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Dyslexia and configural perception of
character sequences
Joseph W. Houpt 1, 2*, Bethany L. Sussman 2, James T. Townsend 2 and

Sharlene D. Newman 2

1Department of Psychology, Wright State University, Dayton, OH, USA, 2Department of Psychological and Brain Sciences,

Indiana University, Bloomington, IN, USA

Developmental dyslexia is a complex and heterogeneous disorder characterized by

unexpected difficulty in learning to read. Although it is considered to be biologically based,

the degree of variation has made the nature and locus of dyslexia difficult to ascertain.

Hypotheses regarding the cause have ranged from low-level perceptual deficits to higher

order cognitive deficits, such as phonological processing and visual-spatial attention.

We applied the capacity coefficient, a measure obtained from a mathematical cognitive

model of response times to measure how efficiently participants processed different

classes of stimuli. The capacity coefficient was used to test the extent to which

individuals with dyslexia can be distinguished from normal reading individuals based on

their ability to take advantage of word, pronounceable non-word, consonant sequence

or unfamiliar context when categorizing character strings. Within subject variability of

the capacity coefficient across character string types was fairly regular across normal

reading adults and consistent with a previous study of word perception with the capacity

coefficient—words and pseudowords were processed at super-capacity and unfamiliar

characters strings at limited-capacity. Two distinct patterns were observed in individuals

with dyslexia. One group had a profile similar to the normal reading adults while the

other group showed very little variation in capacity across string-type. It is possible

that these individuals used a similar strategy for all four string-types and were able to

generalize this strategy when processing unfamiliar characters. This difference across

dyslexia groups may be used to identify sub-types of the disorder and suggest significant

differences in word level processing among these subtypes. Therefore, this approach

may be useful in further delineating among types of dyslexia, which in turn may lead to

better understanding of the etiologies of dyslexia.

Keywords: capacity, dyslexia, configural processing, word superiority effect, individual differences

1. Introduction

Developmental dyslexia is a neurobiologically based, lifelong learning disability that specifically
affects the ability to read skillfully and is estimated to be present in 5–17.5% of children (Shay-
witz, 1998). Reading deficits in dyslexia are considered unexpected and independent of factors
such as intelligence and opportunity (see however Stanovich, 1996). There is no consensus on
the etiology or core deficit in dyslexia and several theories have been proposed. It is generally
associated with deficits in spelling, phonological/orthographical processing, rapid auditory pro-
cessing, and short-term verbal memory (Ramus, 2003; Shaywitz and Shaywitz, 2005). Dyslexia has
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also been linked to other more domain general impairments
such as automaticity (Nicolson and Fawcett, 2011), magnocellu-
lar functioning (Stein, 2001), and temporal auditory processing
(Tallal, 1980). While phonological awareness has remained the
most consistent explanatory marker (Ramus, 2003) of dyslexia,
the cause of phonological impairment remains controversial.
Dyslexia is often diagnosed in childhood andmany dyslexic read-
ers may build reading proficiency in adolescence and adulthood,
however, reading often remains slow and effortful and there
remains a phonological processing deficit (Wilson and Lesaux,
2001; Shaywitz and Shaywitz, 2005).

1.1. The Word Superiority Effect and Dyslexia
From the early days of experimental psychology, researchers
have noted that normal reading adults are better at perceiv-
ing letters in the context of a word than alone or in random
sequences (e.g., Cattell, 1886). Even when the informativeness
of a word context is eliminated through careful experimental
control (Reicher, 1969; Wheeler, 1970) normal reading adults
perform better with a word context. The pervasive advantage is
frequently referred to as the word superiority effect. The word
superiority effect is a classical example of a configural superiority
effect (cf. Pomerantz et al., 1977), but there is still some uncer-
tainty as to the nature of the context advantage. Possible explana-
tions have ranged from holistic processing of the word form (e.g.,
Healy, 1994) to independent processing of letters with some cor-
rection of letter level errors based on word level properties (e.g.,
Massaro, 1973; Pelli et al., 2003). Given that there is argument
about the presence of a superiority effect, we focus on the degree
of superiority rather than the locus of the superiority effect in this
paper.

Given the robustness of the word superiority effect, one might
inquire as to whether the effect is intact among individuals with
developmental dyslexia. With dyslexia, reading is a generally
slower and more effortful process. Potential loci of the reading
deficit range from sub-word level, such as letter-phoneme corre-
spondence (e.g., Blau et al., 2009; Blomert, 2011), to sentence level
syntactic deficits. Tests of word superiority isolate one attribute
of reading performance, and the extent to which individuals with
dyslexia have a reduced or absent word superiority effect may be
informative as to the nature of their deficits. Likewise, variation in
the word superiority effect when comparing those with dyslexia
and controls may also inform our understanding of the nature of
the word superiority effect in the normal reading population.

Although research on dyslexia and the word superiority
effect is limited, Grainger et al. (2003) have compared children
with dyslexia and reading-age matched controls on the Reicher-
Wheeler task (the standard paradigm for measuring the word
superiority effect). Despite clear differences between the groups
in ability to pronounce pseudowords, both groups were signifi-
cantly better at identifying letters in the context of a word than
in a non-word. The magnitude of the difference between words
and non-words was nearly the same in both groups, and, if any-
thing, slightly larger in the dyslexia group. This same basic effect
was replicated by Ziegler et al. (2008), although they found sta-
tistically significant superiority effects in only response times, not
accuracy.

Since the original demonstrations of the word superiority
effect, researchers have also shown a pseudoword superior-
ity effect: letters are more easily identified in pronounceable
non-words (henceforth referred to as pseudowords to distin-
guish from unpronounceable non-words) than letters alone (e.g.,
McClelland and Johnston, 1977) or letters in non-word contexts
(e.g., Baron and Thurston, 1973; Spoehr and Smith, 1975). Given
that difficulty pronouncing pseudowords is one of the identi-
fying characteristics of developmental dyslexia (for review, see
Rack et al., 1992), one might predict that there would be a more
dramatic difference between those with dyslexia and controls in
the magnitude of a pseudoword superiority effect. Nonetheless,
Grainger et al. (2003) also found no difference between groups
on the pseudoword superiority effect: The effect was present in
both the children with dyslexia and the reading-agematched con-
trols and the magnitude was roughly the same in both groups.
Hence, any explanation of the differing ability to pronounce
pseudowords cannot depend solely on processes involved in the
pseudoword superiority effect. In particular, Grainger et al. claim
that this finding rules out the common explanation of dyslexia as
a deficit in letter (or letter clusters) to phoneme translation.

A third finding in the Grainger et al. work was that, with both
dyslexic and control groups of children, there was no difference
in the magnitude of the word superiority effect and of the pseu-
doword superiority effect. That is, the increase in performance for
letters in words over letters in isolation was roughly the same size
as the increase in performance for letters in pseudowords over
letters in isolation. In contrast, the normal-reading adults in their
study had a larger advantage for word context compared to pseu-
doword context, a difference that has been found in many other
studies (Manelis, 1974; McClelland and Johnston, 1977; Estes and
Brunn, 1987; Jacobs and Grainger, 1994).

Houpt et al. (2014) recently demonstrated a new approach
to measuring the word superiority effect based on response
times to whole letter strings rather than accuracy of single let-
ter identification. Their approach is based on a comparison of
an individuals response latency to a full string, such as a word
or pseudoword, to his predicted response time if he had iden-
tified each letter independently and in parallel. This method
has multiple potential advantages for studying word superi-
ority among those with dyslexia. First, it is an individualized
measure so we can study both differences across groups as
well as heterogeneity within those with dyslexia. Second, even
though compensated dyslexic adults may increase word recog-
nition and accuracy, reading is often still less automatic, fluid,
and fast (Lefly and Pennington, 1991; Shaywitz et al., 1999), so
the fact that the Houpt et al. approach is based on response times
may make it more likely to pick up on differences between the
groups. Finally, it is a model based approach, so the results can
informmodels of word perception by both normal-reading adults
and those with dyslexia.

The main statistic used by Houpt et al. (2014) was the capac-
ity coefficient (Townsend and Nozawa, 1995; Townsend and
Wenger, 2004; Houpt and Townsend, 2012), which uses the
cumulative reverse hazard function of the response times to pre-
dict hypothetical independent, parallel performance and com-
pare it to participants actual performance. For more details see
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(Houpt et al., 2014). For each participant the cumulative reverse
hazard function is estimated from single character conditions
by the sum over all response times less than a given time of
1/number of response times less than or equal to t, i.e.,

K(t) = 1/n
∑

1/Y(t).

The independent parallel model prediction for a participant is
given by summing the cumulative reverse hazard functions over
each of the characters (Townsend and Wenger, 2004; Houpt
et al., 2013). The participants actual performance with words (or
pseudowords, etc.) is then compared to the predicted indepen-
dent, parallel performance to get a measure of the degree of the
advantage or disadvantage of the context.

C(t) = KLetter1 + KLetter2 + KLetter3 + KLetter4 − Kword

When the capacity coefficient is positive, indicating participants
performed better with context, it is referred to as super-capacity.
If the capacity coefficient is negative, which occurs if participants
perform worse, it is referred to as limited capacity. Finally, if their
performance is approximately equal to the predicted independent
parallel model, it is referred to as unlimited-capacity.

The participants reported in Houpt et al. (2014), who had no
reported reading difficulties, were nearly all super-capacity with
words and pseudowords, while they tended to be limited-capacity
with unpronounceable non-words and were nearly all limited
capacity with upside-down, unpronounceable, non-words and
unfamiliar characters (Katakana). They found that words and
pseudowords were higher capacity than the other string-types.
However, unlike the larger advantage for words over pseu-
dowords normally reported (including for adults in Grainger
et al., 2003), they only found higher capacity for words compared
to pseudowords when the stimuli were not masked.

There aremultiple potential outcomes to applying the capacity
approach to analyzing dyslexia. If the time based measures follow
the accuracy based results of Grainger et al., then we would expect
to see super-capacity for words and pseudowords and unlimited
or limited capacity for non-words for both dyslexic and control
participants.With normal reading adults, we would also expect to
see higher capacity with words than with pseudowords, although
this prediction is less certain given that Houpt et al. only found
the difference in capacity in one of their two experiments. If
the deficits present in dyslexia are specific to word perception
speed, but not accuracy, then we would expect word and pseu-
doword capacity to be unlimited or limited, more on par with
non-word capacity. We would also predict that the participants
with dyslexia would have generally lower capacity with words and
pseudowords than the control group.

2. Method

To measure the cumulative hazard function for responses to
strings, we had a block of trials dedicated to each string type
in which the same target and distractors were used. Targets
were all four character strings: “care” for the word blocks, “lerb”
for the pseudoword blocks, “rlkf” for the non-word blocks and

“ ” for the unfamiliar character blocks. For each target, a
set of four distractors was chosen that was within the same cate-
gory, e.g., all of the distractors for the word-target block were also
words. Each distractor was created by changing a single character
in the target string, with one distractor for a change in each char-
acter position, e.g., for the target “rlkf,” the distractors were “vlkf,”
“rtkf,” “rlhf,” and “rljk.” This is essentially the same task as Houpt
et al. (2014).

To measure the cumulative hazard function for characters in
isolation, we had blocks of trials in which participants needed to
discriminate between each of the two possible characters in each
position. For example, because “vlkf” was a distractor for the tar-
get “rlkf,” we had a block of trials during which the participants
were required to distinguish between “v” and “r” in isolation. The
full set of stimuli we used are shown in Table 1.

2.1. Participants
Participants were 19 students (Mean age = 21; 15 female)
recruited from the Indiana University community. 11 partici-
pants had a formal dyslexia diagnosis and one dyslexia partic-
ipant was left handed. Two of the participants with dyslexia
(both Male) were dropped from the analyses because they did
not complete 2 days of each of the experimental sessions.
All control participants had no history of neurological condi-
tions. All participants provided written informed consent, as
approved by the Institutional Review Board of Indiana Univer-
sity, Bloomington. The participants completed a battery of tests
to measure cognitive performance. They completed theWechsler
Abbreviated Scale of Intelligence (WASI; Weschler, 1999), Word
Attack (pseudoword naming) from the Woodcock-Johnson III
tests of Achievement (Woodcock et al., 2001), the Edinburgh
Handedness Questionnaire (Oldfield, 1971), Dyslexia Checklist
(Vinegrad, 1994), and the Adult Reading History Questionnaire
(Lefly and Pennington, 2000). As shown in Table 2, the groups
did not differ on intelligence measurements, but did differ on
measures of phonological processing and verbal working mem-
ory. Also, although all but one participant reported being right
handed, the groups differed in degree of handedness with the
dyslexics having a weaker absolute handedness measure.

Groups did not differ in age or intelligence measures. On aver-
age, verbal IQ was higher than non-verbal IQ (M = 7.26, SD =

9.63, p < 0.005), but this did not differ by group.

2.2. Stimuli
Table 1 gives the complete list of stimuli used for both the single
character and exhaustive trials for each type, which are a subset of
the stimuli in Houpt et al. (2014). There were four categories of
stimuli used: words, pronounceable non-words (pseudowords),
unpronounceable non-words and strings of Katakana charac-
ters. All strings used were four characters long. Word frequency
counts (based on Kucera and Francis, 1967) are available in the
appendix of Houpt et al. (2014). Pseudowords were taken from
the ARC Non-word Database (Rastle et al., 2002). The neighbor-
hood size and summed frequency of the neighbors for each of the
pseudowords are also included in the appendix of Houpt et al.
(2014). Strings and characters were presented in black Courier
font on a gray background. Characters were approximately 0.33◦
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TABLE 1 | Full set of character sequences used for stimuli.

Target Distractors Single character

Word care bare cure cave card c b a u r v e d

Pseudoword lerb nerb larb lemb lerf l n e a r m b f

Non-word rlkf vlkf rtkf rlhf rljk r v l t k h f k

Katakana

TABLE 2 | Descriptive measures of participant groups.

Control Dyslexia t BF

(n = 8) (n = 9)

M SD M SD

Age 21.5 (2) 21.3 (1.3) 0.20 0.43

WASI verbal 113 (12.6) 118 (10.9) −0.87 0.55

WASI non-verbal 105.4 (5.5) 110.7 (10.3) −1.34 0.73

WASI full 110.5 (9.6) 115.6 (11.3) −1.00 0.58

Verbal - Non-verbal 7.6 (9.2) 7.33 (9.34) 0.06 0.42

Handedness 81.8 (17.6) 57.9 (19.9) 2.63 3.23

Dyslexia checklist 4 (3.3) 14.9 (3.3) −6.79 2120

Reading history 29.9 (11.2) 67.3 (10.3) −7.14 3650

Reading span 3.1 (0.7) 2.1 (0.22) 3.55 17.4

Word attack (GE) 15.26 (3.7) 7.36 (1.95) 4.92 159

BF refers to the Bayes Factor comparing a model in which there is a difference between

groups to a model in which there is no difference between groups. BF larger than 1

indicates evidence in favor of a difference with > 3.2 considered substantial evidence,

> 10 strong and > 100 decisive. BF below 1 indicates evidence in favor of no difference

between groups (< 0.31 substantial, < 0.1 strong, < 0.01 decisive).

horizontally and between 0.30◦ and 0.45◦ vertically. Strings were
about 1.5◦ horizontally.

2.3. Procedure
All experimental conditions were run using Presentationr soft-
ware version 14.9 (www.neurobs.com). Stimuli were presented
on a 17′′ Dell CRTmonitor running in 1280× 1024mode. Partic-
ipants used a two-button mouse for their responses. Participants
were paid $8 per session, and received a $20 bonus upon comple-
tion of all 10 sessions. Each session lasted between 45 and 60min.
The first session was dedicated to general cognitive and read-
ing ability assessment. The second through ninth sessions were
each dedicated to one of the four stimulus types (e.g., word, pseu-
doword, . . . ), so there were two sessions of each type. The order
of string-types was randomized across participants. At the begin-
ning of each session, we read the participant the general instruc-
tions for the task while those instructions were presented on the
screen. The instructions encouraged participants to respond as
quickly as possible while maintaining a high level of accuracy.
Each session was divided into five blocks, one block of string
stimuli and a block for each of the corresponding single character
stimuli. The final session was a dedicated EEG session, although
those data are not further discussed here.

Each block began with a screen depicting the button corre-
sponding to each of the categories. Participants first completed

30 practice trials of the stimulus type in that block. Next, par-
ticipants completed 170 trials. Half of the trials were with the
target stimulus and the other half were divided evenly among
the distractor set. Each trial began with a 500ms presentation of
the block instruction screen which included a diagram of a com-
puter mouse that depicted which button to press for the target
and distractors, respectively. One button of the mouse was asso-
ciate with the target string (e.g., “care”) and the other button was
associated with the distractor(s) (e.g., “bare,” “cure,” “cave,” and
“card”). In the single character trials, there was only one stimulus
associated with each button (e.g., left button: “c”; right button:
“b”). The instruction screen was followed by a 500 presentation
of a fixation cross. The stimulus was then presented for 100ms.
Participants had a maximum of 1600ms to respond. Participants
did not receive feedback about the correctness of their response.
The session order was counterbalanced among the participants so
that participants completed the different types on different days
and in different orders.

2.4. Analysis
All data were analyzed using R statistical software (R Devel-
opment Core Team, 2011). We computed Bayesian ANOVA of
the correct target response times using the BayesFactor package
(Rouder et al., 2012). The Bayes factor (BF) approach to ANOVA
uses model comparison to give evidence for or against including
independent variables as predictors for the dependent variables.
The BF indicates the ratio of posterior probability of observed
data given the model for a pair of models. A rough scale for
interpretation of the BF is as follows: <0.01 decisive evidence
against; <0.1 strong evidence against; 0.31 substantial evidence
against; 0.32–1; minimal evidence against; 1–3.2 is minimal evi-
dence for; >3.2 substantial evidence for; >10 strong evidence
for;>100 decisive evidence for (Jeffreys, 1961). Capacity analyses
were completed using the sft package (Houpt et al., 2013).

3. Results

3.1. Mean Response Time and Accuracy
For each analysis, we computed the Bayes Factor for a full
model, which included string-type (word, pseudoword, random,
or Katakana), target/distractor, day (1 or 2), and group (con-
trol or dyslexia), relative to a subject intercept only model.
We then compared that Bayes factor to successively sim-
pler models which were derived by first removing interactions
terms then main effects while maintaining a component for
any lower order effects that were included in an interaction
term.
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Accuracy and mean correct response times with the string
blocks for each string-type are shown in Figure 1 with error
bars representing the 95% credible intervals from the full
model. The highest Bayes factor model for correct response
times included a three-way interaction among string-type, day
and group along with two-way interactions between string-
type and target/distractor and day and target/distractor. This
model had a Bayes factor of 19.9 (strong evidence) over the
next best model, which included a group by target/distractor
interaction and was otherwise the same. There was deci-
sive evidence for the best model over all other models
(BF > 125).

Analysis of the posterior of the full model indicated that the
three-way interaction was driven by the control group speeding
up on Katakana on Day 2 compared to Day 1, while the dyslexia
group was relatively faster on non-words on Day 2 compared
to Day 1. The string-type by target/distractor interaction was
driven by a cross-over targets being slower for words and pseu-
dowords and faster for Katankana. The string by day interaction,

marginalized across group, showed a cross-over between faster
performance for words on Day 1 relative to Day 2 and slower
performance for Katakana on Day 1 relative to Day 2. A marginal
interaction between string-type and group was mostly driven by
faster performance by the controls on the non-word stimuli.

Marginalized over the other factors, words were faster than
pseudowords (Posterior Mean = 20.7, 95% HDI = [15.6, 25.7]),
non-words (Posterior Mean = 89.3, 95% HDI = [84.1, 94.6]),
and Katakana (Posterior Mean = 164, 95% HDI = [159,
170]). Additionally pseudowords were faster than non-words
(Posterior Mean = 68.7, 95% HDI = [64.4, 73.4]) and Katakana
(Posterior Mean = 144, 95% HDI = [138, 149]) and non-
words were faster than Katakana (Posterior Mean = 74.9, 95%
HDI = [69.6, 80.3]). Targets were slower than distractors (Pos-
terior Mean = −20.1, HDI = [−23.6, −16.6]). Response time
on Day 1 were slower than on Day 2 (Posterior Mean = −14.7,
HDI = [−18.6, −10.9]). There was not clear evidence for one
group being faster than the other overall (Posterior Mean of
Control minus Dyslexia=−25.4, HDI= [−106, 54.5]).

FIGURE 1 | Mean correct response times and mean accuracies for all string types across days, targets/distractors and group. Error bars indicate 95%

confidence intervals.
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The highest Bayes Factor model for accuracy included a three-
way interaction among string-type, day and target/distractor and
a two-way interaction between string-type and group. There was
strong evidence for this model over a model which also included
a group by target interaction (BF = 12.0) and over a model
that included a group by day interaction (BF = 29.8). There
was decisive evidence for the best model over all other models
(BF > 159).

The three-way interaction in accuracy comes from the large
increase in distractor performance across days on Katakana and a
slight increase in performance for distractors relative to target on
words and non-words compared to a unchanged relative perfor-
mance on the pseudowords across days. Overall there was a larger
increase in performance for Katakana than the other string-
types, with the smallest changes in the word and pseudoword
blocks. Between groups, there was a larger difference in accuracy
in the non-word blocks and the smallest difference for pseu-
dowords. Between targets and distractors, the largest difference
was for Katakana and the smallest differences were for the word
and pseudoword string-types. Generally, distractor performance
improved more between the days than target performance.

Marginalized over the other factors, accuracy with words was
nearly the same as accuracy on pseudowords (Posterior Mean =

0.00323, 95% HDI = [−0.00667, 0.00129]), slightly better than
non-words (Posterior Mean = 0.0351, 95% HDI = [0.0254,
0.0448]), and much better than Katakana (Posterior Mean =

0.146, 95% HDI = [0.136, 0.156]). Additionally pseudowords
were slightly more accurate than non-words (Posterior Mean =

0.0318, 95% HDI = [0.0219, 0.0416]) and much more accurate
than Katakana (Posterior Mean = 0.143, 95% HDI = [0.133,
0.153]) and non-words were more accurate than Katakana (Pos-
terior Mean = 0.111, 95% HDI = [0.101, 0.121]). Targets were
more accurate than distractors (Posterior Mean= 0.0724, HDI=
[0.0654, 0.0794]). Accuracy on Day 2 was higher than on Day
1 (Posterior Mean = 0.0326, HDI = [0.0256, 0.0395]). There
was not clear evidence for one group being more accurate than
the other overall (Posterior Mean of Control minus Dyslexia =
0.0353, HDI= [−0.0476, 0.117]).

Mean correct response time and accuracy with the single
character blocks for each type are shown in Figure 2.

As in the string data, the best model included a three-
way interaction among character-type, day and group. There

FIGURE 2 | Mean correct response times and mean accuracies on single characters for all types across days, targets/distractors and group. Error bars

indicate 95% confidence intervals.
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were also two-way interactions between character-type and day,
character-type and group, day and group, and group and tar-
get/distractor. There was very strong evidence for this model
over the next best, which also included a character-type by tar-
get/distractor interaction (BF = 65.7), and the third best model
which included a day by target/distractor interaction (BF= 81.2).
There was decisive evidence for the best model over all others
(BF > 2600).

The three-way interaction was driven by the slow-down for
control participants on the non-word task between days, while
there was no such change for the dyslexia group. The character-
type by day interaction was also mainly due to the slow down
on the non-words between days. The control group was rela-
tively faster on words and Katakana, while there was a smaller
group difference on the non-word characters and nearly no group
differences on the characters from pseudowords. The control
group slowed down less from Day 1 to Day 2 than the dyslexia,
although the magnitude of this difference was small. Control
participants were had a relatively larger speed up for distractors
over targets on Day 1 than dyslexia participants compared to the
second day.

There was a small response time advantage for word
characters compared to pseudoword characters when the
other factors were marginalized (Posterior Mean = −2.89,
HDI = [−4.73, −1.00]) and large advantages for word char-
acters over non-word characters (Posterior Mean = −17.5,
HDI = [−19.3, −15.6]) and Katakana characters (Posterior
Mean = −26.1, HDI = [−27.9,−24.2]). Pseudoword characters
were faster than non-word characters (Posterior Mean = −14.6,
HDI = [−16.5,−12.7]) and Katakana characters (Posterior
Mean = −23.2, HDI = [−25.0,−21.3]). Non-word characters
were faster than Katakana characters (Posterior Mean = −8.55,
HDI = [−10.4,−6.67]). The marginal group response times
were again indistinguishable (Posterior Mean = −15.6, HDI =
[−74.0, 40.7]).

For the single character accuracy data, the best fit model
again included the three-way interaction among character-
type, day and group. There was decisive evidence for this
model over all alternative models (BF ≥ 138). There was a
small advantage for word characters over pseudoword char-
acters (Posterior Mean = 0.00756, HDI = [0.00372, 0.0115])
and non-word characters (Posterior Mean = 0.0129, HDI
= [0.00906, 0.0168]) but not a clear difference between
word and Katakana characters (Posterior Mean = 0.00239,
HDI = [−0.00146, 0.00624]). Participants were slightly
more accurate characters with pseudoword characters than
non-word characters (Posterior Mean = 0.00531, HDI =

[0.00138, 0.00918]) but less accurate with pseudoword char-
acters compared to Katakana characters (Posterior Mean
= −0.00517, HDI = [−0.00905,−0.00126]). Participants
were also slightly less accurate with non-word characters
than with Katakana characters (Posterior Mean = −0.0105,
HDI = [−0.0143,−0.00658]). There were no clear marginal
differences between days (Posterior mean of Day 2 minus
Day 1 = 0.00232, HDI = [−0.000389, 0.00505] or groups
(Posterior mean of Control minus Dyslexia = 0.0148, HDI =
[−0.0494, 0.0789]).

Because response time distributions tend to be skewed, and
these data are no exception, we also ran an analysis on the log-
transformed response time data and found no difference in which
model had the highest Bayes factor and only a small difference
in the magnitude of that Bayes factor compared to the next best
model for the string data (BF = 17.8) and resulted in stronger
evidence for the character data (BF = 217).

3.2. Capacity Analyses
Capacity coefficients are shown for each individual (collapsed
across days) in Figure 3. Using the capacity statistic from Houpt
and Townsend (2012), participants tended to be super-capacity
in the Word (Control: Day 1 = 7/8, Day 2 = 8/8; Dyslexia:
Day 1 = 7/9, Day 2 = 7/8 significantly better than baseline) and
Pseudoword string-types (Control: Day 1 = 7/8, Day 2 = 8/8;
Dyslexia: Day 1= 9/9, Day 2= 7/8 significantly better than base-
line). Figure 4 summarizes the overall capacity statistic for each
group on each day. There was more variable performance with
Katakana (Control: Day 1= 2/8 above and 5/8 below, Day 2= 1/8
above and 5/8 below; Dyslexia: Day 1= 3/9 above and 3/9 below,
Day 2 = 3/9 above and 4/9 below) and the non-words (Control:
Day 1 = 3/8 above and 2/8 below, Day 2 = 2/8 above and 2/8
below; Dyslexia: Day 1 = 4/9 above and 4/9 below, Day 2 = 1/8
above and 2/8 below).

The best model based on a Bayesian ANOVA measuring day,
group and string-type predicting the individual capacity z-scores
included a group by string-type interaction as well as main effects
of group and string-type. The evidence was nearly equivocal
when compared to a model with only a main effect of string-type
(BF = 1.73) but had at least substantial evidence over all other
models (BF ≥ 4.00). Table 3 shows the Bayes Factor for the best
model relative to all models over which there was not very strong
or decisive evidence.

Capacity z-scores were close between words and pseudowords
(Posterior Mean = 1.44, HPD = [−0.367, 3.19]) and higher
for words than non-words (Posterior Mean = 6.29, HPD =

[4.49, 8.10]) and Katakana (Posterior Mean = 8.35, HPD =

[6.56, 10.1]). Pseudoword capacity z-scores were higher than
both non−words (Posterior Mean = 4.86, HPD = [3.06, 6.64])
and Katakana (Posterior Mean = 6.91, HPD = [5.08, 8.75]).
Non-words had higher capacity z-scores than Katakana (Poste-
rior Mean = 2.06, HPD = [0.292, 3.82]). There was nearly no
marginal difference between groups (Posterior Mean = −0.526,
HPD= [−3.16, 2.04]).

The capacity z-score gives a summary of the capacity func-
tion across time. To check for differences in the shape of capacity
coefficient functions, we tested the factor scores obtained from
functional principal components analysis (fPCA) of the capacity
coefficients (Burns et al., 2013). fPCA is a dimensionality reduc-
tion technique that is essentially the same as the more famil-
iar principal components analysis for vectors. The main differ-
ence in fPCA is that the data are described in terms of a linear
combination of functions rather than vectors.

Because the best model of capacity effects did not include day
and better estimates of capacity functions lead to more accu-
rate principal component representation, these analysis were per-
formed with data collapsed across day. The fPCA indicated that
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FIGURE 3 | Difference capacity coefficients for each participant in each string type, collapsed across days. Under the null-hypothesis of

unlimited-capacity, independent, parallel character recognition, the function would be equal to zero for the full time range.

FIGURE 4 | Mean capacity statistic values across days, string-type and group. Under the null-hypothesis of unlimited-capacity, independent, parallel character

recognition, the statistic would be have a standard normal distribution at the individual level. Error bars indicate 95% confidence intervals.

the variation across capacity functions was well-represented by
three factors related to early, middle and late response time
regions (see Figure 5).

According to the Bayes factor analyses reported in Table 4,
there was clear evidence of variation in the capacity functions due
to string type in the middle and late time regions. Evidence was
present, but less clear, against an effect of group. The analysis was
nearly equivocal with respect to meaningful variation in the early
time region beyond the variation due to individual subject.

A visual inspection of the individual participant capacity plots
in Figure 3 suggest different patterns of results across string-
types for different participants. First, some participants showed
much higher capacity for words and pseudowords than for
Katakana, with lower capacity for non-words, but not as low
as Katakana (e.g., Controls 1, 2, and 3 and Dyslexia 5). This is
basically the pattern of results reported in Houpt et al. (2014).
Another set of participants had mostly similar capacity functions
across string-type (e.g., Controls 7 and 8 and Dyslexia 9).

Frontiers in Psychology | www.frontiersin.org 8 April 2015 | Volume 6 | Article 482

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Houpt et al. Dyslexia and configural perception

To investigate these patterns of differences and the extent to
which they may be predictive of the basic behavioral measures,
we used k-means clustering on the fPCA scores. Inspection of
a scree plot indicated three clusters would be appropriate for
these data. The capacity functions represented by the three clus-
ter means are shown in Figure 6. The pattern in Cluster 2 is most
similar to the results in Houpt et al. (2014) whereas Cluster 3 rep-
resents the participants who had less variation in capacity across
string-type. Similar to Cluster 2, Cluster 1 had higher capacity for
words and pseudowords and limited capacity for Katakana, but
Cluster 2 also had fairly limited capacity for non-words. Control
participants were all in either Cluster 2 (4/8) or Cluster 3 (3/8)
except Participant C4, who was in Cluster 1. Four of the nine
Dyslexia participants were in Cluster 1, three in Cluster 3 and

TABLE 3 | Bayes Factors for the highest model relative to the next best

models for predicting capacity z-scores.

Model BF

String-type + Subject 1.00

String-type + Group + Subject 0.417

String-type + Day + Subject 0.194

String-type × Group + String-type + Group + Subject 0.181

two in Cluster 2. Note that neither dyslexia status nor the reading
and cognitive performance measures contributed to discovering
the clusters.

Probing deeper into the connection between the capacity task
and the reading and cognitive task, we also examined the vari-
ation in those measures across clusters. Figure 7 shows the dis-
tribution (after standardizing across participants) of the basic
behavioral measures across each cluster. Generally speaking,
Cluster 1 was distinguished in these measures by being have
lower handedness scores and lower scores on the Grade Equiv-
alent Word Attack; Cluster 2 had lower Dyslexia checklist scores,
higher reading span scores and lower reading history scores; and
Cluster 3 had slightly lower verbal IQ scores. Despite the pattern
of differences across the measures, Bayesian ANOVAs did not
indicate strong evidence either for or against differences among
the clusters on any single measure (0.4 ≤ BF ≤ 2.5 due to the
small number of participants in the study.

4. Discussion

In the current study we aimed to explore word perception
differences in dyslexia using a novel approach, capacity mea-
sures designed to investigate response time latencies. We com-
pared participants with dyslexia and age-matched controls on

FIGURE 5 | Functional principal components analysis of the capacity

functions across all participants and stimulus types. The first panel

shows the component functions after the varimax rotation. The second and

third panels show the scores for the first and second component function.

The scores are separated for the control group and those with dyslexia,

however the fPCA solution was computed for all data together.

TABLE 4 | Bayes Factors relative to the highest model for predicting fPCA capacity scores.

Model Middle (D1) Late (D2) Early (D3)

String-type + Subject 1.00 1.00 1.00

String-type + Group + Subject 0.437 0.633 0.345

String-type × Group + String-type + Group + Subject 0.131 0.270 0.083

Group + Subject 2.96× 10−6 8.25× 10−11 0.194

Subject 7.83× 10−6 1.83× 10−10 0.580
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FIGURE 6 | Capacity functions representing the center of each of

the three k-means clusters. These are derived by using the mean vector

of the cluster on the fPCA scores to as factor weights to determine the

functions. The colors indicate the string types using the same scheme as

the preceding figures. Word: Green; Pseudoword: Blue; Nonword: Red;

Katakana: Purple.

FIGURE 7 | Representation of the variation in the diagnostic tests across the clusters which were derived from the capacity analysis. The points

(triangles, squares, and circles) represent the mean value and the lines represent the standard error of the mean.

a discrimination task with four types of stimuli: words, pseu-
dowords, non-words, and Katakana.

The lack of a marginal level difference in either response time,
accuracy or capacity based on dyslexia diagnosis replicates and
extends the basic finding of Grainger et al. (2003) and the repli-
cation in Ziegler et al. (2008):Word superiority effects are present
at a group level for those with a dyslexia diagnosis and at a sim-
ilar magnitude to age-matched control groups. This finding is
extended in this paper to a new group, college aged students, and
a new paradigm, the design from Houpt et al. (2014).

However, in our current study, the response latency showed a
three-way interaction between group, string-type, and day, sug-
gesting that there are some subtle differences between controls
and dyslexics. Additionally, the mean capacity results were simi-
lar to those found in a previous study by Houpt et al. (2014) using
this technique—words and pseudowords had similarly higher

capacity than non-words and non-words had higher capacity
than Katakana. Interestingly, when the capacity results were
inspected, individual differences emerged such that three differ-
ent capacity profiles emerged. One group was similar to the non-
dyslexics reported in the Houpt study while the other two groups
had capacity profiles that diverged in important ways.

The k-means clustering analysis indicated three distinct
capacity profiles. In an attempt to characterize these three profiles
we also explored the cognitive/behavioral scores of the individu-
als that composed them. The profile that most resembled (Houpt
et al., 2014), Cluster 2, had scores more similar to those expected
of normal reading adults (i.e., lower dyslexia checklist and read-
ing history scores and higher reading span scores). Indeed, the
two dyslexic participants whose capacity profiles were included
in Cluster 2 had the lowest dyslexia checklist and reading history
scores among those with dyslexia.
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Like Cluster 2, the capacity profile for Cluster 1 showed high
capacity for words and pseudowords and lower capacity for
Katakana, but also showed lower capacity for non-words that was
similar to Katakana. The individuals that made up Cluster 1 on
average had lowWord Attack scores and reading span scores, and
high reading history and dyslexia checklist scores, all of which
are indicative of dyslexia. The one control participant who was
included in this cluster had the highest dyslexia checklist and
reading history scores. Interestingly, with the exception of one
dyslexic in Cluster 3, the dyslexics in Cluster 1 showed the lowest
Word Attack Grade Equivalent scores (all below 7th grade) and
the members of this group appear to show an efficiency divide
between pronounceable and non-pronounceable string-types.
Low performance on Word Attack, particularly in college stu-
dents, may suggest that the grapheme-to-phoneme processes for
this group are particularly affected. This may prompt a “whole
word” strategy when reading. They do appear to be efficient
in visually recognizing whole regular words and whole pseu-
dowords. The efficiency for pseudowords may be due to repe-
tition causing them to be processed more like words. Although
the participants in Cluster 1 had low Word Attack scores, the
pseudowords in this study were four-letter, single-syllable pseu-
dowords that are relatively easy to pronounce. Therefore, they
may have treated pseudowords like words once they were learned
(e.g., on day 2). However, this may not be possible for non-
pronounceable consonant strings or foreign characters because
they were unable to be learned as words (e.g., non-words are
orthotactically invalid and Katakana is not linguistically mean-
ingful). A study by Siegel et al. (1995) suggested that dyslexics
with low phonological awareness rely more on orthographic pro-
cessing. Specifically, they noted a group of dyslexics with poor
performance on Word Attack, but high orthographic awareness
compared to controls with higher Word Attack scores.

The final profile identified by k-means clustering, Cluster 3,
revealed little differences among the four stimulus types. The
individuals who showed this profile included both dyslexic and
control participants. In terms of test scores, only Word Attack
and verbal IQ differentiate Cluster 3 and Cluster 1. On aver-
age, individuals in Cluster 3 had higher Word Attack scores and
lower verbal IQ. This suggests that these individuals may not
have a weaknesses related to grapheme-to-phoneme conversion,
but may have deficits in other language-related processes that
account for the lower verbal IQ. The finding that the capacity
scores were similar across stimulus types suggests that individ-
uals in Cluster 3 used a generalized strategy. Because all partic-
ipants were naive to Katakana, a generalized strategy could not
have depended on linguistic processing but may instead have
depended on visual feature processing. This strategy is appar-
ently very efficient and able to handle complex unfamiliar visual
stimuli. It is possible that this is a global, holistic process. Some
evidence to support such a strategy comes from a study exam-
ining high school students that found dyslexics were faster, but
not more accurate, at detecting impossible objects (von Károlyi,
2001). They found that these students relied on global process-
ing of the objects (e.g., recognizing features simultaneously and
discerning if they contradict each other). While Katakana does
not have any inherent contradictory features in this study, if we

situate the target Katakana string as the goal this contextualizes
the distractor strings as somewhat contradictory. It is possible
that the participants who were efficient at Katakana (as well as the
other string-types) were processing the strings as whole objects.
It is also possible that many of the dyslexic members of Clus-
ter 3 were especially good at Katakana because language pro-
cessing could not “get in the way.” They may then have been
able to generalize a visual, non-linguistic strategy into the other
categories.

While it may be that individuals in Cluster 3 used a non-
linguistic strategy, an alternative explanation is that a linguistic
strategy was used for non-word and Katakana stimuli. In anMEG
study of visual word recognition in dyslexia, Salmelin et al. (1996)
found that non-dyslexics displayed a typical sharp negativity
around 180ms in temporo-occipital regions to words, but dyslex-
ics only activated this region after 200ms with a slowly increasing
signal that peaked closer to 450ms. Some of the participants in
the current study also participated in an pilot EEG session of
the task after completing the study. Generally, participants who
showed a profile similar to Cluster 3 failed to show a sharp left
N170 in response to the stimuli, but instead showed a more grad-
ual negativity in less lateralized posterior electrodes that peaked
between 220-350ms; this pattern was fairly consistent across
string-type (Sussman et al., 2011). In contrast, a control with a
non-clumping capacity pattern, similar to Cluster 2, showed a
more typical pattern of an N180 in left temporo-occipital elec-
trodes for words, pseudowords, and non-words; but for Katakana
did not show this N180 response. The correspondence between
our EEG data and (Salmelin et al., 1996) potentially suggests that
the participants who show similarity in capacity across all four
string-types are generalizing a strategy from words to Katakana
and not vice versa. This also suggests, however, that the presumed
compensatory strategy they are using requires visual language
processes. Interestingly, the Cluster 3 pattern is not unique to
the dyslexia participants and was, in fact, used by some controls.
That most (all three dyslexics and one control) of the subjects
in Cluster 3 showed super-capacity for Katakana suggests that
the strategy was more generalized across string-types, but not
always efficient. It is possible that particularly the dyslexics in
this group are more practiced at using a generalized strategy. Fur-
ther research is necessary to determine the strategy being used by
individuals in Cluster 3.

Together with the results from Grainger et al. (2003) and
Ziegler et al. (2008), these results indicate that there is no general
deficit in orthographic recognition, either at the single character
or configural level, with dyslexia. Some of the participants with
dyslexia were differentiated frommost of the control participants
in this task, but the main difference was in their performance on
non-words. Given the low Word Attack scores, it is unlikely that
the participants with dyslexia are using phonological information
for better performance in the word and pseudoword condition,
so they are potentially relying on information from the ortho-
graphic configurations. The subgroup that performed worse on
non-words may have relied more on statistical regularities in
letter combinations (cf. Pelli et al., 2003) than the participants
who were not much worse with non-words. Although previ-
ous research has shown that the effect of orthographic regularity
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across languages (English and German) is similar across partici-
pants with and without dyslexia (Landerl et al., 1997), in future
research it would be worthwhile to investigate whether there is a
difference in the effect of orthographic regularity associated with
the different capacity profiles reported herein.

One potential limitation of the current study, and of the
approach in Houpt et al. (2014), is that only a single string
is used for each string-type. In the standard Reicher–Wheeler
paradigm, a different word is used on each trial. Because the
repeated presentation of the string, there is ample opportunity
for the participants to use encoding strategies that are efficient
for those particular strings, but are not necessarily representative
of the participants’ ability across the whole class of string-types
that is represented by that string. Despite this possibility, Houpt
et al. (2014) found a clear differentiation among the string types.
Although it is more parsimonious to assume, that the same per-
ceptual process differences underly the word and pseudoword
superiority effects observed in both (Houpt et al., 2014) and the
Reicher-Wheeler design, it leaves open the possibility that the
individual differences in this study were due to differences in per-
ceptual learning rather than differences in more general, stable,
perceptual encoding strategies.

Another limitation of the current work is that the participants
were undergraduate and graduate students at a major univer-
sity. These participants may not be representative of the wider
range of adults with dyslexia. Furthermore, these participants
have had many years of reading practice to develop strategies for
ameliorating the effects of dyslexia. In future work, it would be
informative to use this paradigmwith younger children who have

not had access to as many years of remediation training as the

participants in this study. This would facilitate further connec-
tion between the effects reported here and the previous studies
of dyslexia and the word superiority effect (Grainger et al., 2003;
Ziegler et al., 2008). It would be particularly interesting to test if
the same clusters of capacity performance emerge with younger
participants or perhaps if there is some effect of remediation
training on the capacity patterns. More generally speaking, this
is a relatively small sample of participants for individual differ-
ences research and we hope to expand these results to a much
larger sample.

To conclude, the results presented here emphasize the impor-
tance of exploring individual differences. The dyslexic group, like
the control group, is not homogeneous; they do not all process
word and word-like strings in the same way. Here, when exam-
ining capacity profiles, three different subgroups were observed
and there were both control and dyslexic participants in each
of these groups. While it is difficult to detect these patterns by
only examining the accuracy data from tasks designed to explore
the word superiority effect (e.g., Grainger et al., 2003), by using
response latency data to predict independent, parallel processing,
group differences emerged. These types of analyses may prove
to be informative and provide information regarding how indi-
viduals are processing word stimuli, which can then be used
to develop remediation tools that are tailored to an individual
dyslexic.

Funding

This work was supported by AFOSR Grant FA9550-13-1-0087
awarded to JH and NIH-NIMHMH 057717-07 awarded to JT.

References

Baron, J., and Thurston, I. (1973). An analysis of the word-superiority effect. Cogn.

Psychol. 4, 207–228.

Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R., and Blomert, L. (2009).

Reduced neural integration of letters and speech sounds links phonolog-

ical and reading deficits in adult dyslexia. Curr. Biol. 19, 503–508. doi:

10.1016/j.cub.2009.01.065

Blomert, L. (2011). The neural signature of orthographic–phonological binding

in successful and failing reading development. Neuroimage 57, 695–703. doi:

10.1016/j.neuroimage.2010.11.003

Burns, D. M., Houpt, J. W., Townsend, J. T., and Endres, M. J. (2013). Func-

tional principal components analysis of workload capacity functions. Behav.

Res. Methods 45, 1048–1057. doi: 10.3758/s13428-013-0333-2

Cattell, J. M. (1886). The time it takes to see and name objects.Mind 11, 63–65.

Estes, W. K., and Brunn, J. L. (1987). Discriminability and bias in the word-

superiority effect. Percept. Psychophys. 42, 411–422.

Grainger, J., Bouttevin, S., Truc, C., Bastien, M., and Ziegler, J. (2003). Word

superiority, pseudoword superiority, and learning to read: a comparison of

dyslexic and normal readers. Brain Lang. 87, 432–440. doi: 10.1016/S0093-

934X(03)00145-7

Healy, A. F. (1994). Letter detection: a window into unitization and other cognitive

processes in reading text. Psychon. Bull. Rev. 3, 333–344.

Houpt, J., Townsend, J., and Donkin, C. (2014). A new perspective on

visual word processing efficiency. Acta Psychol. 145, 118–127. doi:

10.1016/j.actpsy.2013.10.013

Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., and Townsend, J. T. (2013).

Systems factorial technology with R. Behav. Res. Methods 46, 307–330. doi:

10.3758/s13428-013-0377-3

Houpt, J. W., and Townsend, J. T. (2012). Statistical measures for workload

capacity analysis. J. Math. Psychol. 56, 341–355. doi: 10.1016/j.jmp.2012.

05.004

Jacobs, A. M., and Grainger, J. (1994). Models of visual word recognition: sampling

the state of the art. J. Exp. Psychol. 20, 1311–1334.

Jeffreys, H. (1961). The Theory of Probability, 3rd Edn. Oxford.

Kucera, H., and Francis, W. (1967). Computational Analysis of Present-day Ameri-

can Engish. Providence, RI: Brown University Press.

Landerl, K., Wimmer, H., and Frith, U. (1997). The impact of orthographic consis-

tency on dyslexia: a German–English comparison. Cognition 63, 315–334.

Lefly, D. L., and Pennington, B. F. (1991). Spelling errors and reading fluency in

compensated adult dyslexics. Ann. Dyslexia 41, 141–162.

Lefly, D. L., and Pennington, B. F. (2000). Reliability and validity of the

adult reading history questionnaire. J. Learn. Disabil. 33, 286–296. doi:

10.1177/002221940003300306

Manelis, L. (1974). The effect of meaningfulness in tachostiscopic word perception.

Percept. Psychophys. 16, 182–192.

Massaro, D. W. (1973). Perception of letters, words, and nonwords. J. Exp. Psychol.

100, 349–353.

McClelland, J. L., and Johnston, J. C. (1977). The role of familiar units in perception

of words and nonwords. Percept. Psychophys. 22, 249–261.

Nicolson, R. I., and Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural

learning and the cerebellum. Cortex 47, 117–127. doi: 10.1016/j.cortex.2009.

08.016

Oldfield, R. C. (1971). The assessment and analysis of handedness: the edinburgh

inventory. Neuropsychologia 9, 97–113.

Pelli, D. G., Farell, B., and Moore, D. C. (2003). The remarkable inef-

ficiency of word recognition. Nature 423, 752–756. doi: 10.1038/nature

01516

Frontiers in Psychology | www.frontiersin.org 12 April 2015 | Volume 6 | Article 482

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Houpt et al. Dyslexia and configural perception

Pomerantz, J. R., Sager, L. C., and Stoever, R. J. (1977). Perception of wholes and

of their component parts: some configural superiority effects. J. Exp. Psychol.

3, 422.

R Development Core Team. (2011). R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing.

Rack, J. P., Snowling, M. J., and Olson, R. K. (1992). The nonword reading deficit

in developmental dyslexia: a review. Read. Res. Q. 27, 29–53.

Ramus, F. (2003). Developmental dyslexia: specific phonological deficit or gen-

eral sensorimotor dysfunction? Curr. Opin. Neurobiol. 13, 212–218. doi:

10.1016/S0959-4388(03)00035-7

Rastle, K., Harrington, J., and Coltheart, M. (2002). 358,534 nonwords:

the ARC nonword database. Q. J. Exp. Psychol. 55A, 1339–1362. doi:

10.1080/02724980244000099

Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of

stimulus material. J. Exp. Psychol. 81, 274–280.

Rouder, J. N., Morey, R. D., Speckman, P. L., and Province, J. M. (2012).

Bayes factors for anova designs. J. Math. Psychol. 56, 356–374. doi:

10.1016/j.jmp.2012.08.001

Salmelin, R., Kiesil, A. P., Uutela, K., Service, E., and Salonen, O. (1996). Impaired

visual word processing in dyslexia revealed with magnetoencephalography.

Ann. Neurol. 40, 157–162.

Shaywitz, S. E. (1998). Dyslexia. N. Engl. J. Med. 338, 307–312.

Shaywitz, S. E., Fletcher, J. M., Holahan, J. M., Shneider, A. E., Marchione,

K. E., Stuebing, K. K., et al. (1999). Persistence of dyslexia: the connecticut

longitudinal study at adolescence. Pediatrics 104, 1351–1359.

Shaywitz, S. E., and Shaywitz, B. A. (2005). Dyslexia (specific reading disability).

Biol. Psychiatry 57, 1301–1309. doi: 10.1016/j.biopsych.2005.01.043

Siegel, L. S., Share, D., and Geva, E. (1995). Evidence for superior orthographic

skills in dyslexics. Psychol. Sci. 6, 250–254.

Spoehr, K. T., and Smith, E. E. (1975). The role of orthographic and phonotactic

rules in perceiving letter patterns. J. Exp. Psychol. 104, 21–34.

Stanovich, K. E. (1996). Toward a more inclusive definition of dyslexia. Dylexia 2,

154–166.

Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia 7,

12–36. doi: 10.1002/dys.186

Sussman, B. L., Houpt, J. W., Townsend, J. T., and Newman, S. D. (2011). “EEG

correlates of visual word processing efficiency in dyslexia,” in Poster Presented

at: Society for Neuroscience Annual Meeting (Washington, DC).

Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities

in children. Brain Lang. 9, 182–198.

Townsend, J. T., and Nozawa, G. (1995). Spatio-temporal properties of elementary

perception: an investigation of parallel, serial and coactive theories. J. Math.

Psychol. 39, 321–360.

Townsend, J. T., and Wenger, M. J. (2004). A theory of interactive parallel pro-

cessing: new capacity measures and predictions for a response time inequality

series. Psychol. Rev. 111, 1003–1035. doi: 10.1037/0033-295X.111.4.1003

Vinegrad, M. (1994). A revised adult dyslexia checklist. Educare 48, 21–23.

von Károlyi, C. (2001). Visual-spatial strength in dyslexia: rapid dis-

crimination of impossible figures. J. Learn. Disabil. 34, 380–391. doi:

10.1177/002221940103400413

Weschler, D. (1999).Weschler Abbreviated Scale of Intelligence (WASI). San Anto-

nio, TX: Harcourt Assesment.

Wheeler, D. D. (1970). Processes in word recognition. Cogn. Psychol. 1, 59–85.

Wilson, A. M., and Lesaux, N. K. (2001). Persistence of phonological process-

ing deficits in college students with dyslexia who have age-appropriate reading

skills. J. Learn. Disabil. 34, 394–400. doi: 10.1177/002221940103400501

Woodcock, R. W., McGrew, K. S., and Mather, N. (2001). Woodcock-Johnson III

Tests of Achievement. Itasca, IL: Riverside Publishing.

Ziegler, J. C., Castel, C., Pech-Georgel, C., George, F., Alario, F., Perry, C.,

et al. (2008). Developmental dyslexia and the dual route model of reading:

simulating individual differences and subtypes. Cognition 107, 151–178. doi:

10.1016/j.cognition.2007.09.004

Conflict of Interest Statement: The Guest Associate Editor Cheng-Ta Yang

declares that, despite having collaborated with authors James T. Townsend and

Joseph W. Houpt, the review process was handled objectively and no conflict of

interest exists. The authors declare that the research was conducted in the absence

of any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2015 Houpt, Sussman, Townsend and Newman. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 13 April 2015 | Volume 6 | Article 482

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	Dyslexia and Configural Perception of Character Sequences
	Repository Citation

	Dyslexia and configural perception of character sequences
	1. Introduction
	1.1. The Word Superiority Effect and Dyslexia

	2. Method
	2.1. Participants
	2.2. Stimuli
	2.3. Procedure
	2.4. Analysis

	3. Results
	3.1. Mean Response Time and Accuracy
	3.2. Capacity Analyses

	4. Discussion
	Funding
	References


