Wright State University CORE Scholar

Kno.e.sis Publications

The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis)

1-15-2008

Semantic Sensor Web

Cory Andrew Henson Wright State University - Main Campus

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation

Henson, C. A. (2008). Semantic Sensor Web. . https://corescholar.libraries.wright.edu/knoesis/985

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

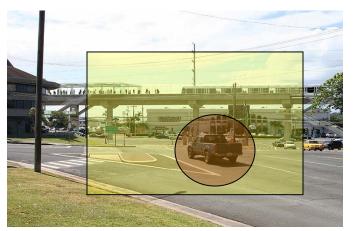
Semantic Sensor Web

Talk at: Semantic Interoperability Community of Practice (SICoP)Sensor Standards Harmonization WGJanuary 15, 2008

Cory Henson <u>Kno.e.sis Center</u>, Wright State University

- 1. <u>Motivating Scenario</u>
- 2. Sensor Web Enablement
- 3. Semantic Sensor Web
- 4. Prototype Application

Motivating Scenario



- How do we determine if A-H = A-L? (Same time? Same place?)
- How do we determine if E-H = E-L? (Same entity?)
- How do we determine if E-H or E-L constitutes a threat?

A-L OE-L

L

The Challenge

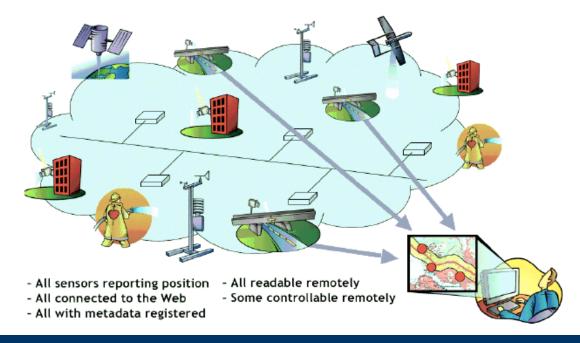
Collection and analysis of information from heterogeneous multi-layer sensor nodes

- There is a lack of uniform operations and standard representation for sensor data.
- There exists no means for resource reallocation and resource sharing.
- Deployment and usage of resources is usually tightly coupled with the specific location, application, and devices employed.
- **Resulting in a lack of interoperability.**

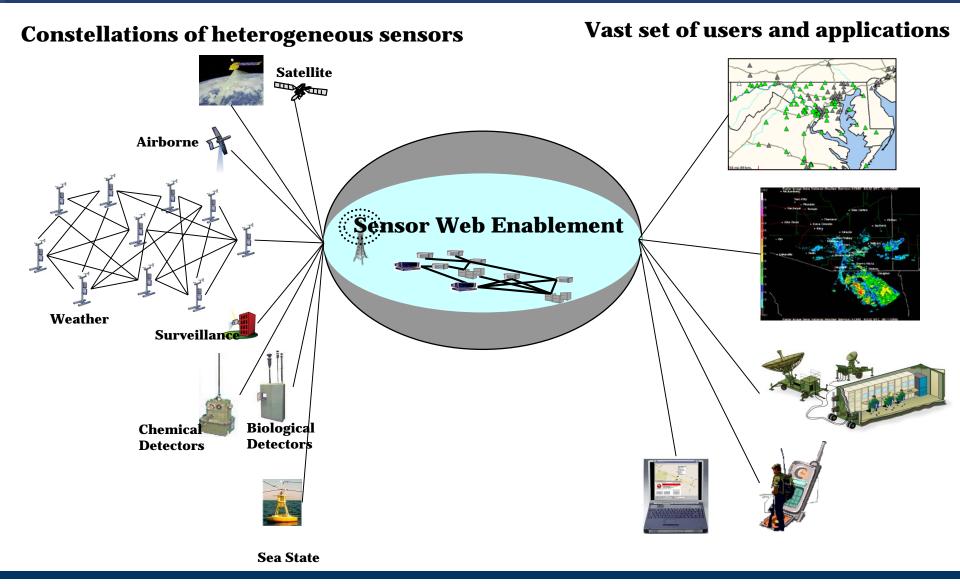
Many diverse sensor data management *application* frameworks were compared, such as:

- 1. GSN
- Global Sensor Network
- Digital Enterprise Research Institute (DERI)
- <u>http://gsn.sourceforge.net/</u>
- 2. Hourglass
 - An Infrastructure for Connecting Sensor Networks and Applications
 - Harvard
 - <u>http://www.eecs.harvard.edu/~syrah/hourglass/</u>
- 3. IrisNet
 - Internet-Scale Resource-Intensive Sensor Network Service
 - Intel & Carnegie Mellon University
 - <u>http://www.intel-iris.net/</u>

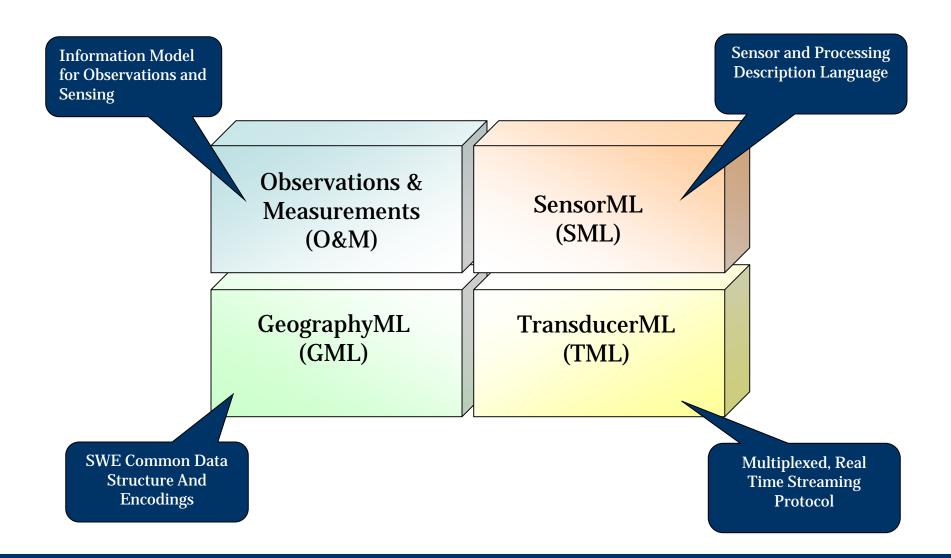
However, it soon became obvious that these application frameworks provided only localized interoperability and that a standards-based framework was necessary.


- 1. Motivating Scenario
- 2. <u>Sensor Web Enablement</u>
- 3. Sensor data evolution hierarchy
- 4. Prototype Application

What is Sensor Web Enablement?


- The interoperability framework for accessing and utilizing sensors and sensor systems in a space-time context via Internet and Web protocols
- A set of web-based services may be used to maintain a registry of available sensors.
- The same web technology standard for describing the sensors' outputs, platforms, locations, and control parameters should be used all across.
- This enables the necessary interoperability.
- This standard encompasses **specifications** for interfaces, protocols, and encodings that enable the use of sensor data and services.

OGC Sensor Web Enablement



http://www.opengeospatial.org/projects/groups/sensorweb

SWE Languages and Encodings

Sam Bacharach, "GML by OGC to AIXM 5 UGM," OGC, Feb. 27, 2007.

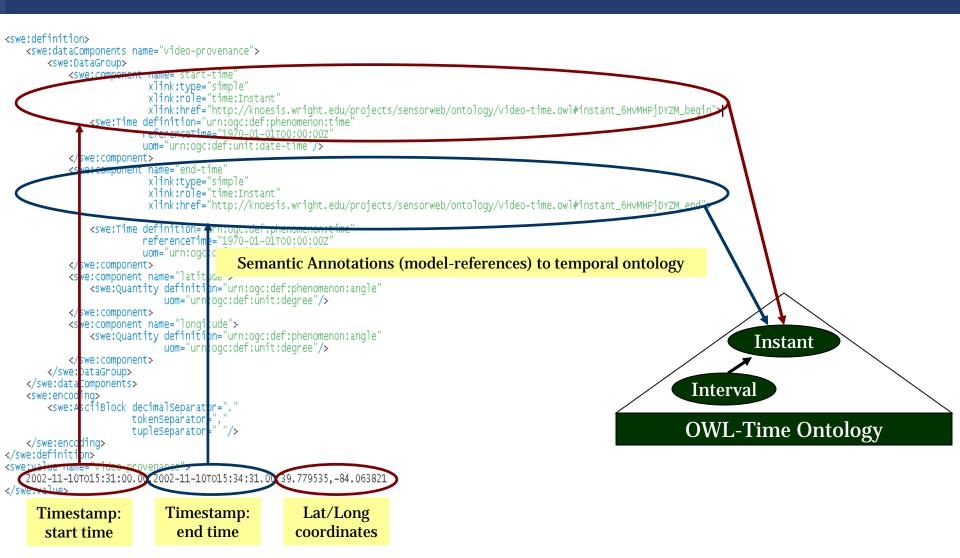
- 1. Motivating Scenario
- 2. Sensor Web Enablement
- 3. <u>Semantic Sensor Web</u>
- 4. Prototype Application

What is the Semantic Sensor Web?

- Adding semantic annotations to existing standard Sensor Web languages in order to provide semantic descriptions and enhanced access to sensor data
- This is accomplished with *model-references* to ontology concepts that provide more expressive concept descriptions
- For example, using model-references to link SML annotated sensor data with concepts within an OWL-Time ontology allows one to provide temporal semantics of sensor data.

XLink

- Used for describing links between resources in XML documents.
- Several important attributes within XLink include:
 - type: describes the element type of the link (i.e., simple, extended)
 - role: semantic attribute that describes the meaning of resources within the context of a link
 - href: locator attribute that supplies the URI needed to find a remote resource


Other used Model Reference in Semantic Annotations

- **SAWSDL**: Defines mechanisms to add semantic annotations to WSDL and XML-Schema components (*W3C Recommendation*)
- **SA-REST**: Defines mechanisms to add semantic annotations to REST-based Web services.

Model Reference (SensorML)

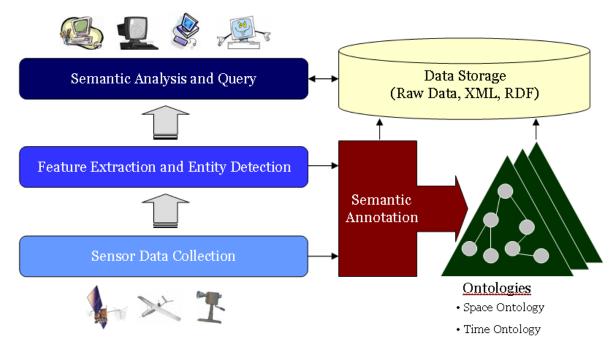
Semantic Temporal Query

- Model-references from SML to OWL-Time ontology concepts provides the ability to perform semantic temporal queries
- Supported semantic query operators include:
 - contains: user-specified interval falls wholly within a sensor reading interval (also called *inside*)
 - within: sensor reading interval falls wholly within the user-specified interval (inverse of *contains* or *inside*)
 - **overlaps**: user-specified interval overlaps the sensor reading interval
- Example SPARQL query defining the temporal operator 'within'

```
SELECT ?interval
WHERE {
    ?interval time-entry:begins ?b .
    ?interval time-entry:ends ?e .
    ?b time-entry:inXSDDateTime ?b_datetime .
    ?e time-entry:inXSDDateTime ?e_datetime .
    FILTER (
        xsd:dateTime("2005-11-10T01:00:00.00") < xsd:dateTime(?b_datetime) &&
        xsd:dateTime("2008-11-10T01:00:00.00") > xsd:dateTime(?e_datetime)
        ) .
}
ORDER BY ASC(?b datetime)
```


Sensor Data Architecture

<u>Knowledge</u>


- Object-Event Relations
- Spatiotemporal Associations
- Provenance Pathways

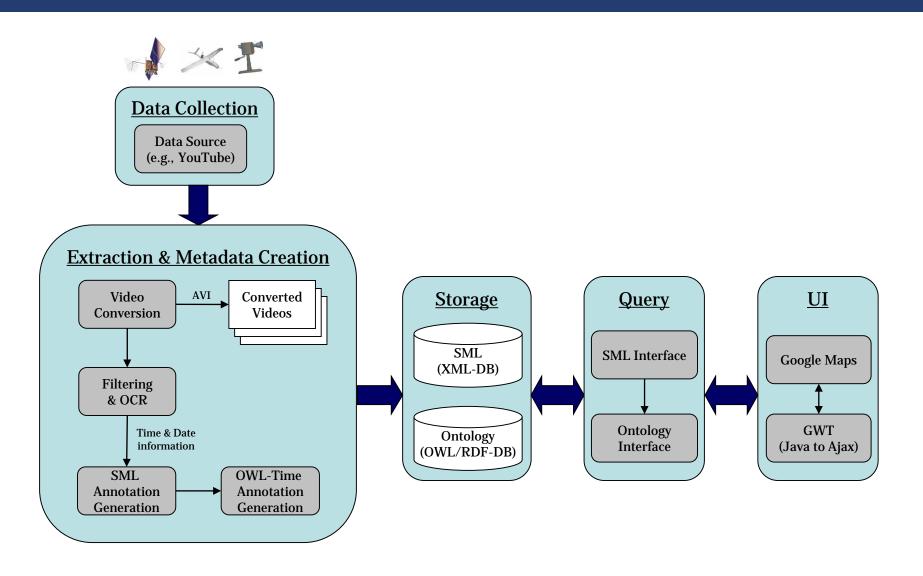
Information

- Entity Metadata
- Feature Metadata

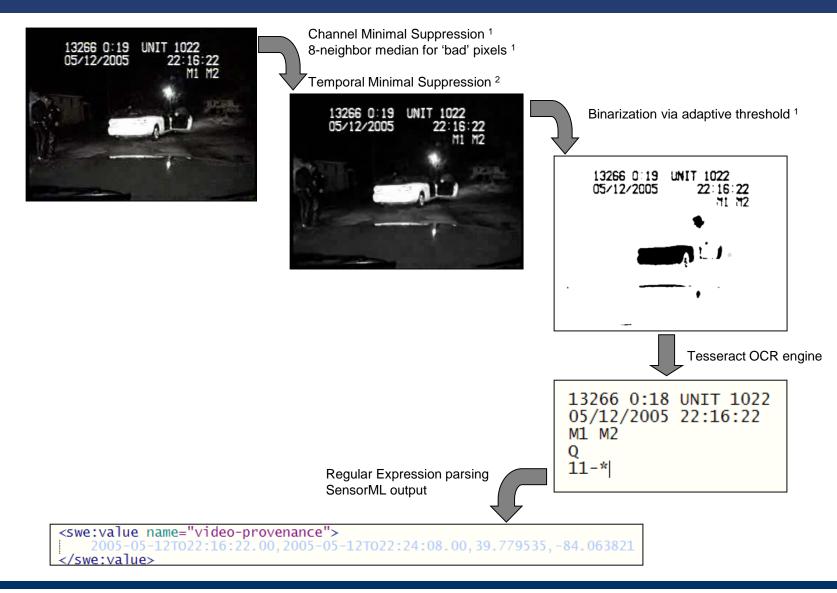
<u>Data</u>

• Raw Phenomenological Data

- Situation Theory Ontology
- Domain Ontology



Prototyping the Semantic Sensor Web



Temporal Data Extraction

- 1. <u>https://research.microsoft.com/~xshua/publications/pdf/2002_ISCAS_TimeStampOCR.pdf</u>
- 2. http://www.informedia.cs.cmu.edu/documents/vocr_ieee98.pdf

Prototype Application

Semantic Sensor Web

http://knoesis.wright.edu/library/demos/ssw/prototype.htm

Future Work

- Incorporation of spatial ontology in order to include spatial analytics and query (perhaps with OGC GML Ontology or ontology developed by W3C Geospatial Incubator Group GeoXG)*
- Explore new datasets, including Buckeyetraffic.org
- Extension of SPARQL with enhanced spatiotemporal query and analytics (including semantic associations)
- Integration of framework with emergent applications, including video on mobile devices running Android OS
- Monitor Semantic Sensor Web page for further progress http://knoesis.wright.edu/projects/sensorweb/

References

- Cory Henson, Amit Sheth, Prateek Jain, Josh Pschorr, Terry Rapoch, "<u>Video on the Semantic Sensor Web</u>," <u>W3C</u> <u>Video on the Web Workshop</u>, December 12-13, 2007, San Jose, CA, and Brussels, Belgium
- Matthew Perry, Amit Sheth, Farshad Hakimpour, Prateek Jain. "<u>Supporting Complex Thematic, Spatial and Temporal</u> <u>Queries over Semantic Web Data</u>," Second International Conference on Geospatial Semantics (GEOS '07), Mexico City, MX, November 29-30, 2007
- Matthew Perry, Farshad Hakimpour, Amit Sheth. "<u>Analyzing Theme, Space and Time: An Ontology-based Approach</u>," Fourteenth International Symposium on Advances in Geographic Information Systems (ACM-GIS '06), Arlington, VA, November 10-11, 2006
- Farshad Hakimpour, Boanerges Aleman-Meza, Matthew Perry, Amit Sheth. "<u>Data Processing in Space, Time, and</u> <u>Semantic Dimensions</u>," Terra Cognita 2006 – Directions to Geospatial Semantic Web, in conjunction with the Fifth International Semantic Web Conference (ISWC '06), Athens, GA, November 6, 2006
- Amit Sheth et al., SA-Rest: Semantically Interoperable and Easier-to-Use Services and Mashups, IEEE Internet Computing, November/December 2007 (Vol.11, No.6) pp.91-94. DOI: <u>http://doi.ieeecomputersociety.org/10.1109/MIC.2007.133</u>
- Open Geospatial Consortium, Sensor Web Enablement WG, <u>http://www.opengeospatial.org/projects/groups/sensorweb</u>
- W3C, Time Ontology in OWL, <u>http://www.w3.org/TR/owl-time/</u>
- W3C, Geospatial Incubator Group, <u>http://www.w3.org/2005/Incubator/geo/</u>
- W3C, Semantic Annotations for WSDL and XML Schema, <u>http://www.w3.org/TR/sawsdl/</u>
- W3C, XML Linking Language, <u>http://www.w3.org/TR/xlink/</u>
- Google Code, Tesseract, <u>http://code.google.com/p/tesseract-ocr/</u>

