
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis) 

10-2009 

A Best Practice Model for Cloud Middleware Systems A Best Practice Model for Cloud Middleware Systems 

Ajith Harshana Ranabahu 
Wright State University - Main Campus 

E. Michael Maximilien 

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis 

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons, 

Databases and Information Systems Commons, OS and Networks Commons, and the Science and 

Technology Studies Commons 

Repository Citation Repository Citation 
Ranabahu, A. H., & Maximilien, E. M. (2009). A Best Practice Model for Cloud Middleware Systems. . 
https://corescholar.libraries.wright.edu/knoesis/992 

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in 
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis 
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/80832929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu


A Best Practice Model for Cloud Middleware
Systems

Ajith Ranabahu1 and E. Michael Maximilien2

1 Knoesis Center,Wright state University, Dayton OH 45435, USA,
ajith@knoesis.org

2 IBM Almaden Research Center, San Jose CA 95120, USA
maxim@us.ibm.com

Abstract. Cloud computing is the latest trend in computing where the
intention is to facilitate cheap, utility type computing resources in a
service-oriented manner. However, the cloud landscape is still maturing
and there are heterogeneities between the clouds, ranging from the ap-
plication development paradigms to their service interfaces,and scaling
approaches. These differences hinder the adoption of cloud by major en-
terprises. We believe that a cloud middleware can solve most of these
issues to allow cross-cloud inter-operation. Our proposed system is Al-
tocumulus, a cloud middleware that homogenizes the clouds. In order to
provide the best use of the cloud resources and make that use predictable
and repeatable, Altocumulus is based on the concept of cloud best prac-
tices. In this paper we briefly describe the Altocumulus middleware and
detail the cloud best practice model it encapsulates. We also present ex-
amples based on real world deployments as evidence to the applicability
of our middleware.

1 Introduction

Cloud computing is resulting in very cheap, on-demand, seemingly unlimited
compute resources. Any enterprise can easily provision, manage, and sustain
(keep up to date and scale) their entire operations on a compute cloud for a
fraction of the cost of owning the resources. In essence, cloud computing results
in commoditization of typical computing resources which are now, via compute
clouds, available as a service.

While most enterprises could make use of such cheap resources to deploy
their applications, there remains various concerns to address and that could
help accelerate that transition. These challenges can be summarized into three
categories: 1) quality of service, 2) security and privacy, and 3) dynamic scaling
to meet application customer demands.

The current state of the art in the industry is to capture or define best
practices. Best practices are known good patterns of software configurations
and setup (with appropriate updates) that are known to be reliable or that
address some of the specific issues listed above. For example, a common best
practice to scale a relational database to a large number of (predominantly read)



requests is to use an in-memory cache such as memcached [1]. By running a
properly configured memcached process, database query results can be saved
in the memory cache so that frequently repeated queries are not served from
the database but rather fetched from the cache. Naturally, adding a memory
cache alone does not solve the entire scaling issue and other steps need to be
taken to truly scale the system. However, adding a memory cache is a known
scaling solution for read intensive database applications and is considered a best
practice.

Making efficient use of a cloud computing environment in order to reap the
benefits while trying to address the key concerns listed above can be done using
best practices. However, such best practices are typically tacit knowledge and
they evolve and change over time. The ideal situation would be to try to auto-
mate best practice-based cloud deployments for the different cloud frameworks
available, as well as having a means to allow such best practices to evolve and
new ones to be added.

The IBM Altocumulus research project is a new kind of cloud platform and
middleware that attempts to address exactly this issue. In addition to enabling
deployments addressing some of the quality, security, and scaling issues that are
common in Web applications development, IBM Altocumulus allows such deploy-
ments to be done in a cloud-agnostic fashion. Finally, it also enables migrations
of deployments across compatible clouds.

1.1 Organization

The remainder of this paper is organized as follows. Section 2 discusses related
work such as software patterns and cloud middleware. Section 3 gives an ar-
chitectural overview of our middleware and explains some of the key use cases.
Section 4 gives a detailed description of our notion of a cloud best practice along
with some specific examples around several key pain points cloud users expe-
rience. We discuss where the project currently stands and initial results of our
deployment of the platform inside IBM in Section 5 and conclude after describing
some ongoing and future work in section 6.

2 Related Work

2.1 Middleware

Middleware, in the context of distributed computing systems, was first described
by Bernstein et al. [2] as a set of intermediaries for the components in a dis-
tributed computing system. This concept has been extensively utilized during
the uprising of the Service-Oriented Architecture (SOA) where the services in
question were in fact provided by middleware systems. Middleware in general
is used to abstract the differences between heterogeneous systems and expose a
uniform interface.



2.2 Cloud Computing

Cloud computing is defined as both the applications delivered as services over
the Internet and the hardware and systems software in the data centers that
provide those services [3]. The landscape for computing clouds is still evolving
and there are three major paradigms of cloud services available today.

– Infrastructure as a Service (IaaS) : The raw computing resources are
exposed to the consumers. There are options for including support software
but usually there is no abstraction over the system complexities. This is in
fact exactly the same as getting access to a physical computer attached to
the Internet. Amazon EC2 [4] is the leading IaaS provider and the most
prominent cloud service provider today.

– Platform as a Service (PaaS) : Consumers get access to an application de-
velopment platform possibly hosted on a infrastructure cloud. The platform
completely abstracts the complexities of the underlying host system. The
platform also guarantees load balancing and scaling in a transparent man-
ner to the cloud consumer. However these platforms typically are restrictive
and requires the hosted applications to strictly adhere to certain specialized
Application Programming Interfaces (API), frameworks, and programming
languages. Google AppEngine [5] is an example of a PaaS.

– Software as a Service (SaaS) : Consumers get access to specialized soft-
ware suites hosted in a cloud environment. Unlike the platform offering, there
is no room for custom application development. However the offered software
suites are generally extensively customizable. The SalesForce.com Customer
Relationship Management(CRM) solution is an example where software is
offered as a service.

In this work, we primarily focus on the Infrastructure and Platform service
clouds (IaaS and PaaS). In the subsequent uses of the word cloud we refer to
either a IaaS or PaaS unless otherwise stated.

2.3 Patterns

Patterns in software engineering (or Design Patterns) was pioneered by Beck
et al. [6] and has gained popularity due to the applications in the widely used
Object-Oriented Programming (OOP) languages [7]. Patterns are well accepted
in the industry and deemed essential for a software engineer, primarily to avoid
inefficient programming practices and stop reinventing the wheel. For example
when constructing a user interface driven application, the best known way to
engineer it is to follow the Model View Controller (MVC) pattern [7]. Following
the MVC pattern not only simplifies the construction but also improves reuse
and maintainability of the application. Use of patterns can also be seen in the
higher layers of software engineering such as for enterprise applications [8].

Middleware for clouds has been discussed even during the earliest days of the
cloud [9]. However in terms of functionality, a cloud middleware was expected



to either manage or configure the respective cloud itself. The work described in
this paper deviates from that idea significantly by positioning the cloud middle-
ware in the perspective of the cloud consumer. In other words the middleware
and the best practice model described in this paper is aimed at homogenizing
the cloud interfacing in the perspective of the cloud consumer. We believe that
such a perspective change is necessary since the service interfaces for clouds are
significantly different and vastly complex.

3 Middleware Architecture

3.1 Overview

The primary service that IBM Altocumulus provides to cloud users is convenient
deployment of applications (primarily Web applications) to a variety of clouds.
Additionally, IBM Altocumulus allows other services such as backup and restore
of database content as well as cloud image creation and cloud image migration.

The Altocumulus middleware consists of three major components that inter-
act with each other, as illustrated in figure 1.

1. Core: The primary functional component of the middleware. The Core man-
ages the interactions with different cloud providers and exposes a private
RESTful API.

2. Dashboard: The primary user interaction component. The dashboard pro-
vides a comprehensive web based user interface for human users. The dash-
board also provides credential and artifact management facilities and uses
the Core via the private API.

3. Core-API: The public API for the core. Core-API exposes a well docu-
mented RESTful API for applications and acts as a façade to the Core.
Core-API facilitates the controlled exposure of the middleware functionali-
ties for external applications.

Apart from these three components, there is a support component that man-
ages images for various clouds called the image repository. The term image is
used in this context to represent a serialization of the artifacts of a working
system, in accordance to the use of the term Amazon Machine Image (AMI)
by Amazon. The function of the image repository is to store and manage such
images. While the role of the image repository is not considered central to the
Altocumulus platform, it is indeed useful and acts as a support component.

All IBM Altocumulus deployments are done via the utilization of cloud best
practices that attempt to provide pre-packaged software stack and related config-
urations for a specific type of application. For example, using IBM Altocumulus,
a deployment of an IBM WebSphere sMash application on a public cloud (such
as the Amazon EC2) can be done repeatably including all necessary software
configurations. If the target cloud needs to be changed, the change to the de-
ployment is minimal and users are shielded from the complexities that arise from
such a difference.



Fig. 1. High level view of the Altocumulus Middleware Platform

IBM Altocumulus currently supports Amazon EC2 and Amazon clones such
as Eucalyptus [10], Google AppEngine [5] and the IBM HiPODS Cloud comput-
ing solution.

We use adapters to interface different clouds. The current implementation
uses manually programmed adapters. We discuss the possibility of generating
these adapters by a semi-automated process in section 6.



4 Best Practice Model

4.1 Overview

Our best practice model is designed around three principles.

1. Provide logically arranged place holders for different types of data required
for a cloud deployment.

2. Be applicable to different cloud paradigms.
3. Have a reasonable balance between completeness and complexity.

The first design principle caters for the fact that there are significant number
of different data items that is needed for a deployment. Although these data
items may vary significantly between different deployments, they can be logically
grouped and arranged.
The second principle states that such a grouping needs to be compatible with
the different cloud paradigms described in section 2.2.
The third principle states that this grouping needs to be reasonably complete but
not overly complex since it is meant ultimately for a human. This is especially
important considering that various components of a best practice would evolve
over time, i.e. will have different versions. The goal here is that a user would be
able to redeploy a cloud application with an updated best practice using a one-
click action. This can be significantly important when a new version of a best
practice component is released for security and privacy purposes, e.g. a patch
solving a security vulnerability.

We now describe the details of the Altocumulus Best Practice (BP). A BP
in its simplest form is a particular sequence of process steps (selected either
automatically or manually) that best suits the cloud management task at hand.
A BP however, differs from a simple workflow since it may additionally include
provisions to define other aspects of a deployment such as scaling. A BP consists
of two primary components.

– Topology : An indication of the structure of a particular deployment. In
the simplest form, the topology can be a single instance or an application
space. However the topologies can be arbitrarily complex. In section 4.2 we
discuss several common topologies.

– Scaling Strategy : Encapsulates the process for scaling. For some clouds,
such as platform clouds, the scaling strategy would be empty. However for
infrastructure clouds (IaaS providers) the scaling strategy includes details on
what resources to manage when a scale-out or scale-in operation is required.
The scaling strategy is tightly coupled with the topology.

The Scaling Strategy includes customizable rules that can be used to control the
behavior of the scaling process. For example, for a strategy of scaling horizontally
by replicating, the rules would control the load limit to spawn a new replication
and the maximum number of replications allowed. These limits may be set by a
user or a process.



The Topology is based on instance groups. An instance group refers to a set of
functionally equal compute nodes or a cluster. Each instance group attaches to
a configuration bundle that in turn includes an ordered set of configurations. A
configuration represents a single step in a simplified work flow of setting up the
node. For example installing a database software is a configuration. Configura-
tions (optionally) have parameters, most of them user tunable. To use the above
example, the default user name and password for the database would be part of
the user tunable configuration parameters.
Figure 2 illustrates the structure of a Best Practice in UML notation.

Fig. 2. Structure of a Best Practice

While some simple BPs have only on instance, advanced BPs allow deploy-
ments to be spread across groups of instances that can grow and shrink according
to some rules. Due to the complexity of building a custom BP from scratch how-
ever the Altocumulus platform contains a number of pre-built BP templates for
the most common cases. Regular users are allowed to customize these BP tem-
plates and only privileged users can construct them from scratch. We further
discuss the issues involved in custom BPs in section 5.1.

4.2 Example Best Practices

Now we present three examples that clearly illustrate the flexibility of the best
practice model and it’s coverage of the design principles stated in section 4.1.
We also describe some of the pain points these BPs try to overcome.

A Single Instance Best Practice This is the most simplistic BP where all
the configurations apply to a single instance. There is no scaling strategy. The



topology is in its simplest form where one instance contains everything. To cater
for such simple scenarios, the Altocumulus platform includes an empty scaling
strategy and a fixed topology.

A Fixed Cluster Best Practice A popular use of compute clouds, especially
among the scientific researchers, is to use them for parallelizable computations
using the map-reduce paradigm [11]. Apache Hadoop [12] is one of the popu-
lar map-reduce computation frameworks used for large computations. Typically
when setting up a map-reduce task the major pain point is setting up the man-
agement nodes and the worker nodes (worker nodes are generally large in num-
bers). The number of nodes for a computation task is generally fixed and does
not fluctuate during a computation.

The fixed cluster BP supports this type of set up where the nodes may
be heterogeneous but fixed in number. Currently this BP supports only the
Hadoop framework and includes a multi-instance star topology with 1) A central
management node and 2) A number of worker nodes. The scaling strategy is
empty since there is no dynamic scaling involved. This type of setup is illustrated
in figure 3(a).

A Horizontally Replicating Best Practice Todays typical framework based
Web sites are two tiered, i.e. they have a presentation front-end that displays
content fetched from a database back-end. Majority of public Web sites such as
wikis, forums or blogging platforms are structured this way. The popular open
source multi purpose Web platform Drupal [13] is one of the prominent examples
for a two tiered Web application platform. Scaling strategies for such two tiered
Web applications have been well studied and one of the accepted strategies is to
replicate the presentation component under a load balancer [14]. The pain points
in such a scaling process includes 1) replicating the complete configuration of the
presentation component which is typically a script language based application.
and 2) updating the load balancer configuration with the details of newly added
(or removed) instances.

This BP includes a multi-instance layered topology that includes 1) load
balancing layer 2) presentation / Application Server (AS) layer and 3) database
layer. The scaling strategy is horizontal replication and includes rules that trigger
replications. Figure 3(b) illustrates this architecture.

5 Discussion

IBM Altocumulus is a new kind of cloud middleware: a cloud broker that facil-
itates cloud agnostic deployment and management tasks. The primary goal of
this project is to attempt to homogenize clouds with a layer and API that would
allow higher-level services to be created. From our Altocumulus deployment in
the IBM Technology Adoption Program (TAP) (An internal portal of emerging
technologies with access only to IBM employees) we have learned that there is



(a) Star Topology for Hadoop (b) Layered Topology for Hori-
zontal scaling

Fig. 3. Different Best Practice Topologies

indeed a demand for this type of a cloud abstraction middleware. Recent devel-
opments in the hybrid cloud deployments, even across different paradigms [15]
underscores the importance of cloud homogenization.

5.1 Custom Best Practices

Ultimately the intention of the best practice model is to provide cloud users
with reasonable power and flexibility in cloud application management. How-
ever creating an advanced BP template needs a significant level of knowledge
and testing. For example creating the fixed cluster BP described in section 4.2
requires in depth understanding of the Hadoop framework. Due to this reason
we have limited the BP creation capability only to privileged users. The regular
users can always customize existing templates. We believe this is not a seri-
ous limitation since majority of the use cases are covered by our existing BP
templates. Our TAP deployment experience also confirms this fact.

5.2 Other Lessons learned

Apart from the above mentioned experiences, we also learned important lessons
in applying a middleware platform in the cloud context.

1. Some clouds, especially platform services, mandate the use of certain libraries
for application development. Thus these applications become locked-in to
the specific cloud provider. Our middleware cannot solve this lock-in yet. A
different and completely new application development paradigm is needed
to generate portable cloud applications. Although such an effort is out of
scope for this research, we believe cloud agnostic application management is
the first step in truly portable cloud applications.



2. Hybrid cloud deployments are deemed important amidst the mounting pri-
vacy and data protection considerations. Although Altocumulus doest not
provide hybrid deployments yet, we consider this to be the most important
next step.

6 Future Work

In terms of improving the middleware capabilities, we plan to expand the support
for application frameworks and relational databases as well as other clouds.
Supporting hybrid cloud deployments our key next step.

An interesting avenue of research we plan to investigate is the use of seman-
tic web technologies to enhance the functionality of this cloud middleware. We
believe that some of the semantic web techniques can be used to help facilitate
the creation of cloud adapters as well as discovery and usage of best practices.
An interesting case would be a system capable of suggesting a suitable best prac-
tice given an application. Similar scenarios have been investigated heavily in the
context of semantic Web services and we anticipate further research can yield
the adaptation of such technologies in the cloud context.

The experience gained in semantic annotations can also be used in the con-
text of assembling user defined BPs. A possible line of future research includes
using meta data annotations to provide assistance to users for assembling BP
components and hence may provide a solution for the dilemma discussed in
section 5.1.

References

1. Fitzpatrick, B.: Distributed caching with memcached. Linux journal (124) (2004)
2. Bernstein, P.A.: Middleware: a model for distributed system services. Commun.

ACM 39(2) (1996) 86–98
3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,

G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A
berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley (Feb 2009)

4. Inc, A.: Amazon Elastic Compute Cloud (Amazon EC2) (2008)
5. Sanderson, D.: Programming Google App Engine: Rough Cuts Version (2008)
6. Beck, K., Cunningham, W.: Using pattern languages for object-oriented pro-

grams. Specification and Design for Object-Oriented Programming (OOPSLA-87)
67 (1987)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. (1995)

8. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley (2004)
9. Babaoglu, O., Jelasity, M., Kermarrec, A.M., Montresor, A., van Steen, M.: Man-

aging clouds: a case for a fresh look at large unreliable dynamic networks. SIGOPS
Oper. Syst. Rev. 40(3) (2006) 9–13

10. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Pro-
ceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid-Volume 00, IEEE Computer Society (2009) 124–131



11. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. OSDI (2004) 1

12. Bialecki, A., Cafarella, M., Cutting, D., OMalley, O.: Hadoop: a framework for
running applications on large clusters built of commodity hardware. Wiki at
http://lucene. apache. org/hadoop (2005)

13. Mercer, D.: Drupal: Creating Blogs, Forums, Portals, and Community Websites.
(2006)

14. Talwar, V., Wu, Q., Pu, C., Yan, W., Jung, G., Milojicic, D.: Comparison of
approaches to service deployment. In: 25th IEEE International Conference on
Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. (2005) 543–552

15. Chohan, N., Bunch, C., Pang, S., Krintz, C., Mostafa, N., Soman, S., Wolski, R.:
AppScale Design and Implementation. Technical report, UCSB Technical Report
Number 2009 (2009)


	A Best Practice Model for Cloud Middleware Systems
	Repository Citation

	tmp.1414700656.pdf.xTvz2

