Wright State University

CORE Scholar

Computer Science & Engineering Syllabi

College of Engineering & Computer Science

Fall 2009

CS 784: Programming Languages

Krishnaprasad Thirunarayan Wright State University - Main Campus, t.k.prasad@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation

Thirunarayan, K. (2009). CS 784: Programming Languages. . https://corescholar.libraries.wright.edu/cecs_syllabi/280

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

CS 784 Programming Languages

• Instructor: T. K. Prasad

• **Phone No.:** (937)-775-5109

• Email: t.k.prasad@wright.edu

• Home Page: http://www.cs.wright.edu/~tkprasad

• Quarter: Fall, 2009

• Class Hrs: TTh, 6:05pm-7:20pm, 066 University Hall

• Office Hrs: TTh, 5-6pm (395 Joshi) (or by appointment)

Course Objectives

To provide a solid foundation for studying advanced topics in Programming Language Specification and Design.

Prerequisites CS 480/680 Comparative Languages

Course Description

This course introduces concepts related to the specification and design of high-level programming languages. It discusses different programming paradigms, algebraic specification and implementation of data types, and develops interpreters for specifying operationally the various programming language features/constructs. It also introduces attribute grammar formalism and axiomatic semantics briefly. The programming assignments will be coded in Scheme.

Course Load

The course load includes homeworks and programming assignments worth 30 points, a midterm exam worth 30 points, and a final exam worth 40 points.

Reference

- 1. Friedman, Wand and Haynes: <u>Essentials of Programming Languages</u>. *Prefer 2nd Ed. over 3rd Ed.* MIT Press, 2001. ISBN 0-262-06217-8 (code.zip)
- 2. R. Kent Dybvig: <u>The Scheme Programming Language</u>, 3rd Edition. The MIT Press, 2003.
- 1. Guttag, J.V., "Abstract Data Types and the Development of Data Structures," CACM, vol. 20, No. 6, June 1977, pp. 396-404.
- 2. Chapter 1 of Guttag, J. V., et al, Larch: Languages and Tools for Formal Specification, Springer-Verlag, NY, 1993.
- 3. H. Abelson and G. J. Sussman, <u>Structure and Interpretation of Computer Programs</u>, 2nd Ed., MIT Press, 1996.
- 4. M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, <u>How to Design Programs</u>, MIT Press, 2002.
- 5. Scheme: Language Reference Manual
- 6. The Teaching About Programming Languages Project
- 7. Chez Scheme Download Site (http://www.scheme.com)
- 8. <u>DrScheme Download Site (http://www.drscheme.org/)</u>

Grading

The letter grades will be assigned using the following scale: A[90-100], B[80-90), C[70-80), D[60-70), and F[0-60). However, I reserve the right to adjust the scale somewhat to utilize the gaps in the distribution.

Class Schedule and Syllabus

Topics with links to Lecture Notes Addl. Readings (Chap. from EOPL-2nd ed)

Class 1

Evolution of Programming <u>Languages</u>

Turing Awards

Why specify? Scheme

Class 2	Metalanguage	Chap 1.1, 1.2
Class 3	Abstract Data Types: Algebraic Specs	Chap 2
Class 4	(continue)	
Class 5	Programming Paradigms	
Class 6	Abstract Syntax and its Representation	Chap 2
Class 7	Interpreter for a Simple Expression <u>Language</u>	Chap 3
Class 8	<u>User-Defined Functions; Scoping</u>	Chap 1.3, 3
Class 9	Midterm Exam (October 8)	
Class 10	Implementing Recursion	Chap 3
Class 11	Closures and Streams	
Class 12	Imperative Programming: Assignment	Chap 3
Class 13	(continue)	
Class 14	Interpreter for an Object-Oriented <u>Language</u>	Chap 5
Class 15	(oopl.ps)	
Class 16	Introduction to Attribute Grammars	Notes
Class 17	(continue)	
Class 18	Introduction to Axiomatic Semantics	
Class 19	(continue)	
Class 20	Wrap-up	
	Final Exam (November 19, 8pm-10pm)	

Exams (Spring 2009)

- Midterm (pdf).
- Final (pdf).

Assignments (Fall 2009)

- Assignment 1.
- Assignment 2.
- Assignment 3. (asg3.ppt)

T. K, Prasad (09/10/09 02:24:04 PM)