
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

3-2005

Divide-and-Approximate: A Novel Constraint Push Strategy for Divide-and-Approximate: A Novel Constraint Push Strategy for

Iceberg Cube Mining Iceberg Cube Mining

Ke Wang

Yuelong Jiang

Jeffrey Xu Yu

Guozhu Dong
Wright State University - Main Campus, guozhu.dong@wright.edu

Jiawei Han

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Wang, K., Jiang, Y., Yu, J. X., Dong, G., & Han, J. (2005). Divide-and-Approximate: A Novel Constraint Push
Strategy for Iceberg Cube Mining. IEEE Transactions on Knowledge and Data Engineering, 17 (3), 354-368.
https://corescholar.libraries.wright.edu/knoesis/336

This Article is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/80833955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Divide-and-Approximate: A Novel Constraint
Push Strategy for Iceberg Cube Mining
Ke Wang, Yuelong Jiang, Jeffrey Xu Yu, Guozhu Dong, Senior Member, IEEE, and

Jiawei Han, Senior Member, IEEE

Abstract—The iceberg cube mining computes all cells v, corresponding to GROUP BY partitions, that satisfy a given constraint on

aggregated behaviors of the tuples in a GROUP BY partition. The number of cells often is so large that the result cannot be realistically

searched without pushing the constraint into the search. Previous works have pushed antimonotone and monotone constraints.

However, many useful constraints are neither antimonotone nor monotone. We consider a general class of aggregate constraints of

the form fðvÞ��, where f is an arithmetic function of SQL-like aggregates and � is one of <;�;�; > . We propose a novel pushing

technique, called Divide-and-Approximate, to push such constraints. The idea is to recursively divide the search space and

approximate the given constraint using antimonotone or monotone constraints in subspaces. This technique applies to a class called

separable constraints, which properly contains all constraints built by an arithmetic function f of all SQL aggregates.

Index Terms—Aggregate constraint, constrained data mining, data cube, iceberg cube mining, iceberg query.

�

1 INTRODUCTION

DECISION support systems, which rapidly gain competi-
tive advantage for businesses, make heavy use of

aggregations for identifying trends. The iceberg query,
introduced in [8], performs an aggregate function over a
specified dimension list and then eliminates aggregate
values below some specified threshold. The prototypical
iceberg query based on a relationRðtarget1; � � � ; targetk; restÞ
and a threshold T is as follows:

SELECT target1, ..., targetk, count(rest)

FROM R
WHERE ...

GROUP BY target1, ..., targetk

HAVING countðrestÞ � T

This query partitions the tuples according to the GROUP BY

list and produces one row for each partition with countðrestÞ
above the thresholdT . In iceberg cubemining, theuser specifies

a constraint in the HAVING clause, but not the GROUP BY

list, andwants to find the result for allGROUP BY lists. A cell

specifies one GROUP BY partition. On a relation R(Product,

Store, Year, rest), for example, the cell fToyota; V ancouverg

specifies a partition for the GROUP BY list “Product, Store.”
fToyota; V ancouver; 2000g and fToyotag are a supercell and
subcell of fToyota; V ancouverg, respectively. Iceberg cube
mining aims to compute all the cells for the eight GROUP BY
lists over Product, Store, Year, returning those satisfying the
constraint in the HAVING clause.

Performing one iceberg query per GROUP BY list does
not share the work in different queries. Computing the full
cube then discarding unsatisfying cells suffers from the fact
that the full cube is too large to be realistically computed.
Materializing “views” for efficient computation is useful
only if all the constraints are known in advance. A
promising approach is “pushing” a given constraint so that
only likely satisfying cells are computed. Previous works
have pushed antimonotone constraints [5], [2] and monotone
constraints [13]. In an antimonotone constraint, if a cell fails
the constraint, so does every supercell; in a monotone
constraint, if a cell satisfies the constraint, so does every
supercell. These properties provide a natural pruning
opportunity.

However, antimonotonicity or monotonicity like these
are undesirable for two reasons. On one hand, antimono-
tonicity and monotonicity are too loose as a pruning
strategy. Both properties impose an exponential lower
bound on the result size because all supercells of a failed
or satisfying cell also fail or satisfy. A result of such size is
neither efficient to compute nor easy to be comprehended
by for a human user. On the other hand, both properties are
too restricted as an interestingness criterion. For example,
sumðvÞ � �, avgðvÞ � �, and varðvÞ � � are neither anti-
monotone nor monotone, but are useful for extracting
patterns capturing minimum (average) profit with a small
variance.

We consider the problem of pushing aggregate constraints
of the form fðvÞ�� in iceberg cube mining. f is an arithmetic
function of SQL-like aggregates, � is a comparison operator,
� is a threshold, and v is a cell-valued variable. As we will

354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

. K. Wang and Y. Jiang are with the Department of Computing Science,
Simon Fraser University, 8888 University Drives, Burnaby, BC V5A 1S6,
Canada. E-mail: {wangk, yjiang}@cs.sfu.ca.

. J.X. Yu is with the Department of Systems Engineering and Engineering
Management, The Chinese University of Hong Kong Shatin, New
Territories, Hong Kong. E-mail: yu@se.cuhk.edu.hk.

. G. Dong is with the Department of Computer Science and Engineering,
Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435.
E-mail: gdong@cs.wright.edu.

. J. Han is with the Department of Computer Science, University of Illinois
at Urbana-Champaign, 201 N. Goodwin Avenue, 2132 Siebel Center for
Computer Science, MC-258, Urbana, IL 61801-2302.
E-mail: hanj@cs.uiuc.edu.

Manuscript received 8 Sept. 2003; revised 6 Apr. 2004; accepted 13 Aug.
2004; published online 19 Jan. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0182-0903.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

show, varðvÞ � � is in this form, where varðvÞ computes the
variance of the measure for the tuples that match the cell v.
Pushing an aggregate constraint presents a significant
challenge because, even if a cell fails or satisfies the
constraint, its supercells still need to be examined. We will
answer two questions. First, if a constraint fðvÞ�� is not
antimonotone or monotone, can it be pushed into iceberg
cube mining? Second, is there a principled method that is
independent of the specific form of f? This independence is
essential because the user-specified f is unknown in
advance. Two thoughts underpin our study.

Divide-and-Approximate. If the given constraint C is
neither antimonotone nor monotone, we can “approximate”
it by some weaker or stronger constraint C0 that has such
monotonicities. For example, we can approximate C by a
weaker antimonotone constraint C0: If a cell fails C0, all its
supercells fail C0, therefore, fail the stronger C. Note that cells
satisfying C0 may still fail C. The effectiveness thus depends
on finding the strongest C0 to minimize such false positives.
To address this issue, we divide the search space into
subspaces and seek for individual approximation in each
subspace. By recursively applying this strategy to subspaces,
the approximation in a subspace approaches the given
constraint. This strategy is called Divide-and-Approximate.

Separable monotonicities. The above strategy applies to
a class called separable constraints. In a separable constraint,
fðvÞ��, the occurrences of aggregates in f can be separated
into two groups, Aþ and A�, that affect f in the opposite
way: As a cell v grows, f monotonically increases via those
in Aþ and monotonically decreases via those in A�. For
example, let psum and nsum be the sum of positive and
negative measures, A� ¼ fpsumðvÞg and Aþ ¼ fnsumðvÞg
for psumðvÞ � nsumðvÞ � �. Therefore, by holding variables
v at the maximum cell or the minimum cell for either Aþ or
A�, we are able to construct four types of approximation:
weaker antimonotone, weaker monotone, stronger antimo-
notone, and stronger monotone, to prune the search of
failed cells, the search of satisfying cells, or both. The details
will be presented shortly. In the case that only the minimum
support is given, pruning satisfying subcells amounts to
mining maximal frequent cells in the literature [3], [6].

We review related work in Section 2 and define the
problem in Section 3. In Section 4, we present the Divide-
and-Approximate strategy and show that it applies to
separable constraints. In Section 5 and Section 6, we present
an efficient implementation for the four types of approx-
imations. We evaluate the proposed approach in Section 7.
Section 8 extends this approach to Boolean combinations of
aggregate constraints. We then conclude the paper.

2 RELATED WORK

Most works on data cubes focus on efficient computation of
full cube [18], [1], view materialization [10], and range
queries where a constraint occurs in the WHERE clause
[11]. These results cannot be applied because an aggregate
constraint is specified for a cell through the HAVING clause
and is unknown at the time of view materialization. The full
cube is often too large compared to the result satisfying the
aggregate constraint.

This study is related to the works on constrained data
mining [5], [13], [9], [14], [4], [16], [15], [17]. Those techniques
are specific to predetermined constraints, namely, item
constraints [15], minimum confidence/improvement [4],
succinct constraints [13], convertible constraints [14], mini-
mum average [9], and support constraints [17]. We consider
all constraints specified by the whole language of SQL-like
aggregates and arithmetic operators (extended to Boolean
operators), and seek for a specification-independent push
strategy. Further, aggregates in traditional rule mining are
“extensional” where the values being aggregated are
associated with the items in v. We consider “intensional”
aggregates where the values being aggregated are associated
with the tuples that match the items in v. Techniques for the
former, such as for the extensional avgðvÞ in [14], are not
always applicable to the latter.

3 ICEBERG CUBE MINING

A database is a relational table R with some columns called
dimensionsDi and some columns called measuresMi. A cell is
a set of values, di1 � � � dik , over some GROUP BY list
Di1 � � �Dik , and defines the GROUP BY partition consisting
of the tuples matching di1 � � � dik . SAT ðcÞ denotes the
GROUP BY partition defined by a cell c. For example,

c ¼ fToyota; V ancouver; 2003g

is a cell on the GROUP BY list “Product, Store, Year,” and
SAT ðcÞ is the set of tuples containing all the values in c.
c ¼ fToyota; V ancouver; 2003g is a supercell of

c0 ¼ fToyota; V ancouverg;

in which case SAT ðcÞ must be a subset of SAT ðc0Þ. avgðcÞ,
minðcÞ, maxðcÞ, and sumðcÞ compute the average, mini-
mum, and maximum sum of some measure of the tuples in
SAT ðcÞ, and countðcÞ computes the number of tuples in
SAT ðcÞ. ssumðcÞ; psumðcÞ; nsumðcÞ compute the sum of
square, positive sum, and (unsigned) negative sum,
respectively. v=c means holding the variable v at the cell c.

Definition 3.1 (Constraints). A (aggregate) constraint C has

the form fðvÞ��. fðvÞ is a function of cell-valued variable v,

defined by aggregates, arithmetic operators þ;�;�; =, and
constants. � is one of <;�;�; > . � is a real. A cell c satisfies
a constraint C if applying v=c to C evaluates to true; otherwise,

c fails C. CUBEðCÞ denotes the set of cells that satisfy C. C is
weaker than C0 if CUBEðC0Þ � CUBEðCÞ.

Example 3.1. Let di; d
0
i be values on dimensionDi and let v be

a cell-valued variable. v [fdig (respectively, v [fd0ig)
denotes the variable for the cells obtained by unioning the
dimension values in v and di. countðv [fdigÞ=countðvÞ �
� specifies association rules, v ! di, above the minimum
confidence � [2]. countðv [fdigÞ=countðv [fd0igÞ � � spe-
cifies emerging patterns vwith respect to the two partitions
specified by two cells di and d0i [7]. varðvÞ � � specifies the
maximum variance constraint, where

varðvÞ ¼
�t2SAT ðvÞðM½t� � avgðvÞÞ2

countðvÞ :

WANG ET AL.: DIVIDE-AND-APPROXIMATE: A NOVEL CONSTRAINT PUSH STRATEGY FOR ICEBERG CUBE MINING 355

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

M½t� denotes the measure of tuple t. By rewriting and
substituting, we have

varðvÞ ¼ ssumðvÞ � 2sumðvÞavgðvÞ þ avgðvÞ2countðvÞ
countðvÞ :

In all examples, an optional minimum support can be
specified separately.

Definition 3.2 (Iceberg cube mining). Given a database R, a
constraint C, and a minimum support minsup the iceberg
cube mining problem is to find

CUBEðCÞ ^ CUBEðcountðvÞ=jRj � minsupÞ;

i.e., all frequent cells that satisfy C (jRj denotes the number of
tuples in R).

We treat the minimum support differently because it is
optional and is antimonotone.

Below, the terms “a-monotone”/“m-monotone” refer
to “antimonotone”/“monotone,” respectively, and
“�-monotone” refers to either. � denotes the “comple-
ment” of �, i.e., a ¼ m and m ¼ a.

Definition 3.3 (Monotonicity of constraints). C is
a-monotone if whenever a cell is not in CUBEðCÞ,
neither is any supercell. C is m-monotone if whenever a
cell is in CUBEðCÞ, so is every supercell.

Definition 3.4 (Monotonicity of functions). A function xðyÞ
is a-monotone with regards to y if x decreases whenever y

grows (for cell-valued y) or increases (for real-valued y). A
function xðyÞ is m-monotone with regards to y if x increases
whenever y grows (for cell-valued y) or increases (for real-
valued y).

psumðvÞ � nsumðvÞ is m-monotone with regards to
psumðvÞ, a-monotone with regards to nsumðvÞ, and is
neither with regards to v. The terms “a-monotone” and
“m-monotone” are overloaded for both constraints and
functions, and are differentiated from the subjects involved.

Observations 3.1. 1) fðvÞ � � is �-monotone if and only if fðvÞ
is �-monotone with regards to v. 2) fðvÞ � � is �-monotone
if and only if fðvÞ is �-monotone with regards to v.

A similar observation holds for fðvÞ > � and fðvÞ < �.

4 THE PROPOSED APPROACH

4.1 Divide-and-Approximate

If the given constraint is neither a-monotone nor
m-monotone, we can push some a-monotone or m-mono-
tone approximation, called an approximator. There are four
types of approximators: weaker a-monotone approximators,
stronger a-monotone approximators, weaker m-monotone
approximators, and stronger m-monotone approximators,
called wa-approximators, sa-approximators, wm-approxi-
mators, and sm-approximators, respectively. We use ��
for these approximators, s� for stronger approximators, w�
for weaker approximators, �a for a-monotone approxima-
tors, and �m for m-monotone approximators.

If a cell c fails awa-approximator, we can prune the search
of supercells of c because they fail the given constraint. If a
cell c fails a wm-approximator, we can prune the search of
(failed) subcells of c. If a cell c satisfies sa-approximator, we
can prune the search of subcells of c because they satisfy the
given constraint and can be generated directly from c. If a
cell c satisfies a sm-approximator, we can prune the search of
(satisfying) supercells of c. However, a satisfying cell of a
w�-aproximator may still fail the given constraint, and a
failed cell of a s�-approximator may still satisfy the given
constraint. Minimizing such “false positives” and “false
negatives” depends on finding strongest w�-approximators
or weakest s�-approximators. To address this requirement,
we seek for local approximators in subspaces. Below, we
explain this strategy using wa-approximators for sumðvÞ � �

in the space S ¼ fc j c is a subcell of d1 � � � dpg, where d1 � � � dp
is a fixed cell.

First, we rewrite sumðvÞ � � into psumðvÞ � nsumðvÞ �
� and regard psum as the “profit” and nsum as the
“cost.” Ignoring the “cost” entirely gives the first wa-
approximator, psumðvÞ � �. Underestimating the “cost” by
the minimum for any cell gives a stronger wa-approx-
imator, i.e., psumðvÞ � nsumðd1 � � � dpÞ � �. That is, if it is
so hopeless to pass the threshold even with the minimum
cost, there is no need to consider any supercell of v in S.
A still better attempt is to divide S into subspaces S1 ¼
fd1cg and S0 ¼ fcg, where c is a subcell of d2 � � � dp, and
use psumðvÞ � nsumðd1d2 � � � dpÞ � � in S1 and psumðvÞ �
nsumðd2 � � � dpÞ � � in S0. The latter is stronger than the
former. We can apply this strategy recursively to S0 and
S1 to obtain increasingly stronger wa-approximators in
subspaces. We call this strategy Divide-and-Approximate.

4.2 Separable Constraints

To obtain an approximator for fðvÞ��, the key is to separate
the aggregates in fðvÞ into two groups, Aþ and A�, such
that as a cell v grows, Aþ increases the value of f , and A�

decreases the value of f . We then can obtain an approx-
imator by holding the variable v in one of Aþ and A� at the
maximum cell or the minimum cell. Below, Aþ=c and A�=c
mean holding the variable v in Aþ and A� at the cell c.

Example 4.1. Consider avgðvÞ � �, or written

psumðvÞ=count1ðvÞ � nsumðvÞ=count2ðvÞ � �:

The two occurrences of count are renamed because they
have different memberships in Aþ and A�. Note that all
aggregates now are a-monotone with regards to v. Let
Aþ ¼ fnsumðvÞ; count1ðvÞg and

A� ¼ fpsumðvÞ; count2ðvÞg:

avg is a-monotone with regards to each aggregate in Aþ

and is m-monotone with regards to each aggregate in A�.
Therefore, as v grows, avg increases via Aþ by composing
two a-monotone functions, i.e., avg with regards to Aþ

and Aþ with regards to v, and avg decreases via A� by
composing one m-monotone function with one a-mono-
tone function, i.e., avg with regards to A� and A� with
regards to v. Let c and c be the minimum and maximum
cells. Applying Aþ=c gives the wa-approximator:

356 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

psumðvÞ=count1ðcÞ � nsumðcÞ=count2ðvÞ � �;

and applying A�=c gives the sm-approximator:

psumðcÞ=count1ðvÞ � nsumðvÞ=count2ðcÞ � �:

To separate the aggregates into Aþ and A�, a
requirement is that every aggregate be �-monotone and
sign-preserved, i.e., never change the sign. Imagine what if
count1 could have changed the sign: Its membership in
Aþ or A� would depend on the sign. Below, we rewrite
an aggregate constraint and partition the space to meet
these requirements. First of all, psum, nsum, count are
�-monotone and sign-preserved, and sum and avg can be
rewritten into such aggregates, i.e., sum ¼ psum� nsume
and avg ¼ ðpsum� nsumeÞ=count. max and min can be
rewritten into �-monotone and sign-preserved aggregates:
max ¼ pos� pmax� ð1� posÞ � nmin and

min ¼ neg� nmaxþ ð1� negÞ � pmin;

where

. posðvÞ: Return 1 if some tuple in SAT ðvÞ has a
nonnegative measure (including 0); return 0
otherwise.

. negðvÞ: Return 1 if some tuple in SAT ðvÞ has a
nonpositive measure (including 0); return 0
otherwise.

. pmaxðvÞ: Return the maximum nonnegative mea-
sure in SAT ðvÞ; return 0 if all measures in SAT ðvÞ
are negative.

. pminðvÞ: Return the minimum nonnegative measure
in SAT ðvÞ; return 0 if all measures in SAT ðvÞ are
negative.

. nmaxðvÞ: Return the maximum jMj where M is a
nonpositive measure in SAT ðvÞ; return 0 if all
measures in SAT ðvÞ are positive.

. nminðvÞ: Return the minimum jMj where M is a
nonpositive measure in SAT ðvÞ; return 0 if all
measures in SAT ðvÞ are positive.

Note that these new aggregates are �-monotone and
sign-preserved.

Consider an arithmetic function f of sign-preserved
�-monotone aggregates. Suppose that f contains k denomi-
nators Z1; � � � ; Zk that are not sign-preserved. A sign-space
consists of all cells c that agree on the sign of Zi, 1 � i � k.
We denote a sign-space by a bitmap b1 � � � bk, where bi
represents the sign of Zi, i.e., 1 for “-” and 0 for “+.”
Conceptually, the whole space can be partitioned into 2k

sign-spaces, corresponding to the 2k bitmaps, such that in
each sign-space, no denominator changes the sign. Below is
the main result we like to establish.

Theorem 4.1. Consider an arithmetic function f of sign-
preserved �-montone aggregates. There is a rewriting f 0 of
f such that in each sign-space, every operand of � and = in f 0

is sign-preserved.

Proof. In a sign-space, no denominator of = changes the
sign. If an operand of � changes the sign, it must be an
expression of þ and � because each aggregate is sign-
preserved. We can then distribute � over þ and � in the
expression. This distribution is repeated as long as an
operand of � changes the sign. tu

We say that f 0 in Theorem 4.1 is ð�; =Þ-sign-preserved
(with regards to sign-spaces). In a sign-space, since no
operand of � and = in f 0 changes the sign, each aggregate
either increases or decreases f 0, but not both, as v grows. In
other words, f 0 is either m-monotone or a-monotone with
regards to each aggregate in f 0, while fixing the other
aggregates. Therefore, in each sign-space, the Aþ=A�

membership of an aggregate in f 0 is well defined.

Definition 4.1 (Separable constraints). f�� is a separable
constraint if f is an arithmetic function of sign-preserved
�-monotone aggregates.

In light of Theorem 4.1, we assume that a separable
constraint f�� is ð�; =Þ-sign-preserved.
Definition 4.2 (Aþ and A�). Consider a separable constraint

f�� and some sign-space. Let Aþ and A� be the partition of
aggregates (occurrences) in f , denoted by fðAþ;A�Þ, such
that 1) aggðvÞ is in Aþ if aggðvÞ is �-monotone with regards
to v and if f is �-monotone with regards to aggðvÞ in the sign-
space by fixing other aggregates, 2) aggðvÞ is in A� if aggðvÞ is
�-monotone with regards to v and if f is �-monotone with
regards to aggðvÞ in the sign-space by fixing other aggregates.

In other words, Aþ contains the aggregates aggðvÞ whose
monotonicity with regards to v is the same as f with regards
to aggðvÞ. If we holdA� at constant, fðvÞ becomes composing
two functions of the same monotonicity, thus, m-monotone
with regards to v. A� contains the aggregates aggðvÞ whose
monotonicity with regards to v is the complement of f with
regards to aggðvÞ. If we hold Aþ at constant, fðvÞ becomes
composing two functions of the complement monotonicity,
thus, a-monotone with regards to v.

Corollary 4.1. The following classes are separable constraints,
with each (except the first) generalizing the previous one: 1) All
constraints built by arithmetic functions of SQL aggregates
count, sum, avg, max, and min. 2) All constraints built by
arithmetic functions of count, psum, nsum, pos, neg, pmax,
pmin, nmax, and nmin. 3) All constraints built by arithmetic
functions of sign-preserved �-monotone aggregates.

The above corollary conveys three points. First, separable
constraints include most constraints arising from real life.
Second, the single strategy of Divide-and-Approximate
provides a uniform way to deal with all separable
constraints. Third, the notion of separable constraints is
open to the arithmetic function f and sign-preserved
�-monotone aggregates in f . This flexibility is essential in
real life where constraints are specified by the user and are
not known in advance.

The following theorem tells how to compute Aþ and A�

for f��, denoted fðAþ;A�Þ��, in a given sign-space.

Theorem 4.2. Consider f1ðAþ
1 ;A

�
1 Þ and f2ðAþ

2 ;A
�
2 Þ. ðAþ;A�Þ

for a function built by f1 and f2 is computed as follows:

1. �f1: A
þ ¼ A�

1 and A� ¼ Aþ
1 .

2. f1 þ f2: A
þ ¼ Aþ

1 [Aþ
2 and A� ¼ A�

1 [A�
2 .

3. f1 � f2: A
þ ¼ Aþ

1 [A�
2 and A� ¼ A�

1 [Aþ
2 .

4. f1 � f2: If the sign of ðf1; f2Þ is ðþ;þÞ,Aþ ¼ Aþ
1 [Aþ

2

and A� ¼ A�
1 [A�

2 . If the sign is ð�;�Þ, consider
ð�f1Þ � ð�f2Þ, thus, reduced to 1) and ðþ;þÞ sign. If

WANG ET AL.: DIVIDE-AND-APPROXIMATE: A NOVEL CONSTRAINT PUSH STRATEGY FOR ICEBERG CUBE MINING 357

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

the sign is ðþ;�Þ, consider f1 � ð�f2Þ, and if the sign is
ð�;þÞ, consider ð�f1Þ � f2.

5. f1=f2: If the sign of ðf1; f2Þ is ðþ;þÞ, Aþ ¼ Aþ
1 [A�

2

and A� ¼ A�
1 [Aþ

2 . Similar to 4), other signs of
ðf1; f2Þ can be reduced to 1) and ðþ;þÞ sign.

4.3 Approximators

Consider a sign-space. Let hc; ci denote the set of cells with c
as the minimum cell and c as the maximum cell. Following
Observation 3.1 and Definition 4.2, Tables 2 and 3
summarize the construction of ��-approximators. These
constructions remain unchanged by replacing � with >
and replacing � with < . “Pruning satisfying hc; ci” means
outputting the minimum c and maximum c without testing
the constraint for every cell bounded by them. To use these
approximators for pruning, we need to identify a sign-space
and minimum/maximum cells c and c in the sign-space,
and the space hc; ci without enumerating its cells. We
consider these implementation issues in Section 5.

5 THE IMPLEMENTATION

5.1 Strongly Separable Constraints

The effectiveness of ��-approximators depends on having

a large hc; ci within a sign-space, i.e., a “connected”

sign-space.

Definition 5.1. A constraint is sign-space connected if every

denominator is either sign-preserved or �-monotone with

regards to v. A constraint is strongly separable if it is both

separable and sign-space connected.

In a strongly separable constraint, every denominator

changes the sign at most once as the cell v grows. In Table 1,

except for 8, 11, and 12, all constraints are strongly

separable. If avg is nonnegative, 8, 11, and 12 are strongly

separable. Let signðcÞ denote the the bitmap that identifies

the sign-space of a cell c.

Theorem 5.1 (Inward monotonicity). Consider a strongly

separable constraint. 1) For every cell c in hc; ci,
signðcÞ ¼ signðcÞ. 2) If c and c fail an ��-approximator, so

do all cells in hc; ci. 3) If c and c satisfy an ��-approximator,

so do all cells in hc; ci.
Proof. Number 1 follows because the sign changes at most

once as a cell v grows. Numbers 2 and 3 follow because c

and c agree on whether to satisfy a ��-approximator that

is either a-monotone or m-monotone in hc; ci. tu

In other words, knowing that a minimum c and a

maximum c fail (or satisfy) the constraint is sufficient to

know that all cells between them fail (or satisfy) the

358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

TABLE 1
Some Separable Constraints (di; d

0
i Are Constants)

TABLE 2
Approximators for fðvÞ � �

TABLE 3
Approximators for fðvÞ � �

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

constraint. By identifying such c and c, we can prune the
work of generating the partitions for all cells between them.

5.2 Approximators Originating at Leaf Nodes

In this section, we construct wa-approximators for a
strongly separable constraint f � �, fðAþ=c;A�Þ��, where
c is the maximum cell that fails f � �. See the upper-right
corner in Table 3. First, we describe the search space.

The lexicographic tree. A node in the lexicographic tree
corresponds to a GROUP BY list D1 � � �Dk, k � 0, in the
lexicographic order. The root corresponds to the null
GROUP BY list and has one child for each dimension Di,
in the lexicographic order. For a nonroot node u ¼
D1 � � �Dk�1Dk with q siblings on its right, D1 � � �Dk�1Dkþi,
1 � i � q, the ith child of u, 1 � i � q, is generated by the
extra dimension at the ith sibling of u, i.e., D1 � � �DkDkþi (ith
child). treeðuÞ denotes the subtree rooted at node u and
tailðuÞ denotes the set of dimensions in treeðuÞ. Note that
tailðuÞ is represented by the leaf node on the left-most path
in treeðuÞ.

The depth-first search is illustrated by the sequence
number next to each node in Fig. 1. First, we examine the
empty cell at the root. Next, we produce partitions a1 to
ai. Next, we produce partitions a1b1; � � � at node AB,
a1b1c1; � � � at node ABC, a1b1c1d1; � � � at node ABCD, and
a1b1c1d1e1; � � � at node ABCDE, in that order. After
completing a1b1c1d1, we “backtrack” to node ABCD to
process other partitions at the node in a similar manner,
“backtrack” to node ABC to partition on dimension E.
After completing the a1b1c1 partition, we proceed to
a1b1c2; a1b1c3; � � � . We then “backtrack” to node AB to
process a1b2; a1b3; � � � , and “backtrack” to A to process
a2; a3; � � � , and finally “backtrack” to the root to process
other child nodes of the root. This search was used in the
Bottom-Up Computation (BUC) [5] to find frequent cells,
where partitioning is stopped if a cell becomes infrequent.

Constructing wa-approximators. Consider a strongly
separable C: fðvÞ � �. Suppose that we reach a leaf node
u0 and find a cell p at u0 fails C. Following Table 3, we
construct the wa-approximator in the sign-space signðpÞ:
Cp : fðAþ=p;A�Þ � �. Consider an ancestor uk of u0 such
that u0 is on the left-most path in treeðukÞ and
signðp½uk�Þ ¼ signðpÞ. Define

treeðuk; pÞ ¼ fp½u� j u is a node in treeðukÞg;

where p½u� is the projection of cell p onto the dimensions at
the node u. Note that p and p½uk� are the maximum cell and
the minimum cell in treeðuk; pÞ, respectively. From
Theorem 5.1, if p½uk� fails Cp, all cells in treeðuk; pÞ fail Cp
(thus, C).

To leverage the above pruning, we push p to uk to mark
that all cells in treeðuk; pÞ fail Cp. Particularly, on back-
tracking from the first child uk�1 to the parent uk, for each p
pushed to uk�1, we check if signðp½uk�Þ ¼ signðpÞ and if p½uk�
fails Cp. If both conditions hold, we push p to uk. To exploit
each p pushed to uk, for each remaining child wj of uk, we
prune all tuples that match p over tailðwjÞ, because such
tuples generate only cells in treeðuk; pÞ, all of which fail Cp.
This new form of partitioning is formalized below.

The filtered-partitioning. A filter at uk refers to a cell
pushed to uk. The filtered-partitioning for a child wj of uk

refers to partitioning all the tuples at uk except those that
match any filter at uk over tailðwjÞ. By not partitioning such
tuples, affected are only those cells in treeðuk; pÞ, which are
known to fail Cp. Note that it does not work to prune “all”
partitioning below p½uk� because there may exist some
partition p0 at some node u in treeðukÞ such that p0 is not in
treeðuk; pÞ, i.e., p0½uk� ¼ p½uk� but p0½u� 6¼ p½u�. To tell if a cell
in treeðukÞ is in treeðuk; pÞ, we also partition the filters
pushed to uk, just like partitioning regular tuples. Such
partitions are called auxiliary partitions.

Theorem 5.2. A cell in treeðukÞ is in treeðuk; pÞ for some filter p
if and only if the corresponding auxiliary partition is
nonempty.

Proof. For a cell c in treeðukÞ, if its auxiliary partition is
nonempty, for every filter p in the auxiliary partition, c is
a subcell of p, so in treeðuk; pÞ. On the other hand, if a cell
c is in treeðuk; pÞ, for some filter p at uk, p is a supercell of
c, so belongs to the auxiliary partition of c. tu

Example 5.1. Consider the constraint C: sumðvÞ � �, or
written as psumðvÞ � nsumðvÞ � �. Aþ ¼ fnsumðvÞg
and A� ¼ fpsumðvÞg because as v grows, sum in-
creases via nsumðvÞ and decreases via psumðvÞ. In
Fig. 1, suppose that we reach a cell p at the leaf node
u0 ¼ ABCDE and p fails C. The wa-approximator Cp is
psumðvÞ � nsumðpÞ � �. Note that nsumðpÞ is an
underestimate of nsumðvÞ for any cell v at a node in
treeðukÞ such that u0 is on the left-most leaf in treeðukÞ.

On backtracking to the node ABC, suppose that
p½ABC� is in signðpÞ and fails Cp. At the child ABCE, the
filtered-partitioning will not partition any tuple t such
that t½ABCE� ¼ p½ABCE� because they generate only
cells in treeðABC; pÞ. Subsequently, these tuples are not
examined in any lower partitioning. On backtracking to
the node AB, if p½AB� is in signðpÞ and fails Cp, at the
child ABD the filtered-partitioning will not partition any
tuple t such that t½ABDE� ¼ p½ABDE�, where

ABDE ¼ treeðABDÞ;

and at the child ABE, the filtered-partitioning will not
partition any tuple t such that t½ABE� ¼ p½ABE�. Note
that, if p½AB� satisfies CðpÞ, all higher-level subcells, i.e.,
p½A� and the empty cell, must satisfy CðpÞ.

WANG ET AL.: DIVIDE-AND-APPROXIMATE: A NOVEL CONSTRAINT PUSH STRATEGY FOR ICEBERG CUBE MINING 359

Fig. 1. The lexicographic tree for A;B;C;D;E.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

Remarks. The effectiveness of filtered-partitioning depends
on a filter p being pushed up a left-most path to a high
ancestor uk so that filtered-partitioning can be performed
in a large subtree below uk. This occurs under the
following conditions: The threshold � is so large that the
underestimate nsumðpÞ does not help to pass it, there are
many negative measure values, nsumðpÞ is a good
approximation of nsumðp½uk�Þ. The last condition occurs
when the values in p½uk� are correlated to those in
p� p½uk�, or when the tuples matching p½uk� but not p

have close-to-zero negative values.

5.3 Approximators Originating at Any Nodes

So far, a filter is generated by partitioning all the way to a
leaf node. If a minimum support is specified, it makes sense
to restrict filters to frequent cells. Consider Fig. 1. Suppose
that the cell p ¼ abcd at ABCD is frequent, but the cell abcde
at node ABCDE is not. Now, even if we can push p to
uk ¼ A, we cannot prune the cells in treeðuk; pÞ, i.e.,
ac; ad; acd; abd, because cells not in treeðuk; pÞ, i.e.,
ace; ade; acde; abde, “depend on” the cells in treeðuk; pÞ.
The fact that the dimension E occurs in every leaf node
presents the worst scenario for pruning cells not involving
E. This difficulty stems from the “sequential growth” of the
lexicographic tree where the ith child of a node is grown by
the ith sibling. We propose a novel “rollback growth” to
address this problem.

The rollback tree. Suppose that u has q siblings on its
right, D1 � � �Dk�1Dkþi, 1 � i � q. For 1 � i � q, the ith child
of u is generated using the ði� 1Þth sibling (with 0 treated
as q): D1 � � �DkDkþi�1. RBtreeðuÞ denotes the subtree at a
node u. RBtreeðu; pÞ denotes the set of projected cells of p
onto the nodes in RBtreeðuÞ. As before, tailðuÞ denotes the
dimensions in RBtreeeðuÞ. Note that the rollback tree
assumes no fixed order of dimensions.

Consider Fig. 2. The first child AB of u ¼ A is generated
using the last sibling B of u; the second child AE of u is
generated using the first sibling E of u, etc. The last

dimension E on the left-most path ABCDE now occurs in
the second child of the nodes on this path (i.e.,
ABCE;ABE;AE;E), the second last dimension D on the
left-most path ABCDE occurs in the third child of the
nodes on this path (i.e., ABD;AD;D), and so on. As a result,
E does not occur in the following subtrees: RBtreeðACÞ,
RBtreeðADÞ, RBtreeðABDÞ, RBtreeðBÞ, RBtreeðCÞ, and
RBtreeðDÞ. Therefore, we can use a cell p ¼ abcd at the node
ABCD to prune the subcells of p in these subtrees. These
subtrees are defined by the notion of filtering scope.

Definition 5.2 (The filtering scope). Consider a (possibly
nonleaf) node u0, a cell p at u0, and the left-most path
uk; � � � ; u0 in RBtreeðukÞ, k � 0. p is a filter generated at u0

and anchored at uk if 1) p is frequent and fails C, 2) no
partition of p at the first child of u0 satisfies 1), and 3) uk is the
highest possible node such that signðp½uk�Þ ¼ signðpÞ and
fails Cp. The filtering scope of p consists of RBtreeðwi; pÞ, for
k � i � 1, where wi are the last i� 1 child nodes of ui. The
tuples in the partition for p are generating tuples of p.

Intuitively, wi are such child nodes of ui that tailðwiÞ
contains only the dimensions at the node u0. This ensures
that all cells in RBtreeðwi; pÞ are subcells of p and pruning
them has no effect on any cell that is not a subcell of p. Item 2
ensures the maximality of p. Item 3 ensures the maximality
of the filtering scope of p.

Example 5.2. Consider the rollback tree in Fig. 2. Suppose
that p ¼ abcd is a filter generated at node ABCD and
anchored at node A. We have u3 ¼ A, u2 ¼ AB,
u1 ¼ ABC, u0 ¼ ABCD. The filtering scope of p consists
of RBtreeðAD; pÞ and RBtreeðAC; pÞ, where AD and AC
are the last two child nodes of u3, and RBtreeðABD; pÞ,
where ABD is the last child node of u2. If p ¼ ebc is a
filter generated at node EBC and anchored at node E,
u2 ¼ E; u1 ¼ EB; u0 ¼ EBC, and the filtering scope of p
is RBtreeðEC; pÞ, where EC is the last child node of u2.
p ¼ ebc is not a filter generated at EBC and anchored at
the root because EBC is not on the left-most path in
RBtreeðrootÞ.

Theorem 5.3. Let p be a filter generated at u0 and anchored at uk.
1) The filtering scope of p is a subspace of hp½uk�; pi. 2) All cells
in the filtering scope of p fail Cp.

Proof. Item 1 follows from the above discussion. Item 2
follows from Theorem 5.1 and Item 1. tu

5.4 The Algorithm

Following the above discussions, we modify BUC for our
purpose as follows:

1. We use the rollback tree instead of the lexicographic
tree.

2. On backtracking from the first child ui to the parent
uiþ1, we push a filter p at the child to the parent if
p½uiþ1� fails Cp and if signðp½uiþ1�Þ ¼ signðpÞ. A filter p
at uiþ1 is stored as hp; iþ 1i.

3. For the jth child wj of uiþ1, where j > 1, we apply
Definition 5.2 to determine the filters for the
filtered-partitioning at wj. The jth child wj from
the left is the rth child from the right, where
r ¼ Num childðuiþ1Þ � jþ 1. So, the filters for

360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 2. The rollback tree for A;B;C;D;E.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

filtered-partitioning at wj have the form hp; rþ 1i,
where p is a filter pushed to uiþ1.

4. After processing all child nodes of uiþ1, if no filter is
pushed to uiþ1 (to ensure the maximality in Defini-
tion 5.2, Item 2) and if the current partition p at uiþ1

fails C, we generate a new filter p at uiþ1.
5. At each node, we partition filters to produce

auxiliary partitions, which are used to test if a cell
is in any pruning scope.

For any two filters at the same node, their generating
tuples are disjoint because neither filter is a supercell of
another (Definition 5.2, Item 2). Since each (frequent) filter
has at least minsup� jRj generating tuples, at most
1=minsup filters are pushed to a node in the rollback tree.
Therefore, there are at most l� 1=minsup filters on a
partitioning path of length l. This bound is independent
of the database size jRj, which is highly desirable for the
scalability on very large databases. If partitioning is
implemented as “moving” instead of “copying,” this bound
remains unchanged after partitioning filters. For example,
with minsup ¼ 0:1%, we have at most 1; 000� l filters on a
path of length l.

6 EXTENSION TO OTHER APPROXIMATORS

Aw�-approximator is effectivewhenmany cells fail the given
constraint, i.e., the constraint is tight. A s�-approximator is
effectivewhenmany cells satisfy the given constraint, i.e., the
constraint is loose. Below, we consider implementation for
other approximators of f � �. A similar consideration
applies to the comparators �; >;< .

wm-approximators. A wm-approximator is obtained by
A�=c and is used to prune failed hc; ci (Table 3). c is the
highest frequent cell p0 that fails C at some node uk. We
construct the wm-approximator Cp0 following Table 3, and
go down from p0 following the left-most path, identify c as
the lowest frequent cell p that fails Cp0 but satisfies
signðp0Þ ¼ signðpÞ. Note that p0 ¼ p½uk�. From Theorem 5.1,
all the cells in hp½uk�; pi fail Cp0 . Upon backtracking, like for
wa-approximators, we push the filter p up to the node uk,
for the filtered-partitioning in the filtering scope of p. The
filtering scope of p is defined as in Definition 5.2, with “Cp”
replaced with “Cp½uk�.”

sm-approximators. A sm-approximator is obtained by
A�=c and is used to prune satisfying hc; ci (Table 3). We
construct the sm-approximator Cp as in Table 3. In
Definition 5.2, replace “fails” with “satisfies.” Theorem 5.1
implies that all the cells in the filtering scope of p satisfy Cp.

sa-approximators. A sa-approximator is obtained by
Aþ=c and is used to prune satisfying hc; ci (Table 3). We look
for the highest frequent cell p0, at some uk on the left-most
path that satisfies C, constructing the sa-approximator Cp0 ,
and look for the lowest frequent cell p on the left-most path
that satisfies Cp0 and signðpÞ ¼ signðp0Þ. In Definition 5.2, we
replace “fails C” with “satisfies C” and replace “fails Cp”
with “satisfies Cp½uk�”. Theorem 5.1 implies that all the cells
in hp½uk�; pi, thus, in the filtering scope of p, satisfy Cp½uk�. The
rest is similar to the case of sm-approximators.

Combinations of approximators. Pushing both a
w�-approximators and an s�-approximators prunes both

failed and satisfying cells, whereas pushing both a
wm-approximator and a wa-approximator prunes failed
cells by either approximator. This can be done by
maintaining a separate set of filters for each approxima-
tor. The bound on filters for k approximators is k times
the bound in Section 5.4. Such combinations are beneficial
if the subspaces pruned by different approximators are
largely nonoverlapping. The perfect nonoverlapping is
guaranteed by the combination of w�-approximators and
s�-approximators because the former prunes failed cells
and the latter prunes satisfying cells.

7 EXPERIMENTS

We empirically evaluated the Divide-and-Approximate
approach or DnA in short. The DnA family refers to the
algorithms by pushing wa-approximators, sm-approxima-
tors, wm-approximators, and sa-approximators, denoted by
WA, SM, WM, and SA, and combinations of two approx-
imators, denoted by WA/SM, WA/SA, WM/SM, and WM/SA.
We will explain why we do not consider combinations of
more than two approximators. We considered two con-
straints, sum � � and avg � �, where sum is rewritten into
psumðxÞ � nsumðxÞ, with or without the minimum support.
These constraints capture a minimum requirement on two
types of growth, i.e., difference and ratio.

We compared DnA with BUC and BUC+. BUC pushes
only the minimum support (when it is specified). BUC+
pushes the minimum support and the weaker a-monotone
psum � �. All these algorithms are based on the depth-first
search, which minimizes the difference contributed by
factors other than the proposed pruning. We considered
two performance criteria, execution time and tuple examina-
tion. The tuple examination refers to the number of times a
tuple or filter is examined during partitioning. The
partitioning operation was implemented by a linear sorting
algorithm called CountingSort in [5]. All algorithms were
implemented in C and tested on a PC with Windows 2000,
CPU clock of 1G and memory of 512M.

7.1 Experiments on Synthetic Data Sets

As pointed out in Section 5.2, the effectiveness of
��-approximators depends on the distribution of positive

WANG ET AL.: DIVIDE-AND-APPROXIMATE: A NOVEL CONSTRAINT PUSH STRATEGY FOR ICEBERG CUBE MINING 361

TABLE 4
The Parameters of the Data Generator

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

and negative measure values, the threshold � and the
correlation of dimension values. Synthetic data sets were
generated to simulate a wide range of such characteristics.
We iteratively added groups of new tuples using the
parameters in Table 4. In each iteration, we add a group of
r ¼ randðÞ � � new tuples t1; � � � ; tr that repeat the values on
d randomly determined dimensions. randðÞ generates a
number uniformly distributed in the range ½0; 1�. d follows
the Poisson distribution of the mean �. � and � dictate the
count of frequent cells. To simulate the sharing of values
between groups, a fraction, 0.5 in our experiments, of the d
repeat dimensions takes values from those of the previous
group. For each tuple in a group t1; � � � ; tr, we toss a �=ð1�
�Þ-weighted coin to choose the normal distribution for the
negative measure or the normal distribution for the positive
measure.1

The search of the full cube requires 215 � 100; 000 ¼
3; 276; 800; 000 tuple examinations, at 0 percent minimum
support, and BUC took about 9,000 seconds. For the trivial
“true” C, every cell satisfies C, and so WM and WA are
inapplicable. SM and SA pruned the search of the cells in
hc; ci (see Table 3), where c is the empty cell and c is a
maximal frequent cell. In this case, SM and SA degenerated
into mining maximal frequent cells. Fig. 3 compared SM
and SA with BUC for different minimum supports while
fixing other parameters at the default setting. Hence, our
strategies provided additional pruning beyond the classic
a-monotonicity-based pruning.

1. sum � �: Figs. 4 and 5 show the results for sum � �.

The effect of minimum support. Figs. 4a and 4b plots
the execution time on the left and tuple examination on the
right. Refer to Table 4 for default settings. The first
observation is that, as the minimum support was reduced,
BUC slowed down quickly, whereas BUC+ and the DnA
family picked up the pruning via the constraint psum � �
and the approximator. Particularly, as the minimum
support was reduced, eventually to 0 percent (not shown
here), the time of BUC quickly increased, eventually to
9,000 seconds, whereas the time of other algorithms
remained similar to that at the minimum support of
0.02 percent. This showed that the constraint pushing

beyond minimum support is important in dealing with
explosion of computation.

In this experiment, w�-approximators, i.e., WA and WM,
performed better than s�-approximators, i.e., SA and SM.
Recall that w�-approximators prune failed cells, whereas
s�-approximators prune (the search of) satisfying cells
(Table 3). For the default threshold � ¼ 300 and default
ranges ½0; 10� and ½�10; 0� of the positive and negative
measures, it is easier to fail a w�-approximator than to
satisfy a s�-approximator. As a result, pruning failed cells is
more effective than pruning satisfying cells.

The effect of minimum sum. Figs. 4c and 4d plots the
performance over a range of minimum sum �. WM and WA
benefited from a larger �, whereas SM and SA benefited
from a smaller � because a larger � helps generate failed
filters and a smaller � helps generate satisfying filters. With
the default minimum support of 0.5 percent, BUC+ is not
better than BUC because the minimum support constraint is
stronger than psum � �. However, as in Figs. 6a and 6b, for
a smaller minimum support, BUC+ benefited from the
positive term constraint.

The effect of correlation. Figs. 4e and 4f and 4g and 4h
show the performance for a range of repeat factor � and
Poisson mean �, respectively. For a “dense” data set with a
larger � or a larger �, all algorithms took a longer time. WM

and WA performed better than SM and SA for the default
setting of � ¼ 300. The converse was observed for a smaller
� in Figs. 4c and 4d where the existence of many satisfying
cells made pruning such cells more effective.

The scalability. In Fig. 5i, we varied the number of
dimensions m from 15 to 21 and kept the Poison mean � at
2=3 of m and other parameters at the default setting. In
Fig. 5j, we varied the database size n from 200K to 1,000K
and kept the repeat factor � at 1 percent of n and other
parameters at the default setting. WM and WA showed a
better scalability than other algorithms. But, for a smaller �,
SM and SA were more scalable (not shown here).

The effect of split factor. Fig. 5k shows the performance
over a range of split factor �, with other parameters at their
default settings. A larger split factor generated more tuples
with a negative measure. This makes it easier to generate
more filters required by WM and WA. In this aspect, a large
split factor is similar to a large minimum sum.

The effect of combining approximators. Fig. 5l shows
that combining “heterogeneous” approximators, i.e., one
w�-approximator and one s�-approximator, inherited the

362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

1. The range [a,b] for the normal distribution has a 95 percent confidence
interval.

Fig. 3. Minimum support only.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

benefit of both. As the split factor varied, one approximator
became more effective, whereas the other became less
effective (see Fig. 5k). Therefore, the pruning is effective in

the whole range of split factor. To the contrary, in a
“homogeneous” combination of two w�-approximators or
two s�-approximators, each approximator made the other

WANG ET AL.: DIVIDE-AND-APPROXIMATE: A NOVEL CONSTRAINT PUSH STRATEGY FOR ICEBERG CUBE MINING 363

Fig. 4. sum � �.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

approximator redundant because they reached the peak
performance under a similar condition, i.e., either both
prune failed cells or both prune satisfying cells. We will not
further consider combinations of three or more types of
approximators (such as WA/SA/SM) because such combina-
tions always contained “homogeneous” approximators.

2. avg � �: The data set in this experiment is exactly the
same as for sum � �, except that all measure values
are positive. The default minimum average � is 6,
which is 20 percent higher than the mean 5. The
performance was shown in Fig. 6, which was quite
similar to that for sum � �. This shows that the
pruning is effective for minimum requirements on
both types of growth.

7.2 Experiments on Real Life Data Sets

We also experimented on the learning set of the KDD-
CUP-98 data set [12]. We chose two measures, 97NK,
which represents the donation amount in 1997, and
95NK, which represents the donation amount in 1995.
The number of tuples that have a nonzero value on
97NK, with the range ½1; 200� and the mean 15.62 is 4,843.
The number of tuples that have a nonzero value on
95NK, with the range of ½1; 200� and the mean 13.25 is
23,317. We chose the constraint sum1ðxÞ � sum2ðxÞ � �,
where sum1 computes the sum of 97NK and sum2

computes the sum of 95NK. This constraint specifies
donor’s characteristics that improve the donation amount
by at least �. The original data set has 95,412 tuples. After

removing all tuples having zero value on both 97NK and

95NK, we have 26,600 remaining tuples. The original data

set has 481 dimensions, most of which are not related to

the donation amount. We selected the following likely

relevant 16 dimensions:

RECINHSE(2): In house file flag

RECP3(2): P3 file flag

RECPGVG(2): Planned giving file flag

RECSWEEP(2): Sweepstakes file flag

MDMAUD(5,4,5,2): The major donor matrix code

DOMAIN(6,5): Domain/Cluster code
CLUSTER(54): Code indicating which cluster group the

donor falls into

HOMEOWNR(3): Home owner flag

NUMCHLD(8): Number of children

INCOME(8): Household income

GENDER(7): Gender

WEALTH1(11): Wealth rating

The cardinality of each dimension is given in ().

MDMAUD and DOMAIN have two or more subdimen-

sions, each of which is treated as a dimension.
The full search space at 0 percent minimum support is

216 � 26; 600 ¼ 1; 743; 257; 600 tuple examinations. Figs. 7a

and 7b showed the performance of all algorithms for a

range of minimum support, with the minimum sum fixed at

100. Figs. 7c and 7d showed the performance for a range of

364 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 5. sum � � continued.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

WANG ET AL.: DIVIDE-AND-APPROXIMATE: A NOVEL CONSTRAINT PUSH STRATEGY FOR ICEBERG CUBE MINING 365

Fig. 6. avg � �.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

minimum sum, with the minimum support fixed at 0.1
percent. Compared to the synthetic data set, the improve-
ment of WA and WM over BUC+ was less on this data set.
With only 4,843 out of 26,600 tuples having nonzero 97NK
donation, sum1 tends to be small and sum1ðxÞ � � used by
BUC+ is somehow sufficient for pruning. SM and SA have a
similar performance to BUC+ because this data set did not
produce so many satisfying cells to make pruning such cells
a big benefit. In fact, most of the 23,317 tuples with nonzero
95NK donation have zero 97NK donation because only
4,843 tuples have nonzero 97NK donation. This situation is
similar to a large split factor in Fig. 5k where more negative
measures were generated than positive measures.

7.3 Summary

The DnA family outperformed BUC+, which outperformed
BUC, especially for a small minimum support. Within the
DnA family, WM and WA are effective when there are many
failing cells because of a tight constraint. SM and SA are
effective when there are many satisfying cells because of a
loose constraint. The “heterogeneous” combinations, i.e.,
WA/SM, WA/SA, WM/SM, and WM/SA, could supplement
the pruning strength in each case. The “homogeneous”
combinations, i.e., WA/WM and SM/SA tend to add more
overhead than benefits, due to overlapping of pruning.

8 EXTENSION TO BOOLEAN CONSTRAINTS

Often, some Boolean combination of aggregate constraints
must be satisfied for interesting cells. A Boolean constraint is

an expression of aggregate constraints, built using :
(negation), ^ (conjunction), and _ (disjunction). We

consider a Boolean constraint in the conjunctive normal form,

D1 _ � � � _ Dk, where each Di ¼ Ci1 ^ � � � ^ Ciq is a conjunc-

tion of one or more aggregate constraints Cij. An example is

ðavgðvÞ � �1Þ ^ ðvarðvÞ � �2Þ, which specifies the cells form-

ing homogeneous and profitable subpopulations by max-

imum variance and minimum average, respectively. To

extend our approach to Boolean constraints, no change is

needed in the notion of “weaker than” (Definition 3.1) and

various monotonicities of constraints (Definition 3.3).

Therefore, the notion of ��-approximators remains un-

changed. Below, we extend the notion of separable

constraints.

Definition 8.1. A Boolean constraint D1 _ � � � _ Dk is separ-

able (strongly separable) if for every Di ¼ Ci1 ^ � � � ^ Ciq,
every aggregate constraint Cij is separable (strongly separable).

Asign-space corresponds to one assignment of “+”and“-”

signs to each denominator in C that is not sign-preserved. For
a separable Boolean constraint C ¼ D1 _ � � � _ Dk, where

Di ¼ Ci1 ^ � � � ^ Ciq, we can obtain the ð�; =Þ-sign-preserved
form by applying Theorem 4.1 to each Cij. ðAþ;A�Þ for each
Cij is determined by Theorem 4.2.

Theorem 8.1. Consider a sign-space of C. Let C0ij be the

��-approximator for Cij constructed as in Tables 2 and 3.

Let C0 be C with every Cij replaced with C0ij. Then, C0 is a

��-approximator of C in the sign-space.

366 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 7. Experiments on the KDD-CUP-98 data set.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

Proof. Let op be ^ or _. The theorem follows because 1) if x
and y are �-monotone, so is x op y, and 2) if x is weaker
(stronger) than x0 and if y is weaker (stronger) than y0,
x op y is weaker (stronger) than x0 op y0. tu

Sections 4, 5, and 6 are now applicable to Boolean
constraints, by constructing ��-approximators using Theo-
rem 4.1. An interesting question is how this extension
affects the effectiveness of Divide-and-Approximate. The
study in Section 7 provides some insights. Since negation
and disjunction tend to relax the constraint, they make
pruning satisfying cells more effective. SM and SA would
perform better in this case. In contrast, conjunction tightens
up the condition, making pruning failed cells more
effective. WM and WA would perform better in this case.
If both negation/disjunction and conjunction occur, we
recommend the “heterogeneous” combinations WM/SM,
WA/SA, WA/SM, and WM/SA.

9 CONCLUSION

Pushing aggregate constraints into iceberg cube mining
presents a significant challenge, due to the lack of the “well-
behaved” antimonotonicity or monotonicity. We presented
a novel strategy called Divide-and-Approximate to address
this challenge, by combining two well-known ideas,
“divide-and-conquer” and “approximate.” This strategy
does not depend on the specific form of the f function in the
constraint, therefore, is applicable when the constraint is
unknown in advance. Experiments showed promising
results.

ACKNOWLEDGMENTS

The authors wish to thank the reviewers for their helpful
comments. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada,
Networks of Centres of Excellence/ Institute for Robotic
and Intelligent Systems, and the Research Grants Council of
the Hong Kong Special Administrative region, China
(CUHK4229/01E).

REFERENCES

[1] S. Agarwal et al. “On the Computation of Multidimensional
Aggregates,” Proc. 22nd Int’l Conf. Very Large Databases (VLDB),
1996.

[2] R. Agrawal, T. Imilienski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Datasets,” Proc. 1993 ACM
SIGMOD Int’l Conf. Management of Data, pp. 207-216, 1993.

[3] R. Bayardo, “Efficient Mining Long Patterns from Databases,”
Proc. 1998 ACM SIGMOD Int’l Conf. Management of Data, pp. 85-93,
1998.

[4] R. Bayardo, R. Agrawal, and D. Gunopulos, “Constraint-Based
Rule Mining in Large Dense Databases,” Proc. Int’l Conf. Data Eng.
(ICDE), 1999.

[5] K. Beyer and R. Ramakrishnan, “Bottom-Up Computation of
Sparse and Iceberg Cubes,” Proc. 1999 ACM SIGMOD Int’l Conf.
Management of Data, pp. 359-370, 1999.

[6] D. Burdick, M. Calimlim, and J. Gehrke, “Mafia: A Maximal
Frequent Itemset Algorithm for Transactional Databases,” Proc.
Int’l Conf. Data Eng. (ICDE), 2001.

[7] G. Dong and J. Li, “Efficient Mining of Emerging Patterns:
Discovering Trends and Differences,” Proc. Fifth ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining, pp. 43-52, 1999.

[8] M. Fang, N. Shivakumar, H. Molina, R. Motwani, and J. Ullman,
“Computing Iceberg Queries Efficiently,” Proc. 24th Int’l Conf.
Very Large Data Bases (VLDB), pp. 299-310, 1998.

[9] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computation of
Iceberg Cubes with Complex Measures,” Proc. Int’l Conf. Manage-
ment of Data (SIGMOD), 2001.

[10] V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Implementing
Data Cubes Efficiently,” Proc. 1996 ACM Int’l Conf. Management of
Data (SIGMOD), 1996.

[11] C.T. Ho, R. Agrawal, and R. Srihant, “Range Queries in Data
Cubes,” Proc. Int’l Conf. Management of Data (SIGMOD), 1997.

[12] KDD98, “The KDD-Cup-98 Dataset,” Proc. Fourth Int’l Conf.
Knowledge Discovery and Data Mining (KDD), Aug. 1998, http://
kdd.ics.uci.edu/databases/kddcup98/kddcup98.html.

[13] R. Ng, L.V. Lakshmanan, J. Han, and A. Pang, “Exploratory
Mining and Pruning Optimizations of Constrained Associations
Rules,” Proc. Int’l Conf. Management of Data (SIGMOD), pp. 13-24,
1998.

[14] J. Pei, J. Han, and L.V.S. Lakshmanan, “Mining Frequent Itemsets
with Convertible Constraints,” Proc. Int’l Conf. Data Eng., 2001.

[15] R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules
with Item Constraints,” Proc. Third Int’l Conf. Knowledge Discovery
and Data Mining (KDD), pp. 67-73, 1997.

[16] K. Wang, Y. He, D. Cheung, and F. Chin, “Mining Confident Rules
without Support Requirement,” Proc. 10th Int’l Conf. Information
and Knowledge Management, 2001.

[17] K. Wang, Y. He, and J. Han, “Pushing Support Constraints into
Frequent Itemset Mining,” Proc. Very Large Data Bases Conf.
(VLDB), 2000.

[18] Y. Zhao, P.M. Deshpande, and J.F. Naughton, “An Array-Based
Algorithm for Simultaneous Multidimensional Aggregates,” Proc.
1997 ACM SIGMOD Conf. (SIGMOD), 1997.

Ke Wang received the PhD degree from the
Georgia Institute of Technology. He is currently
a professor in the School of Computing Science,
Simon Fraser University. Before joining Simon
Fraser, he was an associate professor at the
National University of Singapore. He has taught
in the areas of database and data mining. His
research interests include database technology,
data mining and knowledge discovery, machine
learning, and emerging applications, with recent

interests focusing on the end use of data mining. This includes explicitly
modeling the business goal (such as profit mining, bio-mining and web
mining) and exploiting user prior knowledge (such as extracting
unexpected patterns and actionable knowledge). He is interested in
combining the strengths of various fields such as database, statistics,
machine learning, and optimization to provide actionable solutions to
real life problems. Dr. Wang has published in database, information
retrieval, and data mining conferences, including SIGMOD, SIGIR,
PODS, VLDB, ICDE, EDBT, SIGKDD, SDM, and ICDM. He is an
associate editor of the IEEE Transactions on Knowledge and Data
Engineering and has served program committees for international
conferences including DASFAA, ICDE, ICDM, PAKDD, PKDD,
SIGKDD, and VLDB.

WANG ET AL.: DIVIDE-AND-APPROXIMATE: A NOVEL CONSTRAINT PUSH STRATEGY FOR ICEBERG CUBE MINING 367

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

Yuelong Jiang received the BE and ME
degrees from Renmin University, China, and
now he is a PhD student in Department of
Computing Science, Simon Fraser University,
Canada. In past three years, his research
interests have included iceberg cube search,
unexpectedness mining, action mining, and
privacy preserving data mining. He has pub-
lished papers in ICDE and SIGKDD.

Jeffrey Xu Yu received the BE, ME, and PhD
degrees in computer science from the University
of Tsukuba, Japan, in 1985, 1987, and 1990,
respectively. Dr. Yu was a research fellow (April
1990-March 1991) and was a faculty member
(April 1991-July 1992) in the Institute of Informa-
tion Sciences and Electronics, University of
Tsukuba. From July 1992 to June 2000, he
was a lecturer in the Department of Computer
Science, The Australian National University.

Currently, he is an associate professor in the Department of Systems
Engineering and Engineering Management, the Chinese University of
Hong Kong. He is a member of the ACM, and a society affiliate of the
IEEE Computer Society.

Guozhu Dong received the PhD degree from
the University of Southern California in 1988. He
is currently an associate professor at Wright
State University. He also taught at the University
of Melbourne and Flinders University, and
consulted for Lucent Bell Labs and KRDL
Singapore. His main research interests are in
the areas of databases, knowledge bases, data
mining, and bioinformatics. He has more than 80
scientific publications, and three US patents. He

is a senior member of the IEEE and a member of the ACM. He has
served on program committees of numerous major database and data
mining conferences, including: IEEE ICDE, IEEE ICDM, ICDT, ACM
KDD, ACM PODS, VLDB, etc. He was a program committee cochair of
WAIM 2003. He has served on the international editorial board of the
International Journal of Information Technology.

Jiawei Han is a professor in the Department of
Computer Science at the University of Illinois at
Urbana-Champaign. Previously, he was an
Endowed University Professor at Simon Fraser
University, Canada. He has been working on
research into data mining, data warehousing,
spatial and multimedia databases, deductive
and object-oriented databases, and biomedical
databases, with more than 250 conference and
journal publications. He has chaired or served in

many program committees of international conferences and workshops,
including ACM SIGKDD Conferences (2001 best paper award chair,
2002 student award chair, 1996 PC cochair), SIAM-Data Mining
Conferences (2001 and 2002 PC cochair), ACM SIGMOD Conferences
(2000 exhibit program chair), International Conferences on Data
Engineering (2004 and 2002 PC vice-chair), and International Confer-
ences on Data Mining (2005 PC co-chair). He also served or is serving
on the editorial boards of Data Mining and Knowledge Discovery, the
IEEE Transactions on Knowledge and Data Engineering, and the
Journal of Intelligent Information Systems. He is currently serving on the
board of directors for the Executive Committee of ACM Special Interest
Group on Knowledge Discovery and Data Mining (SIGKDD). Dr. Han
has received IBM Faculty Award, the Outstanding Contribution Award at
the 2002 International Conference on Data Mining, the ACM Service
Award, and the ACM SIGKDD Innovation Award (2004). He is an ACM
Fellow. He is the first author of the textbook Data Mining: Concepts and
Techniques (Morgan Kaufmann, 2001). He is a senior member of the
IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

368 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

	Divide-and-Approximate: A Novel Constraint Push Strategy for Iceberg Cube Mining
	Repository Citation

	tmp.1402416566.pdf.qeHLy

