Wright State University CORE Scholar

Kno.e.sis Publications

The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis)

8-14-2007

Sensor Data Management

Cory Andrew Henson Wright State University - Main Campus

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation

Henson, C. A. (2007). Sensor Data Management. . https://corescholar.libraries.wright.edu/knoesis/984

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

Sensor Data Management

- 1. <u>Motivating Scenario</u>
- 2. Sensor Web Enablement
- 3. Sensor data evolution hierarchy
- 4. Semantic Analysis

Motivating Scenario

- How do we determine if A-H = A-L? (Same time? Same place?)
- How do we determine if E-H = E-L? (Same entity?)
- How do we determine if E-H or E-L constitutes a threat?

A-L OE-L

L

The Challenge

Collection and analysis of information from heterogeneous multi-layer sensor nodes

- There is a lack of uniform operations and standard representation for sensor data.
- There exists no means for resource reallocation and resource sharing.
- Deployment and usage of resources is usually tightly coupled with the specific location, application, and devices employed.
- **Resulting in a lack of interoperability.**

The Solution

The Open Geospatial Consortium Sensor Web Enablement Framework

- 1. Motivating Scenario
- 2. <u>Sensor Web Enablement</u>
- 3. Sensor data evolution hierarchy
- 4. Semantic Analysis

• Consortium of 330+ companies, government agencies, and academic institutes

- Open Standards development by consensus process
- Interoperability Programs provide end-to-end implementation and testing before spec approval
- Standard encodings, e.g.
 - GeographyML, SensorML, Observations & Measurements, TransducerML, etc.
- Standard Web Service interfaces, e.g.
 - Web Map Service
 - Web Feature Service
 - Web Coverage Service
 - Catalog Service
 - Sensor Web Enablement Services (Sensor Observation Service, Sensor Alert Service, Sensor Process Service, etc.)

OGC Mission

To lead in the development, promotion and harmonization of open spatial standards

Sensor Web Enablement

SWE Languages and Encodings

Sam Bacharach, "GML by OGC to AIXM 5 UGM," OGC, Feb. 27, 2007.

SWE Components - Dictionaries

SWE Components – Web Services

Sam Bacharach, "GML by OGC to AIXM 5 UGM," OGC, Feb. 27, 2007.

Sensor Model Language (SensorML)

SML Concepts – Sensor

SML Concepts – Sensor Description

SML Concepts –Accuracy and Range

SML Concepts – Platform

SML Concepts – Process Model

- In SensorML, everything is modeled as a Process
- <u>ProcessModel</u>
 - defines atomic process modules (detector being one)
 - has five sections
 - metadata
 - inputs, outputs, parameters
 - method
 - Inputs, outputs, and parameters defined using SWE Common data definitions

SML Concepts – Process

- Process
 - defines a process chain
 - includes:
 - metadata
 - inputs, outputs, and parameters
 - processes (ProcessModel, Process) •
 - data sources •
 - connections between processes and • between processes and data
- **System**
 - defines a collection of related processes along with positional information

chain)

SML Concepts –Metadata Group

- Metadata is primarily for discovery and assistance, and not typically used within process execution
- Includes
 - Identification, classification, description
 - Security, legal, and time constraints
 - Capabilities and characteristics
 - Contacts and documentation
 - History

- 1. Motivating Scenario
- 2. Sensor Web Enablement
- 3. <u>Sensor data evolution hierarchy</u>
- 4. Semantic Analysis

Challenges

- Avalanche of data
- Streaming data
- Multi-modal/level data fusion
- Lack of interoperability

- 1. Collect data from network of multi-level, multi-modal, heterogeneous sensors
- 2. Annotate streaming sensor data with TransducerML and utilize metadata to enable data fusion
- 3. Use SensorML to model sensor infrastructure and data processes
- 4. Annotate sensor data with SensorML
- 5. Store sensor metadata in XML database
- 6. Query sensor metadata with XQuery

Challenges

- Extract features from data
- Annotate data with features
- Store and query feature metadata

- 1. Use O&M to model observations and measurements
- 2. Annotate sensor data with observation and measurement metadata
- 3. Store sensor metadata in XML database, and query with XQuery

Challenges

- Detect objects-events from features
- Annotate data with objects-events
- Store and query objects-events

- 1. Build (or use existing) entity domain ontologies for objects and events
- 2. Extend SensorML with model-references to object-event ontologies
- 3. Annotate sensor data with object-event metadata
- 4. Store sensor metadata in XML database, and query with XQuery
- 5. Store object-event ontologies as RDF, and query with SPARQL

Challenges

Discover and reason over associations:

- objects and events
- space and time
- data provenance

- 1. Query knowledge base with SPARQL
- 2. Object-event analysis to discover "interesting" events
- 3. Spatiotemporal analysis to track objects through space-time
- 4. Provenance Pathway analysis to track information through data life-span

Sensor Data Architecture

- 1. Motivating Scenario
- 2. Sensor Web Enablement
- 3. Sensor data evolution hierarchy
- 4. <u>Semantic Analysis</u>

Spatial, Temporal, Thematic Analytics

Thematic Dimension: What

Temporal Dimension: When

North Korea detonates nuclear device on October 9, 2006 near Kilchu, North Korea

Spatial Dimension: Where

Semantic Analytics

 Searching, analyzing and visualizing semantically meaningful connections between named entities

"Connecting the Dots" Applications

- National Security, Drug Discovery, Medical Informatics
- Significant progress with thematic data: query operators (semantic associations, subgraph discovery), query languages (SPARQ2L, SPARQLeR), data stores (Brahms)

• Spatial and Temporal data is critical in many analytical domains

- Need to support spatial and temporal data and relationships

Value to Sensor Networks

• Simple (Analyze Infrastructure):

- What types of sensors are available?
- What sensors can observe a particular phenomenon at a given geolocation?
- Get all observations for a particular geolocation during a given time interval.
- Complex (More background thematic information):
 - What do I know about vehicle with license plate XYZ123?
 - What do I know about the buildings (georeferenced) in this image?
 - Which sensors cover an area which intersects with a planned Military Convoy?

Challenges

- Data Modeling and Querying:
 - Thematic relationships can be directly stated but many spatial and temporal relationships (e.g. distance) are implicit and require additional computation
 - Temporal properties of paths aren't known until query execution time ... hard to index

• **RDFS Inferencing:**

- If statements have an associated valid time this must be taken into account when performing inferencing
- (x, rdfs:subClassOf, y) : [1, 4] AND (y, rdfs:subClassOf, z) : [3, 5] → (x, rdfs:subClassOf, z) : [3, 4]

- Ontology-based model for spatiotemporal data using temporal RDF¹
 - Illustrated benefits in flexibility, extensibility and expressiveness as compared with existing spatiotemporal models used in GIS
- Definition, implementation and evaluation of corresponding query operators using an extensible DBMS (Oracle)²
 - Created SQL Table Functions which allow SPARQL graph patterns in combination with Spatial and Temporal predicates over Temporal RDF graphs
- Matthew Perry, Farshad Hakimpour, Amit Sheth. "Analyzing Theme, Space and Time: An Ontology-based Approach", Fourteenth International Symposium on Advances in Geographic Information Systems (ACM-GIS '06), Arlington, VA, November 10 - 11, 2006
- 2. Matthew Perry, Amit Sheth, Farshad Hakimpour, Prateek Jain. "What, Where and When: Supporting Semantic, Spatial and Temporal Queries in a DBMS", Kno.e.sis Center Technical Report. KNOESIS-TR-2007-01, April 22, 2007

Example Graph Pattern

Graph Pattern

(?x assigned_to Division_1)
(?x on_crew_of ?y)
(?y used_in ?z)

select a from table (spatial_eval ('(?a has_symptom ?b) (Chemical_X induces ?b)(?a fought_in ?c)', ?c, '(?d member_of Enemy_Group_Y)(?d spotted_at ?e)', ?e, 'geo_distance(distance=2 units=mile)'));

Scenario (Biochemical Threat Detection): Analysts must examine soldiers' symptoms to detect possible biochemical attack

Query specifies

Operator (Exp. #)	Graph Pattern Type		0	Avg.	Avg. Execution Time for		
	# Vars	# Triples	Queries	Size	eac Small	Medium	(ms) Large
T-Ext (1)	4	3	4	N/A	394	390	385
(2)	3	3	5	221	22	32	48
S-Ext (3)	4	3	3	N/A	360	350	365
(4)	3	3	3	100	22	30	67
T-Filter(5)	4	3	4	312	157	345	714
S-Filter (6)	4	3	3	331	173	192	374
T-Eval(7)	2/2	2/2	3	129	414	411	437
	2/3	3/3	3	220	306	195	268
S-Eval (8)	2/2 2/2	2/1 2/3	3 3	244 209	343 251	467 385	485 457
Small: 100,000 triples		Medium: 1.6 Million triples			Large: 15 Million triples		

Thank You. 影 7

