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Abstract

We introduce a new method for masquerader detection
that only uses a user’s own data for training, called One-
class Classification using Length statistics of Emerging
Patterns (OCLEP). Emerging patterns (EPs) are patterns
whose support increases from one dataset/class to another
with a big ratio, and have been very useful in earlier stud-
ies. OCLEP classifies a case T as self or masquerader by
using the average length of EPs obtained by contrasting T
against sets of samples of a user’s normal data. It is based
on the observation that one needs long EPs to differenti-
ate instances from a common class, but needs short EPs to
differentiate instances from different classes.

OCLEP has two novel features: for training it uses EPs
mined from just the self class; for classification it uses the
length statistics instead of the EPs themselves. Experiments
show that OCLEP can achieve very good accuracy while
keeping the false positive rate low, it achieves slightly better
area-under-ROC-curve than SVM, and it can achieve good
results when other approaches can not. OCLEP requires
little effort in choosing parameters; the SVM requires sig-
nificant tuning and it is hard to reach the theoretical optimal
result. These features imply that OCLEP is a good comple-
mentary component for a robust masquerader detection sys-
tem, even though its average performance in false positive
rate is not as good as SVM’s.

1 Introduction

Masquerader attacks, in which an intruder uses another
person’s identity to do something, may be one of the most
serious security problems. Masquerader detection is a chal-
lenging problem. Masquerader attacks often happen inside
the protection of the firewalls etc; study [7] shows that in-
siders can cause more damage, and are harder to catch, than

outsiders. Authentication can not detect masquerader at-
tacks. Masqueraders are unknown ahead of their attacks.

There have been many efforts to build masquerader de-
tection systems [4]. A common approach is to compare a
user’s recent behavior against his/her profile of typical be-
havior and to use deviation as indication of masquerading.
There are several studies that model a user’s behavior in
order to detect anomalous misconduct, e.g. [11, 14]. There
are also several two-class training approaches [4,11,12,20],
which use information on both the legitimate user and the
masqueraders.

A practical approach to detect masqueraders is to only
use legitimate user’s own profile as training data, called one-
class training, because it is easier to build legitimate user’s
profile than masquerader’s and masqueraders are unknown
at training time. Studies in [22] show that the one-class
training approach can achieve comparable performance to
that achieved by two-class training approaches. It was
noted that the one-class SVM performs better than one-class
Naı̈ve Bayes approaches, and even better than some two-
class training approaches. However, the results reported
were based on the theoretical optimal performance of SVM.
It is hard to tune the system to discover the optimal parame-
ters.

In this paper, we introduce a new masquerader detec-
tion method called OCLEP, One-class Classification using
Length statistics of Emerging Patterns, that only uses a
user’s own data for training. Emerging patterns (EPs) [8, 9]
are patterns whose support increases from one dataset/class
to another with a big ratio, and have been used in many im-
portant applications [2, 3, 9, 10, 13, 16, 17]. OCLEP makes
classification decision for a case T by using the average
length of EPs obtained by mining EPs contrasting T against
samples of a user’s normal data. OCLEP is based on the ob-
servation that one needs long EPs to differentiate instances
from a common class, but needs short EPs to differentiate
instances from different classes. OCLEP has two key novel
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features: for training it uses EPs mined from just one (the
self) class, and for classification it uses the length statis-
tics instead of the EPs themselves. All previous EP-based
classification methods rely on multiple class training. We
note that the OCLEP method can be used for other one-class
(even general multi-class) classification problems.

Experimental results show that OCLEP can achieve very
good detection accuracy while keeping the false positive
rate low. It achieves slightly better area-under-the-curve
than SVM, and it achieves much better results for some
users than the one-class SVM approach. Moreover, OCLEP
is configuration-free, requiring no efforts for parameter tun-
ing; the SVM requires significant tuning and it is hard
to reach the theoretical optimal result. For these reasons,
OCLEP can be considered as a practical complementary
component for a diversified masquerader detection system,
even though OCLEP is not always better than one-class
SVM in terms of false positive rate. OCLEP also has good
performance when used as an ensemble over different fea-
ture construction methods.

Section 2 discusses preliminaries and related works.
Section 3 introduces OCLEP. Section 4 discusses feature
construction. Section 5 describes an experimental evalu-
ation. Section 6 discusses potential extensions and con-
cludes.

2 Preliminaries and Related Works

2.1 Data for Masquerader Detection, and
Common Training and Testing Meth-
ods

The data for masquerader detection usually takes the
form of user-command sequences. The detection system ex-
amines a block of a user’s recent commands to decide if the
user is a masquerader. In previous works, the block size is
usually taken as 100. The dataset provided by Schonlau et
al [11], available at http://www.schonlau.net, is frequently
used. It consists of sequences of “truncated” commands for
50 users; each user is represented by a sequence of 15,000
commands. The first 5,000 commands of each user are
“clean data” (i.e. legitimately issued by the user), and the
last 10,000 commands were probabilistically injected with
commands issued by 20 users outside the community of
50. The commands are grouped into blocks of 100 com-
mands. The commands in one block are either all clean or
all masquerade attacks, called “dirty blocks”. The task is to
accurately classify the user-command blocks into two cate-
gories: self (i.e. the clean blocks) and masqueraders (i.e. the
dirty blocks).

The following three training/testing experiment settings
have been used in the literature; all consider a given user as
the true “self,” but they differ regarding whether they use

the other users’ information for training and what data is
used for testing. SEA: This is a two-class training exper-
iment setting [11]. The training uses the first 5,000 com-
mands of all users. For a given user, the test data are the
remaining 10,000 commands of the user. 1v49: This is a
one-class training experiment setting [20]. Only the first
5,000 commands of self are used as training data, and the
first 5,000 commands of other 49 users (considered as mas-
queraders) are used as testing data. 1v49’: This is also a
one-class training experiment setting [22]. Only the first
5,000 commands of self are used as training data, and the
first 5,000 commands of other 49 users (considered as mas-
queraders), together with the rest of the 10,000 commands
of the self, are used as testing data. Note that the 1v49’
setting is slightly different from 1v49.

2.2 Emerging Patterns

We employ emerging patterns (EPs) in OCLEP. EPs are
a kind of patterns introduced in [8], and have been proven to
have a great impact in many tasks, including general clas-
sification [10, 16], classification of cancer using microarray
data [9, 17], rare-class classification [2], expanding training
data [3], and building robust and accurate classifiers [13].
An EP is defined as an itemset1 whose support increases
significantly from one class to another. Its discriminating
power is usually proportional to its growth rate, defined as
the ratio of its support in a certain class over that in another
class. EPs with growth rate of ∞ are called jumping EPs.

For example, the Mushroom dataset, from the UCI Ma-
chine Learning Repository, contains these two EPs between
the poisonous and edible mushroom classes:
e1 = {(ODOR = none), (GILL SIZE = broad),

(RING NUMBER = one)}, and
e2 = {(BRUISES = no), (GILL SPACING = close),

(VEIL COLOR = white)}.
Each EP consists of 3 items. e1 is an EP from the poisonous
mushroom class to the edible mushroom class. It never oc-
curs in the poisonous class, and it occurs in 63.9% of the
instances in the edible class; hence, its growth rate is ∞
(63.9/0). It has a very high predictive power to contrast
edible mushrooms against poisonous mushrooms. e2 is an
EP from the edible class to the poisonous class. It occurs in
3.8% of the instances in the edible class, and in 81.4% of
the instances in the poisonous class; hence, its growth rate
is 21.4 (81.4/3.8). It also has a high predictive power to
contrast poisonous mushrooms against edible mushrooms.

Many EPs have containment relationship between them,
leading to a large number of patterns and considerable re-
dundancy in the set of patterns. We deal with this problem

1An itemset is a group of items for transactional data, or attribute-value
(or attribute-interval) pairs for relational data. A transaction is also a set of
items.
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by selecting only the minimal jumping EPs under the set
containment relationship [8]. The efficient mining of EPs
have been considered extensively [5, 8, 9, 24]. These stud-
ies have proposed algorithms that can efficiently extract EPs
from data containing more than 50 items per transaction.

The following operation is useful for this paper: Given
a transaction T and a set S of transactions, return the set
of minimal jumping EPs that occur in T but never in S.
This is the BorderDiff(T,S) operation [8]. We will use
BorderDiff(T,S) to denote the returned set of jumping EPs.
For example, BorderDiff(T,S) = {{1}, {2, 3, 4}} for T =
{1, 2, 3, 4} and S = {{2, 3, 5, 6}, {2, 4, 7, 8}, {3, 4, 6, 8}}.

2.3 Related Works

Reference [11] identified six masquerade detection
methods: Bayes 1-Step Markov, Hybrid Multi-Step
Markov, Incremental Probabilistic Action Modeling
(IPAM), Uniqueness, Sequence-Match, and Compression.
These methods were trained to build a profile of self and a
profile of non-self. The paper used the SEA experiment set-
ting to evaluate the methods. Reference [20] used the Naı̈ve
Bayes classification algorithm to solve the masquerader
detection problem and obtained better results than those
reported in [11]. In addition to evaluating the classifiers
in the SEA experiment setting, the paper also designed
the 1v49 experiment setting in order to (1) investigate
the Naı̈ve Bayes classification errors, and to (2) provide
some insight on why some users are good masqueraders
(i.e. hard to detect) and others are not. Reference [22] used
the one-class SVM algorithm on masquerader detection.
It conducted experiments in both SEA and 1v49’ exper-
iment settings. The paper’s experiments showed that the
one-class training works as well as the multi-class training
approaches, and the one-class SVM using binary features
performs best among the one-class training approaches.

3 OCLEP: One-Class Classification Using
Length Statistics of Emerging Patterns

We now introduce our OCLEP method for masquerader
detection. In a nutshell, OCLEP uses the training data for a
given user to build some EP length statistics, and then uses
the training data to derive the length statistics for new test
cases and to make classifications on these cases based on
the length statistics.

OCLEP has several interesting features: (1) OCLEP
achieves one-class classification by using EPs. This is the
first time EPs are used in the one-class setting. This be-
comes more interesting if one considers the way EPs are
defined – patterns with significant support change between
classes. (2) OCLEP does not use the EPs themselves for
classification; it uses some length statistics. This implies

that there is little requirement for space, besides that used
by the training data.

The discussion below will present OCLEP by address-
ing these issues: (1) what kind of discriminative informa-
tion can one-class EPs give, (2) how to mine EPs with one-
class data, (3) how to define the EP length statistics, and (4)
how to use the statistical information to make the classifica-
tion decision. Finally, we summarize the complete OCLEP
method.

3.1 What Discriminative Information Can
One-Class EPs Give?

To answer this question, let Di be the set of training
data for user i, i = 1, 2. Suppose for the time being that
Di consists of transactions (transformed from the command
blocks). Let us consider what kind of difference we may get
between the following two invocations: In one invocation
we pick a transaction t1 from D1 and pick a subset T1 of
D1 −{t1}, and compute BorderDiff(t1, T1). In another, we
pick a t′2 from D2 and pick a subset T ′

1 of D1, and compute
BorderDiff(t′2, T

′
1).

Under the assumption that each user’s command blocks
are quite similar to each other, we can conclude that
BorderDiff(t1, T1) will contain long2 patterns, while
BorderDiff(t′2, T

′
1) will contain short patterns. The reasons

are: Since t1 should be quite like the transactions in T1 (they
come from the same user’s command blocks), we need long
patterns to tell t1 apart from T1. In contrast, since t′2 should
be quite unlike the transactions in T ′

1 (they come from dif-
ferent users’ command blocks), we only need short patterns
to tell t′2 apart from T ′

1. This leads to the following key
observation, also stated for general classes:

Property 3.1 BorderDiff(t, T ) tends to contain long EPs
when t and T come from one user’s command blocks (or
the same class), and to contain short EPs when t and T
come from different3 users’ command blocks (or different
classes).

Example 3.1 Consider the following example with two
classes. P = {p1, p2, p3, p4} where p1 = (A = 1, B =
0, C = 1,D = 1), p2 = (A = 0, B = 1, C =
1,D = 0), p3 = (A = 1, B = 0, C = 0,D = 0),
p4 = (A = 1, B = 0, C = 1,D = 0), and N con-
tains n1 = (A = 0, B = 0, C = 1,D = 1). Then
{A = 0, B = 0}, {A = 0,D = 1} and {B = 0,D = 1}
are the minimal jumping EPs that occur in class N but not
in P. On the other hand, {A = 1, C = 1,D = 0} and
{B = 0, C = 1,D = 0} are the minimal jumping EPs
that occur in p4 but not in {p1, p2, p3}. Note that those

2We refer to the cardinality of an itemset as its length.
3All transactions of T should come from one user/class.
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inter-class EPs have length 2, and those intra-class EPs have
length 3. �

Experiments on the Mushroom data from UCI Machine
Learning Repository also confirmed this observation. In
fact, the average length of 1000 BorderDiff(t, T ) invoca-
tions where t and T come from the same class is 3.03 (2.94
when they come from the Edible class, 3.11 when they are
from the Poisonous class), and the average length of 1000
BorderDiff(t, T ) invocations where t and T come from dif-
ferent classes is 7.78 (7.5 when t is from Edible, 8.05 when
t is from Poisonous).

3.2 Mining EPs From One-class Data

The last subsection also suggests how to mine EPs from
one-class data for masquerader detection. Let D be the set
of training data for a given user. Then we do:

One-class EP Mining: For each transaction t from
D, pick a subset T of D − {t} of suitable size k,
and compute BorderDiff(t, T ).

The suitable size k is determined as follows: If D is
large, we choose k in the range of [200, 800]. If D is not
very large, we choose k to be |D| − 1. By choosing a larger
k we use more tuples as background data to be compared
with. However, if k is too large, then more computation
time is needed, without the benefit of additional discrim-
inative information (compared against smaller k). A k in
the hundreds range usually offers good speed-information
tradeoff. In this paper, since the training dataset is small,
we choose k = 49 = |D| − 1 for each user.

For training, we perform BorderDiff(t, T ) for all t ∈ D
if D is small, and for a sample of several hundreds of t if D
is large.

3.3 Defining the Length Statistics of EPs

For masquerade detection, the individual EPs in
BorderDiff(t, T ) for all the t’s as discussed in the last sub-
section may be too detailed/specific to be useful. To solve
this problem, we introduce a length statistics that allows us
to use Property 3.1.

Definition 1 Given a non-empty set S of patterns, let its
average length be

avgLen(S) = [
∑

i

(Ci ∗ i)]/[
∑

i

Ci] (1)

where Ci is the count of EPs in S with length i for each i.

We compute the associated avgLen(BorderDiff(t, T ))
for each BorderDiff(t, T ) invocation, and use the average
lengths for multiple BorderDiff(t, T ) invocations for classi-
fication decision.

3.4 Using Average Length Statistics for
Classification

Let D be the set of training data for a given user. In
the training phase, we call BorderDiff(t, T ) for a number
of t’s in a user’s data (and the associated T obtained as
described in the last subsection), and get the associated
avgLen(BorderDiff(t, T )). This produces a set of average
lengths. We sort them in increasing order. Let a and b be
the minimum and maximum of the average lengths. Then
any number c satisfying a ≤ c ≤ b can be used as a cut-off
threshold for classification decisions.

In the testing phase, let s be a new case to be tested. We
apply BorderDiff(s, T ) to get the minimal jumping EPs for
s against T as follows. If D is small, we let T = D and
let avgLen(s) = avgLen(BorderDiff(s,D)). Otherwise,
we use 20 random samples T of D, and let avgLen(s) =
avgT (avgLen(BorderDiff(s, T )). If avgLen(s) < c then
we classify s as masquerader; otherwise, we classify s as
self.

For the masquerader detection problem, there is al-
ways trade-off between the hit rate (correctly identified
masqueraders) and the false positive (FP) rate (mistak-
enly identified self as masquerader). The distribution of
avgLen(BorderDiff(t, T )) for the training phase can be used
to decide how to choose the cut-off to achieve a desired
trade-off between the hit and FP rate. A cut-off close to
a will lead to low FP rate and low hit rate, while a cut-off
close to b will lead to high hit rate but also high FP rate.
Since a low FP rate is highly desired for masquerader de-
tection, we usually choose the cut-off point close to a.

3.5 The Complete OCLEP Classifier

Let D be the training data for a given user. The OCLEP
classifier consists of the following steps:

1. Preprocessing: Choose a feature construction strategy
and transform the data in D into transaction format. This
will be discussed in the next section.

2. Mine the EPs from the training data: Call
BorderDiff(t, T ) a number of m times for t ∈ D and
T ⊆ D − {t} of D as follows. If D is small, let m = |D|
and T = D − {t}. If D is large, let m = 100 and each T
should be a random subset of D−{t} such that |T | is in the
range of [200, 800].

3. Get length statistics of the mined EPs: Compute the
average lengths for all BorderDiff(t, T ) invocations of the
last step. Sort the average lengths into increasing order. Let
a be the low and b be the high in the sorted list.

4. Choose a classification cut-off point: The cut-off
point c such that a ≤ c ≤ b is chosen. A smaller c means
low FP and hit rates, while a larger c will result high FP and
high hit rates.

Proceedings of the Seventh International Conference on
Web-Age Information Management Workshops (WAIMW'06)
0-7695-2705-1/06 $20.00  © 2006



5. Classification: Let s be a new case. If D is small, we
let T = D and let avgLen(s) = avgLen(BorderDiff(s,D)).
Otherwise, we use 20 random samples T of D, and
let avgLen(s) = avgT (avgLen(BorderDiff(s, T )). If
avgLen(s) < c then we classify s as masquerader; other-
wise, we classify s as self. �

4 Data Preprocessing and Feature Construc-
tion

Regarding preprocessing, we group the commands for a
given user into blocks, similar to other studies, with 100
commands per block. Each block is then converted into a
feature vector, using a selected feature construction strategy.

There are many ways to construct features, reflecting
whether we treat the command blocks as sets or sequences
or bags. We studied the following six strategies: (1) Binary.
Each command is a feature and the commands in each block
are considered as a set. The feature vector contains 1 or
0 indicating whether or not a command occurs. There are
around 870 distinct commands in the dataset. (2) Frequency
equal-length and (3) Frequency equal-density. For both (2)
and (3), the frequency of each command in a block is con-
sidered. The frequency is transformed into binary format
by using either equal length binning or equal density bin-
ning [15]. (4) Pair. In each block, each adjacent command
pair is considered as a feature. There are a maximum of 99
features in each block. (5) Skip-one-pair. We consider pairs
of commands as features, if they are separated by exactly
one command. For example, if c1c2c3 is a subsequence in
a block then c1c3 is a feature. There are a maximum of 98
features in each block. (6) Triple. In each block, each adja-
cent command triple is considered as a feature. There are a
maximum of 98 features in each block.

In general, the binary approach is the simplest and can
achieve the best overall performance in terms of getting
low FP rate. The frequency approaches perform the worst
among all the approaches. Other approaches can improve
the hit rate, but also lead to high FP rate. (See the experi-
ment section.)

5 Experimental Evaluation

We now present an empirical evaluation, on the dataset
described in Section 2. We will mainly compare OCLEP
with the one-class SVM – the best one-class training
method for this problem, and briefly mention reported re-
sults of other methods. The experiments show that OCLEP
can achieve very good detection accuracy while keeping the
false positive rate low, it achieves slightly better area-under-
the-curve than SVM, and it can achieve good results when
other approaches can not. OCLEP also show promising re-

sults when used as OCELP ensembles. We will conduct the
SEA and the 1v49’ experiments (see Section 2).

5.1 One-class Support Vector Machine
(ocSVM)

Support Vector Machines (SVM) [21] are maximal mar-
gin classifiers. In the two-class case, the basic idea is to
map feature vectors to a high dimensional space via a kernel
function and to compute a hyperplane in that space that (a)
separates the training vectors from different classes and (b)
maximizes the separation margin. One-class Support Vector
Machine (ocSVM) uses examples from one-class, instead of
multiple classes, for training. It treats the origin as the only
example from “other classes”. ocSVM has been shown to
be very effective in document classification [18] and mas-
querader detection [22].

We used the LIBSVM 2.8 [6] with the default rbf ker-
nel. We note that the ocSVM results reported here are the
theoretically best4: We simply let the SVM calculates all
the distances, and the decision point (hyperplane) is then
chosen by looking at all the test data together5. The overall
performance is the average over all the best solution for all
users. We considered different feature representations (see
Section 4) for ocSVM. The results show that the binary ap-
proach achieved the best hit rate with FP rate similar to other
feature approaches (all < 1%); the performance for the bi-
nary case is consistent with [22]. So the binary approach is
used below for ocSVM unless mentioned otherwise.

5.2 SEA Experiment

In this experiment setting, OCLEP and ocSVM are only
trained on the first 5,000 commands of the user (the clean
data), which is slightly different than the original SEA. The
classifiers are tested on the remaining 10,000 commands of
the user. The reported performance is the average perfor-
mance over all 50 users.

In classification, we are often concerned with the trade-
off between hits (or correct detection) and false positive (or
false detection). These is often depicted on a receiver oper-
ating characteristic (ROC) curve where the percentages of
hits and false positive are shown on the y-axis and x-axis
respectively. The area under the ROC curve (AUC) is often
used to evaluate the overall performance of classification al-
gorithms. Figure 1 shows ROC curves for OCLEP method
and ocSVM. The AUC for OCLEP and ocSVM are 0.7423
and 0.7419, respectively. The AUC for OCLEP is slightly
larger, although the two AUC values are very close.

4Even though we tried to tune all the parameters, the actual output by
the program is still disappointing – either high hits with high FP, or low
hits with low FP.

5This is also the approach taken by the authors of [22] (personal com-
munication).
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Figure 1. ROC curves for OCLEP, ocSVM;
best reported results for other methods

For the masquerader detection problem, it is important to
have a low false positive (FP) rate, say less than 1%. In this
respect, ocSVM is a very promising method and is better
than OCLEP. In fact, ocSVM is better than most of the two-
class methods. ocSVM is the only method can get the FP
rate under 1% while still has reasonable hit rate. OCLEP
can achieve 2.9% FP rate with 59.2% hits, which is ranged
in the middle. Figure 1 gives a broad view of where the
methods stands by including the ROC curves of OCLEP and
ocSVM, and the best-outcome results6 of other methods.
For each method, the best result is the one that achieves the
lowest false positive (FP) rate.

Our OCLEP is configure-free if we want to have the low-
est FP possible: For each user, we simply pick the cut-off
point as the minimum average length. This easy-to-use fea-
ture is very desirable for practical masquerader detection
systems.

Table 1 shows the average performance over 50 users
when different feature construction strategies are used in the
OCLEP method. We can see that the binary approach has
the best performance in terms of getting low FP rate. The
results of other approaches are also very appealing com-
pared with other existing two-class approaches. For ex-
ample, when using the pair approach, OCLEP can achieve
72.59% hits and 4.9% FP rate.

6The one-class version of Naı̈ve Bayes classifiers was only used in the
1v49 experiment setting [20]. In [22], the performance was shown to be
worse than ocSVM.

Feature Construction Strategy Hits % FP %
Binary 59.16 2.91

Frequency equal-length 44 2.92
Frequency equal-density 54.04 5.12

Pair 72.59 4.9
Skip-one-pair 69.96 5.06

Triple 70.85 4.62

Table 1. Average performance of OCLEP over
50 users when different feature construction
strategies are used in the SEA experiment

Users OCLEP ocSVM
Hits % FP % Hits % FP %

User5 58.04 0 27.67 1
User15 27.24 1 20.48 1
User24 60.66 1.27 49.7 1.27
User34 66.65 1.1 30.99 1.1

Table 3. Some users where OCLEP performed
much better than the ocSVM method when
the binary feature construction was used in
the 1v49’ experiment

5.3 1v49’ Experiment

Similarly to the SEA experiment, ocSVM theoretically
performs better than OCLEP on average for 50 users. We
also tested the impact of different feature construction strat-
egy on both methods. Although the overall hit rates are low
for all methods, from Table 2 we can see that binary ap-
proach is still the best for both methods. Notice that feature
construction makes a difference for OCLEP. We can see that
the pair, skip-one-pair and triple approaches get much bet-
ter hit rate only with slightly increased FP rate.

5.4 Situations When OCLEP is Better

Even though ocSVM outperforms OCLEP on average in
terms of getting lower FP, OCLEP performed much better
for several users where ocSVM did not. Table 3 lists several
such users.

By analyzing the training data, we found that OCLEP
performs better than ocSVM when there are more unique
commands in each block. On the other hand, if there are
many repeated commands in each block, ocSVM performs
better. For example, for user5, there are more than 30
unique commands on average in each block, but the num-
ber is less than that for user2. This observation suggests
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Feature Construction OCLEP ocSVM
Strategy Hits % FP % Hits % FP %
Binary 25.67 2.9 42.92 0.82

Frequency equal-length 22.54 21.1 9.82 0.77
Frequency equal-density 16.8 14.07 11.87 0.82

Pair 43.65 5 34.73 0.82
Skip-one-pair 46.63 5.14 31.23 0.89

Triple 36.88 4.64 29.67 0.75

Table 2. Average performance over 50 users when different feature construction strategies are used
in OCLEP and ocSVM in 1v49’ experiment

that the performance of OCLEP could be improved if we
use different block size so that each block contains more
distinct commands.

We also note that there are more situations where
OCLEP outperforms ocSVM when other feature construc-
tion strategies are used.

5.5 OCLEP Ensemble: Combining Fea-
ture Construction Methods

We examined the effectiveness of the ensemble classifier
approach where we combine decisions of multiple OCLEP
classifiers which use different feature construction strate-
gies. Table 4 lists some results in the SEA experiment set-
ting. We see that this approach can improve the hit rate
while keeping the FP rate at the same level. Notice that we
can also achieve even lower FP in some cases; for example,
we get 1.2% FP with 48.9% hit rate if we combine all six
feature construction methods. This is a very encouraging
result, and deserves further study.

6 Discussion and Future Work

In this paper, we presented a novel emerging pattern (EP)
based method, called OCLEP, for detecting masqueraders
by only using a user’s own data for training. OCLEP ex-
tracts EPs from just one class of data for training, and uses
the length statistics of EPs for classification decisions. It
has been demonstrated that the OCLEP method can achieve
very good detection accuracy while keeping the false posi-
tive rate low, and OCLEP achieved good results when other
approaches can not. OCLEP requires little tuning when
compared with the ocSVM. The above characteristics im-
ply that OCLEP can be a good complementary component
for a robust and diversified masquerader detection system.

Masquerader detection is a hard problem. As a result,
and also because of the inherent nature of the dataset avail-
able, no existing approach achieves very high detection ac-
curacy while keeping the false positive rate low for all users.

A good masquerader detection strategy might be to incorpo-
rate different methods with diversified characteristics into a
combined system. Our OCLEP method relies on emerging
patterns, which are inherently different from the patterns
used by other methods, and has complementary strengths to
existing approaches. So it can be a good component for a
robust masquerader detection system.

One can apply our method to the enriched command
dataset used in [19], which has command arguments asso-
ciated with each command7. Moreover, one can also try
to improve the performance of OCLEP by using different
block size.

One challenging problem for masquerader detection is
how to build user’s own profile. There may not be enough
training samples available at the beginning (there are only
50 training tuples in this dataset). It is desirable to explore
ways to generate more training data by changing the block
size (for example, 20 instead of 100), or other techniques
(for example, “join” similar blocks).

EPs have been used for building very powerful classi-
fiers, such as [2, 8, 9]. We believe OCLEP can be applied
to other situations, e.g. one-class text classification [18, 23]
and rare events/outlier detection [1].
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