL, where we show that our classifier
can handle large ontologies and the classification time decreases with the in-
crease in nodes. The results are encouraging, and we plan to go ahead with
adding ABox reasoning support to our work as well as explore other possible
distributed classification approaches.
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