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Abstract of a Dissertation submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Abstract 

Antimicrobial production by Pectobacterium carotovorum 

subspecies brasiliensis and its role in competitive fitness of the 

potato pathogen 

 
Abigail Durrant 

 

Pectobacterium carotovorum subspecies brasiliensis (P. c. subsp. brasiliensis), a member of the soft rot 

Erwinias (SREs), was first described as the causative agent of a stem disease in potato called blackleg. 

Blackleg describes the blackening, wilting and necrosis of potato stem tissue. Initially detected in Brazil, 

P. c. subsp. brasiliensis subsequently emerged as a pathogen in temperate regions, although the 

mechanisms that contributed to its emergence are unknown.   

A second SRE pathogen, Dickeya solani, also emerged as an aggressive potato pathogen in Europe. 

Dickeya solani successfully displaced the previously dominant blackleg causing pathogens, such as P. 

atrosepticum. Comparative genomic studies, using the genome of D. solani plus other SRE genomes 

such as Pectobacterium, identified some D. solani specific genes. Three of these loci were identified as 

novel non-ribosomal synthetase/polyketide synthatase (NRPS/PKS) genes, which all encoded 

previously unknown products. It was predicted that the combination of these novel gene clusters 

provided the adaptive advantage, which enabled D. solani to successfully emerge as a pathogen.   

The genome of a P. c. subsp. brasiliensis strain isolated from infected potato plants in New Zealand, P. 

c. subsp. brasiliensis ICMP 19477, was recently sequenced. The bacterium was found to encode many 

genes associated with antimicrobial production, including bacteriocin and carbapenem synthesis, as 

well as a putative novel NRPS locus. A number of the identified loci were not present in the genomes 

of other SREs. One of these antimicrobial clusters, or a combination of these clusters, may be an 

important mechanism in the emergence of P. c. subsp. brasiliensis. However, the ecological 

significance of antimicrobial molecules is not understood.   

It has previously been reported that, P. c. subsp. brasiliensis PBR1692, is antagonistic to P. atrosepticum 

SCRI1043 in vitro (Marquez-Villavicencio et al., 2011). However, in planta significance of this 
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interaction appeared minimal during co-inoculation studies in potato stems. Pectobacterium 

betavasculorum, was also reported to inhibit the growth of other Pectobacterium species when co-

inoculated in potato tubers.  

This study found that P. c. subsp. brasiliensis ICMP 19477 outcompetes P. atrosepticum SCRI1043 in 

both in vitro plate and in planta competition assays, when co-inoculated in potato tubers. However, 

this was not observed in in vitro liquid competition assays. This suggested that the antagonistic effect 

of P. c. subsp. brasiliensis ICMP 19477 on P. atrosepticum SCRI1043 only occurred in structured 

environments.    

Functional studies identified that P. c. subsp. brasiliensis ICMP 19477 produces a secreted 

antimicrobial molecule at late exponential / early stationary phase. A random transposon (Tn5) mutant 

library of P. c. subsp. brasiliensis ICMP 19477 identified three mutants, within the genes carR, slyA and 

carI, which were unable to inhibit the growth of P. atrosepticum SCRI1043 in vitro. These mutated 

genes are known to be involved in carbapenem regulation in P. c. subsp. carotovorum. Furthermore, 

these mutants also lost the competitive advantage against P. atrosepticum SCRI1043 when co-

inoculated in potato tubers. This evidence suggested that a carbapenem molecule, produced by P. c. 

subsp. brasiliensis ICMP 19477, enhances the competitive fitness of the bacterium in planta.   

Overall, this study provided novel insights into the ecological significance of antimicrobial production 

by plant pathogens, thereby, identifying possible mechanisms for pathogen emergence.     
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Chapter 1  

Introduction 

1.1 Background 

Crop loss due to weeds, pests and pathogens places pressure on the production of food for human 

consumption. Studies on potato crops, the world’s most produced non-grain food commodity 

(http://www.fao.org/potato-2008/en/aboutiyp/index.html), show that 40% of the worldwide crop is 

lost each year. Pathogens account for 14% of this loss (Oerke, 2006). The soft-rot erwinias (SREs) are 

considered important pathogens that influence productivity of the potato industry, causing crop 

damage both in the field and post-harvest. In 1980, it was estimated that the total global economic 

loss due to these bacteria was US$50-100 million annually (Pérombelon and Kelman, 1980). Within 

New Zealand the importance of the potato crop is such that more arable land is used for potato 

production than for any other vegetable. The total export and retail value of the New Zealand potato 

industry is valued at NZ$570 million annually (http://www.plantandfood.co.nz/growingfutures/case-

studies/potatoes-for-boiling-crisping-chipping). As there are currently no effective chemical controls 

for management of diseases caused by SREs and the resistance of commercially available cultivars is 

considered low, disease control is limited to preventative methods such as seed grading (Lebecka and 

Zimnoch-Guzowska, 2004). A greater understanding of the interactions between host and pathogen 

during disease development could therefore improve breeding of cultivars for resistance and 

consequently improve the productivity and security of both the global and New Zealand potato crop. 

 

1.2 The genus Erwinia 

The SREs are necrotrophic, gram negative, rod shaped, facultative anaerobic bacteria. They are 

pathogenic to many plants, including both crop and ornamental species, and are distinct from other 

plant pathogens as they produce a wide range of plant cell wall degrading enzymes (PCWDEs) 

(Pérombelon and Kelman, 1980). They are members of the Enterobacteriaceae, which includes human 

pathogens such as Escherichia coli and Salmonella as well as other plant pathogens such as Erwinia 

amylovora, the causative agent of fire blight of apple. The genus Erwinia was initially proposed in 1917 

(Winslow et al., 1917) to encompass all plant pathogenic Enterobacteriaceae, regardless of their 

degree of relatedness to the other members within the family (Perombelon, 1992). Based on 16S rDNA 

sequence analysis, the genus was subsequently divided into five groups; the ‘true’ Erwinia (Hauben et 
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al., 1998), the SRE (Young et al., 1996) Pantoea (Gavini et al., 1989), Enterobacter (Brenner et al., 1986) 

and Brenneria (Hauben et al., 1998). More recent analysis led to the reclassification of the SREs into 

Pectobacterium (Hauben et al., 1998) and Dickeya (Samson et al., 2005) following DNA-DNA 

hybridisation and 16S rDNA sequence analysis as well as serological and numerical taxonomy. This 

reclassification also resulted in elevation of three of the E. carotovorum subspecies  to species level: 

(Pectobacterium atrosepticum, P. wasabiae and P. betavasculorum (synonyms; E. carotovorum subsp. 

atroseptica, E. carotovorum subsp. wasabiae, and E. carotovorum subsp. betavasculorum, 

respectively)) (Gardan et al., 2003).  

Genomic approaches have further enhanced the classification of SREs. For example, P. wasabiae 

SCC3193 was reclassified by genome and proteome comparison with all sequenced SRE genomes 

(Nykyri et al., 2012). It was originally classified as P. c. subsp. carotovorum, following assessment of its 

virulence on potatoes, the fatty acid composition, the range of PCWDEs produced as well as other 

biochemical characteristics (Pirhonen et al., 1988). This was important as until this classification P. 

wasabiae was present in Europe but was not identified (Nykyri et al., 2012). Similarly, pectinolytic 

bacteria isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms in Europe 

and Israel were also identified using genome-based average nucleotide identity analysis and DNA–

DNA hybridization as being representative of a novel species, for which the name Dickeya solani sp. 

nov. was proposed (Van Der Wolf et al., 2014). Initially, they had been classified as belonging to the 

genus Dickeya, previously the P. chrysanthemi complex (E. chrysanthemi) on the basis of production 

of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl 

esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-

methylglucoside (Nasser et al., 1999; Laurila et al., 2008). Reclassification of these isolates into a 

distinct species was important for reasons of pest management and food security.  

 

1.3 Host ranges and ecology 

It was initially considered that different SRE species inhabited distinct host ranges and geographical 

ranges largely as a result of their capacity to cause disease at different temperatures (Pérombelon and 

Kelman, 1980; Pérombelon, 1992). For example, P. atrosepticum was believed to have a very narrow 

host range, infecting mainly potato in temperate regions whilst Dickeya were considered broad host-

range pathogens infecting plants in tropical and subtropical regions. However, it has now been shown 

that many of the SREs have a global distribution, consistent with very little difference in their growth 

temperatures in vitro (Du Raan et al., 2016).  
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The major SREs associated with crop losses in potato are P. atrosepticum, P. c. subsp. carotovorum 

and Dickeya, although other Pectobacterium species have also been shown to infect this host. 

Pectobacterium betavasculorum, for example, causes tuber soft rot as well as vascular necrosis of 

sugar beet and has been isolated from sunflower, potato and artichoke (Thomson et al., 1981; Gardan 

et al., 2003). Pectobacterium wasabiae, which was originally thought to have a host range restricted 

to Japanese horseradish (Goto and Matsumoto, 1987), was also found to cause rot of various 

vegetables worldwide including potato (Pitman et al., 2009; Nykyri et al., 2012; Moleleki et al., 2013; 

Waleron et al., 2013). Pectobacterium carotovorum subsp. carotovorum has a broad host range 

including potato, celery and capsicum. It is associated with disease in both temperate and subtropical 

regions (Pérombelon and Kelman, 1980; Kado, 2006). On potato, P. c. subsp. carotovorum is usually 

associated with soft rot of tubers. However a recently identified subspecies of this bacterium, P. c. 

subsp. brasiliensis, was shown to be associated with potato blackleg in Brazil (Duarte et al., 2004). 

Blackleg is characterised by blackening and wilting of the potato stem, which also causes stunting of 

the plant.  It was subsequently detected in South Africa (van der Merwe et al., 2010), North America 

(De Boer et al., 2012) and New Zealand (Panda et al., 2012) suggesting it has a global impact on potato 

production. 

Pectobacterium atrosepticum infects a very narrow host range, which appears to be mainly limited to 

potato in temperate regions; although some strains were reported to cause sunflower rot in Turkey 

(Bastas et al., 2009). Pectobacterium atrosepticum is primarily known to cause blackleg disease of 

potato crops but infection can also result in soft rot of tubers especially in storage (Pérombelon, 1992; 

Perombelon, 2002). Although the identified host range for this bacteria is limited, it appears that P. 

atrosepticum may have an increased ability to survive in soils or the rhizosphere, due to the presence 

of nitrogen fixation genes within the genome (Bell et al., 2004). It therefore may have a different 

lifestyle on other plants. For example, P. atrosepticum has been isolated from the rhizosphere of 

cucumbers grown in glasshouses without the presence of disease symptoms (Butler, 1978). Such 

genes have not been identified in other SREs (Bell et al., 2004).  The survival of both P. c. subsp. 

carotovorum and P. atrosepticum in soils appears to rely on the presence of contaminating plant 

material. Under these conditions, they are both able to persist for long periods of time within the 

fields and are able to overwinter under these conditions (Voronkevich, 1960; Burr and Schroth, 1977).  

In non-contaminated soil, the bacteria are only able to survive for one week to six months, depending 

on temperature and water availability (Anilkumar and Chakravarti, 1970).  Pectobacterium 

carotovorum subsp. carotovorum is able to out-survive P. atrosepticum in soil isolated from Scotland 

(Pérombelon, 1972). In cabbage fields in both Japan and Taiwan, P. c. subsp. carotovorum is 
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considered to be present in soils below detection levels as bacteria are easily isolated from plants 

grown in these fields (Kikumoto and Sakamoto, 1970; Mew et al., 1976).  

The Dickeya (formally E. chrysanthemi) are classified into eight species (Samson et al., 2005), although 

unique bacteria have been identified which may represent new species and are therefore not 

classified into one of these subspecies (Samson et al., 2005; Van Der Wolf et al., 2014). The disease 

symptoms caused by these bacteria are almost indistinguishable from those produced by 

Pectobacterium. However, Dickeya infection can be determined by a higher optimal growth 

temperature and the ability to cause disease at lower inoculum levels (Toth et al., 2011). In Europe, 

D. dianthicola and the newly identified D. solani are prevalent potato pathogens, although other 

species are known to infect potato crops in more tropical regions. Dickeya solani is now considered a 

major threat to the potato production industry (Toth et al., 2011). 

 

1.4 Conditions required for disease 

The SREs have been described as ‘opportunistic’ pathogens, as they enter potato plants through 

natural openings of the tuber surface (lenticels), or via wound sites. Following multiplication within 

the mother tuber, the bacteria are able to spread either to the stem, causing blackleg, or to the 

progeny tubers (Pérombelon and Kelman, 1980).  

The environmental factors impacting on SRE disease development are not fully understood. However, 

certain environmental and nutritional conditions have been identified that enhance disease 

progression. For example, high water level, high nitrogen content and low calcium or magnesium ion 

concentrations (McGuire and Kelman, 1986; Bain et al., 1996; Lambert et al., 2005; Cho et al., 2013). 

Ion levels influence both plant and bacterial behaviour, therefore a certain balance is required for 

disease progression. At high calcium ion concentrations the plant cell walls within the potato tubers 

are strengthened (Barras et al., 1994), however calcium is also required for the enzymic activity of the 

pectinases produced by the bacteria. Similarly, nitrates promote growth of the plant, but also enhance 

the anaerobic respiration of SREs (Smid et al., 1993).      

The SREs have been isolated from apparently disease free plants and tubers, indicating an ability to 

remain latent until conditions are favourable for disease development (Pérombelon, 1972; Hayward, 

1974), when sufficient free water becomes available, anaerobic conditions develop and the optimal 

growth temperature is reached. The nature of the latent period is still not understood (Pérombelon 

and Kelman, 1980; Perombelon, 2002). Recent evidence suggests that the bacteria may have different 
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stages in the plant. A motile stage is used to invade the tissue, but cell density dependent sensing is 

required to establish sessile colonies that initiate release of pectolytic enzymes for the acquisition of 

nutrients from the plant (and consequently disease symptoms) (Moleleki et al., 2016). 

1.5 Virulence determinants 

A variety of virulence determinants have been identified in SREs that enhance the ability of these 

pathogens to colonise potato plants. These include PCWDEs, secretion systems, phytotoxins and iron 

scavengers. These are co-ordinately expressed as a consequence of a complex regulatory system to 

ensure virulence factors are not expressed when they are not required.  

 

1.5.1 Quorum sensing 

Quorum sensing (QS) regulates the expression of many virulence factors in SREs. Quorum sensing is a 

genetic regulatory system in bacteria that allows the bacteria to control the expression of certain 

genes in a population density dependent manner (Whitehead et al., 2001). Population density is 

detected by the production of a small diffusible signalling molecules of the N-acyl homoserine lactone 

family (N-AHL). The N-AHL molecules are constitutively expressed by the bacteria. When the bacterial 

population reaches a critical level, the N-AHLs also reach a high enough concentration to initiate 

transcription of virulence genes (Whitehead et al., 2001).  

Some bacteria produce multiple QS signalling molecules. For example, Pseudomonas aeruginosa 

produces both N-(3-oxododecanoyl) homoserine lactone and N-butyryl homoserine lactone (Singh et 

al., 2000; Wu et al., 2000).  However, in both P. c. subsp. carotovorum and P. atrosepticum only one 

QS molecule, N-(3-oxohexanoyl) homoserine lactone (OHHL), is produced (Andersson et al., 2000). 

The OHHL molecule is constitutively expressed within the population and when sufficient OHHL is 

present within the population, expression of many secondary metabolite genes, including those 

encoding the PCWDEs, are activated (Perombelon, 2002). Other novel pathogenicity determinants are 

also under QS control such as Nip, which induces necrosis in plants (Pemberton et al., 2005) and Svx, 

the function of which is unknown (Corbett et al., 2005).  

Although QS regulates expression of key virulence factors, a P. atrosepticum strain modified so that it 

could not produce OHHL was not affected in its ability to colonise the host (Smadja et al., 2004). The 

strain showed very low expression of the PCWDEs, therefore, it was concluded that QS was vital for 

disease progression, but not for plant colonisation (Smadja et al., 2004). More recent data indicates 

that QS regulates the colonisation of potato xylem tissue by P. c. subsp. brasiliensis PBR1692 (Moleleki 
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et al., 2016). Pectobacterium carotovorum subsp. brasiliensis PBR1692 was observed to accumulate 

within xylem tissue when inoculated in planta. However, a QS defective mutant was restricted to 

intercellular spaces and was unable to colonise the xylem (Moleleki et al., 2016). These data suggest 

that QS regulates the invasion of xylem tissue by blackleg-causing pathogens.  

In P. atrosepticum, microarray analysis found that 26% of the genome was under QS control. This 

showed that the regulatory system was a more important genetic regulatory system than previously 

thought (Liu et al., 2008).The QS regulated genes were identified and included secretion systems, 

regulators and systems involved in subverting the plants defences (Liu et al., 2008). Therefore, the QS 

system is a global regulator of P. atrosepticum pathogenicity and plays a greater role than as the 

activating system of the PCWDEs.     

 

1.5.2 Plant cell wall degrading enzymes 

The main pathogenicity determinants of the SREs are the PCWDEs, which include the cellulases, 

proteases and pectinases that are co-ordinately produced during infection. The pectinases are of most 

significance to the pathogen, with a variety of these enzymes secreted to degrade the α-1,4-glycosidic 

linkage in pectate (Barras et al., 1994; Toth et al., 2003). Their release leads to extensive tissue 

maceration and degradation of cellular components in the primary and secondary cell walls as well as 

in the middle lamella. The resulting products are used as a nutrient source for the bacteria. This 

enzymatic degradation enhances the ability of Pectobacterium to colonize and penetrate the host 

(Collmer and Keen, 1986; Barras et al., 1994). Pectobacterium carotovorum subsp. carotovorum  

mutants defective in extracellular enzyme production are non-pathogenic (Pirhonen et al., 1991), 

confirming PCWDEs are essential for disease development. Two secretion systems have been 

identified that are required for the transport of the PCWDEs. Proteases are transported in a one-step 

mechanism by the type I secretion system, which appears to play a relatively small role in bacterial 

pathogenicity (Delepelaire and Wandersman, 1990). Cellulases and pectinases are transported in a 

sec dependent, two-step process by a type II secretion system called the OUT complex. This system is 

required for disease progression (Andro et al., 1984; Thurn and Chatterjee, 1985; Murata et al., 1990). 

 

1.5.3 Secretion systems 

Genes encoding a type III secretion system (T3SS) have been identified in P. atrosepticum (Bell et al., 

2004), P. c. subsp. carotovorum (Rantakari et al., 2001) and Dickeya (Ham et al., 1998). In other 
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bacteria, this system is used to secrete effector and helper proteins directly into the host cell, which 

alter cellular processes such as host defence systems (Rosqvist et al., 1994). In P. atrosepticum, 

mutants in the helper (hrpN) and effector (dspE/A) genes have reduced virulence, indicating a role for 

this system in pathogenicity (Holeva et al., 2004). Similar results have also been observed in Dickeya 

(Bauer et al., 1994; Yang et al., 2002) and P. c. subsp. carotovorum  (Rantakari et al., 2001) using 

susceptible hosts, such as Arabidopsis and African violet. However, pathogenic Pectobacterium lacking 

a functional T3SS have been isolated from infected potato crops (Kim et al., 2009; Pitman et al., 2009), 

suggesting that this system may not be essential for pathogenicity of all Pectobacterium strains or at 

least for pathogenicity in potato tubers. 

Pectobacterium also encode other well characterised secretion systems such as the type II secretion 

system (T2SS), also named the OUT system, which exports PCWDEs fromm the cell during infection of 

the host plant (Johnson et al., 2006). A two-partner type V secretion system (T5SS), which is associated 

with cell to cell adherence and microbial competition (Charkowski et al., 2012), has also been 

identified in Pectobacterium. In both E. coli and Dickeya, the T5SS is known to function in contact 

dependent inhibition (Aoki et al., 2010).  

 

1.5.4 Iron acquisition 

Iron is a vital nutritional factor that is required for cellular signalling or as a cofactor for various 

proteins including enzymes. The low-iron environment found in host organisms, especially plants, 

means that pathogens require iron uptake systems in order to colonise and initiate disease (Expert, 

1999). The iron acquisition systems of the SREs have been studied extensively. Dickeya encodes the 

siderophores chrysobactin and achromobactin, which are required for full virulence and systemic 

infection by the bacteria (Expert and Toussaint, 1985; Enard et al., 1988). Pectobacterium carotovorum 

subsp. carotovorum also produces two siderophores, chrysobactin and aerobactin, although neither 

appear to be essential for tuber or stem rot disease of potatoes by the bacterium (Bull et al., 1996). It 

is, however, possible that these bacteria utilize another iron acquisition system, such as a heme or 

ferric citrate transporter, or that an iron acquisition mechanism is only required in the stem where 

iron limitation may be greater (Expert, 1999). The availability of iron, as well as the ability of the 

pathogen to acquire iron within the host, is an important host-pathogen interaction during disease. 

For example, it has been demonstrated that in Arabidopsis plants starved of iron, D. dadantii were 

less pathogenic and the host showed greater levels of resistance (Kieu et al., 2012).  
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Iron accumulation can be important for the protection of plant pathogens against the ‘oxidative burst’; 

a defence system initiated by the host involving the production of large amounts of reactive oxygen 

species following invasion by a pathogen (Bolwell and Wojtaszek, 1997). In Dickeya, the incorporation 

of iron into Fe-S clusters has been linked to oxidative stress resistance. Proteins encoded by the suf 

operon have been shown to be involved in the metabolism of iron and possibly in the assembly of Fe-

S clusters. Bacteria with mutations in suf genes show reduced growth under oxidative conditions. 

These mutants are also less virulent when inoculated into host plants (Nachin et al., 2001). Little is 

known about iron uptake in P. atrosepticum. Genes encoding for achromobactin uptake and transport 

and enterobactin synthesis are present in the genome, but their synthesis by the bacteria has not been 

confirmed experimentally (Bell et al., 2004). Although enterobactin has not previously been identified 

in SREs, it is a well characterized system in other enterobacteriaceae such as E. coli, where it functions 

as a high affinity iron scavenger (Raymond et al., 2003).  

 

1.5.5 Toxins 

The availability of the genome sequence of P. atrosepticum SCRI1043 (E. carotovorum subsp. 

atrosepticum SCRI1043) has revealed the presence of genes with homology to the cfa genes of 

Pseudomonas syringae (Bell et al., 2004), which encode the synthetase for the polyketide portion 

(coronafacic acid) of the phytotoxin coronatine. Coronatine is an important virulence factor for some 

pathovars of the bacterial pathogen P. syringae (Bender et al., 1999a). Coronatine acts as a molecular 

mimic of 12-oxo-phytodienoic acid, a precursor of jasmonic acid (Weiler et al., 1994), therefore 

stimulating the jasmonate response pathway (Zhao et al., 2003). Subsequently, it represses the 

salicylic acid plant defence pathway, which would otherwise promote a plant response to the 

bacterium (Uppalapati et al., 2007). Although the genes encoding the synthesis of the second 

component of coronatine (coronamic acid) are absent from the P. atrosepticum genome, mutations 

in the cfa6 and cfa7 genes cause a reduction in virulence (Bell et al., 2004). Such a reduction indicates 

that the P. atrosepticum cfa genes have a role in virulence and that this may result from its interaction 

with a different conjugate. 

 

1.6 Antimicrobial molecules 

The virulence determinants described above contribute to the interactions between the SREs and their 

plant host, but under field conditions, these bacteria do not exist in isolation. For example, different 
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Pectobacterium species have been isolated from the same potato fields in the U.S.A (Gross et al., 1991) 

and multiple strains have been isolated from the same disease lesions (Yap et al., 2004). In mixed 

microbial populations, many interactions are likely to occur between the bacteria. For example, P. c. 

subsp. brasiliensis appears to out-compete P. atrosepticum, as P. atrosepticum does not occur if P. c. 

subsp. brasiliensis is present on potato (Duarte et al., 2004). This may be why only four of the 89 

isolates collected from potato in New Zealand were P. atrosepticum even though the climate is 

temperate and considered more suitable for P. atrosepticum (Pitman et al., 2008). Instead, 18 isolates 

were P. c. subsp.  brasiliensis (Pitman et al., 2008). 

Genome comparisons have revealed that SREs encode a variety of genes likely to encode antimicrobial 

molecules. Carbapenem synthesis genes have been identified in strains of P. c. subsp. carotovorum 

(Bycroft et al., 1988). Bacteriocins such as carotovoricin (Nguyen et al., 1999) and carocin (Chuang et 

al., 2007) have also been described, along with phenazine genes (Mavrodi et al., 2010).  Phenazine 

synthesis genes are also found in the genome of P. atrosepticum (Bell et al., 2004). This suggests that 

antimicrobial molecules play an important role in the lifestyle of SREs. Antimicrobial production is 

likely particularly important in interactions with other organisms both on and off the plant, but the 

ecological significance of antimicrobial production in SREs has not been proven. 

 

1.6.1 Carbapenems 

Carbapenems are a member of the β-lactam antibiotic family, which includes many medically 

important antibiotics. It has been estimated that 50% of globally used antibiotics are of the β-lactam 

family (Elander, 2003; Coulthurst et al., 2005; Schmidt, 2011). Carbapenemsare described as having a 

broad spectrum of activity, compared to the bacteriocin antimicrobials, and a structure that is 

relatively resistant to degradation by β-lactamases (Ratcliffe and Albers-Schonberg, 1982). The target 

of action of β-lactams is the cell wall of the recipient bacteria. They act by inhibiting the activity of 

transpeptidase enzymes (Waxman and Strominger, 1983) or penicillin binding proteins (Sauvage et 

al., 2008). This prevents crosslinking of peptidoglycan during cell wall biosynthesis.  

β-lactams are produced by a range of bacteria, both gram positive and negative. Members of the 

genus Streptomyces produce complex molecules such as thienamycin (a β-lactam) (Kahan et al., 1979). 

Research into the synthesis and regulation of this molecule has been hindered by the growth rate of 

the producers and by the complexity of the related pathways (Williamson et al., 1985). A simple β-

lactam, carbapenem, however, is produced by some strains of Serratia and Pectobacterium. This 

molecule is (5R)-carbapen-2-em-3-carboxylic acid (Parker et al., 1982; Bycroft et al., 1988). The fast 
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Figure 1.2. A schematic of the biosynthesis pathway producing the carbapenem product, in P. c. 

subsp. carotovorum, (5R)-carbapen-2-em 3-carboxylate. The roles of each synthetase gene in the 

pathway are indicated. Adapted from (Hamed et al., 2013). 

 

1.6.1.2 Regulation 

Regulation of the carA-H operon in P. c. subsp. carotovorum is complicated, as its transcription is 

modulated by many genetic and physiological factors. Upstream of the biosynthesis cluster is a LuxR-

type transcriptional regulator encoding gene, called carR. LuxR-type regulators respond to low 

molecular weight signal molecules, such as OHHL (see Section 1.5.1 on QS). CarR is no exception, 

responding to OHHL to activate transcription of the car operon when population size increases at late 

exponential or early stationary phase (McGowan et al., 1995). The OHHL molecule is produced by an 

OHHL synthetase called CarI which is unlinked to carR (McGowan and Salmond, 1999). The 

concentration of OHHL decreases during stationary phase, likely due to changes in buffer conditions 

(Byers et al., 2002). This reduction in OHHL concentration corresponds to the ceasing of carbapenem 

production (McGowan et al., 2005).  

Physiological factors also modulate carbapenem production by affecting QS. The available carbon 

source alters the level of the carI transcript at the transcriptional level. In particular, the presence of 

glycerol in the growth media significantly reduces the level of carI transcription in comparison with  

media containing glucose (McGowan et al., 2005). Growth temperature also influences carbapenem 

production. For example, the OHHL concentration present in the growth media of P. c. subsp. 

carotovorum ATTn10 was reduced when cultures were grown at 37°C rather than 30°C. The OHHL 

concentration achieved at 37°C was subsequently found to be below the level required to initiate carA-

H transcription (McGowan et al., 2005). It is thought that an increase in temperature negatively affects 

carI transcription, however an additional mechanism is also likely to be involved in the reduced 

expression of the car operon (McGowan et al., 2005). Finally, an oxygen limitation causes a reduction 

in carA transcription. Reduced transcription appears to result from directly affecting the transcription 

of the car operon (McGowan et al., 2005), however it may also be associated with a negative impact 

on carI transcription (McGowan et al., unpublished data). 

Quorum sensing-independent mechanisms also modulate carbapenem gene expression. For example, 

constitutive expression of a promoter within the carA-H operon ensures the continuous transcription 

of the carF and carG genes. The promoter is expressed even in a ΔcarR mutant (McGowan et al., 2005). 

The promoter region was mapped to a site within carD, 571 bp upstream of carE. It is therefore 

thought that this promoter initiates transcription of carEFGH. The individual functions of carE and 
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carH are not understood. Therefore, the main purpose of this promoter is to ensure constant synthesis 

of the novel carbapenem resistance mechanism encoded by carEF, to provide ‘self-resistance’ to the 

carbapenem produced by the bacteria (McGowan et al., 2005). (For more information on CarF and 

CarG mediated resistance see Section 1.6.1.3).  

Transcription of the car operon in P. c. subsp. carotovorum is also controlled by Hor, a regulator 

belonging to the SlyA/MarR-type family of transcriptional regulators (Thomson et al., 1997). 

Transcription of the hor gene is controlled differently in carbapenem-producing and non-producing P. 

c. subsp. carotovorum strains. Pectobacterium carotovorum subsp. carotovorum SCC3193 lacks 

carbapenem synthesis genes. In this strain, hor transcription is moderated by ExpR, which responds 

to OHHL. At low population levels when OHHL is not present at the critical level, ExpR binds to the hor 

promoter region preventing transcription (Sjöblom et al., 2008). However, in the carbapenem-

producing strain P. c. subsp. carotovorum ATTn10, the Hor regulatory system operates concurrently 

with the QS system as a QS-independent network (McGowan et al., 2005).     

The mechanisms by which different members of the SlyA/MarR family modulate gene expression 

varies between regulators. A conserved mechanism among the regulators, however, is competition 

for binding sites with other binding proteins (Ellison and Miller, 2006). The regulators SlyA 

(Salmonella), PecS (Dickeya) and RovA (Yerssinia) all act as de-repressors of gene transcription by 

competing for promoter  binding sites with the histone-like protein H-NS (Heroven et al., 2004). 

Activation of gene expression by this mechanism is considered the primary function of RovA (Stapleton 

et al., 2002). In contrast, PecS of Dickeya both represses and activates gene transcription. The 

regulator has been shown to negatively affect the transcription of pectate lyase and cellulase genes 

by competing for binding sites with cAMP, the cofactor of the CRP-cAMP transcriptional activator 

complex (Rouanet et al., 1999). By preventing the binding of transcriptional repressors, PecS acts to 

positively affect the transcription of polygalacturonase genes (Nasser et al., 1999; Hugouvieux-Cotte-

Pattat et al., 2002). The regulator SlyA, from Salmonella, has also been shown to prevent the binding 

of RNA polymerase at the slyA promoter site, repressing its own transcription (Stapleton et al., 2002).  

 SlyA/MarR-type regulators are involved in antibiotic resistance and the production of antimicrobial 

molecules (i.e. Rap in S. marcescens) (George and Levy, 1983; Thomson et al., 1997; Srikumar et al., 

1998; Fineran et al., 2005). Such regulators are also involved in initiating transcription of virulence 

genes. For example, the MarR-type regulator Hor from P. c. subsp. carotovorum, regulates the 

production of exoenzymes as well as antimicrobial production (Thomson et al., 1997).   

The carbapenem regulatory network is summarised in Figure 1.3. 
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Figure 1.3. Regulation of the carbapenem gene operon in P. c. subsp. carotovorum. Many genetic 

networks and physiological factors modulate the transcription of the carA-H operon.  

Genes are represented as grey arrows. Transcription of a gene is represented as a dashed arrow, the 

resultant gene product is shown in a red circle.  Promoters within the carbapenem synthesis operon 

are shown as black arrows above or below the in which the promoter sequence is found. Physiological 

factors are shown as blue arrows and are positioned to show which genes they influence at the 

transcriptional level. The QS molecule N-(3-oxohexanoyl)-L-homoserine lactone is designated as 

OHHL. The influence of the regulatory gene products, as well as OHHL, on the level of carA-H operon 

transcription is shown by the black arrows. A positive influence is designated as +, whereas a negative 

influence is designated as -. 
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1.6.1.3 Novel carbapenem resistance mechanism 

While investigating the genetic basis of carbapenem production by P. c. subsp. carotovorum, an E. coli 

strain supersensitive to β-lactams (ESS) (Hirvas et al., 1997), was transformed with a plasmid 

containing carR, carI and carA-H (McGowan et al., 1996). The transformed strain produced a low level 

of carbapenem and showed an increased resistance to the carbapenem. These data suggested that 

the carbapenem cluster contained both synthesis and resistance genes. As carA-E had previously been 

identified as involved in carbapenem synthesis, the carFGH genes were studied to ascertain their roles 

in resistance. An E. coli strain, that was supersensitive to β-lactams, was subsequently transformed 

with a plasmid containing only the genes carF-H, which resulted in increased resistance of the 

transformed ESS strain to the carbapenem produced by P. c. subsp. carotovorum  (McGowan et al., 

1996). Deletion experiments confirmed that both the carF and carG genes were required for resistance 

whereas carH was not involved  (McGowan et al., 1996). The carF and carG genes did not confer 

resistance to other carbapenems or β-lactams, however, which suggested that they are required for 

self-resistance to the carbapenem synthesised by the car gene cluster (McGowan et al., 1997). The 

mechanism of resistance is unknown. The structure of CarG is not a homologue of any identified 

antimicrobial resistance genes (Tichy et al., 2014). Therefore, this intrinsic carbapenem resistance 

mechanism appears to be novel compared to other identified resistance systems.  

Other mechanisms, such as the over expression of efflux pumps and mutations that alter the function 

of porins, enhance resistance to carbapenems in gram negative bacteria (Limansky et al., 2002; Mena 

et al., 2006; Rodríguez-Martínez et al., 2009).  

Carbapenems have been predicted to provide a competitive fitness advantage to P. c. subsp. 

carotovorum strains within the host plant (Axelrood et al., 1988; Marquez-Villavicencio et al., 2011). 

However, this remains to be confirmed.   

 

1.6.2 Bacteriocins 

Bacteriocins are antimicrobial molecules produced by both gram negative and gram positive bacteria. 

The term bacteriocin describes many different antimicrobial molecules (Klaenhammer, 1988). 

Bacteriocins are unique when compared to other common antimicrobials, as they tend to have a 

narrow host range and are usually toxic to bacterial species that are related to the bacteriocin-

producing bacterium (Tagg et al., 1976).  
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1.6.2.1 Colicins 

Colicins are a type of bacteriocin that was first described in certain strains of E. coli. However, they are 

also produced by other bacteria, such as Shigella, Serratia and Citrobacter (Šmarda and Oravec, 1993; 

Guasch et al., 1995; Riley and Wertz, 2002). In E. coli, colicin is produced by a cluster of three genes; 

the toxin, immunity and lysis genes, which are carried on a plasmid (Bazaeal and Helinski, 1968). 

Expression of the genes and production of colicin are both mediated by the SOS regulon and therefore 

associated with stress experienced by the bacterial cell (Salles et al., 1987). The SOS regulon is 

comprised of genes involved in DNA repair, as well as mutagenesis following increased DNA damage 

(Radman, 1975). Colicin acts on sensitive cells by both pore-forming (Braun et al., 1994) and nuclease 

activity (Nomura, 1963). For example, colicin D inhibits a colicin D sensitive strain by affecting RNA and 

protein synthesis (Timmis and Hedges, 1972). Colicins bind to the sensitive cell via receptor domains 

within the proteins (Gouaux, 1997).  

 

1.6.2.2 Carotovoricin 

Pectobacterium carotovorum subsp. carotovorum produces a bacteriocin named carotovoricin, which 

was first described in strain Er (Itoh et al., 1978). Carotovoricin is produced at the same time as the 

PCWDE Pel (Itoh et al., 1980; Nguyen et al., 1999; Nguyen et al., 2001). Therefore, carotovoricin may 

act to exclude competing bacteria from the environment following the release of nutrients by the 

PCWDEs. However, the production of carotovoricin is regulated differently to the synthesis of Pel. 

Synthesis of both molecules is temperature dependent, with maximal Pel production occurring at 30 

°C whereas production of carotovoricin is greatest at 23 °C and decreases dramatically at 

temperatures above 26 °C (Nguyen et al., 2002).  

The carotovoricin molecule acts on sensitive cells by degrading phospholipids of the bacterial cell wall 

(Itoh et al., 1980). The carotovoricin genes are comprised of four transcriptional units which encode 

21 genes. These genes encode phage tail-like proteins, a phage sheath, core and fibre proteins as well 

as ferrodoxin and lysis proteins (Yamada et al., 2006). 

 

1.6.2.3 Carocins 

The first carocin-type molecule to be identified in P. c. subsp. carotovorum was a low molecular weight 

bacteriocin, called carocin S1 (Chuang et al., 2007). This molecule was found to contain both killing 

and immunity domains. Glucose and lactose induce carocin S1 production (Chuang et al., 2007).  More 
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recently, carocin S2 (Chan et al., 2011) and carocin D (Roh et al., 2010) have been identified as 

bacteriocins produced by P. c. subsp. carotovorum F-rif-18 and P. c. subsp. carotovorum-21, 

respectively. Carocin S2 has nuclease activity against P. c. subsp. carotovorum SP33. Unlike other 

bacteriocins, carocin S2 production is induced following DNA damage by ultra violet (UV) radiation but 

not following treatment with mitomycin C, a chemotherapeutic agent that induces DNA crosslinks 

(Chan et al., 2011). Carocin D is active against another P. c. subsp. carotovorum strain, P. c. subsp. 

carotovorum-3. The genes encoding carocin D were identified to be similar to the E. coli colicinDK 

(killing) and colicinDI (immunity) genes (Roh et al., 2010).  

 

1.6.2.4 Regulation of bacteriocins 

Bacteriocin production occurs when the bacterial cells are under stress (Herschman and Helinski, 

1967; Cotter et al., 2005). For example, under growth culture conditions, bacteriocin production is 

increased when available oxygen is limited (Eraso and Weinstock, 1992), at high temperatures 

(Kennedy, 1971; Cavard, 1995) and during growth at stationary phase (Eraso et al., 1996). With this in 

mind, the antibiotic mytomycin C (Iijima, 1962; Itoh et al., 1980) and UV radiation (Lwoff et al., 1952; 

Itoh et al., 1980) were used to induce DNA damage and bacteriocin production. 

As with carbapenems, the exact ecological role of the bacteriocins within bacterial populations has 

not been established, but they are most likely ‘anti-competitor’ molecules; either allowing the 

producing bacteria to invade an established population or prevent invasion by other bacteria (Riley 

and Wertz, 2002). 

 

1.6.3 Non-ribosomal peptides  

Non-ribosomal peptides (NRPs) display a wide range of functions and have been shown to contribute 

to virulence and in vitro fitness of plant pathogens. Pseudomonas syringae p.v syringae, for example, 

produces the phytotoxin syringomycin. Syringomycin not only promotes disease progression on the 

host plant, it also inhibits the growth of many other organisms including bacteria and fungi (Sinden et 

al., 1971). Other NRPs include the siderophore enterobactin, an important virulence determinant in 

Dickeya (Expert, 1999), and thaxtomin A, a toxin from the potato pathogen Streptomyces acidiscabies 

(Healy et al., 2000). An unnamed orange pigment has also been associated with virulence of P. c. 

subsp. carotovorum in host plants (Williamson et al., 2010). It has been proposed that the emergence 

of D. solani as a pathogen is related to the presence of multiple NRP encoding genes not encoded by 
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other organisms found in a similar environment, such as Pectobacterium and other Dickeya (Garlant 

et al., 2013). 

 

1.6.3.1 Non-ribosomal peptide biosynthesis 

All NRPs are synthesised independently of the ribosomes and messenger ribonucleic acid (mRNA) on 

large, modular, multi-enzyme complexes called non-ribosomal peptide synthetases (NRPSs). These 

peptides contain distinct features compared to ribosomal peptides; commonly having a macrocyclic 

or branched macrocyclic structure, containing non-proteinogenic amino acids (Schwarzer et al., 2003). 

Non-ribosomal peptide synthetases are polypeptide chains or single polypeptides that are organised 

into modules. Modules are areas of the polypeptide chain that makes up the NRPS, which incorporate 

amino acids into the final product. These modules are sub-divided into domains that act as the active 

sites of the synthetase (Stachelhaus and Marahiel, 1995). The minimal domains in an NRPS, which are 

necessary for synthesis of an NRP are an adenylation (A) domain, a thiolation (T) domain (also called 

the peptidyl carrier protein) and a condensation (C) domain. Synthesis begins with substrate 

recognition and activation by the A-domain (Figure 1.4). This results in the incorporation of a particular 

amino acid, as A domains are specific to an amino acid residues. The activated amino acid is then 

transferred to the T-domain, where a thioester bond is formed. The C-domain subsequently forms a 

peptide bond between the amino acids on the T-domain on the same module as well as on the 

proceeding module. One module, therefore, results in the incorporation of a single amino acid. A 

thioesterase (TE) domain may be present on the final module of an NRPS, which releases the product 

from the synthetase. An epimerization domain may also be present, which initiates epimerisation of 

a target residue. Epimerisation refers to the alteration of the residue configuration, which results in 

stereo-isomers. Epimerisation does not occur in all cases. The number and type of modification 

domains also varies greatly between NRPSs. 
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Figure 1.4. A representation of the mechanism of non-ribosomal peptide synthesis.  

1: Activation of the amino acid substrate by the adenylation (A) domain. 2: The amino acid is then 

transferred to the thiolation (T) domain where it is held by a phosphopantetheine prosthetic group. 

3: Condensation of the bound amino acid by the condensation (C) domain. 4: Possible modification of 

the amino acid, by the epimerization (E) domain. 5: Transesterification of the peptide chain from the 

final T domain to the thioesterase (TE) domain. 6: Release of the peptide product by the TE domain, 

either by hydrolysis or macrocyclization (Strieker et al., 2010). Amino acids are given as examples of a 

grown peptide chain. Standard amino acid abbreviations are given; val (valine), glu (glutamate), ser 

(serine), gly (glycine).   

 

 

1.6.3.2 Non-ribosomal peptide synthesis regulation  

Many bacterial NRPS genes are organised into operons. The genus Bacilli provides a number of 

examples, including the synthetase genes for the antimicrobials ituin (Tsuge et al., 2001) and 

mycosubtilin (Duitman et al., 1999). Furthermore, the NRP indigoidine, a blue pigment molecule linked 

to oxidative stress resistance in Dickeya, is also produced by genes which are organised in an operon 

(Reverchon et al., 2002). Therefore, NRPS operons are spread across bacterial species and represent 

synthetases of different types of molecules.  

Environmental factors, particularly nutrient availability, have been described as important regulatory 

factors in the production of many NRPs. For example, the production of syringomycin by P. syringae 

is enhanced by increased levels of inorganic phosphate in in vitro media (Gross, 1985). Production was 
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further enhanced by phenolic glycosides, i.e. arbutin, which are encountered by the bacterium in host 

plants (Bender et al., 1999b). In planta conditions also influence the production of the thaxtomin A 

toxin by the potato pathogen Streptomyces scabies. Increased glucose and nitrogen concentrations, 

encountered following tissue maceration, reduce thaxtomin A production as the toxin is no longer 

required (Babcock et al., 1993).  

Two component regulator systems which encode a transmembrane and response regulator 

component have been identified as important genetic regulators of NRPS clusters. GacS/GacA in P. 

syringae regulate syringomycin production (Bender et al., 1999b) and PecM/PecS regulate the dye 

molecule indigoidine in Dickeya (Rouanet and Nasser, 2001). The pleotrophic regulator DegQ also 

regulates the production of the antimicrobial molecule plipastatin in B. subtilis (Tsuge et al., 1999). 

 

1.6.4 The ecological importance of antimicrobial molecules 

The exact ecological function of antimicrobials is not understood (Price-Whelan et al., 2006). However, 

it is thought that within diverse ecological bacterial populations they confer an advantage to the 

producer when in competition for nutrients and resources (Sogin et al., 2006). This appears to be the 

case for E. coli, as the ability to produce bacteriocins in this bacterium is under positive selection even 

though there is almost certainly a large metabolic cost associated with antimicrobial synthesis 

(Reeves, 1972; Chao and Levin, 1981; Riley and Wertz, 2002).  

Competition is described as being either ‘scrabble competition’, the hasty use of available nutrients 

to exclude them from use by other organisms or ‘contest competition’, which involves the deployment 

of direct, hostile mechanisms to reduce the success of competing organisms (Nicholson, 1954). 

Antimicrobials have been predicted to be involved in contest competition, although more recently 

their ecological competitive importance has been questioned. Indeed, given that antimicrobials are 

likely to be at sub-inhibitory concentrations in the environment, it has been suggested that they may 

act as intraspecies signalling molecules (Davies et al., 2006; Yim et al., 2007). For example, they may 

act as an indicator for other bacteria to change their metabolic functions (Price-Whelan et al., 2006).  

Within nature, colicin producing, sensitive and resistant E. coli coexist within a population. Diversity 

studies have shown that resistant strains are most common within an E. coli population (50-98%) 

compared to producing strains (10 - 50%) (Gordon et al., 1998). Only a small sensitive population was 

present in these populations. A multi-generation study conducted using E. coli found in mouse 

intestines demonstrated that producers tend to lose the ability to produce the antimicrobial molecule, 
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in favour of gaining resistance (Gordon et al., 1998). This is likely due to the cost of producing the 

antimicrobial, as well as the relative ease of movement of resistance genes via horizontal gene transfer 

(Czárán et al., 2002). Furthermore, it has been described that the virulence potential of an organism 

is maximal when not competing with other organisms (i.e. not producing large amounts of 

antimicrobials) (Gardner et al., 2004). It would, therefore, be most beneficial for pathogens such as 

Pectobacterium to gain resistance to antimicrobials produced by competitors and focus resources on 

production of virulence determinants. 

The difficulty of investigating bacterial interactions within the environment has led to the 

development of models describing these interactions. These models are based on laboratory empirical 

studies, as well as in silico and statistical analysis of bacteriocin biology. Initially it was predicted that 

bacteria produced antimicrobial molecules in order to out-compete other microbes for access to 

nutrients under limited nutrient conditions (Chao and Levin, 1981; Ivanovska and Hardwick, 2005).    

A study by Wolch-Salamon et al, (1998), which studied the interaction of yeast grown in nutrient rich 

conditions reached a different conclusion. They demonstrated that for Saccharomyces cerevisiae 

producing the toxin K1, toxin production was only beneficial under nutrient rich conditions. High 

nutrient levels were required to outweigh the metabolic costs associated with toxin production and 

to allow invasion into the toxin sensitive population (Wloch-Salamon et al., 2008). It is now theorised 

that the production of antimicrobial molecules is advantageous for the producer when invading new 

ecological niches, rather than for scavenging nutrients (Brown et al., 2009).  

The success of antimicrobial producing organisms is also dependent on the nature of the growth 

conditions. For example, in an unstructured environment, such as liquid media, the producers need 

to be more numerous than the sensitive cells if they are to successfully outcompete the sensitive cells 

(Durrett and Levin, 1997). This was thought to be due to insufficient toxin production by the producers 

to have a great enough affect to compensate the cost of production (Durrett and Levin, 1997). 

However, in a structured environment it is advantageous to produce an antimicrobial molecule even 

when the producer is rare (Chao and Levin, 1981; Durrett and Levin, 1997; Gardner et al., 2004). 

 Models have also been produced to understand the occurrence of antimicrobial producer, sensitive 

and resistant strains (Frank, 1994). These models have been confirmed via serial-transfer studies (Riley 

and Gordon, 1999). Initially, a microbial population is considered to be ‘sensitive’. Without the 

presence of an antimicrobial molecule in the environment, this phenotype is most appropriate due to 

its low metabolic load. If a producer strain then enters the population, it will out-compete the sensitive 

cells (Durrett and Levin, 1997; Riley and Wertz, 2002). Over time, mutations will occur within the 
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sensitive population, which will render them resistant to the antimicrobial. These mutations include 

alterations to the cell surface, or transporters, and acquisition of resistance plasmids (Smarda, 1992; 

Feldgarden and Riley, 1998). These resistance characteristics will increase in frequency among the 

population until resistant cells displace the producers (Tan and Riley, 1996). It is then no longer 

advantageous to expend the energy required to produce the antimicrobial molecule. Furthermore, 

without the stress of the toxin being present, reversions back to the sensitive phenotype will occur as 

this is the least energy-intensive state. Therefore, under this scenario a crash in the antimicrobial-

producing population is expected. This is a simplified scenario of the population dynamics that may 

occur. For example, the resistant population may be displaced by a strain producing another 

antimicrobial to which it does not have resistance (Feldgarden and Riley, 1998; James et al., 2013). In 

this case, the dominant producer may also be replaced (Tan and Riley, 1997; Riley, 1998). Therefore, 

the production of an antimicrobial molecule by a bacterium will only be advantageous for a limited 

amount of time. This is possibly what occurs when a new pathogen emerges, displacing other 

established pathogens.  

 

1.7 Thesis context 

Studies conducted to understand the variation of colicins produced by different strains of E. coli found 

that 25 different colicin molecules were produced in a single population (Riley and Gordon, 1999). As 

colicins have a very specific spectrum of activity, this variation was proposed to provide evidence for 

the extent of intraspecies competition that occurs within populations. The diversity of antimicrobials 

encoded within SRE genomes also suggests a high degree of competition is experienced by these 

bacteria. This may be a result of the diverse lifestyles and niches for SREs. For example, SREs are found 

in plants and on their surfaces, in water and in insects (Pérombelon, 1972; Pérombelon and Kelman, 

1980; McCarter‐Zorner et al., 1984; Basset et al., 2003). Several Pectobacterium species have been 

isolated from the same field location (Gross et al., 1991) or even from the same diseased potato stem 

tissue (De Boer et al., 2012). Therefore, competitive interactions are likely to occur between the 

bacteria. 

 Under these circumstances, different competition mechanisms may be required for survival in these 

different environments (Pérombelon and Kelman, 1980; Quinn et al., 1980).  

The emergence of different enterobacterial pathogens has been noted on potato in recent times. For 

example, D. solani recently emerged as a pathogen in Europe (Toth et al., 2011). Genomic studies 

identified novel secondary metabolite genes, which were specific to this SRE (Garlant et al., 2013). It 
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was predicted that the unique combination of these novel genes may have enabled this bacterium to 

replace established blackleg pathogens such as P. atrosepticum, which previously dominated on 

potato in Europe (Garlant et al., 2013). Supporting this theory, it has previously been shown that P. c. 

subsp. betavasculorum is able to inhibit the growth of some P. c. subsp. carotovorum strains both in 

vitro and in tubers (Axelrood et al., 1988) suggesting that the antimicrobial activity of P. c. subsp. 

betavasculorum is important during colonisation of the host plant. 

Pectobacterium carotovorum subsp. brasiliensis has also increased in prevalence on potatoes in recent 

years (Duarte et al., 2004; van der Merwe et al., 2010; Leite et al., 2014; Werra et al., 2015). Genome 

comparisons of two closely related P. c. subsp. brasiliensis strains, P. c. subsp. brasiliensis ICMP 19477 

and P. c. subsp. brasiliensis PBR1692 (Panda et al., 2015b), have identified a variety of antimicrobial 

biosynthetic clusters in the genomes of these SREs (Table 1.2). It is possible that one, or a combination 

of these, has contributed to the emergence of P. c. subsp. brasiliensis at the expense of related SREs.  

Three genes have been identified within the horizontally acquired island  (HAI) PbN1-GI38 of P. c. 

subsp. brasiliensis ICMP 19477 that may be involved in bacteriocin production and are unique to P. c. 

subsp. brasiliensis (Panda et al., 2015b). Interestingly, Marquez-Villavicencio et al., (2011) observed 

that P. c. subsp. brasiliensis PBR1692 has antimicrobial activity against P. atrosepticum SCRI1043 in 

vitro. This activity was predicted to be a consequence of the production of a carbapenem, although 

the ecological significance of carbapenem production appeared to be minor. No competitive 

advantage was observed by the producer in co-inoculation studies between P. c. subsp. brasiliensis 

PBR1692 and P. atrosepticum SCRI1043 in potato stems (Marquez-Villavicencio et al., 2011).  

Genes for carbapenem synthesis are present in the genome of  P. c. subsp. brasiliensis PBR1692  

(Glasner et al., 2008) and in P. c. subsp. brasiliensis ICMP 19477. Considering the population dynamics 

of antimicrobial producers in ecological niches, it is likely that the production of an antimicrobial 

molecule by Pectobacterium subsp. would be more advantageous for the colonisation of potato 

tubers, rather than the stems. Tubers provide a higher nutrient and more structured environment 

compared to stems, providing conditions more conducive to domination by producer strains (Chao 

and Levin, 1981; Wloch-Salamon et al., 2008). Thus, the experiments in stems may have overlooked 

the most likely niche in which antimicrobial activity provides a competitive advantage.



 39 

Table 1.2. Genomic islands in P. c. subsp. brasiliensis ICMP 19477 harbouring antimicrobial biosynthetic clusters.  

The H-values calculated from comparisons with the genomes of P. c. subsp. brasiliensis PBR1692, P. atrosepticum SCRI1043, P. c. subsp. carotovorum ICMP 5702 and 

P.c. subsp. carotovorum WPP14 are given. An H-value of >0.8 indicates that the ORF from P. c. subsp. brasiliensis ICMP19477, has an indistinguishable homologue 

in the genome being compared. Table adapted from Preetinanda Panda., (2014) doctoral thesis.    

 

P. c. subsp. 

brasiliensis ICMP 

19477 Genomic 

Island 

CDSs Genomic  

coordinates 

Antimicrobial 

molecule 

Similarity of Genomic Islands in Pectobacterium (H-Value) 

P. c. subsp. 

brasiliensis  PBR1692 

P. atrosepticum 

SCRI1043 

P. c. subsp. 

carotovorum ICMP 

5702 

P. c. subsp. 

carotovorum 

PC1 

PbN1-GI20 KCO_06120-  

t17277 

1525440-1587140 Non-ribosomal 

peptide 

0.4 0.3 0.1 0.1 

PbN1-GI25 KCO_16177-  

KCO_16067 

1823757-1840265 Carotovoricin 1.0 0.3 0.8 0.8 

PbN1-GI31 KCO_14567-  

KCO_14527 

2180859-2189122 Phenazine 0.8 0.7 0.7 0.8 

PbN1-GI38 KCO_12557-  

KCO_12472 

2601719-2635218 Colicin-like 0.8 0.4 0.7 0.6 

PbN1-GI65 KCO_04647-  

KCO_04687 

4699476-4706891 Carbapenem 1.0 0.0 0.8 0.0 
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1.8 Aims 

This study aimed to examine whether antimicrobial production contributes to the ecological fitness of 

P. c. subsp. brasiliensis on potato, by enabling the bacterium to out-compete closely-related 

pathogens such as P. atrosepticum. These bacteria are both responsible for blackleg (Pérombelon, 

1992; Duarte et al., 2004), yet their entry is likely to occur via wounds or lenticels on the tuber. Thus, 

they are likely to inhabit the same ecological niches (at least in potato crops).  

To address this question, i). the in vitro antimicrobial activity of P. c. subsp. brasiliensis was confirmed 

by testing a representative P. c. subsp. brasiliensis strain (ICMP 19477) (Panda et al., 2015b) against 

other Pectobacterium such as P. atrosepticum SCRI1043; ii). P. c. subsp. brasiliensis ICMP 19477 was 

then studied in the host potato plant (stems and tubers), to determine whether greater competitive 

fitness was observed for P. c. subsp. brasiliensis ICMP 19477 in planta; iii) Functional studies were 

performed in order to identify the genes and pathways involved in the competition phenotype of P. c. 

subsp. brasiliensis ICMP 19477. Furthermore, mutants reduced in the competition phenotype were 

compared to the P. c. subsp. brasiliensis ICMP 19477 WT, in order to determine if the in vitro 

antimicrobial activity was associated with the in planta fitness.  

 

1.9 Hypothesis 

It was hypothesised that P. c. subsp. brasiliensis ICMP 19477 demonstrates a competitive advantage 

over P. atrosepticum SCRI1043, both in vitro and in the host plant, due to the production of one or 

more antimicrobial molecules. It was further predicted that the competitive phenotype, conferring 

increased fitness to P. c. subsp. brasiliensis ICMP 19477, is a mechanism associated with the 

emergence of P. c. subsp. brasiliensis ICMP 19477 as a recent pathogen.   
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Chapter 2  

Materials and Methods 

2.1 Methods 

2.1.1 Bioinformatic analysis 

Bioinformatics tools were used to identify antimicrobial biosynthetic clusters and to predict the 

antimicrobial products encoded by these clusters (Table 2.1). These bioinformatic tools were also used 

for analysis of the genes disrupted by transposon mutagenesis (Sections 2.1.18 and 2.1.19). 

Similarities to other known genes and proteins were established by an alignment search tool using the 

NCBI BLAST algorithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1990). Comparative 

genome analysis was represented using Easyfig (Sullivan et al., 2011). 

 

Table 2.1. The bioinformatics analysis tools used to analyse the antimicrobial biosynthesis gene 

clusters in P. c. subsp. brasiliensis ICMP 19477.  

 

 

 

Name Description URL/Reference 

Non-ribosomal peptide synthetase specific tools   
 
PKS/NRPS Analysis Web- 
server 

 
Blast server to identify 
homologues within the 
database plus domain 
organisation 
 

 
http://nrps.igs.umaryland.edu/nrps/ 
(Bachmann and Ravel, 2009) 
  

NRPS-PKS Prediction of domain 
organisation and substrate 
specificity 
 

URL no longer available 
(Ansari et al., 2004) 

Antibiotics and secondary 
metabolites analysis shell 
(antiSMASH) 

Identifies, annotates and 
analyses secondary metabolite 
producing loci. Also predicts the 
structure of the resulting 
product. 
 

http://antismash.secondarymetabolites.org/ 
(Medema et al., 2011) 

NRPSpredictor2 Predicts A domain specificity 
and the resulting amino acid 
substrate 

http://nrps.informatik.unituebingen.de/ 
(Rottig et al., 2011) 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://nrps.igs.umaryland.edu/nrps/
http://nrps.igs.umaryland.edu/nrps/
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2.1.2 Chemicals and Media 

All chemicals used in this study were of an analytical grade. The recipes for chemical solutions and 

media are given in Appendix A. Solutions were routinely prepared using double distilled water (ddH2O) 

unless otherwise indicated. All chemical solutions and media were sterilized by autoclaving at 121°C 

(20 psi) for 20 min. Where appropriate, the pH of the solutions and media were measured at room 

temperature.  

 

2.1.3 Bacterial strains and plasmids 

Bacterial strains and plasmids are listed in Table 2.2. 

   

Name Description URL/Reference 

General tools used for analysis of antibiotic synthesis clusters 

Pfam 26.0 Identification of protein family 
similarities within the protein 
family sequence database 
 

http://pfam.xfam.org/ 
(Finn et al., 2010) 
 

HMMER Identification of protein 
homologs and protein sequence 
alignments 
 

http://hmmer.janelia.org 
(Finn et al., 2011) 

BLAST-conserved domains Compares sequence with 
databases to infer functional 
relationships. 
 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi 
 (Altschul et al., 1990) 

InterProScan 5 Blasts sequence against the 
InterPro database of protein 
signatures to identify the 
domain structure. 
 

http://www.ebi.ac.uk/Tools/pfa/iprscan 
 (Jones et al., 2014) 

I-TASSER server 
(Version 4.4) 

Predicts the structure and 
function of protein sequences 
 

http://zhanglab.ccmb.med.umich.edu/I-
TASSER/ 
(Zhang, 2008) 

PredictProtein 
(Version 1.0.88) 

Secondary structure and 
structural annotations of 
protein sequences.  
 

https://www.predictprotein.org/ 
(Rost et al., 2004) 

Raptor X Protein secondary and tertiary 
structure prediction 
 

http://raptorx.uchicago.edu/ 
(Källberg et al., 2012) 

https://www.predictprotein.org/
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Table 2.2. Bacterial strains and plasmids used in this study.  

Antibiotic resistances are represented as follows: Km, Kanamycin; Rif, Rifampicin; Str, streptomycin; Amp, ampicillin; Chl, chloramphenicol; Tet, tetracycline.  

 

Bacterial Strain Description/Genotype Source/Reference Antibiotic 
Resistance 

P. atrosepticum  
SCRI1043 

 
Wild Type 

 
JHI, UK 

 
N/A 

SCRI1043 R  Spontaneous genetic mutation conferring resistance to 
rifampicin   

This study Rif 

SCRI1043 K SCRI1043 ECA0522Ar1::mTn5-gusA-pgfp::KmR (Holeva et al., 2004; Vanga et al., 
2012) 

Km 

P. carotovorum subsp. carotovorum  
ICMP 5702 

 
Wild Type 

 
(Panda et al., 2015a) 

 
N/A 

 
P. carotovorum subsp. brasiliensis  

  

ICMP 19477 Wild Type (Pitman et al., 2008) N/A 

ICMP 19477 R  Spontaneous genetic mutation conferring resistance to 
rifampicin   

This study Rif 

ICMP 19477 K mTn5-gusA-gfp::KmR This study Km 

ICMP 19477 carR- carR::mTn5-gusA-gfp::KmR This study Km 

ICMP 19477 carR-::pTRB32oriTcarR ICMP19477 carR- containing pTRB32oriT containing a 738 
bp fragment, encompassing KCO_04647. 

This study Chl, Km 

ICMP 19477 carR-::pTRB32oriT ICMP19477 carR- containing an empty copy of pTRB32oriT  This study Chl, Km 

ICMP 19477 carI- carI::mTn5-gusA-gfp::KmR This study Km 

ICMP 19477 slyA- slyA::mTn5-gusA-gfp::KmR This study Km 

ICMP 19477 slyA-::pTRB32oriTslyA ICMP19477 slyA- pTRB32oriT containing a 436 bp 
fragment, encompassing of KCO_21137. 

This study Chl, Km 

ICMP 19477 slyA-::pTRB32oriT ICMP19477 slyA- containing an empty copy of pTRB32oriT This study Chl, Km 

ICMP 19477 abc- ICMP19477 carrying a single crossover mutation in ABC, 
integrated with pK18mobsacB. 

(Preetinanda Panda, 2014; Doctoral 
thesis) 

Chl, Km 

ICMP 19477 nrps1- ICMP19477 carrying a double crossover mutation in nrps1 
integrated with pK18mobsacB. 

(Preetinanda Panda, 2014; Doctoral 
thesis) 

Chl, Km 
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ICMP 19477 sim- ICMP19477 carrying a single crossover mutation in sim 
integrated with pK18mobsacB. 

(Preetinanda Panda, 2014; Doctoral 
thesis) 

Chl, Km 

PBR1692  Wild Type (Duarte et al., 2004) N/A 

 
E. coli strains 
 

 
 

  

ESS β-lactam supersensitive indicator strain (Bainton et al., 1992) N/A 

S17-1λpir (mTn5-gus-pgfp21) S17-1λpir carrying the Tn5 ‘cassette’ mTn5-gus-pgfp21 in 
pUT. Provides conjugal function in bacterial crosses 

(Sandra Vinovsky, private 
communication) 

Amp, Km 

TOP10  F-mcrA Δ(mrr-hsdRMS-mcrBC) Φ80ΔLacZΔ M15 Δ lacX74 
recA1 araD139 Δ(araleu) 7697 galU galK rspL (StrR) endA1 
nupG 

Life Technologies Str 

HH26 pNJ500 Strain used for mobilisation in conjugal transfer (Grinter, 1983) Tet 

 
Chromobacterium strains 

C. violacein CV026 Mini-Tn5 transposon mutant negative for violacein-
pigment production. Biosenser strain for N-acyl 
homoserine lactone production.  

(Latifi et al., 1995) Km 

 
Plasmids 
 

 
 
 

 
 
 

 
 
 

pTRB32oriT (pPF259) Derivative of pQE80-L (Expression vector for native or N-
terminal hexahistidine proteins), containing an origin of 
transfer RP4 oriT.  

(M. McNeil, unpublished) Chl 

pTRB32oriT::carR  pTRB32oriT containing a 738 bp fragment, encompassing 
KCO_04647.  

This study Chl 

pTRB32oriT::slyA pTRB32oriT containing a 436 bp fragment, encompassing 
of KCO_21137. 

This study Chl 

pK18mobsacB Vector used for the delivery of knockout gene constructs (Schäfer et al., 1994) Km  

pFAJ1819 pUT derivative, mini Tn5 transposon vector containing 
mTn5-gus-pgfp21 

(Xi et al., 1999) Amp, Km 
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2.1.4 Growth conditions, selection and long term storage of bacteria 

All Pectobacterium and E. coli strains were routinely grown on Luria-Bertani agar (LBA). Where 

appropriate, minimal M9 media containing glucose (MM) was also used. Pectobacterium species were 

grown at 28 °C, E. coli was grown at 37 °C and Chromobacterium violacein CV026 was grown at 25 °C. 

For agar plate cultures, Pectobacterium and E. coli were incubated for 24 h and C. violacein CV026 was 

incubated for 48 h.  

To prepare liquid cultures, a single colony was selected from a pre-grown agar plate and inoculated 

into 5 ml LB medium and incubated for ≥ 16 h. Liquid cultures of Pectobacterium were shaken at 180 

rpm, E. coli at 250 rpm and C. violacein at 150 rpm. Where required, antibiotics were added to the 

growth medium to a final concentration of: ampicillin (Amp) (100 µg/ml), kanamycin (Km) (50 µg/ml), 

chloramphenicol (Chl) (25 µg/ml), tetracycline (Tet) (15 µg/ml) and rifampicin (Rif) (100 µg/ml). 

Isopropyl β-D-1 thiogalactopyranoside (IPTG) was also added to the growth media where required, to 

a final concentration of 20 µg/ml. 

Spontaneous Rif resistant mutants of P. c. subsp. brasiliensis ICMP 19477 (P. c. subsp. brasiliensis R) 

and P. atrosepticum SCRI1043 (P. atrosepticum R) were prepared by growth in LB, plus Rif, overnight 

at various Rif concentrations (20 µg/ml, 30 µg/ml, 50 µg/ml and 75 µg/ml). Resistant cultures were 

streaked onto LBA containing Rif at the required concentration and grown overnight. The resultant 

colonies were repeatedly grown at increasing concentrations of Rif until they were resistant to the 

required concentration (100 µg/ml).   

For long term storage of all bacteria, a 500 µl aliquot of a bacterial culture grown overnight in 5 ml LB 

culture was added to 500 µl of 40% glycerol and frozen at -80 °C. For short term storage, bacteria were 

kept on agar plates at 4 °C for up to four weeks. C. violacein CV026 was stored at 25 °C for up to two 

weeks, as the strain would not survive at 4 °C. 
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2.1.5 Isolation of genomic DNA from bacterial cultures grown in vitro 

The DNeasy blood and tissue kit (Qiagen) was used to isolate genomic DNA from bacterial broth 

cultures as per the manufacturer’s instructions.  

2.1.6 Isolation of plasmid DNA from bacterial cultures grown in vitro 

The Presto TM Mini Plasmid Kit (Geneaid) was used for the isolation of high copy number plasmids. 

Plasmid isolation was carried out as per the manufacturer’s instructions.  

2.1.7 Isolation of total RNA from bacterial cultures grown in vitro 

The SV Total RNA Isolation system (Promega) was used to isolate total RNA, using a modified method 

to that described by the manufacturer. The bacterial cells were harvested from the broth by 

centrifugation at 4,000 rpm for 10 min at 4 °C. All subsequent centrifugations were also carried out at 

4 °C, unless otherwise stated. The pellet was resuspended in 100 µl of TE buffer containing 1.0 mg/ml 

of lysozyme, by inversion of the tube until the pellet was completely resuspended. The lysis mixture 

was then incubated at room temperature for 5 min. Three hundred and fifty µl of RNA dilution buffer 

was then added. This was mixed by vortexing and then centrifuged at full speed for 10 min. The 

supernatant was transferred to a fresh tube, 1 ml of ice cold ethanol was added, and then the mixture 

was incubated at -80 °C for 60 min. The sample was subsequently centrifuged at full speed for 5 min 

and the supernatant discarded. The pellet was then washed with 600 µl of wash buffer, and air dried. 

The pellet was resuspended in 60 µl RNase free water. For DNase treatment, two volumes of ice cold 

ethanol were added and mixed gently. The suspension was transferred to a Promega spin column and 

centrifuged at full speed for 30 sec. A previously prepared DNase mix, supplied by the manufacturer, 

was applied to the column and incubated at room temperature for 15 min. Two hundred µl of DNase 

stop solution was then added and centrifuged at full speed for 30 sec. The column was washed with 

600 µl of wash solution and the RNA was eluted with RNase free water. If necessary, the DNase 

treatment was repeated.  

 

2.1.8 Determination of nucleic acid concentration and purity 

The concentration of isolated DNA or RNA was measured using a NanoDrop 3.0.0 (Thermo Scientific). 

The concentration of the nucleic acid was measured using the spectrophotometer by absorbance at 

260 and 280 nm. The ratio of the 260/280 nm absorbance was used to determine the nucleic acid 

purity. A ratio of ~1.8 was accepted as pure DNA and a ratio of ~2 as pure RNA. A lower 260/280 nm 

ratio may have indicated contamination by phenol or protein which absorb at 280 nm. A second 
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measure of nucleic acid purity was given by the 260/230 nm ratio. The values representing pure 

nucleic acids were higher than the 260/280 nm ratio and were generally between 2-2.2. A lower 

260/230 nm ratio may have been due to presence of carbohydrates, phenol or guanidine which absorb 

at 230 nm. Nucleic acid quantification was also confirmed using gel electrophoresis with appropriate 

DNA standards (Section 2.1.9).  

 

2.1.9 Agarose gel electrophoresis 

Nucleic acids were separated based on size by gel electrophoresis using 1- 2% (w/v) agarose. Agarose 

gels were prepared in 50 ml 10 x TAE buffer. RedSafeTM (iNtRON Biotechnologies) was added to the 

agarose (1 µl per 100 ml agarose), prior to pouring the agarose into a casting tray. Genomic DNA, 

polymerase chain reaction (PCR) products or reverse transcription-PCR (RT-PCR) products (1 - 4 µl) 

were pre-mixed with 1 µl 6 × bromophenol loading dye and loaded into the gel after the agarose had 

solidified. For DNA samples, 5 μl of a DNA size standard (HyperLadder I, IV or V, Bioline UK) was run 

alongside the samples to measure the size of the separated fragments. For separation of RNA 

molecules, 3 µl RNA was added to 6 µl formamide plus 1 µl 6 × loading dye. This mix was loaded onto 

the gel alongside 4 µl of RiboRuler high range ready-to-use RNA Ladder (200-6000 bp, Fermentas). 

This mix was then added to the gel. After the samples had been loaded, the gel was routinely run at 

100 V for 45 min before visualisation of bands under a UV transmitter. 

 

2.1.10   PCR and RT-PCR 

PCR was routinely performed using FastStart Taq DNA polymerase (Roche). Standard reactions were 

carried out in a total volume of 50 µl with each reaction containing, 5 µl 10 × PCR buffer, 1 µl 10 mM 

dNTPs, 5 µl 10 µM forward primer, 5 µl 10 µM reverse primer, 0.4 µl FastStart Taq DNA polymerase 

and 0.1-250 ng of template DNA. PCRs were made up to 50 µl with PCR grade water. PCR reactions 

were run on an iCycler PCR machine (Bio-Rad Laboratories). PCR conditions generally were: 95 °C for 

4 min, followed by 30 cycles of 95 °C for 30 sec, 30 sec at a primer-specific temperature (see Table 2.3) 

and 70 °C for 3 min. A final elongation step was performed at 72 °C for 7 min. A negative control, 

containing no template DNA was included for all reactions. A non-RT PCR control was included for RT-

PCR reactions. 
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Geneious 7.0.6 (Biomatters Ltd) available from (http://www.geneious.com/), was used to design 

primers using the  P. c. subsp. brasiliensis ICMP 19477 reference genome. The primers used in this 

study are listed in Table 2.3.  

  

http://www.geneious.com/
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Table 2.3. Primers used in this study.  

 

Primer Name Product  
Size (bp) 

Primer Sequence (5′ to 3′) Annealing 
temperature  
(°C) 

Primers used for operon studies   

Pbr β-lac/ABC F 

Pbr β-lac/ABC R 

797   AGCGATCTGGAGTGGACATTC 

 ATCGCCCTTTCTACCTGTTCG 

60 

60 

Pbr ABC/NRPS F 

Pbr ABC/NRPS R 

539  TGCCAGGACAGTCAATATGGC 

CAAGCCAATCTGAACACGGTG 

60 

60 

NRPS/NRPSsmall F 

NRPS/NRPSsmall R 

502  TGAGCGCCAATTTATCGAGTTTG 

GCGACATGACCATTTCTTTGAAC 

60 

60 

Pbr NRPS/tRNA F 

Pbr NRPS/tRNA R 

866  TCATGACGCGAGACAAGCAT 

GGTTCGAGTCCAGTCAGAGG 

60 

60 

KCO_12557/12552 F     

KCO_12557/12552 R                     

1249  CTCCCCGCTGGAAATTAAAGC 

GCTTGGCTGATTGCTATAATCCA 

60 

60 

KCO_12552/12547 F 

KCO_12552/12547 R 

533  TTCCCATCGATTGACAACCGA 

GCCGGTGGAGTTCGATGATTA 

60 

60 

KCO_12547/12542 F 

KCO_12547/12542 R 

648  GCCACCATCAACGGTCATTG 

CGGTCGCCTTCTTCGATCATA 

60 

60 

CarR/CarA F 

CarR/CarA R 

490  CCCTGTGAGCCTGTAGTGATG 

GAACAGCAACGCTAACAGCTC  

60 

60 

CarA/CarB F 

CarA/CarB R 

506  CGAAGGTTCCTCCGTCAATCA  

TGGAAACCCATACCAATCGCA 

60 

60 

CarB/CarC F 

CarB/CarC R 

626  TAAGCATGGTATCGGGTGCTC  

TCCAGTTTCAACGTATCGCGA 

60 

60 

CarC/CarD F 

CarC/CarD R 

539  CCAGGCATTCTTCCAGGAACT  

CCATTGCCTTATCGAACTGCG 

60 

60 

CarD/CarE F 

CarD/CarE R 

668  ATGCGTGAATTTAACCGCGAG  

GCGATAAGGCAATTCGACACC 

60 

60 

CarE/CarF F 

CarE/CarF R 

540  GGTGTCGAATTGCCTTATCGC  

CGAAAATCAGTGCATCCCACC 

60 

60 

CarF/CarG F 

CarF/CarG R 

554  AAGGCCATACGTGAGAATCCG  

CAAACTGGGCAACAACGACAT 

60 

60 

CarG/CarH F 

CarG/CarH R 

574 GCATTACTTTCTGGTGACGGC  

CCACCGTCAGTTCCTGATTCA 

60 

60 
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Enzyme restriction sites are included where required. These sites are written in italics; 1GGTACC KpnI 

and 2AAGCTT HindIII. 

  

Primer Name Product  
Size (bp) 

Primer Sequence (5′ to 3′) Annealing 
temperature  
(°C) 

CarR/Asp II F 

CarR/Asp II R 

505  AGGCATATCGGTTATCGCCTG  

GTGGATTCTACAACCCGCAGA 

60 

60 

 

Primers used for screening the transposon mutant library  

Pbr NZ F 

Pbr NZ R 

1714  TCGAACCAGAATGACCCCATG  

GTCTCAATAACGTGTGGACATAAT 

60 

60 

Kan F 

Kan R 

790  TTGAACAAGATGGATTGCACGC  

CAGAAGAACTCGTCAAGAAGGC 

60 

60 

Tn5 R N/A ATCCTCCTTAGCTAGTCAGG 60 

BF9_Tn5 N/A CTAAGAGCCAAGAATCAGGATG 60 

FH1_Tn5 N/A GTTAGAGATATTTGATGTAAATC 60 

IH1_Tn5 N/A TGATTGGCTCTGCTGATTCGG 60 

 

Primers used for complementation studies 

CarR_complF 

CarR_complR 

783  GCGGGTACCGTCGGTAAGAGAGGGTAATATGGA1 

GTCAAGCTTTCCTCCCTATTTAGCAAGCATT2 

60 

60 

SlyA_complF 

SlyA_complR 

436  GCGAAGCTTTTCTCCCTCTGCGTAACCCA2 

GTCGGTACCGCGTGCTAACAATAAGGAGAGG1 

60 

60 

pTRB32oriT F N/A GCTTTGTGAGCGGATAACAA 61 

pTRB32oriT R N/A CAAGCTAGCTTGGCGAGATT 61 
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2.1.11   Restriction endonuclease digestion of DNA 

Polymerase chain reaction products or plasmid DNA were routinely digested with restriction 

endonucleases from New England Biolabs (NEB). Digestion reactions were carried out as per the 

manufacturer’s instructions, using the following components for a single reaction: 1 µg DNA, 5 µl (1×) 

10 × NEBuffer, 10 units restriction enzyme and ddH2O up to 50 µl.    

Reactions were incubated at the appropriate temperature (37 °C for most enzymes). Those including 

PCR products were incubated for ≥1 h whilst those using plasmid DNA were incubated overnight. 

Following incubation, enzyme reactions were terminated by adding 5 µl 5 × loading dye to the reaction 

(supplied by NEB).  

 

2.1.12   Purification of PCR products and plasmid DNA following restriction 
digestion 

Digested PCR products and plasmid DNA and were purified using the Wizard® SV gel and PCR clean-up 

system (Promega), as per the manufacturer’s instructions.  

 

2.1.13   Ligation of restriction enzyme-digested PCR products and plasmid DNA 

Following restriction enzyme digestion, PCR products were ligated into plasmid vectors using T4 DNA 

Ligase (Promega). A 3:1 ratio of insert to vector DNA was routinely used, and the amount of insert 

DNA required was calculated using the following equation: 

 

𝑛𝑔 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 =  
𝑛𝑔 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 × 𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 

𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟
×

𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡

 𝑣𝑒𝑐𝑡𝑜𝑟
 

  

A standard ligation reaction was carried out in a total volume of 20 µl with each reaction containing 

100 ng of vector DNA, the calculated amount of insert DNA, 5 µl of 2 × Rapid Ligation Buffer and 3u 

(Weiss units) of T4 DNA Ligase. The reaction was made up to 20 µl with ddH2O. The reaction was mixed 

gently by pipetting, and then incubated at room temperature for 1 h or at 4 °C overnight. The ligation 

mix was then kept on ice, or at -80 °C for longer storage, until transformation of recipient cells.  
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2.1.14   Sanger DNA sequencing of PCR products and cloned DNA 

Polymerase chain reaction fragments or plasmid constructs were sequenced by Sanger sequencing 

(Lincoln University), using an ABI Prism® 3130 Genetic Analyzer, with a 16 capillary 50 cm array installed 

and using Performance Optimized Polymer 7 (POP7) (Applied Biosystems®). Sequence reactions 

contained 0.5 µl 2.5 × Big dye terminator, 2 µl 5 × sequence buffer, 1 µl 5 µM primer, template DNA 

(amount depends on amplicon size) and 10 µl PCR grade water to. Sequencing reactions were carried 

out in a Thermocycler ABI19600 (Applied Biosystems®). Conditions were generally 96 °C for 1 min, 

followed by 25 cycles of 96 °C 10 sec, 50 °C 5 sec and 60 °C 2 min. Post sequence reaction clean-up 

was performed using the Agencourt CleanSEQ+ sequence reaction clean-up system (Beckman 

Coulter).   

DNAMAN (.seq) files were downloaded to Geneious 7.0.6 (Biomatters Ltd, http://www.geneious.com/). 

The sequence was compared to the P. c. subsp. brasiliensis ICMP19477 genome, using BLAST analysis 

Geneious 7.0.6 (Biomatters Ltd, http://www.geneious.com/). Any mismatches were also identified.   

 

2.1.15   cDNA synthesis 

Reverse transcription (RT) was performed using a SuperScript VILO cDNA synthesis kit (Invitrogen) as 

described by the manufacturer. Briefly, up to 2.5 µg of RNA was added to 4 µl 5 × VILO reaction mixture 

and 2 µl 10 × SuperScript Enzyme Mix. The reaction was made up to a final volume of 20 µl with PCR 

grade. The RNA was converted to cDNA in an iCycler PCR machine (Bio-Rad Laboratories) using one 

cycle of 10 min incubation at 25 °C, 60 min at 42 °C and the 5 min at 85 °C to terminate the reaction. 

The resulting cDNA was stored at -20 °C.  

 

2.1.16   Transformation of E. coli  

One Shot® TOP10 chemically competent cells (Table 2.2) were used routinely for transformation as 

part of genetic manipulations such as cloning. Transformation was performed as per the 

manufacturer’s instructions. Briefly, a vial of One Shot® TOP10 chemically competent cells was 

defrosted on ice and 2 µl of the transformation reaction was added to the vial. The transformation 

mix was mixed gently and incubated on ice of 30 min. The cells were then heat shocked by incubation 

at 42 °C for 30 sec followed by transfer to ice. Two hundred and fifty µl of super optimal broth with 

catabolite repression (SOC) media, pre-warmed to room temperature, was added to the cells. Cells 

were incubated at 37 °C, 250 rpm for 1 h. One hundred - 200 µl was then spread onto pre-warmed 

http://www.geneious.com/
http://www.geneious.com/
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LBA plates containing appropriate antibiotics. The plates were incubated overnight at 37 °C and 

colonies were subsequently selected for further analysis. Colonies were grown overnight in 5 ml LB 

containing appropriate antibiotics. Plasmids were extracted to confirm the authenticity of the 

transformants, as described in Section 2.1.6. The presence of the plasmid insert was confirmed by PCR 

(Section 2.1.10), using insert-specific and plasmid-specific primers and DNA sequencing (Section 

2.1.14). For sequencing of inserts, gene and plasmid-specific primers were used. Primers are listed in 

Table 2.3.       

 

2.1.17   Bacterial conjugation  

Conjugation of pTRB32oriT and pFAJ1819 was achieved using triparental mating, which involved the 

E. coli donor strain containing the cloned vector, the recipient P. c. subsp. brasiliensis ICMP 19477 and 

the E. coli helper strain HH6, containing pNJ5000 (Table 2.2). For each bacterial strain, overnight 

cultures were prepared in 5 ml LB media with appropriate antibiotics (see Section 2.1.4). Cells from 1 

ml of each culture were collected by centrifugation at 12,000 rpm for 2 min. The supernatant was 

discarded and the cells were washed in 750 µl LB containing no antibiotics. The wash was then 

repeated twice with 300 µl LB, in order to remove all antibiotics from the cell suspensions. One 

hundred µl of each bacterial culture was subsequently combined in one eppendorf tube and the 

mixture centrifuged at 13,000 rpm for 1 min. Most of the supernatant was removed and the cells were 

re-suspended in the remaining supernatant. The resulting conjugation mix was dotted onto an LBA 

plate and incubated overnight at 28 °C. The next day, the conjugation mix was scraped with a wire 

loop from the surface of the plate and streaked onto MMA containing appropriate antibiotics. The 

plates were then incubated at 28°C for 2-4 d before growing colonies were re-streaked onto the same 

media and incubated for a further 2-4 d. The antibiotic resistance of the colonies was subsequently 

confirmed, and the presence of the conjugated plasmid established by PCR using insert-specific 

primers (Section 2.1.10, Table 2.3). The integrity of the plasmid was confirmed further by Sanger 

sequencing of the insert using insert-specific and plasmid-specific primers (Section 2.1.14; Table 2.3). 

 

2.1.18   Transposon mutagenesis  

A P. c. subsp. brasiliensis ICMP 19477 Tn5 transposon library was constructed using a method adapted 

from Holeva et al., (2004). The number of transposon mutants required to generate a one-fold 

genome coverage was calculated as being equal to the number of genes encoded within the P. c. 

subsp. brasiliensis ICMP 19477 genome (Holeva et al., 2004). Pectobacterium carotovorum subsp. 



 54 

brasiliensis ICMP 19477 encodes 4,519 genes (Panda et al., 2015b), therefore 4,520 mutants were 

produced.   

Pectobacterium carotovorum  subsp. brasiliensis ICMP 19477 was subjected to transposon 

mutagenesis by conjugation (Section 2.1.17) with E. coli  S17-1λpir containing pFAJ1819, which houses 

the Tn5-gus-gfp21 construct (Xi et al., 1999). The pUT plasmid backbone of pFAJ1819, contains an 

Amp resistance cassette and the insert contains a Km resistance cassette. Therefore, the desired 

transconjugates were P. c. subsp. brasiliensis ICMP 19477 colonies that were Km resistant and Amp 

sensitive. Transconjugants were stored at -80 °C (Section 2.1.4). 

2.1.19   Identification of transposon insertion sites 

Whole genome re-sequencing was conducted for each to transposon mutant of P. c. subsp. brasiliensis 

ICMP 19477 that showed a phenotype of interest, to identify the insertion site location. In particular, 

Illumina sequencing (2 x 101 bp fragments) was performed on a Hiseq2000 by Macrogen. Raw reads 

were downloaded as FASTQ files. The raw read files were then imported into Geneious 7.0.6 

(Biomatters Ltd), along with the P. c. subsp. brasiliensis ICMP 19477 genome sequence (accession 

number ALIU01000000) and the pFAJ1819 sequence (accession number HQ328084) (Xi et al., 1999), 

from which the transposon sequence was extracted. Raw reads were aligned to the sequence for the 

transposon and the sequences at the boundary between the transposon and the bacterial genome 

were identified. Nucleotide sequences at these boundaries were used to search for identical 

sequences within the P. c. subsp. brasiliensis ICMP 19477 genome using BLAST searching in Geneious 

7.0.6 (Biomatters Ltd). Mapping the reads to this reference enabled the location of the insertion site 

within the genome. To confirm the Tn5 insertion sites identified by genome sequencing, PCR primers 

were designed (Section 2.1.11) to amplify the boundary between the transposon and the bacterial 

genome in conjunction with the Tn5 primer Tn5R (Holeva et al., 2004). All primers used for the 

identification of Tn5 insertion sites are provided in Table 2.3. Polymerase chain reaction amplicons 

were subsequently sequenced by Sanger sequencing for verification (Section 2.1.14). The coordinates 

for the mutants, used in further studies in this thesis, are given in Table 2.4.  
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Table 2.4. Pectobacterium carotovorum subsp. brasiliensis (Pbr) ICMP 19477 transposon mutants 

used in this study. 

 

 

 

 

2.1.20   Complementation studies 

The plasmid pTRB32oriT (Table 2.2; for map see Appendix A) was used for complementation studies. 

pTRB32oriT, a derivative of the expression plasmid pQE-80L (Matthew McNeil; unpublished), was 

derived by replacing the Amp resistance gene present in pQE-80L (Qiagen) with a Chl resistance gene. 

The use of a plasmid with the Chl resistance cassette was more appropriate for this study, as a β-

lactamase gene prevents complementation (if the antimicrobial product is a carbapenem). The 

pTRB32oriT plasmid requires the addition of IPTG in order to induce the expression of cloned 

fragments. The pQE-80L plasmid and its derivative also cause the insertion of an N-terminal 

hexahistidine (His) tag to the cloned protein. This can be avoided by inserting the PCR product into the 

EcoRI restriction site of pQE-80L. However, the Chl resistance gene of pTRB32oriT contains an EcoRI 

restriction site, consequently this enzyme was not suitable for use.  Therefore, the resultant products 

contained a His tag. The presence of an oriT also allowed for the plasmid to be mobilised into the P. c. 

subsp. brasiliensis ICMP 19477 recipient host via conjugation. 

Target DNA fragments were amplified from P. c. subsp. brasiliensis ICMP 19477 by PCR (Section 2.1.10) 

using primers with a KpnI site included in the forward primer (5′ end) and a HindIII restriction site 

included in the reverse (3′) primer (Table 2.3). The primers were also designed to amplify the native 

ribosome binding site (RBS) region.   

All PCR amplicons were cloned (Sections 2.1.11, 2.1.12, 2.1.13) into pTRB32oriT using the restriction 

sites described above, and P. c. subsp. brasiliensis ICMP 19477 transposon mutants were subsequently 

Name of Tn5  

knock-out mutant 

Knock-out  

gene ID 

Gene 

name 

Gene location in  

P. c. subsp. 

brasiliensis 

ICMP19477 

Insertion  

Location 

Insertion  

orientation 

Pbr ICMP19477 carR-        KCO_04647 carR 4699476- 4700210 4699984 

 

3′-5′ 

Pbr ICMP19477 slyA-        KCO_21137 slyA 2744146-2744400 2744469 

 

3′-5′ 

Pbr ICMP19477 carI-         KCO_03547 carI 4446565-447215 4446676 

 

3′-5′ 
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transformed with these constructs by conjugation (Section 2.1.17). The authenticity of 

transconjugants was confirmed by PCR (Section 2.1.10) and sequencing (Section 2.1.14).  

 

2.1.21   Antagonism assay 

Inhibition of P. atrosepticum SCRI1043 growth by P. c. subsp. brasiliensis ICMP 19477 was initially 

determined using an in vitro antagonism assay (Marquez-Villavicencio et al., 2011). The assays were 

conducted by streaking a colony of P. c. subsp. brasiliensis ICMP 19477 grown on LBA overnight, onto 

an LBA plate seeded with P. atrosepticum SCRI1043. The P. atrosepticum SCRI1043 lawn was prepared 

using a method adapted from the E. coli supersensitive strain (ESS) antagonism assay (Peter Fineran, 

personal communication). Briefly, 20 µl of P. atrosepticum SCRI1043 was added to 20 ml of pre-cooled 

LBA and poured into an agar plate. The plate was air dried for 5 min and then streaked with P c. subsp. 

brasiliensis ICMP 19477 using a fresh colony. P. c. subsp. brasiliensis PBR1692 and P. c. subsp. 

carotovorum ICMP 5702 were also prepared and tested in the same way for comparative purposes 

(data not shown). Plates were incubated at 28 °C overnight and inhibition of P. atrosepticum SCRI1043 

was measured by the presence of a zone of inhibition around the P. c. subsp. brasiliensis or P c. subsp. 

carotovorum colony. Three plates were prepared for each strain and the experiment was repeated 

twice. For ESS assays, 20 µL of ESS bacterial culture grown over night, was added to 20 ml precooled 

LBA and overlaid on an LBA plate. The assay was then conducted as described above.  

 

2.1.22   Measuring growth of bacteria on plates 

In order to determine if antibiotic resistance tagging, or the insertion of a transposon cassette, 

affected bacterial growth the growth was assessed compared to the WT. Bacterial cultures were 

inoculated into 5 ml LB (with antibiotics where appropriate) and incubated at 28 °C overnight with 

shaking at 180 rpm. The cultures were washed twice with fresh LB, to remove any antibiotics. Three 

replicates were prepared by inoculating 20 µl of bacterial culture (optical density (OD600) 0.2, 

equivalent to 104 CFU/ml), onto MMA plates. One aliquot was prepared for each sample time point. 

The plates were incubated at 28 °C for 48 h. Triplicate samples were taken at 6, 12, 24, 32 and 48 

hours post inoculation (hpi) to measure CFUs. 

For sampling, bacterial cultures were scraped from plates using a sterile inoculation loop and re-

suspended in 1 ml ddH2O. The CFUs were quantified by plating a series of 10-fold dilutions onto MMA, 

supplemented with antibiotics when appropriate. The plates were incubated at 28 °C until colonies 
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were visible and could be counted at 48 h. Counts were recorded when CFUs were between 50 and 

200 per plate. Colony counts were then converted to CFUs. Statistical analysis was conducted as 

described in Section 2.1.25.   

 

2.1.23   Growth of bacterial cultures in in vitro liquid cultures  

Triplicate overnight cultures of the test bacteria were prepared as described in Section 2.1.22. Three 

replicate flasks were prepared by inoculating 50 µl of bacterial culture (OD600 0.2, equivalent to 104 

CFU/ml), into 50 ml MM, in a 250 ml flask. The flasks were incubated at 28 °C for 48 h. Triplicate 

samples were taken at 6, 12, 16, 24, 32 and 48 hpi. At each time point, two 1 ml samples were removed 

from each flask. One sample was used to measure the OD600 of the culture and a 10-fold dilution series 

was created using the second sample. The dilutions were plated onto MMA plates, containing 

antibiotics where appropriate. The plates were incubated at 28 °C for 48 h, and then counted as 

described in Section 2.1.22. Finally, the number of colonies observed was converted to CFU/ml. 

Statistical analysis was conducted as described in Section 2.1.25.   

2.1.24   Growth of bacterial cultures in potato tubers  

Inoculation and sampling conditions were adapted from Bhanupratap Vanga, 2013 (Doctoral thesis).  

Triplicate overnight cultures of the test bacteria were prepared as described in Section 2.1.23. Prior 

to inoculation, potato tubers were soaked in 5% bleach for 15 min, rinsed in tap water and allowed to 

air dry. To inoculate the tubers, uniform holes were made using a cork borer (5 mm diameter and 

approx. 10 mm deep). Ten µl of a 104 CFU/ml bacterial suspension was inoculated into the hole in each 

tuber, the tuber plug was replaced, and the inoculation site was sealed with petroleum jelly. Five 

tubers were inoculated with each strain, for each sampling time (see below). The tubers were then 

placed in sealed plastic boxes lined with damp paper towels (to retain humidity) and incubated in a 

growth chamber at 20 °C, for up to 5 d. Tissue samples were taken from tubers at either 1, 2, 3, 4 and 

5 days post inoculation (dpi). For sampling, inoculated tubers were cut in half and the macerated tissue 

from each tuber was scraped into 50 ml sterile water. The macerated tissue from each tuber was then 

agitated, briefly, by inverting the tube and then left at room temperature for 15 min. This ensured 

that the bacterial cells entered the water in which the potato tissue was suspended. The starch was 

removed from the bacterial suspension by centrifugation at 1,000 rpm for 2 min. For dilution plating, 

a 1 ml sample of the tuber extract was taken and used to produce a 10-fold dilution series. Each 

dilution was plated onto an MMA plate, containing appropriate antibiotics where necessary. The 
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plates were incubated at 28 °C for 48 h. The number of colonies observed was then converted to CFUs. 

Statistical analysis was conducted as described in Section 2.1.25.  

 

2.1.25   Statistical analysis of growth data in vitro and in planta 

The CFU/ml values, for in vitro liquid growth assays, were estimated as (counted colonies × 10dilution 

factor) × 100. The CFUs for tuber and in vitro plate growth assays were estimated as (counted colonies 

× 10dilution factor). The mean CFUs were calculated on the log10 scale and then back-transformed.  

Due to sampling methods of the in vitro plate and in vitro liquid experiments, each flask or plate was 

effectively sampled repeatedly. As a consequence, an analysis of data from more than one time point 

could not be carried out without making adjustments for this repeated sampling. These adjustments 

were considered technically complex for count data (Ruth Butler; personal communication). Instead, 

separate analyses were carried out for each sampling time. For tuber experiments, as samples taken 

at different time points were from independent tubers, no tuber was repeatedly sampled. Therefore, 

no adjustments were required and data for all tubers was analysed in a single analysis. 

All data, following any required adjustments, were analysed using a Poisson generalised linear model 

with a logarithmic link (GLM, McCullagh and Nelder, 1989). The CFU counted were analysed, and the 

analysis included an adjustment of -log(Dilution×100) as an ‘offset’ which  corrects the counted CFU 

to CFU/ml in the results (McCullagh and Nelder, 1989). Within the analysis, the overall difference in 

CFU between the strains/types and, for tuber experiments, the difference between times and the 

interaction between times and types, were tested with an F-test as part of the analysis of deviance. 

Results were presented as mean CFU/ml or CFUs and associated 95% confidence limits. These were 

obtained on the logarithmic scale, and back-transformed. 

All analyses were carried out with GenStat (GenStat Committee, 2014). 

 

2.1.26   In vitro competition on agar plates 

In vitro plate competition assays were performed as described by Anderson et al., (2012). The bacteria 

were inoculated into 5 ml LB (with antibiotics where appropriate) and were incubated at 28 °C 

overnight with shaking at 180 rpm. The cultures were washed twice with fresh LB, to remove any 

antibiotics. To measure the impact of co-inoculation on growth of bacterial strains, MMA plates were 

then inoculated with either an individual P. c. subsp. brasiliensis ICMP 19477 antibiotic-tagged strain 
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(e.g. P. c. subsp. brasiliensis R; Table 2.2), a P. atrosepticum SCRI1043 antibiotic-tagged strain (P. 

atrosepticum K; Table 2.2) or a mixture of both (at a 1:1 ratio) for 48 h. For singularly inoculated strains, 

three replicates were prepared by inoculating 20 µl of bacterial culture (OD600 0.2, equivalent to 104 

CFU/ml), onto MMA plates. One aliquot was prepared for each sample time point. For competition 

assays, 10 µl of each strain was aliquoted onto triplicate plates. The plates were incubated at 28 °C for 

48 h. Triplicate samples were taken at 6, 12, 24, 32 and 48 hpi. For sampling, bacterial cultures were 

scraped from plates using a sterile inoculation loop and re-suspended in 1 ml ddH2O. The CFUs were 

quantified by plating a series of 10-fold dilutions onto MMA, supplemented with antibiotics when 

appropriate. Singularly inoculated cultures were plated onto MMA containing the required antibiotic 

(e.g. Rif for Pbr R). For competition cultures, aliquots were inoculated onto non-selective MMA to 

quantify the total number of cells. Aliquots were also plated onto MMA supplemented with either Rif 

or Km to determine the CFUs of the individual marker strains present in the competition culture. The 

plates were incubated at 28 °C until colonies were visible and could be counted at 48 h. Counts were 

recorded when CFUs were between 50 and 200 per plate. Colony counts were then converted to CFUs. 

Two independent experiments were conducted for each competition assay. Data was analysed 

graphically and by calculating the competitive index (see below). 

To confirm that the results of the competition assays were not due to the mutations resulting from 

creation of the antibiotic resistant strains needed for these assays, a second series of competition 

assays were performed using strains tagged with the alternative antibiotic resistance marker (e.g. If P. 

c. subsp. brasiliensis R and P. atrosepticum K were used in the first experiments, P. c. subsp. brasiliensis 

K and P. atrosepticum R were used in reciprocal experiments).        

For each experiment, the competitive index (CI) of each bacterial strain was calculated for each 

sampling time as per Anderson et al., (2012). The CI was the ratio of one strain (e.g. P. c. subsp. 

brasiliensis K) to the second (e.g. P. atrosepticum R) at sample time (X) compared to the ratio at time 

0, as described for the Malthusian parameter calculation (Lenski et al., 1991). The Malthusian 

parameter is used as a calculation of relative fitness between microbes.  

The calculation used was:  

𝐶𝐼 =  
𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 1 ∶ 𝑠𝑡𝑟𝑎𝑖𝑛 2 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑋

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 1 ∶ 𝑠𝑡𝑟𝑎𝑖𝑛 2 𝑎𝑡 𝑡𝑖𝑚𝑒 0
 

A value of zero represented no competition between the two strains in a co-inoculation. A Log CI of 

less than zero indicated that the second strain (e.g. P. atrosepticum SCRI1043) outcompetes the first 

(e.g. P. c. subsp. brasiliensis ICMP 19477) and a value greater than zero shows that strain 1 was able 
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to out compete strain 2. Slight competition occurred at a value of 0-1 and strong competition was 

represented by values above 1 (Auerbuch et al., 2001; Anderson et al., 2012). 

 

2.1.27   In vitro competition in liquid cultures  

Triplicate test bacterial cultures were inoculated into 5 ml LB (with antibiotics where appropriate) and 

were incubated at 28°C overnight with shaking at 180 rpm. The cultures were washed twice with fresh 

LB, to remove any antibiotics. To measure the impact of co-inoculation on growth of bacterial strains, 

flasks were inoculated with either an individual P. c. subsp. brasiliensis ICMP 19477 antibiotic-tagged 

strain (e.g. P. c. subsp. brasiliensis R; Table 2.2), a P. atrosepticum SCRI1043 antibiotic tagged strain (P. 

atrosepticum K; Table 2.2) or a mixture of both (at a 1:1 ratio) for 48 h. For singularly inoculated strains, 

three replicate flasks were prepared by inoculating 50 µl of bacterial culture (OD600 0.2, equivalent to 

104 CFU/ml), into 50 ml MM, in a 250 ml flask. For competition assays, 25 µl of each strain was 

inoculated into triplicate flasks.  The plates were incubated at 28°C for 48 h. Triplicate samples were 

taken at 6, 12, 16, 24, 32 and 48 hpi. At each time point two 1 ml samples were removed from each 

flask. One sample was used to measure the OD600 of the culture and a 10-fold dilution series was 

created using the second sample. The dilutions were plated onto MMA plates, containing antibiotics 

where appropriate (as described in Section 21.26). The flasks were incubated at 28 °C for 48 h, and 

then counted as described above. Finally, the number of colonies observed was converted to CFU/ml 

and the CI for each bacterial strain was calculated for each sampling time (as described in Section 

2.1.26).  

 

2.1.28   In planta competition assays in potato tubers  

In planta competition assays were performed in potato tubers (‘Ilam Hardy’) as described by (Axelrood 

et al., 1988). Inoculation and sampling conditions were adapted from Bhanupratap Vanga, 2013 

(Doctoral thesis). 

Bacterial cultures and potato tubers were prepared as described in Section 2.1.24. Tissue samples 

were taken from tubers at either 12 hpi, 1, 2, 3, 4 and 5 dpi. For sampling, inoculated tubers were cut 

in half and the macerated tissue from each tuber was scraped into 50 ml sterile water. The macerated 

tissue from each tuber was then agitated, briefly, by inverting the tube and then left at room 

temperature for 15 min. This ensured that the bacterial cells entered the water in which the potato 

tissue was suspended. The starch was removed from the bacterial suspension by centrifugation at 
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1,000 rpm for 2 min. For dilution plating, a 1 ml sample of the tuber extract was taken and used to 

produce a dilution series (as described in Section 2.1.26). Each dilution was plated onto a MMA plate, 

containing appropriate antibiotics where necessary. The plates were incubated at 28 °C for 48 h. The 

number of colonies observed was then converted to CFUs as described in Section 2.1.26. Finally, for 

each bacterial strain in co-inoculated tubers, the CI was calculated for each sampling time (as 

described in Section 2.1.26). 

 

2.1.29   In vitro assay to confirm secretion of the antimicrobial  

In vitro assays were performed to confirm secretion of the antimicrobial and establish the timing of 

its expression during growth of the producer bacterium. Firstly, bacterial cultures were grown 

overnight (Section 2.1.4), and the bacterial cells were pelleted by centrifugation at 13,000 rpm for 5 

min. The supernatant was then removed and the OD600 of the bacterial culture was adjusted to 1 with 

fresh LB. One ml of the bacterial suspension was then added to 50 ml LB in a 250 ml conical flask and 

the culture was grown at 28 °C, with shaking at 180 rpm. One ml aliquots were subsequently removed 

every hour, for at least 12 h and the bacterial growth was estimated by measuring the OD600 of the 

sample. A further 1 ml sample was also removed and assayed for carbapenem production.  

To measure carbapenem activity, each 1 ml of culture medium was pelleted by centrifugation at 

13,000 rpm for 5 minutes at 4 °C. The supernatant was then filtered using a 0.22 µm filter (Millipore) 

and stored on ice in a 1.5 ml eppendorf tube until the assay was set up (the same day). The 

carbapenem assay plate was set up by adding 100 µl of ESS (Table 2.2) to 100 ml of 0.75% molten, 

cooled LBA. The agar was then poured over a bioassay LBA petri dish and left to solidify. Wells were 

cut into the solidified plate using a sterilised cork borer. The wells were then filled with the sterile 

culture supernatant (approx. 200 µl). A negative control of non-inoculated media was included. The 

plates were incubated at 28 °C for 24 h and the diameter of any zones of inhibition were measured. 

The areas of the zones were then calculated and carbapenem production expressed as halo size 

(cm2/OD600).  

 

2.1.30   Assessing Pectobacterium for N-AHL production using a Chromobacterium 

violacein CV026-based bioassay 

Bacteria were assayed for the production of an N-AHL using a C. violacein CV026-based bioassay 

(McClean et al., 1997). Firstly, bacterial cultures were grown overnight (Section 2.1.4) and the bacterial 
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cells were pelleted by centrifugation at 13,000 rpm for 5 min. The bacterial growth and sample 

preparation for this assay was conducted as described in Section 2.1.29. The samples prepared for the 

N-AHL production assay were stored at -20 °C until the assay plate was set up.      

To make the N-AHL bioassay plates, 2 ml of the CV026 culture, grown overnight, was added to 100 ml 

0.75% molten LBA. The suspension was poured into a bioassay plate and left to solidify. A cork borer 

was then used to cut wells into the agar, the wells were filled with sterile-filtered culture supernatant 

(approx. 200 μl), and the plates were incubated at 25 °C for 48 h. The plates were subsequently scored 

for an area of purple pigmentation around the wells, indicative of AHL production (cm2/OD600). Un-

inoculated media was used as a negative control.   

 

2.1.31   Chemical complementation by addition of exogenous OHHL 

To assess whether production of carbapenem by P. c. subsp. brasiliensis carI- could be complemented 

by supplying exogenous OHHL, chemical complementation assays were performed as per McGowan 

et al., (1995). Initially, overnight triplicate cultures were prepared in 5 ml LB (Section 2.1.4) for the P. 

c. subsp. brasiliensis carI- strain and ESS (Table 2.2). A 5 µl aliquot from each of the P. c. subsp. 

brasiliensis carI- cultures was then spotted onto an LBA plate, which was prepared with a fresh top 

lawn seeded with ESS (as per Section 2.1.21). To test for chemical complementation, 5 µl of 1 mM 

OHHL (Peter Fineran, University of Otago) was also added to three further aliquots of the P. c. subsp. 

brasiliensis carI- mutant cultures, and the samples were spotted onto LBA plates inoculated with the 

indicator (as above). Plates were then incubated overnight at 28 °C and the presence of zones of 

inhibition indicative of carbapenem production was recorded. P. c. subsp. brasiliensis ICMP 19477 was 

included as a positive control, P. c. subsp. brasiliensis carR- + OHHL was included as a negative control.   

 

2.1.32 Mass spectrometry and liquid chromatography-mass spectrometry  

Antagonism assay plates were prepared as described in Section 2.1.21, P. atrosepticum SCRI1043 was 

used as the bacterial lawn. Plates were also prepared containing only MMA, as well as plates 

containing only MMA seeded with P. atrosepticum SCRI1043 to act as controls. Six plates of each were 

prepared, which would be combined to form two samples of each treatment. For sample preparation, 

agar was cut from the zones of inhibition, the agar from three plates were combined for one sample. 

Agar was also cut form the control plates. The agar was then blended into small pieces, to increase 

the surface agar of the agar for methanol extraction.  Methanol was then added, sufficient to cover 

the agar, and the suspension blended further until fully suspended in the methanol. The agar and 
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methanol suspension was then transferred to 50 ml Falcon tubes and centrifuged for 10 min at 10,000 

rpm, in order to remove the agar. The supernatant was transferred to a fresh 50 ml Falcon tube. More 

methanol was added to the agar remaining in the tube, sufficient to cover the agar, and centrifuged 

again for 10 min at 10,000 rpm. The sample was then placed under nitrogen conditions, to prevent 

oxidation of compounds present. The methanol was then evaporated from the samples. Once all of 

the methanol had been removed, the samples were then frozen in liquid nitrogen and concentrated 

by freeze drying overnight. The resulting pellet then underwent further methanol extraction to ensure 

all of the metabolites were dissolved in a liquid phase. This was concentrated on a speedy-vac and 

then resuspended in 50 µL, 5 % AcN. This was then used for liquid chromatography-mass spectrometry 

(LC-MS) and tandem mass spectrometry (MS-MS) analysis using TripleTOF 6600 (Sciex). Mass 

spectrometry and LC-MS was conducted at The University of Auckland under the supervision of Prof. 

David Greenwood (Plant and Food Research).   

For both methods, peaks of interest were identified manually and by analysis using PEAKS 

(Bioinformatics Solutions Inc.) and SEIVETM software (Thermo Scientific).  
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Appendix A 

A.1 Media used in this study 
 

Media Ingredient Amount 

Luria-Bertani (LB) medium Tryptone 

Yeast extract 

Sodium chloride 

ddH2O 

10 g 

5 g 

10 g 

Up to 1 l 

M9 minimal glucose medium 

(MM)  

5 x M9 salts 

ddH2O  

Sterilise by autoclaving. Add 200 

ml to 700 ml ddH2O.  

Add: 

20 % (v/v) glucose 

1 M MgSO4 

1 M CaCl2 

ddH2O 

56.4 g 

Up to 1 l 

 

 

 

20 ml 

2 ml 

ml  

up to 1 l 

 LB agar Tryptone 

Yeast extract 

Sodium chloride 

Agar 

ddH2O 

10 g 

5 g 

10 g 

6.25g 

Up to 1 l 

MM agar (MMA) Agar 

ddH2O  

Sterilise by autoclaving. Add: 

5 x M9 salt solution sterilised by 

autoclaving 

20 % (v/v) glucose 

1 M MgSO4 

1 M CaCl2 

15 g 

Up to 1 l 

 

200ml 

 

20 ml 

2 ml 

0.1 ml 

Super optimal broth with 

catabolite repression (S.O.C) 

media 

Tryptone 

Yeast extract 

1 M NaCl 

1 M KCl 

ddH2O 

sterilised by autoclaving  

Then add sterile: 

1 M MgCl2·6H2O 

1 M MgSO4·7H2O 

1 M Glucose 

20 g 

5 g 

10 ml 

2.5 ml 

Up to 970 ml 

 

 

10 ml 

10 ml 

10 ml 
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A.2 Chemicals used in this study 
 

Chemical  Ingredients Amount 

1 M CaCl2 CaCl2 

ddH2O 

sterilise by autoclaving 

147 g 

Up to 1 l 

1 M KCl KCl 

ddH2O 

sterilise by autoclaving 

74.55 g 

Up to 1 l 

1 M MgCl2·6H2O MgCl2·6H2O 

ddH2O 

sterilise by autoclaving 

203 g 

Up to 1 l 

1 M MgSO4·7H2O MgSO4·7H2O 

ddH2O 

sterilise by autoclaving 

246.5 g 

Up to 1 l 

1 M NaCl NaCl 

ddH2O 

sterilise by autoclaving 

58.4 g 

Up to 1 l 

50× TAE buffer stock solution Tris-Acetate 

0.5 M Na2EDTA 

Glacial acetic acid 

RO water 

 

242 g 

100 ml 

57.1 ml 

Up to 1 l 

10× TAE buffer working solution 50× TAE buffer stock solution 

RO water 

40 ml 

Up to 2 l 

Bromophenol blue tracking dye 

(6x) 

Glycerol 

Bromophenol blue 

ddH2O 

30 ml 

0.01 g 

Up to 50 ml 

Kanamycin stock solution (50 

mg/ml)* 

Kanamycin sulphate 

ddH2O 

0.5 g 

10 ml 

Ampicillin stock solution (50 

mg/ml)* 

Sodium ampicillin  

ddH2O 

0.5 g 

10 ml 

Tetracycline stock solution (10 

mg/ml)* 

Tetracycline  

70 % ethanol 

g 

10 ml 

Rifampicin stock solution (50 

mg/ml)* 

Rifampicin 

100 % methanol 

0.5 g 

10 ml 

Chloramphenicol stock solution 

(34 mg/ml)* 

Chloramphenicol 

100 % ethanol 

0.34 g 

10 ml 

IPTG (20 mg/ml) IPTG 

ddH2O 

Filter sterilised (0.22 µm syringe 

filter), aliquots stored at -20 °C. 

200 mg 

10 ml 
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A.3  Map of plasmid pTRB32oriT  
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Chapter 3  

Competition between Pectobacterium carotovorum subsp. 

brasiliensis ICMP 19477 and Pectobacterium atrosepticum SCRI1043 

3.1 Introduction 

In the environment, bacterial species rarely exist in isolation. Instead, they form mixed populations in 

which a multitude of interactions occur between individuals (Gross et al., 1991). Interactions are likely 

to include those associated with competition, for which two types have been identified. The first, 

called contact dependent inhibition (CDI) (Aoki et al., 2005), requires contact between a producer of 

an antagonistic molecule and a bacterium that is sensitive to the molecule. The second is based on 

the production of one or more diffusible antagonistic molecules by a producer that can have an impact 

on sensitive organisms without direct contact (McGowan et al., 2005). 

Contact dependent inhibition was initially described in E. coli (Aoki et al., 2005). In this bacterium, a 

large surface protein that functioned as a toxin (encoded by the cdiA gene), was shown to be 

transported into a sensitive cell on contact with a receptor at the cell surface, resulting in the killing 

of the sensitive cell (Aoki et al., 2005). The toxin is secreted from the producing cell, via a β-barrel 

protein encoded by cdiB (Henderson et al., 2004; Mazar and Cotter, 2007; Hayes et al., 2010). A third 

gene, cdiI, encoded an immunity protein that protected the producing cell from the effects of the toxin 

(Aoki et al., 2005). Contact dependent inhibition toxins act on sensitive cells via DNase or tRNase 

activity or by dissipating the proton motive force (Aoki et al., 2009; Aoki et al., 2010; Poole et al., 2011).  

Contact dependent inhibition toxins are widespread among gram-negative bacteria and have been 

identified in plant pathogens where they aid in colonization of their host (Aoki et al., 2011). For 

example it was observed that virA gene disruption mutants of E. chrysanthemi (Dickeya) EC16 were 

defective in growth on different host plants (Collmer, 1998; Rojas et al., 2004). The virA gene was 

predicted to encode an immunity protein, of the CdiI type, which when disrupted caused auto-

inhibition of the producer cell leading to reduced growth (Rojas et al., 2004). From these results it was 

predicted that the CDI locus was expressed when the bacteria colonized the host plant. This hypothesis 

was supported by work in D. dadantii 3937, which showed that the bacterium up-regulated one of its 

two CDI systems when grown on chicory plants (Aoki et al., 2010).  

Other antimicrobial systems have been described where an antibiotic secondary metabolite is 

produced and secreted by the bacterium (Cascales et al., 2007). These metabolic products are 
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produced without the requirement for the producer to be in direct contact with the sensitive 

competitor (McGowan et al., 2005). Many examples of these secreted molecules are known, including 

those belonging to the β-lactam family (Coulthurst et al., 2005). Carbapenems are well-studied broad 

spectrum β-lactam molecule  produced by the Enterobacteriaceae family members Pectobacterium 

and Serratia (Parker et al., 1982; Williamson et al., 1985; Bycroft et al., 1987), whereas thienamycin, a 

more complex molecule, is produced by gram positive Streptomyces (Kahan et al., 1979). 

The carbapenem produced by both Pectobacterium and Serratia, (5R)-carbapen-2-em-3-carboxylic 

acid (Bycroft et al., 1987), is encoded by a gene operon of eight genes annotated as carA-H (McGowan 

et al., 1997). The operon includes genes vital for carbapenem biosynthesis (carABCDE) (McGowan et 

al., 1997; Li et al., 2000) and genes encoding a novel, intrinsic carbapenem resistance mechanism 

(McGowan et al., 1997). Carbapenems kill sensitive cells by targeting the cell wall. They inhibit the 

activity of transpeptidase enzymes (Waxman and Strominger, 1983) or penicillin binding proteins 

(Sauvage et al., 2008), therefore weakening the cell wall by preventing crosslinking of peptidoglycan 

during cell wall biosynthesis.  

Carbapenems have been predicted to be involved in competition between Pectobacterium species. 

Firstly, it was observed that P. betavasculorum was able to inhibit sensitive P. c. subsp. carotovorum 

strains when co-inoculated in vitro as well as in potato tubers (Axelrood et al., 1988). Secondly, it was 

found that carbapenem encoding P. c. subsp. brasiliensis PBR1692 strains were able to inhibit the 

growth of P. atrosepticum SCRI1043 in in vitro antagonism assays (Marquez-Villavicencio et al., 2011). 

It therefore appears that carbapenem production may be an important competition mechanism for 

Pectobacterium species, utilised during colonisation of the host plant.   

Bacteriocins are also secreted antimicrobial molecules produced by many bacteria (Klaenhammer, 

1988; Cascales et al., 2007). Production occurs when the bacteria are under stress (Herschman and 

Helinski, 1967; Cotter et al., 2005), for example at low oxygen levels (Eraso and Weinstock, 1992) or 

high temperatures (Cavard, 1995). Therefore, conditions encountered by the bacteria in competition, 

such as nutrient limitation, induce bacteriocin production.  

The production of bacteriocins was predicted to be involved in bacterial competition within the 

rhizosphere (Dowling and Broughton, 1986). Interestingly, it was observed that bacteriocin negative 

transposon mutants were not reduced in competition compared to the producing strains (Dowling 

and Broughton, 1986; Parret et al., 2003). Therefore, much remains unknown about the ecological 

significance of bacteriocins. However, as bacteriocin synthesis genes are abundant within plant 
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pathogens, they must play an important role within the bacterias’ ecological niche (Hu and Young, 

1998; Holtsmark et al., 2008).  

More recently it has been proposed that antimicrobial molecules act as signalling molecules in the 

environment (Yim et al., 2007). Antimicrobial molecules present in the environment are likely to be at 

sub-inhibitory levels and therefore are unlikely to function in competition. Instead, they may be 

produced as a method of interspecies signalling in response to changing conditions (Davies et al., 2006; 

Yim et al., 2007). For example, they may act as an indicator for other bacteria to alter their metabolic 

functions  (Price-Whelan et al., 2006).    

The involvement of CDI and secreted toxins in competition of plant and soil associated bacteria has 

also been examined in potential biocontrol agents (Raaijmakers et al., 2002). In these studies, some 

of the bacterial species studied have even been found to produce multiple antibiotic molecules. For 

example, Bacillus cereus UW85 (Handelsman and Stabb, 1996) and Pseudomonas fluorescens CHAO 

(Keel et al., 1990; Bender et al., 1999a) produce both pyrrolnitrin (Chernin et al., 1996) and phenazines 

(Weller, 1983; Gutterson et al., 1986; Rosales et al., 1995). It may be, therefore, that competition in 

the native ecological niche is complex and involve the production of multiple molecules, or the 

employment of different mechanism in order to be successful.  As yet, the ecological significance of 

these molecules remains poorly understood.  

 Ecological studies were difficult to conduct (Thomashow et al., 1997), firstly due to the parameters 

that were regarded to constrain production in situ such as the complex abiotic and biotic conditions 

encountered in soils and plants environments (Thomashow et al., 1997). The chemical stability of the 

molecules under such conditions, or the binding of the antimicrobial molecule to organic matter were 

also considered potentially constraining factors that were not understood (Thomashow et al., 1997). 

Secondly, methods for detection of bacteria producing these compounds in the environment were 

poor (Gottlieb, 1976; Williams and Vickers, 1986). The development of reporter gene techniques to 

monitor gene expression in situ (Loper et al., 1997; Lindow and Brandl, 2003) as well as improvements 

to thin layer chromatography (TLC) and high pressure liquid chromatography (HPLC) methods, 

however, enabled the production of antibiotics in soil and around plants to be monitored and even 

quantified (Thomashow et al., 1997). A number of antibiotics produced by biocontrol agents have now 

been detected as being produced in situ, including phenazine-1-carboxylic acid, herbicolin A and 

surfactin (Thomashow et al., 1997). This however does not address the question of whether these 

molecules are responsible for the biocontrol activity of certain bacteria. This is a hard problem to 

address as parameters such as the time of antibiotic production needs to be taken in to account; which 
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can be difficult to measure in situ. Furthermore, the quantification of low levels of antimicrobials 

remains a challenge (Raaijmakers et al., 2002).  

Epiphytic communities of Pseudomonas, found on plant leaves, also provide an ecological example of 

bacterial competition (Lindow and Brandl, 2003). It was observed that the compositions of epiphytic 

bacterial communities were affected by antagonistic bacteria colonising the leaf at certain times 

during development (Lindow and Brandl, 2003). An example of this is the biocontrol of plant frost 

injuries caused by P. syringae ICE+ (ice nucleation activity positive) bacteria (Lindow et al., 1982). It 

was found that plant frost injuries could be prevented by the competitive exclusion of ICE+ bacteria by 

ICE- P. syringae (Lindow, 1995; Lindow et al., 1996). Successful biocontrol was achieved when at-risk 

plants were inoculated with ICE- bacteria, before ICE+ P. syringae could establish. The ICE- bacteria were 

able to displace the ICE+ bacteria via competition for resources such as carbon (Wilson and Lindow, 

1993; Wilson and Lindow, 1994). Competition by the secretion of antimicrobial molecules was found 

to be uncommon on leaf surfaces (Lindow, 1988). 

Despite the studies on biocontrol agents, the ecological significance of antimicrobial production by 

plant pathogens and the involvement of these antimicrobials in driving the evolution of plant 

pathogen populations has not been investigated. This is despite recent suggestions that the 

production of antimicrobials might have influenced the emergence of pathogens such as D. solani, 

which has seemingly displaced closely related SREs in potato paddocks in some parts of the world 

(Garlant et al., 2013). Similarly, P. c. subsp. brasiliensis, a more recently identified pathogen of potato, 

produces an unknown antimicrobial that has in vitro activity against P. atrosepticum SCRI1043 

(Marquez-Villavicencio et al., 2011). The ecological significance of this activity remains unclear, 

however, as co-inoculation assays demonstrated that production of this molecule did not provide a 

competitive advantage to the producer when the two blackleg-causing pathogens were co-inoculated 

into potato stems (Marquez-Villavicencio et al., 2011).   

In this chapter, the role of antimicrobial production in competitive fitness of a pathogen was studied 

in order to begin to understand how pathogen populations might evolve. In particular, the 

antimicrobial production of P. c. subsp. brasiliensis was re-examined using the New Zealand strain 

ICMP 19477 (Panda et al., 2015b) as it was hypothesized that the production of an antimicrobial with 

activity against P. atrosepticum would provide enhanced fitness in the structured environment of the 

tuber rather than in the stem (Section 1.6.4). Focusing on the interactions between these pathogens 

in the tuber also seemed more ecologically relevant, as the tuber is the more likely point of entry for 

both species and therefore the location where competition might first take place.  
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Once these assays had been performed, bioinformatics tools were used to identify the likely 

antimicrobial biosynthetic clusters encoded within the genome of P. c. subsp. brasiliensis ICMP 19477, 

which might be responsible for the activity against P. atrosepticum SCRI1043. P. c. subsp. brasiliensis 

ICMP 19477 encodes many putative antimicrobial synthesis genes, a number of which are common to 

P. c. subsp. brasiliensis ICMP 19477 and PBR1692, but not found in other SREs (Preetinanda Panda, 

2014). One or more of these clusters, likely to have been acquired through lateral gene transfer, was 

predicted to be responsible for the antimicrobial phenotype observed during the experiments 

described in this chapter.  
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3.2 Results 

3.2.1 Optimisation of antagonism assay 

In initial experiments, the optimal conditions to investigate antimicrobial production by P. c. subsp. 

brasiliensis ICMP 19477 were considered. Initially, P. c. subsp. brasiliensis ICMP 19477 was applied to 

the test plates by inoculating 10 μl of overnight culture, as described for the antagonism assays 

performed by (McGowan et al., 1996). Test plates were seeded with P. atrosepticum SCRI1043, which 

is sensitive to the antimicrobial produced by P. c. subsp. brasiliensis ICMP19477. This method of 

application, however, produced variable zones of inhibition (data not shown). Instead, a second 

method described by (Marquez-Villavicencio et al., 2011), where a P. c. subsp. brasiliensis colony was 

streaked onto the test plate from a culture plate, produced more reproducible zones of inhibition 

(data not shown). Finally, it was found that applying the P. c. subsp. brasiliensis ICMP 19477 colony as 

a high concentration of cells (in a dot), rather than diluting the cells by streaking, produced the optimal 

zones of inhibition for continuing these assays (data not shown).  

The cell density of the sensitive strain (P. atrosepticum SCRI1043), inoculated into the lawn prior to 

conducting the antagonism assays was also important for reproducible production of zones of 

inhibition. Indeed, it was found that adding too many P. atrosepticum SCRI1043 cells (>106/ml cells) 

to the agar, meant that clear zones of inhibition were not produced. Finally, it was shown that adding 

20 μl of overnight P. atrosepticum SCRI1043culture to 20 ml LBA produced sufficient growth for the 

zones to be clear, but not an over-grown lawn that meant zones of inhibition were weak. This method 

was consistent with that described by McGowan et al., (1995), when using an E. coli test strain as the 

bacterial lawn in antimicrobial assays.        
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3.2.2 Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 inhibits the 

growth of Pectobacterium atrosepticum SCRI1043  

The optimised plate assays (as described in Section 2.1.21) showed that like P. c. subsp. brasiliensis 

PBR1692, P. c. subsp. brasiliensis ICMP 19477 inhibited the growth of P. atrosepticum SCRI1043 in vitro 

(Figure 3.1). The inhibition of P. atrosepticum SCRI1043 growth by P. c. subsp. brasiliensis PBR1692 

had previously been described by Marquez-Villavicencio et al., (2011). The described assay was also 

conducted using P. c. subsp. carotovorum ICMP 5702 as the test strain. This bacterial strain showed 

no zone of inhibition when inoculated onto a P. atrosepticum SCRI1043 lawn (data not shown). 

Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 was also unable to inhibit the growth of 

P. c. subsp. carotovorum ICMP 5702, when the latter was used as the lawn bacteria (data not shown). 

Therefore, P. c. subsp. brasiliensis specific inhibition of P. atrosepticum SCRI1043 was observed.    

 

 

 

Figure 3.1. In vitro growth inhibition of P. atrosepticum (Pba) SCRI1043 by P. c. subsp. brasiliensis 

(Pbr) ICMP 19477 and P.c. subsp. brasiliensis (Pbr) PBR1692.  

Plates pre-seeded with a lawn of P. atrosepticum SCRI1043 were incubated at 28°C for 24 h after 

inoculation with the producer strain. A positive result was indicated by the presence of a zone of 

inhibition around the P. c. subsp. brasiliensis colony.    

 

 

Pbr PBR1692 

Pbr ICMP 
19477 

Pba SCRI1043 
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3.2.3 Strains of Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 and 

Pectobacterium atrosepticum SCRI1043 tagged with an antibiotic resistance 

gene retain the wild type phenotypes relating to antibiotic production and 

sensitivity in vitro  

To study the interactions between P. c. subsp. brasiliensis ICMP 19477 and P. atrosepticum SCRI1043 

further using in vitro and in planta competition assays, antibiotic resistant strains were produced (as 

described in Section 2.1.4, Table 2.2). Firstly, spontaneous Rif mutants were created for both P. c. 

subsp. brasiliensis ICMP 19477 (P. c. subsp. brasiliensis R) and P. atrosepticum SCRI1043 (P. 

atrosepticum R). Rifampicin resistance is conferred by a mutation in rpoB, the gene encoding the β 

subunit of the RNA polymerase (Heep et al., 2000; Vogler et al., 2002). Spontaneous Rif resistant 

mutants of a P. atrosepticum strain have successfully been used in in vitro and in planta studies 

without any observed difference in phenotype compared to the wild-type (WT) (Cronin et al., 1997; 

Vanga et al., 2012). Genetic mutants of P. c. subsp. brasiliensis ICMP 19477 and P. atrosepticum 

SCRI1043, resistant to Km (P. c. subsp. brasiliensis K and P. atrosepticum K) were also generated for 

co-inoculations. Similar Km resistant-tagged strains have previously been used successfully in in vitro 

and in planta assays (Vanga et al., 2012). Both the P. c. subsp. brasiliensis ICMP 19477 K and P. c. subsp. 

brasiliensis ICMP 19477 R strains retained the producer phenotype, whilst the P. atrosepticum 

SCRI1043 K and P. atrosepticum SCRI1043 R strains remained sensitive to the producer (Figure 3.2). 

Similar sized zones of inhibition were generated using these strains, indicating that they were suitable 

for use in future antagonism assays.  
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Figure 3.2. In vitro growth inhibition of P. atrosepticum (Pba) SCRI1043 by P. c. subsp. brasiliensis 

(Pbr) ICMP 19477 was unaffected by tagging the strains with antibiotic resistance.  

Antagonism assays were conducted using P. c. subsp. brasiliensis ICMP 19477 R or P. c. subsp. 

brasiliensis ICMP 19477 K as the producer strain and P. atrosepticum SCRI1043 K or P. atrosepticum 

SCRI1043 R as the sensitive strains in assays described in Section 2.1.21. Assay plates were incubated 

at 28°C for 24 h, with zones of inhibition around the P. c. subsp. brasiliensis ICMP 19477 colonies 

indicative of antimicrobial production.     

 

 

The growth of the antibiotic resistant mutants was also compared to the WTs on solid agar plates 

(Section 2.1.22) and in liquid cultures (Section 2.1.23), to confirm that the tagged strains were 

representative of the WTs in vitro. On solid agar there were no significant differences in growth 

between the P. c. subsp. brasiliensis ICMP 19477 mutants and the WT (p > 0.22, F-test), with the 

exception of 24, 32 and 72 h (p = 0.073, 0.007 and 0.001 respectively, F-test) (Figure 3.3 A). There 

were similar results for the P. atrosepticum SCRI1043 strains, as the CFUs did not vary significantly 

between the strains at most time points (p > 0.4, F-test). There was, however, a significant variation 

at 48 h (p =0.032, F-test) (Figure 3.3 B). Regardless of the statistical differentiation between the strains 

at these few time points on solid media, the overall differences did not appear to be biologically 

relevant, confirming that the tagged strains were suitable for use in future competition assays 

performed on solid plates. Furthermore, the growth curves for both species showed that both 

bacterial species reached mid-stationary phase after 48 h and there was little increase in CFUs after 
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this time. Therefore, subsequent growth assays were terminated at 48 h.  A second independent 

experiment confirmed the results above.   

 

 

 

 

Figure 3.3. Growth of P. c. subsp. brasiliensis (Pbr) ICMP 19477 (A) and P. atrosepticum (Pba) 

SCRI1043 (B) on solid agar plates was not affected by tagging them with Km and Rif resistance.  

Each graph shows the growth (mean CFUs) of the WT as well as the antibiotic tagged strains over 72 

h post inoculation with 104 CFUs/ml of each bacteria (as described in section 2.1.22). Pectobacterium 

caratovorum subsp. brasiliensis ICMP 19477 Km resistant (Pbr K); P. c. subsp. brasiliensis ICMP 19477 

Rif resistant (Pba R); P. atrosepticum SCRI1043 Km resistant (Pba K); P. atrosepticum SCRI1043 Rif 

resistant (Pba R). The mean CFUs represent the mean over three test plates. Error bars are 95% 

confidence limits.  

 

In liquid cultures, the CFUs for the marked P. c. subsp. brasiliensis ICMP 19477 strains did not differ 

significantly from those of the WT at 6, 12 and 16 h (p = 0.093, 0.118 for K and R, F-test). However at 

24 h, the CFUs for both marked strains were significantly lower than for the WT (p = 0.013 and 0.021 

for the Km and Rif resistant strains respectively, F-test). At 32 and 48 h, numbers for P. c. subsp. 

brasiliensis K were again similar to the P. c. subsp. brasiliensis ICMP19477 WT (p = 0.113 and 0.553, F-

test), but those for P. c. subsp. brasiliensis R were statistically significantly lower (p < 0.001 and 0.007, 

F-test) (Figure 3.4 A). For P. atrosepticum SCRI1043, significant differences were only observed 

between the strains at 12 and 32 h. The CFUs for the two marked strains were significantly lower than 

for the P. atrosepticum WT strain (p < 0.001 at 12 h, and p = 0.010 for P. atrosepticum K, p = 0.002 for 

P. atrosepticum R F-test) (Figures 3.4 B). As for the growth experiments on solid media, although 

2D Graph 10

Time (hours post inoculation)

0 10 20 30 40 50 60 70 80

P
br

 c
el

l c
ou

nt
 (m

ea
n 

C
FU

)

103

104

105

106

107

108

109

Pbr
Pbr K
Pbr R

A. 

2D Graph 12

Time (hours post inoculation)

0 10 20 30 40 50 60 70 80

P
br

 c
el

l c
ou

nt
 (m

ea
n 

C
FU

)

103

104

105

106

107

108

109

Pba
Pba K
Pba R

B. 



 77 

statistically significant differences were observed at a couple of time points, overall there appeared 

to be no major biological differences in the growth of the WTs and the relevant tagged strains. 

 

 
 

Figure 3.4. Growth of P. c. subsp. brasiliensis (Pbr) ICMP 19477 (A) and P. atrosepticum (Pba) 

SCRI1043 (B) and in liquid cultures was not affected by tagging them with Km and Rif resistance.  

Each graph shows the growth (mean CFUs) of the WT as well as the antibiotic tagged strains over 48 

h post inoculation with 104 CFUs/ml of each bacteria (as described in section 2.1.23). P. c. subsp. 

brasiliensis ICMP 19477 Km resistant (Pbr K); P. c. subsp. brasiliensis ICMP 19477 Rif resistant (Pbr R); 

P. atrosepticum SCRI1043 Km resistant (Pbr K); P. atrosepticum SCRI1043 Rif resistant (Pba R). The 

mean CFUs represent the mean over three test plates. Error bars are 95% confidence limits.  

 
 

3.2.4 Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 reduces the 

growth of Pectobacterium atrosepticum SCRI1043 when co-inoculated in solid 

plate competition assays, but not in in vitro liquid competition assays 

Solid plate competition assays (Section 2.1.13) were conducted to examine whether co-inoculation of 

solid agar plates with P. c. subsp. brasiliensis ICMP 19477 and P. atrosepticum SCRI1043 resulted in 

reduced growth of the latter. By 12 h (mid to late exponential phase), the growth of P. atrosepticum 

SCRI1043 was  slightly reduced when co-inoculated with P. c. subsp. brasiliensis ICMP 19477 compared 

to growth of the bacterium when cultured in isolation, regardless of which antibiotic resistance 

determinant was used to tag the strains. Furthermore, there continued to be a general trend for 

reduced growth of P. atrosepticum when co-inoculated with P. c. subsp. brasiliensis ICMP 19477 until 

late into stationary phase, although the reduction in cell counts was only small (p < 0.001 12, 24, 32 
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and 48 h. At 24 h, only P. atrosepticum R was significantly reduced in growth, F-test; Figure 3.5 A). In 

contrast, the growth of the P. c. subsp. brasiliensis ICMP 19477 strains was not reduced when co-

inoculated with P. atrosepticum SCRI1043 regardless of the antibiotic resistance marker used to tag 

the strains (p = 0.215, except at 48 h where P. c. subsp. brasiliensis K  inoculated with P. atrosepticum 

R was lower p < 0.001, F-test; Figure 3.5 B). These data indicated that P. c. subsp. brasiliensis ICMP 

19477 had a small, but significant impact on the growth of P. atrosepticum SCRI1043 in the structured 

environment of the plate assays. These results were consistent in a second independent experiment 

(Appendix B).  

 

 

 

 

 

 

 

Figure 3.5. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 on growth of 

P. atrosepticum (Pba) SCRI1043 on solid agar plates (MMA).  

A: A graph showing the growth (mean CFUs) of P. atrosepticum SCRI1043 Km (Pba K) and Rif resistant 

(Pba R) resistant strains over a 48 h period at 28°C when inoculated onto MMA in isolation or when 

co-inoculated with P. c. subsp. brasiliensis ICMP 19477 tagged with either a Km (Pbr K) or Rif (Pbr R) 

resistance determinant (at a 1:1 ratio). B: A graph showing the growth (mean CFUs) of Pbr K or Pbr R 

when cultured in isolation on solid agar plates or in co-inoculations with Pba K or Pba R (at a 1:1 ratio). 

For each graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), 

error bars represent the standard deviation.     

 

The effect of P. c. subsp. brasiliensis ICMP 19477 on P. atrosepticum SCRI1043 growth in co-inoculated 

in vitro liquid (MM) cultures was also investigated using the experiments described in Section 2.1.27. 

In these experiments, unlike those conducted on solid media, the growth of P. atrosepticum SCRI1043 
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upon co-inoculation with P. c. subsp. brasiliensis ICMP 19477 was not reduced when compared to 

growth of the bacterium in pure culture, at any sampling time during the 48 h experiment (p > 0.1, F-

test) (Figure 3.6 A). The growth of P. c. subsp. brasiliensis ICMP 19477 was not affected (p > 0.4, F-test) 

when co-inoculated with P. atrosepticum SCRI1043 either (Figure 3.6 B), indicating that neither 

bacterial strain had an impact on the other under these conditions. The results were consistent in a 

second, independently conducted experiment (Appendix B).   

 

 

 

 

 

 

Figure 3.6. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 on growth of 

P. atrosepticum (Pba) SCRI1043 in liquid cultures (MM).  

A: A graph showing the growth (mean CFUs) of P. atrosepticum SCRI1043 Km (Pba K) and Rif (Pba R) 

resistant strains over a 48 h period at 28°C when inoculated into MM in isolation or in media co-

inoculated with P. c. subsp. brasiliensis ICMP 19477 tagged with either a Km (Pbr K) or Rif (Pbr R) 

resistance determinant (at a 1:1 ratio). B: A graph showing the growth (mean CFUs) of Pbr K or Pbr R 

when cultured in isolation in liquid cultures or in co-inoculations with Pba K or Pba R (at a 1:1 ratio). 

For each graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), 

error bars represent the standard deviation.     
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3.2.5 Antimicrobial tagged strains of Pectobacteirum carotovorum subsp. 

brasiliensis ICMP 19477 and Pectobacterium atrosepticum SCRI1043 are not 

altered in growth compared to the wild types when grown in potato tubers 

The results of the in vitro assays showed that P. c. subsp. brasiliensis ICMP 19477 reduced the growth 

of P. atrosepticum SCRI1043 when co-inoculated with the bacterium in the structured environment of 

the solid plate assay, but not in the less structured environment of a liquid culture. As a consequence, 

the effect of this bacterium on its close relative was studied in planta using co-inoculation experiments 

in potato tubers (as described in Section 2.1.28) rather than in potato stems. Potato tubers provide a 

more structured environment than plant stems, which were used in similar experiments conducted 

by Axelrood et al., (1988).  

Prior to these experiments, the growth of the strains of P. c. subsp. brasiliensis ICMP 19477 and P. 

atrosepticum SCRI1043 tagged with either the Km or Rif resistance determinant were compared with 

that of the WT strains in potato tubers of the susceptible cultivar ‘Ilam Hardy’ to ensure that the 

modifications to these strains had not affected their growth under these conditions (Section 2.1.24). 

Statistically, the CFUs varied between times and between the strains (e.g. p < 0.001 for the P. c. subsp. 

brasiliensis strain and time main effects in all treatments, F-test), and the pattern of change with time 

varied between the strains (e.g. for the P. c. subsp. brasiliensis strain by time interaction, p < 0.001, 

Figure 3.7). However, the majority of the differences between the growth of the WT strains and the 

antibiotic resistance tagged derivatives were observed at the early- to mid-exponential phase (at 1-2 

dpi) and could be accounted for by the slightly lower cell counts for the strains tagged with Rif. 

Secondary metabolites, including antimicrobial molecules, tend to be produced at late exponential to 

early stationary phase. As growth of the tagged P. c. subsp. brasiliensis strains was not reduced 

compared to the WT at this growth stage, it was considered that their use in competition assays would 

not alter the competition observed between the P. c. subsp. brasiliensis and P. atrosepticum SCRI1043. 

There was also greater variation in the data for the tagged strains of both species in tubers than was 

observed on agar plates, likely due to the variable physiology of the tubers encountered by the 

pathogens. For example, tuber weight and age affected colonisation and growth of potato tubers by 

P. atrosepticum and P. c. subsp. brasiliensis (Marquez-Villavicencio et al., 2011). Thus, it was decided 

that these strains did not show any dramatic loss in growth in tubers upon being tagged with either 

antibiotic resistance determinant.  
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Figure 3.7. Growth of P. atrosepticum (Pba) SCRI1043 (A) and P. c. subsp. brasiliensis (Pbr) ICMP 

19477 (B) was not affected by tagging them with Km and Rif resistance potato tubers (‘Ilam Hardy’).  

Each graph shows the growth (mean CFUs) of the WT as well as the antibiotic tagged strains over 72 

h post inoculation with 104 CFUs/ml of each bacteria (as described in section 2.1.22). P. c. subsp. 

brasiliensis ICMP 19477 Km resistant (Pbr K); P. c. subsp. brasiliensis ICMP 19477 Rif resistant (Pbr R); 

P. atrosepticum SCRI1043 Km resistant (Pba K); P. atrosepticum SCRI1043 Rif resistant (Pba R). The 

mean CFUs represent the mean over three test plates. Error bars are 95% confidence limits. 

 

3.2.6 The growth of Pectobacterium atrosepticum SCRI1043 is reduced when co-

inoculated with Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 

in potato tubers  

The effect of P. c. subsp. brasiliensis ICMP 19477 on growth of P. atrosepticum SCRI1043 in tubers was 

subsequently tested using co-inoculation experiments (Section 3.2.5).  

At all sampling times, the mean CFU values for the P. atrosepticum SCRI1043 strains (both P. 

atrosepticum K and P. atrosepticum R) were lower in tubers co-inoculated with P. c. subsp. brasiliensis 

ICMP 19477 when compared to those in which the modified P. atrosepticum SCRI1043 strains were 

inoculated alone (p < 0.001, F-test) (Figure 3.8 A). In contrast, the mean CFUs for neither the Km nor 

the Rif resistant strains of P. c. subsp. brasiliensis ICMP 19477 were affected by co-inoculation with P. 

atrosepticum SCRI1043 (p > 0.22, F-test; Figure 3.8 B). These results were consistent in a second, 

independently conducted experiment, using tubers sourced at a different time of year (Appendix B). 

This demonstrated that the physiology of the potato did not affect the competition between the 
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bacteria. It has previously been described that the age of potato tubers can affect their susceptibility 

to tuber soft rot (Marquez-Villavicencio et al., 2011). All competition assays conducted in potato 

tubers will be confirmed in this manner throughout the study.  

 Therefore suggesting that P. c. subsp. brasiliensis ICMP 19477 inhibits the growth of P. atrosepticum 

SCRI1043 in tubers, and that the reduction in growth is greater in potato tubers than on solid agar 

plates.  

 

 

Figure 3.8. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 on growth of 

P. atrosepticum (Pba) SCRI1043 in potato tubers (‘Ilam Hardy’).  

A: A graph showing the growth (mean CFUs) of P. atrosepticum SCRI1043 Km (Pba K) and Rif (Pba R) 

resistant strains over a 48 h period at 28°C when inoculated into MM in isolation or in media co-

inoculated with P. c. subsp. brasiliensis ICMP 19477 tagged with either a Km (Pbr K) or Rif (Pbr R) 

resistance determinant (at a 1:1 ratio). B: A graph showing the growth (mean CFUs) of Pbr K or Pbr R 

when cultured in isolation in potato tubers or in co-inoculations with Pba K or Pba R (at a 1:1 ratio). 

For each graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), 

error bars represent the standard deviation.     
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3.2.7 Identifying the antimicrobial molecule produced by Pectobacterium 

carotovorum subsp. brasiliensis ICMP 19477 via mass spectrometry 

techniques  

Isolation of the antimicrobial molecule produced by P. c. subsp. brasiliensis ICMP 19477, from agar 

plates, was attempted using MS and LC-MS (David Greenwood, Plant and Food Research Auckland). 

The samples were prepared as described in Section 2.1.33. The extraction method used was chosen 

to extract multiple molecules as the exact antimicrobial was unknown.  

Analysis of the MS and LC-MS data identified only one protein present in the agar extracted from a 

zone of inhibition produced by P. c. subsp. brasiliensis ICMP 19477, that was not present in MMA or 

an MMA plate seeded with a P. atrosepticum SCRI1043 lawn (data not shown). This protein was 

identified to be a 50S ribosomal protein (ID = 90%). No putative antimicrobial molecule was identified. 

The failure to identify a putative antimicrobial using MS and LC-MS led to an analysis of the 

antimicrobial encoding genes identified within the P. c. subsp. brasiliensis ICMP 19477 genome, as an 

alternative method to identify potential targets responsible for the antagonism of P. atrosepticum 

SCRI1043.     

 

3.2.8 Horizontally acquired island PbN1-GI20 harbours a novel NRP biosynthetic 

gene cluster 

Comparative analyses of the P. c. subsp. brasiliensis ICMP 19477 genome with that of other SREs 

revealed that horizontally acquired island (HAI) PbN1-GI20 (Figure 3.9) harbours a biosynthetic cluster 

predicted to encode a putative NRP (Preetinanda Panda, 2014). This HAI is similar to HA16 (H-value: 

0.4), an HAI in the genome of P. atrosepticum SCRI1043 (Bell et al., 2004) as well as regions in the 

genomes of P. c. subsp. carotovorum WPP14 (H-value: 0.4) and P. c. subsp. brasiliensis PBR1692 (H-

value: 0.4) (Table 1.2). H-values refer to the similarity of ORFs. An H-value of >0.8 indicates that the 

ORF in P. c. subsp. brasiliensis ICMP19477 is indistinguishable homologue in the genome to which it is 

being compared. However, NRP biosynthetic clusters are only present in P. c. subsp. brasiliensis ICMP 

19477 and HAI6 (Preetinanda Panda, 2014).  
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PbN1-GI20 possesses 15 CDSs, including those predicted to encode two NRPSs and an ABC transporter 

thought to be involved in the synthesis and transport of the NRP (Figure 3.9). The island also has genes 

encoding a β-lactamase, as well as a transcriptional regulator. 
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Figure 3.9. Gene structure of a horizontally acquired island, PbN1-GI20, of P. c. subsp. brasiliensis ICMP 19477 that contains the putative NRPS genes.  

The NRPS cluster includes KCO_06055 (ABC transporter), KCO_06050, (NRPS 1) and KCO_06045/KCO_17262 (NRPS 2). The no entry sign represents a contig 

break within the NRPS2 gene.   
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Bioinformatics predicted that the CDSs encoding the two NRPS genes and the ABC transporter were 

transcribed as an operon (data not shown). To test this, a series of PCR primers were designed to 

amplify products by rt-PCR that bridged the three genes, plus those either side (Figure 3.13 A; Table 

2.3). Amplicons of 539 bp and 502 bp were generated using primers 2F and 2R and 3F and 3R using 

cDNA from P. c. subsp. brasiliensis ICMP 19477 whereas rt-PCR with primers 1F and 1R and 4F and 4R 

failed to produce products (Figures 4.5 B). In contrast, amplicons of the correct size were generated 

by PCR using all primer pairs when DNA was used as a template. These data indicated that the ABC 

transporter gene and the two NRPS genes were transcribed as a single mRNA, indicative of being an 

operon. The failure to amplify products by rt-PCR with primers targeted to the regions spanning either 

side of these three genes showed that the adjacent genes are not part of the operon. The operon 

structure of the genes within the NRPS cluster supports the prediction that they synthesise a single 

NRP, which is transported out of the bacterial cell via the ABC transporter gene product. 

  





 88 

The region within P. c. subsp. brasiliensis PBR1692 did not encode the NRPS biosynthetic cluster, 

although genes outside of the NRPS region are conserved. For example, the first three genes within 

PbN1-GI20, KCO_06110, KCO_06110 and KCO_06105, are also present in the same region of P. c. 

subsp. brasiliensis PBR1692 (ID = 99.7%, 97.3% and 99.7% respectively). Therefore, the NRP product 

is not produced by P. c. subsp. brasiliensis PBR1692. The NRPS island is also not encoded by P. 

carotovorum subsp. carotovorum PC1.  

A nucleotide alignment of HAI6 and PbN1-GI20 (Figure 3.10) also revealed that P. atrosepticum 

SCRI1043 harboured two NRPS genes and an ABC transporter gene with similarity to those in PbN1-

GI20, although the remainder of HAI6 appeared to be quite distinct. In particular, the NRPS1 genes 

had 88.6% pairwise identity, the NRPS2 genes 88.9% and the ABC transporter genes 90%. The 

remaining genes within the islands were variable, including the putative transcriptional regulators 

(ECA1482 and KCO_06065) initially predicted to regulate the NRPS genes due to being up-stream of 

the conserved NRPS clusters. In fact, a BLASTn comparison of the two genes did not identify any 

pairwise similarity between the two species.  

It is worth noting that the nucleotide sequence for the P. c. subsp. brasiliensis ICMP 19477 NRPS cluster 

contained a contig break between KCO_06045 and KCO_17262 (Figure 3.9), which was unable to be 

closed due to the highly repetitive nature of the DNA (Preetinanda Panda, 2014). Owing to the 

conservation in the remaining NRPS DNA sequences in HAI6 and PbN1-G120, however, it was 

predicted that the gene organisation and NRPS structure was the same for both species and that 

KCO_06045 and KCO_17262 in P. c. subsp. brasiliensis ICMP 19477 should be considered a single CDS 

encoding the second NRPS gene in P. c. subsp. brasiliensis ICMP 19477. This suggests that the NRPS 

cluster may be a separate mobile genetic element, which is present in P. atrosepticum SCRI1043 but 

not P. c. subsp. brasiliensis PBR1692 or P. c. subsp. carotovorum PC1.     
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Figure 3.11. The NRPS and ABC transporter genes are conserved between P. atrosepticum (Pba) 

SCRI1043 HAI6 (top) and P. c. subsp. brasiliensis (Pbr) ICMP 19477 PbN1-GI20 (bottom).  

The NRPS is conserved between the two bacteria. Due to the highly repetitive sequences present in 

the NRPS genes, the BLAST comparisons are not well represented for those genes. The region outside 

of the NRPS gene cluster is different in ICMP 19477 compared to SCRI1043. This suggests that these 

genes are harboured on distinct islands in these SREs.     

 

Despite the contig gap discussed above, the domain organisation of the two nrps genes (KCO_06050-

KCO_06045/17262) in P. c. subsp. brasiliensis ICMP 19477 was predicted using several software 

packages (Table 2.1) (data not shown), to establish the likely structure of the NRP (Table 3.1). 

Combining the results from these packages, the nrps genes were predicted to encode 13 A domains 

(Figure 3.11), which suggested that the NRP was comprised of 13 amino acids. The domain 

organisation of the genes also suggested that the NRP has a cyclic structure as the two thioesterase 

domains present at the C terminus, plus the lack of a typical initiation module (one lacking a 

condensation domain), are typical features of NRPSs encoding cyclic products (Gross et al., 2007). 

The function of the NRP was subsequently predicted by comparing the A domains of the putative 

NRPSs with those of NRPs with known function using NRPSpredictor2 and antiSMASH (Medema et al., 

2011; Rottig et al., 2011) (Table 2.1)   These software showed that the A domains of the P. c. subsp. 

brasiliensis ICMP 19477 NRPSs had similarity to the A-domain organisation of the syringomycin  

encoding NRPS (E = 0.028) as well as the NRPSs for antibiotics such as fengycin (E = 0.006) and 

siderophores (i.e. pyoverdin E = 0.023), suggesting that the NRP might function as a plant toxin or as 

an antimicrobial. 
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Figure 3.12. The domain and module organisation of the NRPS genes in P. c. subsp. brasiliensis ICMP 

19477 (KCO_06050 and KCO_06045/1726).  

Each module has a condensation (C), adenylation (A) and thiolation, (T) domain. Two thioesterase (TE) 

domains were present following the 6th module. The TE domain catalyses the hydrolysis of an ester 

bond to form an alcohol and acid group. The TE domain can also initiate the release of water to force 

product release via intramolecular cyclisation.  

 

The amino acid sequence and secondary structure of the NRP encoded by ICMP 19477 was predicted 

by analysis of the A domains using antiSMASH (Medema et al., 2011) to predict the mass range for the 

product (for use in the mass spectroscopy analysis described in Section 3.3.8). It was also used to 

predict if unusual amino acids were likely to be included in the final product, as these would also need 

to be considered in MS and LC-MS analysis. The antiSMASH program combines three methods of A 

domain substrate specificity prediction to determine the consensus NRP product sequence. The three 

methods used are: the Stachelhaus specificity code  (Stachelhaus et al., 1999), the Minowa model 

(Minowa et al., 2007) and the NRPSpredictor2 support vector machine (Rausch et al., 2005; Rottig et 

al., 2011). The information from the three tools predicted that the consensus sequence of the putative 

NRP was comprised of 13 amino acids (Figures 3.12) with an approximate mass of 1495 Da (based on 

using an average amino acid mass of 115 Da in ribosomal peptides (Promega 2010)). The predicted 

mass of the NRP was also calculated using the average mass of monomers incorporated in to the NRPs 

listed in the NORINE database (Caboche et al., 2008). The average monomer has a mass of 118.75 Da 

TE TE 

KCO_06050 NRPS 1 

KCO_06045/17262 NRPS 2 
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(Kersten et al., 2011), therefore the predicted mass of the NRP was calculated at 1543.75 Da.  A 

number of amino acids did not fit the consensus sequence, however, with only eight of the predicted 

13 recognized as standard amino acids. The amino acid sequences encoded by the NRPs in P. 

atrosepticum SCRI1043 and P. c. subsp. brasiliensis ICMP 19477 were subsequently compared to 

ascertain whether the differences in nucleotide similarities corresponded to the production of NRPs 

with different amino acid sequences. Of the predicted amino acids, only four of the eight that were 

identified are similar between the P. atrosepticum SCRI1043 and P. c. subsp. brasiliensis ICMP 19477 

product. This difference may be sufficient to confer a different function to the products of the genes 

from the two different species.  

Surprisingly, given previous analysis showed that a cyclic product was generated, antiSMASH 

predicted that a non-cyclic product was generated by the NRPSs (Figure 3.13).  

The analysis of the NRPS genes was conducted using multiple bioinformatics tools. Such tools are 

based on statistical methods and therefore the results produced have limitations. The identification 

of secondary metabolite encoding genes such as NRPSs are based on profile hidden Markov models 

based on multiple sequence alignments using defined NRPS motifs. This model is accurate to predict 

the gene clusters, as the models are validated against known sequence data in order to assess their 

ability to identify clusters in new sequence data. The antiSMASH model for example was able to 

identify 97% of secondary metabolite gene clusters from the literature and annotated 96.7% of those 

exactly (Boddy, 2014). However, the prediction of the encoded substrates by the A domains present 

in an NRPS are less precise and shows variation between different methods (Table 3.1). Therefore, the 

predicted substrates that form the NRP and the resulting predicted structure should be used only as 

a rough prediction of the actual structure.  
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Table 3.1. Different methods used to predict NRPS A domain specificity show variation in their 

predictions.  

The table summarises the three methods used by antiSMASH (Medema et al., 2011), for the prediction 

of the NRP sequence encoded by P. c. subsp. brasiliensis  ICMP 19477. The consensus sequence based 

on the results of the three methods is also shown. The amino acids predicted to form the NRP 

sequence is based on the order of predicted amino acids encoded by each of the 13 A domains 

predicted to be present in the NRPS genes of both species. Standard amino abbreviations are used 

(The DDBJ/ENA/ycosubt feature table definition, Version 10.5, 2015). bht- β-hydroxy-tyrosine, iva-

isovaleric acid.   

 

 

The limitations of the predicted encoded substrates are due to many factors relating to the statistical 

models used to form the predictions. Firstly, the programs used rely on available sequence data which 

may be limited. This is required in order to build and train the prediction models. This will improve as 

more data becomes available, however a novel system that does not follow the observed patterns 

may be missed or mis-predicted. Secondly, the programs utilise the colinearity rule to predict the final 

amino acid sequence of the NRP. This means that the order of the A domains within the NRPS are 

predicted to be the same sequence as the final product. This is usually the case for NRPs, however 

there are exceptions, for example those synthesised by the non-linear or iterative system (Mootz et 

al., 2002).  

The ability to predict the amino acid encoded by an A domain is based on the ‘specificity codes’ 

identified (Stachelhaus et al., 1999). These codes are experimentally defined and are available for 

many proteogenic amino acids. However, the specificity codes for some are undefined, for example 
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lysine and others are very variable such as for alanine (Table 3.2, (Stachelhaus et al., 1999). 

Furthermore, very few specificity codes have been identified for unusual amino acids, such as 

homoserine, which are sometimes present in NRPs. Adenylation domains that encode aromatic amino 

acids are also hard to predict due to the promiscuity of these sequences. Therefore, there are 

limitations to the prediction methods used to predict an NRP product from an NRPS sequence.  

The final NRP structure is difficult to predict as it is defined not only by the A domain sequence but 

also the interactions between the amino acids. This is taken into account using the Minowa method, 

which is included in the range of programs used to predict the structure by antiSMASH. The Minowa 

method is considered the most robust method for structural prediction of NRPs (Boddy, 2014). 

Statistically, the structural prediction is not considered accurate as it involves combining individual 

predictions of the amino acid interactions as well as the sequence predictions. Therefore, the 

structural predictions should only be considered to provide the number of monomers incorporated in 

to the NRP in order to calculate a mass range for MS analysis of the NRP. Furthermore, it may be used 

to identify the potential inclusion of unusual amino acids within the product.  
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Table 3.2. The consensus specificity sequences for the recognition of amino acid substrates by A 

domains.  

As with the ribosomal codon code, the specificity sequences are degenerate, which is indicated by the 

number in brackets after the amino acid encoded. The variable positions within a sequence are shown 

in red and the overall similarity of the signature sequences is shown. Standard amino acid 

abbreviations are used, plus Dab, 2,3-diamino butyric acid; Dhb, 2,3-dihydroxy benzoic acid; Sal, 

salicylate; Phg, L-phenylglycine; hPhg, 4-hydroxy-L-phenylglycine; Dht, dehydrothreonine. Adapted 

from (Stachelhaus et al., 1999). 

 
  Position in active site   

Substrate 235 236 239 278 299 301 322 330 331 517 Similarity 

Aad E P R N I V E F V K 94% 

Ala D L L F G I A V L K 55% 

Asn D L T K L G E V G K 90% 

Asp D L T K V G H I G K 100% 

Cys (1) D H E S D V G I T K 96% 

Cys (2) D L Y N L S L I W K 88% 

Dab D L E H N T T V S K 100% 

Dhb/Sal P L P A Q G V V N K 83% 

Gln D A Q D L G V V D K 100% 

Glu (1) D A W H F G G V D K 95% 

Glu (2) D A K D L G V V D K 95% 

Ile (1) D G F F L G V V Y K 92% 

Ile (2) D A F F Y G I T F K 100% 

Leu (1) D A W F L G N V V K 99% 

Leu (2) D A W L Y G A V M K 100% 

Leu (3) D G A Y T G E V V K 100% 

Leu (4) D A F M L G M V F K 97% 

Orn (1) D M E N L G L I N K 100% 

Orn (2) D V G E I G S I D K 98% 

Phe D A W T I A A V C K 88% 

Phg/hPhg D I F L L G L L C K 80% 

Pro D V Q L I A H V V k 87% 

Ser D V W H L S L I D K 90% 

Thr/Dht D F W N I G M V H K 91% 

Tyr (1) D G T I T A E V A K 100% 

Tyr (2) D A L V T G A V V K 80% 
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3.2.9 PbN1-GI25 harbours a putative carotovoricin-like biosynthetic cluster 

PbN1-GI25 was shown to have similarity to regions in P. c. subsp. brasiliensis PBR1692 (H-value: 1.0), 

in P. atrosepticum SCRI1043 (H-value: 0.3), P. c. subsp. carotovorum ICMP 5702 (H-value: 0.8) and PCI 

(H-value: 0.8). PbN1-GI25 harbours 21 CDSs, which are predicted to encode the bacteriocin 

carotovoricin (Ctv) (Figure 3.14).  

The CDSs predicted to be involved in Ctv production include KCO_16172, which likely encodes a lytic 

transglycosylase with similarity to P. c. subsp. carotovorum Pcc21 (ID = 100%, E = 1e-146) predicted 

by BLASTx analysis. This enzyme acts on the peptidoglycan components of bacterial cell walls, in a 

similar mechanism to lysozyme.  KCO_16142 has greatest nucleotide similarity to a tail protein from 

P. c. subsp. carotovorum (ID = 99%, E = 0). KCO_16137 and KCO_16122 were also predicted to encode 

phage tail proteins from P. c. subsp. carotovorum (ID = 100%, E = 1e-125 and ID = 99%, E = 0). The 

KCO_16102 gene product was identified as having greatest similarity to a phage base plate assembly 

protein V (E = 4.95e-20). Finally, KCO_16077 showed greatest similarity to a tail protein encoded by P. 

c. subsp. brasiliensis PBR1692 (ID = 90%, E = 0).    

The Ctv biosynthetic cluster of P. c. subsp. brasiliensis ICMP 19477 was compared to the P. c. subsp. 

brasiliensis type strain PBR1692. The 21 Ctv CDSs of P. c. subsp. brasiliensis PBR1692 (H-value: 1.0), in 

P. atrosepticum SCRI1043 (H-value: 0.3), P. c. subsp. carotovorum ICMP 5702 showed 97% nucleotide 

similarity to the Ctv cluster of P. c. subsp. brasiliensis ICMP 19477. 

Other phage-related genes were identified in this island, which are present within the Ctv loci of other 

SREs (Itoh et al., 1978; Itoh et al., 1980). The CDS KCO_16142 encodes a protein that has similarity to 

a phage tail sheath protein (ID = 99%, E = 0), KCO_16137 encodes a protein with similarity to a phage 

tail tube family protein (E = 1.01e-56), KCO_16132 encodes a protein similar to a ferrodoxin of P. c. 

subsp. carotovorum (ID = 81%, E = 2e-52) and KCO_16122 encodes a protein similar to phage tail tape 

measure protein (ID = 99%, E = 0).  

 

 



 97 

 

 
  
  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.14. A schematic diagram of the structure and organisation of PbN1-G125 in P. c. subsp. brasiliensis ICMP 19477.  

Blue arrows represent the predicted CDSs. The orientation of the CDS is shown by the direction of the arrow. CDS identifiers or putative functions of the 

encoded proteins are provided for each CDS.   

1 cm = 600bp 

PbN1-GI25 
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The promoter regions (P0-P3) for these units have been determined (Yamada et al., 2006) (Figure 3.15 

B). BLASTn analysis of PbN1-GI25 identified regions similar to P0, P1, P2 and P3 (Figure 3.15 A). The P0 

region was found to be similar to the promoter for the gene KCO_16177 (97%). The region similar to 

the E. coli -35 region was mapped to a region 51 bp from the start codon of KCO_16177 (1823701-

1823705). P1 corresponded to the promoter region of KCO_16152 (96%), the -35 region was 87 bp 

from the gene start codon (1826125-1826130). The P2 region was found to be located upstream of 

KCO_16127 (97%), the -35 region was 48 bp from the gene start codon (1829275-1829280), while P3 

was located within the gene KCO_16117 (97%). Regulators of pectolycin and carotovoricin production 

(Liu et al., 1994) were also detected in P. c. subsp. brasiliensis ICMP 19477. For example, KCO_14692 

encodes a protein with similarity to RdgB, a Mor family transcriptional regulator (ID = 97%, E = 2e-75). 

The product of rdgB binds directly to the P0-P3 motifs in the ctv biosynthetic cluster (Yamada et al., 

2008). KCO_14687 shows similarity to the RdgA transcriptional regulator (ID = 99%, E = 1e-175).  

 

  





 100 

Although similar regions were identified in other Pectobacterium, the CDSs involved in carotovoricin 

production in P. c. subsp. brasiliensis ICMP 19477 were also identified in P. c. subsp. carotovorum ICMP 

5702 and PC1. The CDSs in these strains were found to be highly similar, but distinct. For example, P. 

c. subsp. carotovorum ICMP 5702 showed on average 91% nucleotide identity to carotovoricin 

biosynthesis proteins encoded on PbN1-G125 and 90% nucleotide identity in P. c. subsp. carotovorum 

PC1. Genes similar to KCO_16177 and KCO_16157 were identified in P. atrosepticum SCRI1043 (ID = 

89%), the other 16 Ctv CDSs were not present. Carotovoricins have been identified in many P. c. subsp. 

carotovorum strains, the structure of the antimicrobial molecule varying between strains (Itoh et al., 

1980). 

 
 
 

3.2.10 PbN1-GI31 contains a putative phenazine biosynthesis gene cluster  

 

 

  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16. A schematic diagram of the phenazine biosynthesis cluster PbN1-GI31. The blue arrows 

represent genes.  

The P. c. subsp. brasiliensis ICMP 19477 gene numbers are given above and the putative gene 

functions are written below.   

 

 

PbN1-GI31 has similarity to regions in all the Pectobacterium strains compared in Table 1.2 (H-value: 

of 0.7-0.8). PbN1-GI31 contains twelve genes that form a putative phenazine biosynthesis cluster 

(Figure 3.16). Of the twelve genes, seven were found to encode proteins with greatest similarity to 

phenazine antibiotic synthesis proteins by BLASTx analysis. KCO_15772, the start of PbN1-GI31 is the 

first biosynthesis gene, which encodes a protein similar to other phenazine biosynthesis genes in 

Biosynthesis Biosynthesis 

1 cm = 1 Kb 
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Pectobacterium (ID = 100%, E = 6e-87). KCO_15762, KCO_15757, KCO_15752, KCO_15737, 

KCO_15732, KCO_15727 also showed greatest similarity to Pectobacterium phenazine biosynthesis 

genes (E = 8e-110, E = 5e-152, E = 0, E = 2e-155, E = 0 and E = 0). KCO_15767, the second gene in the 

HAI encodes a short chain dehydrogenase/reductase (ID = 99%, E=0). These enzymes catalyse 

NAD(P)(H) dependent oxidation/reduction reactions. KCO_15742 is predicted to be similar to a 2,3-

dihydro-3-hydroxyanthranilate isomerase of P. c. subsp. carotovorum Pcc21(ID = 100%, E = 0). This 

enzyme catalyses an isomerase reaction associated with phenazine synthesis. KCO_15722 showed 

greatest similarity to a CoA-acyl carrier protein (ID = 100%, E = 0). Two genes, KCO_15745 and 

KCO_15717, were predicted to be hypothetical proteins (ID = 100%, E = 4e-77 and ID = 100%, E = 0).  

 

3.2.11 PbN1-GI38 encodes a putative bacteriocin biosynthetic cluster 

PbN1-GI38 harbours a cluster of genes predicted to encode a bacteriocin (Figure 3.17). Similar islands 

were identified in all strains (Table 1.2) with H-values of between 0.8 and 0.4. Further examination of 

these regions, however, showed that only P. c. subsp. brasiliensis PBR1692 had the two CDSs predicted 

to be involved in production of the bacteriocin-like molecule. Therefore, the bacteriocin cluster was 

also present in P. c. subsp. brasiliensis PBR1692 and ICMP 19477, but absent from other SRE genomes 

(Preetinanda Panda, 2014).  

Other genes within PbNI-GI38 were found to be associated with amino-acid transport, metabolism 

and regulation.   

The putative bacteriocin biosynthetic CDS identified in PbN1-G138 (KCO_12557) BLASTn analysis of 

KCO_12557 showed the gene had greatest similarity to a gene from P. c. subsp. carotovorum Pcc21 

(ID = 99%, E = 0). The BLASTx analysis identified that the protein gene product showed greatest 

similarity to a ferrodoxin of P. c. subsp. carotovorum (ID = 100%, E = 0). The BLASTn of KCO_12552 

showed greatest similarity to the carocin D gene of P. c. subsp. carotovorum Pcc21 (ID = 97 %, E = 6e-

102), while BLASTx showed that the protein had similarity to the immunity proteins belonging to the 

colicin superfamily (and to the colicin D immunity protein of P. c. subsp. carotovorum in particular (ID 

= 100%, E = 6e-56). This suggested that KCO_12552 may encode the immunity protein for the 

bacteriocin produced by P. c. subsp. brasiliensis ICMP 19477. The BLASTn of KCO_12547 showed 

greatest similarity to carocin synthesis genes of P. c. subsp. carotovorum PCC21 (ID = 94%, E = 0), while 

BLASTx showed specific hits to pyocin superfamily (ID = 100%, E = 0) colicin D synthesis protein of P. 

c. subsp. carotovorum Pcc21 (ID = 93%, E = 0). 
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Figure 3.17. Horizontally acquired island PbN1-GI38 encodes a putative bacteriocin biosynthetic 

cluster.  

The cluster is only present in the P. c. subsp. brasiliensis strains ICMP 19477 and PBR1692. Blue arrows 

represent CDSs in HAI PbN1-GI38. The three bacteriocin-related CDSs are enlarged (scale: 1cm = 

500bp). 

 

 

The order of the CDSs within the bacteriocin cluster was indicative of an ‘E. coli-type’ CDI locus 

(transporter, toxin, immunity encoding genes). The predicted toxin encoding gene (KCO_12547) was 

therefore analysed to see if it contained any signatures suggesting that it was involved in CDI. The ‘E. 

coli-type’  CDI toxin encoding genes usually have a variable C-terminal sequence, which is specific to 

the particular gene, which is separated from the more conserved N-terminal sequence (DUF638 

domain, Pfam PF04829) after a valine-glutamate-asparagine-asparagine (VENN) motif (Aoki et al., 

2010). There was no such VENN motif within the translated sequence of KCO_12547, suggesting that 

this gene does not encode a bacteriocin involved in CDI, but a diffusible antimicrobial molecule 

instead. 

The predicted tertiary structures of the KCO_12552 and KCO_12547 gene CDS products were also 

predicted using I-TASSER (Zhang et al., 2008) and PredictProtein (Rost et al., 2004). The KCO_12552 

product (Figure 3.18 A), was predicted to be made up of four alpha-helices similar to proteins that act 

in bacterial immunity (p = 1.51e-8). The KCO_12547 product (Figure 3.18 B) was predicted to be made 

up of 36% alpha-helices and 50% turns, a protein similarity was detected. The cellular localization of 

the gene products was also predicted using Raptor X (Källberg et al., 2012). The product of KCO_12547 

KCO_12557 KCO_12552 KCO_12547 

 1 cm = 500 bp 

1 cm = 1.5 Kb 

PbN1-G138 
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The two CDSs predicted to be involved in bacteriocin production in ICMP 19477 were compared to 

those in the P. c. subsp. brasiliensis type strain, PBR1692. KCO_12552 (immunity protein) had 100% 

identity to PcarbP_02845 and KCO_12547 (carocin synthesis) has 99.6% to PcarbP_02843 in P. c. 

subsp. brasiliensis PBR1692. 

 

 

3.2.12  Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 encodes a 

carbapenem biosynthetic cluster on PbN1-GI65 

PbN1-GI65 harbours a putative carbapenem synthesis cluster (Figure 3.20 A). Carbapenem synthesis 

clusters were also detected in P. c. subsp. brasiliensis PBR1692 (H-value: 1.0) and P. c. subsp. 

carotovorum ICMP 5702 (H-value: 0.8), but not in the remaining SRE (Table 1.2).  

In P. c. subsp. brasiliensis ICMP 19477, the carbapenem biosynthetic cluster contained 9 CDSs (Figure 

3.20 A). BLASTn analysis showed that the first, KCO_04647, had greatest similarity to carR from P. c. 

subsp. carotovorum ATCC 39048 (ID = 98%). CarR acts as the regulator for the carbapenem synthesis 

genes in P. c. subsp. carotovorum (McGowan et al., 1995). It is a LuxR type transcriptional regulator, 

which responds to the QS signalling molecule N-(3-oxohexanoyl)-L-homoserine (OHHL) produced by 

the QS activator CarI. The next gene within the cluster (KCO_04652) had greatest similarity to carA 

from P. c. subsp. carotovorum ATCC 39048 (ID = 98%) while KCO_04657, KCO_04662, KCO_04667 and 

KCO_04672 had greatest similarity to the carB, carC, carD and carE cluster from P. c. subsp. 

carotovorum ATCC39048, respectively (ID = 98%). These genes are directly involved in synthesis of the 

carbapenem (McGowan et al., 2005). Genes KCO_04677 and KCO_04682 had greatest similarity to the 

carF and carG CDSs of P. c. subsp. carotovorum (ID = 89% and ID = 98%). These genes encode a 

carbapenem resistance mechanism (McGowan et al., 1997), which protects the producing cell from 

being killed by its own carbapenem. The ninth gene in the cluster (KCO_04687) had greatest similarity 

to the carH CDS of P. c. subsp. carotovorum ATCC 39048 (ID = 96%), a gene of unknown function 

(McGowan et al., 1997). BLASTx analysis confirmed these results (data not shown). Comparison of the 

putative carA-carH genes in P. c. subsp. brasiliensis ICMP 19477 with the type strain P. c. subsp. 

brasiliensis PBR1692, showed they had 98% nucleotide identity suggesting that the same carbapenem 

was produced by both pathogens. Comparison with the cluster from P. c. subsp. carotovorum ICMP 

5702, however, demonstrated that the two gene clusters were distinct, with on average only 87.8% 

pairwise identity (E = 0). An analysis of the promoter regions within the cluster confirmed that those 

in P. c. subsp. brasiliensis ICMP 19477 were highly similar to those characterised in P. c. subsp. 
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carotovorum ATTn10 (McGowan et al., 2005) (Figure 3.20 B). The E. coli type -35 region of PcarR was 

mapped to 139 bp from the start codon of carR upstream of carR (4335827-4834200), the -35 region 

of PcarA was found to be 82 bp upstream from the start codon of carA (4699476-4706891). The 

promoter PcarDinternal is located within the carD gene.    
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In P. c. subsp. carotovorum, carA-H form a transcriptional operon (McGowan et al., 1996). To 

determine if this is also the case in P. c. subsp. brasiliensis ICMP 19477, primers were designed to 

amplify products from cDNA that bridged the gaps between the CDSs, including those predicted to be 

outside the operon (Figure 3.21 A). As expected, PCR amplicons of 506 bp, 626 bp, 539 bp, 668 bp, 

540 bp, 554 bp and 574 bp were generated for primer pairs 3F and 3R, 4F and 4R, 5F and 5R, 6F and 

6R, 7F and 7R, 8F and 8R, 9F and 8R when cDNA was the template (Figure 3.21 B) whereas no products 

were amplified using primers spanning CDSs carR and carA or carH and aspII. Yet, appropriately sized 

PCR amplicons were generated for all primers when DNA was used as the template. Therefore it was 

concluded that in P. c. subsp. brasiliensis ICMP 19477 the carA-H genes formed a transcriptional 

operon.  
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Figure 3.21. The operon structure of the carbapenem biosynthesis gene cluster in P. c. subsp. 

brasiliensis ICMP 19477.  

A: Primers were designed to amplify fragments spanning the gaps between the car genes, in order to 

assess the operon structure of this cluster. Primer binding sites are indicated by arrows. B: PCR 

amplicons obtained from RT-PCR assays as indicative of an operon structure of the carbapenem 

cluster. L, DNA ladder; Lane 1, primer pair 1 DNA; Lane 2, primer pair 2 DNA; Lane 3, primer pair 3 

DNA; Lane 4, primer pair 4 DNA; Lane 5, primer pair 5 DNA; Lane 6, primer pair 6 DNA; Lane 7, primer 

pair 7 DNA; Lane 8, primer pair 8 DNA; Lane 9, primer pair 9 DNA; L, DNA ladder; Lane 10, primer pair 

1 cDNA; Lane 11, primer pair 2 cDNA; Lane 12, primer pair 3 cDNA; Lane 13, primer pair 4 cDNA; Lane 

14, primer pair 5 cDNA; Lane 15, primer pair 6 cDNA; Lane 16, primer pair 7 cDNA; Lane 17 primer pair 

8 cDNA; Lane 18 primer pair 9 cDNA; L, DNA ladder. C: Negative controls for PCR and RT-PCR reactions. 

L, DNA ladder; Lane 1, primer pair 1 NTC; Lane 2, primer pair 2 NTC; Lane 3, primer pair 3 NTC; Lane 

4, primer pair 4 NTC; Lane 5, primer pair 5 NTC; Lane 6, primer pair 6 NTC; Lane 7, primer pair 7; NTC, 

Lane 8, primer pair 8, NTC; Lane 9, primer pair 9 NTC; L, DNA ladder; Lane 10, primer pair 1 non-RT; 

Lane 11, primer pair 2 non-RT; Lane 12, primer pair 3 non-RT; Lane 13, primer pair 4 non-RT; Lane 14, 

primer pair 5 non-RT; Lane 15, primer pair 6 non-RT; Lane 16, primer pair 7 non-RT; Lane 17, primer 

pair 8 non-RT; Lane 18, primer pair 9 non-RT; L, DNA ladder.   

 

 

Other CDSs were also identified in the genome of P. c. subsp. brasiliensis ICMP 19477 that could 

encode a β-lactam. Unlike the previously described cluster, however, these CDSs were not part of 

defined HAIs or gene islets. For example, BLASTx analysis identified that KCO_01587 had greatest 

similarity to a large carbamoylphosphate synthase subunit of P. c. subsp. carotovorum Pcc21 (ID = 

99%, E = 0). This subunit catalyses the ATP-dependent synthesis of carbamoyl phosphate from 

glutamine. The neighbouring CDS, KCO_01582, was similar to a small carbamoyl phosphate synthase 

subunit of P. c. subsp. carotovorum Pcc21 (ID = 99%, E = 0). Cryptic carbapenem clusters, that are not 

transcribed and do not produce a product, are widespread in P. c. subsp. carotovorum (Holden et al., 

1998).  
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3.3 Discussion  

Pectobacterium carotovorum subsp. brasiliensis PBR1692 was previously shown to inhibit the growth 

of P. atrosepticum SCRI1043 and P. c. subsp. carotovorum WPP14 in vitro, although no ecological 

benefit was identified in co-inoculation studies in potato stems (Marquez-Villavicencio et al., 2011). 

Other strains of P. c. subsp. brasiliensis were not able to inhibit the growth of P. atrosepticum 

SCRI1043, however. This led to the belief that the antimicrobial activity observed was highly strain-

specific and potentially not of ecological importance (Marquez-Villavicencio et al., 2011). In this 

chapter, antagonism assays confirmed that the New Zealand isolate of P. c. subsp. brasiliensis, ICMP 

19477, was also able to generate a zone of inhibition on a lawn of P. atrosepticum SCRI1043 in plate 

assays. This indicated that the capacity to suppress growth of P. atrosepticum might be a more generic 

characteristic of P. c. subsp. brasiliensis than first thought. This finding concurs with models of 

bacterial communities, as well as serial transfer studies, which concluded that antimicrobial sensitive, 

producer and resistant strains are present within a community (Frank, 1994; Riley and Gordon, 1999). 

Initially, the community is thought to be made up of all ‘sensitive’ strains, as there is no selection 

pressure from an antimicrobial molecule. If a producer then enters the community it is able to 

outcompete the sensitive strain (Durrett and Levin, 1997; Riley and Wertz, 2002). Overtime, however, 

mutations occur within the sensitive population that render them resistant to the antimicrobial 

produced by the producer (Smarda, 1992; Feldgarden and Riley, 1998). Thereby resistant, sensitive 

and producer bacteria are then present within the same community. Over time the advantageous, 

resistant phenotype will increase within the sensitive population and eventually predominate over the 

producer, as the resistant phenotype is less energy intensive (Tan and Riley, 1996). The producer will 

still be present at a low level in the community. Under less selective pressure from the antimicrobial 

molecule, some resistant strains will revert back to the sensitive phenotype, as this has the least 

metabolic cost (Feldgarden and Riley, 1998).  

In antagonism assays between P. c. subsp. brasiliensis ICMP 19477 and P. atrosepticum SCRI1043, the 

presence of a zone of inhibition also suggested that the antimicrobial molecule responsible for 

inhibition of P. atrosepticum SCRI1043 was a diffusible molecule, rather than being involved in CDI.    

Co-inoculation experiments on solid media subsequently showed a small, but significant effect of P. c. 

subsp. brasiliensis ICMP 19477 on the growth of P. atrosepticum SCRI1043, reducing cell counts of the 

latter especially during mid/late exponential phase (Section 3.2.4). Secondary metabolites such as 

antimicrobial molecules are usually produced in the later phases of growth (McGowan et al., 1995; 

Ruiz et al., 2010). Similar experiments in liquid media showed no impact of P. c. subsp. brasiliensis 

ICMP 19477 on the growth of P. atrosepticum SCRI1043 in co-inoculated cultures however, suggesting 
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that the suppression of growth observed in vitro was restricted to the more structured environment 

of the solid media plates. These results confirmed the initial hypothesis, and supported the idea that 

an antimicrobial might be involved in the reduction of P. atrosepticum SCRI1043 growth (as suggested 

by the zones of inhibition caused by P. c. subsp. brasiliensis ICMP 19477 on the sensitive SRE). In other 

studies, in vitro data has shown that producers of antimicrobial molecules gain their greatest 

competitive advantage (against competing and sensitive strains) under conditions of a more 

structured environment as the antimicrobial molecule reaches a high enough concentration to be 

effective, even if the producer is rare (Chao and Levin, 1981; Durrett and Levin, 1997; Gardner et al., 

2004). 

Greater inhibition of P. atrosepticum SCRI1043 populations was observed in potato tubers than in in 

vitro plate assays. This could be due to P. c. subsp. brasiliensis ICMP 19477 producing virulence factors 

that enable the bacterium to colonise the tuber more quickly than P. atrosepticum SCRI1043, leading 

to competitive exclusion of its competitor.  It has previously been described that P. c. subsp. 

brasiliensis is a more aggressive pathogen in vivo than P. atrosepticum (Marquez-Villavicencio et al., 

2011). Genomic comparisons between P. atrosepticum SCRI1043, P. c. subsp. brasiliensis PBR1692 and 

P. c. subsp. carotovorum WPP14 identified genes within PBR1692 and WPP14, which encoded putative 

enzymes associated with the utilisation of plant cell wall degradation products. Homologous genes 

were not found within the genome of SCRI1043 (Glasner et al., 2008). These genes included a putative 

permease enzyme that may import digested polymer, a putative polysaccharide deacetylase and a 

putative Asp/Glu racemase, which may degrade the digested polymers (Glasner et al., 2008).   

Given that P. c. subsp. brasiliensis ICMP 19477 and P. atrosepticum SCRI1043 would be in competition 

with one another and potentially with other organisms in the tuber, the production of one or more 

antimicrobials by P. c. subsp. brasiliensis ICMP 19477 may also lead to the suppression of P. 

atrosepticum SCRI1043 by P. c. subsp. brasiliensis ICMP 19477. This idea has been poorly explored in 

plant pathology, with the major focus of research on the benefit of virulence factors that influence 

the interaction of the pathogen with the plant host. In fact, reviewing the current literature failed to 

provide any evidence that antimicrobial production has been shown to provide a competitive 

advantage to a bacterial pathogen in its ecological niche (in this case the tuber, where infection first 

takes place). Antimicroial competition between P. c. subsp. carotovorum in potato tubers has 

previously been predicted by Axelrood et al., (1988), however the observed competition was not 

confirmed to be due to the production of an antimicrobial molecule. More recently, Garlant et al., 

(2013) proposed that D. solani may have emerged as a result of producing a novel array of NRPs, which 

may function as antimicrobials. Again, functional data to support this theory was not provided. 
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The production of antimicrobials by plant pathogens such as P. c. subsp. brasiliensis ICMP 19477 has 

not been extensively studied, but it is possible that conditions in the tuber lead to increased 

production of these molecules. However, it was found that production of the phenazine molecule by 

P. atrosepticum SCRI1043, was not induced in the presence of potato tuber extract (Mattinen et al., 

2008).   

It is known that high levels of some nutrients, including sugars, interfere with the production of 

secondary metabolites including antimicrobial molecules (Demain, 1989). For example, when high 

levels of a rapidly used carbon source are present, there is little secondary metabolite production 

(Demain, 1989). It is not until the preferred carbon source is depleted and the ‘second best’ nutrient 

source is utilised, that secondary metabolites are produced (Demain, 1989; Ruiz et al., 2010). Other 

nutrients such as high levels of inorganic phosphate repress carbapenem production in Serratia 

(Whitehead et al., 2001). Consequently nutrient starvation in the host plant may increase the level of 

antibiotic production by the bacteria when compared to in vitro conditions.  

Bioinformatic analysis identified multiple putative antimicrobial clusters within the genome of P. c. 

subsp. brasiliensis. It was predicted that one or more of these clusters encodes the antimicrobial 

molecule that confers a competitive advantage to P. c. subsp. brasiliensis. Pectobacterium 

carotovorum subsp. brasiliensis ICMP 19477 harbours a variety of horizontally acquired elements, 

many of which encode putative antimicrobials (Preetinanda Panda, 2014). The antimicrobials encoded 

vary in type, but include putative NRPs, bacteriocins and carbapenems. A closer examination of the 

biosynthetic clusters responsible for the production and transport of these molecules demonstrated 

that the bacteriocin were highly similar in the two P. c. subsp. brasiliensis strains compared, but were 

only distantly related or absent in other strains that were unable to inhibit P. atrosepticum SCRI1043. 

For example, the carbapenem cluster in P. c. subsp. brasiliensis ICMP 19477 is conserved between the 

P. c. subsp. brasiliensis strains. A carbapenem cluster is also present in P. c. subsp. carotovorum ICMP 

5702, however the nucleotide identity showed that this cluster was divergent from the P. c. subsp. 

brasiliensis cluster; the influence of diversity on the activity of the related molecules is unknown.  

Non-ribosomal peptides can be involved in interactions between pathogens and their plant hosts as 

well as in microbial interactions (Sinden et al., 1971). The NRPS cluster in P. c. subsp. brasiliensis ICMP 

19477 was of initial focus due to its potential role as a phytotoxin, but data not described here showed 

that inactivation of the NRPS cluster did not influence the capacity of P. c. subsp. brasiliensis ICMP 

19477 to infect potato plants (Preetinanda Panda, 2014). Thus it was deemed highly likely that this 

molecule was involved in microbial interactions. Furthermore, the NRP biosynthetic cluster was 

distinct in all strains where it was detected, producing molecules that were related but different. As 
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the influence of amino acid differences on function or specificity was unknown, a role for the NRP in 

competition between P. c. subsp. brasiliensis ICMP 19477 and P. atrosepticum SCRI1043 remained a 

possibility.  

The genetic organisation of the genes within the NRPS cluster suggested that the three genes were 

transcribed as an operon. An operon structure was also predicted as horizontally acquired genes of 

related function tend to cluster together to increase their chance of transmission (Lawrence, 1999). 

Operon structures are also seen in other NRPS gene clusters including many within the Bacillus species 

including those for the antifungal compounds iturin A and mycosubtilin (Duitman et al., 1999; Tsuge 

et al., 2001). Furthermore, two of the three genes involved in the production of the pigment 

indigoidine in Dickeya are also transcribed together (Reverchon et al., 2002). Interestingly, the two 

synthetase genes which encode syringomycin in P. syringae, are individually transcribed (Guenzi et al., 

1998).   

Carotovoricin was first described as a proteinaceous, narrow spectrum bacteriocin produced by P. c. 

subsp. carotovorum (Lysak, 1979). The activity of carotovoricin has previously been described against 

other P. c. subsp. carotovorum strains, such as EC-2P7, 645Ar and NA8 (Nguyen et al., 2001; Jabeen et 

al., 2014), activity against P. atrosepticum has not been described. This is consistent with the 

description that bacteriocins are only active against closely related species (Klaenhammer, 1988). The 

specific activity against P. c. subsp. carotovorum strains, as well as the fact that P. c. subsp. 

carotovorum ICMP 5702 also encodes the Ctv CDSs but does not inhibit the growth of P. atrosepticum 

SCRI1043, suggests that carotovoricin is not responsible for the activity of ICMP 19477 against 

SCRI1043.     

Phenazines are produced by many host-associated bacteria (Pierson III and Pierson, 2010). The 

production of phenazines has been associated with the persistence of the producing bacteria within 

the environment, even without the presence of competitors (Kobayashi and Tagawa, 2004; Price-

Whelan et al., 2006; Hassett et al., 2009). Phenazine biosynthesis genes have been identified in both 

P. c. subsp. brasiliensis ICMP 19477 (Panda et al., 2015b) and P. atrosepticum SCRI1043 (Bell et al., 

2004).  The two phenazine synthesis clusters showed high nucleotide similarity (93%). This high 

similarity suggests that the two phenazine molecules will also be highly similar. It is therefore unlikely 

that the phenazine produced by P. c. subsp. brasiliensis ICMP 19477 is active against P. atrosepticum 

SCRI043. However, it is not known how the differences in nucleotide identity would influence the 

specificity of the phenazine molecule.   
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The P. c. subsp. brasiliensis strains were found to encode a bacteriocin synthesis cluster that was 

absent from the genomes of P. c. subsp. carotovorum ICMP 5702, Pcc21 and P. atrosepticum SCRI1043. 

The absence of the genes from the other SRE genomes, suggested that the bacteriocin is likely involved 

in the inhibition of P. atrosepticum by P. c. subsp. brasiliensis ICMP 19477. However, bacteriocins 

produced by P. c. subsp. carotovorum strains, such as carocin D, have only been described to have 

activity against other P. c. subsp. carotovorum strains (Roh et al., 2010). However, some studies 

focusing on bacteriocin activity have described that they may be active against more distant bacterial 

species and even viruses (Wachsman et al., 1999; Todorov et al., 2010).      

Carbapenem antimicrobial molecules are described as having a broad spectrum of activity (Ratcliffe 

and Albers-Schonberg, 1982). They have also been predicted to be responsible for increased fitness of 

the Pectobacterium that encode them, both in vitro and in planta (Axelrood et al., 1988; Marquez-

Villavicencio et al., 2011); however, these predictions have not been confirmed genetically or 

functionally. Therefore the carbapenem encoded within the genome of P. c. subsp. brasiliensis ICMP 

19477 may also be predicted to function in the inhibition of P. atrosepticum SCRI1043 in vitro and in 

potato tubers. The P. c. subsp. brasiliensis type strain PBR1692, which also inhibits P. atrosepticum 

SCRI1043 in vitro, encodes a carbapenem cluster with 98% nucleotide identity to ICMP 19477. 

However, P. c. subsp. carotovorum ICMP 5702, which is not antagonistic towards P. atrosepticum 

SCRI1043 in vitro, also encodes a carbapenem synthesis cluster. This cluster was found to have 87.8% 

nucleotide identity to the carbapenem cluster of P. c. subsp. brasiliensis ICMP 19477. This difference 

may be sufficient to produce carbapenem molecules with different specificities.         

To establish whether one or more of these antimicrobials had activity against P. atrosepticum 

SCRI1043 and was responsible for the inhibition of this bacterium in competition assays in vitro and in 

tubers, attempts were made to purify the molecule(s) using MS techniques. However, no potential 

antimicrobial molecules were detected, possibly for a number of reasons. Firstly, it is difficult to 

successfully identify an unknown antimicrobial molecule as the purification methods for each type of 

molecule are very specific (Hayashi et al., 2014). In this study a general methanol extraction method 

was used, as this is suitable for most carboxylic acid molecules (David Greenwood, personal 

communication). However, this may not be suitable for the molecule produced by P. c. subsp. 

brasiliensis ICMP 19477. Secondly, it may be that the molecule is unstable, or unstable under the 

extraction conditions used. For example the simple carbapenem molecule SQ 27,860, produced by 

Serratia and Erwinia, has been reported as particularly unstable above temperatures of 5°C (Wagman 

and Cooper., 1988). Finally, even though triplicate samples were used in order to increase the amount 

of the antimicrobial present in each sample, the concentration may not have been high enough. It is 
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often reported that antimicrobial encoding genes are over expressed via an E. coli expression system, 

to produce sufficient antimicrobial product for purification (Trauger and Walsh, 2000; Owston and 

Serpersu, 2002).      

  As attempts to purify the antimicrobial were unsuccessful, a functional genetics approach was 

required to inactivate one or more of the antimicrobials produced by P. c. subsp. brasiliensis ICMP 

19477. This approach was used successfully to identify the carocin D synthesis genes in P. c. subsp. 

carotovorum Pcc21 (Roh et al., 2010).  Chapter 4 describes the functional genetics experiments that 

enabled the identification of the biosynthetic cluster responsible for the antagonism of P. 

atrosepticum SCRI1043 by P. c. subsp. brasiliensis ICMP 19477 both in vitro and in potato tubers.
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Appendix B 

B.1 In vitro competition graphs 
 

 
 

Second, independently conducted experiment, demonstrating the effect of co-inoculation with P. c. 

subsp. brasiliensis (Pbr) ICMP 19477 on growth of P. atrosepticum (Pba) SCRI1043 on solid agar 

plates (MMA).  

A: A graph showing the growth (mean CFUs) of P. atrosepticum SCRI1043 Km (Pba K) and Rif (Pba R) 

resistant strains over a 48 h period at 28°C when inoculated onto MMA in isolation or when co-

inoculated with P. c. subsp. brasiliensis ICMP19477 tagged with either a Km (Pbr K) or Rif (Pbr R) 

resistance determinant (at a 1:1 ratio). B: A graph showing the growth (mean CFUs) of Pbr K or Pbr R 

when cultured in isolation on solid agar plates or in co-inoculations with Pba K or Pba R (at a 1:1 ratio). 

For each graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), 

error bars represent the standard deviation.     
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B.2 Liquid culture competition graphs 
 

 

 

Second, independently conducted experiment, demonstrating the effect of co-inoculation with P. c. 

subsp. brasiliensis (Pbr) ICMP 19477 on growth of P. atrosepticum (Pba) SCRI1043 in liquid cultures 

(MM). 

 A: A graph showing the growth (mean CFUs) of P. atrosepticum SCRI1043 Km (Pba K) and Rif (Pba R) 

resistant strains over a 48 h period at 28°C when inoculated into MM in isolation or in media co-

inoculated with P. c. subsp. brasiliensis ICMP 19477 tagged with either a Km (Pbr K) or Rif (Pbr R) 

resistance determinant (at a 1:1 ratio). B: A graph showing the growth (mean CFUs) of Pbr K or Pbr R 

when cultured in isolation in liquid cultures or in co-inoculations with Pba K or Pba R (at a 1:1 ratio). 

For each graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), 

error bars represent the standard deviation.     
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B.3 Tuber competition graphs 
 

 

 
Second, independently conducted experiment, using potato tubers sourced at a different time of 

year, demonstrating the effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 on 

growth of P. atrosepticum (Pba) SCRI1043 in potato tubers (‘Ilam Hardy’). 

 A: A graph showing the growth (mean CFUs) of P. atrosepticum SCRI1043 Km (Pba K) and Rif (Pba R) 

resistant strains over a 48 h period at 28°C when inoculated into MM in isolation or in media co-

inoculated with P. c. subsp. brasiliensis ICMP 19477 tagged with either a Kn (Pbr K) or Rif (Pbr R) 

resistance determinant (at a 1:1 ratio). B: A graph showing the growth (mean CFUs) of Pbr K or Pbr R 

when cultured in isolation in potato tubers or in co-inoculations with Pba K or Pba R (at a 1:1 ratio). 

For each graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), 

error bars represent the standard deviation.     
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Chapter 4  

Carbapenem production is required for suppression of 

Pectobacterium atrosepticum SCRI1043 by Pectobacterium 

carotovorum subsp. brasiliensis ICMP 19477 in co-inoculated tubers 

 

4.1 Introduction 

Bioinformatic analyses of the P. c. subsp. brasiliensis ICMP 19477 genome identified a variety of 

putative antimicrobial clusters potentially conferring both antimicrobial activity against P. 

atrosepticum SCRI1043 and competitive fitness to this pathogen. Of particular interest was an NRP 

biosynthetic cluster found only in P. c. subsp. brasiliensis ICMP 19477 (Section 3.2.8). Non-ribosomal 

peptides contain features distinct from ribosomally synthesised peptides, forming macrolytic or 

branched macrolytic structures containing a combination of up to 600 identified non-proteinogenic 

residues (Caboche et al., 2010). Residues can include N-methylated or D-structured amino acids 

(Mootz et al., 2002). The structural diversity provided by this array of residues confers diverse chemical 

and pharmaceutical activities, which enable the producers to adapt to their environmental niches. For 

example, NRPs are known to act as siderophores, biosurfactants and antibiotics (Schwarzer et al., 

2003; Giessen and Marahiel, 2012). In the plant-pathogenic bacteria Pseudomonas syringae, the NRP 

syringomycin not only acts as a phytotoxic molecule that enhances virulence, it also acts as a broad 

spectrum antimicrobial and biosurfactant molecule (Backman and DeVay, 1971; Sinden et al., 1971; 

Bender et al., 1999b). Furthermore, Dickeya produces a blue pigmented NRP, indigoidine. Indigoidine 

defective mutants are less aggressive than the WT, possibly due to decreased resistance to oxidative 

stress (Reverchon et al., 2002). 

Dickeya solani has emerged as an aggressive pathogen in Europe, replacing previously dominant 

Pectobacterium and Dickeya species. It also exhibits increased resistance against inhibition from other 

bacteria within the ecological niche (Czajkowski et al., 2013). Dickeya solani-specific NRPS/PKS gene 

clusters have been identified through genome analysis, which are not present in other Dickeya or 

Pectobacterium (Garlant et al., 2013). It is predicted that the presence of these novel NRPS/PKS 

clusters, or the novel combination of such clusters, have enhanced D. solani’s adaptation to its 

environment and enabled its emergence (Garlant et al., 2013). Similarly, the NRPS cluster harboured 
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in the genome of P. c. subsp. brasiliensis ICMP 19477 may have contributed to the recent emergence 

of this pathogen (Duarte et al., 2004).          

The bacteriocin harboured on PbN1-GI38 might also contribute to the competitive fitness of P. c. 

subsp. brasiliensis ICMP 19477 in potato. Genomic studies previously showed that bacteriocin 

synthesis genes are abundant in plant pathogens and are likely to play an important role in bacterial 

interactions (Hu and Young, 1998; Holtsmark et al., 2008). As bacteriocin production is under tight 

regulation, however, the production of many bacteriocins went unknown prior to the age of genome 

sequencing (Brurberg et al., 1997). Bacteriocin production has been associated with competition 

between bacteria within the rhizosphere (Parret et al., 2003). For example, bacteriocin production has 

been implicated in competition in plant nodules by Rhizobium strains. Interestingly, transposon 

mutants that were unable to produce a bacteriocin were more competitive than the antibiotic 

producer (Dowling and Broughton, 1986). These results emphasise that much remains unknown about 

the function of bacteriocins produced by plant-associated bacteria.  

The carbapenem encoded by P. c. subsp. brasiliensis ICMP 19477 may also be involved in the inhibition 

of P. atrosepticum SCRI1043 and its enhanced fitness in potato tubers. Certainly, carbapenem 

production was previously considered important in the recent emergence of the pathogen overseas 

(Marquez-Villavicencio et al., 2011). Carbapenems are encoded by various SREs , although many are 

potentially functionally cryptic (Gardan et al., 2003). Cryptic clusters lack a functional CarR homologue 

and are therefore not transcribed (Holden et al., 1998). This suggests that carbapenem production 

may be required under very specific conditions and that their functions in many strains are now 

redundant. This provides evidence for the argument that antimicrobial molecules do not confer a 

significant long term advantage.  

The QS regulatory network ensures that in SREs, carbapenem synthesis is simultaneous with PCWDE 

production (Bainton et al., 1992; Jones et al., 1993a). Therefore, synthesis of the antimicrobial is 

dependent on a high bacterial population density and not the presence of a competing organism 

(McGowan et al., 2005). As carbapenem production is concurrent with the release of nutrients into 

the local environment, it suggests that the antimicrobial functions to defend the producer’s ecological 

niche rather than to invade an established population of competing organisms.  

The study of antimicrobial production and function requires the creation of mutants that do not 

produce the molecule. A transposon mutant library is a commonly utilised method in such studies 

(Dowling and Broughton, 1986; Roh et al., 2010), as this method enables the production and screening 

of a large number of mutants for changes in activity. This approach was used successfully to identify 
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the carocin D synthesis genes in P. c. subsp. carotovorum Pcc21 (Roh et al., 2010). A transposon 

mutant library has also successfully been created in the SRE P. atrosepticum SCRI1043 (Holeva et al., 

2004). 

 In this chapter, P. c. subsp. brasiliensis ICMP 19477 mutants developed using a combination of allelic 

exchange mutagenesis and random transposition were screened for changes in their activity against 

P. atrosepticum SCRI1043 and an associated loss of fitness in competition assays. NRP-related mutants 

generated by allelic exchange were previously produced by Preetinanda Panda (Unpublished doctoral 

thesis). In her study, however, she described significant difficulties in the production of such mutants, 

possibly due to the presence of two restriction modification systems (Preetinanda Panda, 2014). Thus, 

new mutants were generated using a transposon mutagenesis approach. This also seemed 

appropriate given several candidate loci remained of interest after bioinformatics analysis had been 

performed.  
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4.2 Results 

4.2.1 The non-ribosomal peptide of Pectobacterium carotovorum subsp. 

brasiliensis ICMP 19477 is not involved in the inhibition of Pectobacterium 

atrosepticum SCRI1043 

Mutants previously created within the P. c. subsp. brasiliensis ICMP 19477 NRPS biosynthetic cluster 

(Preetinanda Panda, 2014) were screened for their inhibition of P. atrosepticum SCRI1043. In 

particular, a double crossover mutant of nrps1 (KCO_06050) and a single crossover mutant of the ABC 

transporter (KCO_06055) (Table 2.2) were tested to determine whether these genes were involved in 

the production of the antimicrobial molecule active against P. atrosepticum SCRI1043. The mutants 

were tested using the antagonism assay (Section 2.1.21). It was believed that a single crossover 

mutant, although still carrying a wild-type copy of the gene, would be impaired in synthesis or 

transport of the NRP due to the operon structure of this biosynthetic cluster (Section 3.2.8). A third 

mutant, P. c. subsp. brasiliensis SIM- (KCO_20372) (Table 2.2), which harboured a mutation in a gene 

outside the NRP biosynthetic cluster, was tested to ensure that the process of mutagenesis had not 

impaired the production of the antimicrobial.  

In these assays, the nrps1 mutant (P. c. subsp. brasiliensis nrps-) produced a clear zone of inhibition 

(Figure 4.1), which was reduced in size compared to the WT. This indicated a possible contribution by 

the NRP to the antibiotic affect, although it is unlikely to be the main antibiotic producing mechanism. 

Contradicting this result, however, the abc mutant (P. c. subsp. brasiliensis abc-) repeatedly failed to 

inhibit the growth of P. atrosepticum SCRI1043 (Figure 4.1). Pectobacterium carotovorum subsp. 

brasiliensis sim- produced zones of inhibition similar to those of the WT, confirming that the process 

of mutagenesis was not responsible for the change in phenotype of the abc mutant. These results 

suggested that the ABC transporter may act independently of the other NRP-related genes, to 

transport the antimicrobial synthesized by another gene cluster out of the cell.  
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Figure 4.1. In vitro growth inhibition of P. atrosepticum (Pba) SCRI1043 by P. c. subsp. brasiliensis 

(Pbr) ICMP 19477, Pbr nrps1- (non-ribosomal peptide synthetase mutant), Pbr abc- (ABC transporter 

mutant) and Pbr sim- (sugar isomerase mutant). 

 Plates pre-seeded with a lawn of Pba SCRI1043 were incubated at 28 °C for 24 h after inoculation with 

the producer strain (Section 2.1.21). A positive result was indicated by the presence of a zone of 

inhibition around the Pbr colony.    

 
 
 

4.2.2 Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 produces a 

diffusible antimicrobial molecule in late exponential/ early stationary phase 

likely to be a β-lactam. 

As inactivation of nrps1 did not abolish inhibition of P. atrosepticum SCRI1043, P. c. subsp. brasiliensis 

ICMP 19477 was plated onto an E. coli strain (ESS), which is supersensitive to β-lactam antimicrobials, 

to examine whether the carbapenem produced by this bacterium might be responsible (Bainton et al., 

1992). In these assays (Section 2.1.21, data not shown), P. c. subsp. brasiliensis ICMP 19477 inhibited 

the growth of ESS indicating that P. c. subsp. brasiliensis ICMP 19477 does produce a β-lactam (likely 

to be the carbapenem), as predicted by bioinformatics (Section 3.2.12).  

A supernatant antagonism assay (Section 2.1.30), using ESS (Table 2.2) as the bacterial lawn, also 

confirmed that P. c. subsp. brasiliensis ICMP 19477 produced a β-lactam (likely the carbapenem) at 

Pbr ICMP19477 

Pbr nrps1- 

Pbr abc- 

Pbr sim- 
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late exponential / early stationary phase, 7 hpi (Figure 4.2). A reduction in the zone size between 11 

and 12 hpi, however, suggested a reduction in antimicrobial activity later in stationary phase. This 

profile corresponded with the production of a carbapenem by P. c. subsp. brasiliensis ICMP 19477.        

 

 

 

 

 

Figure 4.2. Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 produces a secreted 

antimicrobial molecule at late exponential/early stationary phase.  

Cell-free, growth culture supernatant was prepared from P. c. subsp. brasiliensis ICMP 19477 cultures, 

grown in LB media, every hour for 12 h. The supernatant samples were inoculated onto agar plates 

seeded with the β-lactam super-sensitive E. coli (ESS) (as described in Section 2.1.29). After 24 h 

incubation at 28 °C, the diameter of the resulting zones of inhibition were measured and the zone 

area (cm2) calculated. The zone size was calculated from the zone area (cm2)/OD600 to adjust for the 

growth effect on zone size. 
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4.2.3 Activity against the E. coli super-sensitive strain proves that the ABC 

transporter of the NRPS cluster is not involved in antimicrobial production by 

Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 

The assay using the ESS strain was subsequently used to determine if the P. c. subsp. brasiliensis abc- 

transporter mutant was unable to inhibit the growth of the bacterium, which would indicate a role in 

transporting the β-lactam produced by P. c. subsp. brasiliensis ICMP 19477. In this assay, the ABC 

transporter mutant produced a zone of inhibition (Figure 4.3), suggesting that the transporter was not 

involved in the transport of the β-lactam. 

 

 

 

Figure 4.3. In vitro growth inhibition of E. coli supersensitive stain ESS by P. c. subsp. brasiliensis 

(Pbr) ICMP 19477, the non-ribosomal peptide synthetase mutant (Pbr nrps1-) and the ABC mutant 

(Pbr abc-).  

Plates pre-seeded with a lawn of ESS were incubated at 28 °C for 24 h after inoculation with the 

producer strains (as described in Section 2.1.21). A positive result was indicated by the presence of a 

zone of inhibition around the P. c. subsp. brasiliensis colony.    
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4.2.4 The ABC transporter mutant probably has a non–inhibitor phenotype due to 

impaired growth 

In the antagonism assays, it was observed that the ABC transporter mutant streaked onto the plates 

produced smaller, seemingly less healthy colonies suggesting the strain may be impaired in growth on 

P. atrosepticum SCRI1043 (Figure 4.1). This was explored by measuring the growth of the mutant in 

liquid cultures (Section 2.1.23, 2.1.25) compared to the WT. This experiment demonstrated that the 

mutant was not able to grow as well as the P. c. subsp. brasiliensis ICMP 19477 WT, the CFU/ml values 

for (P. c. subsp. brasiliensis ABC-) proving lower than the WT at all sampling times (p < 0.001) (Figure 

4.4). Results were consistent in a second independently conducted experiment (data not shown), 

confirming that the reduced growth of the P. c. subsp. brasiliensis abc- mutant was likely responsible 

for its inability to inhibit the growth of P. atrosepticum SCRI1043 in the original plate assays.  

 

 

 

 

Figure 4.4. Growth of the P. c. subsp. brasiliensis (Pbr) ABC transporter mutant (P. c. subsp. 

brasiliensis abc-) was reduced in liquid cultures, compared to the growth of P. c. subsp. brasiliensis 

ICMP 19477 (WT).  

The graph shows the growth (mean CFUs) of the WT as well as the ABC transporter mutant over 48 h 

post inoculation with 104 CFUs/ml of each bacteria (as described in Section 2.1.23). The mean CFUs 

represent the mean over three test cultures. Error bars are 95% confidence limits.  
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4.2.5 Tn5 mutagenesis was used to create additional Pectobacterium carotovorum 

subsp. brasiliensis ICMP 19477 mutants that did not inhibit the growth of 

Pectobacterium atrosepticum SCRI1043 

As functional analysis confirmed that the NRPS cluster (KCO_06055-06045/17262) was not involved in 

the production of the targeted antimicrobial molecule in P. c. subsp. brasiliensis ICMP 19477 (Figure 

4.3) and the assays using ESS had provided evidence that P. c. subsp. brasiliensis ICMP 19477 could 

produce a β-lactam, it was hypothesised that the carbapenem predicted to be produced by the gene 

cluster on PbN1-G165 was responsible for the inhibition of P. atrosepticum SCRI1043 both in vitro and 

in potato tubers. The results did not rule out the involvement of other antimicrobial molecules, 

however, so to ensure all antimicrobial molecules involved in the activity against P. atrosepticum 

SCRI1043 could be identified, mutants of P. c. subsp. brasiliensis ICMP 19477 were created via random 

transposon mutagenesis and screened for loss of activity against P. atrosepticum SCRI1043. 

Transposon mutagenesis was also used instead of allelic exchange (as used to create the NRP mutants) 

as allelic exchange had previously proven exceptionally difficult in P. c. subsp. brasiliensis ICMP 19477, 

largely resulting in single crossover events that did not disrupt the targeted gene.     

 

 

4.2.5.1 Optimisation and screening of the transposon mutant library identifies mutants 

unable to generate a zone of inhibition. 

Tn5 mutagenesis was initially conducted using a method adapted from that previously used for P. c. 

subsp. carotovorum Pcc11 and P. atrosepticum (Holeva et al., 2004). The protocol advised that the 

incubation time between the conjugation strains could be a minimum of 6 h, or overnight for 16 h. 

Conjugations were set up and the colonies incubated at 28 °C for 6 h, 16 h or 40 h. The protocol was 

then completed as described in Sections 2.1.17 and 2.1.18. Using this method, more transconjugants 

(Amp sensitive and Km resistant, indicating loss of the transposon plasmid and insertion of the Tn5 

cassette) were produced after conjugation for 16 h than after incubation for six or 40 h. Thus, a 16 h 

conjugation was used for all further experiments to generate the library of Tn5 mutants.  

To confirm the authenticity of each transconjugant, two rounds of replica plating on Amp and Km were 

carried out. On the second round of replica plating, however, it was observed that many mutants 

remained resistant to Amp. This suggested that the plasmid had not been cured and the transposon 

had not incorporated into the genome via a double crossover event. The Amp resistant mutants were 

confirmed as P. c. subsp. brasiliensis ICMP 19477 and not E. coli by PCR (Section 2.1.10), so in order to 
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initiate a double crossover, the transconjugates were plated onto LBA containing no antibiotics and 

incubated at 28 °C overnight. The plates were then stored at 4°C for up to three days and replica plated 

to determine Km resistance and Amp sensitivity (a process repeated if necessary), the full protocol is 

given in Sections 2.1.17 and 2.1.18. It was observed that through replica plating, the number of Amp 

sensitive transconjugates increased, but 50% of those picked remained Amp resistant. Thus, a Tn5 

library of only 1,500 Amp sensitive, Km resistant transconjugates was produced using this method. 

The reasons for this unexpected retention of the delivery vector for Tn5 are discussed in Section 4.3 

For the production of the remaining mutants required for the library, the transconjugates were grown 

on non-selective MMA, following the initial growth on MMA containing Km. It was anticipated this 

would initiate double crossover recombination events and cure the plasmid at a greater frequency. 

Using this method, a library of 4,520 mutants was generated, which represents a one-fold coverage 

of the genome (Holeva et al., 2004). The Amp sensitive, Km resistant mutants were confirmed to be 

P. c. subsp. brasiliensis ICMP 19477 by PCR (Section 2.1.10) using primers Pbr NZ F and Pbr NZ R, which 

amplified from P. c. subsp. brasiliensis ICMP 19477 but not E. coli (Table 2.3).  

A screen (Section 2.1.21) of the library of Tn5 mutants for transconjugants unable to generate zones 

of inhibition on P. c. subsp. brasiliensis ICMP 19477 identified 42 putative ‘non-inhibitors’.  

 

4.2.5.2 Identification of the Tn5 insertion sites 

The transposon insertion sites for 18 of the 42 putative non-inhibitors were identified by genome 

sequencing followed by sequence analysis (Section 2.1.19). Twelve were shown to have retained the 

plasmid as well as the transposon, indicative of a single cross-over, despite being sensitive to ampicillin 

(Figure 4.5 A). As a result these were not analysed further. 

Six of the mutants sequenced were found to have been generated via a true transposition event, 

containing a single copy of the transposon within the genome and no evidence of the delivery vector 

(Figure 4.5 B). The insertion sites for each of the six mutants were identified within the sequence data. 

One of these mutants showed poor read coverage, meaning the insertion site identified was 

unreliable. Therefore, this mutant was excluded from any further analysis.   

 





 131 

4.2.6 Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 mutants unable 

to inhibit Pectobacterium atrosepticum SCRI1043 contained Tn5 insertions 

within carbapenem associated genes 

The Tn5 cassette had inserted into CDSs associated with carbapenem production in three of the five 

mutants analysed using genome sequencing. For example, BLASTn analysis of the DNA sequence 

flanking the Tn5 cassette against the genome sequence for P. c. subsp. brasiliensis ICMP 19477 

(Section 2.1.1) showed that the mutant annotated as BF9 was disrupted in the CDS KCO_04647 (Table 

2.4). Comparison of KCO_04647 with the nucleotide database in Genbank using BLASTn (Section 2.1.1) 

showed that it was most similar to carR from P. c. subsp. carotovorum ATCC39048 (ID = 98%, E = 0). 

CarR is a member of the LuxR type transcriptional regulator family (McGowan et al., 1995), which is 

located directly upstream of the carbapenem biosynthetic cluster and regulates carbapenem synthesis 

(Section 1.6.2.2) (McGowan et al., 1995). BF9 was renamed P. c. subsp. brasiliensis carR-, reflecting 

the insertion site of Tn5 in this mutant. 

In the Tn5 mutant initially identified as NPFH1, the transposon had inserted into the CDS KCO_03547 

(Table 2.4). The protein encoded by KCO_03547 showed greatest similarity to carI of P. c. subsp. 

carotovorum ATCC39048 (ID = 99%, E = 3e-156,) when compared with the Genbank database using 

BLASTx (Section 2.1.1). CarI is a LuxI type regulator, which synthesises N-AHLs, which are involved in 

quorum sensing regulation of carbapenem production as well as other cellular processes (Fuqua et al., 

1994). As a result, NPFH1 was renamed P. c. subsp. brasiliensis carI-. 

The third mutant of interest, IH1, contained a transposon insertion within KCO_21137 (Table 2.4). The 

protein encoded by this CDS showed greatest similarity to the transcriptional regulator SlyA of P. c. 

subsp. carotovorum (E = 3e-98, ID = 100%), when comparing its sequence to the Genbank database 

using BLASTx (Section 2.1.1). The SlyA/MarR transcriptional regulators have been shown to regulate 

many processes including carbapenem production (Thomson et al., 1997; Ellison and Miller, 2006). 

This mutant was renamed P. c. subsp. brasiliensis slyA-.  

In the remaining two mutants, the CDSs disrupted by the insertion of the transposon, were seemingly 

in insertions unrelated to carbapenem production. For example, in NPEA3, Tn5 was inserted into 

KCO_20642. This CDS had no similarities to known genes in the Genbank database, and encodes a 

protein with  greatest similarity to a hypothetical protein from Pseudomonas aeruginosa (ID = 76%, E 

= 7e-153). This mutant was known as P. c. subsp. brasiliensis hypo-.  Furthermore, mutant LE3 

contained a Tn5 insertion within KCO_11260, which encoded a protein with greatest similarity to a 
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potential membrane protein of P. c. subsp. carotovorum (ID = 100%, E = 0). The protein belongs to a 

superfamily of bacterial proteins of unknown function, with only a few being described as membrane 

proteins (E = 1.15e-45). The mutant was known as P. c. subsp. brasiliensis mp-.   

 

4.2.7 Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 mutants 

harbouring Tn5 insertions within carbapenem-associated genes were unable 

to inhibit Eschericia coli super-sensitive 

The five mutants described above were screened for their capacity to inhibit ESS (Section 2.1.21). This 

screen was not used when initially selecting the mutants, as the focus of the study was to identify 

mutants of P. c. subsp. brasiliensis ICMP 19477 that could not inhibit the growth of P. atrosepticum 

SCRI1043. Instead, the ESS screen was used to support the evidence above, which indicated that genes 

associated with carbapenem biosynthesis had been inactivated and that production of this β-lactam 

was probably disabled (or significantly reduced) in at least three of the mutants.  The screen revealed 

that the carR, carI and slyA mutants were unable to inhibit the growth of the ESS (Figure 4.6 C, E, F). 

In contrast, the hypothetical protein mutant P. c. subsp. brasiliensis hypo- and the membrane protein 

mutant P. c. subsp. brasiliensis mp- still produced a zone of inhibition on ESS (Figure 4.6 B and D). This 

indicated that the carR, carI and slyA mutants were unable to produce a β-lactam. Furthermore, given 

these mutants were also unable to inhibit the growth of P. atrosepticum SCRI1043, it was considered 

the production of this β-lactam was required for inhibition of both ESS and P. atrosepticum SCRI1043. 

The two remaining mutants did not appear to be required for production of the carbapenem, although 

the reduced zone of inhibition produced by P. c. subsp. brasiliensis mp- suggested it may have some 

more subtle role in production or secretion of the β–lactam.    

To confirm the insertion sites for Tn5 in the three mutants of interest, P. c. subsp. brasiliensis carR-, 

carI- and slyA-, PCR was conducted using the Tn5 primer and a primer designed to bind 

upstream/downstream of the putative insertion site (Table 2.3). The sequences confirming the 

insertion sites within these mutants are given in Appendix C, the insertion sites are listed in Table 2.4.    

The carR, slyA and carI mutants were subsequently tested in a supernatant antagonism time curve 

(Section 2.1.30). All mutants failed to produce a zone of inhibition at any sampling time during the 

assay (data not shown) whereas the WT showed the same production at late exponential – early 

stationary phase as in previous experiments (data not shown). These results confirmed that antibiotic 

production had been inactivated in these mutants.  
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The carR gene was predicted by RaptorX to encode a protein that comprised 45% helices, 11% β-

sheets and 42% coils.  Coils refers to regions of the secondary structure that do not form recognised 

secondary structures such as helices, sheets and turns (Kabach and Sander, 1983). 11% of the structure 

was predicted to be disordered. The structure was predicted to contain nine helices, between the 

amino acid residues 2-15, 42-50, 58-65, 85-91, 125-154, 171-181, 186-193, 197-211 and 216-225. A 

helix-turn-helix motif was also predicted between the amino acid residues 197-211. ProteinPredict 

analysis also identified dinucleotide binding regions within the protein structure (c-score 0.02). The c-

score refers to the confidence of the predicted structure, with the value typically ranging from -5 to 2 

(with a value of 2 representing the most confident prediction). This was confirmed by I-TASSER, which 

predicted an 18 residue binding site, predicted to bind OHHL (c-score 0.58). Two nucleic acid binding 

regions, of nine and seven residues respectively were also predicted (c-score 0.08, c-score 0.03). These 

features, plus the relatively high helices content and helix-turn-helix motif, were consistent with a 

putative DNA binding protein. Furthermore, a high proportion of coils was predicted. This suggests 

that the protein is flexible and is able to bind other molecules (Smith et al., 1996).  This would be 

consisted with a quorum sensing receptor, which binds OHHL as well as DNA.   

RaptorX analysis predicted that the slyA-type gene was predicted to encode a protein with a secondary 

structure comprising of 63% helices, 7% β-sheet and 28% coils. It was predicted that there were six 

helices between the amino acid residues 5-24, 31-41, 49-56, 60-72, 97-114 and 120-142. The high 

proportion of helices predicted to form the protein is indicative of a DNA-binding protein (Chirgadze 

et al., 2009). It is also predicted that the protein contains a helix-turn-helix motif between the amino 

acid residues 59-95, which is also a signature motif of DNA binding proteins. The I-TASSER program 

predicted that the protein contained a cluster of 15 amino acid residues that form a nucleic acid 

binding site (c-score 0.57). Binding site analysis, using the RaptorX binding site analysis feature, 

confirmed that there are six regions present with affinity for nucleic acid bases (p = 1.43e-04). No 

binding sites for OHHL were found. This concurs with the findings of McGowan et al., (2005), that the 

Hor regulatory network is not regulated by QS but acts concurrently in the carbapenem producing 

strain P. c. subsp. carotovorum ATTn10. The protein structure showed greatest similarity and 

alignment to the SlyA transcriptional regulator (c-score 0.32).   

Finally, ProteinPredict predicted that the carI gene was predicted to encode a protein made up of four 

helices and seven strands. RaptorX predicted the helices to be located between the amino acid 

residues 14-32, 78-88, 118-133 and 148-153. The secondary structure was predicted to comprise 23% 

helices, 26% β-sheets and 50% coils. The relatively low level of helices suggests that the protein is not 

involved in DNA binding. Furthermore, the high proportion of coils suggests that the protein is flexible 
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and is able to bind intermediates (Smith et al., 1996).  The cellular location was determined to be 

within the cytoplasm (c-score 0.41).  This predicted structure, as well as the resultant characteristics 

are consistent with a synthetase molecule. 

Figure 4.7 shows the predicted tertiary structures of the encoded proteins, predicted by I-TASSER 

server (Zhang, 2008; Roy et al., 2010; Yang et al., 2015). 

 

 

 

Figure 4.7. Structural predictions for the proteins encoded by the carR, slyA and carI genes disrupted 

by transposon mutagenesis.  

A: KCO_04647 (carR, c-score 0.02). The predicted structure contains a large proportion of helices 

indicative of a DNA binding protein. B: KCO_21137 (slyA, c-score 0.32). The predicted structure has a 

helix-turn-helix motif, which is common amongst DNA binding proteins.  C: KCO_20642 (carI, c-score 

0.41). This structure contains a large proportion of coil motifs, indicating a flexible molecule able to 

bind intermediate molecules. The C score refers to the confidence of the predicted structure. The 

value typically ranges from -5 to 2, with a value of 2 representing the most confident prediction.  

 

4.2.9 Growth of the non-inhibiting transposon mutants in vitro and in planta 

To examine the role of slyA, carR and carI in the competitive fitness of the bacteria, competition assays 

were performed in which the capacity of the mutants to inhibit growth of P. atrosepticum SCRI1043 

was compared to that of the WT in co-inoculations both in vitro and in tubers. Before competition 

assays were conducted however, the growth of the non-inhibiting mutants was compared to that of 

the WT to ensure that transposon mutagenesis had not affected the growth of the mutants. In vitro 

growth assays, conducted as described in Section 2.1.22, showed that growth of the carR, slyA and 

carI mutants was not significantly different to the growth of the WT (p < 0.22, F-test) on solid agar 

B. A. C. 
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plates (Figure 4.8). The only variation was at 32 hpi, when the average cell count for the WT was lower 

than for the other strains (p < 0.001, F-test). This was considered an anomaly due to error in plating, 

especially as a second independent experiment showed no effect of the Tn5 insertions on growth of 

the mutants (data not shown).   

 

 

 

Figure 4.8. Growth of P. c. subsp. brasiliensis (Pbr) ICMP 19477 transposon mutants on solid agar 

plates compared to WT.  

The graph shows the growth (mean CFUs) of the WT as well as the Km antibiotic tagged strain (Pbr K) 

and the Tn5 mutants of interest: Pbr carR-, Pbr slyA- and Pbr carI-. The assay was conducted over 48 h 

post inoculation with 104 CFUs/ml of each bacteria used as initial inoculum (as described in Section 

2.1.22). The mean CFUs represent the mean over three independent test plates. Error bars are 95% 

confidence limits.  

 

A growth curve of the same strains conducted in potato tubers (Section 2.1.24). Over the course of 

the assay, the mutants were not reduced in growth compared to the WT (Figure 4.9). Results were 

consistent in a second independently conducted experiment, except the drop in growth rate of P. c. 

subsp. brasiliensis carI- at 4 dpi was not seen (data not shown). Therefore, this is unlikely to be a 

reproducible observation.   
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Figure 4.9. Growth of P. c. subsp. brasiliensis (Pbr) ICMP 19477 transposon mutants in potato tubers 

(‘Ilam Hardy’).  

The graph shows the growth (mean CFUs) of the WT as well as the kanamycin antibiotic-tagged strain 

(Pbr K) and the Tn5 mutants of interest: Pbr carR-, Pbr slyA- and Pbr carI-. The assay was conducted 

over a 48 h period with 104 CFUs/ml of each bacteria used as an initial inoculum (as described in 

Section 2.1.24). The mean CFUs represent the mean over three independent test plates. Error bars 

are 95% confidence limits.  

 

 

4.2.10   Inactivation of carR results in reduced inhibition of Pectobacterium 

atrosepticum SCRI1043  in co-inoculation assays on solid media 

As the growth of the mutants did not appear to be affected by the process of mutagenesis per se, co-

inoculation assays were performed with the mutants on solid agar plates (Section 2.1.26). These 

assays demonstrated that when the carR mutant was co-inoculated with P. atrosepticum SCRI1043, 

the growth of P. atrosepticum SCRI1043 was similar to its growth when cultured alone and the cell 

density reached levels higher than when the bacterium was co-inoculated with the WT P. c. subsp. 

brasiliensis ICMP 19477 strain (Figure 4.10 A). The growth of the P. c. subsp. brasiliensis ICMP 19477 

strains was not affected when co-inoculated with P. atrosepticum SCRI1043, however (Figure 4.10 B). 

This indicated that inactivation of carR resulted in reduced inhibition of P. atrosepticum SCRI1043 by 
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P. c. subsp. brasiliensis ICMP 19477 under these conditions. Results were consistent in a second 

independently conducted experiment (Appendix C). 

 

 

 

 

 

 

 

Figure 4.10. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 and Pbr carR- 

on growth of P. atrosepticum (Pba) SCRI1043 on solid agar plates (MMA).  

A: A graph showing the growth (mean CFUs) of the Pba SCRI1043 rifampicin (Pba R) resistant strain 

over a 48 h period at 28°C when inoculated onto MMA in isolation or when co-inoculated with Pbr 

ICMP 19477 tagged with the Km resistance determinant (Pbr K), or the carR mutant at a 1:1 ratio. B: 

A graph showing the growth (mean CFUs) of Pbr strains when cultured in isolation on solid agar plates 

or in co-inoculations with Pba R. For each graph, the mean CFUs were calculated for each treatment 

from triplicate assays (solid line error bars represent the standard deviation.     

 

The CI of the P. c. subsp. brasiliensis ICMP 19477 strains was subsequently calculated (Section 2.1.29) 

to quantify the impact of inactivating carR on the competitive fitness of P. c. subsp. brasiliensis ICMP 

19477. Twenty four hpi, when P. c. subsp. brasiliensis strains were reaching late exponential phase, 

the CI for the WT rose from approximately 1.0 to 2.0 indicative of strong competitive fitness of this 

bacterium compared to P. atrosepticum SCRI1043. In contrast, P. c. subsp. brasiliensis carR- showed 

only weak competitive fitness compared to P. atrosepticum SCRI1043, with the CI of the carR mutant 

reaching only 0.5 during late exponential, early stationary phase (Appendix C). Results were consistent 

in a second independently conducted experiment (data not shown). These results are consistent with 

the production of the carbapenem having an involvement in the greater competitive fitness of P. c. 

subsp. brasiliensis ICMP 19477 on solid agar plates. 
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4.2.11   Inactivation of carR results in reduced inhibition of Pectobacterium 

atrosepticum SCRI1043 in co-inoculation assays in potato tubers 

In similar competition assays in potato tubers (Section 2.1.28), the growth of P. atrosepticum SCRI1043 

was greatly reduced when co-inoculated with P. c. subsp. brasiliensis K in potato tubers (Figure 5.12 

A). However when co-inoculated with the carR mutant, the growth of P. atrosepticum SCRI1043 was 

similar to its growth when inoculated into tubers in isolation. The growth of P. c. subsp. brasiliensis 

ICMP 19477 strains was not affected by co-inoculation with P. atrosepticum SCRI1043 (Figure 5.12 B). 

Results were consistent in a second independently conducted experiment (Appendix C), confirming 

that inactivation of carR resulted in reduced inhibition of its competitor in co-inoculated potato tubers 

as well as on solid agar plates (although the impact was far more dramatic in potato tubers). The CI of 

the mutant was also reduced dramatically from that of WT in co-inoculations in tubers, dropping from 

between 4.0 and 5.0 for the WT to 1.0–2.5 for the carR mutant (Appendix C).  

 

 

 

 

Figure 4.11. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 and Pbr carR- 

on growth of P. atrosepticum (Pba) SCRI1043 in potato tubers (‘Ilam Hardy’).  

A: A graph showing the growth (mean CFUs) of Pba SCRI1043 Rif (Pba R) resistant strain over a 48 h 

period at 28°C when inoculated into potato tubers in isolation or co-inoculated with Pbr ICMP19477 

tagged with Km resistance (Pbr K), or the carR mutant Pbr carR- (at a 1:1 ratio). B: A graph showing the 

growth (mean CFUs) of Pbr K when cultured in isolation in to potato tubers or in co-inoculations with 

Pba R as well as Pbr carR- co-inoculated with Pba R (at a 1:1 ratio). For each graph, the mean CFUs 

were calculated for each treatment from triplicate assays (solid line), error bars represent the standard 

deviation.     
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4.2.12  Inactivation of carR does not result in reduced inhibition of Pectobacterium 

atrosepticum SCRI1043 in liquid cultures   

To verify the effects of inactivating carR on competitive fitness of P. c. subsp. brasiliensis ICMP 19477 

with the results of co-inoculation experiments with the WT (as discussed in Chapter 3), competition 

assays were repeated in liquid cultures (Section 2.1.27). These experiments had previously 

demonstrated that P. c. subsp. brasiliensis ICMP 19477 could not inhibit the growth of P. atrosepticum 

SCRI1043 (Section 3.2.4). This was confirmed in these assays and demonstrated that the disruption of 

carR had not impact on the interaction between P. c. subsp. brasiliensis ICMP 19477 and P. 

atrosepticum SCRI1043 under these conditions (Figure 4.12 A). The growth of the P. c. subsp. 

brasiliensis ICMP 19477 strains was not affected when co-inoculated with P. atrosepticum SCRI1043 

(Figure 4.14 B). The CI of neither strain reached greater than 1.0, indicative of little or no greater 

competitive fitness of P. c. subsp. brasiliensis ICMP 19477 over P. atrosepticum SCRI1043 in liquid 

cultures (Appendix C). These results indicate that the competition mechanism, the carbapenem 

molecule proposed to be regulated by CarR, is not responsible for the weak competition between P. 

c. subsp. brasiliensis ICMP 19477 and P. atrosepticum SCRI1043 in liquid assays.  

 

 

Figure 4.12. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 and Pbr carR- 

on growth of P. atrosepticum (Pba) SCRI1043 in liquid cultures (MM).  

A: A graph showing the growth (mean CFUs) of the Pba SCRI1043 Rif (Pba R) resistant strain over a 48 

h period at 28°C when inoculated into MM in isolation or when co-inoculated with Pbr ICMP 19477 

tagged with Km resistance (Pbr K) or the carR- mutant Pbr carR- (at a 1:1 ratio). B: A graph showing the 

growth (mean CFUs) of Pbr K when cultured in isolation on solid agar plates or in co-inoculations with 

Pba R as well as Pbr carR- co-inoculated with Pba R (at a 1:1 ratio). For each graph, the mean CFUs 
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were calculated for each treatment from triplicate assays (solid line), error bars represent the standard 

deviation.     

 

4.2.13 Complementation of the Pectobacterium carotovorum subsp. brasiliensis 

ICMP 19477 carR mutant, with a copy of the WT gene restored production of 

the antimicrobial molecule  

Complementation studies (Section 2.1.20) were conducted to confirm the involvement of carR in the 

competitive fitness of P. c. subsp. brasiliensis ICMP 19477. First, a derivative of pTRB32oriT was 

constructed containing a 783 bp PCR fragment encompassing the carR gene (Sections 2.1.10-2.1.14, 

2.1.16). This recombinant plasmid was named pTRB32oriTcarR. The fragment containing the carR gene 

was amplified using primers carR_compl F and carR_compl R (Table 2.3). The plasmid was then 

transferred to the carR- mutant via conjugation (Section 2.1.17) and the presence of the appropriate 

plasmid was confirmed in transconjugants by PCR (Section 2.1.10), using construct-specific primers. 

An amplicon of 783 bp was also produced in all selected transconjugants using carR_compl F and 

carR_compl R (Table 2.3). The transconjugates were confirmed as P. c. subsp. brasiliensis ICMP 19477, 

using primers Pbr NZ F and Pbr NZ R, which amplify a product within P. c. subsp. brasiliensis ICMP 

19477 but not the E. coli strains used in the conjugation (Figure 4.15). The authenticity of the plasmids 

was further confirmed by sequencing of the plasmid inserts using construct and plasmid-specific 

primers (Table 2.3, Section 2.1.14). The construct sequence is given in Appendix C. The resultant 

transformants were designated P. c. subsp. brasiliensis carR-::pTRB32oriTcarR (Table 2.2).   
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Figure 4.13. PCR amplicons obtained from transconjugants of P. c. subsp. brasiliensis (Pbr) carR- to 

verify their authenticity prior to complementation studies. 

L, DNA ladder (Hyper ladder 100 bp, Bioline); Lane 1, Pbr NZ primer pair positive control (Pbr ICMP 

19477 gDNA); Lane 2, Pbr NZ pair primer negative control (E. coli donor gDNA) Lane 3, Pbr NZ primer 

pair negative control (E. coli helper gDNA); Lane 4, Pbr NZ primer pair positive control (Pbr ICMP 19477 

carR- recipient strain); Lanes 5-7, Pbr NZ primer pair conjugates 1-3; Lane 8, carR primer pair positive 

control (Pbr ICMP 19477 gDNA); Lane 9, carR primer pair positive control (donor plasmid); Lane 10, 

carR primer pair negative control (helper plasmid), Lane 11, carR primer pair negative control  (Pbr 

ICMP19477 carR- recipient strain plasmid extraction); Lanes 12-14 carR primer pair conjugates gDNA 

1-3; L, DNA ladder. Primers are listed in Table 2.2.   

 

Complementation assays were subsequently performed using P. c. subsp. brasiliensis carR-

::pTRB32oriTcarR by adding IPTG to the LBA plates on which P. c. subsp. brasiliensis carR-

::pTRB32oriTcarR was grown overnight prior to performing the antagonism assay (Section 2.2.4). 

Induction resulted in full complementation of the WT phenotype, as both P. c. subsp. brasiliensis carR-

::pTRB32oriTcarR and the WT produced zones of inhibition when plated onto lawns of P. atrosepticum 

SCRI1043. Visually, it appeared that the complemented stain produced a larger zone than the P. c. 

subsp. brasiliensis ICMP 19477 WT (Figure 4.16).  In contrast, the P. c. subsp. brasiliensis carR- and a 

derivative of the mutant containing an empty copy of the pTRB32oriT plasmid, P. c. subsp. brasiliensis 

carR-::pTRB32oriT (Table 2.2), did not inhibit the growth of P. atrosepticum SCRI1043. These results 

confirmed that carR is involved in the inhibition of P. atrosepticum SCRI1043 in antagonism assays.   
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Figure 4.14. Complementation of the P. c. subsp. brasiliensis (Pbr) carR- mutant with a plasmid 

containing a copy of the WT carR gene restores inhibition of P. atrosepticum (Pba) SCRI1043.  

Colonies of the test strains were streaked onto a lawn of Pba SCRI1043, seeded in LB agar (LBA). Plates 

were incubated at 28 °C for 24 h and then scored for visible zones of inhibition (Section 2.1.21). The 

complemented strain, Pbr carR-::pTRB32oriTcarR, was grown on LBA containing IPTG overnight, prior 

to the assay. IPTG was required for induction of the plasmid construct. As a negative control, a Pbr 

carR- mutant, containing an empty copy of pTRB32oriT (Pbr carR::pTRB32oriT), was also included. This 

strain was also grown on LBA containing IPTG prior to the assay.   

 

  

Pbr 
ICMP19477 

Pbr carR- 

Pbr carR-::pTRB32oriT 

Pbr carR-::carR 1 

Pbr carR-::carR 2 
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4.2.14 The growth of Pectobacterium carotovorum subsp. brasiliensis carR-

::pTRB32oriTcarR on solid agar plates is not reduced compared to WT  

Prior to co-inoculation studies using P. c. subsp. brasiliensis carR-::pTRB32oriTcarR, growth assays 

were conducted (Section 2.2.22). On solid agar plates throughout the assay there were little or no 

differences between the WT and recombinant strains (Figure 4.17).  

 

 

 

Figure 4.15. The growth of the P. c. subsp. brasiliensis (Pbr) ICMP 19477 Km resistant tagged mutant 

(Pbr K), the carR complemented strain Pbr carR-::pTRB32oriTcarR and the complementation plasmid 

control strain Pbr carR-::pTRB32oriT strain compared to the P. c. subsp. brasiliensis  ICMP 19477 WT 

on solid agar plates.  

Growth assays were conducted on MMA, over 48 h. The mean CFU values of three plates are given. 

Error bars represent 95% confidence limits.  
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4.2.15   Pectobacterium carotovorum subsp. brasiliensis carR-::pTRB32oriTcarR is 

restored in the WT competition phenotype in in vitro competition assays 

Competition assays were conducted as described in Section 2.1.26 using overnight cultures prepared 

with the addition of IPTG (Section 2.4). Furthermore, IPTG was also added to the MMA plates used 

directly for the competition assays. In these assays, the growth of P. atrosepticum SCRI1043 was not 

greatly reduced when co-inoculated with P. c. subsp. brasiliensis carR- or P. c. subsp. brasiliensis carR-

::pTRB32oriT when compared to the singularly inoculated P. atrosepticum R culture. In contrast, the 

growth of P. atrosepticum SCRI1043 co-inoculated with P. c. subsp. brasiliensis carR-::pTRB32oriTcarR 

or P. c. subsp. brasiliensis K was reduced significantly compared to the singularly inoculated P. 

atrosepticum R (Figure 4.18 A). Growth of the P. c. subsp. brasiliensis ICMP 19477 strains was not 

negatively impacted when co-inoculated with P. atrosepticum SCRI1043 (Figure 4.18 B). Results were 

consistent in a second, independently conducted experiment (Appendix C).  The CI calculated for P. c. 

subsp. brasiliensis carR-::pTRB32oriTcarR reached between 2.0 and 3.5 between late exponential and 

early stationary, higher than that of the WT (1.5 -2.5), whereas the carR mutant and the derivative 

containing pTRB32oriT remained low (between 0 and 1.2) (Appendix C). These results showed that 

with expression of the WT carR gene in trans, the competitive fitness of P. c. subsp. brasiliensis carR- 

was restored to WT levels upon co-inoculation with P. atrosepticum SCRI1043. The restoration of the 

WT phenotype in P. c. subsp. brasiliensis carR-::pTRB32oriTcarR confirmed that carR was not only 

involved in the production of a carbapenem with activity against P. atrosepticum SCRI1043, but 

production of this antimicrobial contributed strongly to the competitive fitness of the bacterium in co-

inoculation experiments. Due to the requirement for induction of the plasmid with IPTG, the 

complemented strain could not be used in tuber assays.        

  



 146 

 

 

 

Figure 4.16. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 carR- 

complemented strain Pbr carR-::pTRB32oriTslyA on growth of P. atrosepticum (Pba) SCRI1043 on 

solid agar plates (MM).  

A: A graph showing the growth (mean CFUs) of the Pba SCRI1043 rifampicin (Pba R) resistant strain 

over a 48 h period at 28 °C when inoculated onto MMA in isolation or co-inoculated with Pbr 

ICMP19477 tagged with the Km resistance determinant (Pbr K), Pbr carR-::pTRB32oriTcarR or Pbr carR-

::pTRB32oriT containing an empty copy of the pTRB32oriT plasmid  (at a 1:1 ratio). B: A graph showing 

the growth (mean CFUs) of Pbr K when cultured in isolation on solid agar plates as well as the Pbr 

strains in co-inoculation with Pba R (at a 1:1 ratio). For each graph, the mean CFUs were calculated for 

each treatment from triplicate assays (solid line), error bars represent the standard deviation.     
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4.3 Discussion 

Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 produces a carbapenem that inhibits 

growth of P. atrosepticum SCRI1043 and confers greater competitive fitness to the producer in co-

inoculations with its close relative both in vitro and in potato tubers. Carbapenems are produced by a 

plethora of enterobacteriacae including the plant pathogens Serratia and Erwinia (Parker et al., 1982). 

The soil dwelling bacteria Streptomyces also produce a wide range of carbapenem molecules. For 

example, thienamycin, a complex carbapenem with a broad spectrum of activity produced by 

Streptomyces MA4297 (Kahan et al., 1979), olivanic acid (Brown et al., 1979) and carpetimycins 

(Nakayama et al., 1980). Carbapenems have previously been shown to have activity against other 

microbes and have been utilised in medicine to combat human infection by Pseudomonas aeruginosa, 

Staphylococcus aureus and Klebsiella pneumoniae (Nakayama et al., 1980). Yet despite their 

widespread distribution, the ecological importance of these antimicrobials to plant pathogens has had 

only limited attention. This study demonstrates that for P. c. subsp. brasiliensis ICMP 19477, the 

production of a carbapenem can provide a competitive advantage in its host plant, enabling the 

bacterium to inhibit the growth of potential competitors in potato tubers.   

The importance of carbapenem production to P. c. subsp. brasiliensis ICMP 19477 was demonstrated 

by screening a transposon library for loss of activity against P. atrosepticum SCRI1043. This screen 

showed that an insertion in carR resulted in complete loss of inhibition against the sensitive strain in 

an antagonism assay. Subsequent complementation of the carR mutation by expressing the WT carR 

gene in trans, also restored the ability of P. c. subsp. brasiliensis ICMP 19477 to inhibit the growth of 

P. atrosepticum SCRI1043 (Figure 4.17). This reaffirmed that carR, and therefore carbapenem 

production, was required for inhibition of P. atrosepticum SCRI1043 as carR is located immediately 

upstream of the carbapenem biosynthetic cluster and has been shown to specifically regulate 

carbapenem production in P. c. subsp. carotovorum (McGowan et al., 1995).  

Activation of the carbapenem operon by CarR occurs when CarR binds to the promoter upstream of 

carA (PcarA) that is located in the intrinsic region between carR and carA (McGowan et al., 2005). The 

binding of CarR and the resultant transcription of the carbapenem operon occurs when OHHL is 

present (Welch et al., 2000).  

The results of the screen on P. atrosepticum SCRI1043 were supported by screening the mutants in a 

second assay on ESS, which is super-sensitive to β-lactams such as carbapenems.  In this assay, P. c. 

subsp. brasiliensis ICMP 19477 generated zones of inhibition, but the carR mutant did not. As the 

carbapenem molecule encoded on HAI PbN1-GI65 is the only β-lactam encoded by P. c. subsp. 
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brasiliensis ICMP 19477, the inability of the carR mutant to inhibit ESS reaffirmed that carR was 

involved in production of carbapenem and that this antimicrobial was responsible for the inhibition of 

P. atrosepticum SCRI1043.  

The experiments using ESS also showed that the production of carbapenem occurred primarily 

between the late exponential and early stationary phases. This was consistent with the findings of 

McGowan et al., (1995), who had shown that carbapenem production occurs at this time, which is 

concurrent with a large bacterial population density. The production of carbapenem so late in growth 

of the bacterial population raised questions as to the role of this antimicrobial in interactions between 

the producer and the sensitive strain. Carbapenem production is independent of the presence of a 

sensitive strain and requires a high population density (McGowan et al., 2005). Therefore, it is likely 

that the production of this antimicrobial would function to defend the producers established 

population, rather than to invade a population of the sensitive bacteria. Moreover, the PCWDEs of 

Pectobacterium also occur at late exponential and early stationary phase, when a high population 

density is reached (Liu et al., 2008). Therefore, production of the carbapenem would enable the 

bacteria to defend the nutrients released from the infected plant tissue.  

The requirement for high bacterial growth in order to initiate carbapenem production is consistent 

with the observation that P. c. subsp. brasiliensis abc- is unable to inhibit P. atrosepticum SCRI1043 in 

in vitro antagonism assays. In growth analysis, it was found that P. c. subsp. brasiliensis abc- was 

reduced in growth compared to P. c. subsp. brasiliensis ICMP 19477 WT (Figure 4.4). Therefore, P. c. 

subsp. brasiliensis abc- may not reach the growth phase in which the antimicrobial is produced. 

Alternatively, P. atrosepticum SCRI1043 may be able to reach a high enough population density, 

before the mutant has reached the growth stage in which the antimicrobial molecule is produced, so 

that the antimicrobial is not effective. This suggests that the antagonism assay using P. atrosepticum 

SCRI1043 is not a very sensitive screen for the production of the carbapenem by P. c. subsp. brasiliensis 

ICMP 19477, as it is able to resolve the production of the molecule by slow growing strains.     

The function of carR in inhibition of P. atrosepticum SCRI1043 did not necessitate a role in the 

competitive fitness of P. c. subsp. brasiliensis ICMP 19477, as observed on agar plates and in tubers in 

Chapter 3. Co-inoculation experiments with the carR mutant subsequently demonstrated the 

potential ecological benefit of carbapenem production however, as the competitive index of this strain 

was dramatically reduced compared to the WT in mixed populations. Complementation also resulted 

in reversion of the mutant phenotype to that of WT, although the CI values for P. c. subsp. brasiliensis 

carR-::pTRB32oriTcarR were higher than those of the WT (Figure 4.20). The higher CI in P. c. subsp. 
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brasiliensis carR-::pTRB32oriTcarR was probably due to the over-expression of carR as a result of 

induction of the re-introduced carR gene using IPTG.      

Although disruption of carR eliminated antagonism on agar plates the competitive fitness of P. c. 

subsp. brasiliensis ICMP 19477 was not abolished entirely in either plate assays or in potato tuber 

competition assays. For example the CI remained 0.5 in vitro and 2.0 in potato tubers. This indicated 

that the production of the antimicrobial was not solely responsible for enabling P. c. subsp. brasiliensis 

ICMP 19477 to out-compete P. atrosepticum SCRI1043. Genomic analysis of P. c. subsp. brasiliensis 

ICMP 19477 has identified the presence of various genes or gene clusters that might contribute to the 

success of this bacterium such as those predicted to facilitate utilisation of sucrose (Panda et al., 

2015b). Furthermore, genomic comparisons between P. atrosepticum SCRI1043, P. c. subsp. 

brasiliensis PBR1692 and P. c. subsp. carotovorum WPP14 identified genes which encoded putative 

enzymes associated with the utilisation of plant cell wall degradation products, which were found in 

P. c. subsp. brasiliensis PBR1692 and P. c. subsp. carotovorum WPP14 but not P. atrosepticum 

SCRI1043 (Glasner et al., 2008). For example, a putative permease enzyme that may import digested 

polymer, a putative polysaccharide deacetylase and a putative Asp/Glu racemase, which may degrade 

the digested polymers (Glasner et al., 2008). Thus, it may be that P. c. subsp. brasiliensis ICMP 19477 

is able to utilize a number of nutrients more successfully than P. atrosepticum SCRI1043. 

Pectobacterium carotovorum subsp. brasiliensis ICMP 19477 may also produce other secondary 

antimicrobial molecules that contribute to fitness that were not detected using our pipeline for 

identification, which relied on antagonism assays rather than testing for any other contribution to 

fitness (i.e. NRPs can act as phytotoxins, not just antimicrobials).  

The carR mutation conferred reduced fitness to P. c. subsp. brasiliensis ICMP 19477 when the 

bacterium was co-inoculated with P. atrosepticum SCRI1043 in solid plate and potato tuber assays 

(Sections 4.2.10 and 4.2.11), however it did not reduce its fitness in liquid cultures (Section 4.2.12). 

This finding was consistent with the results of co-inoculation experiments in Chapter Three, which 

showed that inhibition of P. atrosepticum SCRI1043 and the competitive advantage of P. c. subsp. 

brasiliensis ICMP 19477 was limited to the structured environments of plate and potato tubers 

(Sections 3.2.4 and 3.2.6). Structured environments have been predicted to be the conditions under 

which antimicrobial producing strains are dominant, as the antimicrobial molecule is active even if 

produced at a low concentration (Chao and Levin, 1981; Durrett and Levin, 1997; Gardner et al., 2004).  

Although the carR mutant showed reduced fitness in both plate and tuber assays, there was a greater 

difference in the CI values of the WT and carR- mutant in planta than in vitro. On solid agar plates, the 

P. c. subsp. brasiliensis ICMP 19477 WT achieved CI values of 1.0-2.0 when in co-inoculations with P. 
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atrosepticum SCRI1043 whereas the P. c. subsp. brasiliensis carR- mutant only reached CI values of 

~0.5. In tubers, however, the CI for P. c. subsp. brasiliensis WT was between 4.0 and 5.0 whereas the 

CI for the P. c. subsp. brasiliensis carR- mutant only reached 1.0-2.0. Co-inoculation experiments in 

Chapter three also showed that P. c. subsp. brasiliensis ICMP 19477 had greater competitive fitness in 

tubers than on solid agar plates. This may be due to the increased nutrients available within potato 

tubers or the type of nutrients available, as such environmental factors are known to influence 

carbapenem production (McGowan et al., 2005) as discussed in Section 3.3.      

Antagonism assays demonstrated that contrary to the initial hypothesis of this thesis, the NRPS cluster 

harboured by P. c. subsp. brasiliensis ICMP 19477 was not involved in the antagonism of P. 

atrosepticum SCRI1043 (Figure 4.3). Reaching this conclusion proved difficult however, given that 

although a mutant in NRPS1 was still able to produce a zone of inhibition on P. atrosepticum SCRI1043, 

the ABC transporter mutant failed to inhibit the growth of P. atrosepticum SCRI1043 (Figure 4.1). From 

these initial experiments, it was proposed that either the mutation in NRPS1 had not inactivated the 

NRP or that the ABC transporter had been ‘hijacked’ for transport of another antimicrobial produced 

by P. c. subsp. brasiliensis ICMP 19477. Some antimicrobial synthesis clusters, such as the carbapenem 

synthesis cluster, do not have associated transporters. Therefore, such molecules must be transported 

from the producing cell via an unlinked transporter. For example, members of the multi-facilitator 

transporter (MFS) superfamily actively transport many substrates such as amino acids and drugs and 

are often unlinked to biosynthesis cluster (Marger and Saier, 1993).   

Subsequent assays on ESS clarified that the abc transporter mutant was able to inhibit ESS (Figure 4.3). 

In conjunction with the data for the carbapenem mutants, this confirmed that the NRP and its 

associated transporter were unlikely to be involved in antagonism of P. c. subsp. brasiliensis ICMP 

19477. Furthermore, growth analysis established that the abc transporter mutant had reduced growth 

compared to WT in vitro (Figure 4.4). As initial development of the antagonism assay had shown 

inoculum density was important in the suppression of P. atrosepticum SCRI1043, P. c. subsp. 

brasiliensis abc  probably could not reach sufficient population density for the antimicrobial to be 

produced at a high enough concentration to inhibit the growth of P. atrosepticum SCRI1043. 

Alternatively, P. atrosepticum SCRI1043 may have reached a sufficiently high population density 

before the mutant could produce the antimicrobial, enabling the sensitive strain to overcome the 

antimicrobial effect of the molecule produced by P. c. subsp. brasiliensis ICMP 19477.  

The production of a carbapenem molecule by P. c. subsp. brasiliensis ICMP 19477, which is active 

against a competing organism within its ecological niche, is likely to have contributed to the 

emergence of this pathogen. In recent years, P. c. subsp. brasiliensis has increased in prevalence on 
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potato plants (Duarte et al., 2004; van der Merwe et al., 2010; Leite et al., 2014; Werra et al., 2015). 

This is consistent with population studies of bacterial communities, which predicted that if an 

antimicrobial producing strain enters a population it will soon increase in prevalence. This is due to 

the ability to out-compete the established ‘sensitive’ population (Durrett and Levin, 1997; Riley and 

Wertz, 2002). Moreover, the production of a carbapenem molecule by both P. c. subsp. brasiliensis 

ICMP 19477 and PBR1692 suggests recent emergence.  Over time antimicrobial producers tend to lose 

this ability in favour of a resistant phenotype, as antimicrobial production expends large amounts of 

energy and resources (Tan and Riley, 1996). This has been confirmed by serial transfer studies (Frank, 

1994).      

Following the ESS screen of the transposon mutants, it was identified that as well as the three non-

inhibiting mutants, one mutant (P. c. subsp. brasiliensis mp-) produced a reduced zone of inhibition. 

This suggests that this gene has a subtle influence in the production or secretion of the carbapenem 

molecule. This mutant would be of interest in future studies to investigate the more subtle inhibition 

interactions between P. c. subsp. brasiliensis ICMP 19477 and P. atrosepticum SCRI1043. 

Although relevant mutants were identified using our transposon library, the development of this 

library proved more difficult than expected from previous literature on the use of Tn5 libraries in SRE 

(Holeva et al., 2004; Roh et al., 2010). In particular, the delivery vector (pFJA1819) proved difficult to 

cure from the transposants, and a number of mutants thought to have lost the plasmid due to their 

sensitivity to ampicillin were shown to have the plasmid integrated within the genome (Figure 4.5). 

Retention of the plasmid by a large number of mutants may explain the larger than expected number 

(42) of non-inhibiting mutants, as a similar study in P. c. subsp. carotovorum Pcc21 identified only five 

non-producer mutants from a similarly sized transposon library (Roh et al., 2010). Firstly, retention of 

the plasmid was likely to increase the metabolic load on the mutant, possibly affecting secondary 

metabolism (resulting in reduced production of the antimicrobial and a non-producing phenotype). 

Secondly, as the plasmid backbone contains an Amp resistance gene, retention of the plasmid may 

have caused loss of the antibiotic phenotype due to degradation of the antimicrobial molecule 

produced by P. c. subsp. brasiliensis ICMP 19477 (i.e. the β-lactamase activity of the Amp genes would 

degrade the predicted carbapenem molecule).  

It has previously been described that the genetic manipulation of P. c. subsp. brasiliensis ICMP 19477, 

in order to produce targeted deletion mutants, was difficult (Preetinanda Panda, 2014). This difficulty 

was predicted to result from the presence of two restriction modification systems within the genome 

of P. c. subsp. brasiliensis ICMP 19477 (Preetinanda Panda, 2014), which encode the restriction 

modification system. Multiple restriction modification systems were also predicted to be encoded by 
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D. solani (Garlant et al., 2013). Perhaps future studies requiring directed mutagenesis of P. c. subsp. 

brasiliensis ICMP 19477 might benefit from utilising a restriction modification system inhibitor such as 

the Type OneTM Restriction Inhibitor (Epicentre Biotechnologies). The inhibitor is a phage-derived 

protein ‘Ocr’ (Walkinshaw et al., 2002), which blocks the binding site of the type I restriction 

modification system and therefore prevents cleavage of the transformed DNA. Alternatively, a 

different transposon mutagenesis approach might be considered. For example, Roh et al., (2011) 

utilised a method that did not require a transposon plasmid. Rather a transposon and transposase 

enzyme complex was directly electroporated into the P. c. subsp. carotovorum cells. Such constructs 

are available commercially such as the Ez-Tn5TM<R6Kγori/Kan-2>Tnp system (Epicentre 

Biotechnologies). This system has the R6Kγ origin of replication, an antibiotic resistance marker for 

selection (i.e. Km resistance) and a transposase that is activated within the bacterial cell encoded on 

a transpososome (Goryshin et al., 2000; Hoffman et al., 2000). Following electroporation of the 

construct into the recipient cells and selection on appropriate antibiotics, only cells that had 

integrated the transposon would grow, avoiding the possibility that the plasmid backbone would be 

retained through concatenation.                

As described in Section 3.2.13, efforts to identify the antimicrobial molecule produced by P. c. subsp. 

brasiliensis ICMP 19477 failed to identify any antibiotic molecules. This finding can be understood 

following identification of the antimicrobial as a carbapenem. The carbapenem molecule produced by 

Serratia and Pectobacterium, SQ 27,860, is a highly unstable molecule (Parker et al., 1982). During 

initial attempts to identify the carbapenem it was noted that freezing or concentrating of the bacterial 

broth culture destroyed the molecule. Furthermore, it could only be stored at 5°C for a few days. For 

longer storage, the molecule needed to be adsorbed onto charcoal and stored at -90°C (Parker et al., 

1982). The molecule could then be eluted form the charcoal matrix using acetone:water (7:3, pH 7.7) 

and further purified by ion-exchange chromatography (Parker et al., 1982). As standard purification 

methods proved unsuccessful due to the instability of the carbapenem molecule, it is most 

appropriate to convert the molecule to a ρ-nitrobenzyl ester before purification (Parker et al., 1982). 

The carbapenem biosynthetic cluster is also encoded by P. c. subsp. brasiliensis PBR1692, which was 

also shown to have activity against P. atrosepticum SCRI1043. This confirms the predictions of 

(Marquez-Villavicencio et al., 2011), who suggested that the inhibition of P. atrosepticum SCRI1043 by 

P. c. subsp. brasiliensis PBR1692 was due to the production of a carbapenem. In the study it was 

observed that P. c. subsp. brasiliensis PBR1692 was able to inhibit P. atrosepticum SCRI1043 in vitro, 

but not when co-inoculated in potato stems (Marquez-Villavicencio et al., 2011). This is consistent 

with the findings that P. c. subsp. brasiliensis ICMP 19477 is able to inhibit the growth of P. 
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atrosepticum SCRI1043 in structured environments, but not in unstructured conditions such as in 

liquid cultures or potato stems. It has also been described that P. betavasculorum was able to inhibit 

the growth of certain P. c. subsp. carotovorum strains on antagonism assays and in potato tubers 

(Axelrood et al., 1988). This was also predicted to be due to the production of a carbapenem by P. 

betavasculorum (Axelrood et al., 1988). As these results are consistent with those obtained for P. c. 

subsp. brasiliensis ICMP 19477, it appears that this represents another ecological example of the 

function of carbapenem molecules.   

Chapter 5 describes the involvement of the carI and slyA genes in the competitiveness of functional 

genetics experiments that enabled the identification of P. c. subsp. brasiliensis ICMP 19477 against P. 

atrosepticum SCRI1043 in vitro and in planta. The involvement of these genes is confirmed by chemical 

complementation with OHHL, for carI and genetic complementation for slyA.   
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Appendix C 

C.1 Tn5 flanking sequences 

Nucleotide sequences of DNA flanking the Tn5 insertions, as amplified using a gene-specific primer 

and Tn5R (as described in Section 2.1.19). For each Tn5 mutant, the corresponding region in the 

genome of P. c. subsp. brasiliensis ICMP 19477 amplified by PCR, are given as co-ordinates above the 

sequence. Tn5 sequences are highlighted by red colour. Tn5R primer sequences are underlined. 

 

carR::Tn5 (4699985-4700210) 

ATGGATCATGAAATCCATTCCTTTATCAAAAGGAAGCTGAAAGGAGTCGGTGATGTATGGTTTTCTTATTTTAT

GATGAGTAAAAACTCTACCAGCCAACCTTATATTATTTCGAATTATCCCGAAGCATGGATGAAGGAGTATATA

AAAAAAGAGATGTTTCTGAGTGATCCTATCATTGTTGCCTCATTAGCTCGGATCACGCCGTTTTCTTGGGATGA

TAATGATCTTGTGACGCTAAGAGCCAAGAATCAGGATGTTTTTATTTCTTCCGTGCAGCACGATATAAGTTCAG

GTTATACCTTTGTTTTGCACGACCATGATAATAATGTGGCGACACTGAGTATAGCGAATCACCTGGAAGATGC

GAATTTCGAAAAATGTATGAAGAATCATGAAAATGATTTGCAGATGTTACTTGTGAATGTACATGAAAAAGTG

ATGGCATATCAGCGTGCTATCAACGTTCAAGATAACCCCCGACTCAGAATATGTGTTCACGCCGGCGTATGCG

GGACTGATCGATTCCTCCTA 

 

slyA::Tn5 (2744146-2744469) 

CTACGCTTGATTCTCATGTAATGCCAATATATTTTTCTCAAGACGCGAAACCAGCAGCGCTAATTCATCAACCT

GCTCCGGCGTAATACCAAATAAGACTTCACTACGTGTATGGCTAATTACACCATTGACTGCTTGTATGATTGGC

TCTGCTGATTCGGTCAGCATAATACGTTTTGCCCGACGATCGTGCGCGCAAACGTGGCGAGTGATTAACCCTT

TTTCCTCAAGCTGATCCAGTGTTCGGACTAATGAGGGTTGCTCAATACCTATCGCTTTGGCAAGTTGAATCTGC

GACTGCCCAGGGGGTAGATGGTATATGTGACTCAGAATATGTGTTCACGCCGGCGTATGCGGGACTGATCGA

TTCCTCCTA 
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 carI::Tn5 (4446562-4446675) 

ATGTTAGAGATATTTGATGTAAATCACACCTTGTTGTCAGAAACGAAATCAGAAGAGCTATTTACCCTCAGAA

AAGAGACGTTTAAAGATCGACTGAATTGGGCCGTGCAAGACTCAGAATATGTGTTCACGCCGGCGTATGCGG

GACTGATCGATTCCTCCTA 

 

 
 

C.2 carR- mutant in vitro competition graphs 
 

 
 
Second, independently conducted experiment, demonstrating the effect of co-inoculation with P. c. 

subsp. brasiliensis (Pbr) ICMP 19477 and P. c. subsp. brasiliensis carR- (Pbr carR-) on growth of P. 

atrosepticum (Pba) SCRI1043 on solid agar plates (MMA). 

 A: A graph showing the growth (mean CFUs) of P. atrosepticum SCRI1043 Rif (Pba R) resistant strain 

over a 48 h period at 28°C when inoculated into MM in isolation or co-inoculated with P. c. subsp. 

brasiliensis ICMP 19477 tagged with Km resistance (Pbr K), or the carR mutant Pbr carR- (at a 1:1 ratio). 

B: A graph showing the growth (mean CFUs) of Pbr K when cultured in isolation on solid agar plates or 

in co-inoculations with Pba R as well as Pbr carR- co-inoculated with Pba R (at a 1:1 ratio). For each 

graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), error bars 

represent the standard deviation.     
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C.3 Competitive index of carR- mutant in vitro competition assay 
 

 Pbr K v Pba R Pbr carR- v Pba R 

Time (hours) Log CI SD Log CI SD 

6 0.7 0.2 -0.2 0.3 

12 1.4 0.2 0.1 0.2 

24 2.1 0.6 0.5 0.1 

32 1.0 0.2 0.5 0.1 

48 1.9 0.8 0.6 0.3 

 

C.4 carR- mutant potato tuber competition graphs 
 

 
 
 

Second, independently conducted experiment, using potato tubers sourced at a different time of 

year, demonstrating the effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 and 

P. c. subsp. brasiliensis carR- (Pbr carR-) on growth of P. atrosepticum (Pba) SCRI1043 in potato 

tubers (‘Ilam Hardy’).  

A: A graph showing the growth (mean CFUs) of Pba SCRI1043 rifampicin (Pba R) resistant strain over 

a 48 h period at 28 °C when inoculated into potato tubers in isolation or co-inoculated with P. c. subsp. 

brasiliensis ICMP 19477 tagged with Kn resistance (Pbr K), or the carR mutant Pbr carR- (at a 1:1 ratio). 

B: A graph showing the growth (mean CFUs) of Pbr K when cultured in isolation in to potato tubers or 

in co-inoculations with Pba R as well as Pbr carR- co-inoculated with Pba R (at a 1:1 ratio). For each 

graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), error bars 

represent the standard deviation.     
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C.5 Competitive index of the carR- mutant in in planta competition assays 

 

 

 

C.6 Competitive index of the carR- mutant in liquid in vitro competition 
assays 

 

 Pbr K v Pba R Pbr carR- v Pba R 

Time (hours) Log CI SD Log CI SD 

6 0.2 0.1 0.4 0.1 

12 0.4 0.1 0.9 0.1 

16 1.3 0.04 1.2 0.03 

24 1.4 0.1 1.6 0.06 

32 0.5 0.4 0.6 0.2 

48 0.9 0.2 0.1 0.1 

 

C.7 carR complementation sequence 
 

Nucleotide sequence of KCO_04647 (carR), following cloning into pTRB32oriT (Section 4.2.10). Insert-

specific primers are underlined and restriction sites are written in bold type. The sequence shown in 

italics represents vector sequence. Nucleotides shown in blue represent mis-matches between the 

construct and the P. c. subsp. brasiliensis ICMP 19477 gene.   

 

GCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAATTCATTAAAG

AGGAGAAATTAACTATGAGAGGATCGCATCACCATCACCATCACGGATCCGCATGCGAGCTCGCGGGTACCGT

CGGTAAGAGAGGGTAATATGGAATGGATCATGAAATCCATTCCTTTATCAAAAGGAAGCTGAAAGGAGTCGG

TGATGTATGGTTTTCTTATTTTATGATGAGTAAAAACTCTACCAGCCAACCTTATATTATTTCGAATTATCCCGA

AGCATGGATGAAGGAGTATATAAAAAAAGAGATGTTTCTGAGTGATCCTATCATTGTTGCCTCATTAGCTCGG

ATCACGCCGTTTTCTTGGGATGATAATGATCTTGTGACGCTAAGAGCCAAGAATCAGGATGTTTTTATTTCTTC

CGTGCAGCACGATATAAGTTCAGGTTATACCTTTGTTTTGCACGACCATGATAATAATGTGGCGACACTGAGT

 Pbr K v Pba R Pbr carR- v Pba R 

Time (days) Log CI SD Log CI SD 

0.5 1.4 0.2 0.8 0.3 

1 4.6 0.3 1.8 0.3 

2 4.8 0.4 1.6 0.4 

3 4.8 0.6 1.8 0.5 

4 4.8 0.4 1.4 0.1 

5 4.1 0.5 2.4 0.3 
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ATAGCGAATCACCTGGAAGATGCGAATTTCGAAAAATGTATGAAGAATCATGAAAATGATTTGCAGATGTTAC

TTGTGAATGTACATGAAAAAGTGATGGCATATCAGCGTGCTATCAACGGTCATAATAACCCCCCCGATAATTC

AAGAAATGCCTTACTCTCTCCGCGTGAAACCGAAGTGCTTTTCCTGGTTAGTAGTGGACGAACTTACAAAGAG

GTTTCTCGTATATTAGGTATTAGTGAGGTCACCGTTAAGTTCCACATTAACAACTCAGTCCGTAAATTGGATGT

TATCAATTCCCGCCATGCTATAACTAAAGCACTTGAGTTAAATCTTTTCCATTCCCCCTGTGAGCCTGTAGTGAT

GAAGCATATGGACGCCCGTTAGAATGCTTGCTAAATAGGGAGGAAAGCTTGACAATTAGCTGAGCTTGGACT

CCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGT

TTTTTATTGGTGAGAATC  

 

 

C.8 carR complementation in vitro competition graphs  
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Second, independently conducted experiment, demonstrating the effect of co-inoculation with P. c. 

subsp. brasiliensis (Pbr) ICMP 19477 carR- complemented strain (Pbr carR-::pTRB32oriTcarR) on 

growth of P. atrosepticum (Pba) SCRI1043 on solid agar plates (MMA). 

 A: A graph showing the growth (mean CFUs) of P. atrosepticum SCRI1043 Rif (Pba R) resistant strain 

over a 48 h period at 28°C when inoculated into MM in isolation or co-inoculated with P. c. subsp. 

brasiliensis ICMP 19477 tagged with Km resistance (Pbr K), or the carR mutant Pbr carR-, gene 

complemented strain Pbr carR-::pTRB32oriTslyA or the control strain Pbr carR-::pTRB32oriT containing 

an empty copy of the pTRB32oriT plasmid  (at a 1:1 ratio). B: A graph showing the growth (mean CFUs) 

of Pbr K when cultured in isolation on solid agar plates as well as the Pbr strains in co-inoculation with 

Pba R (at a 1:1 ratio). For each graph, the mean CFUs were calculated for each treatment from 

triplicate assays (solid line), error bars represent the standard deviation.     
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C.9 Competitive index of the carR complemented strain in vitro 
 

 Pbr K v Pba R Pbr carR- v Pba R Pbr carR::carR- v Pba 
R 

Pbr carR-::pTRB32oriT  
v Pba R 

Time 
(hours) 

Log CI SD Log CI SD Log CI SD Log CI SD 

6 1.1 0.1 0.9 0.1 1.6 0.3 0.9 0.04 

12 2.4 0.1 1.3 0.03 1.3 0.3 0.4 0.1 

24 2.4 0.2 1.0 0.1 3.3 0.1 0.9 0.04 

32 2.4 0.1 1.1 0.01 3.1 0.1 0.3 0.05 

48 1.3 0.1 0.8 0.05 2.0 0.1 0.4 0.04 
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Chapter 5  

Carbapenem production in Pectobacterium carotovorum subsp. 

brasiliensis ICMP 19477 is regulated by carI and slyA 

5.1 Introduction 

Carbapenem production is under complex regulation in P. c. subsp. carotovorum. One mechanism of 

regulation involves QS (McGowan and Salmond, 1999). Quorum sensing is a well understood 

mechanism of gene regulation within bacteria, which enables the rational expression of genes in a 

population density dependent manner (Whitehead et al., 2001). Cell density is detected by the 

production of a small diffusible signalling molecule known as an N-AHL. 

In P. atrosepticum, the QS locus encoding the N-AHL is designated expI/expR (Miller and Bassler, 2001; 

Liu et al., 2008). The expI gene is a luxI-type gene that encodes a N-AHL synthase, which produces the 

N-AHL N-(3-oxohexanoyl) homoserine lactone (OHHL) (Andersson et al., 2000). The luxI-type genes 

are named differently in P. c. subsp. carotovorum strains. For instance, it is designated carI in the 

carbapenem-producing strain P. c. subsp. carotovorum ATCC 39048  (Swift et al., 2001). In P. c. subsp. 

carotovorum EC153 and P. c. subsp. carotovorum 71, the luxI-type gene is named ahlI (Chatterjee et 

al., 2005; Cui et al., 2006).  

The other gene within the QS loci, expR, encodes a LuxR type transcriptional-activator (Andersson et 

al., 2000; Chatterjee et al., 2000). In P. c. subsp. carotovorum SCC319, this was found to function in 

the control of PCWDE production, via an interaction with the global RNA binding protein RsmA (Cui et 

al., 2005). It was found that ExpR is not a classical LuxR type regulator as it is the ExpR protein, rather 

than the ExpR-N-AHL complex, which activates rsmA transcription (Chatterjee et al., 2005; Cui et al., 

2006). In carbapenem-producing strains of P. c. subsp. carotovorum such as SCC319, another LuxR-

type transcriptional activator is involved in the regulation of carbapenem biosynthesis (McGowan et 

al., 1995). The CarR regulator specifically activates transcription of the carA-H operon as the CarR-N-

AHL complex specifically binds to DNA upstream of carA (McGowan et al., 1995; Holden et al., 1998; 

Welch et al., 2000). CarR does not play a role in the control of PCWDE production (Whitehead et al., 

2002). 

Production of PCWDEs is under QS control, with biosynthesis limited to conditions when the pathogen 

reaches such numbers as to overcome the plant’s defences (Jones et al., 1993b; Perombelon, 2002). 

The coordinated regulation of PCWDE production and carbapenem biosynthesis via QS suggests that 
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the antimicrobial production acts to protect the nutrients released from the host from competing 

organisms. In addition to the PCWDEs, QS controls many secondary metabolite processes, including 

those related to virulence. It was demonstrated that in P. atrosepticum, QS regulated secretions 

systems, regulatory pathways and mechanisms for subverting the plants defences (Liu et al., 2008). 

Quorum sensing has also been associated with the colonization of xylem tissue by P. c. subsp. 

brasiliensis PBR1692 (Moleleki et al., 2016).  

Quorum sensing regulation of carbapenem production control has been observed in other 

enterobacteria such as Serratia marcescens (Thomson et al., 2000) and in the human pathogen P. 

aeruginosa (Miller and Bassler, 2001). In these bacteria, an expI- type and carR-type gene have been 

implicated as the primary QS signalling systems involved in regulating production of carbapenems. In 

S. marcescens ATCC 39006 the expI-type gene is designated smaI, which is associated with the LuxR-

type transcriptional regulator encoding gene smaR (Thomson et al., 2000). This locus has been 

identified as being involved in the regulation of other secondary metabolites in S. marcescens ATCC 

39006, as well as carbapenem production, such as the tripyrrole antibiotic prodigiosin  

Regulatory mechanisms are also known to function in conjunction with QS to regulate carbapenem 

production. Of particular interest are the members of the MarR/SlyA family, which influence the 

production of secondary metabolites in various organisms (Ellison and Miller, 2006). SlyA of 

Salmonella typhimurium was the first example of such a regulator, which was also found to modulate 

virulence (Libby et al., 1994; Ludwig et al., 1995). The MarR/SlyA family also includes Rap (S. 

marcescens) (Thomson et al., 1997), Hor (P. c. subsp. carotovorum) (Thomson et al., 1997), PecS 

(Dickeya) (Reverchon et al., 1994) and RovA (Yersinia pseudotuberculosis) (Nagel et al., 2001). In all 

these examples, the regulators control expression of genes related to pathogenesis or those that 

respond to stress (Reverchon et al., 1994; Nagel et al., 2001). Of particular interest are the rap and hor 

genes that control carbapenem production in Serratia and P. c. subsp. carotovorum respectively 

(Thomson et al., 1997).  

The MarR/SlyA protein family are structurally diverse, although their mechanism of regulation is 

conserved. They act at the transcriptional level by competing with repressors or activators for access 

to binding sites, within the promoter regions of the genes under their control, enabling transcription 

of target genes to be activated or repressed (Ellison and Miller, 2006). For example, Hor activates 

carbapenem production in P. c. subsp. carotovorum by directly activating transcription of the 

biosynthesis genes (Thomson et al., 1997). The regulatory network involved in carbapenem 

production is summarised in Figure 1.3.    
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SlyA-type regulators have often been described as members of complex, hierarchical regulatory 

networks. In P. c. subsp. carotovorum, the expression of Hor is repressed by ExpR at low population 

densities i.e. the OHHL signalling molecule is not produced. Transcription is then activated via a QS-

dependent global regulator at high population numbers (Sjöblom et al., 2008). In Yersinia and 

Salmonella SlyA is controlled by the two component regulatory system PhoP/PhoQ, which is not under 

QS control. Termination of slyA transcription is controlled via auto repression by the slyA transcript 

(Miller et al., 1989).  

In Chapter Four, carbapenem production was proven to be involved in the antagonism of P. 

atrosepticum SCRI1043 by P. c. subsp. carotovorum ICMP 19477 in bioassays. Carbapenem production 

was also important for the competitive fitness of the producer in mixed populations in potato tubers. 

Two further Tn5 mutants impaired in carbapenem production, with transposon insertions in carI and 

slyA-type gene were identified. Furthermore, a carI gene as well as multiple expR homologues 

including a carR homologue have been identified within the genome of P. c. subsp. carotovorum ICMP 

19477 (Panda et al., 2015b), this study). Given the role of carI and slyA in regulating carbapenem 

production in P. c. subsp. carotovorum, it was proposed that these regulators were also involved in 

the production of the carbapenem molecule by P. c. subsp. brasiliensis ICMP 19477.  To confirm this 

hypothesis we characterised the carI and slyA mutants for their role in carbapenem production.  
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5.2 Results 

5.2.1 OHHL production by Pectobacterium carotovorum subsp. brasiliensis 

ICMP19477 was abolished in the carI mutant  

As described in Chapter 4, carI was predicted to encode a QS synthetase that synthesises the QS 

molecule OHHL. Thus, N-AHL production assays (Section 2.1.30) were performed to confirm that OHHL 

production had been abolished in P. c. subsp. brasiliensis carI- by insertion of the Tn5 cassette into 

carI. The N-AHL production bioassay utilises the production of violacein, a purple pigment, by 

Chromobacterium violacein (Ballantine et al., 1958; Lichstein and van de Sand, 1945). The production 

of violacein was found to be under QS control (Throup et al., 1995). A transposon mutant (C. violacein 

CV026) was produced that was defective in both violacein and N-AHL production (Katifi et al., 1993; 

Throup et al., 1995). Crossfeeding experiments with the parental C. violacein strain and CV026 

restored violacein production in the transposon mutant (Throup et al., 1995). Therefore, the bioassay 

functions as N-AHLs produced by the test bacteria (i.e. P. c. subsp. brasiliensis ICMP 19477) restore 

violacein production and the coloured zones can be measured as an indication of N-AHL production 

by the test bacteria. Mutants unable to produce the N-AHL molecule (i.e. carI-) do not restore violacein 

production and therefore no coloured zones are visible.  

The carI mutant failed to produce coloured zones on the indicator strain Chromobacterium violaceum 

CV026 whereas the WT produced increasingly large zones from approximately 7 hpi (Figure 5.1). 

Production of the zones at this time corresponded to P. c. subsp. brasiliensis ICMP 19477 reaching 

higher cell densities during the transition from exponential phase into stationary phase (Figure 4.2). 

The failure of P. c. subsp. brasiliensis carI- to produce a coloured zone was indicative that OHHL 

production had been abolished in this strain. As the carI mutant had also failed to produce a zone of 

inhibition on P. atrosepticum SCRI1043, these data indicated that the QS molecule was required by P. 

c. subsp. brasiliensis ICMP 19477 for the production of the carbapenem, and consequently for 

antagonism of P. atrosepticum SCRI1043. In the same assays, both the carR- and the slyA- mutants 

produced coloured zones similar to those of the WT on the indicator strain C. violaceum CV026, 

indicative that these strains were producing OHHL.  
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Figure 5.1. Production of the quorum sensing molecule N-3-(oxohexanoyl)-L-homoserine lactone 

(OHHL) by P. c. subsp. brasiliensis (Pbr) ICMP19477 and the Tn5 mutants Pbr carI-, Pbr carR- and Pbr 

slyA-.  

Cell-free culture supernatants were prepared throughout growth of each strain in LB and the 

supernatants were dotted onto bioassay plates containing a lawn of the indicator strain 

Chromobacterium violaceum CV026. The production of OHHL was determined by the presence of 

coloured halos on the lawn. The sizes of the coloured zones were measured and the area plotted 

against time. The errors represented are standard deviations (some error bars are hidden behind the 

graph symbols).  

 
 

5.2.2 Inactivation of carI results in reduced inhibition of Pectobacterium 

atrosepticum SCRI1043 in co-inoculation assays on solid media 

Solid plate competition assays (Section 2.1.26) showed that the growth of P. atrosepticum SCRI1043 

when co-inoculated with the carI mutant was similar to the growth of P. atrosepticum SCRI1043 when 

it was cultured in isolation. In contrast, the growth of P. atrosepticum SCRI1043 was significantly 

reduced during the late exponential and early stationary phases in co-inoculations with P. c. subsp. 

brasiliensis ICMP 19477 (Figure 5.2 A). As with previous experiments, P. c. subsp. brasiliensis ICMP 

19477 appeared unaffected by co-inoculation with P. atrosepticum SCRI1043. (Figure 5.2 B). Data was 

consistent in a second, independently conducted experiment (Appendix D).  

2D Graph 17

Time (Hours)

0 2 4 6 8 10 12 14

Zo
ne

 a
re

a 
(c

m
2 )

0

1

2

3

4

5

6

7

8

9

Pbr WT
Pbr carI-

Pbr carR-

Pbr slyA-

2D Graph 1

Time (hours post inoculation)

0 10 20 30 40 50 60

C
om

pe
tit

iv
e 

In
de

x 
(L

og
)

-2

-1

0

1

2

3

Pbr K v Pba R
Pbr slyA- v Pba R



 165 

The CI was subsequently calculated for each of the strains (Section 2.1.26). These calculations showed 

strong competition against P. atrosepticum SCRI1043 by P. c. subsp. brasiliensis ICMP19477, with the 

Log CI of the WT reaching between 1.0 and 2.0 during the late exponential and early stationary phases. 

The carI- mutant showed only weak competition, with Log CI values for this strain never reaching more 

than 0.5 (Appendix D). The data were consistent with those in a second independently conducted 

experiment (data not shown). These results confirmed that inactivation of carI reduced inhibition of 

P. atrosepticum SCRI1043 by P. c. subsp. brasiliensis ICMP 19477 in co-inoculation assays on solid 

media.  

 

 

Figure 5.2. The effect of co-inoculation with P.c. subsp. brasiliensis (Pbr) ICMP 19477 and Pbr carI- 

on growth of P. atrosepticum (Pba) SCRI1043 on solid agar plates (MMA).  

A: A graph showing the growth (mean CFUs) of the Pba SCRI1043 Rif resistant strain (Pba R)  over a 48 

h period at 28°C when inoculated onto MMA in isolation or co-inoculated with P. c. subsp. brasiliensis 

ICMP 19477 tagged with Km resistance (Pbr K) or the carI mutant Pbr carI- at a 1:1 ratio. B: A graph 

showing the growth (mean CFUs) of Pbr K when cultured in isolation on solid agar plates or in co-

inoculations with Pba R as well as the growth of Pbr carI- co-inoculated with Pba R (at a 1:1 ratio). For 

each graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), error 

bars represent the standard deviation.     
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5.2.3 Inactivation of carI reduces inhibition of Pectobacterium atrosepticum 

SCRI1043 in co-inoculation assays in potato tubers 

Growth of P. atrosepticum SCRI1043 was reduced only slightly when the bacterium was co-inoculated 

into potato (‘Ilam Hardy’) tubers (Section 2.1.28) with P. c. subsp. brasiliensis carI- relative to its growth 

upon inoculation into tubers in isolation (Figure 5.3 A). In contrast, co-inoculation of P. atrosepticum 

SCRI1043 with P. c. subsp. brasiliensis ICMP 19477 resulted in a dramatic inhibition in growth of the 

sensitive strain (Figure 5.3 B).  In fact, at most sampling times, the CFU values of P. atrosepticum 

SCRI1043 were at least 100 times greater when inoculated with P. c. subsp. brasiliensis carI- than when 

inoculated with WT. The growth of P. c. subsp. brasiliensis ICMP 19477 was not affected by co-

inoculation with P. atrosepticum SCRI1043. The results were consistent with those collected in a 

second independent experiment using potatoes sourced at a different time of year (Appendix D). This 

demonstrated that the physiology of the potato did not affect the competition between the bacteria. 

It has previously been described that the age of potato tubers can affect their susceptibility to tuber 

soft rot  (Marquez-Villavicencio et al., 2011). 

 

 

 

 

 

 

Figure 5.3. The effect on growth of P. atrosepticum (Pba) SCRI1043 of co-inoculation with P. c. subsp. 

brasiliensis (Pbr) ICMP 19477 and Pbr carI- in potato tubers (‘Ilam Hardy’). 

 A: A graph showing the growth (mean CFUs) of the Pba SCRI1043 Rif resistant strain (Pba R)  over a 

48 h period at 28°C when inoculated into potato tubers in isolation or co-inoculated with Pbr 

ICMP19477 tagged with Km resistance (Pbr K) or the carI mutant Pbr carI- (at a 1:1 ratio). B: A graph 

showing the growth (mean CFUs) of Pbr K when cultured in isolation in potato tubers or in co-

inoculations with Pba R as well as growth of Pbr carI- co-inoculated with Pba R (at a 1:1 ratio). For each 

graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), error bars 

represent the standard deviation.     
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The CI was calculated for each of the P. c. subsp. brasiliensis strains (Section 2.1.26). These calculations 

showed very strong competition against P. atrosepticum SCRI1043 by P. c. subsp. brasiliensis 

ICMP19477, with the Log CI of the WT reaching between 3 and 5 during the late exponential and early 

stationary phases. The carI- mutant showed markedly weaker competition than the WT, with Log CI 

values for this strain reaching between 1 and 2 (Appendix D). The CI values at no point reached zero, 

however (which would indicate no competition between the bacteria).    

 

5.2.4 Addition of exogenous OHHL to Pectobacterium carotovorum subsp. 

brasiliensis carI- mutant restores its ability to produce the carbapenem 

molecule 

Chemical complementation of the P. c. subsp. brasiliensis carI- mutant was undertaken with 

exogenous OHHL rather than by constructing a derivative of the mutant expressing the WT gene, as 

the carI mutant was defective in OHHL production. In these experiments (Section 2.1.31), addition of 

OHHL to the P. c. subsp. brasiliensis carI- mutant resulted in the production of zones of inhibition 

similar in size to the WT when the bacterium was cultured on a lawn of the indicator strain ESS  (Figure 

5.4). In contrast, the carI- mutant failed to produce zones of inhibition. The restoration of the WT 

phenotype by addition of exogenous OHHL confirmed the role of this quorum sensing molecule (as 

encoded by carI) in regulating the production of carbapenem, which is required for antagonism of P. 

atrosepticum SCRI1043 by P. c. subsp. brasiliensis ICMP 19477.  
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Figure 5.4. Addition of exogenous OHHL to the P. c. subsp. brasiliensis (Pbr) carI- mutant restored its 

capacity to inhibit growth of ESS, an E. coli strain super sensitive to carbapenems.  

Assays were conducted as described in Section 2.1.31. Plates were incubated at 28 °C for 24 h and 

scored for zones of inhibition. Pba SCRI1043 and Pbr carI- were inoculated onto plates as negative 

controls.  
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5.2.5 Inactivation of slyA results in reduced inhibition of Pectobacterium 

atrosepticum SCRI1043 in co-inoculation assays on solid media  

Competition assays on solid media (Section 2.1.26) were conducted using the P. c. subsp. brasiliensis 

slyA- mutant identified in Chapter Four. In these assays, during the exponential phase of growth the 

slyA mutant showed a similar inhibition of P. atrosepticum SCRI1043 to the WT P. c. subsp. brasiliensis 

strain in co-inoculations (Figure 5.5 A). Inhibition of P. atrosepticum SCRI1043 in late exponential to 

stationary phase was greater, however, when the sensitive strain was co-inoculated with the WT 

rather than with the slyA mutant. These data suggested that slyA was contributing to the inhibition of 

P. atrosepticum SCRI1043 in co-inoculations on solid media during the later stages of growth. 

Graphical representation of the CFU values over the course of the assay demonstrated that both the 

P. c. subsp. brasiliensis slyA- mutant and the WT were not affected by co-inoculation with P. 

atrosepticum SCRI1043 (Figure 5.5 B).  

The Log CI was calculated for each P. c. subsp. brasiliensis ICMP 19477 strain in the competition assays 

(Section 2.1.26). From 24-48 hpi, strong competition was evident when the WT was co-inoculated with 

P. atrosepticum SCRI1043 (Log CI was 1 - 2). At all sampling times during the experiment, weak or no 

competition was evident when P. atrosepticum SCRI1043 was co-inoculated with the slyA mutant (Log 

CI<0.5) (Appendix D). This suggested that the SlyA regulator, along with CarI and CarR, regulates 

production of the carbapenem responsible for the greater fitness of P. c. subsp. brasiliensis ICMP 

19477 when in competition with P. atrosepticum SCRI1043. This hypothesis was confirmed by similar 

data obtained in a second independently conducted experiment (Appendix D).   
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Figure 5.5. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 and P. c. subsp. 

brasiliensis (Pbr slyA-) on growth of P. atrosepticum (Pba) SCRI1043 on solid agar plates (MMA).  

A: A graph showing the growth (mean CFUs) of the Rif resistant strain (Pba R) over a 48 h period at 

28°C when inoculated onto MMA in isolation or when co-inoculated with Pbr ICMP 19477 tagged with 

Km resistance (Pbr K) or the slyA mutant Pbr slyA- (at a 1:1 ratio). B: A graph showing the growth (mean 

CFUs) of Pbr K when cultured in isolation on solid agar plates or in co-inoculations with Pba R as well 

as the growth of Pbr slyA- co-inoculated with Pba R (at a 1:1 ratio). For each graph, the mean CFUs 

were calculated for each treatment from triplicate assays (solid line), error bars represent the standard 

deviation.     

 

 

5.2.6 Inactivation of slyA results in reduced inhibition of Pectobacterium 

atrosepticum SCRI1043 in co-inoculation assays in potato tubers  

Tuber competition assays (Section 2.1.28) were conducted to determine the role of SlyA under 

conditions of mixed infection in tubers. In these experiments the growth of P. atrosepticum SCRI1043 

was significantly greater when co-inoculated with the slyA mutant than with the WT (Figure 5.6 A). 

The CFU values did not, however, reach the values for P. atrosepticum SCRI1043 when this strain was 

grown in isolation. P. c. subsp. brasiliensis slyA- was not altered when co-inoculated with P. 

atrosepticum SCRI1043 (Figure 5.6 B). Similar results were obtained in a second, independently 

conducted experiment (Appendix D). 
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The CI was also calculated (Section 2.1.26). These calculations showed strong competition between P. 

c. subsp. brasiliensis ICMP 19477 and P. atrosepticum SCRI1043 (Log CI 3-4). Much weaker competition 

was evident for the P. c. subsp. brasiliensis slyA- mutant (Log CI 1-2) (Appendix D).   

These results were similar to that observed for P. c. subsp. brasiliensis carR- and P. c. subsp. brasiliensis 

carI-  (Sections 4.2.8 and 5.2.3).  

 

 

 

Figure 5.6. The effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP 19477 and P. c. subsp. 

brasiliensis (Pbr slyA-) on growth of P. atrosepticum (Pba) SCRI1043 in potato tubers (‘Ilam Hardy’).  

A: A graph showing the growth (mean CFUs) of the Pba SCRI1043 Rif resistant strain (Pba R) over a 48 

h period at 28°C when inoculated into potato tubers in isolation or when co-inoculated with Pbr ICMP 

19477 tagged with the Km resistance cassette (Pbr K) or the slyA mutant Pbr slyA- (at a 1:1 ratio). B: A 

graph showing the growth (mean CFUs) of Pbr K when cultured in isolation in potato tubers or in co-

inoculations with Pba R as well as Pbr carI- co-inoculated with Pba R (at a 1:1 ratio). For each graph, 

the mean CFUs were calculated for each treatment from triplicate assays (solid line), error bars 

represent the standard deviation.     
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5.2.7 Complementation of slyA restored production of the carbapenem 

Complementation studies were performed to confirm the role of SlyA. First, a derivative of pTRB32oriT 

containing a PCR fragment including slyA from P. c. subsp. brasiliensis ICMP 19477 was constructed 

(Sections 2.1.10-14 and Section 2.1.16) and the resulting plasmid (pTRB32oriTslyA) was introduced 

into P. c. subsp. brasiliensis slyA- via conjugation (Section 2.1.17). The presence of (pTRB32oriTslyA) in 

the transconjugants was confirmed by PCR using the SlyA_compl F and SlyA_compl R primers (Section 

2.1.10) (Figure 5.7). To ensure the integrity of the inserted gene, the PCR amplicon was then 

sequenced (Section 2.1.14). Sequencing confirmed that the nucleotide sequence was identical to that 

of the WT gene from P. c. subsp. brasiliensis ICMP 19477 (Appendix D).   

 

 

 

Figure 5.7. PCR amplicons obtained from PCR reactions using genomic DNA (gDNA) and plasmid DNA 

from the helper, donor, and recipient strains as well as transconjugants after conjugation of P. c. 

subsp. brasiliensis (Pbr) slyA- with the slyA gene.  

Lanes 1-7 were PCR products obtained using Pbr-specific primers Pbr NZ F and Pbr NZ R (Table 2.3). 

Lanes 8 -14 were PCR products obtained using slyA-specific primers SlyA_compl F and SlyA_compl R 

(Table 2.3).  L, DNA ladder (Hyper ladder 100 bp, Bioline); lane 1 & 8, positive control Pbr ICMP19477 

gDNA; lane 2 & 9, negative control E. coli donor gDNA; lane 3 & 10, negative control E. coli helper 

gDNA; lane 4 & 11, Pbr slyA- recipient strain; lanes 5-7 & 12-14, Pbr slyA- transconjugants 1-3; Primers 

used are listed in Table 2.3.  

To determine if the introduction of the WT copy of slyA in trans restored carbapenem production in 

the slyA mutant, the transconjugant P. c. subsp. brasiliensis slyA-::pTRB32oriTslyA was used in an 

antagonism assay as previously described. As for the carR complementation (Section 4.2.10), IPTG was 

included in the growth plates (Section 2.1.4) to induce slyA expression from the plasmid. Induction 

with IPTG resulted in zones of inhibition being produced by P. c. subsp. brasiliensis slyA-

::pTRB32oriTslyA whereas a transconjugant carrying the parent plasmid pTRB32oriT failed to produce 
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any visible zone (as did the slyA mutant) (Figure 5.8). The antagonism of P. atrosepticum SCRI1043 by 

the transconjugant carrying a functional slyA gene in trans confirmed that production of carbapenem 

by P. c. subsp. brasiliensis ICMP 19477 requires the SlyA regulator.  

 

 

 
 
 

Figure 5.8. P. c. subsp. brasiliensis (Pbr) slyA- containing a copy of the WT slyA gene, (Pbr slyA-

::pTRB32oriTslyA) restored the ability of the mutant to produce a zone of inhibition on P. 

atrosepticum SCRI1043 in antagonism assays.  

The complemented strain, Pbr slyA-::pTRB32oriTslyA is a transconjugant of the slyA mutant carrying a 

functional copy of the gene in trans. As a negative control, a Pbr slyA- mutant containing an empty 

copy of pTRB32oriT (Pbr slyA-::pTRB32oriT) was included. Antagonism assays were conducted as 

described in Section 2.1.21. Assay plates were incubated at 28 °C for 24 h, with zones of inhibition 

around the Pbr colonies indicative of antimicrobial production. 

 

The growth of P. c. subsp. brasiliensis slyA-::pTRB32oriTslyA and P. c. subsp. brasiliensis slyA-

::pTRB32oriT strains were subsequently compared with the growth of the WT and the slyA mutant on 

agar plates (Section 2.1.22), prior to assessing the strains in competition assays. The CFU values 

obtained at each sampling time indicated that P. c. subsp. brasiliensis slyA-::pTRB32oriTslyA was not 
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reduced in growth compared to the P. c. subsp. brasiliensis ICMP 19477 WT or the Km resistant strain. 

(Figure 5.9). The growth of the control strain, P. c. subsp. brasiliensis slyA-::pTRB32oriT, did appear to 

be very slightly reduced compared to the other strains, although formal analysis of this data suggested 

any observed differences were insignificant, especially after 32 hpi (p = 0.168, F-test).  

 
 
 

  
 

Figure 5.9. Growth of P. c. subsp. brasiliensis (Pbr) slyA-::pTRB32oriTslyA and Pbr slyA-::pTRB32oriT 

on solid agar plates was similar to that of the slyA mutant.  

The graph shows the growth (mean CFUs) of the Pbr WT as well as the Km resistant tagged strain Pbr 

ICMP 19477 (Pbr K) plus Pbr slyA-::pTRB32oriTslyA and Pbr slyA-::pTRB32oriT over 48 h post inoculation 

with 104 CFUs/ml of each bacteria (as described in Section 2.1.22). The mean CFUs represent the mean 

over three test plates. Error bars are 95% confidence limits.  

 

As P. c. subsp. brasiliensis carR-::pTRB32oriTcarR and P. c. subsp. brasiliensis slyA-::pTRB32oriT were 

not significantly affected in growth compared to the slyA mutant and the WT, the impacts of these 

strains on growth of P. atrosepticum SCRI1043 were compared in competition assays on solid media 

(supplemented with IPTG where necessary). In these assays, the growth of P. atrosepticum SCRI1043 

was reduced when co-inoculated with P. c. subsp. brasiliensis slyA-::pTRB32oriTslyA + IPTG compared 

to its growth in isolation or in the presence of either the slyA mutant or P. c. subsp. brasiliensis slyA-

::pTRB32oriT, especially during the late exponential and early stationary phases (Figure 5.10 A). 

Indeed, P. c. subsp. brasiliensis slyA-::pTRB32oriTslyA, when induced with the addition of IPTG, was 

able to inhibit the growth of P. atrosepticum SCRI1043 to a greater extent than even the WT. The 

growth of the P. c. subsp. brasiliensis ICMP 19477 strains was not affected when co-inoculated with P. 
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atrosepticum SCRI1043 (Figure 5.10 B). Results were consistent in a second, independently conducted 

experiment (Appendix D).     

 

 

 

 

 

 

Figure 5.10. Growth of P. atrosepticum (Pba) SCRI1043 on solid agar plates (MMA) is reduced upon 

co-inoculation with Pbr slyA-::pTRB32oriTslyA.  

A: A graph showing the growth (mean CFUs) of the Pba SCRI1043 Rif resistant strain (Pba R) over a 48 

h period at 28°C when inoculated onto MMA in isolation or when co-inoculated with Pbr ICMP 19477 

tagged with Km resistance (Pbr K) or the slyA mutant (Pbr slyA-), the transconjugant Pbr slyA-

::pTRB32oriTslyA or the control strain Pbr slyA-::pTRB32oriT (containing the pTRB32oriT plasmid) (at a 

1:1 ratio). B: A graph showing the growth (mean CFUs) of Pbr K when cultured in isolation on solid 

agar plates as well as the various Pbr strains in co-inoculation with Pba R (at a 1:1 ratio). For each 

graph, the mean CFUs were calculated for each treatment from triplicate assays (solid line), error bars 

represent the standard deviation.     

 

The Log CI values (Section 2.1.26) calculated for the P. c. subsp. brasiliensis ICMP 19477 strains from 

their growth in the competition experiments confirmed that P. c. subsp. brasiliensis slyA-

::pTRB32oriTslyA strongly out-competes P. atrosepticum  SCRI1043, the Log CI  reaching 2.0-3.0 during 

the late exponential and early stationary phases. As expected from the growth analyses, these CI 

values were greater than WT, which reached 2.0-2.5 in the same period. In contrast, weak competition 

was calculated for both P. c. subsp. brasiliensis slyA- and P. c. subsp. brasiliensis slyA-::pTRB32oriT with 

Log CI rarely breaching 1.0 (Appendix D). A second, independently conducted experiment confirmed 

these data (data not shown).  

As for the carR mutant, complementation of the slyA mutant required exogenous IPTG. Thus, 

experiments to confirm complementation in tubers were not performed. Nevertheless, the 
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restoration of carbapenem production in P. c. subsp. brasiliensis slyA-::pTRB32oriTslyA and its fitness 

in co-inoculations on solid media was  considered sufficient evidence to demonstrate the role of slyA 

in these processes.  

 

5.2.8 The Pectobacterium carotovorum subsp. brasiliensis carI- mutant is 

complemented by Pectobacterium carotovorum subsp. brasiliensis carR- and 

Pectobacterium carotovorum subsp. brasiliensis slyA-   

To define the hierarchy in the quorum sensing regulation of carbapenem production in P. c. subsp. 

brasiliensis ICMP 19477, cross-feeding assays were conducted as described in Section 2.1.21, using the 

carI and slyA mutants as well as the carR mutant. These assays showed that the supernatants from 

cultures of the slyA and carR mutants enabled the carI mutant to generate zones of inhibition when 

grown on a lawn of E. coli ESS (Figure 5.11 A and B). P. c. subsp. brasiliensis carR- and P. c. subsp. 

brasiliensis slyA- could not complement one another, however (Figure 5.11 C). 

 

 

 

Figure 5.11. P. c. subsp. brasiliensis (Pbr) carI- is complemented by cross-feeding with Pbr carR- and 

Pbr slyA-. 

Assays were conducted as described in Section 2.1.21. The plates were incubated for 24 h at 28°C and 

scored for zones of inhibition. Pbr ICMP 19477 Km resistant (Pbr K) was included as a positive control. 

Mutants inoculated without the supernatant were used as negative controls.  
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5.3 Discussion 

In Chapter Four, mutants with a Tn5 insertion in carI and slyA were identified, which were unable to 

cause zones of inhibition on P. atrosepticum SCRI1043. In this Chapter, the role of both these genes in 

inhibition of P. atrosepticum SCRI1043 was confirmed. The mutants were successfully complemented, 

either by chemical complementation using OHHL (for the carI mutant) or by introducing a wild-type 

copy of the gene into the mutant (for the slyA mutant). The successful complementation of carI 

demonstrated the role of OHHL and QS in production of the carbapenem (encoded byPbN1-GI65) in 

P. c. subsp. brasiliensis ICMP 19477. This was consistent with regulation of carbapenem production by 

QS in P. c. subsp. carotovorum (McGowan et al., 1995; McGowan et al., 2005). 

The C. violacein CV06 bioassay (Section 2.1.30) used to confirm that the P. c. subsp. brasiliensis carI- 

mutant did not produce OHHL also showed that the carR and slyA mutants produced this QS molecule 

(Figure 5.1). These data indicated that the inability to produce carbapenem by P. c. subsp. brasiliensis 

carR- (as described in Chapter Four) and P. c. subsp. brasiliensis slyA- was likely due to the disruption 

of a pathway not controlled by QS or because they could not respond to the QS molecule. This was 

consistent with the role of CarR further down the QS regulatory cascade from carI in P. c. subsp. 

carotovorum (McGowan et al., 2005) and the concurrent role of SlyA-type regulators within 

carbapenem production (McGowan et al., 2005). 

The ability of the slyA mutant to antagonise P. atrosepticum SCRI1043 in vitro was restored when a 

copy of the P. c. subsp. brasiliensis WT slyA gene was expressed in trans (P. c. subsp. brasiliensis slyA-

::pTRB32oriTslyA) (Section 5.2.7). As previously described, the involvement of SlyA/MarR type 

transcriptional regulators in the production of carbapenems and other secondary metabolites is well 

understood in P. c. subsp. carotovorum (Thomson et al., 1997; McGowan et al., 2005). A slyA-type 

gene is also involved in the production of a carbapenem in Photorhabdus luminescens, however the 

carbapenem synthesis genes of this species are highly divergent from those of P. c. subsp. 

carotovorum (and Serratia) (Derzelle et al., 2002). This demonstrates that slyA regulation of 

carbapenem production is ubiquitous in enterobacteria producing these antimicrobials.   

Cross-feeding assays (Section 5.2.8) confirmed that slyA regulation of carbapenem production in P. c. 

subsp. brasiliensis ICMP 19477 does not act through regulation of carR (or vice versa), as the slyA and 

carR mutants did not complement one another (Figure 5.11). In carbapenem producing strains of P. c. 

subsp. carotovorum, the SlyA type regulator (Hor) operates in conjunction with the QS system 

(McGowan et al., 2005). The exact role of Hor in carbapenem synthesis in unclear, however it appears 

to act via inducing transcription of carA (McGowan et al., 2005). The hor gene was found to be 
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expressed at late exponential to late stationary phase and its transcription was not induced by the 

presence of OHHL. Therefore it was concluded that the SlyA-type regulatory network is a secondary 

network required for carA-H transcription (McGowan et al., 2005). Interestingly, it was found that 

partial carbapenem synthesis could be restored in a hor mutant by the addition of unnaturally high 

levels of OHHL. This suggests that Hor regulation is able to be circumvented under certain conditions 

(McGowan et al., 2005). The regulatory network of carbapenem production within P. c. subsp. 

brasiliensis ICMP 19477 is summarised in Figure 5.12. 
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Figure 5.12: The quorum sensing and SlyA-type regulatory network in P. c. subsp. brasiliensis ICMP 19477. These systems regulate carbapenem production 

as well as other processes within the bacteria. Genes are represented as grey arrows, transcription of a gene is represented as a dotted arrow and the resultant 

gene product is given within a circle. The QS molecule N-(3-oxohexanoyl)-L-homoserine lactone is designated as OHHL. The influence of the regulatory genes 

products, as well as OHHL, on the level of gene transcription is shown by the black arrows; a positive influence is designated as +. Resultant products or effects 

following gene transcription are represented with dashed arrows. Predicted associations are represented as dotted and dashed arrows.      
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Inactivation of carI and slyA reduced the CI of P. c. subsp. brasiliensis ICMP 19477 both on agar plates 

and in potato tubers (Sections 5.2.5 and 5.2.6). As described previously for the carR mutant, the 

difference in the competitive fitness of the carI and slyA mutants and the WT was greatest in planta 

(Section 4.3). This may be due to an increased advantage afforded to a bacteria that is able to protect 

the nutrients released from the host tissue, under the nutrient limited conditions of the tuber. 

Therefore, antimicrobial production would be selected for under these conditions and confer an 

adaptive advantage within the ecological niche.    

Although carbapenem production, and hence its regulation, were important to competitive fitness of 

P. c. subsp. brasiliensis ICMP 19477, when either carI or slyA was inactivated the competitive 

advantage of P. c. subsp. brasiliensis ICMP 19477 was not abolished entirely (sections 5.2.7 and 5.2.8). 

This was consistent with the results of fitness assays using the carR mutant, reiterating the role of 

other unknown factors in the competitive fitness of the carbapenem producer (Sections 4.2.10 and 

4.2.11). Given that CarI is the major QS regulator and SlyA is transcribed at high cell densities, any 

unknown factor would probably be regulated independently of cell density. This makes it unlikely that 

another antimicrobial produced by P. c. subsp. brasiliensis ICMP 19477 confers fitness. Instead, the 

competitive advantage of P. c. subsp. brasiliensis ICMP 19477 might be due to the capacity of the 

bacterium to utilise certain nutrients more efficiently than P. atrosepticum SCRI1043 (as discussed in 

Section 4.3). The impact of differences in nutrient utilisation by these two bacteria would certainly be 

more apparent in the plant, where the greatest fitness advantage to P. c. subsp. brasiliensis ICMP 

19477 was observed.         

Finally, the reduced carbapenem production and associated ecological fitness of the carI and slyA 

mutants was not unexpected. Quorum sensing modulates the co-ordinated production of many 

important components of the pathogen’s arsenal for colonising host plants and for competing with 

other microbes (Mäe et al., 2001). Quorum sensing alone differentially regulates 26% of the P. 

atrosepticum genome during infection of potato (Liu et al., 2008). This co-ordination makes sense 

when considering the ecology of the pathogen. In P. c. subsp. carotovorum, quorum sensing regulates 

the expression of PCWDEs ensuring their production when cell density is high  (Pirhonen et al., 1991; 

Pierson III et al., 1998). The expression of antimicrobials such as carbapenems under similar 

circumstances ensures that they are synthesised at the same time as the large amount of nutrients 

are released into the surrounding environment. Thus, as previously predicted for P. c. subsp. 

carotovorum (Whitehead et al., 2002; Coulthurst et al., 2005), co-ordinated production of the PCWDEs 
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and carbapenem enables P. c. subsp. brasiliensis ICMP 19477 to defend nutrients made available 

during infection of the host (rather than as a mechanism to invade an already established population). 

The coordinated, large scale release of the antimicrobial molecule may also be a method of avoiding 

the development of antimicrobial resistance within the ‘sensitive’ population. If the carbapenem was 

released by the bacteria throughout growth, sub-inhibitory levels would be circulating in the 

environment, possibly enabling tolerance mechanisms to develop (Hibbing et al., 2010).  

Results of this study are consistent with findings that demonstrated that in P. c. subsp. carotovorum, 

QS is a specific, intra-specific communication system (Fuqua and Greenberg, 2002; Lazdunski et al., 

2004; Pappas et al., 2004). Pectobacterium atrosepticum SCRI1043 also harbours carI (known as expI) 

(Barnard and Salmond, 2007), which is involved in QS regulation of numerous genes including those 

involved in production of PCWDEs and other traits relating to pathogenicity (Liu et al., 2008). Thus, 

the identification of a carI mutant in P. c. subsp. brasiliensis ICMP 19477 using the antagonism assays 

suggested that the OHHL produced by P. atrosepticum was not recognised by P. c. subsp. brasiliensis 

(otherwise the mutant would have been complemented by the OHHL produced by P. atrosepticum 

SCRI1043). The lack of cross-recognition was consistent with observations in P. c. subsp. carotovorum, 

which showed that different strains produce one of three N-AHL molecules (Brader et al., 2005). These 

molecules differ in the length of their acyl chain (Brader et al., 2005). The QS regulators in these strains 

only recognise N-AHL molecules with the same acyl chain length (Brader et al., 2005).  

The concept of N-AHL molecules forming intra-specific communication systems is distinct from 

observations in Pseudomonas. For example, in P. aureofaciens, the production of the antimicrobial 

phenazine is controlled by QS, via the phzI and phzR genes (Wood and Pierson, 1996). A mutation in 

the phzI gene results in loss of phenazine production due to the bacteria’s inability to produce the QS 

auto-inducer molecule. Phenazine production, however, was restored when the phzI mutant was 

grown in the presence of other bacteria in its ecological niche. This suggested that P. aureofaciens was 

able to utilise different QS molecules to activate the production of phenazine (Pierson III et al., 1995; 

Wood and Pierson, 1996). In future, it would be interesting to examine whether the OHHL produced 

by P. c. subsp. carotovorum ICMP 5702 could restore the production of carbapenem in P. c. subsp. 

brasiliensis ICMP 19477, especially as this strain harbours a carbapenem biosynthetic cluster of its 

own. This would help to define whether the specificity of OHHL production extends to P. c. subsp. 

brasiliensis and other carbapenem producing strains. 
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Appendix D 

 

D.1 carI- in vitro competition graphs 
 

 

 

Second, independently conducted experiment demonstrating the effect of co-inoculation with P.c. 

subsp. brasiliensis (Pbr) ICMP19477 and P. c. subsp. brasiliensis carI- (Pbr carI-) on growth of P. 

atrosepticum (Pba) SCRI1043 on solid agar plates (MMA).  

A: A graph showing the growth (mean CFUs) of Pba SCRI1043 Rif resistant strain (Pba R)  over a 48 h 

period at 28 °C when inoculated onto MMA in isolation or co-inoculated with Pbr ICMP 19477 tagged 

with Km resistance (Pbr K), or the carI mutant Pbr carI- (at a 1:1 ratio). B: A graph showing the growth 

(mean CFUs) of Pbr K when cultured in isolation on solid agar plates or in co-inoculations with Pba R 

as well as Pbr carI- co-inoculated with Pba R (at a 1:1 ratio). For each graph, the mean CFUs were 

calculated for each treatment from triplicate assays (solid line), the error bars represent the standard 

deviation. 

 

D.2 Competitive index of carI- in vitro competition assay 
 

 Pbr K v Pba R Pbr carI- v Pba R 

Time (hours) Log CI SD Log CI SD 

6 1.4 0.4 0.5 0.3 

12 1.1 0.2 0.7 0.3 

24 2.1 0.03 0.8 0.06 

32 0.9 0.5 0.7 0.3 

48 1.4 0.2 0.7 0.3 
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D.3 carI- mutant potato tuber competition graphs 
 

 

 

Second, independently conducted experiment, using potato tubers sourced at a different time of 

year, demonstrating the effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP19477 and 

P. c. subsp. brasiliensis carI- (Pbr carI-) on growth of P. atrosepticum (Pba) SCRI1043 in potato tubers 

(‘Ilam Hardy’).  

A: A graph showing the growth (mean CFUs) of Pba SCRI1043 Rif resistant strain (Pba R)  over a 48 h 

period at 28 °C when inoculated into potato tubers in isolation or co-inoculated with Pbr ICMP19477 

tagged with Km resistance (Pbr K), or the carI mutant Pbr carI- (at a 1:1 ratio). B: A graph showing the 

growth (mean CFUs) of Pbr K when cultured in isolation in potato tubers or in co-inoculations with Pba 

R as well as Pbr carI- co-inoculated with Pba R (at a 1:1 ratio). For each graph, the mean CFUs were 

calculated for each treatment from triplicate assays (solid line), the error bars represent the standard 

deviation). 

 

D.4  Competitive index of carI- in planta competition assay 
 

 Pbr K v Pba R Pbr carI- v Pba R 

Time (days) Log CI SD Log CI SD 

0.5 0.7 0.2 0.5 0.2 

1 3.6 0.2 1.0 0.2 

2 4.5 0.2 2.0 0.5 

3 4.4 0.2 1.5 0.3 

4 4.6 0.1 1.2 0.1 

5 3.5 0.1 1.4 0.2 
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D.5 slyA- in vitro competition graphs 
 

 

 

 

 

 

 

 

 

 

 

Second, independently conducted experiment demonstrating the effect of co-inoculation with P. c. 

subsp. brasiliensis (Pbr) ICMP19477 and P. c. subsp. brasiliensis (Pbr slyA-) on growth of P. 

atrosepticum (Pba) SCRI1043 on solid agar plates (MMA). 

 A: A graph showing the growth (mean CFUs) of Pba SCRI1043 Rif resistant strain (Pba R)  over a 48 h 

period at 28 °C when inoculated onto MM in isolation or co-inoculated with Pbr ICMP 19477 tagged 

with Km resistance (Pbr K), or the slyA mutant Pbr slyA- (at a 1:1 ratio). B: A graph showing the growth 

(mean CFUs) of Pbr K when cultured in isolation on solid agar plates or in co-inoculations with Pba R 

as well as Pbr slyA- co-inoculated with Pba R (at a 1:1 ratio). For each graph, the mean CFUs were 

calculated for each treatment from triplicate assays (solid line), the error bars represent the standard 

deviation.     

 

D.6 Competitive index of slyA- in in vitro competition assay 
 

 Pbr K v Pba R Pbr slyA- v Pba R 

Time (hours) Log CI SD Log CI SD 

6 1.4 0.4 0.6 0.1 

12 1.1 0.2 0.7 0.1 

24 2.1 0.03 1.1 0.1 

32 0.9 0.5 0.4 0.2 

48 1.4 0.2 0.8 0.1 
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D.7 slyA- mutant potato tuber competition graphs  
 

 

 

 

 

 

 

 

 

 

Second, independently conducted experiment, using potato tubers sourced at a different time of 

year, demonstrating the effect of co-inoculation with P. c. subsp. brasiliensis (Pbr) ICMP19477 and 

P. c. subsp. brasiliensis (Pbr slyA-) on growth of P. atrosepticum (Pba) SCRI1043 in potato tubers 

(‘Ilam Hardy’).  

A: A graph showing the growth (mean CFUs) of Pba SCRI1043 Rif resistant strain (Pba R) over a 48 h 

period at 28 °C when inoculated into potato tubers in isolation or co-inoculated with Pbr ICMP 19477 

tagged with Km resistance (Pbr K), or the slyA mutant Pbr slyA- (at a 1:1 ratio). B: A graph showing the 

growth (mean CFUs) of Pbr K when cultured in isolation in potato tubers or in co-inoculations with Pba 

R as well as Pbr carI- co-inoculated with Pba R (at a 1:1 ratio). For each graph, the mean CFUs were 

calculated for each treatment from triplicate assays (solid line), the error bars represent the standard 

deviation.     

 

D.8 Competitive index of slyA- in in planta competition assays 
 

 Pbr K v Pba R Pbr slyA- v Pba R 

Time (days) Log CI SD Log CI SD 

0.5 0.7 0.2 0.6 0.2 

1 3.6 0.2 1.3 0.3 

2 4.5 0.2 2.1 0.3 

3 4.4 0.2 1.2 0.4 

4 4.6 0.1 1.0 0.1 

5 3.5 0.1 1.1 0.1 
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D.9 slyA complementation sequence 
 

Nucleotide sequence of KCO_21137 (slyA), following cloning into pTRB32oriT (Section 5.2.9). Insert-

specific primers are underlined and restriction sites are written in bold type. The sequence shown in 

italics represent vector sequence.  

 

GCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAATTCATTAAAG

AGGAGAAATTAACTATGAGAGGATCGCATCACCATCACCATCACGGATCCGCATGCGAGCTCGCGGTCGGTAC

CGCGTGCTAACAATAAGGAGAGGATGGAATTGCCATTAGGATCTGATTTAGCCCGTCTGGTGCGCGTATGGC

GTGCGCTGGTCGATCATCGATTAAAACCACTTGAACTGACTCAGACGCATTGGGTCACGTTGCATAACATATA

CCATCTACCCCCTGGGCAGTCGCAGATTCAACTTGCCAAAGCGATAGGTATTGAGCAACCCTCATTAGTCCGA

ACACTGGATCAGCTTGAGGAAAAAGGGTTAATCACTCGCCACGTTTGCGCGCACGATCGTCGGGCAAAACGT

ATTATGCTGACCGAATCAGCAGAGCCAATCATACAAGCAGTCAATGGTGTAATTAGCCATACACGTAGTGAAG

TCTTATTTGGTATTACGCCGGAGCAGGTTGATGAATTAGCGCTGCTGGTTTCGCGTCTTGAGAAAAATATATTG

GCATTACATGAGAATCAAGCGTAGTGGGTTACGCAGAGGGAGAAAAGCTTCGCAATTAGCTGAGCTTGGACT

CCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGT

TTTTTATTGGTGAGAATC 

 

 

D.10 Competitive index of the slyA complemented strain in vitro 
competition assays 

 

 Pbr K v Pba R Pbr slyA- v Pba R Pbr slyA::slyA- v Pba R Pbr slyA-::pTRB32oriT  
v Pba R 

Time 
(hours) 

Log CI SD Log CI SD Log CI SD Log CI SD 

6 1.1 0.1 0.8 0.1 2.0 0.3 1.4 0.1 

12 2.4 0.1 1.1 0.1 1.3 0.2 1.3 0.1 

24 2.4 0.2 0.9 0.2 3.3 0.1 1.1 0.2 

32 2.4 0.1 0.9 0.04 2.6 0.1 0.9 0.05 

48 1.3 0.1 0.9 0.01 1.9 0.05 1.0 0.02 
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D.11 slyA complementation in vitro competition graphs 
 

 

 

 

Second, independently conducted experiment demonstrating the effect of co-inoculation with P. 

brasiliensis (Pbr) ICMP 19477 slyA- complemented strain (Pbr slyA-::pTRB32oriTslyA) on growth of P. 

atrosepticum (Pba) SCRI1043 on solid agar plates (MMA). 

 A: A graph showing the growth (mean CFUs) of Pba SCRI1043 Rif resistant strain (Pba R) over a 48 h 

period at 28 °C when inoculated into MM in isolation or co-inoculated with Pbr ICMP19477 tagged 

with Km resistance (Pbr K), or the slyA mutant Pbr slyA-, gene complemented strain Pbr slyA-

::pTRB32oriTslyA or the control strain Pbr slyA-::pTRB32oriT containing an empty cop of the 

pTRB32oriT plasmid  (at a 1:1 ratio). B: A graph showing the growth (mean CFUs) of Pbr K when 

cultured in isolation on solid agar plates as well as the Pbr strains in co-inoculation with Pba R (at a 1:1 

ratio). For each graph, the mean CFUs were calculated for each treatment from triplicate assays (solid 

line), the error bars represent the standard deviation.     
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Chapter 6  

Final discussion 

The P. c. subsp. brasiliensis strain, PBR1692, has been shown to inhibit the growth of P. atrosepticum 

SCRI1043 in vitro (Marquez-Villavicencio et al., 2011). This inhibition was not observed in potato stems 

and was dependent on the P. c. subsp. brasiliensis strain tested (Marquez-Villavicencio et al., 2011). It 

was predicted that this observation was due to the production of a carbapenem by P. c. subsp. 

brasiliensis strain PBR1692 (Marquez-Villavicencio et al., 2011), however this was not proven. A New 

Zealand P. c. subsp. brasiliensis strain, ICMP 19477, was isolated in recent years (Panda et al., 2012), 

which was found to encode multiple antimicrobial synthesis genes on HAIs (Panda et al., 2015b). 

Competition assays established that P. c. subsp. brasiliensis ICMP 19477 was able to inhibit P. 

atrosepticum in vitro as well as in potato tubers (Sections 3.2.4 and 3.2.6). This showed that P. c. subsp. 

brasiliensis ICMP 19477 had a competitive advantage over P. atrosepticum SCRI1043 within the host 

plant. This led to the hypothesis that the production of an antimicrobial molecule by P. c. subsp. 

brasiliensis gave it a competitive advantage within its ecological niche and aided in the emergence of 

P. c. subsp. brasiliensis as a pathogen.      

Interestingly, P. c. subsp. carotovorum ICMP 5702, which also encodes a carbapenem synthesis cluster, 

was unable to inhibit the growth of P. atrosepticum SCRI1043, however it was resistant to P. c. subsp. 

brasiliensis ICMP 19477. Bioinformatic techniques were used to identify antimicrobial genes likely to 

be responsible for the competitive fitness of P. c. subsp. brasiliensis ICMP 19477.    

The carbapenem molecule, encoded on HAI PbN1-GI20, was identified as a potential antimicrobial 

gene cluster involved in the competitive fitness of P. c. subsp. brasiliensis ICMP 19477 (Section 3.2.12). 

A carbapenem cluster with high nucleotide similarity was also identified in P. c. subsp. brasiliensis 

PBR1692 (ID = 98%). Therefore, it did not appear that inhibition of bacteria via production of the 

carbapenem molecule was as strain specific as previously described (Marquez-Villavicencio et al., 

2011). The carbapenem synthesis cluster of P. c. subsp. carotovorum ICMP 5702 was less similar to 

ICMP 19477 than PBR1692 (ID = 87.8%). As P. c. subsp. carotovorum ICMP 5702 did not inhibit the 

growth of P. atrosepticum SCRI1043, it suggests that this level of nucleotide difference is sufficient to 

cause the difference in specificity of the molecule.  

The differences in nucleotide identity of the carbapenem synthesis clusters, as well as the specificity 

of the resultant molecules, produced by the two SREs suggests that a P. c. subsp. carotovorum and P. 

c. subsp. brasiliensis carbapenem cluster diverged. It may be that the HAI containing the carbapenem 
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cluster was obtained before the two sub-species diverged and it was after this event that the 

differences between the carbapenem genes occurred. However, it may represent two different 

insertion events. However, as P. c. subsp. carotovorum ICMP 5702 has retained the carbapenem 

synthesis cluster, so one assumes it must provide an advantageous function for the organism. Possibly 

it is active against other organisms or other Pectobacterium strains.  

Antagonism assays identified that there was variation between Pectobacterium species and 

subspecies, in relation to their reaction to the carbapenem molecule. P. c. subsp. brasiliensis ICMP 

19477 can be considered a producer, P. atrosepticum SCRI1043 is sensitive and P. c. subsp. 

carotovorum ICMP 5702 is resistant. This variation within the bacterial community, is concurrent with 

in silico population dynamics studies that have been confirmed by serial transfer experiments (Frank, 

1994; Tan and Riley, 1996; Durrett and Levin, 1997; Riley and Gordon, 1999; Riley and Wertz, 2002). 

These predicted that the initial predominant population is sensitive to antimicrobial molecules (P. 

atrosepticum SCRI1043), as this is the most energy efficient state if not confronted by antibiotics. 

Therefore, the emergence of a producer strain such as P. c. subsp. brasiliensis ICMP 19477, sees the 

producer out-compete the sensitive population. This occurs over time and is more evident as the 

producer increases in numbers, as has been seen for P. c. subsp. brasiliensis on potatoes (Duarte et 

al., 2004; van der Merwe et al., 2010; Leite et al., 2014; Werra et al., 2015). The carbapenem synthesis 

cluster is likely to be maintained in P. c. subsp. brasiliensis as it provides a competitive advantage 

within the ecological niche.  

The P. c. subsp. carotovorum ICMP 5702, also has a carbapenem cluster but was not antagonistic 

towards P. atrosepticum SCRI1043. It may be that over time P. atrosepticum has gained resistance to 

the carbapenem produced by P. c. subsp. carotovorum ICMP 5702, which is predicted based on the 

models of population antimicrobial dynamics. For example, efflux pumps or porins may be expressed 

in P. atrosepticum SCRI1043 that are able to express the molecule produced by P. c. subsp. 

carotovorum ICMP 5702, but do not confer resistance to the apparently different carbapenem 

molecule produced by P. c. subsp. brasiliensis (Limansky et al., 2002; Mena et al., 2006; Rodríguez-

Martínez et al., 2009). It may also be the case that the carbapenem cluster of P. c. subsp. carotovorum 

ICMP 5702 is not active and therefore no carbapenem product is produced.      

Pectobacterium carotovorum subsp. carotovorum ICMP 5702 was also found to be resistant to the 

carbapenem molecule produced by P. c. subsp. brasiliensis ICMP 19477 (Section 3.2.2). As previously 

discussed, it is likely that the two bacteria produce carbapenem molecules of different specificities. 

Therefore,  P. c. subsp. carotovorum ICMP 5702 is likely to encode a β-lactamase active against this 

molecule as the intrinsic resistance mechanism of P. c. subsp. carotovorum ICMP 5702, encoded by 
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carF and carG, is unlikely to provide resistance to the carbapenem produced by P. c. subsp. brasiliensis 

ICMP 19477 (McGowan et al., 1997).  

Pectobacterium carotovorum subsp. carotovorum strains have also been identified that do not 

produce a carbapenem molecule, but encode ‘cryptic’ carbapenem clusters that lack a functional CarR 

homologue; these clusters are widespread in P. c. subsp. carotovorum strains (Holden et al., 1998). 

This suggests that the production of the carbapenem has been lost by these strains, due to the 

metabolic cost of producing the molecule and the possible resistance of P. atrosepticum to 

carbapenems produced by P. c. subsp. carotovorum. Therefore, production of a carbapenem by P. c. 

subsp. brasiliensis ICMP 19477 and PBR1692, may only provide a short term competitive advantage, 

before P. atrosepticum SCRI1043 develops a resistance mechanism.  

The presence of resistant, producer, non-producer and sensitive strains within a bacterial population 

would produce variation in the population of Pectobacterium found in the environment. It would also 

account for the observation that inhibition of sensitive P. atrosepticum and P. c. subsp. carotovorum 

strains, was strain dependent (Marquez-Villavicencio et al., 2011).       

An understanding of the flux of the phenotypes observed for the different SREs studied would provide 

an insight into the evolution and selection pressures associated with carbapenem production within 

the ecological niche. Long-term studies into the community dynamics within the potato tuber, such 

as the studies conducted on E .coli found in mice (Riley and Gordon, 1999), could be utilised to study 

such interactions. For example, P. atrosepticum SCRI1043, P. c. subsp. carotovorum ICMP 5702 and P. 

c. subsp. brasiliensis ICMP 19477 could be co-inoculated into potato tubers and serially transferred 

(Riley and Wertz, 2002) to other tubers over the course of a number of months. In colicin evolution 

and adaption, changes in the population dynamics were noticeable after seven months (Riley and 

Gordon, 1999). This would provide an insight into whether the predicted population dynamics of 

antimicrobial producing bacteria, is relevant for carbapenem producers.   

The results of this study are limited to an understanding of how the carbapenem produced by P. c. 

subsp. brasiliensis ICMP 19477 influences related bacteria. However clinically available carbapenems 

have been shown to have activity against a broad spectrum of bacteria, both gram positive and gram 

negative (Nix et al., 2004; Bassetti et al., 2009; Queenan et al., 2010). More importantly, the 

carbapenem molecule SQ27,860, produced by Serratia and Erwinia, was shown to inhibit the growth 

of the gram positive bacteria Staphylococcus aureus, as well as the gram negative E. coli and 

Enterobacter cloacae (Parker et al., 1982). Therefore, it is likely that the production of the carbapenem 
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molecule by P. c. subsp. brasiliensis ICMP 19477 would have a greater ecological impact than just 

inhibiting P. atrosepticum SCRI1043.   

To understand the influence of the carbapenem molecule produced by P. c. subsp. brasiliensis ICMP 

19477 on the wider microbial community in potato tubers, whole community studies need to be 

considered. Any changes within the bacterial endophytic community could be compared when the P. 

c. subsp. brasiliensis ICMP 19477 WT is inoculated compared to when a carR mutant is used. The 

endophytic community would be determined using next generation sequencing. Such techniques have 

been successfully used to study changes in the potato endophyte community following P. 

atrosepticum infection, over the course of seven months (Kõiv et al., 2015). The activity and impact of 

the carbapenem produced by P. c. subsp. brasiliensis ICMP 19477 in the soil environment should also 

be considered.       

The genome of P. c. subsp. brasiliensis ICMP 19477 encodes multiple antimicrobial synthesis genes 

(summarised in Figure 6.1). The competitive fitness of P. c. subsp. brasiliensis ICMP 19477 was not 

abolished in any of the carbapenem associated transposon mutants. Therefore, it is likely that one or 

more of these molecules are active within the ecological niche and responsible for this observation. 

The identified antimicrobials are both broad spectrum molecules, such as carbapenem and phenazine 

as well as those that target closely related species, such as the bacteriocin. Significant effort is 

therefore given to inhibiting closely related bacterial strains, which are most likely to be found within 

the same ecological niche or host plant of the producer. This suggests an ecological significance 

associated with antimicrobial production.  

Many studies relating to plant pathogens focus on the virulence determinants produced by these 

organisms. However, with the identification of multiple HAIs dedicated to antimicrobial synthesis in 

P. c. subsp. brasiliensis ICMP 19477, this suggests that microbe-microbe interactions are also 

important for these plant pathogens.     
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Figure 6.1. Proposed network of antimicrobial molecules produced by P. c. subsp. brasiliensis (Pbr) ICMP19477.  

The HAI location, target organisms and function in potato tubers are given. The organisms likely to be inhibited by the produced antimicrobial molecule are 

also described; P. atrosepticum (Pba), P. c. subsp. carotovorum (Pcc). 
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Further evidence that the antimicrobial genes of P. c. subsp. brasiliensis ICMP 19477 provide a 

competitive advantage is the retention of large gene clusters such as the 21 CDSs of the carotovoricin 

cluster (Section 3.2.9). This is because a large metabolic cost is associated with the production of 

antimicrobial molecules (Hibbing et al., 2010), the benefit of antimicrobial production must therefore 

outweigh the cost of production. When this is no longer the case, and it appears that the antimicrobial 

no longer provides an advantage, the function is lost, such as the cryptic carbapenem clusters 

widespread within P. c. subsp. carotovorum (Holden et al., 1998).  

In this study, it was demonstrated that the regulatory network involved in carbapenem production 

involves the QS and SlyA-type regulatory systems (Chapter 5). These pathways are associated with the 

regulation of many secondary metabolites including virulence determinants (Perombelon, 2002) 

(Ellison and Miller, 2006). Therefore, the regulation of carbapenem synthesis is organised in such a 

way as to minimise the metabolic impact as a specific regulatory pathway is not dedicated to the task. 

This enables the coordination of resources during the production of many secondary metabolites. The 

coordination of resources is also demonstrated in carbapenem transport. In Serratia and 

Pectobacterium, the carbapenem synthesis clusters are not associated with a dedicated transporter. 

However, the thienamycin cluster in Streptomyces cattleya contains the gene thnJ, which is predicted 

to encode a protein similar to a membrane transport protein in S. coelicolor (Núñez et al., 2003). This 

therefore suggests that the carbapenem molecules are actively transported from the producing cells. 

Some transporters, particularly members of the MFS superfamily, are not associated with a 

biosynthetic cluster and transport many different molecules (Marger and Saier, 1993). Therefore, the 

carbapenem molecule may be exported via such a transporter to avoid the requirement for 

production of a carbapenem-specific transporter.  

The transporter involved in carbapenem transport in P. c. subsp. brasiliensis ICMP 19477 was not 

identified in this study. However, a transposon mutant disrupted in a membrane associated gene (P. 

c. subsp. brasiliensis mp-) showed a reduced zone of inhibition when co-inoculated with P. 

atrosepticum SCRI1043 (Section 4.2.5). Further analysis is required of the gene and the putative gene 

product, however this mutant may provide an insight into one method of carbapenem transport. 

It is also possible that the carbapenem molecule has a secondary function that was not detected in 

this study. For example, syringomycin produced by Pseudomonas syringae pv. syringae primarily 

functions as a phytotoxin required for disease progression within the host (Sinden et al., 1971). 

However, the molecule also demonstrated antimicrobial activity against a wide range of organisms 

such as fungi, gram-positive and gram-negative bacteria including other plant pathogens such as 



 194 

Xanthomonas malvaceanum and Arobacterium tumefaciens (Sinden et al., 1971). It may be, therefore, 

that identified antimicrobial molecules are in fact secondary metabolites with another primary 

function.    

The discussed results are one interpretation of the data. An alternative should be considered when 

predicting the ecological importance of antimicrobial molecules. It has been proposed that in the 

environment antimicrobial molecules are present at sub-inhibitory levels. At such concentrations, it is 

thought that the molecules mainly function as signalling molecules (Davies et al., 2006). Such 

molecules are considered as a large group of small molecules, which regulate gene expression within 

a bacterial population and possibly initiate interactions between organisms (Yim et al., 2007). Such 

molecules have been shown to both increase and decrease gene expression. In group A Streptococci, 

sub-inhibitory levels of protein synthesis has been shown to downregulate virulence genes (Tanaka et 

al., 2005). Under the same conditions, amioglycosides, also protein synthesis inhibitors, induce biofilm 

formation (Hoffman et al., 2005). Interestingly, the known QS signalling molecule N-(3-

oxododecanoyl)-homoserine lactone, has been shown to have antimicrobial activity against gram-

positive bacteria (Kaufmann et al., 2005). However, no studies focusing on the signalling potential of 

antimicrobial molecules have been conducted in situ, rather these are laboratory based results.  

Considering the different potential functions of antimicrobial molecules, the competition assay 

methods used in this study are a limitation on the results. For the in-tuber competition assays, 

bacterial inoculums above natural levels were used. Therefore, the carbapenem is likely to be 

produced at unnaturally high levels not encountered within the environment. Therefore, the potential 

function of the molecule, as well as the effect on other organisms that occur in situ, may not have 

been determined. Studies focusing on lower, more natural inoculum levels should therefore be 

considered. It may be possible to study such interactions using the natural infection of potato tubers 

by fluorescently tagged bacteria. Furthermore, the transcriptome of the antimicrobial producing 

bacteria could be studied and compared to a mutant that is unable to produce the antimicrobial 

molecule. This would determine any alteration in gene transcription that occurs due to production of 

the antimicrobial molecule.      
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