Wright State University CORE Scholar

Kno.e.sis Publications

The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis)

4-29-2013

A Semantic Situation Awareness Framework for Indoor Cyber-Physical Systems

Pratikkumar Desai Wright State University - Main Campus

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation

Desai, P. (2013). A Semantic Situation Awareness Framework for Indoor Cyber-Physical Systems. . https://corescholar.libraries.wright.edu/knoesis/1008

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu. Ph.D. in Engineering Dissertation Defense

A Semantic Situation Awareness Framework for Indoor Cyber-Physical Systems

Pratikkumar Desai

Monday, 4/29/2013

Dissertation Committee			
Director	Dr. Kuldip Rattan		
Co-Director	Dr. Amit Sheth		
	Dr. Marian Kazimierczuk		
	Dr. Frank Zhang		
	Dr. Guru Subramanyam		

Cyber : Computation, communication, and control that are discrete, logical, and switched.

Physical : Natural and human-made systems governed by the laws of physics and operating in continuous time.

Cyber-Physical Systems (CPS): Systems in which the cyber and physical systems are tightly integrated at all scales and levels

http://www.cs.binghamton.edu/~tzhu/

Motivation & Challenges

(Situation awareness)

Uncertainty: Sensor data e.g. Due to resolution, calibration or robustness of sensors

Mobile sensing platform

Incomplete domain knowledge e.g. Unknown sources in the environment

Mobile sensing platform

DER EXOT

Context

"is a physical phenomenon, measured using sensors, and product of an event"

Contextual situation awareness:

"is a process of comprehending meaning of environmental context in terms of events or entities"

Location awareness:

"is a process of identifying objects from raw spatial information and their relationship with the ongoing events"

Contextual situation awareness + Location awareness

Contextual Situation Awareness

IntellegO

 \equiv {*Fire*, *RoomHeater*} \sqcap { *Fire*, *DryIce*}

 $\equiv \{Fire\}$

Incomplete domain knowledge e.g. Unknown sources in the environment

Uncertainty: Sensor data e.g. Due to limitation, calibration or robustness of sensors

Mobile sensing platform

DEPARTMENT OF

ELECTRICAL ENGINEERING

Fuzzy abstractions

$$\mu_{LowCO_2}(a) = \frac{1200 - 1160}{400} = 0.1$$

Membership function

μ

$$\mu_{HighCO_2}(a) = \frac{1160 - 800}{400} = 0.9$$

Fuzzy abductive reasoning

 $io: entity \\ \equiv \{ \exists io: inheresIn. \{HighCO_2\} \sqcup \exists io: inheresIn. \{LowCO_2\} \} \\ \sqcap \{ \exists io: inheresIn. \{HighTemp\} \}$

 $\equiv \{\{Fire, DryIce\} \sqcup \{NormalCondition, RoomHeater\}\} \\ \sqcap \{Fire, RoomHeater\}$

 \equiv {*Fire*, *RoomHeater*}

 $\mu_{Fire}(a) = \mu_{HighTemp}(a) \wedge \mu_{HighCO_2}(a)$ $= \min(1,0.9)$ = 0.9

 $\mu_{RoomHeater}(a) = \mu_{HighTemp}(a) \wedge \mu_{LowCO_2}(a)$ $= \min(1,0.1)$ = 0.1

Evaluation – Contextual Situation Awareness

Reasoning approach	Accuracy	Precision	Recall
Crisp abductive reasoning	86 %	78.57 %	73.33 %
Fuzzy abductive reasoning	94 %	92.85 %	86.66 %

Semantic Web

- Semantic web:
 - Formally define the meaning of information on web.
 - Provide expressive representation, formal analysis of resources.
- Ontology
 - Formally represents knowledge as a set of concepts within a domain and the relationships between pairs of concepts.
- RDF (Resource Description Framework)
 - Graph-based language for modeling of information.
 - Allows linking of data through named properties.

Contextual situation awareness (Semantic modeling)

Indoor Localization

Traditional Indoor Localization Techniques

- Active Badge and Active Bat system.
- RADAR: An In-building RF-based user location and tracking system.
- RFID radar
- Object tracking with multiple cameras
- Computer vision based localization

Wireless Sensor Network

TDoA (Time Difference of Arrival)

Trilateration

Number of nodes = 3.

Outlier rejection and Multilateration

The Proposed Algorithm

- Utilizes fusion of RSS (received signal strength) of RF signal and TDoA data for accurate distance estimation.
- The algorithm stages:-
 - RSSI data training
 - Distance estimation
 - Localization
- Uses TDoA as a primary distance estimation technique.
- RSSI data is trained and converted into appropriate distance measurements.
- The proposed algorithm can be used in absence of one or many TDoA links.

Initial Conditions

Distances between all beacons are known and fixed

Beacon B₁ Transmit Data

Beacon B₂ Transmit Data

Beacon B₃ Transmit Data

Beacon B₄ Transmit Data

Evaluation–Proposed Algorithm

UNIVERSITY

Location Awareness

Raw location : (*x*, *y*) = (190 cm, 570 cm)

IdentifiedPOI

 $\equiv \{ \exists inL0: PointOf Interest. \{ inLo: hasXmax \geq 190 \} \}$ $\sqcap \{ \exists inL0: PointOf Interest. \{ inLo: hasXmin \leq 190 \} \}$ $\sqcap \{ \exists inL0: PointOf Interest. \{ inLo: hasYmax \geq 570 \} \}$ $\sqcap \{ \exists inL0: PointOf Interest. \{ inLo: hasYmin \leq 570 \} \}$

$$\equiv \{Sofa - 1, Chair - 1, Fireplace - 1\}$$

$$\sqcap \{Sofa - 1, Chair - 1, Fireplace - 1\}$$

$$\sqcap \{Chair - 1\}$$

$$\sqcap \{Sofa - 1, Plant - 1, Fireplace - 1, Chair - 1\}$$

 $\equiv \{Chair - 1\}$

Object-entity relationship

KNO.E.SIS

Evaluation – Location Awareness

Mobile-robot route

ELECTRICAL ENGINEERING

WRIGHT STATE

KNO.E.SIS

Comprehensive Framework

----- Object coverage area ----- Mobile robot path

Object coverage areaMobile robot path

Object coverage area------Mobile robot path

Object coverage areaMobile robot path

Key Contributions

- Developed a fusion based indoor localization algorithm to achieve accurate spatial information of the sensing platform.
 - Accurate indoor localization algorithm.
 - Surveillance and tracking of mobile robots in indoor environments.
 - Integration of indoor positioning results with virtual world environment.

Related papers:

- P. Desai, N. Baine, and K. S. Rattan, "Fusion of RSSI and TDoA Measurements from Wireless Sensor Network for Robust and Accurate Indoor Localization," in *International Technical Meeting of The Institute of Navigation*, 2011, pp. 223–230.
- P. Desai, N. Baine, and K. S. Rattan, "Indoor localization for global information service using acoustic wireless sensor network," in *Proceedings of SPIE*, 2011, vol. 8053, no. 1, pp. 805304–805304–10.
- P. Desai and K. S. Rattan, "System Level Approach for Surveillance Using Wireless Sensor Networks and PTZ Camera," in 2008 IEEE National Aerospace and Electronics Conference, 2008, pp. 353–357.
- P. Desai and K. S. Rattan, "Indoor localization and surveillance using wireless sensor network and Pan/Tilt camera," in *Proceedings of the IEEE 2009 National Aerospace Electronics Conference NAECON*, 2009, pp. 1–6.
- An invited journal paper in preparation.

Key Contributions

- Introduced fuzzy abstraction and inference technique to comprehend events via handling the uncertainty in the context information & the ambiguity in the domain knowledge.
 - P. Desai, C. Henson, P. Anatharam, and A. Sheth, "SECURE: Semantics Empowered resCUe Environment (Demonstration Paper)," in *4th International Workshop on Semantic Sensor Networks (SSN 2011)*, 2011, pp. 110–113.
 - A journal paper in preparation.
- Developed semantic mapping technique for indoor objects to aid the situational context awareness results via further discriminating not applicable events.
- Developed and deployed a comprehensive situation awareness framework for cyber-physical system.
 - A journal paper in preparation.

Future work

- Richer spatio-temporal relation modeling between indoor objects and entities
- Efficient coverage space for the indoor objects
- Accurate indoor localization via smartphones

Acknowledgements

Questions?

