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Abstract

Materials and Process Specifications are complex semi-structured doc-
uments containing numeric data, text, and images. This article describes a
coarse-grain extraction technique to automatically reorganize and summa-
rize spec content. Specifically, a strategy for semantic-markup, to capture
content within a semantic ontology, relevant to semi-automatic extraction,
has been developed and experimented with. The working prototypes were
built in the context of Cohesia’s existing software infrastructure, and use
techniques from Information Extraction, XML technology, etc.

Keywords : Knowledge Management, Knowledge Engineering, Information
Extraction, Heterogeneous documents.

1 Introduction and Background

Legacy documents in a number of areas of interest are not amenable to auto-
matic manipulation because they were primarily written for human consump-
tion. Furthermore, even if we were to develop authoring techniques that create
documents that are simultaneously human sensible and machine processable,
it is still unreasonable to reauthor all existing documents. This article deals
with coarse-grain information extraction from a collection of legacy heteroge-
neous documents, and constitutes a case study in Knowledge Management and
Engineering, which encompasses techniques and tools for systematically finding,

∗This work was supported in part by NSF SBIR Phases I, II, and IIb Grants DMI-0078525
(1999-2002). The opinions expressed here do not necessarily reflect those of NSF.
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selecting, organizing, distilling and presenting information that improves human
productivity in a specific domain of interest.

Materials and Process Specifications describe requirements on the processing
of a material (alloy) in the mill, and the capabilities that the material should
possess eventually. They are critical to materials, aerospace, and automotive
industries. Specs basically present numeric data with accompanying text and
graphics that explain the quantitative information [45, 46]. They are exten-
sively used by sales personnel, design engineers, manufacturing engineers, and
quality assurance personnel. The use of paper-based specs is extremely labor-
intensive, quality-impacting, and time-consuming. Even though there is no rigid
requirement either on the technical vocabulary used, or on the format, related
specs with common origin share similar structure. Specs can be viewed as semi-
structured documents with discernible organization and constrained vocabulary.
A spec consists of a well-delimited header and a body that is further subdivided
into sections and paragraphs. The text in the spec body is not grammatical [49].
Legacy specs are available in hard copy form, and optionally, in electronic form
as an MS Word or a PDF document. Figure 1 shows a fragment of a sample
spec.

Specs historically have been handled as text documents. However, in order
to do any meaningful analysis, comparison, and integration, one should extract
numerical, tabular, or graphical data and operate on that data in the fashion
intended by its meaning. As part of defining a suitable structure for specs, Co-
hesia Corporation created the Specification Definition Representation (SDR).
SDR is a tree-based declarative language to articulate the semantic view of the
components that comprise a spec, and capture the user’s interpretation of it.
SDR introduced constructs such as Procedures to indicate boundaries for stan-
dards requirements such as chemical composition, tensile test, melt method,
etc. Procedures are composed of elemental Characteristics that describe the re-
quirements that are essential for performing the associated process (e.g., carbon
content, yield strength, minimum temperature range, etc). In fact, a proce-
dure encapsulates collections of characteristic-value pairs glued together using
suitable logical connectives. SDR also permits defining a controlled vocabulary
of industry terms called the domain library, which encodes an approximation
to domain ontology and includes lists of names for procedures, characteristics,
symbolic values, units of measure, and their inter-relationships. Figure 2 shows
the formalization of a sample spec in SDR. The SDR technology has been in-
corporated into a commercial software system called MASS (Management and
Application of Specifications and Standards), and is in use at Fortune 500 com-
panies.

Manual content extraction involves formalizing a paper-based spec in SDR
using a domain library. The extractor relies on his/her experience in interpreting
a spec, and rendering it in SDR. To be able to understand, query, combine, and
manipulate specs in practice, legacy specs should already exist in SDR format,
to serve as a foundation to build on. Thus, the cost of data preparation can far
outweigh the cost of the manipulation software. So, from business point of view,
it is imperative that the workload of a domain expert, that is, human extractor
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Figure 1: A Sample Specification Fragment
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Figure 2: A Sample SDR Extraction

and materials specialist, be reduced to any extent possible, to minimize costs
and improve revenue.

Computer assisted content extraction involves semi-automatic recognition of
phrases in spec that are associated with requirements, and subsequent synthesis
of SDR fragments, to assist an extractor. In general, content extraction can
be carried out in two steps: (a) Automatically recognize the structure and the
domain library terms present in spec, and (b) Semi-automatically reorganize
the spec text to be able to generate SDR from it. The semi-automatic approach
can improve the quality and efficiency of extraction by automating some of the
routine mechanical tasks.

This article describes our approach and experience with semi-automatic
coarse-grain content extraction from specs. The input spec is a heterogeneous
document in MS Word format. The domain knowledge and ontology is im-
plicitly given through the domain library. The extraction output is based on
SDR but can be in a number of different formats. The heterogeneous docu-
ment is first converted into a text document preserving the text, the tables,
and references to images. XML technology is used for structuring and semantic
markup of the text document and for rendering the resulting XML annotated
spec into different output formats using XSLT stylesheets [9, 54, 56]. For exam-
ple, one of the Excel-based output format is suitable for manual post-processing
and integration with the spec editor of the downstream product. We have devel-
oped a simple content extractor with focus on improving extractor productivity.
The prototype incorporated a flexible domain library search engine. The over-
all approach taken has an industrial rather than academic flavor because we
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attempted to deal with real-world specs rather than contrived ones. Thus, a re-
alistic yardstick of success is the extent to which mechanical and routine aspects
of extraction can be codified and automated, while simultaneously deferring the
more difficult and irregular portions to a domain expert.

To summarize the contributions of this article: (1) As far as we know, ours
is the first attempt at semi-automatic content extraction from semi-structured,
heterogeneous legacy Materials and Process Specifications. In particular, our
approach promotes human-in-the-loop for refinement and verification of par-
tial results obtained through automation, by retaining natural correspondence
between the spec and its translation, by preserving tables, and by isolating im-
ages. (2) We propose and develop a level of extraction that is simultaneously of
practical value and amenable to semi-automation. We also sketch the software
architecture and engineering details on tools that bridge diversity in author-
ing organizations. We believe that for domain-specific legacy documents the
proposed extraction techniques are a viable starting point. (3) To deal with
semantics preserving variations on the limited, domain-specific technical vocab-
ulary, we introduce a new approximate phrase matching algorithm for domain
library search that is useful in semi-automatic approach overseen by a domain
expert. (4) As a side benefit, the proposed solutions provide case studies in
the various uses of XML for document processing such as ease of parsing, as a
means to semantic tagging for subsequent machine processing, as a convenient
notation for use by domain experts, and as a standard data interchange format.

2 Related Work

The DARPA sponsored TIPSTER program [52] and the Message Understanding
Conferences (MUC) [29, 30, 31, 32, 33, 44] provided a major impetus to the
progress in Information Extraction technology. The MUC tasks consisted of
skimming through free-text articles in a limited domain, and filling in well-
specified templates. The template slots and the type or potential values of
the slot fillers were defined a priori. Majority of the IE systems submitted for
evaluation exploited the English syntax among other features to understand
text. In contrast, content extraction from semi-structured specs does not seem
to profit much from the English grammatical structure.

The SRI system FASTUS [24], the UMass system [15], and the NYU sys-
tems [20, 21, 57] among others made extensive use of patterns in recognizing
various tokens and concepts. MUC-7 [33] tasks included development of poten-
tially reusable domain-independent information extraction modules for marking
named entities, dates, times, money, and percentages; determining co-references;
and marking relationships among different elements such as employee of, prod-
uct of, location of, etc. In fact, GATE [19] provides Java implementations of
some of these modules in an integrated development environment. The activ-
ities pursued in the context of content extraction from specs are analogous in
spirit to the above activities. However, content extraction from specs requires
recognizing domain library terms or its equivalent, and cannot directly benefit
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from the NLP information extraction tools available in GATE.
Information extraction consists of defining the form of extraction rules,

acquiring them by hand-crafting or by machine learning, and then applying
them. In terms of the design space for extraction and transformation from
semi-structured documents studied in Crespo et al [7], materials and process
specs have the following coordinates: they have implicit structure, and are sin-
gle documents with references; they are partly irregular and relatively stable,
but can contain format and content errors . The work reported here attempts
semi-automatic content extraction from a spec by exploiting domain specific
background information in the domain library to elicit the semantics, and then
transforming the spec as desired.

Typically, extraction rules formalize linguistic features of the desired in-
formation, or the context surrounding the desired information (for example,
the enclosing HTML tags). Extraction rules can be generated using machine
learning algorithms [34]. Automatic Dictionary Construction tools, such as Au-
toslog [43], CRYSTAL [48], etc work on free-text [27], while systems such as
RAPIER [5], SRV [16], WHISK [49], and Wrapper Induction Systems such as
STALKER [35], RoadRunner [6], Lixto [2], etc work from online HTML docu-
ments. Ashish [1] develops mediators for extracting and integrating information
from distributed sources. In the realm of specs, the form of extraction rules and
their automatic learning is still an open problem of great practical interest and
value. Furthermore, there are no pre-existing corpus of annotated specs to learn
from.

In order to better appreciate the relationship between our work and the
works of others, we recapitulate the taxonomy for characterizing the Data Ex-
traction Tools proposed by Laender et al [26]. In this taxonomy, the same tool
can belong to multiple groups.

• Languages for Wrapper Development : These are specialized languages
that assist in wrapper construction. We use a simple XML-based language
for describing the format of various families of specs for extraction.

• HTML-aware Tools : These tools rely on inherent structural features of
HTML documents for synthesizing extraction rules and performing data
extraction. Specs are not HTML documents.

• NLP-based Tools : These tools apply parts-of-speech tagging and lexical
semantic tagging to assist in deriving extraction rules. Specs domain does
not benefit much from the Natural Language processing techniques.

• Wrapper Induction Tools: These tools generate delimiter-based extrac-
tion rules derived from training set. These tools do not rely on linguistic
constraints, but rather on formatting features that implicitly delimit the
desired information. Our approach is based on extracting content from its
explicit presence or implicitly via domain ontology as opposed to infer it
from the formatting features in the surrounding context.
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• Modeling-based Tools : Given a target structure for the desired informa-
tion, these tools try to locate in Web pages, portions of data that im-
plicitly conform to that structure. These tools are particularly suited for
documents that have clearly identifiable inherent structure (for example,
bibliographic references) [42]. The overall layout of a spec can be formal-
ized but the content of a spec does not exhibit structural regularity that
can be exploited for extraction.

• Ontology-based Tools : In contrast with the above tools that rely on the
presentation features of the data to generate extraction rules, the ontology-
based tools use domain ontology to locate data and assimilate information.
Our tool falls into this group. Even though specs can be regarded as data
rich and narrow in ontological breadth [10], fine-grained content extraction
is still very complex. Note also that the domain library, which realizes the
ontology, has been constructed and evolved over time using phrases in
legacy specs.

Information Extraction technology has also resulted in commercial products
and search engines that classify and search documents based on the subject
matter. Unfortunately, these products cannot be used directly because there are
significant differences between processing general topic documents and highly
technical specs, and between classification and reorganization or summarization.

Natural Language Processing (NLP) Technology has been successfully ap-
plied for the maintenance of textual databases containing manufacturing plans
and procedures at Boeing [36, 37]. Specifically, for tractability reasons, the syn-
tax and semantics of the text was controlled prior to populating the databases
by using an authoring tool. NLP tools were used to effect mass changes in tex-
tual databases for the circumscribed domain of chemical treatment, prime and
finish operations, to correct errors and update information. The work reported
here resembles that described in Obrst et al [36, 37] in so far as they attempt
to exploit domain specific background information to elicit the semantics, and
use language processing tools to transform documents as desired.

The spirit of our work is similar to what is described in Fensel et al [11,
12, 23]: In order to apply AI in realisitic, large scale document processing
applications, it is necessary to make explicit machine-processable semantics of
sources. In fact, it was heartening to discover that the techniques used and the
infrastructure built by Cohesia over the last decade, motivated by the perceived
needs of B2B and B2C e-commerce in Materials-related industry, resonates well
with the issues cropping up in the Semantic Web context [14]. The research
done in the context of OntoWeb, a European Union founded project about
Ontology-based information exchange for knowledge management and electronic
commerce [38], is particularly relevant. In fact, we believe that such lines of
research are important for the long term success of the Semantic Web initiative
[3, 51, 14] and interoperability issues in the Web Services context [13, 8]. And
the work reported here is just the first step in that direction.
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3 General Approach to Content Extraction

The input spec is heterogeneous, consisting of text, tables, and images in MS
Word format. The domain library, which approximates domain ontology, con-
sists of technical phrases condensed from legacy specs. The extraction consists
of recognizing a subset of domain library terms and their relationships in the
spec, and then associating them with applicable fragments of the spec. The
eventual output of extraction can be in plain text, in XML, in SDR, or in Excel
form, depending on the application.

In order to programmatically manipulate a spec, it is convenient to translate
it into plain text first. To ensure direct correspondence between the original spec
and the translated text, it is also important to retain the context of an image
and preserve the grid layout of a table.

A spec consists of spec header and spec body. The different authoring orga-
nizations create specs that differ in the location of the header information and
its surrounding context. However, for each authoring organization, the header
information context is more or less fixed. To extract header information, ex-
traction rules formalizing the context of the header information in terms of the
start and end markers can be used with a driver program. These extraction
rules should be simple enough to be easily created and changed by a domain ex-
pert. Each organization can have different domain library for interpreting spec
body. To extract content, corresponding spec phrase is recognized and mapped
to equivalent domain library term. The words to be mapped to a domain library
term may be neither contiguous nor appear in the same order. The words may
even be shared among multiple domain library terms. Thus, the string matching
algorithm to be used for recognizing phrases that map to domain library terms
needs to be robust with respect to afore-mentioned eventualities. Recall that
domain knowledge is available only in terms of the domain library, and there
are no pre-annotated specs available for machine learning.

The extraction output consists of fragments of spec text conditioned on
boolean expressions over domain library terms. The form of output can be in
plain text, in XML, in SDR, or in Excel form. Due to the complex nature of
the specs, the final extraction is usually inspected by a domain expert in a Spec
Editor for correcting any errors.

4 Content Extraction from Specifications

Here we explore techniques underlying a tool for coarse-grain content extraction
from domain-specific heterogeneous documents (materials and process specs).
In particular, the approach to extraction depends on two orthogonal issues per-
taining to documents: the content and the form.

• Usually, a spec defines requirements for several alloys, and the require-
ments can further depend on a number of parameters such as product
type, product dimension, cross-section, spec class, etc. Thus, a spec can
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be viewed as a compact description of a collection of primitive specs condi-
tioned on suitable criteria. Coarse-grain extraction involves reorganizing
spec content, to enable determination of primitive specs, in a form usable
with Cohesia’s existing software infrastructure. Domain knowledge has
been codified as a domain library of terms, compiled and evolved over a
decade from commonly occurring technical phrases in concrete specs.

• Recall that a spec is a heterogeneous document consisting of text, numeric
data, images, and tables. For extraction purposes, it is important to de-
limit different forms of data and develop appropriate techniques to handle
each of them. A spec available in electronic form as an MS Word document
(as opposed to a PDF document) is better amenable to semi-automatic
handling.

In what follows, we discuss techniques and tools to abstract and map:

• a heterogeneous spec in MS Word format into a text form,

• a document phrase into domain library terms, and

• finally, the spec text into a sequence of conditioned text.

4.1 Separating Tables and Images from the Text

In order to focus on the semantic content of a spec, it is necessary to remove
presentation details from the MS Word document. The simplistic approach
of saving MS Word document as a text document loses the embedded images
and trashes the tables. Saving it as an HTML document contains too many
superfluous tags. To enable automatic processing of text while deferring tables
and images for manual handling, it seems reasonable to delimit text from images
and tables, abstract tables as rectangular grids of numbers and creating links
to embedded image files. The following steps can be taken to obtain a spec in
ASCII plain text form:

1. Identify paragraphs properly and replace non-ASCII characters in MS-
Word document with their ASCII encodings by running appropriate VB
macros.

2. Save the MS-Word document in RTF format.

3. Convert the RTF document into an XML document using IBM develop-
erWork’s Majix (a Java application) that replaces an image with image
tags and a reference to an image file, and preserves the structure of the
table using table tags.

4. Finally generate a plain text document by removing image tags, and re-
placing table tags by appropriate indentation.

Specifically, MS-Word to ASCII converters were created:
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• to properly interpret paragraph breaking points and include additional
line separators where needed,

• to encode non-ASCII characters such as o,±, etc into ASCII,

• to preserve context for the embedded images, and

• to properly format tables by aligning columns with column breaks in
ASCII representation, for readability, and

• to generate spec in plain text form that could then be used by the extrac-
tion utility.

4.2 Domain Library Search Engine

The domain library is intended to approximate domain ontology and has been
constructed using technical vocabulary of the current and legacy materials and
process specifications. Domain library terms, abbreviated as DLTs, are clas-
sified into categories such as procedures, characteristics, controlled terms, etc
based on their role, with each term permitted to have multiple roles. Domain
library also maintains relationships among various DLTs. Examples of common
relationships are — characteristics appearing within certain procedure, values
associated with certain characteristic, broader and narrower terms, aliases, etc.

In manual extraction, an extractor maps a phrase associated with a material
requirement in a spec to a domain library term by guessing the corresponding
term and verifying it against the domain library. For instance, a phrase in a
spec may not be identical to its name in the domain library, as illustrated by
the recurring patterns and variations given below:

• Chemistry, Composition, Chemical Composition, Chemical Analysis, ...

• Rejection Criteria, Criteria for Rejection, Causes for Rejection, Not Ac-
ceptable, ...

• Certification, Report, ...

• Bend Test, Bending, ...

• Delivery Condition, Process/Surface Finish, Temper, ‘as received by pur-
chaser’, ...

• the height of a box, box height, ...

• Qty = Quantity

• Temp = Temperature

• Examination = Exam
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A typical domain library1 has about 10,000 terms. The effectiveness of
the search, and thereby the productivity of the extractor, can be substantially
improved by accepting an arbitrary phrase and automatically determining the
relevant DLT(s) contained in it. The overall goal is to develop an approximate
matching algorithm to recognize equivalent technical phrases that map to the
same DLT, while balancing recall and precision [28, 41].

Initially, we considered mapping a well-delimited spec phrase to an equiv-
alent DLT, by defining a suitable normal form for phrases and then searching
for the normalized phrase in the normalized domain library. Normalization was
achieved by using the following sequence of operations with two phrases being
equivalent if their normal forms match exactly:

1. Delete superfluous words and change words to lower case.

2. Expand acronyms and abbreviations.

3. Replace words by the synonymous preferred forms.

4. Stem each word and then sort the entire list of words alphabetically.

The conversion to normal form is efficient, but is not satisfactory in general,
when we experimented with popular stemming algorithms available such as due
to Porter, Lovins, etc, a conclusion shared by several other researchers [25, 40].
We also discovered that prefixes (e.g., electro-, spectro-, re-, etc) needed to be
separated to recognize the root. In general, technical terms are often compound
words, and new terms are created by gluing existing term fragments [18, 39].

Our new heuristic algorithm has been designed with the following observa-
tions in mind:

1. An input phrase may contain multiple DLTs.

2. The DLT words contained in the input phrase may not appear contiguous.

3. Consonants are significant, and correct spellings may differ in the vowels.

4. Robustness with respect to misspellings such as transposition of letters or
missing vowels is desirable.

5. Ordinary stemmers do not work for technical words appearing in the DLTs.
Instead, customized tables of prefixes and suffixes were developed to deal
with situations that arise in practice. Furthermore, normalization is dy-
namic, and is done by pitting pairs of phrases against each other, and then
abstracting their differences.

6. Pragmatic considerations encouraged us to make the algorithm skewed
towards recall rather than precision as a domain expert is assumed to be
overseeing the outcome.

1Cohesia creates and maintains domain libraries for in-house use and for use by its clients
such as GE, Alcoa, Allvac, etc.
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4.2.1 Algorithmic Details: Expression Matcher

A customized string matching algorithm for limited vocabulary domain was de-
veloped to map an arbitrary phrase/sentence to a list of domain library terms
(DLTs) contained in it, embodying the observations given above. The empiri-
cally derived mapping tries to determine approximately semantically equivalent
DLTs.

The main steps of the heuristic algorithm for DLT matching are sketched
below. (Note that the inputs are assumed to have the abbreviations expanded
and aliases normalized to preferred term).

List[Phrase] dl, dlwm, inwm;
Phrase ip; Integer mt;
List[Phrase] dlts;

Step 1: Read list of Domain Library Terms (phrases) into dl.
Step 2: Tokenize and construct list of (non-stop) words in the

domain library terms into dlwm, maintaining links from
each word back to the DLTs it appears in.

Step 3: Read-in input phrase and match-threshold into ip and mt,
respectively.

Step 4: Tokenize and construct list of non-stop words into inwm.
Step 5: Determine matching words in dlwn corresponding to each word

in inwm. (This step is discussed in detail below.)
Step 6: Construct list of DLTs that contain these matching words.

Evaluate each DLT and filter good approximations included in ip.

Words are matched at four levels: case-insensitive, normalized (based on
consonants), sorted normalized (based on sorted string of consonants), and
root-oriented. The exact match requires the case and whitespaces to match,
while case-insensitive match converts the inputs to lowercase prior to matching.
Such matches are useful when searching for names of the chemicals or materials
verbatim. Normalized match deletes all vowels and special characters (such as
‘-’, ‘?’, etc) prior to matching. Sorted normalized match orders the consonant
string before matching. Such matches add robustness and improve productiv-
ity without jeopardizing soundness in the context of limited vocabulary search
overseen by a domain expert.

If these checks do not yield a match, the strings are then tested for common
roots by considering variations due to affixes. For this purpose, sorted normal-
ized representations are compared and common letters are eliminated for each
string. For example, the words ‘certify’ and ‘Certification’ yield ‘crtfy’ and ‘crt-
fctn’ upon normalization, which can then be sorted to yield ‘cfrty’ and ‘ccfnrtt’.
Eliminating common letters results in ‘y’ and ‘cnt’. Of these remaining letters,
if they constitute differences accountable using the following customized table
of viable suffixes and prefixes, then a match is declared.

• Remainder Suffix table lists the remaining letters and expected suffix.
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• Remainder Prefix table lists the remaining letters and expected prefix.

• Remainder Prefix Suffix table lists the remaining letters, expected pre-
fix and expected suffix.

Specifically, a match is declared if the remaining letters of both the words are
present in one of these tables, and the word has the expected prefix and/or
suffix given in the table. For example, the words ‘certify’ and ‘Certification’
match because both (‘y’, ‘y’) and (‘cnt’, ‘cation’) appear in Remainder Suffix.
Fragments of the three tables incorporated into the implementation are shown
below, which presents a workable solution around the limitations of the stem-
ming algorithms for the Materials and Process Specs application context:

Remainder_Suffix[] = {

"d", "d",

"s", "s",

"mnt", "ment",

"mnst", "ments",

"nt", "tion",

"nst", "tions",

"cnt", "cation",

"cnt", "cations",

"cnst", "cations",

"y", "y",

"ct", "cate",

"ct", "cates",

"ct", "cation",

"cst", "cates",

"cst", "cations",

"n", "ion",

"n", "ions",

"ns", "ions",

"c", "ance",

"g", "ing",

"cl", "cal",

"rsty", "stry",

"ly", "ly",

"rst", "stry",

"cll", "cally",

"sy", "stry",

"rty", "stry",

"cl", "cals",

"gny", "ying",

"gn", "ing",

"gy", "ying",

};

Remainder_Prefix[] = {

"cprst", "spectro",

"clrt", "electro",
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"ps", "spectro",

"l", "electro",

"cprt", "spectro",

"crt", "electro",

"r", "re",

"lw", "low",

"n", "un",

};

Remainder_Prefix_Suffix[] = {

"cclp", "spectro",

"cclp", "cal",

"ccll", "electro",

"ccll", "cal",

"rs", "re",

"rs", "s",

"dr", "re",

"dr", "ed",

"dn", "un",

"dn", "ed",

"gnr", "re",

"gnr", "ing",

"glnw", "low",

"glnw", "ing",

"gr", "re",

"gr", "ing",

"glw", "low",

"glw", "ing",

};

The following abstract code makes the tests more explicit.

Step 0: Let w1 and w2 be the two words.
Step 1: sw1 = Sorted_Normalized(w1); sw2 = Sorted_Normalized(w2);
Step 2: r1 = Letters_Difference(sw1,sw2); r2 = Letters_Difference(sw2,sw1);
Step 3: Match(w1,w2) =

( IsSuffix(Remainder_Suffix(r1),w1) or
IsPrefix(Remainder_Prefix(r1),w1) or
HasPrefixSuffix(Remainder_Prefix_Suffix(r1),w1) )

and
( IsSuffix(Remainder_Suffix(r2),w2) or
IsPrefix(Remainder_Prefix(r2),w2) or
HasPrefixSuffix(Remainder_Prefix_Suffix(r2),w2) );

Examples of sets of matching words include {certification, certificate,
certify, certified, certifies, certify}, {require, required, requirement},
etc.

Let a pair of words match to one of four different degrees, corresponding
to case-insensitive, normalized, sorted normalized, and root-oriented match.
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(These are actually empirically determined weights between 0 and 1.) Then,
the degree of match of an input phrase with another phrase is obtained by
averaging the maximum degree of match between each non-stop word in the
input phrase with non-stop words in the other phrase. In the context of domain
library searches, an input phrase is efficiently matched with DLTs (phrases),
yielding a list of matching DLTs sorted on the basis of degree of match. Ideally,
one would expect the DLT with the highest degree of match to be the desired
interpretation. In practice, it is desirable to have a domain expert verify it. It
is unrealistic to expect the search to be robust in the face of tricky construc-
tions, arbitrary semantics preserving rewrites, or non-trivial context-sensitive
interpretations. In future, we will be working on techniques to refine degree of
match, to improve precision.

4.3 Coarse-grain Extraction

The text of a spec can be viewed and annotated to different levels of detail
(granularity) in order to make explicit mechanically processable information.
The text is human sensible, while the annotation, which summarizes and ab-
stracts text, is machine comprehensible. The different extraction granularity
reflects the different ontologies2 used in the industry and in companies such
as GE, Alcoa, Rolls Royce, Pratt and Whitney, etc. The feasibility and the
difficulties encountered in automating an extraction task depend on its granu-
larity. Ironically, fine-grained extractions are neither necessary nor desirable for
all applications.

A typical materials and process spec contains requirements for making and
testing a variety of alloys. A typical customer order specifies the desired mate-
rial in terms of the specs it must conform to, and a collection of domain-specific
product parameters such as product type, spec class, product dimension and
cross-section, etc. A fundamental operation of interest on a spec is the deter-
mination of applicable fragments of the spec for a customer order. The goal
of coarse-grain extraction is to convert a spec into a form that can be evalu-
ated against the order parameters to determine applicable fragments. So we
explore techniques for generating conditions for the applicability of a spec text
fragment.

To balance the commercial viability of the extraction task and its tractability,
the following extractions were explored:

Basic Extraction: This involves the identification of header information such
as spec name, spec title, organization name, revision information including
revision date, etc, and filtering the spec text, to be subjected to further
scrutiny later.

Level 1 Extraction: A spec is transformed into a possibly, nested sequence of
conditioned notes of the form If CONDITIONS Then [Note = " ... "],

2According to Gruber [22], an ontology is an explicit specification of a conceptualization,
which is an abstract, simplified view of the world that we wish to represent for some purpose.
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where the note contains contiguous block of spec text. These extractions
are cheap to produce because the detailed requirements are still in text.
They can be used to reorganize/filter a spec, but they have insufficient
structure to allow machine manipulation and detection of conflicting re-
quirements. In practice, such extractions are used with MASS FAI (First
Article Inspection).

Level 2 Extraction: Procedures group related requirements. A procedure can
appear in a spec explicitly or implicitly through related characteristics. In
Level 2 extraction, a spec is transformed into a sequence of procedures,
with the spec text relevant to each procedure, structured as a sequence
of notes, serving as the procedure body. These extractions are finer grain
than Level 1 but has insufficient structure to allow numeric result reporting
or machine manipulation and detection of conflicting requirements. Level
2 Extractions are further refined by a domain expert before being used
with MASS Order Product.

. . .

Level * Extraction: The requirements expressed in numeric and symbolic
terms are captured formally in a machine processable form in SDR to
enable automatic analysis, combination and conflict resolution of require-
ments. At this stage of evolution and maturity, Level * Extraction cannot
be automated, but must be carried out manually by domain experts.

To ensure commercial viability and tractability of automating the extraction
tasks, only Basic Extraction and Level 1 Extraction were implemented. (Level
2 Extraction was also explored, but we do not discuss the details any further in
this article.) Basic Extraction can be carried out by developing extraction rules
for determining header information by formalizing the context surrounding the
desired information in terms of the start and end delimiter keywords. These
rules are developed for each spec family and for each spec authoring organiza-
tion.

In what follows, we explain Level 1 Extraction in more detail. Specifically,
we abstract the intrinsic nature of translation that makes it amenable to semi-
automation in Section 4.3.1. We discuss heuristics used for generating conditions
by focusing on the document structure and by creating suitable scope rules for
applicability of conditions in Section 4.3.2. Finally, we sketch the implementa-
tion details for Level 1 Extraction in Section 4.4 [47].

4.3.1 Literal Translation

Conceptually, every piece of information in SDR formalization of Level 1 Ex-
traction owes its existence to a phrase in spec and possibly in domain library.
For ease of verification, it is important to maintain a one-to-one correspon-
dence between fragments of spec and its translation. Whenever feasible, such
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translations are said to be literal . The existence of a literal (linear) transla-
tion depends on the target language and the translation scheme. To see this
dependence, consider the sources of non-linearity:

1. The extractions can contain duplicated information that are shared in
spec.

2. The extractions can rearrange information present in spec.

3. Tables and footnotes abbreviate information in irregular and complex
ways.

Furthermore, a semi-automatic approach to extraction is feasible only if the
automatically generated partial translations are intelligible to the domain ex-
pert in the context of the spec, for subsequent modification. A semi-automatic
approach emphasizes the need for literal extraction.

4.3.2 Level 1 Extraction

Related specs from an authoring organization share similar structure. Normally,
a spec document consists of a sequence of sections. A section is associated with
a section heading including section number and a section body in the form of
paragraphs, possibly containing nested subsections. A paragraph is a piece of
text delimited by a pair of blank lines. These do not have any heading associated
with them. In general, each (sub)-section or paragraph can contain requirements
applicable to several different final products, and explicit references appear in
situations where the applicability is limited to a few products.

In order to formalize conditioned notes, we need to propose a structure for
the conditional expression and the note it qualifies. The conditional expression
can be formed using characteristic names, constants, relational symbols (e.g.,
‘=’, ‘>’, etc), and boolean connectives (e.g., ‘and’, ‘or’, etc) in the standard
way. The note can be defined in quanta of (sub)-sections and paragraphs. Thus,
there are two important technical problems to be solved for carrying out Level
1 Extraction: (1) Identification of the values of a characteristic that can appear
as a condition, and (2) Transformation of the relevant spec text into a sequence
of conditioned notes.

In what follows we explain and illustrate the kinds of problems tackled.

Section Numbering: Recognition of section numbers, separate from numeric
data, is complicated by the fact that sections can be nested. For example, if the
current section number is ‘3.10.2’, the next section numbers can be ‘3.10.2.1’
if it is a deeper section, ‘3.10.3’ if it is at the same level , and ‘3.11’ or ‘4’ if
it is a shallower section. The nextSectionNumber-relationship among pairs
of dot separated sequence of numbers (which conforms to regular expression
{1, 2, · · · , 9}{0, 1, · · · , 9}∗(•{1, 2, · · · , 9}{0, 1, · · · , 9}∗)∗ ) can be formalized as fol-
lows [50]. (For readability reasons, the ellipses have been retained.)

∀i > 0 : ∀n1 > 0, . . . ,∀ni > 0 :
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nextSectionNumber(n1•n2• · · · •ni, n1•n2• · · · •ni•1)) ∧
∀j : 0 < j ≤ i ⇒ nextSectionNumber(n1•n2• · · · •ni, n1•n2• · · · •(nj + 1))

Recognizing Characteristic and its Values: The spec class designators
appear as upper case letters (A, B, C,. . . ) along with spec names or keywords
such as class, though upper case letters can arise as values for hardness, tem-
perature, etc. Relatively speaking, recognition of product and product types is
simple, while recognition of alloy names, especially when they are given in terms
of their UNS numbers is non-trivial. One can, in general, use regular expressions
[17] to specify phrases that express characteristic-value pairs in spec text.

Associating Conditions with Sections/Paragraphs in GE Specs: The
conditioned notes can be specified in terms of the scope rules of applicability of
charatcteristic-value pairs to the spec text fragments. For instance, to associate
a spec class with a section or a paragraph, we use the following heuristic: Every
(sub-)section is conditioned on all spec classes named in section ‘Scope’. Explicit
spec class references in a paragraph override the default condition. Otherwise,
a paragraph inherits the condition from its left sibling (earlier paragraph), or
transitively from its parent (enclosing (sub-)section). The rationale behind the
heuristic is that, when the conditionals in a Level 1 extraction are evaluated
against the given condition values, it should generate all applicable fragments of
the spec.

To abstract the algorithmic details of Level 1 extraction [47, 55], the struc-
ture of a spec can be captured using a pseudo context-free grammar (actually,
a variant of EBNF)

<document> ::= <document-header> <section>+
<section> ::= <sectionNumber> <sectionHeading> <paragraph>+ <section>*

and the computation of the conditioned notes involving spec classes can be given
using attribute grammar formalism as described in Section 4.3.3. There are
many other qualifiers of interest besides spec classes such as products, product
types, alloys, etc.

4.3.3 Algorithmic Details : Level 1 Extraction

For spec class computation, there are two fundamental aspects to be addressed:
(1) How do we determine spec classes associated with a paragraph that does
not contain any explicit reference to spec classes, and (2) What is the extent
of spec text to which an explicitly given spec class reference applies. Attribute
grammar framework can be used to specify the scope rules. Here, the attributes
with IN-suffix correspond to the inherited attributes capturing the default values
obtained from the surrounding context, while the attributes with the OUT-suffix
correspond to the synthesized attributes capturing the explicitly given values
in the body text. The attribute with APP-suffix corresponds to the applicable
spec classes obtained using the scope rules such as: (1) Beginning of a section
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or a subsection ends the scope of the previous spec class reference. (2) A spec
class reference prefixing a paragraph is applicable to it. (3) For a paragraph
that does not contain any explicit spec class reference, one of the following two
possibilites is chosen: (a) It inherits spec classes from the parent section, or (b)
It gets spec classes from its previous sibling paragraph.

------------------------------------------------------------------------

Nonterminals and the corresponding Inherited/Synthesized Attributes,

which range over set of spec classes (except textIN which is a string):

------------------------------------------------------------------------

<section> ---> scIN / scOUT, scApp

<sections>, <nestedSections> ---> scIN / scOUT

<paragraph> ---> textIN, scIN / scOUT, scApp

<paragraphs> ---> scIN / scOUT

========================================================================

------------------------------------------------------------------------

Attribute Grammar Productions and Attribute Computation Rules

(Note that ‘U’ denotes the set-union operation and (*...*) denotes comments.)

------------------------------------------------------------------------

<document> ::= <sections>

sections.scIN = (* Spec classes from Document Section ‘Scope’ *)

<sections> ::= <section>

section.scIN = sections.scIN

sections.scOUT = section.scOUT

<sections> ::= <section> <sections_1>

section.scIN = sections.scIN

sections_1.scIN = sections.scIN

sections.scOUT = section.scOUT U sections_1.scOUT

<section> ::= <sectionNumber> <sectionHeading> <paragraphs> <nestedSections>

paragraphs.scIN = section.scIN

nestedSections.scIN = section.scIN

section.scOUT = paragraphs.scOUT U nestedSections.scOUT

section.scApp = section.scIN

<paragraphs> ::= <paragraph>

paragraph.scIN = paragraphs.scIN

paragraphs.scOUT = paragraph.scOUT

<paragraphs> ::= <paragraph> <paragraphs_1>

paragraph.scIN = paragraphs.scIN

paragraphs_1.scIN = left-sibling-defines? paragraph.scOUT : paragraphs.scIN;

paragraphs.scOUT = paragraph.scOUT U paragraphs.scOUT

<paragraph> ::= (* text between two blank lines *)

paragraph.scOUT = getSpecClasses(paragraph.textIN)

paragraph.scApp = explicitly-defines ? paragraph.scOut : paragraph.scIN;

19



<nestedSections> ::= empty

nestedSections.scOUT = nestedSections.scIN

<nestedSections> ::= <sections>

sections.scIN = nestedSections.scIN

nestedSections.scOUT = sections.scOUT

We can now specify generation of conditioned notes, with the gluing of adja-
cent paragraphs that have the same condition, into one note. For this purpose,
we need additional synthesized attributes FIRST and NOTES, and a string oper-
ation APPEND. The synthesized attributes SN and SH stand for section number
and section heading, and are used to locate a paragraph.

------------------------------------------------------------------------

Nonterminals and the additional Inherited/Synthesized Attributes,

which range over strings (except FIRST which is a set of spec classes):

------------------------------------------------------------------------

<document> ---> / NOTES

<section> ---> / NOTES

<sections>, <nestedSections> ---> / NOTES

<sectionNumber> ---> / SN

<sectionHeading> ---> / SH

<paragraph> ---> SN, SH / NOTES

<paragraphs> ---> SN, SH / NOTES, FIRST

========================================================================

------------------------------------------------------------------------

Attribute Grammar Productions and additional Attribute Computation Rules

------------------------------------------------------------------------

<document> ::= <sections>

document.NOTES = sections.NOTES

<sections> ::= <section>

sections.NOTES = section.NOTES

<sections> ::= <section> <sections_1>

sections.NOTES = APPEND(section.NOTES, sections_1.NOTES)

<section> ::= <sectionNumber> <sectionHeading> <paragraphs> <nestedSections>

section.NOTES = APPEND ("IF section.scAPP THEN",

"NOTE: sectionNumber.SN sectionHeading.SH",

paragraphs.NOTES, nestedSections.NOTES)

paragraphs.SN = sectionNumber.SN

paragraphs.SH = sectionHeading.SH

<paragraphs> ::= <paragraph>

paragraphs.FIRST = paragraph.scAPP

paragraphs.NOTES = paragraph.NOTES

paragraph.SN = paragraphs.SN

paragraph.SH = paragraphs.SH
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<paragraphs> ::= <paragraph> <paragraphs_1>

paragraphs.FIRST = paragraph.scAPP

paragraphs.NOTES = if paragraph.scAPP == paragraphs_1.FIRST

then APPEND(paragraph.NOTES,paragraphs_1.NOTES)

else APPEND(paragraph.NOTES,

"IF paragraphs_1.scAPP THEN",

"NOTE: paragraphs.SN paragraphs.SH",

paragraphs_1.NOTES)

paragraph.SN = paragraphs.SN

paragraph.SH = paragraphs.SH

paragraphs_1.SN = paragraphs.SN

paragraphs_1.SH = paragraphs.SH

<paragraph> ::= (* text between two blank lines *)

paragraph.NOTES = paragraph.textIN

<nestedSections> ::= empty

nestedSections.NOTES = ""

<nestedSections> ::= <sections>

nestedSections.NOTES = sections.NOTES

To illustrate Level 1 Extraction, consider the following abstracted example
showing applicable spec classes and related spec text fragments. The ‘Scope’-
section is assumed to contain references to spec classes A, B, and C, and other
spec class references in the spec body have been made explicit with ‘Class’
prefix.

A,B,C => 3. General Requirements
A,B,C => 3.1 Heat Treatment. Para0
A => Class A: Para1

Para2
B => Class B: Para3
A,B,C => 3.1.1 Elevated Temperature.
A => Class A: Para4
C => Class C: Para5
A,B,C => 3.1.2 Annealing.
B => Class B: Para6

Class B: Para7
Para8

A,B,C => 4. Quality Assurance

In practice, regular expressions can be used to narrow down the text in which
the condition characteristic values are searched.

4.4 Implementation Details

We now describe the Extraction Wizard (called CONTEXT for CONTent EX-
Tractor) that takes a pre-processed spec in plain text form as input and returns
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the extraction results. The overall approach is to solve the extraction problems
by providing a set of tools for flexible handling of specs in different formats and
content, and for refining extraction parameters. It deals with issues such as:
(1) multiple layouts of spec; (2) use of customized string matching algorithm
to enhance domain library terms identification; (3) exporting to different for-
mats for manipulation of the results in various packages; (4) table formatting,
image and extended character handling; and (5) tracing the generation and re-
lating extraction results back to the original spec. The user interface provides
the extractor with a workbench in which they can perform multiple extractions
and tweak extraction parameters. Figure 3 shows the workspace view with de-
fined domain libraries, format files, and multiple storage folders that are used
to store specifications and supporting documentation [47, 50]. The actual im-
plementation of the extraction engine has been coded in C++ to interface with
the Cohesia’s MASS infrastructure support code and in XSLT for tree-traversals
over XML data, depending on the application, representation details, and other
idiosyncracies of a spec.

Extraction Utility: Extraction utility consists of three main components:
the SDR objects, the extraction engine, and the formatter, as depicted in Fig-
ure 4. The SDR objects represent the extracted SDR tree. The extraction
engine contains the bulk of the functionality and is responsible for parsing the
spec text into SDR tree. The formatter outputs the SDR tree in SDR-XML
form that can be imported into the Spec Editor for manual massaging and inte-
grated with the existing MASS product, or in XML-annotated Master form that
can be further manipulated using generic XML tools [55]. In any case, we still
rely on a domain expert to remedy any inadequacies in the automatic markup.

The core of the extraction engine is implemented using four classes: Extractor,
Locator, DomainLibrary, and Tokenizer. The Extractor object is responsi-
ble for orchestrating the entire extraction process. The Config file is read to
determine the extraction type, file path settings, domain library search settings,
etc. The Format file is consulted to guide the search for spec header information
and requirements, and to skip the peripheral text. The detailed extraction is
carried out with the help of Locator object, which has methods to recognize
procedures, characteristics, and controlled terms (that is, domain library terms)
appearing in spec text. These methods are implemented on top of the domain
library search engine. The DomainLibrary object implements advanced domain
library search capabilities. It is intended to exploit information about synonyms
(e.g., chemistry and composition, etc), prefixes (e.g., electro-, spectro-, etc), suf-
fixes (e.g., -ate, -tion, etc), stop words, broader and narrower terms (e.g., forging
and die forging, etc), unit of measure conversions, etc in mapping a spec phrase
into semantically equivalent domain library term [53]. In fact, the entire do-
main library can be viewed as consisting of the object domain library (ODL)
containing the core set of terms, enclosed by the English domain library (EDL)
wrapper that incorporates flexible and robust matching algorithm to improve
search.
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Figure 3: Extraction Wizard Interface
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Figure 4: Extraction Engine Architecture

4.4.1 Overall Flow: Design of Software Modules

The syntax of nested sections can be expressed as extended regular expressions,
and has been recognized using a lexical analyzer generated by FLEX, and also
coded in C++ using RogueWave Libraries. The matching algorithm for phrases
has been coded in C++. The Level 1 Extraction has been carried out in four
steps:

1. Automatically recognize nested sections of the spec.

2. Automatically recognize spec phrases to be extracted. The spec heading
contains information about specification name, revision, products, spec
class, alloy name, etc. The spec body contains phrases that refer to domain
library terms that can appear in conditions such as products, spec classes,
alloy names, etc. Alloy names may appear explicitly or through their
standardized UNS number. These are recognized using the appropriate
fragment of domain library.

3. Automatically generate multiple views of the XML source using transfor-
mations coded in XSLT.

4. Finally, verify, and possibly amend, the resulting translations manually.

4.4.2 Experimental Results and an Example of Level 1 Extraction

The Materials and Process Specifications from ASTM, SAE, Rolls Royce, Pratt
and Whitney, Alcoa, GE, etc are available to us in one of the following formats:
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(i) as paper-based hardcopy, (ii) as PDF document, or (iii) as MS WORD
document. For each authoring organization, one can compose a separate Format
file that captures the overall structure of the header information and the location
of the requirements to be extracted in the spec body. One can also have multiple
domain libraries. The extraction engine is adaptable in that one can choose
the Format file and domain library to use. In general, the structure of the
legacy specs and their revisions is fairly stable. Domain libraries can be updated
periodically, but the domain library search algorithm is sufficiently robust to
deal with the changes.

Conversion of hardcopy specs and PDF specs via scanning and OCR into
an electronic form that can be programmatically manipulated turned out to be
very unreliable. So our focus turned to GE Aircraft Engines Specs available in
MS WORD format. In particular, we had about 300 B-family material specs
and about 200 P-family processing specs. The GE domain library contains over
10,000 entries. A spec in MS-WORD format was pre-processed (using Majix and
MS-WORD macros) to obtain it in plain text format preserving the text, table
layouts, and links to image files. Level 1 Extraction engine works on the plain
text document and generates the XML-Master for further manipulation, or for
importing into Excel-based Spec Editor for manual inspection and correction.
Overall, both the precision and the recall were high, that is, in the range of
90% to 100% depending on the input spec. In practice, a domain expert usually
reviews the final extraction results. In addition to correcting extraction errors,
they analyzed errors and provided constructive feedback to software engineers
for improving the performance of the next revision of Level 1 Extraction engine.
It is instructive to consider, as an illustrative example, the manifestation of spec
class designator in GE Specs. Typical spec class references are upper case letters
(A, B, C,. . . ) that appear as in: ‘B50T75A’, ‘B50T75A, E, F and G’, ‘Class G,
H, and I’, ‘Classes A and C’, ‘P21TF7 Cl-A’, etc. However, upper case letters
can also appear in other contexts, such as a spec reference ‘ASTM E 46’ or as
a (hardness) value such as ‘Rockwell B 40-75’, or for unit of temperature (F or
C), etc. Further, modifiers such as ‘similar to’ preceding a spec class designator
can imply that the designator is not playing the role of a condition.

Now we consider concrete examples. Figure 5 is a screenshot depicting: (i)
a fragment of GEAE Spec containing text, a table, and an image opened in
MS WORD, (ii) the XML intermediary generated by Majix opened in Internet
Explorer 6, and (iii) the corresponding plain text file opened in TextPad.

The spec in plain text form is subsequently tagged to capture and make
explicit the structure and the content to different levels of detail. The XML-
Master document embodies the literal translation strategy by embedding ex-
tracted fragments into the spec. XSLT Stylesheets are then employed to fil-
ter and transform the XML-Master document into suitable output forms using
Apache’s Xalan processor. In the context of Level 1 Extraction, the views of
interest are: the original text view with identation, for verification; the HTML
view for display in a Web-browser; generation of syntactically correct SDR with
the paragraph text presented as conditioned notes; and generation of syntac-
tically correct SDR with the paragraph presented as conditioned notes using
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Figure 5: MS Word to Plain Text via XML
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paragraph numbers in place of paragraph bodies, to deal with copyright restric-
tions that prohibit duplication of the spec text verbatim in another document.

A fragment of the original GE B-family spec B50TF104 in text form, GE.txt,
is shown below.

SPECIFICATION NO. B50TF104
ISSUE NO. S4+AM1

DATE January 9, 1996
PAGE 1 OF 10
CAGE CODE 07482

SUPERSEDES B50TF104-S3
...
ALLOY BAR, FORGINGS, AND RINGS
(INCONEL ALLOY 706)
...
3.2.1 Material Condition. Material shall be delivered in the following
condition specified on the purchaser order:

(a) Bar and rod shall be hot finished, heat treated per CLASS A, and
descaled; round bars shall be ground or turned. Forgings shall be
as ordered.

(b) Flash welded rings shall not be supplied unless specified or
permitted on Purchaser’s part drawing.
...

GE.txt is tagged with respect to structure and content for Level 1 Extrac-
tion to obtain GE.xml as shown below. (This reproduction contains additional
newlines to make the XML text not overflow the right margin.)

<?xml version="1.0"?>
<document>

SPECIFICATION NO.<specNumber>B50TF104</specNumber>
ISSUE NO.<issueNumber>S4+AM1</issueNumber>

DATE January 9, 1996<nl/>
PAGE 1 OF 10<nl/>
CAGE CODE 07482<nl/>

SUPERSEDES B50TF104-S3<nl/>
...<nl/>
ALLOY <product DLT="Bar">BAR</product>, <product DLT="Forgings">FORGINGS</product>,
AND <product DLT="Rings">RINGS</product><nl/>
(INCONEL ALLOY 706)<nl/>
...<nl/>
<section level="4" id="3.2.1"> 3.2.1
<sectionHeading heading="Material Condition">Material Condition.</sectionHeading>

Material shall be delivered in the following <nl/>
condition specified on the purchaser order:<nl/>
(a) <product DLT="Bar">Bar</product> and <product DLT="Rod">rod</product> shall be hot finished,
heat treated per <specClass DLT="A">CLASS A</specClass>, and <nl/>
descaled; round <product DLT="Bar">bars</product> shall be ground or turned.
<product DLT="Forgings">Forgings</product> shall be <nl/>
as ordered.<nl/>
(b) Flash welded <product DLT="Rings">rings</product> shall not be supplied unless specified or <nl/>
permitted on Purchaser’s part drawing.<nl/>
</section>
</document>

GE.xml is then transformed into the following Level 1 Extraction, with re-
spect to products and spec classes and with spec text suppressed, in GE.sdr
using a suitable XSLT stylesheet.

document [B50TF104]
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{
title = "ALLOY BAR, FORGINGS, AND RINGS(INCONEL ALLOY 706)";
org = "GE Aircraft Engines";
type = "specification";

define APM
{

[Products] is "Bar";
[Products] is "Forgings";
[Products] is "Rings";

}
using APM;

revision [S4+AM1]
{

...
if

( [Product Type] is "Bar" or [Product Type] is "Rod" or
[Product Type] is "Forgings" or [Product Type] is "Rings" ) and ( [Spec Class] is "A" )

then
{

note " = Material Condition."
"Shall be in accordance with paragraph 3.2.1 "

}
...
}

}

To conserve space, we are omitting other possible translations obtainable
from the XML-Master by applying algorithms coded as XSLT stylesheets.

5 Conclusion

Semi-structured documents are ungrammatical texts that have recognizable or-
ganization and constrained vocabulary. These arise naturally in the context of
technical specifications of materials and processes, and are crucial to compa-
nies involved in complex manufacturing and B2B E-commerce. In this work,
we developed computer-assisted coarse-level content extraction tools. It was a
challenge to scope the problem to make it tractable to the software developers
while simultaneously ensuring that the results are useful in unburdening the
domain experts.

Specifically, we attempted to systematically evolve the manual extraction
tool into a computer-assisted extraction tool. We carefully analyzed specs to
understand and explicate their nature, and studied extractions from specs – of
different complexities and origin – carried out by highly trained metallurgists,
and appreciated the importance of making domain library searches flexible.
The recognition of semantically equivalent phrases that map to the same Do-
main Library Term was attempted using a normalization procedure starting
from verbatim searches, to using minor variations on words, to using aliases, to
eventually using much richer patterns of equivalences.

For a semi-automatic approach to succeed in practice, the partial results
obtained through automation should be intelligible, in relation to the original
spec. Otherwise, the extractors will have a difficult time completing the extrac-
tion. Thus, semi-automatic approach benefited from maintaining a one-to-one
correspondence between the spec and its translation. The XML Technology
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seems appropriate to extraction to the extent that the XML Master provides a
way of tying together the spec and the extracted information, and the use of
XSLT stylesheets in transforming this information as desired by the context.

Extraction Wizard embodies a delicate compromise between the desired flex-
ibility with respect to the input/output formats and transparency of operation
with the option of single-stepping through the extraction process using a spe-
cial debugger, and what can be realistically programmed. Based on our first
experiences with the prototypes we have built, the generated Level 1 extractions
seem reasonable though not perfect from domain expert’s perspective. Extrac-
tion wizard also handles heterogeneous spec documents by separating text from
images and tables, so that text can be processed through the extraction engine
while deferring tables, footnotes, and images for manual handling.

The development of CONTEXT brought together tools and techniques from
Language Processing, Knowledge Representation, and Web Technologies. What
we have accomplished are the necessary initial steps towards automatic reorga-
nization and summarization of semi-structured documents.
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