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Abstract 

Identification and Partial Characterisation of Allene Oxide Synthase (EC 

4.2.1.92) from Vitis vinifera L. Sauvignon blanc, a Key Enzyme in the Jasmonic 

Acid Biosynthetic Pathway, Whose Manipulation May Confer Increased 

Natural Resistance to Botrytis cinerea Infections 

by 

Walftor Dumin 

Pathogen infection or plant disease cause major losses in crop production across many species. 

In grapevine, in particular, there is an ongoing need to decrease dependence on chemical agents as a 

method to control or manage pathogen infection. Therefore, new approaches need to be explored to 

provide effective methodologies or approaches to minimise the impacts of pathogen infections. 

Jasmonic acid is known to be an important compound in plants that orchestrates both wound and 

plant defence responsiveness against a range of plant herbivores and pathogens. Jasmonic acid, via 

complex signalling cascades, induces plant defence genes such as those encoding proteinase inhibitors 

(involved in the protection of plant from insect damage), defensins and thionin (involved in the 

production of antimicrobials), and a raft of biosynthetic genes that lead to the accumulation of 

antimicrobial secondary metabolite such as alkaloids, terpenoids, flavonoids, and glucosinolates. 

Furthermore, jasmonic acid also facilitates the interaction between other defence signalling pathways 

such as those mediated by salicylic acid and ethylene to acquire the most effective ways to combat 

herbivore and pathogen attacks. Allene oxide synthase is the first committed biosynthetic step in the 

formation of jasmonic acid. Previous studies indicate that genetic variation within allene oxide 

synthase that alter its biosynthetic capacity have the potential to confer to the host plant increased 

resistance to attack from fungal pathogens. Therefore characterisation of grapevine allene oxide 

synthase function and genetic variation is an important step in ascertaining the potential this enzyme 

to contribute to increased tolerance to a wide range of fungal pathogens. 

Allene oxide synthase (hydroperoxide dehydratase; EC 4.2.1.92) is an enzyme belonging to the 

cytochrome P-450 (CYP74A) that known to catalyse the first step in the biosynthesis of jasmonic acid 

from lipoxygenase-derived hydroperoxides. A functional study of grapevine allene oxide synthase has 

not been previously reported. Therefore in this study we focused on the identification and functional 

characterization of the putative allene oxide synthase from Vitis vinifera L. Sauvignon blanc via 

complementation of an Arabidopsis allene oxide synthase null mutant. We investigated the 
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relationships between allene oxide synthase and the other members of the CYP74 family in grapevine, 

in terms of sequence similarities, subcellular localisations and transcriptional regulation, both spatially 

and in response to mechanical wounding. We also determined the range of genetic variation of the 

grapevine allene oxide synthase within a commercial grapevine population. Our findings clearly 

demonstrate that there is a single allene oxide synthase gene in grapevine and that this gene is able to 

function in a heterologous system (Arabidopsis) to compliment a null mutation in allene oxide 

synthase. We show that grapevine allene oxide synthase is localised within the chloroplast and likely 

associated with chloroplast membranes. In addition the remaining members of the grapevine CYP74 

family are found to be localised in varying cellular locations, not necessarily those predicted by in silico 

sequence analysis. The members of the CYP74 family show differential spatial and developmental 

transcript accumulation in grapevine.   

In order to assess the potential for increasing allene oxide synthase levels to increase 

biochemical flux through to jasmonic acid we overexpressed both the grapevine and Arabidopsis allene 

oxide synthases in a wild type Arabidopsis background. Our findings suggest that grapevine AOS might 

not be the only limitation in production of enhanced levels of jasmonic acid in response to wounding 

or pathogen attack. While we obtained increased levels of allene oxide synthase transcription, this did 

not result in a concomitant increase in jasmonic acid and consequently increases in the transcription 

of jasmonate regulated genes. However, while the alterations in jasmonate levels in the transgenic 

lines was below expectations, we did note that increased levels of jasmonate as a result of 

overexpression of allene oxide synthase did result in a limited and transient increase in tolerance to 

Botrytis infection. Investigation of the potential levels of genetic diversity of allene oxide synthase 

locus in grapevine indicated that this locus is highly conserved with no variation being evident among 

100 vines in a commercial vineyard. While the levels of genetic variation strongly suggest that 

identification of suitable genetic variation in allene oxide synthase that would contribute to increased 

jasmonate accumulation from within existing grapevine populations is uneconomically practical or 

efficient. In conclusion our data suggests that to increase jasmonate mediated resistance against 

fungal disease in grapevine would likely require a coordinated alteration in allene oxide synthase as 

well as downstream genes in the biosynthetic pathway such as allene oxide cyclase and 12-

oxophytodienoic acid reductase. To achieve such an alteration without resorting to transgenic 

approaches would require the use of a hybridization/breeding approach (which is currently 

unpalatable to industry) or identification of a suitable gain-of-function mutation from the native 

transposon mutation population that our group is currently producing.  

 

Keywords: : Grapevine, jasmonic acid, Arabidopsis knock-out AOS, signalling, allene oxide synthase,  

genetic variation, qRT-PCR, binary vector.  
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Chapter 1 

Literature Review 

1.1 Introduction 

Worldwide, in 2014, approximately 7.4 million hectares were used to grow grapes, of which 

an estimated 287.7 million hectolitres of wine was produced (OIV, 2014). In New Zealand, a recent 

report by New Zealand Winegrower indicates that the grapevine planting area has grown to 

approximately 35,000 hectares, and with an estimated production of 320.0 million litres of wine in 

2014 (New Zealand Winegrower, 2014). The New Zealand wine industry was reported to contribute 

approximately NZD$1.30 billion in export receipts to the New Zealand economy in the same year. In 

New Zealand, the Sauvignon blanc variety predominates, providing approximately 72% of wine 

production that signifying its outstanding contribution to the grapevine industry (New Zealand 

Winegrower, 2014). Due to this vital contribution to the industry, many researchers throughout New 

Zealand focus their research work and interest on the Sauvignon blanc variety.    

In terms of sustainable production, wine vintage quality depends on the climate and seasonal 

weather conditions as well as the winemaker’s skills and experience (Ashenfelter et al., 1995; 

Shanmuganathan et al., 2011). Besides this, disease infection provides the greatest challenge for the 

maintenance of fruit yield and quality while maintaining industry sustainability targets for production. 

In particular, destructive fungal diseases, such as Botrytis cinerea and mildews present a huge 

challenge for both viticulturists and winemakers. For example, it is estimated that Botrytis cinerea 

infections cause an annual loss of approximately USD$2 billion worldwide (Elmer and Michailides, 

2007; Mundy et al., 2012). In New Zealand alone, Botrytis cinerea infections cost the wine industry 

approximately NZD$5000/ha for direct losses and an additional NZD$1500/ha to control this disease 

[Hoksbergen (2010) in (Mundy et al., 2012)]. Traditionally, disease control is achieved through 

application of chemical agents to control the infection. However, the use of chemical fungicides is 

becoming untenable due to increased public and regulatory concern over their application. Alternate 

strategies such as utilizing genetic improvement via hybridization/breeding are also limited due to 

industry concerns. The main form of genetic improvement that is traditionally acceptable, and 

extensively used by industry, has been limited to the identification of somaclonal mutants (bud sports) 

from within existing clonally-propagated grape populations.  

However, current advances in functional genomics and the identification of the genetic basis 

for disease resistance offer an alternative method for identifying grapevines that, potentially, have 

more tolerance to disease infection while maintaining the quality of their fruit. Natural plant resistance 

to disease infection is based on a range of genetic determinants and the subsequent regulation of 
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specific biochemical pathways. Natural variation in plant resistance to a disease infection is as a result 

of genetic variation occurring in some plant cells as an adaptation the changing environmental 

conditions surrounding them (Meyers and Bull, 2002). In terms of grapevines, somatic mutations are 

the main source of genetic variation that is, subsequently, captured to form new clones in commercial 

vineyards (Carmona et al., 2008). However, natural variations of plant pathogen resistance appear to 

be quantitative and are often related to the biosynthesis of a signalling compound such as jasmonic 

acid (JA). Jasmonic acid is one of the signalling compounds responsible for the initiation of phytoalexins 

production in plants (Yamada et al., 1993; Nojiri et al., 1996). Phytoalexins are low molecular weight 

antimicrobial substances produced by plants as a response to a pathogen infection or stress, such as 

wounding or ultraviolet radiation (Kodama et al., 1988; Guest and Brown, 1997; Mert-Türk, 2002; 

Jeandet et al., 2013).  

Allene oxide synthase (AOS), a CYP74 gene family member, plays a central role in jasmonate 

biosynthesis as this enzyme catalyses the first reaction in the pathway leading to JA production 

(Schaller and Stintzi, 2009; Gfeller et al., 2010). The AOS gene utilizes the products of lipoxygenase 

(LOX) activity as a precursor to produce JA (Gfeller et al., 2010). Lipoxygenase activities are not only an 

important element in the formation of JA but also in the formation of C6 volatiles, which indicates the 

close functional relationship between the two compounds.  Therefore, modulation of the JA level has 

a consequential impact on the signalling network of plant’s responses to pathogen invasion or plant 

stress (Matsui et al., 2006; Wasternack, 2007). Evidence exists that genetic variation in AOS is able to 

contribute towards increased resistance to a pathogen infection, such as a Botrytis infection, in plants 

containing these variations (Pajerowska-Mukhtar et al., 2008). Moreover, initial work by Podolyan 

(2010) on six randomly-selected clones of Sauvignon blanc revealed a high number of putative SNPs 

within the coding sequence of the grapevine LOX gene. This provided an indication of a significant level 

of potentially valuable SNPs within the AOS sequence that might provide a source of variation within 

this gene that might contribute to improved responsiveness of grapevines to disease infection.  

Given this background, this led us to an interest in whether field-grown Sauvignon blanc 

displays a similar genetic variation within the grapevine AOS gene as seen in LOX. If this were the case, 

then our main question is “Would it be possible to screen field-grown commercial vines for  genetic 

variations that could lead to the identification of plants that could contribute to the production of an 

increased disease-resistant clone of Sauvignon blanc?” However, in order to address this question, the 

function of the AOS gene and its diversity in the Sauvignon blanc variety first needs to be identified 

and characterized. Therefore throughout this research project, we will answer questions about: 

1. The function and character of the grapevine AOS gene isolated from the Sauvignon blanc grapevine 

genome. 

2. The ability of grapevine AOS to increase a response against pathogen infection when it is 

overexpressed in a model plant system (Arabidopsis thaliana).  
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3. The degree of grapevine AOS gene diversity within a selected group population of Sauvignon blanc 

grapevines grown in a commercial vineyard.  

1.2 Plant defences  

Due to their immobility, plants become vulnerable to abiotic and biotic stresses, which can 

lead to large production crop losses in the agricultural industry. Examples of abiotic stresses include 

mechanical damage by wind, high salinity, high or low osmolarity, extreme temperatures, drought, 

ozone, reactive oxygen species and, even, UV light. Biotic stresses, however, are caused by living 

things, which include bacterial, viral or fungal infections (Wasternack and Hause, 2002; ten Hoopen et 

al., 2007). In order to combat these stresses, plants develop a wide range of defence mechanisms. 

These range from the presence of physical barriers to complex signalling networks leading to a host 

defence expression. Plant defence mechanisms not only occur in local tissues subjected to the stress 

but are also triggered in other healthy tissues as a systemic response. In environmental conditions that 

are suitable for pathogen development, the resistance or susceptibility of a plant to a particular 

pathogen is dependent upon two interrelated factors. These are the substrate requirements of the 

pathogen and the response of the plant to the pathogen (Guest and Brown, 1997). A plant’s defence 

process is an action to induce defences mechanisms that prevent the pathogen from invading the plant 

cell and reproducing (Thatcher et al., 2005). Plant-pathogen interactions can be categorized into non-

host and host resistance (Heath, 2000). Non-host resistance refers to where a plant is resistant to all 

races of a pathogen, whereas host resistance is where the plant is resistant to some, but not all, races 

of a pathogen. These two types of resistance have substantial overlaps but can be differentiated 

through the ability of the pathogen to overcome a series of obstacles (from the plants) to successfully 

infect a host plant (Thordal-Christensen, 2003)  

 Plants also employ the perception of non-specific elicitors, such as flagellin, the major protein 

component of the bacterial flagellum (Felix et al., 1999), and the possession of the corresponding  

resistance gene (R-gene), to initiate an active defence response, such as the hypersensitive response 

(HR), against all races of the pathogen (Thordal-Christensen, 2003). In contrast, in host resistance 

interactions, the pathogen is specific and this is where the plant develops the ability to recognize and 

trigger an effective defence mechanism against only some of the genotypes of the pathogens. Plant 

responses are commonly regulated by a single R-gene, the product of which participates either directly 

or indirectly in the perception of the avirulence (avr) gene product from the pathogen (Mysore and 

Ryu, 2004).  In general, plant defence systems can be divided into two main classes based on their 

response, i.e. a passive or active defence response. 
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and Kachroo, 2009). Following pathogen attack, the early defence responses are often amplified 

through the generation of secondary response compounds, such as salicylic acid (SA), jasmonic acid 

(JA) and ethylene (ET), which activate plant defence mechanisms both locally (at the site of infection) 

and systematically (through non-infected tissues). Secondary compound SA, JA and ET are signalling 

molecules that activate components of the signal transduction cascade and that lead to the expression 

of plant defences or protectant genes, such as pathogenesis related proteins (PR-protein), glutathione 

S-transferases (GST), proteinase inhibitors and the production of antimicrobial secondary metabolites, 

such as phytoalexins (Guest and Brown, 1997; Kunkel and Brooks, 2002; Thatcher et al., 2005; 

Koornneef and Pieterse, 2008).  

The third category of active defence response is associated with systemically acquired 

resistance induced by the production of hormones throughout the entire plant (Guest and Brown, 

1997; Vallad and Goodman, 2004). Systemic resistance confers long-lasting protection against a broad 

range of pathogens (Durrant and Dong, 2004). Systemic resistance involves the de novo production of 

PR-protein, such as chitinases and glucanases, or the synthesis of antimicrobial compounds, such as 

phytoalexins (Heil and Bostock, 2002; Zhang et al., 2013). Systemic acquired resistance (SAR) and 

induced systemic resistance (ISR) are the two forms of plant-induced resistance in this category. Both 

SAR and ISR are preconditioned and activated prior to an infection that results in resistance against a 

pathogen challenge or mechanical stresses (Vallad and Goodman, 2004). SAR and ISR resistance can 

be differentiated via the nature of the elicitor and the regulatory pathway involved (Knoester et al., 

1999; Maleck et al., 2000; Schenk et al., 2000; van Wees et al., 2000; Yan et al., 2002). For example, 

SAR can be induced by the exposure of roots or foliage to biotic or biotic elicitors and is also dependent 

on the phytohormone, SA, and the accumulation of PR-protein. In comparison, ISR can be induced by 

the exposure of the roots to specific strains of plant growth-promoting rhizobacteria. ISR is dependent 

on the phytohormones, ET and JA, but independent of SA, and is also not associated with the 

accumulation of PR-proteins (Heil and Bostock, 2002; Vallad and Goodman, 2004; Thatcher et al., 

2005). 

1.3 Plant signalling 

Plants have to evolve their defence strategies to protect them from pathogen attacks and 

threats by herbivores. Some defences are pre-formed while others are induced upon attack. These 

strategies are likely employed due to the deleterious or high energy costs needed to maintain them 

continuously (Baldwin, 1998). Pathogen-associated molecular patterns (PAMPs) are pathogen-derived 

molecules that are conserved throughout various classes of microbes and contribute to general 

microbial fitness. Whereas, effectors are species, race or strain-specific and contribute to pathogen 

virulence (Thomma et al., 2011). Defence signalling pathways are generally induced when plants 

recognize PAMPs, or effector molecules, produced by the pathogen. Recognition of these molecules is 
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designated as PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively 

(Kachroo and Kachroo, 2009; Thomma et al., 2011). PTI is induced when pattern recognition receptors 

(PRRs) in the plant recognize PAMPs, whereas, ETI is induced when a strain-specific avr-protein from 

the pathogens interacts directly or indirectly with the corresponding plant R-protein (Kachroo and 

Kachroo, 2009).  

Pathogens secrete a series of chemical compounds to establish an interaction with the plant 

host and facilitate colonization (Castro and Fontes, 2005). The main chemical compounds secreted by 

the pathogen are hydrolytic enzymes that have the ability to degrade the cell wall components which 

allow the pathogen to invade plant tissues (Collmer and Keen, 1986; Walton, 1994). Other compounds 

include toxins that interfere with the host’s metabolic functions. These toxins have many effects, 

including altering cell membrane permeability, inactivating enzymes leading to interruption of 

essential metabolic pathways (Quigley and Gross, 1994; Scholz-Schroeder et al., 2001), the 

interruption of growth regulators leading to an imbalance in hormones causing a disruption to normal 

plant development (Mengiste et al., 2003; Suckstorff and Berg, 2003) and causing polysaccharides to 

block the water translocation mechanisms in the vascular system (Leigh and Coplin, 1992; de Pinto et 

al., 2003). 

Plant-induced responses are activated only after contact with the pathogen or mechanical 

stresses (Castro and Fontes, 2005). Pathogen-derived elicitors, such as PAMPs, wounding, glycan and 

systemin, all cause a rapid depolarisation in the electric potential of the plasma membrane (Ryan, 

2000; de Bruxelles and Roberts, 2001; ten Hoopen, 2002). This depolarisation is associated with an 

efflux of K+ and Cl- ions and an influx of Ca2+ and H+ ions through controlled protein phosphorylation 

and dephosphorylation events across the plasma membrane (Nurnberger and Scheel, 2001; ten 

Hoopen, 2002; Thatcher et al., 2005). These events signal the production of reactive oxygen species 

(ROS), such as superoxide anion (O2
-), hydrogen peroxide (H2O2) and reactive nitrogen such as nitric 

oxide (NO) (McDowell and Dangl, 2000; Hancock et al., 2002). As a plant defence, H2O2 stimulates a 

direct microcidal effect and strengthens the plant cell wall by stimulating the lignification process and 

cross-linking around the plant cell walls (Thatcher et al., 2005). H2O2 and NO, together, induce the 

expression of defence-associated genes, such as phenylalanine ammonia-lyase (PAL), pathogenesis-

related (PR) and glutathionine S-transferase (GST) (Bi et al., 1995; Delledonne et al., 1998; Desikan et 

al., 1998; Durner et al., 1998).  

Transient changes in the ion permeability across the plasma membrane are consequence of, 

and cause, the rapid death of host cells at the infected site (Guest and Brown, 1997; Thatcher et al., 

2005). A ring of cells surrounding the dead cells or necrotic lesions become refractory to subsequent 

infections (Fritig et al., 1998). This phenomenon, also known as localized acquired resistance, often 

triggers non-specific resistance throughout the plant, providing durable protection against future 

infection by a broad range of pathogens (Sticher et al., 1997). Metabolic alternation in acquired 
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resistance triggered plants to induce responses that includes defence regulators, such as SA, ET and 

lipid-deprive metabolites (Fritig et al., 1998). In addition, it also triggers the induction of phospolipases 

(PLPs), which act on lipid-bound unsaturated fatty acids within the membrane and result in the release 

of a signal compound known as JA (Wang, 2001). Evidence also shows that JA, SA and ET play pivotal 

roles in the signal pathway leading to the up-regulation of pathogen defence-related genes in plants 

(Koornneef and Pieterse, 2008).  

Following pathogen attacks or mechanical stresses, the early defence signalling events are 

often amplified through the generation of secondary signalling molecules. This may lead to defence 

activation, both locally at the infection site and systemically in non-infected tissues (Thatcher et al., 

2005). As described earlier in this section, the earliest known events after the attack or stimuli include 

ion fluxes across the plasma membrane, changes in cytoplasmic calcium concentration, the generation 

of ROS and changes in protein phosphorylation patterns, which appear to be associated with 

intercellular signal generation by the plant’s defence system (de Bruxelles and Roberts, 2001). 

However, these early events are unlikely to all be directly responsible for inducing defence gene 

expression. Instead, they act as a mass of data to initiate the production of signal molecules, which 

then mediate the induction of the defence gene expression (de Bruxelles and Roberts, 2001). Signalling 

molecules are low molecular mass regulators that are capable of inducing plant defence mechanisms 

and depend on the pathogen or stimuli elicitor (de Bruxelles and Roberts, 2001; Garcia-Brugger et al., 

2006). In plants, despite several elicitors being involved in regulating the plant defence response, the 

three main plant specific phytohormones involved in triggering plant defences are SA, JA and ET (Rojo 

et al., 2003). These molecules do not function independently but influence each other through a 

complex network of regulatory interactions (Kunkel and Brooks, 2002; Thatcher et al., 2005). In the 

plant kingdom, oxylipin is known as one of the most important signalling molecules related to plant 

stress responses and innate immunity (Eckardt, 2008) 

1.4 Plant oxylipins  

Oxylipins are signalling molecules involved in various stages of plant development, growth 

regulation and responses to environmental stimuli (Savchenko et al., 2014). In response to plant 

stresses, oxylipins are involved in signal transduction, which induces the expression of target genes 

and also interacts with other signalling molecules, such as ET and SA (Rojo et al., 2003). These form a 

complex signalling network pathway to fine tune the induction of plant defences. Therefore, oxylipins 

represent one of the main defence signalling mechanisms employed by plants against pathogens. In 

response to a pathogen attack, the phospholipase A superfamily of proteins catalyses the hydrolysis 

of phospholipids to generate the corresponding free fatty acid (also known as polyunsaturated fatty 

acids or PUFAs) (Shah, 2005). Oxylipin biosynthesis begins with the oxygenation of PUFAs by LOX 
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Figure 1.1 Oxylipin biosynthesis pathway 
Oxylipin is a collective term for oxygenated metabolites derived from polyunsaturated fatty acids (PUFAs). 
Biosynthesis of various oxylipin, regulated by plant developmental or environment signals via lipase, 
mediated the release of PUFAs from membrane lipid, additional oxygen molecules were catalysed by LOXs 
to form hydroxyl PUFAs that were, subsequently, metabolised by various enzyme systems to produce an 
array of hydroperoxy fatty acids. The oxylipin biosynthesis pathway is also known as the lipoxygenase 
biosynthesis pathway. FA, fatty acid; LOX, lipoxygenase; AOS, allene oxide synthase; POX, peroxygenase; DES, 
divinyl ether synthase; HPL, hydroperoxide lyase; EAS, epoxy alcohol synthase. Figure adapted from Howe 
and Schmiller (2002), Feussner and Wasternack (2002) and Savchenko et al. (2014)       
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to form a fatty acid hydroperoxide (Stumpe and Feussner, 2006; Schneider et al., 2007). Lipoxygenase 

oxygenate from most common PUFAs available as as linoleic and linolenic by inserting an oxygen 

molecule at the specific position to produce 9- or 13-hydroperoxide substratet in plant (Hughes et al., 

2009). PUFA hydroperoxide substrate can be further metabolised by a group of enzymes, known as 

CYP74 family, to produce an array of different oxylipins, such as jasmonates, aldehydes, ketols, 

epoxides and divinyl ethers (Shah, 2005) as illustrated on the figure 1.1. The level of each oxylipin 

compound will increase dramatically in response to environmental stimuli or from a development 

input (Hughes et al., 2009) 

1.5 Cross-talk signalling  

Despite the importance of plant hormones for the regulation of plant growth, development, 

reproduction and survival, hormones are also essential as primary signals in regulating plant defence 

mechanisms (Pieterse et al., 2009). When challenged with a pathogen or mechanical stress, plants 

produce complex responses that activate different signalling cascades, which lead to the activation of 

local and systemic defence systems; for example, antimicrobial defence systems (Rojo et al., 2003). 

These different signalling pathways form a complex network that influence each other, through 

positive and negative interactions, to equip the plant with a powerful regulatory capacity to finely tune 

the immune response. In addition, they also help the plant to minimize energy costs to induce plant 

responses (Reymond and Farmer, 1998; Kunkel and Brooks, 2002; Pieterse et al., 2009). Despite a 

number of plant hormones being involved in communicating and triggering plant defence mechanisms 

(Spoel and Dong, 2008), plant hormones SA, JA and ET are recognized as the three major, endogenous, 

defence hormones (Kunkel and Brooks, 2002; Bari and Jones, 2009; Pieterse et al., 2012). Pathogens 

that require a living host (biotrophs) are commonly more sensitive to a SA-mediated defence response, 

whereas, pathogens that kill the host and feed on the contents (necrotrophs) or herbivorous insects 

are generally affected more by a JA/ET-mediated defence (Glazebrook, 2005; Howe and Jander, 2008). 

Generally SA, JA and ET signalling cascades do not activate defences independently but, rather, 

establish complex interactions that determine the response to the attack (Kunkel and Brooks, 2002; 

Rojo et al., 2003). Crosstalk between SA, JA and ET signalling pathways has not only emerged as an 

important regulatory mechanism but also serves as a backbone to induce defence signalling networks 

where other hormone pathways, such as abscisic acid (ABA), auxin, gibberellin (GA), cytokinin (CK) and 

brassinosteroids, feed into it (Pieterse et al., 2009; Robert-Seilaniantz et al., 2011).  

In plant crosstalk, interactions between SA and JA signalling generally appear to be 

antagonistic, whereas SA and it derivatives block the JA biosynthesis pathway by preventing the release 

of the JA precursor from the chloroplast (Rojo et al., 2003). The reverse is also true for the effect of SA 

on JA signalling. It is also reported that JA accumulation negatively regulates SA signalling (Rojo et al., 

2003; Thatcher et al., 2005). In contrast to the SA and JA interaction, JA/ET signalling shows positive or 
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synergistic interactions where both signalling pathways can be activated by the same precursor, e.g. 

methyl jasmonic (MeJA) (Schenk et al., 2000). Both JA and ET signalling are also required for the 

expression of the defence-related genes in response to a pathogen infection (Ellis et al., 2002; Kunkel 

and Brooks, 2002; Thatcher et al., 2005). Similar to the SA and JA interactions, SA and ET also portray 

a negative interaction (Rojo et al., 2003) where SA blocks the activity of the transcription factor 

expression that is induced by ET (Gu et al., 2000). Clustering of genes reveals that more genes are 

activated by JA/ET and inhibited by SA, than show the reverse pattern when activated by SA but 

inhibited by JA/ET (Thatcher et al., 2005). 

1.6 CYP74 enzyme family 

As mentioned previously, oxylipins play a crucial role in plant cell signalling and defence 

mechanisms (Feussner and Wasternack, 2002; Stumpe and Feussner, 2006). The diversity of oxylipin 

compounds is created by a unique group of enzymes called the CYP74 family, a non-classical 

cytochrome belonging to the P450 superfamily group (Gogolev et al., 2012; Toporkova et al., 2013). In 

contrast to most P450 family members, CYP74 enzymes family do not use oxygen molecules as their 

catalyst. Instead, they catalyse the isomerisation or dehydration of fatty acid hydroperoxides as both 

substrate and oxygen donors (Mosblech et al., 2009; Gogolev et al., 2012). Another feature of the 

CYP74 enzymes that differentiates them from the other P450 superfamily members is their low affinity 

to carbon monoxide (CO) (Matsui, 1998; Froehlich et al., 2001). Three well known family members of 

CYP74 enzymes are two dehydrases [allene oxide synthase (AOS) and divinyl ether synthase (DES)] and 

one isomerase [hydroperoxide lyase (HPL)] (Toporkova et al., 2013).  

The AOS branch pathway is seen to be the most dominant among all the oxylipin biosynthesis 

pathways competing for the hydroperoxide substrate (Stumpe et al., 2006). This is because 

jasmonates, the end product of this pathway, have high biological activity and regulate vitally 

important processes in plants (Savchenko et al., 2014), such as plant growth and development, flower 

formation, gene expression, fertility and photosynthesis (Creelman and Mullet, 1997; Chen et al., 2011; 

Goetz et al., 2012; Wasternack, 2014). The AOS enzyme transforms the fatty acid hydroperoxide 

substrate into an unstable allene oxide, which is then converted into 12-oxo-phytodienoic acid (OPDA) 

by allene oxide cyclase (AOC) (Schaller and Stintzi, 2008).  Compound OPDA is then further converted 

to jasmonic acid by a few cycles of β-oxidation (Yan et al., 2013).  

The HPL branch pathway is probably the main competitor of AOS for hydroperoxide substrate 

consumption (Figure 1.1). The HPL catalyses the oxidative cleavage of the hydrocarbon backbone of 

fatty acid hydroperoxides (Zhu et al., 2012) and this leads to the formation of short chain C6 aldehydes 

and ω-oxo acid fatty acids or C12 aldehydes from 13-hydroperoxide, whereas 9-hydroperoxide of fatty 

acid forms a C9 aldehyde compound (Savchenko et al., 2014). Volatile aldehydes and their derivatives 

are the most studied of the HPL branch metabolites. These metabolites, collectively named Green Leaf 
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Arabidopsis and potatoes was activated in response to wounding (Maucher et al., 2000; Sivasankar et 

al., 2000; Park et al., 2002).  Meanwhile, HPLs are associated with the production of GLVs, important 

compounds that contribute to aroma and flavour in plants.  Although it has been reported that HPLs 

contribute to plant defence mechanisms (Noordermeer et al., 2001), the majority of studies have 

focussed on their relationship to aroma and flavour compounds. While, to date, the DES enzyme has 

not had much work undertaken to elucidate its specific relationship to plant defence mechanisms. 

As mentioned previously, CYP74 enzymes have been phylogenetically classified into CYP74A, 

CYP74B, CYP74C and CYP74D and, with some exceptions, plant AOS enzymes belong to CYP74A 

(Stumpe and Feussner, 2006). The most well-known AOS enzyme used 9- or 13-hydroperoxide as a 

substrate in respect to 9- or 13-AOS. To date, only the AOS enzymes from barley (Maucher et al., 2000) 

and rice (Ha et al., 2002; Agrawal et al., 2004) are known to use both 9- and 13-hydroperoxide as 

substrates. In JA biosynthesis, only the 13-AOS enzyme was known to be involved in JA production (Yan 

et al., 2013). Aside from an AOS enzyme isolated from guayule (Pan et al., 1995) and barley (Maucher 

et al., 2000), all known AOS enzymes protein sequences encodes  chloroplast transit peptides region 

that are associated with membrane-bound proteins. This shows that during JA biosynthesis, AOS 

enzymes are localized in the chloroplast plastid membranes. Interestingly, although the AOS enzyme 

in barley lacks a chloroplast-transit peptide, it was found localized in plastids (Maucher et al., 2000). 

Different plants or species carry different copy numbers of the AOS gene. For example, in Arabidopsis, 

only one copy number of the AOS gene has been reported, whereas, in rice, four AOS genes have been 

reported (Laudert et al., 1996; Agrawal et al., 2004). As mentioned previously, AOS is the first enzyme 

to initiate the reaction of a branch pathway leading to the production of JA (Laudert and Weiler, 1998). 

This is a clear indication that AOS activity is crucial to controlling the influx of the 13-hydroperoxide 

substrate into the JA biosynthesis pathway. Interestingly, overexpression of AOS in different plants or 

species exhibits different results. Overexpression of flax AOS in transgenic potato increased the basal 

JA level 6 to 12-fold (Harms et al., 1995) but overexpression of the Arabidopsis AOS enzyme (AtAOS) 

in either Arabidopsis or tobacco did not alter the basal level of JA (Laudert et al., 2000). Different basal 

expression levels of AOS from different plants or species may be an indication that AOS could be the 

bottle neck (or not) for JA production in the respective plants (Yan et al., 2013).  

AOS gene expression in plants are also stimulated by mechanical wounding and also by its own 

biosynthetic pathway end product, such as JA or MeJA, as well as its own reactant, OPDA, in many 

plant species (Harms et al., 1995; Laudert and Weiler, 1998). Another strong indication of AOS enzymes 

as crucial components in plant defence mechanisms is when the AOS function in Arabidopsis is 

disrupted or knocked out. In these studies plants show a male-sterile phenotype and JA induction does 

not respond to wounding treatment (Park et al., 2002). 
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Figure 1.2 Jasmonic acid biosynthesis pathway 
Biosynthetic pathway of jasmonic acid. AOS is the first enzyme catalysed in the conversion of 13-hydperoxides 
substrate to produce jasmonic acid. Jasmonic acid and it derivatives facilitate the signalling mechanism to 
regulate gene expression related to plant defences. Figure adapted from Creelman and Mullet (1997)  
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extends to many metabolites and conjugates, as well as its biosynthetic precursors (Schaller and Stintzi, 

2008).  

Jasmonic acid is a natural hormone regulator that induces proteinase inhibitor proteins in 

response to pathogen attack and development (Gfeller et al., 2010). Jasmonic acid is synthesized by 

converting α-linolenic acid into OPDA by a series of enzymatic reactions in the chloroplasts (Kazan and 

Manners, 2008). OPDA is then transported to the peroxisome where it undergoes a series of β-

oxidations to generate JA (Wasternack, 2007; Kazan and Manners, 2008), as illustrated by figure 1.2. 

Pathogen attack and wounding utilize their own unique receptors (dependent upon pathogen type) in 

order to trigger the JA-mediated response (Antico et al., 2012). Some elicitors, such as ion influxes 

across the plasma membrane, changes in cytoplasmic calcium concentration, generation of ROS and 

changes in protein phosphorylation, are the earliest events that can lead to the activation of 

production of JA. Other important elicitors include cell wall glycans, such as oligogalacturonidase, and 

the peptide hormone, systemin (de Bruxelles and Roberts, 2001).  

Systemin systematically regulates the activation of over 20 defence genes, including JA 

signalling, as a response to attacks by herbivores and pathogens (Ryan, 2000; Sun et al., 2011). Once 

JA is generated, it diffuses from the peroxisome into the cytosol where it can undergo subsequent 

reactions to, or from, various JA derivatives (Acosta and Farmer, 2010; Antico et al., 2012). Upon 

infection, necrotrophic fungal attack on plant seems to benefit from the host cell death as a source of 

nutrients instead of preventing the spread of infection (Glazebrook, 2005). Therefore, plants have had 

to evolve an alternate mechanism of defence that is mediated by JA. The JA dependent signalling 

pathway causes increased JA synthesis and initiates the expression of defence effector genes to 

produce antimicrobial peptides, such as defensin (PDF1.2), thionins (thi2.1) and the anti-insect 

vegetative storage protein (VSP) (Glazebrook, 2005) 

1.8 Regulation of the biosynthesis of jasmonates  

The main research interest for oxylipins has largely focused on JAs and their roles as regulators 

of plant defence-related responses and developmental processes (Creelman and Mullet, 1997). 

Therefore, many of the physical roles for JAs signalling compounds are well understood and genes 

encoding for all the biosynthetic enzymes have been cloned from a range of plant species (Itoh and 

Howe, 2001). Jasmonic acid biosynthesis and signalling are interlinked by a positive feedback loop 

where the synthesis of JAs are stimulated by their own products, as illustrated in figure 1.3 (Laudert 

and Weiler, 1998; Sasaki et al., 2001). Genes that encode enzymes involved in the biosynthesis of JAs 

are inducible by JA (Wasternack et al., 2006) and analysis of the AOS promoter also shows that AOS 

gene activity increases upon methyl jasmonic acid (JA derivative) treatment (Kubigsteltig et al., 1999).   
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Figure 1.3 Jasmonic acid biosynthesis regulatory process 
Regulatory processes of how Jasmonic acid production was regulated by its own products and was also 
regulated by substrate availability. LOX, lipoxygenase; AOS, allene oxide synthase; AOC, allene oxide 
cyclase; OPR, OPDA reductase β-Ox, β-oxidation. Alphabet -A- (red arrow), -B- (dash red arrow) and -C- 
(dash green arrow) indicate positive feedback induction by its own biosynthetic products. Figure 
adapted from Laudert and Weiler (1998).  
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Regulation by its own end product indicates that JAs biosynthesis involves a positive feedback 

mechanism (Browse, 2005; Wasternack, 2007). Experimental evidence supports this observation, as 

shown by mutants with constitutively elevated JA levels, such as cev1 (gene mutation that caused 

constitutive expression of VSP1), displaying a phenotype attributed to JA treatment (Ellis et al., 2002) 

and showing regulation of AOC expression (Wasternack, 2007). The Arabidopsis defective in cellulose 

synthase3 (cev1 mutant), not only shown elevated levels of JA and OPDA but constitutive JA responses, 

such as expression of VSP1 (Ellis and Turner, 2001; Ellis et al., 2002). Alteration of the JA capacity form 

in this mutants seems to be caused or at least partially, by a defect in the positive feedback regulation 

of JA biosynthesis (Delker et al., 2006). Furthermore JAs deficient mutants such as 12-

oxophytodienoate reductase 3 (OPR3) or coronatine insensitive (COI1), show decreased AOC levels of 

transcription abundance (Stenzel et al., 2003) and caused an increased susceptibility to insect and 

pathogen attack. It has also been shown that JAs formation takes place only upon external stimuli, 

such as wounding or pathogen infection (Harms et al., 1995; Park et al., 2002; Wasternack, 2007). 

Wounding causes a rise in the level of JAs production but this is only transiently expressed and appears 

before the expression of LOX, AOS or AOC (Howe et al., 2000; Stenzel et al., 2003). However, in plants 

over-expressing AOS or AOC constitutively, no elevated JAs levels before wounding or other stimuli 

have been detected (Laudert et al., 2000). Therefore, this observation suggests that JA biosynthesis is 

regulated by substrate availability (Wasternack, 2007). It was also reported that plant JA and MeJA 

possess transferable properties from the leaves to the roots or to other tissues (Thorpe et al., 2007). 

In fact, JA and MeJA are considered as long distance signalling compounds. These signalling compounds 

can be transported to distal plant sites via air and vascular processes to perform their functions as long 

distance signals (Heil and Ton, 2008). Later, the transported JAs move into receiver tissues and are 

converted into the active form of JAs, jasmonoyl-isoleucine (JA-Ile), which eventually activates JA-

inducible gene expression (Tamogami et al., 2008).    

1.9 Jasmonates as signalling compounds 

According to Acosta and Farmer (2010), there are five main steps in JAs synthesis and 

signalling. The first step is the initiation of JAs synthesis in the plastid. Through the action of LOX, AOS 

and AOC enzymes, PUFAs was converted to OPDA and dinor-OPDA substrate compounds for JA 

production. Dinor-OPDA is a product of the parallel pathway for JA biosynthesis where LOX and AOS 

enzymes used hexadecatrionoic (16:3) compound as a precursor instead of linolenic acid (18:3). The 

second step is the completion of JA synthesis in the peroxisomes. OPDA and dinor-OPDA substrates 

are converted to JA by the action of OPR3 enzymes and a beta-oxidation process. JA is then exported 

by a yet to be determined mechanisms to the cytosol. The third major step occurs in the cytosol. Many 

derivative active compounds, such as jasmonoyl-isoleucine (JA-Ile) and jasmonoyl-L-tryptophan (JA-

Trp), are created in the cytosol (ten Hoopen et al., 2007; Acosta and Farmer, 2010). At this stage  
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Figure 1.4 Jasmonate signalling mechanisms  
JAZ proteins are normally bound to transcription factors and inhibit their activity. In response to attack, JA 
derivatives (jasmonoyl–isoleucine, JA–Ile, marked with a star) stabilize the interaction between COI1 and JAZ. 
The JAZ protein is probably then modified by ubiquitin (U), so marking it for destruction. d) JAZ is destroyed, 
liberating the transcription factors; e) this allows transcription of genes that produce proteins involved in defence 
and development, as well as of JAZ genes to restrain the jasmonate response. (The COI1 component is a complex 
of the SCF-COI1 enzyme which is only shown as “COI1” on the diagram.) Figure adapted from Farmer (2007) and 
Hou et al. (2010) 

Figure 1.5 Primary regulatory cycle in jasmonate signalling 
Synthesis of jasmonic acid (JA) is a self-promoting (feed-back positive loop-a) regulation. Newly discovered 
negative feedback (loop-b) regulation involving JAZ proteins and transcription factors (TF), such as MYC2. These 
two regulatory cycles may be interlocked, but we can expect to find further complexity in the mechanism if, for 
example, some JAZ proteins bind to transcriptional repressors. Indeed, evidence for secondary regulatory loops 
already exists. In a regulatory circuit that is not shown here, MYC2 can repress the synthesis of its own transcript. 
Figure adapted from Farmer (2007). 
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biochemical diversification occurs. Jasmonic acid is a starting point for the synthesis of many other 

compounds involved in signalling. For example, JA-Ile and JA-Trp are made in the cytosol where JA-Ile 

conjugate play an important role in jasmonate signalling pathway and JA-Trp inhibitor act as an 

inhibitor to auxin response. Step four is where JAs act as signalling compounds. This process takes 

place in the nucleus where the COI1 receptor binds to JA-Ile, the major active form of JA, to form part 

of an SCF ubiquitine E3 ligase complex or a SCF-COI1 complex (Yan et al., 2009). The SCF-COI complex 

is a multi-subunit machine that specifies and mediates protein ubiquitination for the targeted 

degradation of ZIM-domain (JAZ) proteins by the 26S proteasome. COI1 binds to JAZ proteins, which 

eventually target the protein complex for degradation by the 26S proteasome (Chini et al., 2007). JAZ 

proteins are known as negative regulators of transcription of JAs-responsive genes. Interaction of JAZ 

proteins with the transcription factor, MYC2, (Chini et al., 2007; Chung et al., 2009) suggest that this 

protein complex controls JAs-related gene expression by preventing the function of the transcriptional 

activator (Acosta and Farmer, 2010). However, how the exact mechanism works is not yet well 

understood. Thereafter, destruction of JAZ proteins via the SCF ubiquitine E3 ligase complex liberates 

transcription factors associated with JAZ complexes and allows for gene expression of the target genes, 

as illustrated by figure 1.4. The final step of JAs synthesis and signalling is the production and targeting 

of JAs synthesis enzymes. Gene encoded LOX, AOS, AOC, OPR3 (oxo-phytodienoic acid reductase 3) 

are activated. 

As mentioned above, JAs signalling compounds control diverse aspects of plant growth and 

defence mechanisms. However, they have also been shown to inhibit plant growth, but the 

mechanisms are still not well understood (Zhang and Turner, 2008; Noir et al., 2013). Zhang (2008) 

reported that JAs suppress plant growth by delaying the mitosis process in cells. Further study by Noir 

et al. (2013) shows that JAs control leaf growth by repressing the proliferation of plant cells and the 

onset of endoreduplication. Therefore, it is important for the plant to control JAs signalling after the 

initial activation to avoid an out of control response. One way to control this signalling is to metabolize 

its bioactive form in order to inactivate it (Chung et al., 2009). This inactivation is known as a negative 

regulatory feedback loop in JA signalling. During the negative feedback process, the plant cell produces 

a new JAZ protein variant that, again, represses the corresponding transcription factor. This new JAZ 

protein variant does not contain a JAs motif (JAs is an active site for COI1 binding) and, as a 

consequence, this new JAZ variant is not recognized by COI1 (Figure 1.5). Therefore, they are not 

subjected to JAs-induced proteasome degradation (Chung et al., 2009). 

1.10 Arabidopsis thaliana as a model plant 

Arabidopsis thaliana (Arabidopsis) is a small dicotyledonous species belonging to the 

Brassicaceae or mustard family (Smyth, 1990). Arabidopsis is closely related economically important 
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crops plants such as cabbage and broccoli. Instead, Arabidopsis has been used for genetic, biochemical 

and physiological studies as a result of several traits that make it desirable for laboratory study. 

Arabidopsis is suitable as a plant model because of its usefulness in genetically modified experiments. 

Arabidopsis is a simple plant that needs only light, air, water and a few minerals to complete its life 

cycle and this makes it suitable to grow in controlled environments, such as greenhouses, growth 

chambers or plant growth rooms. Other important features of Arabidopsis include its short life cycle, 

meaning many plants can be grown in a short period of time to gain a result especially to investigate 

the function of genetic modification. It is also small in size meaning that it requires only a small space 

for growth. Arabidopsis also produces plenty of seeds through self-pollination and this is another 

advantage of using it as a plant model (Koornneef and Meinke, 2010). The Arabidopsis genome is 

relatively small (125 Mb) and has been completely sequenced (Initiative, 2000) making it easier for 

gene organization, such as manipulation and cloning, to be performed. Furthermore, these plants have 

a small number of chromosomes (5) and this simplifies genetic mapping. This is a big advantage for the 

analysis and understanding the effect of newly introduced genes.      

 However, the major advantage of using Arabidopsis as a model plant is because it has been 

widely used in research activities and its features have been well-studied. An important breakthrough 

for Arabidopsis research was the establishment of an efficient transformation protocols using 

Agrobacterium tumefaciens. Researchers use these protocols to introduce genes of interest back into 

Arabidopsis for subsequent analysis and the production of plant mutants through the random 

disruption of endogenous genes. Transformation techniques in Arabidopsis are now well-studied and 

its genotype is independent, allowing, if needed, the generation of a large number of transformants 

for each generation. Therefore, this allows the generation of plants that not only express (or 

overexpress) the gene of interest but also means the study of the localization and quantification of 

expression patterns in specific tissues is possible. Efficient techniques to screen for mutant plants in 

Arabidopsis have also been established. Development of random T-DNA mutagenesis procedures, 

followed by the establishment of transformation, enabled researchers to use genetic enhancers and 

suppressors of specific mutant phenotypes to screen mutant plants; for example, by using genes 

resistant to antibiotics or herbicides. 

 As has been repeatedly reported, JA not only plays an important role in plant defence 

mechanisms but is also a crucial component in plant development, such as in pollen maturation and 

dehiscence (Sanders et al., 2000; Stintzi and Browse, 2000; Ishiguro et al., 2001). A knock-out of AOS 

gene function in Arabidopsis was achieved using a T-DNA insertion into the AOS nucleotide sequence 

that completely blocks the JA biosynthetic pathway that results in a male sterile phenotype in 

Arabidopsis aos mutant plants. Furthermore, this Arabidopsis aos mutant did not respond to wound 

treatment (Park et al., 2002). These two attributes enable researchers to study the biosynthesis 

mechanisms and wound transduction of essential plant hormones. 
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1.11 Nicotiana benthamiana as a model plant 

Nicotiana benthamiana (N. benthamiana) is a unique species belonging to the Solanaceace 

family that is endemic to Australia (Goodin et al., 2008).  Although several species belonging to 

Solanaceace, such as tomato (Solanum lycopersicum), potato (Solanum tuberosum) or tobacco 

(Nicotiana tobaccum) are economically important, N. benthamiana is not. However, N. benthamiana 

has become an increasingly important subject as a model plant to study host-pathogen interactions, 

particularly those involved in plant virus interactions (Goodin et al., 2008). In terms of chromosomes, 

N. benthamiana comprises 19 pairs of chromosomes. The haploid genome was estimated to be ≈ 3136 

Mbp, approximately 20-fold larger than the size of the Arabidopsis thaliana genome (157 Mbp) 

(Burbidge, 1960; Bennett and Leitch, 1995; Bennett et al., 2003; Chase et al., 2003; Bennett and Leitch, 

2005).  

In the plant research community, N. benthamiana has been widely adopted as a plant model 

due to breakthroughs in three major technical advances, as discussed by Goodin et al. (2008). The first 

technical advance was the ability to express foreign genes from a plant virus vector. Using this 

technology, a researcher can trace viral movement within living plant cells and define the protein 

targeted to them. Besides that, it also provides new insights into fundamental aspects of plant biology, 

such as the opening of plasmodesmata and macromolecule movement within the living cells (Chapman 

et al., 1992; Cruz et al., 1996; Escobar et al., 2003; Lucas, 2006). The second technical advance was 

based on the invention of the virus-induced gene silencing (VIGS) technique (Kumagai et al., 1995; 

Thomas et al., 2001). Using the  VIGS technique, researchers can directly down-regulate any gene-of-

interest in the plant which, therefore, transforms N. benthamiana into a powerful reverse-genetic 

system (Ratcliff et al., 2001; Liu et al., 2002; Burch-Smith et al., 2004; Fu et al., 2005; Dong et al., 2007). 

Moreover, the VIGS technique is able to reduce the issues from the genetic redundancy effect if the 

cDNA used for the silencing gene is homologous to more than a single member of a multiple gene 

family (Goodin et al., 2008). The third technical advance was the utilization of the agro-infiltration 

technique. Using the agro-infiltration technique, researchers are able to observe the expression of the 

protein of interest when fused with an auto-fluorescence protein and expressed transiently in plant 

cells (Voinnet et al., 2003; Goodin et al., 2008). Although methodologically, agro-infiltration seems too 

simple to be useful, in reality, this technique is the most facile means for transiently expressing 

proteins; it is straightforward and well suited for high-throughput studies in plant cells. These three 

major technologies for manipulating protein and gene expression in plant cell are best suited to N. 

benthamiana as a plant model system. 

1.12 Green fluorescent protein as a gene expression marker 

Green fluorescent protein (GFP) is a chemiluminescent protein isolated from jellyfish, 

Aequorea victoria (Chalfie et al., 1994). When calcium binds to the photoprotein, aequorin, it produces 
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blue light (Chalfie et al., 1994; Baubet et al., 2000). This blue light excites the aequorin companion 

protein, the GFP receptor fluorophore that emits green light (Tsien, 1998; Baubet et al., 2000). Purified 

GFP is made from 238 amino acid residues and absorbs blue light between 395 to 470 nm and emits 

light green light at 509 nm with a shoulder at 540 nm (Morin and Hastings, 1971; Chalfie et al., 1994). 

The GFP chromophore is a p-hydroxybenzylideneimidazolinone, which is derived from the primary 

amino acid sequence through the crystallization of ser-tyr-gly within the hexapeptide structure (Cody 

et al., 1993; Tsien, 1998). 

The GFP is one of the most widely studied and exploited protein as a result of its ability to be 

used as a marker for gene expression and protein targeting in intact cells or organisms. The GFP’s 

ability to generate a highly visible and efficiently emitting internal fluorophore; as well as being a very 

stable protein fluorescence, and with the feasibility of fusing with other proteins without affecting 

them, makes it a favourite choice as a gene expression marker among researchers (Chalfie et al., 1994; 

Tsien, 1998; Creemers et al., 2000; Zimmer, 2002). This GFP is also known to be very stable in plant 

cells and shows only a little photobleaching (Sheen et al., 1995). Using GFP as a gene expression marker 

is considered to have several advantages over other visual marker genes. First, the fluorescence 

emission by GFP does not require an exogenous substrate and the procedure does not affect the 

tissues examined (Pang et al., 1996; Maor et al., 1998). In comparison, β-Glucuronidase (GUS) 

expression is cytotoxic and firefly luciferase (Luc) requires luciferin (exogenous substrate) for 

detection, whereas plant anthocyanins are generally useful only in mature, differentiated cells (Ow et 

al., 1986; Jefferson et al., 1987; Klein et al., 1989; Lloyd et al., 1992; Millar et al., 1995; Twyman et al., 

2002). Secondly, GFP polypeptide size is relatively small (26.9 kDa); therefore, it can tolerate both N- 

and C-terminal protein fusion making it suitable for protein localization and intracellular protein 

trafficking studies (Wang and Hazelrigg, 1994; Davis et al., 1995; Kaether and Gerdes, 1995). Thirdly, 

GFP mutants with shifted wave-lengths for absorption and emission have been isolated, which allows 

simultaneous use and detection of multiple reporter genes (Heim et al., 1994; Delagrave et al., 1995; 

Heim et al., 1995). Depending on the experimental layout, quantification of GFP expression can be 

measured using a range of different methods, such as conventional hand-held UV lamps, anti-GFP 

antibodies for immunological assays, or confocal laser scanning microscopes (Harper et al., 1999; 

Richards et al., 2003; Stewart et al., 2005; Stephan et al., 2011). In plant cells, detection and 

quantification of GFP using an imaging device is often disrupted by auto-fluorescence from plant 

tissues caused mainly by chlorophyll. However, this interference can be reduced or eliminated by using 

specific optical filters (Chiu et al., 1996).  

1.13 Botrytis cinerea 

Botrytis cinerea (Botrytis), the causal agent of grey mould, is a haploid Euascomycetes belonging 

to the class of Leotiomycates (http://www.genoscope.cns.fr/spip/-Botrytis-cinerea-.html, accessed in 

http://www.genoscope.cns.fr/spip/-Botrytis-cinerea-.html


 25 

2015). Botrytis is an airborne pathogen with a necrotrophic lifestyle that is a problem to at least 235 

plant species (Williamson et al., 2007; ten Have et al., 2010). As a result of the ability of Botrytis to 

indiscriminately infect different plant tissues and species of plants, it is a major pre- and post-harvest 

problem for important economic crops around the world (Williamson et al., 2007). The very wide range 

of infection symptoms may indicate that Botrytis might use an arsenal of weapons to attack host plants 

(Williamson et al., 2007; El Oirdi et al., 2010).  

The infection process of Botrytis begins with the attachment of conidia to the surface of the 

host, followed by penetration through physical pressure or secretion of enzymes to breach the plant’s 

surface defences (van Kan, 2003; van Kan, 2006). During the penetration stage, Botrytis synthesizes 

extracellular enzymes that degrade pectin, the major component and most complex polysaccharide in 

the plant cell wall, which allows its growth inside the plant (Cabanne and Doneche, 2002; Soulie et al., 

2003; Kars et al., 2005; El Oirdi et al., 2010). Botrytis kills the host cells before invading them with 

hyphae to form a primary lesion (van Kan, 2006; El Oirdi et al., 2010). Finally, the plant tissues are 

macerated and nutrients are converted into a fungal biomass before sporulation. Invasion of plant 

tissue from Botrytis triggers multiple plant defence responses, including a PR-protein 

(Hammerschmidt, 1999; Van Loon and Van Strien, 1999). It has been reported that Botrytis infections 

in tomato and Arabidopsis induce expression of multiple genes encoding defence-related proteins, 

such as the SA, ET and JA pathways (Thomma et al., 2001; Diaz et al., 2002; El Oirdi and Bouarab, 2007). 

The SA, ET and JA pathways are widely known as markers of defence pathways in plants. 

1.14 Research prospect 

The literature review highlighted the important role of AOS in JA biosynthesis pathway and its 

vital function in orchestrating plant defence mechanisms against pathogens. Therefore, we have 

decided to focus our study on AOS gene in grapevine due to its role in JA production and as part of 

research project to answer the questions that we have outlined in section 1.1. In order to answer these 

questions, first we will identify and partially characterise the putative grapevine AOS via 

complementation of a null mutation in AOS in Arabidopsis. We also will look at the sub-cellular 

localization of the CYP74 family of proteins, responsiveness to wound treatment as well as their spatial 

and developmental (berries) transcript accumulation. This will allow contextualisation of AOS within 

the CYP74 clade of enzymes. In order to determine whether increased activity of AOS might contribute 

to increase JA mediated responses to pathogen infection both the grape and Arabidopsis AOS genes 

will be overexpressed in Arabidopsis under the control of constitutive CaMV 35S promoter. Our 

prediction is that overexpression of grapevine AOS will provide higher amount of enzymes that should 

therefore increase biochemical flux through to JA and consequently an improvement in resistance to 

pathogen infection. Finally, in order to investigate whether sufficient natural genetic variation exists 

within grapevine we will estimate grapevine AOS genetic diversity within selected population of 
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commercial grapevine. This will provide insight into the possibility of using AOS gene as a target to 

screen individual grapevines, searching for potential bud sports that might contribute to plants with 

increased resistance to fungal infections.  
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Chapter 2 

Partial characterization of CYP74 family members 

2.1 Introduction  

Due to their immobility, plants are constantly exposed to a variety of biotic and abiotic threats. 

In order to overcome these threats, plants have developed defence systems that rely on pre-formed 

and induced responses. The pre-formed defence system as such continues the production of 

antimicrobial compounds or structural barriers providing a wide range protection to plants. However, 

pre-formed defences provide non-specific protection to the plants. They becomes surperfolous once 

these plant defences are defeated by a threat, such as attack by an herbivore or pathogen. Therefore, 

in order to overcome this problem, the plant has developed another defence system, which relies on 

the recognition of the threat, leading to the activation of a specific suite of genes. Activation of these 

specific targeted genes leads to the activation of a complex signalling cascade of defences in plants 

(Chinnusamy et al., 2004). When plants are exposed to stresses (abiotic or biotic stress), specific ion 

channels and kinase cascades are activated that lead to the accumulation of ROS, phytohormones, SA, 

JA and ET (Thatcher et al., 2005; Rejeb et al., 2014). As a consequence, plants re-programme their 

genetic machinery to activate an adequate defence response in order to minimize the biological 

damage caused by the stress (Fujita et al., 2006; Rejeb et al., 2014). Among important plant 

biochemical compounds that plants release as part of their defence mechanisms are the oxylipins. 

Oxylipins are one of the most important and well-studied signal molecule families in plant defence 

mechanisms. Formation of oxylipins in plants is mostly synthesised by enzymes that belonging to 

CYP74 family members (Wasternack and Feussner, 2008). 

Grapevines (Vitis vinifera) are economically important not only in the wine industry but also in 

the production of juice, dried fruit and table grapes (Ferreira et al., 2004; Fiori et al., 2009). However, 

grapevines, especially the Vitis vinifera species, are highly susceptible to an array of diseases that cause 

significant economic losses to the wine industry. Traditionally, disease control can be achieved through 

application of chemical agents to control the infections. Nevertheless, the use of chemical fungicides 

is becoming untenable due to increased public and regulatory concerns over their application. 

Alternate strategies utilizing genetic improvement via hybridization/breeding are limited due to 

industry concerns. The main form of genetic improvement traditionally acceptable, and extensively 

used by industry, has been limited to the identification of somaclonal mutants (bud sports) within 

existing clonally-propagated grape populations. Current advances in functional genomics and 

identification of the genetic basis for disease resistance has opened up a number of opportunities. 

Natural variation in plant pathogen resistance appears to be often quantitative and usually related to 





http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/
http://www.genoscope.cns.fr/blat-server/cgi-bin/vitis/webBlat
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denaturation: 98°C for 15 s, annealing: 60°C for 30 s, extension: 72°C for 1.5 minutes and final 

extension: 72°C for five minutes. PCR products were separated through electrophoreses using 1% 

agarose gel in 1xTBE buffer [TBE buffer was prepared according to the protocol described by Sambrook 

and Russell (2001)] and run under 90 V of power for 40 minutes. The expected size of the putative 

VvAOS amplicon, approximately 1.5 kb, was excised from the agarose gel and purified using the 

AxyPrep DNA Gel Extraction kit (RayLab, NZ) following the protocol provided by the manufacturer. The 

purified PCR product was quantified using a Qubit fluorometer (Life Technologies, NZ) according to 

instructions supplied by the manufacturer. Amplicons of putative VvAOS were cloned into pENTR/D-

TOPO (Life Technologies, NZ) following the standard protocol provided by the manufacturer for TOPO-

based cloning.  

The newly ligated products were transformed into chemically competent Escherichia coli 

(E.coli) dH5α cells according to the method described by Sambrook and Russell (2001). Approximately 

100 µL of a mixture of newly transformed dH5α competent cells were grown on a Luria Bertani (LB) 

agar plate (solid media containing 1% w/v bacto-tryptone, 0.5% w/v yeast extract, 1% w/v sodium 

chloride, 1.5% bacto-agar, pH 7.5) containing 50 µg/mL of kanamycin as an antibiotic selection marker 

and incubated at 37⁰C for 16-18 hours. Single transformed colonies were inoculated in 3 mL of LB broth 

(1% w/v bacto-tryptone, 0.5% w/v yeast extract, 1% w/v sodium chloride, pH 7.5) containing 50 µg/mL 

of kanamycin and incubated at 37⁰C in the rotary shaker for 16-18 hours at 250 rpm. Cells were 

harvested by centrifugation at 5000xg for five minutes and a mini-plasmid extraction was carried out 

using standard protocols, as described by Sambrook and Russel (2001). Purified pENTR/TOPO-D 

carrying the VvAOS gene (pENTR:VvAOS) plasmid  were sequenced using universal M13 

forward/reverse primers, (ReadyMade primers by Integrated DNA Technologies, Singapore) which 

bound to specific sites on the flanking region of the DNA insert. Approximately 200 ng of pENTR:VvAOS 

plasmid and 5 pmol of primer in a 7.5 µL final volume was used per sequencing reaction. Sequencing 

reactions were carried out by the dideoxynucleotide chain termination method (Sanger et al., 1977) 

using Big-Dye chemistry and with subsequent separation and detection on an ABI Prism 3130xl Genetic 

Analyser (Life Technologies Ltd, NZ) by the Department of Bio-Protection, Lincoln University, New 

Zealand. Sequencing results were analysed with Lasergene SeqMan Molecular Biology software by 

DNASTAR Inc (DNASTAR inc, Madison, USA). 

Grapevine hydroperoxide lyase genes 

 Grapevine HPL (VvHPL) was amplified using the primer pairs listed in table 2.1. Complementary 

DNA (cDNA) was used as a template for HPL amplification via the PCR method and was prepared by 

pooling cDNA from berries of eight developmental stages.  Taq DNA polymerase by Qiagen (Bio-

Strategy Ltd, NZ) was used with the final concentration of reagents in a 50 μL PCR reaction: 1× 

CoralLoad PCR Buffer, 1.5 mM MgCl2, 200 μM of each dNTPs, 0.2 μM of each primer, 2.5 units of Taq 

DNA Polymerase and 2 μL cDNA. The PCR reactions were carried out using iCycler thermocycler 
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plasmid carrying VvCYP74 gene members (pENTR:VvCYP74) was added to 300 ng of the pB7FWG2 

binary vector to perform an LR recombination reaction. A Gateway LR Clonase Enzyme Mix kit by 

Invitrogen Inc. (Life Technologies, NZ) was used to complete the recombination, following the protocol 

of the standard reaction as suggested by the manufacturer. Approximately 2 µL of the completed LR 

reaction mixture was added to 100 µL of chemically competent cells for plasmid transformation into 

E.coli (DH5α). The method for plasmid transformation into E.coli and the preparation of competent 

cells followed the standard protocol, as described by Sambrook and Russell (2001). Newly transformed 

E.coli cells with the binary vector carrying the putative VvCYP74 genes was selected using LB plates 

(Section 2.2.4) containing 50 µg/mL spectinomycin as an antibiotic selection marker. A mini-plasmid 

preparation for the newly constructed plasmid was carried out following to the standard protocol, as 

described by Sambrook and Russell (2001). Integration of the VvAOS gene into the pB7FWG2 binary 

vector (pB7FWG2:VvCYP74) was assessed via the PCR method using a pART 35S primer (forward primer 

located at 137 bp from 3’end of CaMV 35S promoter sequence) and the respective VvCYP74 gene 

reverse primer. 

Transient agrobacterium mediated transformation of Nicotiana benthamiana leaves 

Approximately 2 µL (10-50 ng) of the pB7FWG2:VvCYP74 vector plasmid was added to 100 µL 

of an Agrobacterium tumefaciens (Agrobacterium) cell culture and incubated on ice for five minutes. 

The mixture of Agrobacterium cells and pB7FWG2:VvCYP74 vector plasmid was transferred to a sterile 

ice-cold electroporation cuvette for transformation. Agrobacterium cell preparation for 

transformation and electroporation transformation of Agrobacterium followed the standard protocol 

described in the Agrobacterium protocol (Wise et al., 2006). Transformed Agrobacterium with 

pB7FWG2:VvCYP74 was assessed via a colony PCR method using combination pART 35S (forward) and 

the respective VvCYP74 gene reverse primer. 

A fresh, single colony of Agrobacterium, transformed with pB7FWG2:VvCYP74 (mediated-

Agrobcaterium), was inoculated in 3 mL LB media containing 50 µg/mL spectinomycin as an antibiotic 

selection marker and incubated in a shaking incubator at 28°C, 250 rpm for two days. About 100 µL of 

the fresh Agrobacterium culture was used to inoculate 50 mL LB media containing 50 µg/mL of 

spectinomycin in a 500 mL flask and incubation was continued in a shaking incubator at 200 rpm, 28°C 

until the cells grew to an OD600 of between 0.8 - 1.0. Agrobacterium cells were harvested by 

centrifugation at 5000xg for 20 min at room temperature and re-suspended to OD600 = 0.2 in re-

suspension medium (Full strength MS medium with vitamins, 3% (w/v) sucrose and 150 µM 

acetosyringone, pH 5.8) and the culture incubated under the same conditions for an additional two 

hours. 

Using a 1 mL syringe, approximately 100 µL of the mediated-Agrobacterium culture was 

infiltrated into the underside of an attached young N. benthamiana leaf (approximately 3 cm x 1.5 cm 
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Experimental design of wounding trial 

Fruiting cuttings were used as a source of plant material for the wounding experiment. Hardwood 

cuttings six nodes long were collected from dormant canes and stored at 4°C until use. The canes were 

obtained from Vitis vinifera cv. Sauvignon blanc located at the Lincoln University research vineyard, 

Canterbury, NZ. Fruitful cuttings were grown according to the method described in Mullins and 

Rajasekaran (1981). In order to initiate the root growth from the hardwood cutting, each cane was cut 

transversally just below the level of the lowest bud and placed in a tray containing pumice (1-4 mm 

grade) approximately 8-10 cm into the substrate. Trays were then placed in the shade house with an 

electric hot-pad to maintain the ‘soil’ temperature at between 24-26 ⁰C. Air temperature was 

maintained between 4 to 10 ⁰C. Under these conditions, root growth was promoted but bud formation  

 

was suppressed. Trays were regularly watered and monitored for approximately four week before 

transferred into plastic pots (PB8 plastic pot by Egmont Commercial, NZ) filled with potting mix in the 

Lincoln University plant nursery (Lincoln University, NZ). Nursery temperature environment was at 25 

⁰C during the day and 18 ⁰C during the night. Potting mix used contained with 800 L of composted bark 

and 2 L pumice (supplemented with 2 kg of fertilizer (Osmocote: 16-3.9-10 NPK), 1 kg agricultural lime, 

1 kg hydraflo (Scott Australia Pty Ltd, Aus.). The experiment was set up so that each 4 L pot contained 

three canes originating from three different mother-plants, as illustrated in figure 2.1. Approximately 

 

Figure 2.1 Mullins vine combination plants  
Combination of grapevines in one pot diagram illustrates that each pot comprises three shoots taken from 
three different sources of mother plant. Hardwood cuttings were grown based on the standard method by 
Mullin (Mullins and Rajasekaran, 1981) 







http://sg.idtdna.com/site


http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/
http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis
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Figure 2.2 PCR amplification of a putative VvAOS gene from the grapevine genome 
Putative VvAOS gene amplified from Sauvignon blanc genomic DNA as a template. The DNA ladder used to 
measure amplicon size was HyperLadder I (1 kb) from Bioline (Total Lab System, NZ). 

Figure 2.3 Location of VvAOS gene 
Karyotype was generated on Ensemble website using the sequence location collected from the 0NCBI 
database. 
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Figure 2.4 Full sequence of VvAOS nucleotides and amino acids 
Full sequence of allene oxide synthase gene (ORF) together with the deduced amino acid sequence amplified 
from Vitis vinifera L. Cv Sauvignon blanc genomic DNA. Predicted chloroplast transit peptides are underlined 
in red. The heme-binding domain (PxxxNKQCxGKD) is highlighted in yellow and FNxxGGxKxxxP, a highly 
conserved motif (helix-I) in CYP74A enzymes, is highlighted in light blue. Methionine (M in blue) indicates a 
possible starting codon across nucleotide sequences during translation.  
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Species 
 

ID 
 

NCBI amino acid 
accession  

Arabidopsis thaliana AtHPL AAC 69871 
 AtAOS CAA 63266 
Artemisia annua AaAOS ADZ 24000 
Capsicum annuum CaHPL AAA 97465 
 CaDES ABH 03632 
Cucumis melo CmAOS AAM 66138 
 CmHPL AAK 54282 
Cucumis sativus CsHPL1 AA F64041 
Glycine max GmAOS NP 001236445 
 GmAOS NP 001236432 
Hordeum vulgare HvHPL CAC 82980 
 HvAOS1 CAB 86384 
 HvAOS2 CAB 86383 
Ipomoea nil InAOS BAK 52267 
Linum usitatissimum LuAOS AAA 03353 
Lycopersicon esculentum LeHPL AAF 67142 
 LeDES AAG 42261 
 LeAOS1 CAB 88032 
 LeAOS2 AAF 67141 
 LeAOS3 AAN 76867 
Medicago sativa MsHPL1 CAB 54847. 
 MsHPL2 CAB 54848 
 MsHPL3 CAB 54849 
Medicago truncatula MtAOS CAC 86897 
 MtHPL1 CAC 86898 
 MtHPL2 CAC 86899 
Musa accuminata MaHPL CAB 39331 
Nicotiana attenuata NaHPL CAC 91565 
 NaAOS CAC 82911 
Nicotiana tabacum NtDES AAL 40900 
Oryza sativa OsAOS-1 AAL 17675 
 OsAOS-2 AAL 38184 
 OsAOS-3 AAP 75620 
Psidium guajava PgHPL AAK 15070 
Parthenium argentatum PaAOS1 CAA 55025 
Solanum tuberosum StHPL CAC 44040 
 StDES CAC 28152 
 StAOS1 CAD 29735 
 StAOS2 CAD 29736 
 StAOS3 CAI 30876 
 StAOS AAN 37417 
Vitis vinifera VvHPL1 ADP 88810 
 VvHPL2 ADP 88811 
 VvHPL ACZ 17394 
Zea mays ZmHPL AAS 47027 
   

 

Table 2.3 Characterized plant CYP74 family members  
CYP74 enzymes retrieved from the NCBI database based on published articles by Stumpe et al (2006 and 2008), 
Howe and Schilmiller (2002), Podolyan (2010), Zhu et al (2012), Mei et al. (2006), Kongrit et al. (2007), Wu et al. 
(2008) and Pajerowska-Mukhtar et al. (2008). 
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Multiple alignments sequences and cladogram diagrams of CYP74 polypeptide sequences 

were generated using the software program “Multiple Alignment using Fast Fourier Transform” or 

MAFFT version 7 (Katoh and Standley, 2013). This software is available online at Computational Biology 

Research Consortium website (http://mafft.cbrc.jp/alignment/software/, accessed in 2015). The 

alignment results were used to construct a CYP74 family member cladogram using a bootstrapped 

neighbour-joining method algorithm with 1000 replicates. Sub-family groupings shown from the 

cladogram diagram were consistent with results reported in Howe et al. (2002), Stumpe and Feussner  

(2006) and Stumpe et al. (2008). The chloroplast transit peptide (cTP) was not as highly constrained as 

the functional component of the enzyme so, as a consequence, it could cause an inaccurate 

relationship during the production of the cladogram diagram. Therefore, the multiple alignment 

sequences and construction of the cladogram diagram were repeated with the predicted cTP region 

removed. Prediction of a cTP region to each CYP74 family member polypeptide sequence was 

identified using ChloroP 1.1 software (Emanuelsson et al., 1999). Results indicated that both cladogram 

gave similar outcomes.  

The cladogram diagram, derived from the putative grapevine and previously characterized 

CYP74 amino acid sequences from other plant species (Table 2.3), is shown in figure 2.5. The 

cladograms suggested that the putative VvAOS polypeptide sequence was closely related to the 

CYP74A sub-family group, which also suggest that these enzymes utilized 13-hydroperoxide as a 

substrate. Moreoever, the interrelationships of the entire CYP74 family in grapevine clearly showed a 

strong separation between their sub-families, CYP74A, CYP74B, CYP74C and CYP74D. Grapevine HPL 

(referred to as VvHPL from now on) enzymes were segregated into two separate groups based on their 

proposed substrate used 9-, 13- or 9-/13-hydroperoxide. Among grapevine HPLs, only VvHPLA was 

grouped as a CYP74B sub-family and predicted to utilize 13-hydroperoxide as a substrate; whereas, 

VvHPLB, VvHPLC, VvHPLD, VvHPLE and VvHPLF were grouped in the CYP74C sub-family, which utilized 

either 9- or 13-hydroperoxide as a substrate.  

In plants, AOS enzymes are known to be the enzyme that uses 13-hydroperoxide as a substrate 

to produce JA as an end product (Feussner and Wasternack, 2002; Yan et al., 2013). Therefore, we 

predicted that the putative VvAOS protein sequence identified might be involved in plant defence 

mechanisms in grapevine due to its polypeptide sequence being highly homologous to other AOS from 

other plant species. Furthermore, VvAOS protein was classified within 13-AOS group that the only 

known to be involved in JA biosynthesis. Further interrogation of the interrelationships among AOS 

enzymes (published sequences only) from other plant species and grapevines indicated that the 

putative VvAOS was closely related to flax (LuAOS), guayule (PaAOS) and sweet wormwood (AaAOS), 

as shown in figure 2.6. 

  

http://mafft.cbrc.jp/alignment/software/
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Figure 2.5 Cladogram diagram of CYP74 family members 
The cladogram diagram was drawn using a bootstrapped neighbouring-joining method via MAFFT software 
version 7 (Katoh and Standley, 2013). CYP74 sub-family members are discriminated by node colours. Sub-family 
CYP74A (13-AOS) is in red, CYP74B (13-HPL) in blue, CYP74C (9/13-AOS, 9/13-HPL and 9-AOS) in yellow, green and 
black. The last sub-family, CYP74D (9-DES) is in magenta. The sub-family classification was adapted from Stumpe 
and Feussner (2006) and Stump et al. (2008).  
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Figure 2.6 Cladogram of AOS enzymes  
The cladogram diagram of AOS was drawn using a bootstrapped neighbouring-joining method via MAFFT 
software version 7 (Katoh and Standley, 2013). Allene oxide synthase groups are discriminated by node 
colours. Enzymes using 13-hydroperoxide substrate (13-AOS) is in red, 9/13-hydroperoxide substrate (9/13-
AOS) in yellow and 9-hydroperoxide substrate (9-AOS) in black. Grapevine AOS (VvAOS) was grouped among 
enzymes using 13-hydroperoxide as a substrate (13-AOS).  Classification was adapted from Stumpe and 
Feussner (2006) and Stump et al. (2008). 
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De Domenico et al., 2007; Hughes et al., 2009). However, to date, VvHPLB, VvHPLC, VvHPLD, VvHPLE 

and VvHPLF that identify (Chris Winfield research group) within grapevine (Sauvignon blanc) have not 

been functionally characterized. Furthermore, there was little information available on sub-cellular 

localization within CYP74 enzymes that used 9/13-hydroperoxides as a substrate. Therefore, further 

work is needed to elucidate further relationships between protein localization, substrate and their 

functions. 

  

 

Figure 2.7 Colony PCR of transformed Agrobacterium with respective pB7FWG2:VvCYP74 binary vector 
Colony PCR assessment of Agrobacterium transformed with respective pB7FWG2:VvCYP74 binary vector 
using combination primers of pART 53S (forward) and respective VvCYP74 reverse. VvCYP74 genes are 
VvAOS, VvHPLA, VvHPLB, VvHPLC, VvHPLD, VvHPLE and VvHPLF. Additional 0.273 bp derived from junction 
sequence between CaMV 35S promoter and gene of interest (GOI). 
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Figure 2.8 Subcellular localization of the VvCYP74 gene fused with GFP in Nicotiana benthamiana leaves 
(continue) 
Sub-cellular localization of VvAOS, VvHPLA, VvHPLB and VvHPLC proteins within plant cell compartments in 
Nicotiana benthamiana leaves and visualized by confocal microscopy. Negative control are shown on the 
next figure. 
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Figure 2.9 Subcellular localization of the CYP74 gene fused with GFP in Nicotiana benthamiana leaves 
(continued) 
Sub-cellular localization of VvHPLD, VvHPLE, and VvHPLF protein within plant cell compartment in Nicotiana 
benthamiana leaves and visualized by confocal microscopy. Negative control leaf was infiltrated with 
Agrobacterium wild type. 
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Figure 2.10 qRT-PCR analysis of CYP74 gene expression in grapevine 
Distribution of CYP74 enzyme activity in different tissue, i.e. roots leaves, tendrils, inflorescences, seeds, pulp and skins in grapevine are shown on the graph above (log graph 
base 2). For each respective tissue sample, 500 ng of total RNA was used as a starting material for cDNA synthesis. Not quantified (NQ) and not detected (ND) gene transcripts 
were labelled as a “single and double star”, respectively.  NQ defined as Cq values above 30 and ND as zero amplification after 35 cycles.   
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Figure 2.11 End-Point PCR of CYP74 gene amplification using cDNA template 
Gel photos shown above are PCR end point products to indicate CYP74 expression gene in roots leaves, 
tendrils, inflorescences, seeds, pulp and berry skins. HyperLadder V (25bp) from Bioline (Totallab, NZ) was 
used to measure DNA fragment size. 

 





 55 

 

 

Figure 2.13 VvCYP74 gene expression as a response to wound treatment (continued) 
Grapevine AOS (A), HPLA (B) and HPLB (C) transcript abundance in wounded leaves. Bars represent standard 
deviation of mean from three biological replicate samples. 
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 Figure 2.13 CYP74 genes expression as a response to wound treatment (continued) 

Grapevine HPLC (D), HPLD (E) and HPLE (C) transcript abundance in wounded leaves. Samples were collected 
over the course of 24 hours of wound treatment and transcript abundances were quantified and compared 
to control sample. Control samples at each collection time point were included to accommodate the 
possibility of circadian effect on GOI. Bars represent standard deviation of mean from three biological 
replicate samples .   



 57 

Results from qRT-PCR analysis of each CYP74 gene member in wounded grape leaves and 

control samples collected at different time points over the course of 24 hours wound treatment are 

shown in figure 2.13. The results clearly showed that the putative VvAOS response to wounding, as 

expected, in which transcript abundance increased significantly at 3, 6 and 12 hours (simple T-Test, P 

< 0.05) after wounding compared to the control samples (Figure 2.13A). Comparison analysis indicated 

that transcript abundance in wound treated samples peaked at three hours (16-fold higher compared 

to the control at a similar time point) and gradually declined to a near normal level at 24 hours after 

wounding.  Likewise, VvHPLA and VvHPLD showed a significant increase (simple T-Test, P < 0.05) as a 

response to wounding but this differed in terms of the pattern of transcript accumulation compared 

to the VvAOS gene (Figure 2.13B and 2.13E). Both these VvHPLs peaked at six hours which were three 

hours later compare to VvAOS expression before returning to near normal level after 24 hours 

wounding. However, in terms of gene induction magnitude at the expression level relative to control 

samples, the VvAOS gene registered a larger (approximately 20-fold) value followed by VvHPLD (14-

fold) and then VvHPLA (4-fold). On the other hand, VvHPLB, VvHPLC and VvHPLE did not show a 

significant response (simple T-Test, P > 0.05) to wound treatment at any time point relative to their 

control samples (Figure 2.13C, 2.13D and 2.13F) which indicated that these particular genes were not 

elevated by wounding in leaves within 24 hours.   

2.4 Discussion     

In this chapter, we identified one putative grapevine AOS gene sequence that displayed highly 

similar characteristics to AOS genes from other plants, such as the appearance of highly conserved 

motifs, predicted to carried a cTP region, high sequence similarities (both at polypeptide and 

nucleotide levels) and was grouped by a NCBI database search as P450 superfamily members. Together 

with another six VvHPLs previously identified within our research group, we carried out partial 

characterization of CYP74 family members in grapevines. Throughout this characterization experiment, 

we first localized grapevine CYP74 family enzymes within plant cell compartments via GFP fusion 

technique in N. benthamiana leaves, followed by study of their possible physiological role in grapevine 

systems by examining their transcript level in different tissue types and, finally, their response to 

wound treatment, as an indication to their possible involvement in plant defence mechanisms. 

Protein sub-cellular localization is important because knowing the protein environment will 

help to elucidate protein function in which the protein of interest operate (Scott et al., 2005). Protein 

location in plant cell compartments can influence their function by controlling access or their 

availability to interact with other molecular interaction partners (Scott et al., 2005). For CYP74 enzyme 

family members, numerous reports describe their activity in green tissues as often occurring in 

chloroplasts (Feussner and Wasternack, 2002; Stumpe and Feussner, 2006; Hughes et al., 2009). This 

localization seems to be likely because production of the CYP74 substrates, 9- and 13-hydroperoxide, 
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takes place in plastids (Hughes et al., 2009). Furthermore, many of the polypeptide sequences of CYP74 

enzymes comprise cTP regions, which are associated with membrane-bound proteins. However, the 

sub-cellular localization of plant enzymes ascribed to the CYP74 family is still largely unclear (Mita et 

al., 2005). Some CYP74 family members targeted chloroplasts (Pajerowska-Mukhtar et al., 2008) but 

with different localizations. For example, in tomato, AOS targeted the inner, but HPL targeted the 

outer, chloroplast membrane (Froehlich et al., 2001). Others were reported to target the cytosol, 

microsomes and lipid bodies, as shown by HPL enzymes (9-HPL) in almond (Mita et al., 2005) and (9/13-

HPL) in Medicago truncatula (De Domenico et al., 2007). CYP74 enzyme in grapevines, putative VvAOS 

and VvHPLs, seem to be targeted within chloroplast and cytosol compartments in plant cells.  

The putative VvAOS, as expected, was clearly localized within the chloroplast membrane. 

However, an interesting result from this work was the localization of VvHPL family members, i.e. 

VvHPLA and VvHPLD, which were predicted to contain a cTP region but did not localize within the 

chloroplast membrane. Although, in general, HPLs enzymes were initially thought to be localized in the 

plastids due to HPL research in Arabidopsis, in which the proteins appeared to be membrane-bound 

(Farmaki et al., 2007) and the existence of potential signal peptides within the HPL amino acid 

sequence, which ought to target plastids or mitochondria (Bak et al., 2011), but all grapevine HPLs, 

except the VvHPLE result was opposite to what was expected. This result is quite interesting since 13-

LOX is responsible for providing the substrate for both 13-AOS and 13-HPL within the chloroplasts 

(Feussner and Wasternack, 2002; Hughes et al., 2009).  In contrast, VvHPLA (predicted to be 13-HPL) 

did not localize within chloroplasts. This indicated a more complicated picture for the formation of C6 

volatiles in grapevines where there was likely a specific transfer of LOX products out of the chloroplast 

to the location of the 13-HPL for cleavage to form C6 aldehyde. Up to date, other VvHPL’s i.e. VvHPLB, 

VvHPLC, VvHPLD and VvHPLF that identify (in our research group) within grapevines have not had their 

function characterized. However, these VvHPLs, which were predicted to be associated with the 9/13-

HPL groups were shown to be localized within cytoplasmic or plasma membranes. In Medicago 

truncatula, almond, and cucumber, these proteins (9/13-HPL enzymes) are also found to be specifically 

associated with lipid bodies together with cytosolic distribution and are also detected in the ER  

fraction (Mita et al., 2005; De Domenico et al., 2007; Hughes et al., 2009). However, there is a little 

information on sub-cellular localization within the CYP74 enzyme family that use 9/13-hydroperoxides 

as a substrate. Therefore, further work is needed to elucidate further relationships between protein 

localization, substrate and function of VvCYP74B and VvCYP74C in grapevines. 

Despite the known poor overall correlation between mRNAs and their protein products, it was 

reported that some studies have noted that certain classes of gene have higher correlation with 

protein expression (Koussounadis et al., 2015). These classes of genes often have tight synchrony 

regulation with their respective protein products. For example regulation of secreted protein which 

would only require transcription when needed or cell cycle genes which are time-dependent 
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(Koussounadis et al., 2015). In the case of AOS gene, it was shown that the increase of its transcript 

abundance lead to increase of JA level in Flax (Harms et al., 1995), Nicotiana (Laudert et al., 2000) and 

Arabidopsis (Park et al., 2002) whereas the expression of two HPL in grapevine were reported have a 

significant correlation with the accumulation of their volatile products. Therefore, in this experiment, 

in order to understanding the physical or specific role of grapevine CYP74 enzymes, we used gene 

expression as a proxy to estimate their activity within different tissue types of grapevine. First, as 

widely reported, AOS plays an important role in the production of jasmonates, a signalling compound 

heavily involved in a plant’s response to stress and development (Sivasankar et al., 2000; Park et al., 

2002; Santino et al., 2013). Therefore, it was not surprising that VvAOS was significantly expressed in 

all tissues tested. Furthermore, this observation may imply that, in general, CYP74A enzyme family 

members play a vital role in the whole grapevine plant system.  

Second, hydroperoxide lyases (HPL) are enzymes associated with production of C6 and C9 

aldehyde volatile compounds, important contributors to the characteristic flavour of fruit, green leaves 

and plant defences (Noordermeer et al., 2001; Taurino et al., 2013). Enzyme HPLs are categorized 

based on their substrate specificity: i) 13-HPL catalyses the 13-hydroperoxide substrate to produce C6 

and C12 aldehydes; ii) 9-HPL uses 9-hydroperoxides as a substrate to form C9 aldehyde; and iii) 9/13-

HPL is able to consume both 9- and 13-hydroperoxides as a substrate to produce both C6 and C9 

aldehyde compounds (Zhu et al., 2012). Among the VvHPL genes assessed, it was interesting to see 

that only VvHPLA was highly expressed in all tissues, specifically, especially in skins (most abundant 

transcript). This result was consistent with the observations reported by Zhu et al. (2012) where 13-

HPL transcripts were abundant in berries, leaves, tendrils and stems of grapevines. This result was 

interesting because Zhu et al. (2012) also mentioned that, C6 aldehyde content was far higher than the 

content of C9 aldehyde in grape berries throughout the ripening stages. Since VvHPLA is classified as 

the 13-HPL type, which was responsible for the formation of C12 and C6 compounds (Creelman and 

Mulpuri, 2002; Matsui, 2006; Pinot and Beisson, 2011; Scala et al., 2013), this result may suggest that 

the degradation of fatty acids in grape berries occurred mainly with assistance from 13-LOX and 13-

HPL rather than 9-LOXs and 9-HPL. Therefore, this observation may also explain why VvHPLA gene 

expression was relatively high in berries.  

Gene expression of other VvHPLs i.e. VvHPLB, VvHPLC, VvHPLD, VvHPLE and VvHPLF was 

assessed. Those grouped as 9/13-HPL (VvCYP74C) type displayed different patterns of expression 

compared to the 13-HPL (VvCYP74B) type. The results showed that VvCYP74C gene members display 

mixed expression pattern across grapevine tissues. This may indicate that each VvCYP74C gene 

member exhibited different physical functions across grapevine tissues. Again, these outcomes are 

consistent with the results reported by Zhu et al. (2012). Another interesting result was the expression 

of grapevine CYP74B compared to VvCYP74C in skins and pulp. The grapevine CYP74B enzyme used 

13-HPL as a substrate (VvHPLA) showed high levels of gene expression in skins and pulp, whereas 
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VvCYP74C, an enzymes used 9/13-HPL as a substrate display gene expression either low (NQ) or not 

detected (ND) in the similar tissues. Low gene expression of VvCYP74C gene members in skin and pulp 

tissues supported our previous suggestion about 13-LOX’s vital role in the formation of aromatic 

compounds in grape berries. Besides that, expression of VvCYP74B and VvCYP74C genes also indicated 

locations for C6 and C9 aldehyde production and their function not only in the production of aromatic 

compound but as signalling molecules. However, interestingly, that most of the VvCYP74C gene 

members displayed high expression in seeds and inflorescences might indicate their involvement in 

early developmental stages of fruits and floral organ in grapes (Zhu et al., 2012). Nevertheless, 

VvCYP74C gene functions and mechanisms are still not fully understood. Therefore, further evidence 

was needed to understand their function and mechanisms. 

2.5 Conclusions and future prospects 

 The CYP74 family is a group of enzymes that belong to the superfamily of cytochrome P450, 

which generates oxygenated metabolites or oxylipin compounds derived from polyunsaturated fatty 

acids (Stumpe and Feussner, 2006). Oxylipin plays a diverse role in plants, including plant defence 

systems, plant development, fruit ripening and flavour. CYP74 family enzymes were grouped into three 

sub-families based on their enzyme activities, as described previously. In this chapter, seven enzymes 

belonging to the CYP74 family in grapevine were examined. Phylogenetic analysis categorized VvAOS 

and VvHPLA as belonging to the CYP74A and CYP74B sub-families, respectively, whereas VvHPLB, 

VvHPLC, VvHPLD, VvHPLE and VvHPLF were grouped in the CYP74C sub-family. Similar to results 

reported in other plant species, putative VvAOS was localized within the chloroplast membrane, but 

unlike other results, VvHPLA was localized within the plant cell plasma membrane and cytoplasm. Most 

of the VvHPL proteins grouped into the CYP74C sub-family were localized within the plant cell plasma 

membrane and cytoplasm. However, interestingly, the VvHPLE protein appeared to be generally 

localized within chloroplasts.  

 The distribution of the CYP74 gene family expressed within grapevines were varied in different 

tissue types. Generally, transcript abundance of VvAOS and VvHPLA genes (which were classified 

within the CYP74A and CYP74B gene families, respectively) showed strong expression in all tissues 

examined (root, leaf, inflorescence, seed, pulp and skin), whereas gene expression of VvHPLB, VvHPLC, 

VvHPLD, VvHPLE and VvHPLF (which were classified within the CYP74C gene family) were expressed 

differently in the different tissue types examined. Interestingly, the transcript level of all VvHPL 

grouped among CYP74C family (enzymes used 9/13-HPL as a substrate) displayed low expression 

(either unquantified or undetectable) in the pulp and skins, which may indicate a lesser role in the 

formation of aromatic compounds in berries but the high expression of CYP74B indicated the opposite 

role. Therefore, this may suggest that VvHPLA (member of CYP74B gene family) should be the focus 

for further research for gaining a better insight into the relationship between VvHPL enzymes group 
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and aroma/flavour in grape berries. Despite the report of CYP74 enzymes playing an important role in 

plant abiotic stimuli (Hughes et al., 2009), our results showed that not all CYP74 enzyme members 

were stimulated by abiotic stress or wounding in grapevines. Among CYP74 enzymes member 

examined only VvAOS (CYP74A), VvHPLA (CYP74B) and VvHPLC (CYP74C) responded to wounding 

treatment. The strongest response (based on transcript abundance) was displayed by VvAOS gene with 

a relative expression increase of approximately 16-fold three hours after wound treatment. Whereas, 

while VvHPLA and VvHPLC gene responded to mechanical wounding, it but not as strong as in VvAOS. 

The expression of both genes only reached peak levels after six and 12 hours with an increment of 

approximately 4- and 5- fold, respectively. 

Among grapevine CYP74 gene family members, VvAOS, grouped within the CYP74A family 

members exhibited the most interesting features towards plant defence systems, such as, its enzyme 

localization site in the chloroplast, high gene expression occurred in the whole plant and it responded 

strongly to mechanical stimuli. Therefore, the VvAOS gene was selected for further analysis to gain a 

wider insight about the role of CYP74s plant defence systems. However, in order to use this gene for 

further work to understand its role, the VvAOS gene needed to be verified for its biochemical function 

in grapevines. Therefore, the next chapter focuses on elucidating VvAOS’s biochemical function via 

complementation of the knock-out AOS gene function in Arabidopsis (Park et al., 2002) 
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to the dysfunctional AOS gene in their system (Park et al., 2002). Recovery from the male sterile 

phenotype in an Arabidopsis aos mutant plant after the introduction of the putative AOS gene from 

grapevines will verify its functionality as an AOS gene in Vitis vinifera L. cv Sauvignon blanc. 

 

 

 
Figure 3.1 Metabolites derived from JA in plants  
Jasmonic acid and it derivatives. Most active compounds are highlighted in red and, OPDA, as a precursor to JA, 
production is highlighted in blue. Adapted from Gfeller et al, 2010 
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Primer pairs 
Homozygous 

promAOS:VvAOS 
Heterozygous 

promAOS:VvAOS 
Wild type plant 

CYP74 F and R (2.5 kb) Negative Positive Positive 

TJRB and CYP74 R (0.4 kb) Positive Positive Negative 

VvAOS(Fwd) and (Rev) (1.5 kb) Positive Positive Negative 
 

Table 3.1 Scoring table to identify homozygous aos mutant transformed with promAOS:VvAOS gene 
Homozygous promAOS:VvAOS plants were identified via aPCR method using a combination of CYP74AF, CYP74R, 
TJRB, VvAOS(Fwd) and VvAOS(Rev) primers. Indication, “Positive” – PCR product amplified and “Negative” – No 
PCR product amplified 
 

Generating homozygous T3-plants  

Approximately 100 to 150 seeds from each plant line were transferred into 2 mL Eppendorf 

tubes and sterilized using a vapour phase sterilization method. Seeds in open tubes were placed on a 

rack in a desiccator jar containing a beaker with 100 mL of commercial strength bleach. Prior to sealing 

the desiccator jar, 5 mL of concentrated hydrochloric acid (HCl) was carefully added to the bleach in a 

fume hood to generate chlorine gas. The vessel was immediately sealed and left for approximately 

four hours to sterilize the seeds. After sterilization, seeds were scattered evenly on BASTA selection 

plates [one-half-strength Murashige and Skoog medium (MS) with vitamins, 3% (w/v) sucrose, 0.8% 

(w/v) phyto agar and 10 mg/mL BASTA]. Seeds on the BASTA selection agar plates were stratified by 

placing the plates in 4°C for two days and then subsequently transferred to a tissue culture room for 

two to three weeks. The tissue culture room conditions were maintained at 16 hours of light per day, 

with a light intensity of approximately 100 µmol/m2sec provided by cool white fluorescent tubes, and 

at a constant temperature of 20°C. Individual lines were scored for their segregation ratio of BASTA 

resistance to susceptibility. Only plant lines that exhibited a germination segregation ratio of 

approximately 3:1 were selected for further analysis. Between eight and ten plants from each of the 

selected lines were eventually transferred to soil and grown in the growth room, as described above. 

Seed was harvested from each individual plant and plant line and labelled as T2-seeds.  

T2 - seeds were sterilized and planted out, as described above. The resulting T3-plantlets, which 

gave 100% germination on the BASTA selection plates, indicated a homozygous line transformed with 

the VvAOS gene. These plant lines were selected as the source material for further analysis of VvAOS 

function in the Arabidopsis aos mutant. Seeds collected from the homozygous plant transformed with 

VvAOS gene were labelled as T3 – seeds. Phenotypic examination was carried out via naked eye and 

under a light microscope (Olympus SZX16 [Olympus Ltd, NZ) to differentiate between homozygous 

Arabidopsis aos mutants, transformed homozygous Arabidopsis aos mutants and wild type plants. 

Examinations were based on phenotypic differences in the leaves, flowers, number of siliques and their 

size, floral organ developmental stages, siliques and inflorescence formation and average of seeds 

viability in each silique. For viability seed counting, all siliques involved in viable seed counting were at 
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a carrier gas with the constant linear velocity set at 44.4 cm/sec in split mode (1.5 mL/min). The mass 

spectrometer (MS) was operated in the single ion monitoring mode with selected masses used to 

identify methyl jasmonate (target ion m/z 151, confirming ions – m/z 193 and m/z 224) and the internal 

standard, dihydro-methyl-jasmonate (target ion m/z 156, confirming ions – m/z 153 and m/z 195). The 

temperature of the capillary interface was 320°C, with the MS source temperature set at 230°C. Initial 

confirmation of retention times was performed for the compound of interest by injecting the individual 

standards and matching their mass spectra with the spectra of reference compounds in the NIST 

EPA/NIH Mass Spectral Library database (National Institute of Standards and Technology, NIST05). The 

quantitative determination of methyl jasmonate in a sample was performed using the GC Solution 

software provided by the GC-MS instrument manufacturer (Shimadzu Scientific Instruments, NZ). The 

methyl jasmonate peak was integrated and the area was related to the area of the internal standard 

peak. JA content was calculated using the following formula, where 3.5 is a correction factor: 
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complementation constructs (Section 3.2.6). Primary transformants of Arabidopsis aos mutant 

carrying the promAOS:VvAOS  gene were screened using BASTA herbicide plates yielded 39 individual 

plant T1-plant lines. Among the 39 primary transformants, eight were identified as homozygous for the 

Arabidopsis AOS mutation and also contained the promAOS:VvAOS transgene (from here on this on 

will be referred as aos:promAOS:VvAOS plant lines), 22  plants were found to be heterozygous for the 

Arabidopsis AOS mutation and nine plants were found to not contain the AOS mutation. The 

segregation ratio for the transformed lines was found to be 1:2.275:0.89, which is in agreement with 

a simple 1:2:1 Mendelian segregation ratio and chi-square test, as discussed above. However, two of 

the eight aos:promAOS:VvAOS plants did not survive, therefore, only six plants were used to produce 

T3-plant lines that were used as source material for further analysis. These six aos:promAOS:VvAOS 

plant lines were L5, L28, L29, L30, L31 and L32. PCR analysis results for the six individual 

aos:promAOS:VvAOS plants using combination CYP74AF, CYP74AR, TJRB, VvAOS-Fwd and VvAOS-Rev 

are shown in figure 3.5 below. 

 

Putative VvAOS gene expression complements male sterile phenotype of homozygous 
Arabidopsis aos mutant 

Homozygous T3-plant lines for Arabidopsis aos:promAOS:VvAOS transgenics were used as 

source material for plant phenotypic analysis. As in qualitative phenotypic analysis, plant growth 

development, siliques and inflorescence development, silique formation and floral organ formation 

was taken from the average of six plant lines of aos:promAOS:VvAOS. For the analysis to compare the 

complemented phenotype in aos:promAOS:VvAOS plant lines, Arabidopsis lines homozygous for the 

aos mutation and WT plants were grown together under similar conditions, as described in the 

material and methods (Section 3.2.1). Results showed that at a developmental level the Arabidopsis 

Figure 3.5 Results showign aos:promAOS:VvAOS plants via the PCR amplification method 
Result show six aos:promAOS:VvAOS plants – L5, L28, L29, L30, L31 and L32 plants had their genotype 
confirmed via the PCR amplification method. HT-(Heterozygous promAOS:VvAOS) and WT- (wild type) were 
included as a plant control and Ctrl (control) as a PCR reaction control. DNA ladder was HyperLadder I (1kb 
ladder) from BioLine (Total Lab System, NZ) was used to measure DNA fragment size.  
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Figure 3.6 Growth and development of aos mutant, WT and aos:promAOS:VvAOS plants 
Plants were approximately six weeks-old. No apparent phenotype defects between plants except for silique 
development in Arabidopsis aos mutant plants, which indicated that disruption or recovery of AOS gene 
function displayed a minimal impact on growth and development in Arabidopsis thaliana 

Figure 3.7 Silique and Inflorescence development 
Inflorescences show normal development in all plants. However, siliques failed to elongate in Arabidopsis aos 
mutant plants (a) Siliques elongate normally in aos:promAOS:VvAOS (b) and WT (c) plants  and produce seeds. 
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Figure 3.8 Silique formation 
Development of siliques in aos:promAOS:VvOAS plant (b) show similar sizes with WT (c). As a comparison, 
siliques did not develop in Arabidopsis aos mutant plants (a).  

 

Figure 3.9 Floral organ formation  
Anthers did not fully develop in Arabidopsis  aos mutant plants (a), therefore, they failed to pollinate stigmatic 
papillae and, as a consequence, no seeds were produced. In contrast, anthers developed fully in both 
aos:promAOS:VvAOS and WT plants and pollinates the stigmatic papillae. Both plants produced healthy 
silique with approximately similar numbers of seeds. White arrow indicates an anther position whereas red 
arrow indicates the location of stigma. 
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not able to perform preliminary VvAOS transcript abundance analysis on all transformed plant lines. 

Our attempt to select the best performing transgenic plant lines was based on the phenotypes 

observed, such as average size of siliques, average number viable seeds per silique and average 

number of siliques produced. However, as there was little to discriminate the lines in terms of physical 

phenotypic differences aos:promAOS:VvAOS plant lines L28 and L30 were selected randomly for 

analysis of their responses to wounding. The results indicated that transcript abundance of the VvAOS 

gene in L28 and L30 increased upon wound treatment (Figure 3.10a), which was consistent with the 

fact that the transgene was being driven by the AtAOS promoter. Over the course of the six hour 

wound treatment, VvAOS transcript abundance in L28 peaked at one hour but for line L30 the peak of 

transcript abundance was observed at two hours after wounding. As expected, the VvAOS gene was 

able to complement wound response of homozygous Arabidopsis aos mutant, as shown in both L28 

and L30. However, it was surprising that the transcript abundance of VvAOS in complemented 

Arabidopsis aos mutants was very high (approximately 59-fold higher in both L28 and L30) than in their 

respective samples in WT at two hours after wounding. Another surprise result from this experiment 

was the knock-out endogenous AtAOS gene response to wound treatment in both the 

aos:promAOS:VvAOS lines and Arabidopsis aos mutant plant lines. Results showed that transcript 

abundance of endogenous AOS (knock-out gene) significantly increased after wound treatment and 

peaked at one hour before declining to near normal level four hours after wounding in both L28 and 

L30. Whereas, although it was a small increment of endogenous AtAOS transcript in Arabidopsis aos 

mutant but it was significant at one hour after wounding compared to samples at different time points 

(ANOVA, P < 0.001). As a comparison, AtAOS transcript abundance peak at two hours and declined to 

near normal level six hours after wounding in the WT.  

 As shown by the results above, the VvAOS transgene clearly complemented the aos mutation 

response to wound treatment but how about their signal transduction pathway? To answer this simple 

question, we measured the expression of AtLOX and AtVSP2, two JA responsive genes in 

aos:promAOS:VvAOS plants. The results showed that transcript abundance of AtLOX2 gene was found 

to increase to approximately the same level in both L28 and L30 but to only two thirds of the expression 

level observed for wild type plants at peak level two hours after wounding (Figure 3.11a). In contrast 

to the WT plant and aos:promAOS:VvAOS lines, AtLOX2 transcript abundance in Arabidopsis aos 

mutant plants did not respond to wound treatment. Statistical analysis for significant differences 

showed that no significant differences (ANOVA, P=0.21 > 0.05) among Arabidopsis aos mutant samples 

collected over the course of the six hour wound treatment. Another JA-responsive gene, AtVSP2, also 

responded to wound treatment at the approximate level in both L28 and L30 but, again, only to two 

thirds of the expression shown in WT plants at the peak level, eight hours after wounding. Again, the 

AtVSP2 gene in Arabidopsis aos mutants did not respond at any point of wound treatment. 
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Figure 3.10 Transcript abundance of VvAOS and AtAOS genes in Arabidopsis aos:promAOS:VvAOS plant 
lines 
Transcript abundance of VvAOS and AtAOS genes were measured from aos:promAOS:VvAOS plant L28 and 
L30. As a comparison, similar transcript genes were also measured in WT and Arabidopsis aos mutant plants. 
Graph a) transcript abundance of VvAOS gene and b) transcript abundance of AtAOS gene. L28 and L30 – 
two complemented Arabidopsis aos mutant lines, WT – Arabidopsis wild type, AM – homozygous 
Arabidopsis aos mutant and bar represent standard deviation of the mean from three biological replicates 
of samples 

a) 

b) 
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Figure 3.11 Transcript abundance of AtLOX2 and AtVSP2 genes in Arabidopsis aos:promAOS:VvAOS plant 
lines 
Transcript abundance of JA-responsive genes, AtLOX2and AtVSP2 genes were also measured from 
aos:promAOS:VvAOS plants, L28 and L30. As a comparison, similar transcript genes were measured in WT 
and aos mutant plants. Graph a) transcript abundance of AtLOX2 gene and b) transcript abundance of 
AtVSP2 gene. L28 and L30 – two complemented Arabidopsis aos mutant lines, WT – Arabidopsis wild type, 
AM – homozygous Arabidopsis aos mutant and bar represent standard deviation of mean from three 
biological replicate of samples 

a) 

b) 
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Figure 3.12 Jasmonic acid accumulation in wound treated Arabidopsis aos:promAOS:VvAOS leaves 
JA accumulation was measured from L30 of wound treated Arabdiopsis aos:promAOS:VvAOS leaves at 0, 1 and 
6 hours via GCMS method, as described by Schmelz et al. (2004) and Mishina and Zeier (2006) . As a comparison, 
JA was also measured from WT and Arabidopsis aos mutant plants. However, JA accumulation was not detected 
in any of Arabidopsis aos mutant plant samples. Bar represent standard deviation of the mean from three 
biological replicate samples. Alphabet (a, b and c) re-present no significant different between JA accumulation in 
WT and L30 at the respective time samples whereas ND indicate that no JA accumulation detected.    
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3.4 Discussion 

In order to confirm that the cloned VvAOS was, in fact, an AOS gene we decided to investigate 

whether the grape orthologue was capable of complementing the Arabidopsis aos mutant. The 

mutation in the AOS gene was caused by a T-DNA insertion at 98 bp upstream of the invariant cysteine 

residue within the heme binding domain (Figure 3.4). The presence of the T-DNA has been reported to 

lead to complete removal of JA production and the presentation of a male sterile phenotype due to 

the blocking of JA biosynthesis (Park et al., 2002). Arabidopsis was known to have only a single copy of 

AOS gene in its genome (Laudert et al., 1996); therefore, using this complementation approach would 

have allowed us to confirm the biochemical and physiological activity of the VvAOS gene in an 

Arabidopsis background system. In order to provide a more realistic assessment of the ability of VvAOS 

to complement the AtAOS mutation we decided not to use the strong constitutive CaMV35S promoter, 

opting rather to use a construct in which the expression of the VvAOS transgene would be driven by a 

copy of the AtAOS promoter. Using promAOS as a gene regulator for the VvAOS transgene will replicate 

the natural regulation of endogenous AtAOS in the Arabidopsis system compared to the constitutive 

CaMV 35S promoter. 

In addition to their functions in plant defence mechanisms, JAs also play crucial roles in plant 

development, such as in pollen maturation and dehiscence. Loss of AOS function disrupted a JA 

signalling component that caused defects in stamen development by blocking the elongation of 

anthers filaments formation, delayed anther dehiscence and production of non-viable pollen at floral 

stage 13 due to the anther failing to pollinated the stigma (Browse, 2009; Reeves et al., 2012; Song et 

al., 2013). The introduction of VvAOS gene in Arabidopsis aos mutant system (referred to as 

aos:promAOS:VvAOS) recovered the male sterility phenotype was a major indication that the cloned 

VvAOS encoded a functional AOS, which likely functioned in a similar manner in grapevines. 

Development of normal silique size, recovery of siliques and viable seed production, and fully 

developed stamens in aos:promAOS:VvAOS plant compared to WT indicated that the VvAOS gene was 

able to recover the lost function of the JA biosynthetic pathway in Arabidopsis. Furthermore, transcript 

accumulation of JA-responsive genes, AtLOX2 and AtVSP2, in L28 and L30 also indicated that JA 

signalling and its component network had been partially recovered.   

 As part of this experiment, we quantified VvAOS and JA-responsive genes transcripts (AtLOX2 

and AtVSP2) as an indication for recovery of JA transduction signal in a complemented Arabidopsis aos 

mutant (Park et al., 2002). As expected, the introduction of transgene VvAOS enabled the recovery of 

the JA signalling pathway in Arabidopsis aos mutants but some of the results were beyond our 

expectation. First, although endogenous AOS in homozygous Arabidopsis aos mutant was completely 

knocked out, and we expected it will not respond to wound treatment but eventually its transcript 

abundance increased significantly within one hour after wounding. Second, transgene VvAOS 

transcript abundance in Arabidopsis aos:promAOS:VvAOS was exceptionally high compared to the 
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endogenous AOS gene transcript abundance needed in WT to activate a plant’s response to wound 

treatment. Third, JA accumulation and transcript abundance of both JA-responsive genes (AtLOX2 and 

AtVSP2) in Arabidopsis aos:promAOS:VvAOS lines was only two thirds compared to WT considering 

VvAOS transcript gene was 59-fold higher than the AtAOS transcript.  

 Although there was no solid evidence from data presented in this experiment, it was tempting 

to speculate that the observation mentioned above could be a critical feature in understanding JA 

biosynthesis mechanisms in Arabidopsis aos:promAOS:VvAOS plants. Therefore, we proposed several 

possible reasons behind these three unexpected results. First, the endogenous AtAOS gene in the 

homozygous Arabidopsis aos mutant response to wound treatment indicated its gene regulator was 

still active and involved in AtAOS gene regulation. However, at this point endogenous AtAOS was not 

regulated by its own biosynthetic product but was activated by the early signal transduction 

mechanism created upon mechanical wounding. Early events associated with wound signalling 

included a rapid increase in the levels of cytosolic Ca2+, membrane depolarization, inhibition of a 

proton ATPse in the plasma membrane and the activation of MAPK activity (Maffei et al., 2007; Hu et 

al., 2009; Arimura et al., 2011; Zebelo and Maffei, 2015) followed by the release of linolenic acid from 

membrane phospholipids and the subsequent activation of the production of the hydorperoxide 

substrate by lipoxygenase (Bonaventure and Baldwin, 2010). Substrate availability activated promAOS 

to produce AOS enzymes for the conversion to 12-oxophytodienoic acid (OPDA) but this did not 

materialize due to their knock-out function. Therefore, this explained the small increment of 

endogenous AtAOS gene transcript that occurred in Arabidopsis aos mutant plants. It was a small 

increment because no JA had been produced to stimulate a positive feedback loop to enhance a large 

signal transduction (see Figure 2.3). A similar phenomenon was also observed in Arabidopsis 

aos:promAOS:VvAOS (complemented Arabidopsis aos function). Due to the AOS function recovery, JA 

production in aos:promAOS:VvAOS plant was continuously activating the production of the 

hydroperoxide substrate via a positive feedback loop (Sasaki et al., 2001; Turner et al., 2002). As a 

consequence, endogenous AtAOS transcription was continuously produced up to one hour after 

wounding. However, this plant system shut down production in order to prevent further damage due 

to the accumulation of this useless transcript RNA (Schubert et al., 2004; Dalakouras et al., 2011). 

Interestingly, the activation of endogenous AtAOS was also a strong indication that the JA signalling 

pathway in Arabidopsis aos:promAOS:VvAOS was recovered. 

Another unexpected result was the high transcript abundance of VvAOS genes in 

aos:promAOS:VvAOS lines compared to WT and yet the transcript abundance of both JA responsive 

genes (AtLOX2 and AtVSP2) and JA accumulation in aos:promAOS:VvAOS, were only approximately 

two thirds of these amount compared to the WT samples.  These results provide a conundrum 

phenomenon because high level of VvAOS transcript did not translated efficiently into the production 

of JA compound. The use of the AtAOS promoter to drive VvAOS transcription in aos mutant plant 
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should have delivered similar levels of transcription as the wild type AOS. Although it was reported in 

cereal that having multiple copies insertion of transgene can enhance the expression level in 

proportion to gene copy number (Stoger et al., 1998; Gahakwa et al., 2000; Kohli et al., 2010), the high 

levels of VvAOS transcript accumulation observed are unlikely to arise solely due to the location of 

transgene insertion(s) because two independent transgenic lines tested were exhibited similarly high 

levels of transcript accumulation. There was also a possibility that by taking only 2.2 kb of the promoter 

region of AtAOS, it may have not captured all of the CIS-regulatory elements characteristic of the 

endogenous AtAOS gene promoter and have inadvertently removed CIS elements controlling levels of 

transcription of the wild type AtAOS gene. This in turn may lead to an apparent increase in ‘strength’ 

of this promoter that produce high transcript of transgene. Besides that, position effect of transgene 

VvAOS might be influenced by AtAOS local regulatory element. Integration of transgene can be 

influenced by a local enhancer nearby that could change the expression profile (Kohli et al., 2010). 

According to this report, the enhancer interacts with the regulatory element in the transformation 

construct to control transcription where the final expression pattern reflected the combined influence 

of both regulatory elements. Transgene VvAOS was designed to be driven by a similar regulator with 

local AtAOS. Therefore, high transcript abundance of VvAOS gene might also be influenced by local 

regulators. 

However, the most puzzling result was the disconnection between the observed levels of 

VvAOS transcription and the relatively low levels of JA accumulation. Two possibilities may explain 

these observations. The first is that the VvAOS enzyme does not perform well in the Arabidopsis 

background, leading to poor production of JA despite the high levels of VvAOS protein that might be 

assumed to accumulate given the very high levels of transcription of the transgene. Secondly there is 

a possibility that there is an interaction between the re-activation of transcription of the mutant allele 

and the VvAOS transgenic allele. Recent reports have shown that T-DNA containing mutant alleles are 

often silenced via a siRNA-mediated chromatin silencing mechanism (Gao and Zhao, 2013). The T-DNA 

construct that is present in the AtAOS mutated allele derives from the pD991-AP3 vector. This T-DNA 

contains the Arabidopsis APETALA3 promoter fused to β-glucuronidase (GUS) and a nopaline synthase 

(NOS) promoter fused to the neomycin phosphotransferase (NPTII) gene, used to select primary 

transgenic lines. T-DNA mutants that have resulted from the insertion of the pD991-AP3 T-DNA have 

been shown to epigenetically silence the AP3 allele in mutant lines and that the degree of epigenetic 

regulation is dependent on the genomic location of the T-DNA (Hayakawa et al., 2015). The structure 

of the aos mutant flowers do not indicate that the T-DNA is epigenetically regulating AP3 in this line. 

However transcriptional reactivation of the T-DNA containing AOS allele may well stimulate silencing 

activity at this locus, leading to silencing of the VvAOs transgenic allele. It is not clear, given the level 

of sequence identify shared between the AtAOS and VvAOs gene sequences (Figure 3.13), whether 

sufficient sequence similarity exists to drive silencing of the VvAOS. However in a recent  report
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Figure 3.13 Nucleotide sequence alignment between VvAOS and AtAOS gene 
Nucleotide sequence alignment between VvAOS and AtAOS genes with chloroplast transit peptide region removed. Yellow shaded colour indicated a possible small RNA fragment 
(siRNA) that initiated PTGS within AtAOS and VvAOS transcripts   
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where a VvAOS-RNAi construct was used to transiently transform strawberry fruit, it was shown that 

the VvAOS construct was able to silence the endogenous strawberry AOS gene leading to a decrease 

in JA accumulating in the transformed fruit (Jia et al., 2016). It is therefore possible that we are 

observing a similar phenomenon in our Arabidopsis complementation lines and activation of the 

mutant AtAOS allele is epigenetically impacting VvAOS transcription. 

If in fact transgene VvAOS was silence by the mechanisms mention above, the apparent high 

levels of VvAOS transcript observed may be an artefact of the qPCR design the targeted sequence for 

the qRT-PCR assay may not report accurate levels of transcript. This phenomena has been tested in 

Human cell systems where it was shown that selection of inappropriate target regions of the gene for 

qRT-PCR analyses may result in an inappropriate assessment of the level of knockdown contributed by 

siRNA derived gene-silencing (Holmes et al., 2010). However further work to investigate the relative 

kinetic capacity of the VvAOS and AtAOS enzymes, presence of siRNAs targeting the VvAOS transgene, 

levels of methylation on the AtAOS and VvAOS alleles and testing a range of different qRT-PCR primer 

sets to probe the levels of VvAOS transcription are required to confirm these hypotheses 

3.5 Conclusions and future prospects  

It was clear from the experiments undertaken that the VvAOS encoded a functional AOS as 

evidenced by its ability to complement the Arabidopsis aos mutant phenotypes. However, in using the 

AtAOS promoter to drive the expression of the VvAOS transgene we observed an unexpectedly high 

level of VvAOS transcription compared to what was present in wild type plants. However, both levels 

of JA and transcription of JA responsive genes were found to be lower than in wild type Arabidopsis. 

At this point it was unclear what the precise mechanism behind this unexpected observation was but 

we have speculated a several possible reasons for this phenomenon, as discussed above. However, 

this unexpected observation could be a critical feature to understanding further involvement of AOS 

enzymes in JA biosynthesis mechanisms in Arabidopsis aos:promAOS:VvAOS plants. Therefore, in 

order to understand this mechanism, further assessment needed to be carried out to unravel the true 

reason. In this assessment, provision of a functional copy of VvAOS led not only to the recovery of the 

physical phenotype but also recovery of the wound responsiveness of the mutant AOS locus in 

Arabidopsis aos mutants.  

As mentioned previously, a number of AOS genes isolated from different plant species were 

overexpressed in several model plants. Overexpression of Arabidopsis AOS in Arabidopsis thaliana and 

Nicotiana tabacum plants did not alter the basal level of JA but displayed an earlier JA peak and higher 

levels of JA compared to the control plants (Laudert et al., 2000). Whereas overexpression of an AOS-

like gene from soybean enhanced tolerance to insect attack in transgenic tobacco (Wu et al., 2008) 

and overexpression of flax AOS induced accumulation of JA in transgenic tobacco (Wang et al., 1999). 

Furthermore, overexpression of rice AOS in transgenic rice increased the endogenous JA level, PR gene 
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expression and resistance to fungal infection (Mei et al., 2006). Therefore, for further work, we look 

forward to overexpressing this VvAOS gene in Arabidopsis thaliana under the control of the 

constitutive CaMV 35S gene regulator.  
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Chapter 4 

Over expression of grapevine allene oxide synthase in 

Arabidopsis wild type background 

4.1 Introduction 

In plants, induced defence mechanisms are one of the strategies that plants employ to defend 

themselves from herbivore or pathogen attacks. Induced defence mechanisms are based on the 

interaction between a pathogen elicitor and plant receptors. The subsequent gene transduction from 

this interaction triggers a series of signalling cascades that activate several plant defence pathways 

(Anderson et al., 2005; Thatcher et al., 2005; Mithofer and Boland, 2012). Activation of this signalling 

cascade leads to the expression of plant defence genes, such as the pathogenesis-related (PR) proteins, 

glutathione S-transferases (GST), peroxidases, proteinase inhibitor (PIN 2) and the production of 

phytoalexic secondary metabolites (Feussner and Wasternack, 2002; Thatcher et al., 2005). One of 

several important signalling compounds involved in mediating plant induced defence responses is 

jasmonic acid (JA). In this study, we investigated the possibility of enhancing plants' resistance to 

pathogen attack by increasing JA production using overexpression of the AOS gene in Arabidopsis 

plants as a model system.  

In the wine industry, Botrytis cinerea (Botrytis) infections in grapevines are one of the major 

issues for crop management and wine making (Diguta et al., 2010; Saito et al., 2013; New Zealand 

Winegrower, 2014). Botrytis infections are characterized by the rapid destruction of grapevine leaf or 

berry tissues as the pathogen proceeds to colonize the plant. In grapevines, a Botrytis infection causes 

yield losses and reduces the quality of fruit for winemaking (Saito et al., 2013). Although Botrytis is also 

responsible for the production of well-known sweet white wines (Nobel wines), Botrytis infections 

most commonly cause undesirable effects, including the degradation of aroma compounds and the 

production of “mouldy” and “earthy” off-flavours and aromas that are generally not appreciated by 

consumers (Bell and Henschke, 2005; Sarrazin et al., 2007; Lee et al., 2009; Hong et al., 2011). 

Management of Botrytis infections commonly makes use of synthetic or organic fungicides that 

eventually increase production costs and also present producers with significant environmental and 

consumer concerns over the excessive use of these fungicides. Currently, there is no natural resistance 

to Botrytis or other fungal infections in commercially-relevant wine grape varietals, so identification of 

natural genetic variants that exhibit increased activity of natural defence mechanisms needs to be 

explored as an alternative and new approach to improve control of pathogen infections in grapevines. 

One of the most important signalling pathways that responds to pathogen attack is the JA biosynthetic 

pathway. Jasmonic acid is a key signalling compound in plants' responses to biotic and abiotic stresses 
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as well as in their development (Wasternack, 2014). As previously reported, JA formation is thought to 

be largely controlled by fluxes through AOS (Laudert and Weiler, 1998). However, other points of 

regulation have been postulated, such as AOC (Schaller and Stintzi, 2009; Stenzel et al., 2012) and OPR 

(Schaller et al., 2000; Schaller and Stintzi, 2009). Nevertheless, due to the literature surrounding the 

role of AOS in the regulation of JA, the AOS gene is a suitable candidate to be explored as a new 

approach to combating grapevine disease infections. 

4.2 Overexpression of allene oxide synthase gene from grapevines in the 
Arabidopsis system  

In the previous chapter (Chapter 3), we identified and characterized the sole AOS gene in the 

grapevine genome (VvAOS) via complementation of the AOS mutant in Arabidopsis thaliana. Following 

the introduction of the VvAOS gene, the male sterile phenotype that characterized the Arabidopsis aos 

mutant completely recovered and this verified the identity of the grapevine gene as a functional AOS. 

In order to gain further insights into the role of the VvAOS gene in the grapevine defence system, we 

overexpressed this newly characterized gene in the wild type Arabidopsis thaliana cv Columbia 

(Arabidopsis WT) in order to investigate the possibility of additional VvAOS gene copies increasing 

plant performance against pathogen infections and, therefore, to raise the possibility of producing 

grapevines less susceptible to Botrytis or necrotrophic pathogen infections via increasing JA 

production.  
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of approximately similar size were subjected to wounding. Wounding was achieved by using a small 

pair of pliers to crush the leaves in order to induce wound signalling in a manner that generated 

maximum mechanical injury for each leaf. For standardization, each leaf was subjected to only one 

mechanical injury of an approximately equal pressure. Leaves that were subjected to wound treatment 

were left attached to the plant for a period of six hours before being harvested and immediately snap 

frozen using liquid N2. Frozen leaf samples were stored at -80°C before being used to extract total RNA. 

Approximately 50 mg of ground leaves were used as a starting material for total RNA extraction. Total 

RNA extraction, quantification, validation and cDNA synthesis were carried out following the methods 

described in sections 2.2.11. Transcript abundance analysis was carried out via the qRT-PCR technique 

as described in Section 2.2.12. Arabidopsis F-BOX (accession: At5g15710) and elongation factor 1-alpha 

(accession: At5g60390) were used as reference genes to normalize the transcript expression genes of 

interest in both transgenic plants. The selection of Arabidopsis F-BOX (AtF-Box) and elongation factor 

1-alpha (AtEF1α) genes as a reference gene were based on the report by Lilly et al. (2011). Statistical 

analysis for significant differences among the multiple data collected from the individual transgenic 

plant lines were analysed using one-way ANOVA (no blocking) by GenStat version 16 (VSN International 

Ltd, UK) with Fisher’s Protected LSD multiple comparison (P < 0.05). Data results from qRT-PCR were 

presented as the number of gene copies detected in 4 µL of cDNA synthesized from 500 ng total RNA 

samples. 

Analysis of Arabidopsis transgenic plants' responses to wound treatment 

Three lines from each transgenic plant (both transgenic 35S:VvAOS and 35S:AtAOS plants) 

were selected for wound treatment analysis. All transgenic plants involved were grown and organized, 

as described in the section above, with the exception of the light condition, which was altered to 12 

hour light/day to induce the formation of more and larger leaves. For the wound treatment 

experiment, leaves of eight-week-old transgenic plants were harvested at various time points as 

follows: 0 (pre-wound), 0.5, 1, 3 and 6 hours. Samples were collected from three biological replicates 

with each biological replicate representing a collection of four to five different individual plants 

harvested from a single pot. Time periods for the collection of samples were selected, based on 

experiments and information published for other plant species, with respect to AOS and their 

subsequent JA responses to wounding or plant stress. In order to minimize crosstalk among plants via 

volatile organic compounds (VOC), all transgenic plants involved for wound treatment experiment 

were carried out in the Westinghouse Biological Safety Cabinet Class II (MedLab Instrument, New 

Zealand) as describe in section 3.2.7. Leaf samples were stored at -80⁰C and total RNA was 

subsequently extracted, as described above. In this study, wound-induced genes (and also known as 

JA-responsive genes) were included to investigate the immediate effect of overexpression of 

transgenic VvAOS and AtAOS. Transcript abundance analysis was carried out using qRT-PCR, reference 

genes, statistical significant analysis and qRT-PCR data presentation analysis, as described above. 
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(Thermo Fisher Scientific Ltd, NZ) for 60 minutes (Govrin and Levine, 2000). Numbers of Botrytis spores 

per mL in the suspension were estimated using a haemocytometer.  

Detached leaf assay 

 Arabidopsis transgenic plants were grown under following conditions, as described in the 

previous section (Section 3.2.1). Leaves from transgenic plants, approximately eight weeks old were 

used as a material source for the detached leaf assay. Eight-week-old plants were selected to match 

the plant age used in the wound treatment experiment. Detached leaves were placed on plates 

containing filter paper moistened with sterile water placed. The Botrytis spore suspension with a 

concentration of 682 spores/µL, were germinated in 25% of grape juice for two hours before being 

inoculated on the leaf surface. On each leaf, 5 µL (682 spores/µL) of the Botrytis spore suspension was 

inoculated on the adaxial surface of the detached leaf. As an experimental control, 5 µL of the 25% 

grape juice solution was placed on the adaxial surface of the control leaves. All the inoculated leaves 

were placed in a covered container, which was sealed with parafilm to maintain high humidity for 

Botrytis growth. The detached leaf assay incubation conditions were as follows: temperature 20°C, 

light intensity of approximately 100 µmoL/m2/sec provided by cool white fluorescent tubes and a light 

cycle of 16 hours per day. Lesion formations were scored 96 hours after inoculation as an indication of 

Botrytis infection, where the size of a lesion formation will be documented as a general indication of 

the plant's resistance to pathogens (Liu et al., 2007).  
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Figure 4.3 Validation of VvAOS gene integrated into the Arabidopsis 35S:VvAOS genome 
Validation of eight Arabidopsis transgenic 35S:VvAOS using the PCR method. Amplification of the 1.5 kb DNA 
fragment indicated an integration of transgene VvAOS gene into the Arabidopsis genome. The hyperladder 1 kb 
(DNA Ladder) from Bioline (Total Lab Systems Ltd, NZ) was used as a DNA ladder. 
. 

 

Figure 4.4 Validation of additional copy of AtAOS integrated into Arabidopsis 35S:AtAOS genome 
Validation of five Arabidopsis transgenic 35S:AtAOS using end point PCR approach. Amplification of 1.8 kb 
DNA fragment indicated the integration of transgene AtAOS gene into the Arabidopsis genome. Transgene 
and endogenous AtAOS were differentiated by using pART 35S(Fwd) primer located at the 3’ end of CaMV 
35S promoter region pair with AtAOS(Rev) primer. Therefore, an additional 0.23 kb emerged from usage of 
some part of the 35S promoter region. The hyperladderTM 1 kb (DNA ladder) from Bioline (Total Lab Systems 
Ltd, NZ) was used a as DNA ladder. 
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was chosen. Numerous reports have stated that it was important to study the impact following a 

wound treatment to ensure full activation of the pathway (Reymond et al., 2000; de Bruxelles and 

Roberts, 2001; León et al., 2001; Schilmiller and Howe, 2005). Therefore, we employ a wound 

treatment approach to study the impact of overexpress AOS gene JA biosynthetic pathway in 

Arabidopsis system. A six-hour post-wound treatment was selected based on previous reports that 

indicated that in wounded leaves, a transient increase of AOS mRNA reached a peak level at around 

six hours (Harms et al., 1995; Laudert and Weiler, 1998; Siqueira-Júnior et al., 2008). After six hours, 

samples of leaves were collected and transcript abundance of transgene VvAOS and endogenous 

AtAOS were quantified. Results indicated that after a six-hour wound treatment, VvAOS gene 

expression was generally higher compared to the expression of their endogenous AtAOS gene in the 

same 35S:VvAOS transgenic plants (Figure 4.7). Whereas, endogenous AtAOS gene expression in 

35S:VvAOS transgenic plants were comparable to AtAOS expression in WT plant. In general, VvAOS 

transcript abundance in transgenic plants can be clustered into three groups, i.e. low: VvAOS-7, VvAOS-

8, VvAOS-9; medium: VvAOS-11, VvAOS-12, VvAOS-14; and high: VvAOS-6, VvAOS-15. Whereas, in 

AtAOS gene expression, most transgenic plants exhibited a comparable gene expression in which 

VvAOS-9 had the lowest level and VvAOS-6 had the highest level. In order to investigate the effect of 

the VvAOS gene overexpressed in Arabidopsis to JA biosynthesis regulation further, three transgenic 

lines were selected based on this primary response result. The three transgenic lines are shown below: 

1. VvAOS-6 – due to the highest expression of both the endogenous and transgene the among 

transgenic lines 

2. VvAOS-9 – the lowest expression of both the endogenous and transgene among the transgenic 

lines.  

3. VvAOS-15 - exhibited a stable expression of both the endogenous and transgene among transgenic 

lines (when VvAOS-6 and VvAOS-9 excluded). This was shown by the small standard deviation (SD) 

value among three biological replicates used. 

Arabidopsis 35S:AtAOS transgenic lines 

As a comparison, five Arabidopsis transgenic 35S:AtAOS were also assessed for their responses 

to wound treatment. The five transgenic lines were identified as AtAOS-11, AtAOS-13, AtAOS-14, 

AtAOS-16 and AtAOS-18. The assessment was carried out under similar treatments and conditions as 

for the transgenic 35S:VvAOS plants. However, for this assessment, qRT-PCR primers were not able to 

be designed to differentiate between the endogenous and transgene AtAOS.  This experiment was 

designed to investigate the effect of increasing overall AOS transcripts and, therefore, presumably AOS 

activity in JA the biosynthetic pathway. Transcript abundance of the AtAOS gene in six Arabidopsis 

35S:AtAOS transgenic lines is shown in figure 4.6. The results indicated that AtAOS transcript 

abundance in 35S:AtAOS transgenic plants were exceptionally low compared to the total copy number  
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Figure 4.5 Transcript abundance of VvAOS and AtAOS genes in Arabidopsis 35S:VvAOS transgenic lines 
Eight homozygous Arabidopsis 35S:VvAOS transgenic lines, i.e. VvAOS-6, VvAOS-7, VvAOS-8, VvAOS-9, VvAOS-
11, VvAOS-12, VvAOS-14 and VvAOS-15, were screened for their responses to mechanical wounding. Gene 
transcripts of VvAOS and AtAOS genes were quantified at six hours after wounding. A gene transcript of AtAOS 
from a wild type was used as a comparison. Bars represent standard deviation of the mean from the three 
biological replicate samples collected. Letters represent statistical significant differences among the multiple 
data collected. 
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of AOS transcripts in the 35S:VvAOS transgenic plants. The vast differences in the total level of AOS 

transcript abundance between 35S:VvAOS transgenic plants (Figure 4.5) and 35S:AtAOS transgenic 

plants (Figure 4.6) was quite a surprising result considering that both transgenes were regulated by 

the same gene promoter. Generally, AtAOS gene expression of transgenic 35S:AtAOS lines can be 

categorized into three groups, i.e. low – AtAOS-13; medium – AtAOS-16, AtAOS-18; and high – AtAOS-

11, AtAOS-14. For further investigation of the effect of AtAOS gene overexpression in the Arabidopsis 

JA biosynthesis pathway, three transgenic lines were selected based on this primary response result;  

1. AtAOS-11 – Highest AtAOS gene expression among the transgenic 35S:AtAOS lines 

2. AtAOS-13 – Lowest and most stable AtAOS gene expression among the five transgenic 35S:AtAOS 

lines  

3. AtAOS-18 – Medium and showing more stable gene expression among three biological replicates 

compared to AtAOS-16 (low SD value)  

  

 

Figure 4.6 Transcript abundance of AtAOS genes in Arabidopsis 35S:AtAOS transgenic lines 
Five homozygous Arabidopsis 35S:AtAOS transgenic lines, i.e. AtAOS-11, AtAOS-13, AtAOS-15, AtAOS-16 and 
AtAOS-18 and a WT were screened for their responses to wound treatment. AtAOS gene expressions were 
quantified at six hours after wounding. Bars represent standard deviation of the mean from three biological 
replicate samples. Letters represent statistical significant differences among the multiple data collected  
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Figure 4.7 Transcript abundance of transgene VvAOS and endogenous AtAOS in three lines of Arabidopsis 
transgenic 35S:VvAOS plants 
Transcript abundance of VvAOS and AtAOS genes were quantified from three selected transgenic 35S:VvAOS 
plants (VvAOS-6, VvAOS-9 and VvAOS-15) after a six-hour time course of wound treatment via a qRT-PCR 
approach. Bars represent the standard deviation of the mean from three biological replicate samples. 
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Figure 4.8 Transcript abundance of AtLOX2 and AtVSP2 in three lines of Arabidopsis transgenic 35S:VvAOS 
plants 
Transcript abundance of AtLOX2 and AtVSP2 genes were quantified from three selected transgenic 35S:VvAOS 
plants (VvAOS-6, VvAOS-9 and VvAOS-15) after a six-hour time course of wound treatment via a qRT-PCR 
approach. Bars represent the standard deviation of the mean from three biological replicate samples. 
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By comparison, expression of the AtAOS gene in each transgenic line pre-wounding was at a 

comparable level to AtAOS expression in the Arabidopsis wild type (WT). After wound treatment, 

AtAOS expression in all transgenic lines increased and peaked at one hour but exhibited different 

expression magnitudes before declining to near pre-wound condition levels six hours after wounding. 

AtAOS gene transcripts in transgenic VvAOS-6 increased from 0.2 to 4.3 x 107, from 0.2 to 4.3 x 107 in 

VvAOS-9 and 0.4 to 6.5 x 107 in VvAOS-15 copies in 4 µL of cDNA samples synthesized from 500 ng total 

RNA. In comparison, AtAOS expression in the WT increased and peaked at three hours, during which 

gene transcripts increased from 0.7 to 7.6 x 107 copies in 4 µL of cDNA samples synthesized from 500 

ng total RNA before declining to near pre-wound conditions six hours after wounding. An interesting 

observation worth mentioning from this comparison was that the time of AtAOS expression in 

35S:VvAOS transgenic plants declined two hours earlier compared to AtAOS expression in WT might 

suggest an early suppression on endogenous AOS (Figure 3.7B). 

Both JA-responsive genes, AtLOX2 and AtVSP2 in all three transgenic lines showed increased 

gene expression as a response to wound treatment (Figure 4.8). Interestingly, at the pre-wound 

condition, both JA-responsive genes in 35S:VvAOS transgenic lines exhibited approximately similar 

levels to their respective genes' expression in the WT (Figures 4.8A and 4.8B). This was a clear 

indication that high levels of VvAOS gene expression in pre-wound conditions did not elevate the 

transcription of JA-responsive genes. Generally, over the course of the six-hour wound treatment, 

AtLOX2 gene expression exhibited in all transgenic 35S:VvAOS lines were below to the transcript level 

in WT. This was a surprising result because we expected that AtLOX2 gene expression in the transgenic 

lines will be higher than the expression in WT because of the high turnover of overall AOS gene 

transcripts in transgenic lines. Whereas, in AtVSP2, the transcript level only showed an increase six 

hours after wounding and exhibited the highest expression level of VvAOS-15. Again, our expectation 

was AtVSP2 gene expression will be much higher in the transgenic lines compared to WT, as reported 

by Park et al (2002). Although AtVSP2 transcript abundance in transgenic VvAOS-15 was higher 

compared to the WT (only a 0.5-fold difference), this result alone was not strong enough to conclude 

that AtVSP2 expression in transgenic plant was significantly high compared to the gene expression in 

WT. Furthermore, AtVSP2 transcript abundances of VvAOS-6 and VvAOS-9 were below the transcript 

abundance in WT.  

Arabidopsis transgenic 35S:AtAOS plants' responses to wound treatment 

As a comparison to the transgenic 35S:VvAOS plants, the transcript abundance of AtAOS, 

AtLOX2 and AtVSP2 genes in three selected lines of transgenic 35S:AtAOS plants were also quantified. 

The three transgenic lines were AtAOS-11, AtAOS-13 and AtAOS-18, as mentioned in section 4.4.3. As 

already mentioned in the materials and methods section 4.3.4, transcript abundance of the 

endogenous and transgene AOS were not discriminated for quantification purpose. Transcript  
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Figure 4.9 Transcript abundance of AtAOS, AtLOX2 and AtVSP2 in three lines of Arabidopsis transgenic 
35S:AtAOS plants. 
Transcript abundance of AtAOS, AtLOX2 and AtVSP2 genes were quantified from three selected transgenic 
35S:AtAOS plants (AtAOS-11, AtAOS-13 and AtAOS-18) after a  six-hour time course  wound treatment via a qRT-
PCR approach. Bars represent standard deviation of the mean from three biological replicate samples. 
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abundance of each transgenic 35S:AtAOS line is shown in figure 4.9A. In the pre-wound condition, 

transgenic lines exhibited a different level of AtAOS gene expression. Transgenic AtAOS-11 exhibited 

approximately 40 x 106 transcript copies in 4 µL of cDNA synthesized from 500 ng of total RNA sample 

whereas, in AtAOS-13, there were only 2 x 106 transcript copies. Transgenic AtAOS-18, on the other 

hand, exhibited a similar expression level as with AtAOS-11 but was found to exhibit a very variable 

level of expression, as evidenced by the large standard deviation value within the biological replicates 

collected. In comparison, transcript copies quantified in WT were 6 x 106 in 4 µL of cDNA synthesized 

from 500 ng of total RNA sample. This indicated that, in general, transgenic AtAOS-11 and AtAOS-18 

exhibited high basal levels of AtAOS gene expression compared to the AtAOS-13 and WT samples. 

Interestingly, AtAOS expression in transgenic 35S:AtAOS showed a similar pattern to the endogenous 

AtAOS expression in transgenic 35S:VvAOS. AtAOS gene expression in all transgenic lines peaked one 

hour after wound treatment but at a different magnitude. Transgenic AtAOS-11 transcripts increased 

from 40 to 60 x 106, from 39 to 68 x 106 in AtAOS-18 but only from 2 to 8 x 106 in AtAOS-13 copies in 4 

µL of cDNA synthesized from 500 ng of total RNA sample. In comparison, AtAOS expression in WT  

peaked at three hours when the gene transcripts had increased from 6 to 77 x 106 copies of cDNA 

synthesized from 500 ng of total RNA sample before declining to a near pre-wound condition level. An 

interesting observation in this comparison was the AtAOS expression magnitude in AtAOS-13. 

Transgenic AtAOS-13 exhibited an exceptionally low expression of the AtAOS gene over the course of 

the six-hour wound treatment compared to the other transgenic lines. However, despite this low 

expression a noticeable AtAOS transcript abundance increased at one hour (from 2 to 8 x 106 copies) 

after wound treatment.  

Although both JA-responsive genes, AtLOX2 and AtVSP2, in all transgenic 35S:AtAOS 

responded to the six-hour time course treatment, despite the high basal level of AtAOS gene 

transcripts in transgenic lines (except for AtAOS-13), their JA-responsive expressions were much lower 

compared to the expression of similar genes in WT (Figures 4.9B and 4.9C). Again, this was a clear 

indication that a high basal level in AOS transcripts did not alter the transcription regulation of JA-

responsive genes in the transgenic lines. Our comparisons observed between Arabidopsis transgenic 

35S:VvAOS and 35S:AtAOS plants showed that: 

1. Despite both transgenes being regulated by similar promoters the transcript abundance of the  

VvAOS gene (transgenic 35S:VvAOS) was exceptionally high compared to the AtAOS gene 

(transgenic 35S:AtAOS) 

2. The patterns of AtAOS gene in transgenics, 35S:VvAOS and 35S:AtAOS, were similar but with 

different magnitudes. 

3. In reference to transcript abundance in WT samples, it clearly shown on the graph that generally 

the transcript abundance of both JA responsive genes in transgenic 35S:VvAOS (Figure 3.8A and 
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Figure 4.10 Botrytis disease assay on Arabidopsis transgenic 35S:VvAOS plants.  
In this 35S:VvAOS line, out of six leaves infected with Botrytis, two most severely infected leaves are shown on the figure above. Transgenic VvAOS-6   shows a similar infection 
response to WT based on the lesion infection size, transgenic VvAOS-15 shows a stronger response to infection with smaller sized infection lesions compared to VvAOS-6 and WT – 
plant control. 
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Figure 4.11 Botrytis disease assay on Arabidopsis transgenic 35S:AtAOS plants 
In this 35S:AtAOS line, out of six leaves infected with Botrytis, two most severely infected leaves are shown on the figure above. Transgenic AtAOS-13 – AtAOS expression was 
strongly supressed and showed the biggest area of lesion infection, transgenic AtAOS-18 - highest AtAOS expression of transgenic 35S:AtAOS line showed smaller area of lesion 
infection compared to transgenic AtAOS-13 and WT – plant control. 
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Figure 4.12  Prediction of allene oxide synthase crystal structure in Arabidopsis and Grapevine  
Predicted AOS enzymes structures between AtAOS and VvAOS were overlapped to see any apparent differences between the two enzymes.Helix-I motif region was highlighted in 
green and red, whereas heme-binding site in brown and yellow for AtAOS and VvAOS 3D-protein structure respectively.  
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Figure 4.13 Alignment sequence of AtAOS and VvAOS protein 
Alignment sequence between AtAOS and VvAOS protein sequences to identify amino acid substitutions 
within important motifs in VvAOS enzymes protein sequences relative to AtAOS. Amino acid substitution 
within helix-I and heme-binding sites were identified in green letters whereas hydrophobic residues within 
AOS active sites were identified in blue boxes. Important helix motif and β-sheet region were identified in 
yellow and red letters whereas the heme-binding site is in a red box. 
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result of AtVSP2 (JA- responsive) gene expression at a transcription level (Section 4.4.4). Besides that, 

results also indicated that JA was not elevated in the pre wound condition which, therefore, clearly 

indicated that JA compounds were not elevated by the high levels of transgene VvAOS (or AtAOS) 

transcript abundance at the basal level.  

  

 
 Figure 4.14 Regulation of jasmonic acid biosynthesis in selected Arabidopsis 35S:VvAOS transgenic plants 
Amount of jasmonic acid quantified from 100 mg of leaves samples using GC-MS. Bars represent standard 
deviation of the mean from three biological replicates 
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4.5 Discussion 

It discussed previously (Literature Review - Section 1.6.4) jasmonates play an important role 

in regulating plant development and AOS was an enzyme that catalysed the first step in the 

biosynthesis pathway which may indicate its vital role as a focal point for JA production. Therefore, in 

order to examine the effect of the VvAOS gene, which may lead to increased JA regulation in 

grapevines, we overexpressed VvAOS gene in Arabidopsis thaliana cv Columbia (Arabidopsis). In this 

chapter, our objective was to investigate further functions of the VvAOS gene regulation effect on JA 

production when overexpressed under the control of the constitutive CaMV 35S promoter. Our 

question is “Would grapevine AOS be able to increase the plant's ability to defend itself against 

pathogen attack when AOS overexpressed in Arabidopsis?” Previous reports indicated that 

overexpression of AOS in a model plant system can confer enhanced tolerance to insect attack through 

an increased endogenous JA level, PR gene expression, and host resistance to fungal infections (Wang 

et al., 1999; Laudert et al., 2000; Mei et al., 2006). Based on these reports we tested the capability of 

VvAOS to improve plant defence mechanisms in Arabidopsis as a model for the possible impact of 

increasing AOS levels in grapevines. As part of this experiment, in order to assess immediate effect of 

VvAOS gene up-regulation in wound treated leaves, transcripts of the known wound-induced and JA-

responsive genes, AtLOX2 and AtVSP2, also were measured. These experiments were compared with 

data generated from a comparable set of transgenic lines that overexpressed Arabidopsis AOS (AtAOS) 

as a control.  

Based on previous reports (Harms et al., 1995; Wang et al., 1999; Laudert et al., 2000; Park et 

al., 2002; Mei et al., 2006; Pajerowska-Mukhtar et al., 2008; Wu et al., 2008) we developed a number 

of hypotheses for this overexpression experiment. First, AOS gene overexpression meant the addition 

of at least one copy of a similar gene function into a model plant that could confer increased JA 

production. However, in light of the previous work (chapter 4) on complementation of the AOS knock-

out function in Arabidopsis aos mutant, the VvAOS transgene under the control of AtAOS promoter 

produced massive amount of  VvAOS transcripts that we speculated could be as a result of crosstalk 

between the transgene promoter (promAOS:VvAOS) and endogenous AOS (promAOS:Knock-out aos 

function). As a consequence, this might cause immediate PTGS mechanisms in overexpress plant (OE) 

upon mechanical stimulation. Therefore, we employed a constitutive CaMV 35S promoter as a gene 

regulator instead of promAOS. We expected that the use of CaMV 35S promoter would deliver a high 

level of AOS transcripts but the transcription mechanism uncoupled from the endogenous promAOS 

response that might have had a more profound impact than just adding extra copies of transcripts. 

Therefore, our second hypothesis, was using the constitutive CaMV 35S promoter to deliver very high 

levels of AOS transcripts to achieve a higher level of JA in OE-plants. In OE-plants, although the 

literature suggested that JA production was limited by substrate availability (Wasternack, 2007), we 

expected that high levels of VvAOS transcripts regulated by CaMV 35S promoter will provide high 
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amount of AOS enzymes available within the JA biosynthetic pathway to compete with other enzymes 

(enzymes that used the same substrate, such as hydroperoxide lyase and divinyl ether synthase) when 

high levels of substrate available after wound stimulation and this will confer a high level of JA 

production. Increased levels of JA will confer more resistance on OE-plants to pathogen attack (Ellis et 

al., 2002; Chen et al., 2006). Lastly, by investigating transgenic lines that shared similar levels of 

transgene expression we may be able to assess the comparative efficiencies of VvAOS and AtAOS in an 

Arabidopsis plant's background. 

Based on these hypothesis, and also information from the previous report mentioned above, 

we developed expectations that overexpression of the grapevine AOS gene under the regulation of 

CaMV 35S promoter in Arabidopsis will deliver high accumulation of AOS transcripts that will help to 

regulate higher production of JA compounds in OE-plants compared to WT. It has previously been 

reported that high JA levels will confer more tolerance on OE-plants to pathogen attack (Wasternack, 

2007). However, despite the excellent theoretical prospects from the literature (Harms et al., 1995; 

Wang et al., 1999; Laudert et al., 2000; Park et al., 2002; Mei et al., 2006; Pajerowska-Mukhtar et al., 

2008; Wu et al., 2008), our results did not support the expectation mentioned above.  Generally, our 

results indicated that overexpression of grapevine AOS did not significantly increase JA production in 

Arabidopsis transgenic or their ability to respond significantly to pathogen attack or mechanical 

wounding. This result was not only unexpected but was also irregular with the previous report in 

respect to AOS gene overexpression from other plant species. Therefore, in order to comprehend the 

possible mechanism behind these unexpected results in Arabidopsis 35S:VvAOS transgenic plants, we 

interrogated further details in our data to rationalize the reasons behind it. 

We began with the unexpectedly high level of VvAOS gene transcripts in transgenic 35S:VvAOS 

plants. The results showed that high levels of overall AOS transcript abundance in transgenic 

35S:VvAOS (at the basal level and after wound treatment) did not significantly contribute to the 

increase in JA production or transcription levels of both JA-responsive genes compared to WT. Based 

on this result, our next question is “Why does high transcript level of AOS did not confer high JA 

production in OE-plants?” The transgenic plants comprised transgene and endogenous AOS that was 

regulated by two different promoters, i.e. the constitutive CaMV 35S promoter and promAOS. The 

constitutive CaMV 35S promoter has the ability to regulate gene expression independently and 

continuously which, as a result, confers a high level of gene transcription; whereas, the promAOS was 

an inducible promoter where its performance was modulated by environmental conditions and 

external stimuli, including abiotic factors such as wounding. The presence of the CaMV 35S promoter 

explained why the transgene VvAOS transcript was maintained at a high basal level and with 

unchanged transcript levels across the six-hour wound treatment in transgenic VvAOS-6 and VvAOS-

15 lines (Figure 4.7). However, a previous report by Schaller (2001) suggested that the constitutive and 

higher basal levels of JA might not be an effective way to induce signal transduction as the relative 
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increase of JA over a short period of time was more critical for the induction of JA production or 

transcription of JA-responsive genes. Based on this suggestion, a study by Mei et al. (2006) was able to 

demonstrate that a relative increase of Oryza sativa AOS (OsAOS) transcripts over a short period of 

time not only increased JA production but also resulted in the activation of many JA-responsive genes. 

Therefore, this explained the result that the high level of VvAOS transcripts did not elevate the 

transcription of JA-responsive genes or JA production but that the relative increase of endogenous 

AtAOS transcripts in a short period of time did. Therefore, this experiment result is consistent with 

previous report (Mei et al., 2006) indicate that, JA induction or activation of JA-responsive genes might 

not be regulated by the availability of AOS enzymes but by the sudden increase of substrate availability 

within the JA biosynthesis pathway. 

Nevertheless, JA induction mechanisms via relative increases in AOS transcripts over a short 

period of time did not explain why the high transcript abundance of VvAOS did not confer high levels 

of JA production compared to the much lower transcript abundance of AtAOS transcripts in WT. We 

speculated that the mechanism behind this issue could be due to the different affinity between VvAOS 

and AtAOS enzymes towards the local hydroperoxide substrate available within the Arabidopsis system 

in transgenic 35S:VvAOS plants. Pajerowska-Mukhtar (2008) suggest that amino acid substitution close 

to StAOS2 in the Solanum tuberosum substrate binding site could possibly change the enzymes' 

substrate affinity and other kinetic properties that might influence the quantitative defence responses. 

At the nucleotide level, VvAOS and AtAOS sequences were only 68% identical and were 66% identical 

at the amino acid level. If the amino acid differences occurred within active sites of VvAOS enzyme 

protein sequences, this might affect their substrate affinity towards local substrates available in the 

Arabidopsis system compared to AtAOS enzyme proteins. In order to comprehend this issue further, 

we began by comparing predicted protein structures between the VvAOS and AtAOS enzyme to search 

for the apparent differences between the structures of the two proteins. At the protein structural level, 

there were no apparent differences detected between the two enzymes' protein conformational 

structures, as illustrated in figure 4.12. For further analysis, we interrogated amino acid differences 

within important conserved motifs in VvAOS protein sequences relative to the AtAOS protein 

sequence, such as helices motifs and heme-binding sites.  According to Li et al. (2008), the crystal 

structure of guayule AOS had a very narrow and deep pocket on the distal side of the heme motif. The 

substrate binding pocket was formed by helices F and I, and loops between helix C and β1-5, between 

helices F and F’, between helix K and β1-4, and between β3-2 and β3-3, and consisted mainly of 

hydrophobic residues, such as Phe-92, Phe-275 and Phe-278, and the presence of a polar residue (Asn-

276) in the active site that was very close to the heme conserved motif (Li et al., 2008). Based on the 

crystal structure reported by Li et al. (2008), we interrogated amino acid substitution in the VvAOS 

protein relative to the AtAOS protein sequence within their active sites. 
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Among the important conserved motifs that formed active sites with the AOS enzyme, we 

drew our attention to amino acid differences occurring within helix-I and heme-binding site in VvAOS 

protein sequences relative to AtAOS protein sequences. We decided to focus our interrogation on the 

helix-I and heme-binding conserved motifs because of the unique interactions between these two 

motifs within the active site (Li et al., 2008). It was previously reported that the amino acid sequence 

within the helix-I conserved motif was very important in determining these enzyme activities 

(Toporkova et al., 2013). Toporkova et al. (2013) reported that a single amino acid substitution (located 

at 292) occurred within the helix-I conserved motif in flax divinyl ether synthase (LuDES) can convert 

its function to allene oxide synthase (LuAOS) enzyme activity. Whereas a substitution of two amino 

acid residue occurring within the helix-I conserved motifs (located at 295 and 297) in the tomato AOS 

enzyme can convert their function to produce tomato HPL products (Toporkova et al., 2008). 

Considering the importance of helix-I and heme-binding conserved motifs in determining AOS enzyme 

activities, we interrogated amino acid substitution occurring within these motifs in the VvAOS protein 

sequence relative to the AtAOS protein sequence. Our interrogation showed that there were two 

amino acid differences detected within the helix-I conserved motif (FNxxGGxKxxxP) and the heme-

binding site (xxPxxxNKQCxGKD), as illustrated in figure 4.13. Amino acid substitution within the helix-I 

and heme-binding sites in the VvAOS enzyme protein structure relative to the AtAOS enzyme protein 

structure might not enough convert their function (proven by VvAOS gene complementing AOS gene 

function in Arabidopsis aos mutants) but we speculated that these substitutions could alter their 

specific affinity significantly towards local substrates in the Arabidopsis system. As a comparison, 

transgenic 35S:AtAOS plant lines that did not encompass two different AOS genes exhibited 

exceptionally low transcript abundance compared to transgenic 35S:VvAOS plants and were at a 

comparable level compared to WT.   

However, the possibility of low substrate affinity of VvAOS protein enzyme mechanisms 

toward local substrates in Arabidopsis did not explain why endogenous AtAOS gene transcripts in 

transgenic 35S:VvAOS declined two hours earlier compared to WT and that might cause a significant 

reduction in JA production. In order to comprehend this issue, we proposed a gene silencing 

mechanism effect, i.e. either or both transcriptional gene silencing (TGS) and post-transcriptional gene 

silencing (PTGS) (Stam et al., 1997; Schubert et al., 2004; Kohli et al., 2010; Sohn et al., 2011) that act 

as plant defence mechanisms against foreign genes occurring in transgenic 35S:VvAOS plants as an 

explanation. In general, unexpected gene silencing mechanisms in Arabidopsis transgenic plants were 

not unique. Several reports have indicated that unexpected gene silencing occurred in certain 

Arabidopsis transgenic plant lines. For example, Dixanger et.al (2008) reported an unexpected silencing 

effect of T-DNA tags occurring in SALK, FLAG and GABI transgenic Arabidopsis collections. According to 

this report, effects from commonly used T-DNA tagging lines resulted in the silencing of a variety of 

diverse constructs, using the CaMV 35S promoter, caused by unintended homology-dependent 
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transcriptional gene silencing caused by T-DNA insertion. The potential factor that can trigger the gene 

silencing mechanism was the presence of promoter sequences that were common to both the T-DNA 

insertion and the unlinked transgene that was silenced by the T-DNA (Mlotshwa et al., 2010). For 

example, SALK, GABI and FLAG mutant lines all carry a copy of the CaMV 35S promoter and a study of 

SALK and GABI lines found that  high proportion of those lines induced transcriptional silencing of 

transgenes expressed from the CaMV 35S promoter (Daxinger et al., 2008). Mlotshwa et.al (2010) also 

explained that the propensity of individual T-DNA insertion lines to trigger CaMV 35S promoter 

homology-dependent transcriptional silencing in dcl3-1 line (SALK_005512) was probably due to 

complex integration patterns of T-DNA which promoted production of dsRNA from the CaMV 35S 

promoter sequence on the T-DNA and, consequently, gave rise to CaMV 35S promoter siRNAs. In 

Arabidopsis transgenic lines, the production of siRNA could trigger both TGS and PTGS through 

methylation of homologous sequences in cis- and trans- forms of the 35S promoter (Matzke et al., 

2004; Bhullar et al., 2007; Matzke et al., 2009). In addition, it was reported that siRNA also appeared 

to target direct or indirect specific mRNA sequences to trigger PTGS mechanisms (Dalakouras et al., 

2011). Furthermore, gene silencing primarily evolved as a plant defence mechanism to protect plants 

against foreign nucleic acids, including viruses and active transposable elements (Baulcombe, 2005; 

Wang and Metzlaff, 2005; Dalakouras et al., 2011). In plant defence mechanisms, the introduction of 

exogenous transgenes containing genetic elements that plants probably recognised as a foreign genes 

(Salinas et al., 1988) and detected as a threat, were eventually silenced by plant defence mechanisms 

(Dalakouras et al., 2011). Therefore, the Arabidopsis natural defence mechanisms could also play a 

significant role in the unexpected result shown. 

Although several factors can trigger gene silencing mechanisms in our transgenic plants 

(transgenic 35S:VvAOS and transgenic 35S:AtAOS) but, in this particular experiment, we suspected that 

the introduction of additional constitutive CaMV 35S promoter with T-DNA insertion and insertion of 

transgene AOS (either VvAOS or AtAOS) into the Arabidopsis genome were the main factors. Generally, 

our results indicated that all transgenic 35S:VvAOS plants selected exhibited a high level of VvAOS 

transcript abundance pre- and post-wound treatment; whereas, the AtAOS gene transcript only 

increased post-wound treatment. At post-wound treatment, both genes transcripts (VvAOS and 

AtAOS) showed a decline one hour after wounding but at different rates (Figure 4.7). Based on this 

observation, this result, first, indicated that the gene silencing mechanisms were only triggered after 

concentration of AOS transcript abundance surpassed their threshold points (Schubert et al., 2004) 

and, secondly, this silencing mechanism did not completely silence the AOS gene function but reduced 

their gene expression at either the TGS or PTGS levels (Tang et al., 2007; Carthew and Sontheimer, 

2009; Fan et al., 2011). Transgene VvAOS was under the control of a strong promoter that was 

consistently active which, as a result, conferred a high basal level of VvAOS gene transcripts in 

transgenic 35S:VvAOS plants. When stimulated by wounding, promAOS activated and initiated 
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transcription mechanisms in the endogenous AtAOS gene. The addition of AtAOS transcript as a result 

of the activation of promAOS lead to the accumulation of more aberrant transcripts within the 

transgenic 35S:VvAOS plant system that, when they exceeded a tolerable level, activated plant defence 

mechanisms via either TGS or PTGS or both mechanisms (Schubert et al., 2004; Wassenegger and 

Krczal, 2006; Mourrain et al., 2007; Dalakouras et al., 2011). As a result, regulation of both AOS genes 

in transgenic 35S:VvAOS started to reduce just one hour after wounding. 

Similar mechanisms were also observed in transgenic 35S:AtAOS plants. Due to the effect of 

the constitutive CaMV 35S promoter on transgene AtAOS, transgenic 35S:AtAOS plants exhibited a 

high basal level of AtAOS transcripts but did not trigger gene silencing mechanisms. However, after 

wounding, transcription mechanisms of endogenous AOS were activated and the additional AOS 

transcripts led to the activation of gene silencing after the overall levels of AOS transcripts in the 

transgenic 35S:AtAOs plant systems exceeded a tolerable level.  As a consequence, AOS transcription 

was reduced one hour after wounding. In comparison, AtAOS gene transcripts in WT increased but 

decreased at only three hours after wounding, a delay of two hours compared to both transgenic 

plants. Early reduction of overall AOS gene transcripts might explain why transcript abundance of JA-

responsive genes, AtLOX2 and AtVSP2, were lower in transgenic plants compared to WT. As a 

consequence of the early reduction of AOS gene transcription, transduction signals generated to 

regulate JA-responsive genes were much weaker in both transgenic plants compared to WT. This 

suggestion supported the result shown in figures 4.8 and 4.9 where transcript abundance of JA-

responsive genes in WT were exceptionally high compared to both transgenic plants.  

Interestingly, among the transgenic plants, selected transgenic 35S:AtAOS line AtAOS-13 

showed a strong suppression of AtAOS transcripts. Recent reports have suggested that spontaneous 

transgene silencing occurring in transgenic N. benthamiana was related to the number of transgenes 

incorporated into their genome (Sohn et al., 2011). If more than one transgene insertion located on 

two different chromosomes were detected and incorporated into their genome, it will cause 

spontaneous gene silencing through TGS and PTGS mechanisms (Sohn et al., 2011). Transgenes 

incorporating more than one copy into their genomes were often facilitated by the ectopic expression 

of CaMV 35S promoter (Harper and Stewart, 2000), multiple copies, or more than two T-DNA inserted 

in the same chromosome (Tang et al., 2007) and direct (DR) or inverted (IR) transgene repeats 

(Schubert et al., 2004). The initiation of gene silencing was recognized as involving the formation of 

complementary dsRNA which, subsequently, triggered gene silencing (Mourrain et al., 2007). This 

spontaneous gene silencing effect explained the results shown in transgenic AtAOS-13 (Transgenic 

35S:AtAOS). In AtAOS-13, AtAOS gene transcript abundance was below the transcript level of similar 

genes in WT, which indicated that AtAOS genes had already undergone spontaneous suppression in 

pre-wound conditions. As a comparison, other transgenic plants (transgenic VvAOS-6, VvAOS-9, 

VvAOS-15, AtAOS-11 and AtAOS-18) comprised high accumulations of overall AOS genes transcripts 
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under pre-wound conditions and suppression only begun at one hour after wounding. Previous reports 

also mentioned that all plants containing more than a single T-DNA insertion were methylated on the 

promoter and its activity was reduced, with amount of methylation and reduction of promoter activity 

correlated with the number of T-DNA copies (Chalfun-Junior et al., 2003). Furthermore, it was also 

hypothesized that the expression of the two T-DNA copies remained below the threshold but when 

the threshold was exceeded the sum of the four T-DNA (homozygous) copies likely initiated the 

silencing process (Weinhold et al., 2013). Therefore, incorporation more than one copy number of the 

transgene 35S:AtAOS line, AtAOS-13, may explain why the results shown in this transgenic line were 

distinct from the other selected lines.  

In order to appraise further transgenic plants (35S:VvAOS and 35S:AtAOS transgenic) response 

to different type stimuli, detached leaves of eight-week-old plants were infected with Botrytis spores 

re-suspended them in 25% grapevine juice media. Leaves for these assays were selected from 

transgenic lines, VvAOS-6 and VvAOS-15, from transgenic 35S:VvAOS and AtAOS-13 and AtAOS-18, 

from transgenic 35S:AtAOS, whereas WT was included as a control. Generally, the Botrytis disease 

assay outcomes were in agreement with the JA-responsive gene especially with AtVSP2 transcript 

abundance results. The results indicated that among all transgenic plants selected (include transgenic 

35S:VvAOS and transgenic 35S:AtAOS), the transgenic line AtAOS-13 showed as most susceptible to 

Botrytis infection, as shown by the largest size of lesion formation from Botrytis infection on their 

detached leaves. This observation was as expected because among all the transgenic lines selected, 

transgenic AtAOS-13 exhibited the lowest JA-responsive gene transcript abundance. However, Botrytis 

disease assay results for transgenic VvAOS-6, VvAOS-15, AtAOS-18 and WT (control) were inconclusive. 

The sizes of a lesion formed as a result of Botrytis infection on the respective detached leaves of 

transgenic VvAOS-6, VvAOS-15, AtAOS-18 and WT cannot be differentiated. However, this result was 

supported by the AtVSP2 transcript (JA-responsive gene) level in each of the respective transgenic 

lines. Transcript abundance level of AtVSP2 in VvAOS-6, VvAOS-15, AtAOS-18 and WT were not 

exceptionally different from each other. As an example, the largest difference of AtVSP2 gene 

transcripts shown between VvAOS-15 and AtAOS-18 was only 2-fold (Figures 4.8 and 4.9). Therefore, 

it was, apparently, acceptable that transgenic plant responses to Botrytis infection within these 

selected transgenic lines cannot be differentiated via lesion formation on their detached leaves. 

Furthermore, plant defence mechanisms toward Botrytis infection were known to be influenced by 

several phyto-hormones that interacted negatively or positively on them (Windram et al., 2012; Wang 

et al., 2013). This complex phyto-hormone interaction sometimes caused contradictory results about 

the influence of individual hormone on assay either susceptible or resistance to pathogen infection 

(Windram et al., 2012).  

Nevertheless, the progression of Botrytis growth within 96 hours (photographed at every 24 

hours) shows a noticeable slower at 48 hours in transgenic VvAOS-15 compare to VvAOS-6, AtAOS-18 
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and WT. According to Windram et al. (2012), the relative timing of different plant hormones in 

response to Botrytis infection are diverse. The sequential involvement of plant signalling molecules in 

response to Botrytis infection data indicates that most of the JA-responsive genes were start expressed 

around 16 hours followed by ABA at 20 hours and SA at 22 hours after inoculation (Windram et al., 

2012). This observation suggest that genes expression of JA-responsive gene only occur in a short time 

period (between 16 – 20 hours after inoculation) before ABA-responsive genes been upregulated. ABA 

and JA/ET signalling known to have an antagonistic interaction (Anderson et al., 2004; Windram et al., 

2012). Previous reports reveal that ABA appeared to have a negative effect on defence against Botrytis 

in both tomato (Audenaert et al., 2002) and Arabidopsis (Adie et al., 2007). These observations are 

consistent with our result. Expression of JA-responsive genes in transgenic VvAOS-15 are the highest 

among transgenic lines selected. Therefore, progression of Botrytis colony growth on transgenic 

VvAOS-15 detached leaf is much slower during this small time window (between 16 – 20 hours after 

inoculation) compare to other transgenic plant lines and WT. This explained a noticeable Botrytis 

growth progression different in the early stage of the infection rather than at 96 hours after 

inoculation. This explanation also apply to transgenic AtAOS-13 as a transgenic less resistance to 

Botrytis infection since this particular line exhibit the lowest JA-responsive regulation as a response to 

wounding among transgenic line selected. Nevertheless, even at the early stage of Botrytis infection, 

transgenic VvAOS-6, AtAOS-18 and WT still not be able to discriminate distinctively for their response 

to Botrytis infection. Unlike response to mechanical wounding which is robust and rapid, plant 

response to pathogen infection based on the plant recognition to pathogen effector that eventually 

trigger plant defence mechanisms (Boyd et al., 2013). Defence mechanisms triggered by this plant-

pathogen recognition interaction initiate sequential activation of diverse plant hormones such as 

salicylic acid, ethylene, abscisic acid and jasmonic acid as a strategies to overcome pathogen invasion 

(Windram et al., 2012; Denance et al., 2013). Therefore this might suggests that the influx of AOS 

enzyme alone within plant defence system did not enough to confer high resistance to pathogen attack 

but crosstalk among defence signalling network balance the immune response to acquire the best way 

to prevent penetration or pathogen infection. Therefore this might provide some explanation as to 

why some of the transgenic plants high levels of JA-responsive gene transcript but did not clearly show 

improved response to pathogen attack compared to the other transgenic plant lines especially at 96 

hours after Botrytis inoculation.             

As mentioned previously, due to limited funding and time constraints we only managed to 

quantify JA from two selected transgenic 35S:VvAOS plant lines, i.e. VvAOS-6 and VvAOS-15 and with 

WT as a control. As expected, regulation of JA biosynthesis from selected transgenic 35S:VvAOS lines 

was in agreement with the results shown by AtVSP2 (JA-responsive gene) transcript abundance. 

Generally, JA levels in transgenic VvAOS-6 and VvAOS-15 lines were comparable with the levels of JA 

expressed in WT. Although JA regulation in transgenic VvAOS-15 was statistically significantly higher 



 124 

compared to VvAOS-6 and WT, the amount of the increment of JA was not significant enough to 

conclude that introduction of the VvAOS gene regulated by the CaMV 35S promoter significantly 

increased the ability of Arabidopsis plants to shield themselves from abiotic and biotic stresses 

compared to WT. However, Kohli et al. (2010) mentioned that there were many factors that influenced 

transgene stability which led to high variable expressions of the transgene. One of the most important 

factors was the position of the transgene insertion effect, which reflected the influence of genomic 

DNA surrounding the site of transgene integration (Wilson et al., 1990; Matzke and Matzke, 1998). 

Furthermore, Schubert et al. (2004) also reported that position effect of transgene expression in the 

Arabidopsis genome can be up to 2-fold under the regulation of CaMV 35S promoters. Variation of JA 

accumulation shown between the two selected transgenic 35S:VvAOS  lines were in agreement with 

the report by Park (2002). Therefore, we believed that the transgene position effect was one of the 

main reasons to explain the variation of JA accumulation in transgenic 35S:VvAOS plants.  

Another observation worth mentioning was the magnitude of the sudden increase (a shorter 

time to reach peak expression) of AtAOS gene expression in transgenic plants, as described in the 

Results section (Section 4.4.4). The magnitude of the sudden increase of AtAOS transcription in all 

samples selected (two transgenic plant lines and WT) was agreement with the JA level in plants. For 

example, in VvAOS-15, the sudden increase of AtAOS gene expression was highest and also displayed 

the highest levels of JA production. Whereas both WT and VvAOS-6 showed no significant differences 

in the sudden increase of AtAOS expression and also displayed no significant differences in the levels 

of JA production. In relation to magnitude of the sudden increase, similar correlations can be observed 

within the transgenic 35S:AtAOS line. Due to high basal levels of AtAOS transcripts in AtAOS-13 and 

AtAOS-18, the magnitude of the sudden increase of AtAOS transcript in these respective transgenic 

lines was small and, as a consequence, lower transcript abundance of the JA-responsive gene was 

produced (Figure 4.11). These observations might be an indication that not only was the sudden 

increase of AtAOS gene expression critical to regulate JA production (Schaller, 2001; Mei et al., 2006) 

but also that the magnitude of the sudden increase will shape the level of JA production in Arabidopsis 

transgenic plants.  

Besides the internal factors discussed above, several external factors could also have had a 

major influence on our results. Throughout this study, we have been working with the JA biosynthetic 

pathway that was not only stimulated by mechanical wounds but was also sensitive to diverse 

environmental stimuli, such as UV light, temperature or humidity (Ramakrishna and Ravishankar, 

2011). Besides that, it was widely known that plants also have the ability to communicate with their 

plant neighbours via VOC which, eventually, can activate the JA biosynthetic pathway (Scala et al., 

2013). Moreover, plant responses to stimuli were orchestrated by the combination or crosstalk 

between three major signalling pathways, i.e. salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) 

and their activation was known to be mutually antagonistic or synergistic based on the stimuli type 
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(Koornneef and Pieterse, 2008). Therefore, different stimuli types will influence the activation of 

different signalling pathways either by regulation or suppression. As our experiment progressed to the 

transgenic plant wound treatment assay, we encountered several issues that could influence the 

regulation of the JA biosynthesis pathway even at the transcription level. The first was technical 

problems with the experimental facility. Due to it being a new facility, the progress of the experiments 

was interrupted with technical "teething" problems, such as inconsistences in temperature, humidity 

and light intensity. As mentioned above, our subject plants might have responded to these inconsistent 

changes. Secondly, the plant growth facilities were also shared with other researchers who were 

conducting a diverse range of experiments. While growing our plants for the experiment, other plants 

species populations, such as grapevines (Vitis vinifera), tobacco (Nicotiana tocaccum), garlic (Allium 

sativum) and N. benthamiana were also being grown for different experiments. Due to stresses applied 

from the different experimental methods and techniques on these plant populations, the neighbouring 

plants could interact or crosstalk with our experimental plants via VOCs that eventually activated our 

subject plants' defence mechanisms even before the wound treatment assay started, which we use as 

a pre-wound sample. Thirdly, insect infestation and fungal infections. While growing our plant 

populations, we also encountered with minor insect and fungal problems, which influenced our plant 

responses to the wound treatment assay, especially in the Botrytis infection detached leaf assay. 

Fourthly, the method of sample collection for wound-treated leaves. For each time point collection, 

the samples were collected from different soil pots. This meant these plants could have already been 

influenced by different levels of environmental effects, such as insect infestation in the soil before the 

wound treatment assay started.  

 As potential reasons causing the unexpected results have been dissected, we suggested 

modifications to certain aspects of the materials and methods in order to achieve more informative 

and accurate results for future investigation of overexpression in the VvAOS gene. First, employ an 

inducible promoter instead of a constitutive promoter to overexpress the AOS gene. As discussed 

above, constitutive and higher basal level of JA did not effectively establish signal transduction 

pathway to regulate the expression of JA-responsive genes but the relative increase of JA in short 

period of time is more critical for the induction. Furthermore, transgene VvAOS with induced promoter 

influence on the JA biosynthesis pathway can be assayed based on the induction time period for gene 

expression to reach maximum level rather than their high basal availability. Secondly, screen a larger 

population of homozygous transgenic plants to acquire a more stable VvAOS gene expression among 

individual transgenic plants. Thirdly, since AOS was involved in the biosynthesis pathway that was 

easily stimulated by environmental conditions, homozygous transgenic plants should be grown in 

separate plant growth rooms (or containment) away from other plants to avoid possible crosstalk 

influences between plant neighbours. More importantly, grow transgenic plants free from any insect 
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infestation or pathogen problems. Lastly, if possible, sources of leaf materials should be collected only 

from same group of plants source for the whole time course wound treatment of sampling. 

4.6 Conclusion and future prospects 

In this chapter we overexpressed and characterized the VvAOS gene into Arabidopsis plants to 

answer our primary question “Would grapevine AOS be able to increase plant ability to response 

against pathogen when overexpress in Arabidopsis?” In order to answer this question we established 

a homozygous transgenic 35S:VvAOS and transgenic 35S:AtAOS (as a comparison control) plant 

population as source material for these studies. A constitutive CaMV 35S promoter was used as gene 

regulator due to its ability to regulate gene expression independently and continuously which, 

therefore, provided the appropriate amounts of additional AOS enzymes continuously in the 

Arabidopsis JA biosynthesis pathway. However, research findings showed that overexpression of 

grapevine AOS did not significantly increase the transgenic ability of Arabidopsis transgenic as a 

response to pathogen attack or mechanical wounding. However further analysis of the results 

indicated that the unexpected result may have been influenced by other factors, such as: 

1. Plant gene silencing mechanisms in transgenic Arabidopsis was triggered early due to the presence 

of T-DNA, CaMV 35S promoter and insertion of transgene AOS, which caused weak signal 

transduction to induce JA biosynthesis.    

2. Sudden increased AOS transcript abundance was more critical to regulate JA biosynthesis pathway 

than their availability. Therefore, employing an inducible promoter to regulate transgene in 

Arabidopsis transgenic plant will be more suitable than a constitutive promoter.  

3. Quantitative assessment for transgene performance to regulate JA biosynthesis was less relevant 

due to the low affinity of the VvAOS enzyme toward substrate availability in the Arabidopsis 

system.  

4. Un-optimized Arabidopsis transgenic growth conditions, such as temperature, humidity and light 

intensity due to the brand new plant growth room facility. 

5. Plant crosstalk between Arabidopsis transgenic plants with other plant species that were 

undergoing different experimental approaches were grown in the same closed containment plant 

room.   
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Chapter 5 

Identification of natural genetic variation of allene oxide synthase 

in 100 individual grapevines 

5.1 Introduction  

Traditionally disease control is achieved through application of chemical agents to control 

infection. Alternate strategies utilizing genetic improvement via hybridization/breeding are limited in 

grapevine due to industry concerns. Current advances in functional genomics and identification of the 

genetic basis for disease resistance open up a number of industry opportunities. Natural variation of 

plant pathogen resistance appear to be quantitative and often related to the biosynthesis of a 

signalling compound, jasmonates (JAs) (Pajerowska-Mukhtar et al., 2008). JAs are responsible for 

signalling the production of phytoalexins, a wide group of compounds that are responsible for a wide 

range of plant defence mechanisms (Yamada et al., 1993; Zhou et al., 1999; De Geyter et al., 2012). 

Allene oxide synthase (AOS) plays a central role in JAs biosynthesis as this enzyme catalyses the first 

reaction in the branch pathway leading to JA production. Evidence exists that genetic variation of AOS 

in Solanum tuberosum able to contribute to increased resistance to pathogen attack in plants 

containing these variation (Pajerowska-Mukhtar et al., 2008; Pajerowska-Mukhtar et al., 2009). As 

often such genetic variations do not produce visible changes in morphology, somatic mutations that 

alter AOS function may never be recognized especially in commercial crops such as grapevine 

populations. 

5.2 Genetic variation of allene oxide synthase 

 Study by Pajerowska et al. (2008) on potato (Solanum tuberosum L.), the function of a 

endogenous allene oxide synthase 2 (StAOS2) allelic variation was investigated through a 

complementation approach in the same Arabidopsis aos mutant (Park et al., 2002) that we have 

utilised in our study as complementation AOS function result describe in chapter 3. Their study showed 

that StAOS2 variations have varying degrees of phenotype complementation as well as differing effects 

on JA and OPDA levels when each allele was individually expressed in Arabidopsis aos mutant. To 

correlate the differential JA and OPDA expression to the levels of pathogen resistance, they infected 

Arabidopsis StAOS2 complemented line with pathogen. The results of this experiment show that 

StAOS2 sequence variation in potato resulted in plants expressing different levels of JA and 

consequently have differing levels of resistance to key necrotrophic pathogens. This study suggests 

that genetic variation within AOS and varying levels of JA, play a key role in disease resistance in plants. 

Based on this and other reports indicating the significance of variation within AOS gene in disease 
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improvement of grapevine’s response to stress or pathogen infection? The AOS enzyme catalyst the 

first reaction in the production of JA (Kubigsteltig et al., 1999). Natural variation of potato AOS2 causes 

varying levels of JA and pathogen resistance in complemented Arabidopsis aos mutant (Pajerowska-

Mukhtar et al., 2008) clearly indicates its role in plant pathogen response. Therefore, the open 

question is “Does AOS gene variation and its function in grapevine effect the plant response to stresses 

such as wounding and pathogen attack?” will be interesting area to be address. Therefore in this 

chapter, based on the initial finding by Podolyan (2010), the VvLOX enzyme located upstream of the 

JA biosynthesis pathway contains several SNP’s, the research objective is to determine the range of 

VvAOS gene variation in a small Sauvignon blanc population. 
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Figure 5.4 Grapevine AOS genes sequencing excerpt from assembly contiq. 
Excerpt from the contig assembly of VvAOS Sanger-sequencing run as produced by Geneious Version 7 
(Biomatters, NZ). Bases in blue in individual sequences highlight at the presence of an A and A G occurring at 
equal amounts in each pooled DNA sample, indicating the presence of 2 allele of AOS 
 

 

 
Figure 5.3 Location of genetic variation occur within VvAOS gene sequence 
Direct Sanger sequencing result shows three potential SNP’s detected at the location 1) 533, 2) 1489 and 3) 
1504. Blue arrows 1, 2 and 3 indicate an approximation location of each SNPs. 
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5.5 Discussion 

In this chapter, our assessment is based on the two previous reports. First, reported by 

Pajerowska-Mukhtar et al. (2008) indicate that variation occur within AOS2 in Solanum tuberosum 

exhibit different level of JA and range of pathogen response in complemented Arabidopsis aos mutant. 

Based on this report, we interested to investigate the possibility of VvAOS variation that caused 

grapevine less susceptible to pathogen attack. Second, previous report by Andriy Podolyan (2010) as 

part of his PhD thesis indicate that there was a significant number of SNP present within Lipoxygenase 

A (LOXA) coding sequence in 10 individual of grapevine. Therefore, this interest us to investigate 

whether VvAOS gene also contain a similar diversity of SNPs. High diversity of VvAOS gene variation 

among small population of grapevine is a vital feature to develop a tool or method to screen an 

important gene variation hidden within large population of vine in commercial vineyard. In this 

assessment, we start with population of 100 individual grapevine from the commercial vineyard. It is 

a small population but 10 times larger than the population reported by Andry Podolyan (2010). First 

we screen the 100 individual grapevine for VvAOS gene diversity via TiLLING approach. The TiLLING 

result clearly indicate that gene variation of VvAOS within the population of 100 grapevine is very low 

and at this point result is inconclusive. SNP’s detected is represent the heterozygosity of VvAOS allele 

in grapevine genome and not a true variation. However, there are a few issues that make TiLLING 

method not suitable to detect gene variation in VvAOS gene amplicons. First, resolution of 2.5% 

agarose gel is not suitable for viewing smaller DNA fragments. VvAOS amplicons only 1.5kb in sized, if 

SNP located closed to each other or at the end of the fragment (either end’s -5’ or 3’), it will be difficult 

to view the DNA fragment on the 2.5% of the gel agarose. Excitation signal by ethidium bromide is 

difficult to detect in small and low quantities DNA fragments whereas large DNA fragments will be 

closed to original sized of VvAOS, therefore again it difficult to aim and conclude the variation result 

based on DNA size different. Second, CEL-I endonuclease base pair mismatch substrate preference is 

C/C ≥ C/A ~ C/T ≥ G/G > A/C ~ A/A ~ T/C > T/G ~ G/T ~ G/A ~ A/G ≥ T/T (Oleykowski et al., 1998). 

Substrate preference could be the factors to determine endonuclease digestion efficiency among base 

pair mismatch present in the heteroduplex amplicons. Third, false positive or false negative due to the 

endonuclease enzyme digestion reaction efficiency or human error. Previous report also indicate that 

approximately 5% and 4% report give false negative and false positive respectively in TiLLING or 

EcoTiLLING methods (Barkley and Wang, 2008). Taken all together the disadvantage of using TiLLING 

method as discussed above, it is clear that more sensitive method needed to measure the approximate 

frequency of SNP’s occur within VvAOS gene. Therefore, Direct Sanger Sequencing a more sensitive 

method were used as an alternative method to detect SNP’s within a pool of VvAOS amplicons.  

In order to increase the possibility of SNPs detection within VvAOS gene among 100 individual 

grapevine, we employed a more sensitive i.e. direct Sanger sequencing method. Via this method, we 

only manage to identify one credible SNP located at 533 bp from the 5’ end which indicate the 
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heterozygosity of VvAOS allele in grapevine genome. However, this result confirm our previous result 

from the TiLLING method. Low variation of VvAOS gene among 100 individual grapevine quite 

surprising considering high variation of VvLOXA, an upstream enzymes involved in JA biosynthesis 

pathway but understandable. It is understandable because from our previous discussion (discussion 

section in chapter 4) indicate that a single amino acid substitution occur especially within active site of 

AOS protein sequence can change an entire function of AOS enzymes (Toporkova et al., 2008). 

Therefore it is understandable that VvAOS gene sequence within grapevine genome a highly conserved 

to preserve it originality and function efficiency.  

However the diversity difference between VvLOXA and VvAOS could be due to the several 

factors. First, due to the size of respective gene sequence i.e VvLOXA is almost twice larger at cDNA 

level and four time larger at the genomic level compare to VvAOS gene size. Second, is due to the 

nature of LOX gene function redundancy (Vellosillo et al., 2007) expose to the gene duplication (Cooke 

et al., 1997; Zhang, 2012). Third, is due to the critical function of VvAOS in JA biosynthesis regulation 

which an important component in plant development and regulation (Laudert et al., 2000). During 

plant development JA mediated the following processed; male and female organ development, 

embryo development, sex determination, seed germination, seedling development, root growth, 

gravitropism, trichome formation, tuber formation, leaf movement and leaf senescence. He and Zhang 

(2006) hypothesized that less important gene have higher rates of successful duplication where 

important gene is measured by the fitness reduction caused by the deletion of the gene. One of the 

character of important gene drawn was genetic stability, particularly the stability of central cellular 

and development processes which may be essential for the survival of organisms (He and Zhang, 2006). 

Duplication of important gene could cause genetic perturbation by doubling gene dosage, is therefore 

one expect that important gene tend to have reduce duplicability. Therefore, VvAOS gene sequence is 

highly conserved in grapevine. However, although we haven’t seen significant sequence variation 

within the grapevine AOS locus, this does not mean that there isn’t genetic diversity within the 

population. Result analysis using Next Generation Sequencing methods from Pinot noir clones show 

that there are surprisingly high level of genetic diversity (Chris Winefield, Pers. Comms.). However this 

diversity appears to mostly be associated with transposable elements (TEs) rather than SNPs (This et 

al., 2006; Carrier et al., 2012). Given the apparently high levels of both sequence and structural 

diversity among clones, it is reasonable to assume that there is an unknown yet possibly high rate of 

somatic mutation occurring in field grown grapevines (from which these clones have been identified 

and isolated). However what is currently unclear is the rates of mutation. Consequently while there is 

a low level of divergence in the small population we have screened there may still be important 

variation accumulating in the field populations. Considering the expenses and time consume during 

screening, it is unlikely that using this approach will prove efficient or economically practical.  
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5.6 Conclusion and future prospect 

In the previous chapter (Chapter 4), we manage to identify and characterized AOS gene function 

in grapevine. One of our primary question is “What is the estimation of grapevine AOS genetic variation 

diversity within the population of grapevine grown in the commercial vineyard?” By estimating 

grapevine AOS variation diversity, we will be able to estimate number of individual and cost involved 

to identify high quality of variation that confer grapevine less susceptible to pathogen attack. In this 

experiment we use 100 individual of grapevine as a population samples. From this analysis, it is clear 

that there is no detectable genetic variation present within 100 individual Sauvignon blanc vines.  
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Chapter 6 

Conclusion and future prospects 

6.1 Research project summary 

We started this research project with a simple question, “How to identify a grapevine variety 

less susceptible to disease infection but maintain it wine quality?” If we can address this question, we 

will be able to reduce our dependent usage to chemical agent to control disease problem. In order to 

address this question, we look to a several potential solutions including genetic improvement or 

genetic modification (GM). However due to industry and public concerns, genetic improvement in 

grapevine has been limited only to identification and utilisation of soma clonal mutants whereas the 

use of GM grapevines is not an option due to strict New Zealand government policy. Therefore, we 

shifted our focus to study the natural somatic genetic variation in particular genetic loci in grapevine 

that may contribute to increased tolerance to pathogen infection. In this research project, we 

identified that the plant cytochrome CYP74 enzyme family are a potential target due to their special 

role in the metabolism of hydroperoxides and oxylipin which is one of the main defence mechanisms 

employed by plants. Among CYP74 enzymes members, we interrogated the natural variation occurring 

at the allene oxide synthase (AOS) allele as a key focal point due to its role as the first committed gene 

in the jasmonic acid biosynthetic pathway. Based on a previous report by Pajerowska-Mukhtar (2008) 

which indicated that sequence variation within AOS gene in Solanum tuberosum apparently leads to 

differing accumulation of JA in potato. Jasmonic acid and its derivatives are endogenous signalling 

compounds that are heavily involved in regulating plant defence mechanisms. Until up to this thesis 

written, alternative biosynthetic pathway lead to the production of JA has not been reported in plant 

other than the one with AOS branch pathway. Throughout this research project we concentrated on 

the identification and partial characterisation of the CYP74 gene family members in grapevine, with 

particular focus on the characterization and elucidation of VvAOS gene function. Allene oxide synthase 

represents a potential target for the improvement of grapevine tolerance to disease, particularly 

necrotrophic fungi such as Botrytis. In order to determine the possibility of utilising naturally occurring 

genetic variation at the AOS locus we determined the naturally occurring genetic variation within a 

small population of field grown vines.  

6.2 Characterization of grapevine CYP74 gene family member  

As part of our research objectives, we identified and partially characterised grapevine AOS 

alongside six HPLs gene which comprise the entire grapevine CYP74 family. Phylogenetic analysis 

confirmed that the putative grapevine AOS gene (VvAOS) belongs to the CYP74A family uses 13-
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hydroperoxide as a substrate (13-AOS group) and is proposed to be physically associated with the 

chloroplastic membrane. Investigation of the transcript abundance of VvAOS showed consistent levels 

of transcript across all tissues types tested i.e. leaf, tendril, root, inflorescence, skin, pulp and seed 

indicating that this gene may play a vital role in different parts and stages of grapevine growth and 

development. This is not surprising due to the critical role that AOS enzymes play in JA biosynthesis 

and that JA plays such an important role across a diverse range of plant functions (Wasternack et al., 

2013; Wasternack and Hause, 2013). The six grapevine HPLs (VvHPLs) genes can be divided into 2 

groups. Grapevine HPLA belongs to the CYP74B family which uses 13-hydroperoxides as a substrate 

(13-HPL group). However while possessing a putative chloroplast localisation peptide at the N-

terminus of the predicted peptide we found that a VvHPLA:GFP fusion peptide did not localise to the 

chloroplast in transient expression experiments in tobacco leaves (Figure 2.8). Interestingly, VvHPLA 

expression was found to be consistent across in all tissues types tested which indicate that it may have 

a ubiquitous role in grapevine. However given the unique localisation pattern suggests its mode of 

action may differ from other species in which 13-HPLs have been characterised. 13-Hydroperoxide 

lyases are known to catalyse the production of C6 and C12 aldehydes which collectively are important 

compounds that are both involved in flavour/aroma production as well as in plant defence (Taurino et 

al., 2013). Five other VvHPLs (VvHPLB, VvHPLC, VvHPLD, VvHPLE and VvHPLF) were predicted to belong 

to the CYP74C gene family which have been reported to use either, or both, 9- and 13-hydroperoxides 

as a substrates and form the 9/13-HPL group. Grapevine HPLs belonging to the CYP74C family show 

variation in their sub-cellular localization and are found either within the cytoplasm or associated with 

cell membrane. The transcription patterns of this group was found to be quite diverse both spatially 

and in quantity. The range of 9/13 HPLs present in grapevine raises a number of questions given the 

breadth of subcellular localisations and gene expression patterns. With the ability of these enzymes to 

potentially utilise either 9 or 13-hydroperoxides these enzymes may play a previously unreported role 

in both the formation of green leaf volatiles, and C9 aldehyde derived phytoalexins within grapevine. 

The presence of 9-lipoxygenases (9-LOXs) strongly suggests that under certain conditions and 

developmental stages grapevine is capable of the production of C9 aldehydes (Podolyan, 2010). 

However the duality of catalytic behaviour of the 9/13-HPLs also implicates these enzymes in a range 

of potential roles for further production of 13-hydroperoxides under conditions other than those that 

have been previously reported (Zhu et al., 2012).  Consequently to fully understand the involvement 

of the cyp74 family in aldehyde and phytoalexin formation will require further in depth analysis of both 

their individual biochemistry and cellular functions.  

6.3 Characterization of allene oxide synthase in grapevine  

Due to our interest in jasmonic acid(s) as a vital component in mediating plant defence 

responses, we focused our attention on VvAOS gene as a potential biosynthetic bottle neck that could 
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regulate biochemical flux to JA formation. However, to date, in depth characterisation of AOS in 

grapevine has not been carried out. Therefore, as part of our research objectives, we first identified 

and isolated the sole putative grapevine AOS orthologue predicted in the grapevine reference genome 

sequence, using the previously characterized Arabidopsis AOS gene sequence in Arabidopsis to assist 

in an indepth interrogation of the annotated genome seuqence. The putative grapevine AOS identified 

and cloned from Sauvignon blanc was proven to be a functional AOS via complementation of the 

Arabidopsis AOS mutant.  

6.4 Over expression of grapevine allene oxide synthase in Arabidopsis wild 
type 

Increasing levels of JA has been shown to contribute to increased tolerance of plants to 

necrotrophic pathogens such as Botrytis (Rowe et al., 2010). Increasing biochemical flux into the JA 

biosynthetic pathway via alteration of AOS levels has been shown to alter both JA levels and JA 

responsiveness in downstream pathways (Park et al., 2002; Pajerowska-Mukhtar et al., 2008). As we 

were unable to directly alter levels of AOS in grapevine we decided to investigate the impact of altering 

levels of AOS in Arabidopsis on JA production and alterations in expression patterns of JA responsive 

genes by ectopically expressing both the Arabidopsis AOS and the grapevine AOS gene. Having shown 

that the Introduction of putative AOS gene isolated from grapevine recovered the male-sterile and JA 

signalling transduction pathway phenotypes of the aos mutant we confirmed the it functionality as an 

AOS gene in grapevine 

As our findings suggest that overexpression of VvAOS gene in Arabidopsis did not confer 

significantly increased resistance to disease infection such as Botrytis, we provide possible explanation 

to comprehend these issues. First, while there was high abundance of transgenic VvAOS transcript in 

OE-lines, these levels of expression did not confer increased responsiveness in plant defence 

mechanisms. This suggests that other downstream enzymes such as AOC or OPR3 within JA 

biosynthesis pathway are equally important in regulating JA production. Therefore influx of 

biochemical substrate alone by increasing AOS enzymes activity is not necessarily the most effective 

way to increase JA production and as a consequence did not confer increased resistance to pathogen 

infection. Second, our analysis of the grape AOS sequence indicated the presence of substitution of 

amino acid residues located within important motifs, namely helix-I and the heme-binding binding site 

within active site. Previous reports (Toporkova et al., 2008; Toporkova et al., 2013) indicate that amino 

acid substitutions that occur within this highly preserved motif can alter the function of AOS, such as 

substrate affinities and other kinetic properties (Pajerowska-Mukhtar et al., 2008; Toporkova et al., 

2008; Toporkova et al., 2013). Two amino acid substitutions at the helix-I motif and one in heme-

binding site within VvAOS protein sequence (relative to AtAOS protein sequence) could possibly alter 

the enzymes kinetic properties toward substrates present in Arabidopsis and therefore differing 
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activities compared to the endogenous Arabidopsis enzyme. Third, combination of early initiation of 

gene silencing and JA induction mechanisms. Regulation of JA production is induced by the sudden 

increase of AOS transcript rather than their availability (Mei et al., 2006). Employing CaMV 35S 

promoter as a regulator to VvAOS gene in Arabidopsis transgenic plant provide a high basal of overall 

AOS transcript abundance but prevent from creating high magnitude of sudden increase of AOS 

transcript in transgenic plant where high basal level of AOS transcript caused an early activation of 

gene silencing mechanisms that also initiate an early repression to AOS transcription. Therefore as a 

consequence, Arabidopsis transgenic plant fail to produce strong signal to upregulate JA production. 

6.5 Identification of natural genetic variation of allene oxide synthase in 
small population of grapevine 

With tentative evidence that alterations in AOS activity may impact positively levels of JA 

production and responsiveness to JA we wanted to explore the potential levels in sequence divergence 

is grapevine AOS. In this assessment, we focused on exploring levels of grapevine AOS sequence 

variation within 100 individual grapevine collected from commercial vineyard. Our aim was to estimate 

VvAOS genetic variation diversity within the population of commercial grapevine grown in the field. By 

estimating levels of VvAOS variation, we would be able to estimate number of individuals required to 

be screened and the cost involved to identify suitable forms of variation in AOS that might confer 

grapevines that are less susceptible to pathogen attack. However, surprisingly in light of earlier data 

our results are clear indicate that genetic variation diversity of VvAOS gene present within 100 

individual grapevine plants are very low. In light of the central role of this pathway to reproductive 

development and stress responsiveness this finding is not necessarily surprising. However in light of 

our own groups studies and reports of high levels of sequence divergence among clones of Pinot noir 

(Carrier et al., 2012), the finding is somewhat puzzling. Further reduced representation genome 

sequencing of individual vines will be required to provide a clear indication of the levels and rates of 

formation of both SNP and other structural variation accumulating in clonally propagated grapevines. 

6.6 Future prospect 

This project was initiated to investigate the possibility to develop suitable molecular tools to 

identify novel genetic variation that might confer disease resistance to individual grapevines. We chose 

grapevine AOS as a gene target due to its critical role in regulating the wound and pathogen signalling 

molecule, JA. Having proved that the putative AOS in grapevine encodes a functional AOS gene capable 

of complementing an AOS mutant in Arabidopsis, we showed that simply increasing levels of AOS 

transgenically was insufficient to significantly impact Arabidopsis’ responses to Botrytis infection. 

These results raise a number of important questions, some of a technical nature and some biological. 

Technically it is clear that ectopic expression of AOS in Arabidopsis as model plant leads to a range of 
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potential issues, many typical of over-expression experiments, such as gene silencing due to the 

introduction of the T-DNA (Mlotshwa et al., 2010) or environmental issues. Production of Arabidopsis 

transgenic plant either via constitutive CaMV35S or endogenous AtAOS promoter as a gene regulator 

lead to unpredictable levels of gene expression. Although it’s been reported that  increase of 

biochemical influx  into JA biosynthesis pathway could alter JA-responsive expression, our result 

suggest that increase influx of biochemical substrate alone by increasing enzymes activity via 

overexpression is not the only limitation factor for JA regulation. Arabidopsis transgenic plant that 

exhibited high level of VvAOS gene expression did not lead to increase JA level suggest that other point 

of regulation are also involved.  

The other points of JA regulation that involved and could be an interesting area to be explored 

for future prospect are; first, phosphorylation/dephosphorylation (Krebs and Beavo, 1979) of AOS 

enzyme mechanisms to activate/deactivate protein activity as a response to high concentration of this 

enzymes available within the overexpressed Arabidopsis plant system. However, phosphorylation 

/dephosphorylation of AOS enzymes mechanisms as far as we know have never been reported yet. 

Therefore this mechanisms could be an interesting area to be explore. Second, the ability of 

Arabidopsis as a transgene host plant to recognized and control (upregulate or downregulate) 

transgene VvAOS transcription mechanisms. As we have been speculated previously (section 4.4), 

unlike endogenous AOS, Arabidopsis system might not be able to recognised transgene VvAOS 

transcription and overturned their mechanisms when required. Therefore, high transcript abundance 

of transgene VvAOS might triggered early plant defence mechanisms in order to repress their further 

transcription to avoid damage (Schubert et al., 2004; Dalakouras et al., 2011) or alter mRNA steady-

state condition (Prelich, 2012). Further understanding on Arabidopsis as a transgene host plant model 

to perceive foreign gene will provide a deeper insight not only to elucidate VvAOS gene regulation 

mechanisms but also to understand how to assess other genes overexpression mechanisms in 

Arabidopsis at large. Third, the possibility of other enzymes located downstream within JA biosynthetic 

pathway, AOC and OPR3 are also equally important in determining JA regulation. The AOC enzymes 

catalyse a crucial step in JA biosynthetic pathway because only this enantiomeric form is the substrate 

for the naturally occurring (+)-7-iso-JA which lead to the formation of (+)-7-iso-JA-Ile, the most 

bioactive compound among jasmonate and it derivative’s (Schaller et al., 2000; Stenzel et al., 2003; 

Staswick and Tiryaki, 2004; Fonseca et al., 2009; Stenzel et al., 2012). Furthermore, AOC also catalysed 

the production of first bioactive compound, OPDA within JA biosynthetic pathway (Schaller et al., 2008) 

and AOC gene itself is an OPDA responsive gene (Stenzel et al., 2003). Therefore, this suggest that AOC 

play an important role in regulating JA production. Whereas, OPDA alone is a bioactive compound that 

play an important role in plant defence mechanisms and also the precursor to the JA production (Stintzi 

et al., 2001; Scalschi et al., 2015). The first step in conversion of OPDA to JA is catalyse by OPR3 where 

this enzymes determine OPDA availability for JA biosynthesis (Scalschi et al., 2015). Since OPDA and JA 
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appear to be different signalling molecules (Stintzi et al., 2001; Scalschi et al., 2015), OPR3 also seem 

to play a key role in controlling the pool of OPDA and JA to respond to stresses (Díaz et al., 2012). 

Therefore, in order to effectively increase JA production, targeting transcription factors that co-

ordinately regulate all three enzymes, namely AOS, AOC and OPR3 may be a better target instead of 

target each enzymes individually 

Considering that AOS, AOC and OPR3 enzymes are equally important in JA regulation, 

identification of a simple SNP among these enzymes gene sequence might be insufficient to identify or 

regulate useful disease resistance material within grapevine. Therefore, instead of focusing on these 

three enzymes, mutations within transcription factor that co-ordinately regulate AOS, AOC and OPR3 

might be more useful. According to Alves et al (2014), transcription factors (TF) a main regulators for 

gene expression at the transcription level. Alternation of TF activity will alter the transcriptome that 

leading to metabolic and phenotypic changes in plant response to stress (Alves et al., 2014). In plants, 

there six major family of TF in defence mechanisms i.e. basic leucine zipper containing domain proteins 

(bZIP), amino-acid sequence WRKYGQK (WRKY), myelocytomatosis related proteins (MYC), 

myeloblastosis related proteins (MYB), apetala2/ethylene-responsive element binding factors 

(AP2/EREBP) and no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and 

cup-shaped cotyledon (CUC) (NAC) (Singh et al., 2002; Van Verk et al., 2009; Alves et al., 2014). All of 

these TFs family could be a potential target to be screen to identify useful disease resistance material 

in grapevine.  

Besides SNPs, other potential mechanisms that can spontaneously upregulate gene expression 

is via the mobility of transposable elements (TEs). Transposable elements is a small DNA fragment that 

are competent to integrate into new position in the genome and known to produce a wide variety of 

change in plant gene expression and function (Lisch, 2013; Makarevitch et al., 2015). Several known 

TEs also tend to transpose into 5’ end of plant genes mean that the promoter and enhancer elements 

within their TEs potential alter gene expression (Lisch, 2013). Therefore, insertion of TEs either in AOS, 

AOC, OPR3 or TFs gene sequences might coordinate increase upregulation of their gene expression 

and eventually confer high resistance to disease. Currently, our group is specifically producing “TEs 

induced grapevine population”. Mutations (via TEs insertion) within TFs that coordinate increase 

upregulation of AOS, AOC and OPR3 might be present in this “TEs induced grapevine population” and 

this can be used as a tool to screen natural gene variation in the vineyard. 
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A.2 qRT-PCR primers used to quantify transcript abundance in Arabidopsis 

Gene ID Forward primer (5’ to 3’) Reverse primer (5’ to 3’) Amplicon (bp) Accession 

AtAOS-qPCR GATGGGAGCGATTGAGAAAATGG CCTTCTTCGCTCTACCGTATTGA 101 AT5G42650 

AtLOX2-qPCR TCTTCCTCAGCGATGATAGCAC ATGACGTAGCATCATAGCCTGG 117 AT3G45140 

AtVSP2-qPCR GTACTGGTTGTGGTTAGGGAC  AACTTCCAACGGTCACTGAG 120 AT5G24770 

AtFBOX-qPCR GGCTGAGAGGTTCGAGTGTT GGCTGTTGCATGACTGAAGA 108 ATG515710 

AtEF1α-qPCR TGAGCACGCTCTTCTTGCTTTCA GGTGGTGGCATCCATCTTGTTACA 76 AT5G60390 

 
Table A.2 qRT-PCR primers used to quantify transcript abundance in Arabidopsis 
Shows qRT-PCR primers used in semi-quantification of target gene in complemented AOS gene function in Arabidopsis aos mutant. Housekeeping gene AtF-Box and AtEF1α were 
synthesize based on the primers reported in Lilly et al. (Lilly et al., 2011)  and Czechowski et al. (Czechowski et al., 2005) 

A.3 Amplification of a single product for each qRT-Primers used 

 

Figure A.1 Amplification of a single product for each qRT-Primers 
Amplification of a single product for each qRT-Primers used Each qRT-PCR primers pair was verified for their specific target by producing a single amplicon product.  As for PCR 
amplification template, a mixture of cDNA samples from leaf, whole berries and inflorescence were used in grapevine and cDNA from leaf in Arabidopsis qRT-PCR primers assay.  
The DNA ladder used was HyperLadder V (25bp ladder) from BioLine (Total Lab System, NZ) to measure DNA amplicons size.   
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A.4 Standard curve for all qRT-PCR primers pair used in this research project  
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Figure A.2 Standard curve of all genes target 
Standard curve for each gene target from grapevine and Arabidopsis (including reference genes) was generated using serial dilution from 1 ng/µL concentration of linearized plasmid 
(plasmid carried target gene). Amplification was carried out as describe in respective Material and Method. 
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A.5 qRT-PCR Cq value of VvCYP74 genes family members transcript quantified from wound treated and control samples in 
grapevine leaves. 

 
Table A.3 qRT-PCR Cq value of VvCYP74 genes family
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B.2 Plant binary vector - pARTBGW:promAOS:VvAOS 

 

Figure B.2 Binary vector pARTBGW:promAOS:VvAOS 
This plant binary vector, pARTBGW incorporated with VvAOS gene and used plant promoter isolated from 
Arabidopsis (promAOS) as a gene regulator for the desired gene. This vector was used to transform homozygous 
Arabidopsis aos mutant to characterized VvAOS gene via male-sterile complementation phenotype. 

B.3 Plant binary vector – pARTBGW:35S promoter:VvAOS or AtAOS 
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Figure B.3 Binary vector pARTBGW:35S promoter:VvAOS or AtAOS 
This plant binary vector, pARTBGW incorporated with VvAOS or AtAOS gene and used constitutive CaMV 35S 
promoter (35S promoter) as a regulator to desired gene. This vector was used to transformed Arabidopsis 
thaliana with VvAOS or AtAOS genes to investigate their overexpression in Arabidopsis background   

B.4 Plant binary vector – pB7FWG2 

Figure B.4 Binary vector pB7FWG2 
The binary vector, pB7FWG2 (Karimi et al., 2002), used CaMV 35S promoter as a regulator to desired gene and 
containing an N-terminal GFP fusion protein as a gene marker to uncover the sub-cellular localization of the 
VvCYP74 protein in Nicotiana benthamiana 
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B.5 Plant binary vector – pB7FWG2:VvCYP74   

 
 
Figure B.5 Binary vector pB7FWG2:VvCYP74   
This plant binary vector, pB7FWG2:VvCYP74 were used to transformed young leaf of Nicotiana benthamiana in 
order to arrest the sub-cellular localization of grapevine CYP74 gene expression. Each of the grapevine CYP74 
genes member was fused green fluorescent protein (GFP) fusion in order to localize their transient expression 
into specific plant cell compartments. Grapevine CYP74 (VvCYP74) genes used were; VvAOS, VvHPLA, VvHPLB, 
VvHPLC, VvHPLD, VvHPLE and VvHPLF  
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Figure C.1 Alignment sequences of VvAOS nucleotide sequence between cDNA and gDNA template 
Grapevine AOS nucleotide sequences amplified from complementary DNA (cDNA) and genomic DNA (gDNA) were align to identify their intron region. Alignemnt sequence was 
carried out using MegAlign program within the Lasergene molecular biology software suite (DNASTAR Inc, Madison, USA). Yellow shade indicate nucleotide match among grapevine 
HPL sequences 
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C.2 Alignment sequences of grapevine HPLs nucleotide sequences  
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Figure C.2 Alignment sequences of grapevine HPLs nucleotide sequences 
Grapevine HPLs nucleotide sequences i.e. HLPA. HPLB, HPLC, HPLD, HPLE and HPLF were align in order to identify 
suitable site for qRT-PCR primers. Alignment result shows that grapevine HPLs sequences are highly identical 
within their coding sequence region. Alignment sequence was carried out using MegAlign program within the 
Lasergene molecular biology software suite (DNASTAR Inc, Madison, USA). Yellow shade indicate nucleotide 
match among grapevine HPL sequences  
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C.3 Multiple alignment of CYP74 enzymes polypeptide sequences   

 
PaAOS1          ----------------------------------------MDPSSKPLREIPGSYGIPFF 20 

AaAOS           ----------------------FSATSPDTTTTTTTTGSNTDNKNLPIRPIPGSYGIPFY 38 

AtAOS           --------------------------ASGSETPDLTVATRTGSKDLPIRNIPGNYGLPIV 34 

LeAOS1          -----------------------------------------------AQKVPGDYALPLV 13 

StAOS1          --------------------ASVSERPPYISSPSPSPSPPVKQAKLPTRKVPGDYGLPLV 40 

InAOS           -------------------SATVSDTPP---SVSLSPVP----EKLPKRKIPGDYGLPLI 34 

StAOS2          -------------------------------LSEKPTIVVTQPTKLPTRTIPGDYGLPGI 29 

StAOS           -------------------------------LSEKPTIVVTQPTKLPTRTIPGDYGLPGI 29 

LeAOS2          MALTLSFSLPLPSLHQKIPSKYSTFRPIIVSLSDKSTIEITQPIKLSTRTIPGDYGLPGI 60 

NaAOS           -----------------------------------AVTQSSEFTKLPIRTIPGDYGLPLI 25 

GmAOS           --------------------ASVSEKPPLPAVSVTSPEP----SKLPIRKIPGDCGFPVI 36 

GmAOS1          --------------------ASVSEKPPLPAVSVTSPEP----SKLPIRKIPGDCGFPVI 36 

MtAOS           --------------------SSVSEKPPF-QVSISQPQT----TKLPIRKIPGDYGIPFI 35 

CmAOS           --------------------SSSSSSLQVPQRIVSPPEP----TKLPLRKVPGDYGPPMF 36 

LuAOS           -------------------ASLFGDSPIKIPGITSQPPPSSDETTLPIRQIPGDYGLPGI 41 

VvAOS           ---------------------------------QSQVTPPG-----PIRKIPGDYGLPFI 22 

HvAOS1          --------------------------------MNQSAIG-----SLVPRQAPGSYGLPFV 23 

HvAOS2          --------------------------------MNQSGMARSDEGSLVPREVPGSYGLPFV 28 

OsAOS2          ---------------------------------MELGVP------LPRRPVPGSYGVPFV 21 

OsAOS3          ---------------------------------MELGVP------LPRRPVPGSYGVPFV 21 

OsAOS1          ---------------------------------MELGVP------LPRRPVPGSYGVPFV 21 

CsHPL1          -----------------------------------MAS---SSPELPLKPIPGGYGFPFL 22 

CmHPL           -----------------------------------MATPSSSSPELPLKPIPGGYGFPFL 25 

VvHPL2          ------------------------------------------------------------ 

VvHPLE          ------------------------------------------------------------ 

VvHPLD          ------------------------------------------------------------ 

VvHPLF          ---------------------------MSSSSDKNDLNSSSSLSKLPLRKIPGDYGLPFF 33 

VvHPLB          -------------------------------MSSLSSSSSSSRSELPLLKIPGDYGLPFF 29 

VvHPLC          -------------------------------MSSSSSSSSSSRPELPLRKIPGDYGLPFF 29 

MtHPL1          -------------------------------MASS-SETSSTN--LPLKPIPGSYGLPII 26 

MtHPL2          -------------------------------MASSKQEQSSTNKELPLKQIPGSYGLPFI 29 

StDES           -----------------------------------MSSYSELSN-LPIREIPGDYGFPII 24 

LeDES           -----------------------------------MSSYSELSN-LPIREIPGDYGFPII 24 

CaDES           -----------------------------------MSSYSESPK-LPVREIPGDYGFPII 24 

NtDES           -----------------------------------MSSFLVSSNNLPEREIPGDYGFPII 25 

StAOS3          -----------------------MANTKDSYHIITMDTKESSIPNLPMKEIPGDYGVPFL 37 

LeAOS3          -----------------------MANTKDSYHIITMDTKESSIPSLPMKEIPGDYGVPFF 37 

MsHPL1          -----------------------MSLPPPIPPPSLATPPKARPTELPIRQIPGSHGWPLL 37 

MsHPL3          -----------------------MSLPPPIPPPSLATPPKARPTELPIRQIPGSHGWPLL 37 

MsHPL2          -----------------------MSLPPPIPPPSLTTPPKARPTELPIRQIPGSYGWPLL 37 

AtHPL           -------------------------------------------------TMPGSYGWPLV 11 

LeHPL           --------------------------------MNSAPLSTPAPVTLPVRSIPGSYGLPLV 28 

StHPL           ----------------------------MIPIMSSAPLSTPAPVTLPVRTIPGSYGLPLL 32 

CaHPL           ----------------------------MIPIMSSAPLSTATPISLPVRKIPGSYGFPLL 32 

NaHPL           ----------------------------------------------------GGYGWPLL 8 

VvHPL1          -------------------------------------------------AIPGSYGWPVL 11 

VvHPLA          ------------------------------------------------------------ 

PgHPL           ----------------------------------------------------GSYGWPLL 8 

HvHPL           ----------------------------------------AAMAPPPPKPIPGGYGAPVL 20 

ZmHPL           ------------------------------------------------------------ 

MaHPL           ------------------------------------------------------------ 

                                                                             

 

PaAOS1          QPIKDRLEYFYGTGGRDEYFRSRMQKYQSTVFRANMPPGP--FVSSNPKVIVLLDAKSFP 78 

AaAOS           QPLKDRFEYFYGPGGRDEFFKTRVQKHQSTVFRTNMPPGP--FISKNPNVVVLLDAKSFP 96 

AtAOS           GPIKDRWDYFYDQG-AEEFFKSRIRKYNSTVYRVNMPPGA--FIAENPQVVALLDGKSFP 91 

LeAOS1          GPWKDRLDYFYNQG-KNEFFKSRIQKHQSTVFRTNMPPGP--FISFNPNVVVLLDGKSFP 70 

StAOS1          GPWKDRLDYFYNQG-KNEFFKSRIQKHQSTVFRTNMPPGP--FISFNPNVVVLLDGKSFP 97 

InAOS           GPWKDRLDYFYNQG-REEFFRSRVQKYGSTVFRTNMPPGP--FISFSPNVVVLLDGKSFP 91 

StAOS2          GPWKDRLDYFYNQG-KDEFFESRVVKYKSTIFRTNMPPGP--FISSNPKVIVLLDGKSFP 86 

StAOS           GPWKDRLDYFYNQG-KDEFFESREVKYKSTIFRTNMPPGP--FISSNPKVIVLLDGKSFP 86 

LeAOS2          GPWKDRLDYFYNQG-KNDFFESRIAKYKSTIFRTNMPPGP--FITSNPKVIVLLDGKSFP 117 

NaAOS           GPWKDRQDYFYNQG-KEEFFRSRIQKYKSTVFKTNMPPGN--FISSNPNVVVLLDGKSFP 82 

GmAOS           GPFKDRQDYFYKQG-RDEFFKSRIQKYQSTVFRTNMPPGP--FLAPDPNVVVLLDAKSFP 93 

GmAOS1          GPLKDRQDYFYKQG-RDEFFKSRIQKYQSTVFRTNMPPGP--FLAPNPNVVVLLDAKTFP 93 

MtAOS           QPYKDRLDYFYNQG-RDEYFKSRIQKYQSTIFRTNVPPGP--FIAQNPNVVVLLDGKSFP 92 

CmAOS           GALKDRHDYFYNQG-REEYLKSRMLRYESTVYRTNMPPGP--FITSDSRVVVLLDGKSFP 93 



 181 

LuAOS           GPIQDRLDYFYNQG-REEFFKSRLQKYKSTVYRANMPPGP--FIASNPRVIVLLDAKSFP 98 

VvAOS           GPIKDRLDYFYNQG-REEFFRSRAQKHQSTVFRSNMPPGP--FISSNSKVIVLLDGKSFP 79 

HvAOS1          SAIRDRLDFYYFQG-EAKYFESRVEKHGSTVLRINVPPGP--FMARDPRVVAVLDAKSFP 80 

HvAOS2          SAIRDRLDFYYFQG-QDKYFESRVEKYGSTVVRINVPPGP--FMARDPRVVAVLDAKSFP 85 

OsAOS2          SAVRDRLDFYYLQG-QDKYFESRAERYGSTVVRINVPPGP--FMARDPRVVALLDAKSFP 78 

OsAOS3          SAVRDRLDFYYLQG-QDKYFESRAERYGSTVVRINVPPGP--FMAREPRVVALLDAKSFP 78 

OsAOS1          SAVRDRLDFYYLQG-QDKYFESRAERYGSTVVRINVPPGP--FMARDPRVVALLDAKSFP 78 

CsHPL1          GPIKDRYDYFYFQG-RDEFFRSRITKYNSTVFHANMPPGP--FISSDSRVVVLLDALSFP 79 

CmHPL           GPIKDRYDYFYFQG-RDEFFRSRITKYNSTVFRANMPPGP--FISSDSRVVVLLDALSFP 82 

VvHPL2          ---------------------------------ANMPPGP--FMALNPNVVVLLDAISFP 25 

VvHPLE          ---------------------------------ANMPPGP--FMAFNPNVVVLLDAISFP 25 

VvHPLD          ---------------------------------ANMPPGP--SMASNPNVVVLLDAISFP 25 

VvHPLF          GAIKDRLDYFYKQG-REEFFNARMHKYQSTVFRANMPPGP--FMASNPNVIVLLDSISFP 90 

VvHPLB          GPIRDRFDYFYNQG-QDEFFKTRMQKYHSTVFRANMPPGP--FISSDSKVVVLLDAVSFP 86 

VvHPLC          GPIRNRFDYFYNQG-QDEFFKTRMQKYHSTVFRANMPPGP--FISSDSKVVVLLDTVSFP 86 

MtHPL1          GPLHDRHDYFYNQG-RDKYFQTRIEKYNSTVLKLNMPPGG--FIAPDPKVIALLDGASFP 83 

MtHPL2          GPIFDRHDYFYNQG-RDKFFSTRIQKYNSTIFRTNMPPGP--FISSNPRVIALLDAASFP 86 

StDES           SAIKDRYDYFYNQG-EDAWFHNKAEKYKSTVVKINMAPGP--FTSNDYKLVAFLDANSFV 81 

LeDES           SAIKDRYDYFYNQG-EDAWFHNKAEKYKSTVVKINMAPGP--FTSNDYKLVAFLDANSFV 81 

CaDES           SAIKDRYDYFYNQG-EDAWFHGKAEKYKSTVVKINMAPGP--FTSNDYKLVAFLDATSFV 81 

NtDES           SAIKDRYDYFYKQG-EDVWFHSKAEKYNSTVVKINMAPGP--FTSNDYKLVAFLDANSFV 82 

StAOS3          GAIKDRYDFHYNQG-ADEFFRSRMEKHDSTIFRTNVPPGP--FNARNSKVVVLVDAVSYP 94 

LeAOS3          GAIKDRYDFHYNQG-ADEFFRSRMKKYDSTVFRTNVPPGP--FNARNSKVVVLVDAVSYP 94 

MsHPL1          GPLSDRLDYFWFQK-PENFFRTRMEKYKSTVFRTNVPPTFPFFTNVNPNIIAVLDCKSFS 96 

MsHPL3          GPLSDRLDYFWFQK-PENFFRTRMDKYKSTVFRTNVPPTFPFFTNVNPNIIAVLDCKSFS 96 

MsHPL2          GPLSDRLDYFWFQK-PENFFRTRMDKYKSTVFRTNIPPTFPFFTNVNPNIIAVLDCKSFS 96 

AtHPL           GPLSDRLDYFWFQG-PDKFFRTRAEKYKSTVFRTNIPPTFPFFGNVNPNIVAVLDVKSFS 70 

LeHPL           GPIADRLDYFWFQK-PENFFTKRMEKHKSTVFRTNVPPCFPFFGSVNPNVVAVLDVKSFS 87 

StHPL           GPIADRLDYFWFQK-PENFFTKRMEKHKSTVFRTNVPPCFPFVGSVNPNVVAVLDVKSFS 91 

CaHPL           GPLWDRLDYNWFQK-LPDFFSKRVEKYNSTVFRTNVPPCFPFFLGVNPNVVAVLDVKSFA 91 

NaHPL           GPISDRLDYNWFQG-PNTFFTKRIEKHKSTVFRTNVPPCFPFFLGVNPNVVAVLDVKSFS 67 

VvHPL1          GPIADRLDYFWFQG-PETFFRKRIDKYKSTVFRTNVPPSFPFFVGVNPNVIAVLDCKSFS 70 

VvHPLA          -----------------------IDKYKSTVFRTNVPPSFPFFVDVNPNVIAVLDCKSFS 37 

PgHPL           GPISDRLDYFWFQG-PETFFRKRIEKYKSTVFRANVPPCFPFFSNVNPNVVVVLDCESFA 67 

HvHPL           GPLRDRLDYFWFQG-PEEFFRRRAAQHRSTVFRANIPPTFPFFVGINPRVIAIVDTAAFT 79 

ZmHPL           -----------------------AAAHRSTVFRTNIPPTFPFFVGVDPRVVAIVDAAAFT 37 

MaHPL           ------------------------------------------------------------ 

                                                                             

 

PaAOS1          ILFDVSKVEKKDLFTGTYMPSTKLTGGYRVLSYLDPSEPRHAQLKNLLFFMLKNSSNRVI 138 

AaAOS           TLFDVTKVEKKDLFTGTYMPSTELTGGHRVLSYLDPSEPKYAPLKNMVFFMLKNSIKKII 156 

AtAOS           VLFDVDKVEKKDLFTGTYMPSTELTGGYRILSYLDPSEPKHEKLKNLLFFLLKSSRNRIF 151 

LeAOS1          VLFDVSKVEKKDLFTGTFMPSTDLTGGYRVLSYLDPSEPNHAKLKKLMFYLLSSRRNEVI 130 

StAOS1          ILFDVSKVEKKDLFTGTFMPSTDLTGGYRVLSYLDPSEPNHAKLKKLMFYLLSSRRNEVI 157 

InAOS           TLFDPGKVEKRDLFTGTFMPSTELTGGYRILSYLDPSEPKHAQLKQLMFFLLSSRRGHVI 151 

StAOS2          VLFDVSKVEKKDLFTGTYMPSTELTGGYRVLSYLDPSEPNHEKLKKLMFFLLSSRRDHVI 146 

StAOS           VLFDVSKVEKKDLFTGTYMPSTELTGGYRVLSYLDPSEPNHEKLKKLMFFLLSSRRDHVI 146 

LeAOS2          VLFDASKVEKKDLFTGTFVPSTELTGGYRILSYLDPSEPNHEKLKKLMFFLLSSRRDHVI 177 

NaAOS           TLFDVSKVEKKDLFTGTFMPSTELTGGYRVLSYLDPSEPTHEKLKKLLFFLLSSRRDYII 142 

GmAOS           VLFDNSKVEKKDVFTGTFMPSTELTGGYRVLSYLDPSEPKHALLKQLMFFLLKSRRAHVI 153 

GmAOS1          ILFDNSKVDKRDVFTGTFMPSTQLTGGYRVLSYLDPSEPKHSLLKQLMFFLLKSRRAHVI 153 

MtAOS           VLFDASKIDKTDVFTGTYTPSTELTGGYRVLSYLDPSEPKHEQLKKLMFFLLKSRSRHVI 152 

CmAOS           VLFDHSKVEKKDLFTGTYMPVTELTGGYRVLSYIDPSEPDHAKLKQLIFFLLKHRRDKIM 153 

LuAOS           VLFDMSKVEKKDLFTGTYMPSTELTGGYRILSYLDPSEPNHTKLKQLLFNLIKNRRDYVI 158 

VvAOS           VLFDVSKVEKKDVFTGTFMPSTEFTGGFRVLSYLDPSEPDHTKLKRLLFFLLQSSRDRII 139 

HvAOS1          VLFDVDKVEKKNLFTGTYMPSTSLTGGFRVCAYLDPSEPTHTKVKQLLFSLLASRKDAVI 140 

HvAOS2          VLFDVTKVEKKNLFTGTYMPSTSLTGGFPVCSYLDPSEPTHTKVKQLLFSLLASRKDAFI 145 

OsAOS2          VLFDVAKVEKRDVFTGTFMPSTSLTGGYRVCAYLDPSEPNHAKIKQLLLSLLVSRKDAFV 138 

OsAOS3          VLFDVAKVEKRDVFTGTFMPSTSLTGGYRVCAYLDPSEPNHAKIKQLLLSLLVSRKDAFV 138 

OsAOS1          VLFDVAKVEKRDVFTGTFMPSTSLTGGYRVCAYLDPSEPNHAKIKQLLLSLLVSRKDAFV 138 

CsHPL1          ILFDTTKVEKRNILDGTYMPSLSFTGGIRTCAYLDPSETEHTVLKRLFLSFLASHHDRFI 139 

CmHPL           ILFDTAKVEKRNILDGTYMPSLSFTGNIRTCAYLDPSETEHSVLKRLFLSFLASRHDRFI 142 

VvHPL2          ILFDTSRIEKRNVLDGTYMPSTAFTGGYRVCAYLDPSEPNHALLKRLFTSSLAARHHNFI 85 

VvHPLE          ILFDTSRIEKRNVLDGTYMPSTAFTGGYRVCAYLDPSEPNHALLKRFFTSSLAARHHNFI 85 

VvHPLD          ILFDTSRIEKRNVLDGTYMPSTAFTGGYRVCAYLDPSEPNHALLKRLFMSSLAARHHNFI 85 

VvHPLF          ILFDTSKVEKRNVLDGTYMPSTAFTGGYRVCAYLDPSETNHALLKRLFMSALAARHHNFI 150 

VvHPLB          VLFDSSKVEKRNVLDGTFMPSTDLTGGYRVLAFLDPSEPKHDLLKRFSFSLLASRHRDFI 146 

VvHPLC          VLFDSSKVEKRNVFVGTFMPSTDLTGGYRVLPYLDPSEPKHDLLKRFSFSLLASRHRDFI 146 

MtHPL1          ILFDNAKVEKRDVLDGTFMPSTDFFGGYRTCAFQDTAEPSHSLLKRFIFHILSSKHDTFI 143 

MtHPL2          ILFDNKKVEKLNVLDGTFMPSTKFTGGYRVCAYLDTTEPNHALIKGFYLNTLLLRKDTFI 146 

StDES           CMFDNSLIDKTDTLGGTFKPGKEYYSGYRPVAFIDTKDPNHAALKGYILSAFAKRHNLFI 141 
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LeDES           CMFDNSLIDKTDTLGGTFKPGKEYYGGYRPVAFIDTKDPNHAALKGYILSSFAKRHNLFI 141 

CaDES           YMFDNTLIDKTDTLGGTFKPGKEYYGGYRPVAFVDTKDPNHAALKGYILSSFAKRHNLFI 141 

NtDES           YMFDNSLIDKTDTLGGTFKPGKEYYGGYRPVAFVDTSDPNHAALKNYILTSFAKRHNLFI 142 

StAOS3          ILFDNSQVDKENYFEGTFMSSPSFNGGYKVCGFLGTTDPKHTTLKGLFLSTLTRLHDKFI 154 

LeAOS3          ILFDNSQVDKENYFEGTFMSSPSFNGGYKVCGFLGTSDPKHTTLKGLFLSTLTRLHDKFI 154 

MsHPL1          HLFDMDLVDKRDVLVGDFVPSVEFTGNIRVGVYQDVSEPQHAKAKNFSMNILKQSSSIWV 156 

MsHPL3          HLFDMDLVDKRDVLVGDFVPSVEFTGNIRVGVYQDVSEPQHAKAKNFSMNILKQSSSIWV 156 

MsHPL2          HLFDMDLVDKRDVLVGDFVPSVEFTGNIRVGVYQDVSEPQHAKAKNFSMNILKQSSSIWV 156 

AtHPL           HLFDMDLVDKRDVLIGDFRPSLGFYGGVCVGVNLDTTEPKHAKIKGFAMETLKRSSKVWL 130 

LeHPL           HLFDMEIVEKANVLVGDFMPSVVYTGDMRVCAYLDTSEPKHAQIKNFSQDILKRGSKTWV 147 

StHPL           HLFDMEIVEKANVLVGDFMPSEVYTGDMRVCAYLDTSEPKHAQIKNFSLDILKRSSKTWV 151 

CaHPL           HLFDMEIVEKANVLVGDFMPSVVYTGDMRVCAYLDTSEPKHTQIKNFSLDILKRSSKTWV 151 

NaHPL           HLFDMEIVEKANVLVGDFMPSVKYTGDMRVCAYLDTSEPKHTQIKNFSLDILKRSSKTWV 127 

VvHPL1          FLFDMDVVEKKNVLVGDFMPSVKYTGDIRVCAYLDTAETQHARVKSFAMDILKRSSSIWA 130 

VvHPLA          FLFDMDVVEKKNVLVGDFMPSVKYTGDIRVCAYLDTAETQHARVKSFAMDILKRSSSIWA 97 

PgHPL           HLFDMEIVEKSNVLVGDFMPSVKYTGNIRVCAYLDTSEPQHAQVKNFAMDILKRSSKVWE 127 

HvHPL           ALFDPELVDKRDCLIGPYNPSDSFTGGTRVGVYLDTEEPEHERTKAFAMDLLRRSSRVWA 139 

ZmHPL           ALFDPDLVDKRDILIGPYNPGAGFTGGTRVGVYLDTQEEEHARVKTFAMDLLHRSARTWS 97 

MaHPL           ------VVEKKNILIGDYMPSLSFTGDTRVVVYLDPSEPDHARVKSFCLELLRRGAKTWV 54 

 

 

PaAOS1          PQFETTYT-ELFEGLEAELAKNG------KAAFNDVGEQAAFRFLGRAYFNSNPEET-KL 190 

AaAOS           PEFQKTYN-ELFDELEAELSNKG------KAFFNDVGEQTAFRFLGRAYLNTNPEET-KI 208 

AtAOS           PEFQATYS-ELFDSLEKELSLKG------KADFGGSSDGTAFNFLARAFYGTNPADT-KL 203 

LeAOS1          PEFHNSYS-ELFETLENELSTKG------KAGLNAANDQAAVNFLARSLYGINPQDT-EL 182 

StAOS1          PEFHNSYS-ELFETLENELSTKG------KARLNAANDQAAFNFLARSLYGINPQDT-KL 209 

InAOS           PEFHRSFT-EMFEGLEKEVASKG------KVGLNAANDQAAFNFLARSWFGVDPAGT-KI 203 

StAOS2          PKFHETYT-EFFETLDKEMAEKG------TAGLNSGNDQAAFNFLARSLFGVNPVET-KL 198 

StAOS           PKFHETYT-EFFETLDKEMAEKG------TAGLNSGNDQAAFNFLARSLFGVNPVET-KL 198 

LeAOS2          PEFHETYT-ELFETLDKEMEEKG------TVGFNSGSDQAAFNFLARSLFGVNPVET-KL 229 

NaAOS           PQFHESYT-ELFKTLEKEMEKNG------KADLNSANDQAAFNFLARSLYGANPVET-KL 194 

GmAOS           SEFHASYK-ELFHALEANLAEAG------KASFGDANDQAAFNFLSRSLFNSNPADT-KL 205 

GmAOS1          SEFHASYK-DLFHELEANLAEAG------KASFGDANDQAAFNFLARSLFNSNPADT-KL 205 

MtAOS           PEFQSCYR-EFFNALENQLAENG------HASFADNNDQAAFNFLNRALFGVNPVDT-EL 204 

CmAOS           PEFHSTFS-ELFETLEKDLAAAG------RAEYNASGEQAAFNFLARSLFGADPVDS-KL 205 

LuAOS           PEFSSSFT-DLCEVVEYDLATKG------KAAFNDPAEQAAFNFLSRAFFGVKPIDT-PL 210 

VvAOS           PEFHSCFS-ELSETLESELAAKG------KASFADPNDQASFNFLARALYGTKPADT-KL 191 

HvAOS1          PAFRSHFS-SLLATVESQLVLSG------KSNFNTLNDFTSFEFIADTYFGVLPSAS-DL 192 

HvAOS2          PAFRSHFS-SLLATVESQLLLSG------KSNFNTLNDATSFEFIGDGYFGVLPSAS-DL 197 

OsAOS2          PVFRSNFG-ALLDTVESQLASGGG-----KSDFTALNDATSFEFIGEAYFGVRPSASSSL 192 

OsAOS3          PVFRSNFG-ALLDTVESQLASGGG-----KSDFTALNDATSFEFIGEAYFGVRPSASSSL 192 

OsAOS1          PVFRSNFG-ALLDTVQSQLASGGG-----KSDFTALNDATSFEFIGKAYFGVRPSASSSL 192 

CsHPL1          PLFRSSLS-EMFVKLEDKLADKNK-----IADFNSISDAVSFDYVFRLFSD-GTP-DSTL 191 

CmHPL           PLFRSSLS-EMFVKLEDKLSEKKK-----IADFNSISDSMSFDYVFRLLSD-GTP-DSKL 194 

VvHPL2          PVFRSCLT-ELFTTLEDDVSRKGK------ADFNGISDNMSFNFVFKLFCD-KHPSETKL 137 

VvHPLE          PVFRSCLT-ELFTTLEDDVSRKGK------ADFNGISDNMSFNFVFKLFCD-KHPSETKL 137 

VvHPLD          SVFRSCLT-ELFITLEDDASRKGK------ADFNGISDNMSFNFVFKLFCD-KHPSETKL 137 

VvHPLF          PLFRSSLS-ELFTSLEDDISSKGE------ADFNDISDNMSFNFVFRLFCD-KYPSETAL 202 

VvHPLB          PVFRSGLP-DLFTTIEDDVSSKGK------ANFNNIADGMYFNFVFRLICG-KDPSDAKI 198 

VvHPLC          PVFRSGLP-DLFSTIEDDVSRKGK------ANFNDIADDMYFNFVFRLICG-KDPSDAKI 198 

MtHPL1          PLFQTNLT-EHFTDLEKELAGKHQ-----KASFNTSIGGITFNFLFKLITD-KNPSETKI 196 

MtHPL2          PLFKTILS-DGFNEIEDGLSSKSG-----KADFNSMVSVASFNFMFKLFCDDKNPSETIL 200 

StDES           PLFRNSLSDHLFNNLEKQVTEQGK------SDFNALLPTMTFNFIFRLLCDQTNPSDTVL 195 

LeDES           PLFRNTLSDHLFNNLEKQVTEQGK------ADFNALLPTMTFDFIFRLLCDQKNPSDTVL 195 

CaDES           PLFRNSLSDHLFNDLEKQVSEQGK------SDFNALLPNMTFGFIFRLLCDQTNPSDTVL 195 

NtDES           PLFRNSVSDHLFQNLEKQVSDQGK------SDFNALLPNMTFGFIFRLLCDQTNPSDTVL 196 

StAOS3          PIFTTSIT-QMFTSLEKELSEKGT------SYFNPMSDNLSFEFLFRLFCEGKNPVDTSV 207 

LeAOS3          PIFTTSIT-SMFTSLEKELSEKGT------SYFNPIGDNLSFEFLFRLFCEGKNPIDTSV 207 

MsHPL1          PELISNLD-IFLDQIEATLSNS------SSASYFSPLQKFLFTFLSKVLARADPSLDPKI 209 

MsHPL3          PELISNLD-IFLDQIEATLSNS------SSASYFSPLQKFLFTFLSKVLARADPSLDPKI 209 

MsHPL2          PELISNLD-IFLDQIEATLSKS------SSASYFSPLQQFLFTFLSKVLARADPSLDSKI 209 

AtHPL           QELRSNLN-IFWGTIESEISKN------GAASYIFPLQRCIFSFLCASLAGVDASVSPDI 183 

LeHPL           PTLLKELD-TMFTTFEADLSKS------NTASLLPALQKFLFNFFSLTILGADSSVSPEI 200 

StHPL           PTLLKELD-TMFTTFEADLSKS------KEASLLPALQKFLFNFFSLTLLGADPSVSPEI 204 

CaHPL           PTLVKELD-TLFGTFESDLSKS------KSASLLPALQKFLFNFFSLTFLGADPSASPEI 204 

NaHPL           PTLVNELN-SMFETFESDISKS------NSASLLPTMQKFLFNFFSLSLLGANPSASPEI 180 

VvHPL1          SEVVASLD-TMWDTIDAGVAKS------NSASYIKPLQRFIFHFLTKCLVGADPAVSPEI 183 

VvHPLA          SEVVASLD-TMWDTIDAGVAKS------NSASYIKPLQRFIFHFLTKCLVGADPAVSPEI 150 

PgHPL           SEVISNLD-TMWDTIESSLAKD------GNASVIFPLQKFLFNFLSKSIIGADPAASPQV 180 

HvHPL           PEFLEGVD-GMLAAIESDLAAG----KEGGASFLVPLQRCIFRFLCRSVASADPAAEGLV 194 

ZmHPL           ADFRASVG-AMLDAVDAEFGKDDGSDKKPSASYLVPLQQCIFRFLCKAFVGADPSADWLV 156 
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MaHPL           SSFLSNLD-VMLATIEQGIAKD------GSAGLFGPLQKCIFAFLCKSIIGADPSVSPDV 107 

 

 

PaAOS1          GTSAPTLISSWVLFNLAPTLDLGLP---WFLQEPLLHTFRLPAFLIKSTYNKLYDYFQSV 247 

AaAOS           GKDGPKLIGTWVLFNLGPLLRLGLP---WFVEEPLLHTFRLPAALVKKNYNKLYDFFESC 265 

AtAOS           KADAPGLITKWVLFNLHPLLSIGLP---RVIEEPLIHTFSLPPALVKSDYQRLYEFFLES 260 

LeAOS1          GTDGPKLIGKWVLFQLHPLLILGLP---KVLEDLVMHTFRLPPALVKKDYQRLYNFFYEN 239 

StAOS1          GTDGPKLIGKWVLFQLHPLLILGLP---KVLEDLVMHTFRLPPALVKKDYQRLYNFFYEN 266 

InAOS           GNDGPNLVGKWVVFNLHPLLVLGLP---KGLEEALLHTFRLPAALVKKDYQRLYEFFYAN 260 

StAOS2          GTDGPTLIGKWVLLQLHPVLTLGLP---KFLDDLILHTFRLPPFLVKKDYQRLYDFFYTN 255 

StAOS           GTDGPTLIGKWVLLQLHPVLTLGLP---KFLDDLILHTFRLPPFLVKKDYQRLYDFFYTN 255 

LeAOS2          GTDGPALIGKWILLQLHPVITLGLP---KFLDDVLLHTFRLPPILVKKDYQRLYDFFYTN 286 

NaAOS           GTDGPTLIGKWVLFQLHPLLTLGLP---KVLDDFLLHNFRLPPALVKKDYQRLYDFFYES 251 

GmAOS           GLDGPKIVQKWVLFQIGPILRLGLP---QFLEESTIRTFRLPFSLIKKDYQRLYDFFYES 262 

GmAOS1          GRDGPKIVQKWVLFQLGPILRLGLP---QFLEESTIRSFRLPFSLIQKDYQRLYDFFYQS 262 

MtAOS           GLDGPKMVQKWVLFQLGPVLKLGLP---KFVEDSMIHNFRLPFRLIKKDYQRLYDFFYAS 261 

CmAOS           GRDAPKLIAKWVLFQLGPVLSLGLP---KVVEELLLRTVRLPPALIKADYRRLYDFFYKS 262 

LuAOS           GKDAPSLISKWVLFNLAPILSVGLP---KEVEEATLHSVRLPPLLVQNDYHRLYEFFTSA 267 

VvAOS           GTDGPGLITTWVVFQLSPILTLGLP---KFIEEPLIHTFPLPAFLAKSSYQKLYDFFYDA 248 

HvAOS1          GTTGPAKAAKWLIFQLHPLVTFGLP---MILEEPLLHTVLLPPIFVSGDYKALYKYFYAA 249 

HvAOS2          GTTGPAKAAKWLIFQLHPLVTLGLP---MILEEPLLHTVHLPPFLVSGDYKALYKYFFAA 254 

OsAOS2          GTGGPTKAALWLLWQLAPLTTLGLP---MIIEDPLLHTLPLPPFLISSDYKALYAYFAAA 249 

OsAOS3          GTGGPTKAALWLLWQLAPLTTLGLP---MIIEDPLLHTLPLPPFLISSDYKALYAYFAAA 249 

OsAOS1          GTGGLDQGRLWLLWQLAPLTTLGLP---MIIEDPLLHTLPLPPFLISSDYKALYAYFAAA 249 

CsHPL1          AADGPGMFDLWLGLQLAPLASIGLPKIFSVFEDLIIHTIPLPFFPVKSRYRKLYKAFYSS 251 

CmHPL           AAEGPGMFDLWLVFQLAPLASIGLPKIFSVFEDLVIHTIPLPFFPVKSGYRKLYEAFYSS 254 

VvHPL2          GSNGPNLVTKWLFLQLAPFITLGLSMLPNVVEDLLLHTFPLPSLFVKSDYKKLYHAFYAS 197 

VvHPLE          GSNGPNLVTKWLFLQLAPLITLGLSMLPNVVEDLLLHTFPLPSLFVKSDYKKLYHAFYAS 197 

VvHPLD          GSNGPNLVTKWLFLQLAPLITLGLSMLPNVVEDLLLHTFPLPSLFVKSDYKNLYHAFYAS 197 

VvHPLF          GSQGPSIVTKWLFFQLAPLITLGLSLLPNFVEDLLLHTFPLPSIFVKSDYKKLYRAFYAS 262 

VvHPLB          RSEGPNIFSKWLFLQLSPLMTLGLSMLPNFIEDLLLHTFPLPPFLVKSDYNKLYKAFYES 258 

VvHPLC          RSEGPNIFLKWLFLQLSPLLTLGLSILPNFIDDLLLHTFPFPPFLVKSDYNKLYKAFYES 258 

MtHPL1          GDSGPTLVQTWLAAQLAPLATAGLPKIFNYLEDVLIRTIPIPAWTVKSSYNKLYEGLMEA 256 

MtHPL2          GDQGPKMFDTWLLFQLAPLATLGPPKIFNYLEDILLRTVPFPACLTRSSYKKLYEAFSTS 260 

StDES           GAQGPEHLRKWLFPQLIP--SLSAKKLPNIIEDTLFHNFLIPFGFIKSDYNKLVDAFSKS 253 

LeDES           GAQGPEHLRKWLFPQLIP--SLSAKKLPNIIEDMLFHNFLIPFGFIKSDYNKLVDAFSKS 253 

CaDES           GAQGPEHLRKWLFPQLIP--SLSARKLPSFIEDLLFHNFLIPFGFVKSDYQKLVDAFSKS 253 

NtDES           GAQGPEHLRKWLFPQLIP--SLSARKLPSFIEDLLFHNFLIPFGLVKSDYNKLVDAFSKN 254 

StAOS3          GTNGPKIVDKWVFLQLAPLISLGLKFVPNFLEDLVLHTFPLPYFLVKGDHQKLYNAFYNS 267 

LeAOS3          GPNGPKIVDKWVFLQLAPLISLGLKFVPNFLEDLVLHTFPLPYILVKRDHQKLYNAFYNS 267 

MsHPL1          AESGSSMLNKWLAVQLLPTVSVGTI---QPLEEIFLHSFSYPYALVSGDYKNLYNFIKQH 266 

MsHPL3          AESGSSMLNKWLAVQLLPTVSVGTI---QPLEEIFLHSFSYPYALVSGDYKNLYNFIKQH 266 

MsHPL2          AESGSSMLNKWLAVQLLPTVSVGTI---QPLEEIFLHSFSYPYALVSGDYNNLYNFIKQH 266 

AtHPL           AENGWKTINTWLALQVIPTAKLGVVP--QPLEEILLHTWPYPSLLIAGNYKKLYNFIDEN 241 

LeHPL           ANSGYIFLDSWLAIQLAPTVSIGVL---QPLEEILVHSFAYPFFLVKGNYEKLVQFVKNE 257 

StHPL           ANSGYIFLDSWLAIQLAPTVSIGVL---QPLEEILVHSFAYPFFLVKGNYEKLVQFVKNE 261 

CaHPL           ANSGFAYLDAWLAIQLAPTVSIGVL---QPLEEIFVHSFSYPYFLVRGGYEKLIKFVKSE 261 

NaHPL           ANSGYVMLDTWLAIQLAPTVSIGLL---QPLEEIFVHSFNYPFFLVKGSYEKLIQFVKNE 237 

VvHPL1          AESGYVMLDKWVFLQLLPTISVNFL---QPLEEIFLHSFAYPFFLVKGDYRKLYDFVEQH 240 

VvHPLA          AESGYVMLDKWVFLQLLPTISVNFL---QPLEEIFLHSFAYPFFLVKGDYRKLYEFVEQH 207 

PgHPL           AKSGYAMLDRWLALQLLPTINIGVL---QPLVEIFLHSWAYPFALVSGDYNKLYQFIEKE 237 

HvHPL           DRYGLFILDVWLGLQLLPTQKVGAIX--QPLEELLLHSFPFPSILAKPGYDLLYRFVAKH 252 

ZmHPL           DNFGFTILDIWLALQILPTQKIGLV---QPLEELLIHSFPLPSFLIWPGYYVLYRFIEKH 213 

MaHPL           GENGFVMLDKWLALQLLPTVKVGAIP--QPLEEILLHSFPLPFFLVSRDYRKLYEFVEKQ 165 

 

 

PaAOS1          ATPVMEQA-EKLGVPKDEAVHNILFAVCFNTFGGVKILFPNTLKWIGLAG-ENLHTQLAE 305 

AaAOS           SGEIIEHA-KSLGLEKDEAVHNILFTLCFNTFGGIKILFPNTLKWLGRAG-TNLHTQLAE 323 

AtAOS           AGEILVEA-DKLGISREEATHNLLFATCFNTWGGMKILFPNMVKRIGRAG-HQVHNRLAE 318 

LeAOS1          STSVLDEA-EKIGISREEACHNLLFATCFNSFGGIKIFFPNMLKWIGRAG-AKLHSQLAQ 297 

StAOS1          STSVLDEA-EKIGISREEACHNLLFATCFNSFGGIKIFFPNMLKWIGRAG-AKLHSQLAQ 324 

InAOS           STEILDEA-ENLGLSREEACHNLLFATCFNSFGGMKIFFPNMIKWIGRGG-AKLHAQLAR 318 

StAOS2          SASLFAEA-EKLGISKEEACHNLLFATCFNSFGGMKIFFPNMLKSIAKAG-VEVHTRLAN 313 

StAOS           SASLFAEA-EKLGISKEEACHNLLFATCFNSFGGMKIFFPNMLKSIAKAG-VEVHTRLAN 313 

LeAOS2          SANLFIEA-EKLGISKDEACHNLLFATCFNSFGGMKIFFPNMLKSIAKAG-VEIHTRLAN 344 

NaAOS           STAVLNEA-GNFGISRDEACHNLLFATCFNSFGGMKIFFPNMLKWIARAG-VELHIRLAN 309 

GmAOS           SGLVLDEA-ERLGITRDEACHNLLFATCFNSFGGMKLFFPNVLKWIGRAG-VKLHARLAE 320 

GmAOS1          SGSVLDEA-ERLGITRDEACHNLLFATCFNSFGGMKLFFPNVLKWIGRAG-VKLHARLAE 320 

MtAOS           SGFALEEA-ERLDVSKEEACHNLLFATCFNSFGGMKLFFPNLMKWIGRGG-VRLHTKLAT 319 

CmAOS           SEAVFEEA-DRLGISREEACHNLLFTTCFNSFGGMKIFFPNMIKWIGRAG-VNLHTRLAR 320 

LuAOS           AGSVLDEA-EQSGISRDEACHNILFAVCFNSWGGFKILFPSLMKWIGRAG-LELHTKLAQ 325 
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VvAOS           STHVLDEG-EKMGISREEACHNLLFATCFNSFGGMKIIFPTILKWVGRGG-VKLHTQLAQ 306 

HvAOS1          ATKALDMA-ESLGLNRDEACHNLLFATVFNSYGGLKVMLPGFLGRIAEAG-EKFHQRLAA 307 

HvAOS2          ATKALDTA-EGLGLKRDEACHNLLFATVFNSYGGLKVLLPGILARIADSG-EKFHKKLVT 312 

OsAOS2          ASQALDAA-EGLGLSREEACHNLLFATVFNSYGGFKLLLPQILSRVAQAG-EKLHERLAA 307 

OsAOS3          ASQALDAA-EGLGLSREEACHNLLFATVFNSYGGFKLLLPQILSRVAQAG-EKLHERLAA 307 

OsAOS1          ASQALDAA-EGLGLSREEACHNLLFATVFNSYGGFKLLLPQILSRVAQAG-EKLHERLAA 307 

CsHPL1          SGSFLDEA-EKQGIDREKACHNLVFLAGFNAYGGMKVLFPTILKWVGTGG-EDLHRKLAE 309 

CmHPL           SGSFLDEA-EKQGIDREKACHNLVFLAGFNAYGGMKVLFPTLLKWVGTAG-EDLHRKLAE 312 

VvHPL2          ASSILDEA-ESMGIKRDEACHNLVFLAGFNACGGMKTLFPALIKWVGLAG-EKLHRQLAD 255 

VvHPLE          ASSLLDEA-ESMGIKRDEACHNLVFLAGFNAYGGMKTLFPALIKWVGLAG-GKLHRQLAD 255 

VvHPLD          ASSILDEA-ESMGIKRDEACHNLVFLAGFNAYGGMKTLFPALIKWVGLAG-EKLHGQLAD 255 

VvHPLF          ASSILDEA-ESMGIKRDEACHNLVFLAGFNAYGGMKALFPSLIKWVGSAG-EKLHRELAD 320 

VvHPLB          ASSVLDEG-ERMGINRDEACHNLVFLAGFSTFGGMKVLFPPLIKWVGLAG-EKLHRELAD 316 

VvHPLC          ASSVLDEG-ERMGIKRDEACHNLVFLAGFNSFGGMKVFFPALIKWVGLAG-EKLHRELAD 316 

MtHPL1          GTTVLDEA-EKMGIKREEACHNLVFTLGFNAFGGLTNQFPILIKWVGLAG-ADLHKKLAD 314 

MtHPL2          ATTMLNEA-EKAGLKRSEALHNIIFTAGFNAYGGLKNQFPILFKWLGSSG-EELHKELAN 318 

StDES           AVSILDEA-EKLGIKREEAVQNILFLVGINMFAGLNAFSPHLFRFVGEAG-ASLHTQLAK 311 

LeDES           AVSMLDEA-EKLGIKREEAVQNILFLVGINMFAGLNAFFPHLFRFVGEAG-ASLHTQLAK 311 

CaDES           AVSMLDEA-EKLGIKREEAVHNMLFLVGINMFAGLNAFFPHLIRFVGEAG-PNLHTRLAN 311 

NtDES           AGSMLDEA-EKLGIKREEAVHNILFLVGINMFAGLNAFFPHLIRFVGEAG-PTLHARLAK 312 

StAOS3          MKDILDEA-EKLGVKREEACHNFIFLAGFNSYGGMKVFFPSLIKWIGTSG-PTLHTRLVK 325 

LeAOS3          MKDILDEA-EKLGVKRDEACHNFVFLAGFNSYGGLKVFFPSLIKWIGTSG-PSLHARLVK 325 

MsHPL1          GKEVIKNG-TEFGLSEDEAIHNLLFVLGFNSYGGFSIFLPKLIESITNGP-TGLQEKLRK 324 

MsHPL3          GKEVIKSG-TEFGLSEDEAIHNLLFVLGFNSYGGFSIFLPKLIESIANGP-TGLQEKLRK 324 

MsHPL2          GKEVIKSG-TEFGLSEDEAIHNLLFVLGFNSYGGFSIFLPKLIESIANGP-TGLQEKLRK 324 

AtHPL           AGDCLRLGQEEFRLTRDEAIQNLLFVLGFNAYGGFSVFLPSLIGRITGDN-SGLQERIRT 300 

LeHPL           AKEVLSRAQTEFQLTEQEAIHNLLFILGFNAFGGFSIFLPTLLGNLGDEKNADMQEKLRK 317 

StHPL           AKEVLNRAQTEFQLTEQEAIHNLLFILGFNAFGGFTIFLPTLLGNLGDEKNAEMQEKLRK 321 

CaHPL           AKEVLTRAQTDFQLTEQEAIHNLLFILGFNAFGGFTIFLPTLLGNLGDEKNAEMQEKLRK 321 

NaHPL           AKEVLNRGKSEFGLTEQEAIHNLLFILGFNAFGGFSIFLPTLLGNLGDEKNAELQEKLRN 297 

VvHPL1          GQAVLQRGETEFNLSKEETTHNLLFVLGFNAFGGFTIFFPSLLS-ALSGK-PELQAKLRE 298 

VvHPLA          GQAVLQRGETEFNLSKEETIHNLLFVLGFNAFGGFTIFFPSLLS-ALSGK-PELQAKLRE 265 

PgHPL           GREAVERAKAEFGLTHQEAIHNLLFILGFNAFGGFSIFLPTLLSNILSDT-TGLQDRLRK 296 

HvHPL           GAESVAVGVTNHGMSEKDAINNILFLLGFNAFGGFSVFLPFLILQIG-KD-AALRARLRD 310 

ZmHPL           GAEAVAYAEAQHGIGKKDAINNILFVLGFNAFGGFSVFLPFLVAKVG-GA-PALRERLRD 271 

MaHPL           GQEVVRRAETEHGLSKHDAINNILFVLGFNAFGGFSVFFPTLLTTIGRDK-TGLREKLKD 224 

 

 

PaAOS1          EIRGAIKSYGD-GNVTLEAIEQ-MPLTKSVVYESLRIEPPVPPQYGKAKSNFTIESHD-A 362 

AaAOS           EIRNAIKVHGG-GKVTMAAMEQ-MPLMKSVVYESLRIEPPVALQYGKAKKDMTIESHD-A 380 

AtAOS           EIRSVIKSNG--GELTMGAIEK-MELTKSVVYECLRFEPPVTAQYGRAKKDLVIESHD-A 374 

LeAOS1          EIRSVISSNSG--KVTMAAMEK-MPLMKSVVYESLRIEPPVASQYGRAKHDMVIESHD-A 353 

StAOS1          EIRSVISSNSG--KVTMAAMEK-MPLMKSVVYESLRIEPPVASQYGRAKHDMVIESHD-A 380 

InAOS           EIRSVVKSNGG--KVTMAGMEQ-MPLMKSVVYEALRIEPPVPAQYGRAKRDFVVESHD-A 374 

StAOS2          EIRSEVKSAGG--KITMSAMEK-MPLMKSVVYEALRVDPPVASQYGRAKQDLKIESHD-A 369 

StAOS           EIRSEVKSAGG--KITMSAMEK-MPLMKSVVYEALRVDPPVASQYGRAKQDLKIESHD-A 369 

LeAOS2          EIRSEVKSAGG--KITMSAMEK-MPLMKSVVYEALRVDPPVASQYGRAKQDLKIESHD-A 400 

NaAOS           EIRSAVKSAGG--KITMSAMEK-MPVMKSVVYEALRIDPPVASQYGRAKRDLMIESHD-G 365 

GmAOS           EIRSAVRSGGG--EISMAAMEK-MPLMKSVVYEAFRIDPPVALQFGRAKRDLIIESHD-H 376 

GmAOS1          EIRSAVRGAGG--EITMAAMEN-MPLMKSVVYEAFRIDPPVPLQFGRAKRDLIIESHD-H 376 

MtAOS           EIREAVRSAGG--EITMAAMEN-MPLMKSVVYEAFRIDPPVPLQFGRAKRDMVIENHE-N 375 

CmAOS           EIRTAVKANGG--KITMGAMEQ-MPLMKSVVYEALRIEPPVPVQYGRAKKDLVVESHD-A 376 

LuAOS           EIRSAIQSTGG-GKVTMAAMEQ-MPLMKSVVYETLRIEPPVALQYGKAKKDFILESHE-A 382 

VvAOS           EIRSVVKSNGG--KVTMASMEQ-MPLMKSTVYEAFRIEPPVALQYGKAKQDLVIESHD-S 362 

HvAOS1          EVRTAVADAGG--KVTIEALEK-MELTKSAVWEALRLEPPVKFQYGRAKVDMNIESHD-A 363 

HvAOS2          EIRAAVAEAGG--KVTIEALEK-MELTKSAVWEALRLDPAVKFQYGRAKADMNIESHD-A 368 

OsAOS2          EIRSAVADAGG--NVTLAALEK-MELTRSVVWEALRLDPPVRFQYGRAKADLEIESHD-A 363 

OsAOS3          EIRSAVADAGG--NVTLAALEK-MELTTSVVWEALRLDPPVRFQYGRAKADLEIESHD-A 363 

OsAOS1          EIRSAVADAGG--NVTLAALEK-MELTRSVVWEALRLDPPVRFQYGRAKADLEIESHD-A 363 

CsHPL1          EVRTTVKEEGG---LTFSALEK-MSLLKSVVYEALRIEPPVPFQYGKAKEDIVIQSHD-S 364 

CmHPL           EVRTTVKEEGG---LTFSALEK-MSLLKSVVYEALRIEPPVPFQYGKAKEDIVIQSHD-S 367 

VvHPL2          EIRSIVKAEGG---VTFAALDK-MALTKSVVYEALRIEPPVPFQYGKAKEDMVIHSHD-A 310 

VvHPLE          EIRSIVKAEGG---VTFAALDK-MALTKSVVYEALRIEPPVPFQYGKAKEDMVIHSHD-A 310 

VvHPLD          EIRSIVKAEGG---VTFAALDK-MALTKSVVYEALRIEPPVPFQYGKAKEDMVIHSHD-A 310 

VvHPLF          EIRTVVKAEGG---VSFAALEK-MSLTKSVVYEALRIDPPVPFQYGKAKEDMVIHSHD-A 375 

VvHPLB          EIRTVVKAEGG---VTFAALDK-MALTKSVVYEALRIGPPVPFQYGKAREDMVIHSHD-A 371 

VvHPLC          EIRTVIKAEGG---VTFAALDK-MALTKSMVYEALRIEPPVPFQYGKAREDMVIHSHD-A 371 

MtHPL1          EIRAIVREEGG---VNLYALDK-MTLTKSTVYEALRIEPAVPYQYAKAREDLVVQSHD-A 369 

MtHPL2          EIRTVVKQEGG---VTIQSLEK-MPLVKSVVYEAMRIEPAVPYQYAKAREDLIVKSHD-A 373 

StDES           EIRTVIKEEGGA--ITLSAINK-MSLVKSVVYETLRLRPPVPLQYGKAKKDFMVQSHD-A 367 

LeDES           EIRSVIKEEGGA--ITLSAINK-MSLVKSVVYETLRLRPPVPLQYGKAKKEFMVQSHD-A 367 
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CaDES           EIRTAIKEEGGA--ITLSAINK-MSLVKSVVYETLRLRPPVPLQYGKAKKDFMVQSHD-A 367 

NtDES           EIRTAIKEEGGA--VTLSAINK-MSLVESIVYETLRLRPPVPLQYGKAKKDFMVQSHD-A 368 

StAOS3          EIRTAVKEAGG---VTLSAIDK-MPLVKSVVYETLRMDPPVPFQTVKARKNIIVSNHE-A 380 

LeAOS3          EIRTAVKEAGG---VTLSAIDK-MPLVKSVVYETLRMDPPVPFQTVKARKNIIITNHE-S 380 

MsHPL1          EAREKGGS-----TLGFDSLKE-LELINSVVYETLRMNPPVPLQFGRARKDFQLSSYD-S 377 

MsHPL3          EAREKGGS-----TLGFDSLKE-LELINSVVYETLRMNPPVPLQFGRARKDFQLSSYD-F 377 

MsHPL2          EAREKGGS-----TLGFDSLKE-LELINSVVYETLRMNPPVPLQFGRARKDFQLSSYD-S 377 

AtHPL           EVRRVCGSG-S--DLNFKTVNE-MELVKSVVYETLRFNPPVPLQFARARKDFQISSHD-A 355 

LeHPL           EVRDKVGVN-PE-NLSFESVKE-MELVQSFVYETLRLSPPVPSQYARARKDFKLSSHD-S 373 

StHPL           EVRDKVGVN-PE-NLSFESVKE-MELVQSFVYETLRLTPPVPSQYARARKDFKLSSHD-S 377 

CaHPL           EVREKVGTN-QE-NLSFESVKE-MELVQSFVYESLRLSPPVPSQYARARKDFMLSSHD-S 377 

NaHPL           EVREKVGLK-TE-NLSFESVKE-MELVQSFVYETLRLSPPVPSQYARARKDFKLSSHD-S 353 

VvHPL1          EVRSKIKPG-T--NLTFESVKD-LELVHSVVYETLRLNPPVPLQYARARKDFQLSSHD-S 353 

VvHPLA          EVRSKIKPG-T--NLTFESVKD-LELVHSVVYETLRLNPPVPLQYARARKDFQLSSHD-S 320 

PgHPL           EVRAKGGP-----ALSFASVKE-MELVKSVVYETLRLNPPVPFQYARARKDFQLKSHD-S 349 

HvHPL           EVRAALDQH-DG-EVGFASVKG-MPLVRSTVYEVLRMNPPVPLQFGRARRDFVLRSHGGE 367 

ZmHPL           EVRRAMVGK-DG-EFGFATVREGMPLVRSTVYEMLRMQPPVPLQFGRARRDFVLRSHGGA 329 

MaHPL           EVRRVMKSRGEK-RPSFETVRE-MELVRSTVYEVLRLNPPVPLQYGRARTDFTLNSHD-A 281 

 

 

PaAOS1          TFEVKKGEMLFGYQPFATKDPKVFD-RPEEYVPDRFVGD-GEALLKYVWWSNGPETESPT 420 

AaAOS           VFKVKEGEMLFGYQPFATKDPKIFD-RPEESVPDRFVGE-GEKLLKYVTWSNGPETETPT 438 

AtAOS           AFKVKAGEMLYGYQPLATRDPKIFD-RADEFVPERFVGEEGEKLLRHVLWSNGPETETPT 433 

LeAOS1          SFEIKEGELLYGYQPFATKDPKIFD-RSEEFVADRFKGEEGEKLLKHVLWSNGSETENAS 412 

StAOS1          SFEIKEGELLYGFQPFATKDPKIFD-RSEEFVADRFIGEEGEKLLKHVLWSNGSETENPS 439 

InAOS           VFEVKEGEMLFGFQPFATKDPKIFD-RAEEFVPDRFTGENANELLSHVLWSNGPETESPT 433 

StAOS2          VFEVKKGEMLFGYQPFATKDPKIFD-RPEEFVADRFVGE-GEKLLKYVLWSNGPETESPT 427 

StAOS           VFEVKKGEMLFGYQPFATKDPKIFD-RPEEFVADRFVGEEGEKLLKYVLWSNGPETESPT 428 

LeAOS2          VFEVKKGEILFGYQPFATKDPKIFD-RPGEFVADRFVGEEGEKLLKHVLWSNGPETESPT 459 

NaAOS           VFEVKKGEMLFGYQPFATRDPKIFD-RPDEFVPDRFVGEEGEKLLKHVLWSNGPETESPT 424 

GmAOS           AFQVKEGEMLFGYQPFATKDPRIFE-RAEEFVGDRFVGEEGEKLLKHVLWSNGPETESPT 435 

GmAOS1          AFQVKEGEMLFGYQPFATKDPRIFE-RAEEFVGDRFVGEEGEKLLKHVLWSNGPETESPT 435 

MtAOS           GFLVKKGELLLGYQPFATKDPKIFE-RAEEFVADRFVGDEGEKLLKHVLWSNGPESQSPT 434 

CmAOS           AFEIKEGEVICGYQPFATRDPKIFD-RADELVPDRFTGE-GEELLKHVIWSNGPETQSPS 434 

LuAOS           AYQVKEGEMLFGYQPFATKDPKIFD-RPEEFVADRFVGE-GVKLMEYVMWSNGPETETPS 440 

VvAOS           VFEVKEGEMLFGYQPFATKDPKIFE-RSEEFVPDRFVGE-GEKLLKHVLWSNGPETENPT 420 

HvAOS1          VFAVQKGEMLFGYQPCATKDPRVFGSTAREFVGDRFVG-EGSKLLQYVYWSNGRETESPS 422 

HvAOS2          VFAVKKGEMLFGYQPCATKDPRVFGPTAREFVGDRFVGKEGSKLLKYVYWSNGRETESPS 428 

OsAOS2          SFAIKKGEMLFGYQPCATRDPRVFGATAREFVGDRFVGEEGRKLLQYVYWSNGRETENPS 423 

OsAOS3          SFAIKKGEMLFGYQPCATRDPRVFGATAREFVGDRFVGEEGRKLLQYVYWSNGRETENPS 423 

OsAOS1          SFAIKKGEMLFGYQPCATRDPRVFGATAREFVGDRFVGEEGRKLLQYVYWSNGRETENPS 423 

CsHPL1          CFKIKKGETIFGYQPFATKDPKIFK-DSEKFVGDRFVGEEGEKLLKYVYWSNERETVEPT 423 

CmHPL           SFKIKKGETIFGYQPFATKDPKIFK-DSEKFVGDRFVGEEGEKLLKYVYWSNERETVEPT 426 

VvHPL2          AFVIKKGEMIFGYQPFATKDPKVFD-NPEEFVAHRFMGD-GEKLLEYVYWSNGRESDDAT 368 

VvHPLE          AFEIKKGEMIFGYQPFATKDPKVFD-NPEEFVAHRFMGD-GEKLLEYVYWSNGRESDDPT 368 

VvHPLD          AFEIKKGEMIFGYQPFATKDPKVFD-NPEEFVAHRFMGD-GEKMLEYVYWSNGRESDDPT 368 

VvHPLF          AFEIKKGEMIFGYQPFATKDPKVFD-NPEEFMGNRFMGE-GERLLKYVYWSNGRESGNPT 433 

VvHPLB          AFEIKKGEMIFGYQPFATKDPKVFE-NPEDFVAHRFMGE-GEKLLKYVYWSNGRETDNPT 429 

VvHPLC          AFEIKKGEMIFGYQPFATKDPKVFE-NPEEFVAHRFMGE-GEKLLKYVYWSNGRETDNPT 429 

MtHPL1          SFEIKKGEMIFGYQPFATKDAKIFD-KPEDFIAERFIGD-GEKLLKHVFWSNGRETDEAT 427 

MtHPL2          AFEIKKGEMIFGYQPFATKDPRVFD-DPEVFVAKRFVGE-GEKLLKYVLWSNGKETEEPS 431 

StDES           SYKINKGQFVVGYQPMASRDPKIFA-NPDEFVPDRFMND-GEKMLKHVLWSNGRETENPA 425 

LeDES           SYKINKGQFVVGYQPMASRDPKIFA-NPDEFVPDRFMND-GEKMLKHVLWSNGRETESPA 425 

CaDES           SYKINKGQFLVGYNPMASRDPKIFA-NPDEFVPDRFMGD-GEKMLKHVLWSNGRETENPA 425 

NtDES           SYMIKKGQFLVGYQPMASRDPKIFD-KPDDFIPDRFMGE-GVKMLKHVLWSNGRETENPA 426 

StAOS3          SFLIKKDELIFGYQPLATKDSKVFK-NAEEFNPDRFVGY-GEKLLKYVYWSNGKETDNPT 438 

LeAOS3          SFLIKKDELIFGYQPLATKDSKVFK-NAEEFNPDRFVGG-GEKLLKYVYWSNGKEIDNPS 438 

MsHPL1          AFNVKKGELLCGFQKLVMRDPVVFD-EPEQFKPERFTKEKGAELLNYLYWSNGPQTGSPT 436 

MsHPL3          AFNVKKGELLCGFQKLVMRDPVVFD-EPEQFKPERFTKEKGAELLNYLYWSNGPQTGSPT 436 

MsHPL2          AFNVKKGELLCGFQKLIMRDPVVFD-EPEQFKPERFTKEKGAELLNYLYWSNGPQTGSPT 436 

AtHPL           VFEVKKGELLCGYQPLVMRDANVFD-EPEEFKPDRYVGETGSELLNYLYWSNGPQTGTPS 414 

LeHPL           VYEIKKGELLCGYQPLVMKDPKVFD-EPEKFVLERFTKEKGKELLNYLFWSNGPQTGRPT 432 

StHPL           VYEIKKGELLCGYRPLVMKDPKVLD-EPEKFVLERFTKEKGKELLNYLFWSNGPQTGRPT 436 

CaHPL           VYEIKKGELLCGYQPLVMKDPKVFD-EPEKFMLERFTKEKGKELLNYLFWSNGPQTGSPT 436 

NaHPL           VYEIKKGELLCGYQPLVMRDPKVFD-DPEKFVLERFTKEKGKELLNYLFWSNGPQTGRPT 412 

VvHPL1          VFEIKKGDLLCGFQKVAMTDPKIFD-DPETFVPDRFTKEKGRELLNYLFWSNGPQTGSPS 412 

VvHPLA          VFEIKKGDLLCGFQKVAMTDPKIFD-DPETFVPDRFTKEKGRELLNYLFWSNGPQTGSPS 379 

PgHPL           VFDVKKGELLCGYQKVVMTDPKVFD-EPESFNSDRFVQNS--ELLDYLYWSNGPQTGTPT 406 

HvHPL           GFSVAGGEMLCGYQPLAMRDPEVFE-RPEEFVADRFVGAGGEALLRYVYWSNGPETGEPA 426 

ZmHPL           AYQVSAGEVLCGYQPLAMRDPEVFE-RPEEFVPERFLGDEGARLLQHLFWSNGPETAQPG 388 

MaHPL           AFKVEKGELLCGYQPLVMRDPAVFD-DPETFAPERFMGS-GKELLKYVFWSNGPETGTPT 339 
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PaAOS1          VENKQCAGKDFVVLITRLFVIELFRRYDSFEIELGESPLG------AAVTLTFLKRASI- 473 

AaAOS           AGNKQCAGKDFVVLITRLFVIELFRRYDSFDIEVGASPLG------AKITLTSLKRARV- 491 

AtAOS           VGNKQCAGKDFVVLVARLFVIEIFRRYDSFDIEVGTSPLG------SSVNFSSLRKASF- 486 

LeAOS1          INNKQCAGKDFVVLVSRLLLVELFLRYDSFEIEVGASPLG------AAITLTSLRRASF- 465 

StAOS1          INNKQCAGKDFVVLVSRLLLVELFLRYDSFEIEVGASPLG------AAITLTSLRRASF- 492 

InAOS           VNNKQCAGKDFVVLVSRLMVVELFLRYDSFDIEVGTSPLG------ASVTVTSLKRASF- 486 

StAOS2          VGNKQCAGKDFVVMVSRLFVTEFFLRYDTFNVDVGKSALG------ASITITSLKKA--- 478 

StAOS           VGNKQCAGRDFVVMVSRLFVTEFFLRYDTFNVDVDKSALG------ASITITSLKKA--- 479 

LeAOS2          VGNKQCAGKDFVVMVSRLFVTEFFLRYGTLNVDVGTSALG------SSITITSLKKA--- 510 

NaAOS           VENKQCAGKDFVVLVSRLLVTEFFLRYDTLDIDVGTSPLG------AKITITSLKRA--- 475 

GmAOS           LGNKQCAGKDFVTLVSRLFVVEFFLRYDSFEIQVGTSPLG------SSVTITSLKRASF- 488 

GmAOS1          IGNKQCAGKDFVTLVSRLLVVEFFLRYDSFEIQVGTSPLG------SSVTITSLKRASF- 488 

MtAOS           VGNKQCAGKDFTTLISRLLVVELFLRYDSFEIQVGNSPLG------PSITLTSLKRSSF- 487 

CmAOS           VQNKQCAGKDFIVFISRLLVVELFLRYDSFDIEASNTPLGAAVTVSAAVTVTSLKKASF- 493 

LuAOS           VANKQCAGKDFVVMAARLFVVELFKRYDSFDIEVGTSSLG------ASITLTSLKRSTF- 493 

VvAOS           LGNKQCAGKDFVVLAARLFVVELFLRYDSFDIEVGTSLLG------SAINLTSLKRASF- 473 

HvAOS1          VDNKQCPGKNLVVLVGRLLVVELFLRYDTFTADVGVDLLG------PKVEFTGVTKATSG 476 

HvAOS2          VHNKQCPGKNLVVLVGRLLVVELFLRYDTFTAKVGLDLLG------TKVEFTGVTKATSG 482 

OsAOS2          VDNKQCPGKNLVVLVGRLLLVELFLRYDTFTAEA-----G------KKVVITGVTKASTS 472 

OsAOS3          VDNKQCPGKNLVVLVGRLLLVELFLRYDTFTAEA-----G------KKVVITGVTKASTS 472 

OsAOS1          VDNKQCPGKNLVVLVGRLLLVELFLRYDTFTAEA-----G------KKVVITGVTKASTS 472 

CsHPL1          AENKQCPGKNLVVMMGRIIVVEFFLRYDTFTVDVADLALG------PAVKFKSLTRATAS 477 

CmHPL           PENKQCPGKNLVVLIGRIMVVEFFLRYDTFTVEVADLPLG------PAVKFKSLTRATDM 480 

VvHPL2          VENKQCPGKDLVVLLSRVMLVEFFLHYDTFDIEYGTLLLG------SSVTFKSLTKQPTF 422 

VvHPLE          VENKQCPGKDLVVLLSRVMLVEFFLHYDTFDIECGTLLLG------SSVTFKSLTKQPTF 422 

VvHPLD          VENKQCPGKDLVVLLSRVMMVEFFLRYDTFNIECGTLLLG------SSVTFKSLTKQPTF 422 

VvHPLF          VENKQCAGKDLVLLLSRVMLVEFFLRYDTFDIESGTLLLG------SSVTFKSITKATDS 487 

VvHPLB          AENKQCSGKDLVVLISKLMLVEIFLRYDTFEVESGTMVLG------SAVLFKSLTKSSYT 483 

VvHPLC          AENKQCSGKDLVVLISRLMLVEIFLRYDTFEVESGTMLLG------SSLLFKSLTKTSYT 483 

MtHPL1          PDNKICPAKNLVVLLCRLYLVEFFLNYDTFTFDFKPSVLG------PTITIKSLVKASST 481 

MtHPL2          VGNKQCPGKNLVVLLCRLLLVEFFLRYDTFENETKNNAFG------AAVSITSLTKASSV 485 

StDES           PDNKQCPGKDLVHLLGRLILVEFFMRYDTFTVEITPLFRA------PNVAFKTLTKASK- 478 

LeDES           PDNKQCPGKDLVHLLGRLILVEFFIRYDTFTLEITPLFRA------PNVAFNTLTKASK- 478 

CaDES           PENKQCAGKDLVQLLGRLILVEFFMRYDTFTVEITPLFRA------PNVAIKTLTKATS- 478 

NtDES           PDNKQCAGKDLVHLLGRLMLVEFFLRYDTFTVEITPLFRA------PNVAIKTLTKAT-- 478 

StAOS3          VNDKQCPGKDLIVLLGRLLVVEFFMRYDTFEIEFGKLLLG------SKVTFKSLTKATS- 491 

LeAOS3          VNDKQCPGKDLIVLMGRLLVVEFFMRYDTFEVEFGKLLLG------SKVTFKSLTKATS- 491 

MsHPL1          VSNKQCAGKDIVTFTAALIVAHLLRRYDLIKGDG--------------SSITALQKAK-- 480 

MsHPL3          VSNKQCAGKDIVTFTAALIVAHLLRRYDLIKGDG--------------SSITALRKAK-- 480 

MsHPL2          VSNKQCAGKDIVTFTAALIVAHLLRRYDLIKGDG--------------SSITALRKAK-- 480 

AtHPL           ASNKQCAAKDIVTLTASLLVADLFLRYDTITGDS--------------GSIKAVVKAK-- 458 

LeHPL           ESNKQCAAKDMVTLTASLIVAYIFQKYDSVSFSS--------------GSLTSVKKAS-- 476 

StHPL           ESNKQCSAKEIVTLTASLIVAYIFQKYDSVSFSS--------------GSLTSVKKAS-- 480 

CaHPL           ESNKQCAAKDAVTLTASLIVAYIFQKYDSVSFSS--------------GSLTSVKKAC-- 480 

NaHPL           ESNKQCAAKDVVTLTASLIVAYIFQRYDSVSFSS--------------GSLTSVKKAS-- 456 

VvHPL1          DRNKQCAAKDYVTMTAVLFVTHMFQRYDSVTASG--------------SSITAVEKAN-- 456 

VvHPLA          DRNKQCAAKDYVTMTAVLFVTHMFQRYDSVTASG--------------SSITAVEKAN-- 423 

PgHPL           ESNKQCAAKDYVTLTACLFVAYMFRRYNSVTGSS--------------SSITAVEKAN-- 450 

HvHPL           LGNKQCAAKDVVIATACMLVAELFRRYDDFECTG--------------TAFTSLKKRPQP 472 

ZmHPL           PGNKQCAAKEVVVDTACMLLAELFRRYDDFEVEG--------------TSFTKLVKR-QA 433 

MaHPL           PANKQCAAKDYVVETACLLMAEIFYRYDEFVCAD--------------DAIS-VTKLDRA 384 

 

 

PaAOS1          --------------- 

AaAOS           --------------- 

AtAOS           --------------- 

LeAOS1          --------------- 

StAOS1          --------------- 

InAOS           --------------- 

StAOS2          --------------- 

StAOS           --------------- 

LeAOS2          --------------- 

NaAOS           --------------- 

GmAOS           --------------- 

GmAOS1          --------------- 

MtAOS           --------------- 

CmAOS           --------------- 

LuAOS           --------------- 

VvAOS           --------------- 
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HvAOS1          PGAV----------- 480 

HvAOS2          VADAV---------- 487 

OsAOS2          AVNRTA--------- 478 

OsAOS3          AVNRTA--------- 478 

OsAOS1          AVNRTA--------- 478 

CsHPL1          V-------------- 478 

CmHPL           V-------------- 481 

VvHPL2          DHKSIKHVS------ 431 

VvHPLE          DHKSIKHVS------ 431 

VvHPLD          DHKSITHVS------ 431 

VvHPLF          --------------- 

VvHPLB          --------------- 

VvHPLC          --------------- 

MtHPL1          V-------------- 482 

MtHPL2          --------------- 

StDES           --------------- 

LeDES           --------------- 

CaDES           --------------- 

NtDES           --------------- 

StAOS3          --------------- 

LeAOS3          --------------- 

MsHPL1          --------------- 

MsHPL3          --------------- 

MsHPL2          --------------- 

AtHPL           --------------- 

LeHPL           --------------- 

StHPL           --------------- 

CaHPL           --------------- 

NaHPL           --------------- 

VvHPL1          --------------- 

VvHPLA          --------------- 

PgHPL           --------------- 

HvHPL           QPSS----------- 476 

ZmHPL           SPSVAQAAAAAGAQQ 448 

MaHPL           REWE----------- 388 

 

 

Figure C.3 Multiple alignment of CYP74 enzymes polypeptide sequences 
Multiple alignment sequence of CYP74 enzymes family member polypeptide sequences to generate cladogram 
diagram relationship (figure 3.5). Deduce amino acid sequences of CYP74 enzymes members is a collection of 
previously identified in other species (Howe and Schilmiller, 2002; Mei et al., 2006; Stumpe and Feussner, 2006; 
Kongrit et al., 2007; Pajerowska-Mukhtar et al., 2008; Stumpe et al., 2008; Wu et al., 2008; Podolyan, 2010; Zhu 
et al., 2012). Sequence details a shown on the Table 3.3  

  



 188 

C.4 Multiple alignment of CYP74A enzymes polypeptide sequences  

 

HvAOS1          ----------MNQSAI-------------------------------------------- 

HvAOS2          ----------MNQSGMA------------------------------------------- 

OsAOS2          ----------ME------------------------------------------------ 

OsAOS3          ----------ME------------------------------------------------ 

OsAOS1          ----------ME------------------------------------------------ 

PaAOS1          ------------------------------------------------------------ 

AaAOS           ----------MSTSSLT-FP-SLHHHRKNNLPTSKTTIHRR-----------RPTTI--- 

LeAOS1          ----------MASTSLS-LP-SL----KLQFPSHTSSSSRK--NSSSYRVSIRPIQA--- 

StAOS1          ----------MASTSLS-LP-SL----KLQFPSHKSSSSRK--NSSSHRVSIRPIQA--- 

InAOS           ----------MASSSL-----AV----HFQIPSQKSSLTLK---PSSRRFKICPVSA--- 

LeAOS2          MA-------LTLSFSLP-LP-SL----HQKIPSKYS--------------TFRPIIV--- 

StAOS2          MA-------LTLSFSLP-LP-SL----HQQFPSKYS--------------TFRPIIV--- 

StAOS           ----------MASFSLP-LP-SL----HQQFPSKYS--------------TFRPIIV--- 

NaAOS           MAVATATATLSSSSSLP-FH-SL----HQQFPSKY--------------FTVRPITV--- 

VvAOS           ----------MASPSLT-FP-SL----QLQFPTHTKSS-----KPSKHKLIVRPIFA--- 

MtAOS           ----------MASSTLS-TP-SPNLLKHQNRPSSTTSSRRS-------STFLPPIRS--- 

GmAOS           MAS-------SASTTLS-SP-FL----RLEFPSSTKQRSS------------ISIRA--- 

GmAOS1          MAS-------SASTTLS-SP-FL----RLELPSRTKKRSSS-------IIPVPSIRA--- 

CmAOS           ----------MSSIVIP----SLQ--PHLRFPSSQETPQRS--RSRVGFVSIRPIYATDG 

LuAOS           ----------MASSALNNLV-AVN--PNTLSPSPKSTPLPNTFSNLRRVSAFRPIKA--- 

AtAOS           ----------MASISTP-FPISL----HPK-------TVRS--KPLKFRVLTRPIKA--- 

StAOS3          ----------MA------------------------------------------------ 

LeAOS3          ----------MA------------------------------------------------ 

                                                                             

 

HvAOS1          ------------------------------GSLVPRQAPGSYGLPFVSAIRDRLDFYYFQ 

HvAOS2          --------------------------RSDEGSLVPREVPGSYGLPFVSAIRDRLDFYYFQ 

OsAOS2          ----------------------------LGVPLPRRPVPGSYGVPFVSAVRDRLDFYYLQ 

OsAOS3          ----------------------------LGVPLPRRPVPGSYGVPFVSAVRDRLDFYYLQ 

OsAOS1          ----------------------------LGVPLPRRPVPGSYGVPFVSAVRDRLDFYYLQ 

PaAOS1          ---------------------------MDPSSKPLREIPGSYGIPFFQPIKDRLEYFYGT 

AaAOS           -RFSATSPD-TTTTTTTT------GSNTDNKNLPIRPIPGSYGIPFYQPLKDRFEYFYGP 

LeAOS1          -SVSEIPPY---ISSPSQSPSSSSSPPVKQAKLPAQKVPGDYALPLVGPWKDRLDYFYNQ 

StAOS1          -SVSERPPY---ISSPSPSP----SPPVKQAKLPTRKVPGDYGLPLVGPWKDRLDYFYNQ 

InAOS           -TVSDTPP----SVSLSP----------VPEKLPKRKIPGDYGLPLIGPWKDRLDYFYNQ 

LeAOS2          -SLSDKSTI---EIT-------------QPIKLSTRTIPGDYGLPGIGPWKDRLDYFYNQ 

StAOS2          -SLSEKPTI---VVT-------------QPTKLPTRTIPGDYGLPGIGPWKDRLDYFYNQ 

StAOS           -SLSEKPTI---VVT-------------QPTKLPTRTIPGDYGLPGIGPWKDRLDYFYNQ 

NaAOS           -SLSEKIP----AVTQSS----------EFTKLPIRTIPGDYGLPLIGPWKDRQDYFYNQ 

VvAOS           -SVSEKPSV---PVSQSQ----------VTPPGPIRKIPGDYGLPFIGPIKDRLDYFYNQ 

MtAOS           -SVSEKPPF---QVSISQ-P--------QTTKLPIRKIPGDYGIPFIQPYKDRLDYFYNQ 

GmAOS           -SVSEKPPL--PAVSVTS-P--------EPSKLPIRKIPGDCGFPVIGPFKDRQDYFYKQ 

GmAOS1          -SVSEKPPL--PAVSVTS-P--------EPSKLPIRKIPGDCGFPVIGPLKDRQDYFYKQ 

CmAOS           VSSSSSSSLQVPQRIVSP-P--------EPTKLPLRKVPGDYGPPMFGALKDRHDYFYNQ 

LuAOS           -SLFGDSPIKIPGITSQP-P-----PSSDETTLPIRQIPGDYGLPGIGPIQDRLDYFYNQ 

AtAOS           -SGSETPDL---TVATRT----------GSKDLPIRNIPGNYGLPIVGPIKDRWDYFYDQ 

StAOS3          -NTKDSYHI--ITMDTKE-S--------SIPNLPMKEIPGDYGVPFLGAIKDRYDFHYNQ 

LeAOS3          -NTKDSYHI--ITMDTKE-S--------SIPSLPMKEIPGDYGVPFFGAIKDRYDFHYNQ 

 

 

HvAOS1          -GEAKYFESRVEKHGSTVLRINVPPGPFMARDPRVVAVLDAKSFPVLFDVDKVEKKNLFT 

HvAOS2          -GQDKYFESRVEKYGSTVVRINVPPGPFMARDPRVVAVLDAKSFPVLFDVTKVEKKNLFT 

OsAOS2          -GQDKYFESRAERYGSTVVRINVPPGPFMARDPRVVALLDAKSFPVLFDVAKVEKRDVFT 

OsAOS3          -GQDKYFESRAERYGSTVVRINVPPGPFMAREPRVVALLDAKSFPVLFDVAKVEKRDVFT 

OsAOS1          -GQDKYFESRAERYGSTVVRINVPPGPFMARDPRVVALLDAKSFPVLFDVAKVEKRDVFT 

PaAOS1          GGRDEYFRSRMQKYQSTVFRANMPPGPFVSSNPKVIVLLDAKSFPILFDVSKVEKKDLFT 

AaAOS           GGRDEFFKTRVQKHQSTVFRTNMPPGPFISKNPNVVVLLDAKSFPTLFDVTKVEKKDLFT 

LeAOS1          -GKNEFFKSRIQKHQSTVFRTNMPPGPFISFNPNVVVLLDGKSFPVLFDVSKVEKKDLFT 

StAOS1          -GKNEFFKSRIQKHQSTVFRTNMPPGPFISFNPNVVVLLDGKSFPILFDVSKVEKKDLFT 

InAOS           -GREEFFRSRVQKYGSTVFRTNMPPGPFISFSPNVVVLLDGKSFPTLFDPGKVEKRDLFT 

LeAOS2          -GKNDFFESRIAKYKSTIFRTNMPPGPFITSNPKVIVLLDGKSFPVLFDASKVEKKDLFT 

StAOS2          -GKDEFFESRVVKYKSTIFRTNMPPGPFISSNPKVIVLLDGKSFPVLFDVSKVEKKDLFT 
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StAOS           -GKDEFFESREVKYKSTIFRTNMPPGPFISSNPKVIVLLDGKSFPVLFDVSKVEKKDLFT 

NaAOS           -GKEEFFRSRIQKYKSTVFKTNMPPGNFISSNPNVVVLLDGKSFPTLFDVSKVEKKDLFT 

VvAOS           -GREEFFRSRAQKHQSTVFRSNMPPGPFISSNSKVIVLLDGKSFPVLFDVSKVEKKDVFT 

MtAOS           -GRDEYFKSRIQKYQSTIFRTNVPPGPFIAQNPNVVVLLDGKSFPVLFDASKIDKTDVFT 

GmAOS           -GRDEFFKSRIQKYQSTVFRTNMPPGPFLAPDPNVVVLLDAKSFPVLFDNSKVEKKDVFT 

GmAOS1          -GRDEFFKSRIQKYQSTVFRTNMPPGPFLAPNPNVVVLLDAKTFPILFDNSKVDKRDVFT 

CmAOS           -GREEYLKSRMLRYESTVYRTNMPPGPFITSDSRVVVLLDGKSFPVLFDHSKVEKKDLFT 

LuAOS           -GREEFFKSRLQKYKSTVYRANMPPGPFIASNPRVIVLLDAKSFPVLFDMSKVEKKDLFT 

AtAOS           -GAEEFFKSRIRKYNSTVYRVNMPPGAFIAENPQVVALLDGKSFPVLFDVDKVEKKDLFT 

StAOS3          -GADEFFRSRMEKHDSTIFRTNVPPGPFNARNSKVVVLVDAVSYPILFDNSQVDKENYFE 

LeAOS3          -GADEFFRSRMKKYDSTVFRTNVPPGPFNARNSKVVVLVDAVSYPILFDNSQVDKENYFE 

 

 

HvAOS1          GTYMPSTSLTGGFRVCAYLDPSEPTHTKVKQLLFSLLASRKDAVIPAFRSHFSSLLATVE 

HvAOS2          GTYMPSTSLTGGFPVCSYLDPSEPTHTKVKQLLFSLLASRKDAFIPAFRSHFSSLLATVE 

OsAOS2          GTFMPSTSLTGGYRVCAYLDPSEPNHAKIKQLLLSLLVSRKDAFVPVFRSNFGALLDTVE 

OsAOS3          GTFMPSTSLTGGYRVCAYLDPSEPNHAKIKQLLLSLLVSRKDAFVPVFRSNFGALLDTVE 

OsAOS1          GTFMPSTSLTGGYRVCAYLDPSEPNHAKIKQLLLSLLVSRKDAFVPVFRSNFGALLDTVQ 

PaAOS1          GTYMPSTKLTGGYRVLSYLDPSEPRHAQLKNLLFFMLKNSSNRVIPQFETTYTELFEGLE 

AaAOS           GTYMPSTELTGGHRVLSYLDPSEPKYAPLKNMVFFMLKNSIKKIIPEFQKTYNELFDELE 

LeAOS1          GTFMPSTDLTGGYRVLSYLDPSEPNHAKLKKLMFYLLSSRRNEVIPEFHNSYSELFETLE 

StAOS1          GTFMPSTDLTGGYRVLSYLDPSEPNHAKLKKLMFYLLSSRRNEVIPEFHNSYSELFETLE 

InAOS           GTFMPSTELTGGYRILSYLDPSEPKHAQLKQLMFFLLSSRRGHVIPEFHRSFTEMFEGLE 

LeAOS2          GTFVPSTELTGGYRILSYLDPSEPNHEKLKKLMFFLLSSRRDHVIPEFHETYTELFETLD 

StAOS2          GTYMPSTELTGGYRVLSYLDPSEPNHEKLKKLMFFLLSSRRDHVIPKFHETYTEFFETLD 

StAOS           GTYMPSTELTGGYRVLSYLDPSEPNHEKLKKLMFFLLSSRRDHVIPKFHETYTEFFETLD 

NaAOS           GTFMPSTELTGGYRVLSYLDPSEPTHEKLKKLLFFLLSSRRDYIIPQFHESYTELFKTLE 

VvAOS           GTFMPSTEFTGGFRVLSYLDPSEPDHTKLKRLLFFLLQSSRDRIIPEFHSCFSELSETLE 

MtAOS           GTYTPSTELTGGYRVLSYLDPSEPKHEQLKKLMFFLLKSRSRHVIPEFQSCYREFFNALE 

GmAOS           GTFMPSTELTGGYRVLSYLDPSEPKHALLKQLMFFLLKSRRAHVISEFHASYKELFHALE 

GmAOS1          GTFMPSTQLTGGYRVLSYLDPSEPKHSLLKQLMFFLLKSRRAHVISEFHASYKDLFHELE 

CmAOS           GTYMPVTELTGGYRVLSYIDPSEPDHAKLKQLIFFLLKHRRDKIMPEFHSTFSELFETLE 

LuAOS           GTYMPSTELTGGYRILSYLDPSEPNHTKLKQLLFNLIKNRRDYVIPEFSSSFTDLCEVVE 

AtAOS           GTYMPSTELTGGYRILSYLDPSEPKHEKLKNLLFFLLKSSRNRIFPEFQATYSELFDSLE 

StAOS3          GTFMSSPSFNGGYKVCGFLGTTDPKHTTLKGLFLSTLTRLHDKFIPIFTTSITQMFTSLE 

LeAOS3          GTFMSSPSFNGGYKVCGFLGTSDPKHTTLKGLFLSTLTRLHDKFIPIFTTSITSMFTSLE 

 

 

HvAOS1          SQLVL-SGKSNFNTLNDFTSFEFIADTYF-GVLPS-ASDLGTTGPAKAAKWLIFQLHPLV 

HvAOS2          SQLLL-SGKSNFNTLNDATSFEFIGDGYF-GVLPS-ASDLGTTGPAKAAKWLIFQLHPLV 

OsAOS2          SQLASGGGKSDFTALNDATSFEFIGEAYF-GVRPSASSSLGTGGPTKAALWLLWQLAPLT 

OsAOS3          SQLASGGGKSDFTALNDATSFEFIGEAYF-GVRPSASSSLGTGGPTKAALWLLWQLAPLT 

OsAOS1          SQLASGGGKSDFTALNDATSFEFIGKAYF-GVRPSASSSLGTGGLDQGRLWLLWQLAPLT 

PaAOS1          AELAK-NGKAAFNDVGEQAAFRFLGRAYF-NSNPE-ETKLGTSAPTLISSWVLFNLAPTL 

AaAOS           AELSN-KGKAFFNDVGEQTAFRFLGRAYL-NTNPE-ETKIGKDGPKLIGTWVLFNLGPLL 

LeAOS1          NELST-KGKAGLNAANDQAAVNFLARSLY-GINPQ-DTELGTDGPKLIGKWVLFQLHPLL 

StAOS1          NELST-KGKARLNAANDQAAFNFLARSLY-GINPQ-DTKLGTDGPKLIGKWVLFQLHPLL 

InAOS           KEVAS-KGKVGLNAANDQAAFNFLARSWF-GVDPA-GTKIGNDGPNLVGKWVVFNLHPLL 

LeAOS2          KEMEE-KGTVGFNSGSDQAAFNFLARSLF-GVNPV-ETKLGTDGPALIGKWILLQLHPVI 

StAOS2          KEMAE-KGTAGLNSGNDQAAFNFLARSLF-GVNPV-ETKLGTDGPTLIGKWVLLQLHPVL 

StAOS           KEMAE-KGTAGLNSGNDQAAFNFLARSLF-GVNPV-ETKLGTDGPTLIGKWVLLQLHPVL 

NaAOS           KEMEK-NGKADLNSANDQAAFNFLARSLY-GANPV-ETKLGTDGPTLIGKWVLFQLHPLL 

VvAOS           SELAA-KGKASFADPNDQASFNFLARALY-GTKPA-DTKLGTDGPGLITTWVVFQLSPIL 

MtAOS           NQLAE-NGHASFADNNDQAAFNFLNRALF-GVNPV-DTELGLDGPKMVQKWVLFQLGPVL 

GmAOS           ANLAE-AGKASFGDANDQAAFNFLSRSLF-NSNPA-DTKLGLDGPKIVQKWVLFQIGPIL 

GmAOS1          ANLAE-AGKASFGDANDQAAFNFLARSLF-NSNPA-DTKLGRDGPKIVQKWVLFQLGPIL 

CmAOS           KDLAA-AGRAEYNASGEQAAFNFLARSLF-GADPV-DSKLGRDAPKLIAKWVLFQLGPVL 

LuAOS           YDLAT-KGKAAFNDPAEQAAFNFLSRAFF-GVKPI-DTPLGKDAPSLISKWVLFNLAPIL 

AtAOS           KEAFP-LRESGFRRFQRRNRLLFLGSSFL-RDESR-RYKLKADAPGLITKWVLFNLHPLL 

StAOS3          KELSE-KGTSYFNPMSDNLSFEFLFRLFCEGKNPV-DTSVGTNGPKIVDKWVFLQLAPLI 

LeAOS3          KELSE-KGTSYFNPIGDNLSFEFLFRLFCEGKNPI-DTSVGPNGPKIVDKWVFLQLAPLI 

 

 

HvAOS1          TFGL---PMILEEPLLHTVLLPPIFVSGDYKALYKYFYAAATKALDMAESLGLNRDEACH 

HvAOS2          TLGL---PMILEEPLLHTVHLPPFLVSGDYKALYKYFFAAATKALDTAEGLGLKRDEACH 

OsAOS2          TLGL---PMIIEDPLLHTLPLPPFLISSDYKALYAYFAAAASQALDAAEGLGLSREEACH 

OsAOS3          TLGL---PMIIEDPLLHTLPLPPFLISSDYKALYAYFAAAASQALDAAEGLGLSREEACH 
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OsAOS1          TLGL---PMIIEDPLLHTLPLPPFLISSDYKALYAYFAAAASQALDAAEGLGLSREEACH 

PaAOS1          DLGL---PWFLQEPLLHTFRLPAFLIKSTYNKLYDYFQSVATPVMEQAEKLGVPKDEAVH 

AaAOS           RLGL---PWFVEEPLLHTFRLPAALVKKNYNKLYDFFESCSGEIIEHAKSLGLEKDEAVH 

LeAOS1          ILGL---PKVLEDLVMHTFRLPPALVKKDYQRLYNFFYENSTSVLDEAEKIGISREEACH 

StAOS1          ILGL---PKVLEDLVMHTFRLPPALVKKDYQRLYNFFYENSTSVLDEAEKIGISREEACH 

InAOS           VLGL---PKGLEEALLHTFRLPAALVKKDYQRLYEFFYANSTEILDEAENLGLSREEACH 

LeAOS2          TLGL---PKFLDDVLLHTFRLPPILVKKDYQRLYDFFYTNSANLFIEAEKLGISKDEACH 

StAOS2          TLGL---PKFLDDLILHTFRLPPFLVKKDYQRLYDFFYTNSASLFAEAEKLGISKEEACH 

StAOS           TLGL---PKFLDDLILHTFRLPPFLVKKDYQRLYDFFYTNSASLFAEAEKLGISKEEACH 

NaAOS           TLGL---PKVLDDFLLHNFRLPPALVKKDYQRLYDFFYESSTAVLNEAGNFGISRDEACH 

VvAOS           TLGL---PKFIEEPLIHTFPLPAFLAKSSYQKLYDFFYDASTHVLDEGEKMGISREEACH 

MtAOS           KLGL---PKFVEDSMIHNFRLPFRLIKKDYQRLYDFFYASSGFALEEAERLDVSKEEACH 

GmAOS           RLGL---PQFLEESTIRTFRLPFSLIKKDYQRLYDFFYESSGLVLDEAERLGITRDEACH 

GmAOS1          RLGL---PQFLEESTIRSFRLPFSLIQKDYQRLYDFFYQSSGSVLDEAERLGITRDEACH 

CmAOS           SLGL---PKVVEELLLRTVRLPPALIKADYRRLYDFFYKSSEAVFEEADRLGISREEACH 

LuAOS           SVGL---PKEVEEATLHSVRLPPLLVQNDYHRLYEFFTSAAGSVLDEAEQSGISRDEACH 

AtAOS           SIGL---PRVIEEPLIHTFSLPPALVKSDYQRLYEFL-RIRGEILVEADKLGISREEATH 

StAOS3          SLGLKFVPNFLEDLVLHTFPLPYFLVKGDHQKLYNAFYNSMKDILDEAEKLGVKREEACH 

LeAOS3          SLGLKFVPNFLEDLVLHTFPLPYILVKRDHQKLYNAFYNSMKDILDEAEKLGVKRDEACH 

 

 

HvAOS1          NLLFATVFNSYGGLKVMLPGFLGRIAEAGEKFHQRLAAEVRTAVADAG-GKVTIEALEKM 

HvAOS2          NLLFATVFNSYGGLKVLLPGILARIADSGEKFHKKLVTEIRAAVAEAG-GKVTIEALEKM 

OsAOS2          NLLFATVFNSYGGFKLLLPQILSRVAQAGEKLHERLAAEIRSAVADAG-GNVTLAALEKM 

OsAOS3          NLLFATVFNSYGGFKLLLPQILSRVAQAGEKLHERLAAEIRSAVADAG-GNVTLAALEKM 

OsAOS1          NLLFATVFNSYGGFKLLLPQILSRVAQAGEKLHERLAAEIRSAVADAG-GNVTLAALEKM 

PaAOS1          NILFAVCFNTFGGVKILFPNTLKWIGLAGENLHTQLAEEIRGAIKSYGDGNVTLEAIEQM 

AaAOS           NILFTLCFNTFGGIKILFPNTLKWLGRAGTNLHTQLAEEIRNAIKVHGGGKVTMAAMEQM 

LeAOS1          NLLFATCFNSFGGIKIFFPNMLKWIGRAGAKLHSQLAQEIRSVISSNS-GKVTMAAMEKM 

StAOS1          NLLFATCFNSFGGIKIFFPNMLKWIGRAGAKLHSQLAQEIRSVISSNS-GKVTMAAMEKM 

InAOS           NLLFATCFNSFGGMKIFFPNMIKWIGRGGAKLHAQLAREIRSVVKSNG-GKVTMAGMEQM 

LeAOS2          NLLFATCFNSFGGMKIFFPNMLKSIAKAGVEIHTRLANEIRSEVKSAG-GKITMSAMEKM 

StAOS2          NLLFATCFNSFGGMKIFFPNMLKSIAKAGVEVHTRLANEIRSEVKSAG-GKITMSAMEKM 

StAOS           NLLFATCFNSFGGMKIFFPNMLKSIAKAGVEVHTRLANEIRSEVKSAG-GKITMSAMEKM 

NaAOS           NLLFATCFNSFGGMKIFFPNMLKWIARAGVELHIRLANEIRSAVKSAG-GKITMSAMEKM 

VvAOS           NLLFATCFNSFGGMKIIFPTILKWVGRGGVKLHTQLAQEIRSVVKSNG-GKVTMASMEQM 

MtAOS           NLLFATCFNSFGGMKLFFPNLMKWIGRGGVRLHTKLATEIREAVRSAG-GEITMAAMENM 

GmAOS           NLLFATCFNSFGGMKLFFPNVLKWIGRAGVKLHARLAEEIRSAVRSGG-GEISMAAMEKM 

GmAOS1          NLLFATCFNSFGGMKLFFPNVLKWIGRAGVKLHARLAEEIRSAVRGAG-GEITMAAMENM 

CmAOS           NLLFTTCFNSFGGMKIFFPNMIKWIGRAGVNLHTRLAREIRTAVKANG-GKITMGAMEQM 

LuAOS           NILFAVCFNSWGGFKILFPSLMKWIGRAGLELHTKLAQEIRSAIQSTGGGKVTMAAMEQM 

AtAOS           NLLFATSFNTWGGMKILFPNMVKRIGPGGHQVHNRLAEEIRSVIKSNG-GELTMGAIEKM 

StAOS3          NFIFLAGFNSYGGMKVFFPSLIKWIGTSGPTLHTRLVKEIRTAVKEAG-G-VTLSAIDKM 

LeAOS3          NFVFLAGFNSYGGLKVFFPSLIKWIGTSGPSLHARLVKEIRTAVKEAG-G-VTLSAIDKM 

 

 

HvAOS1          ELTKSAVWEALRLEPPVKFQYGRAKVDMNIESHDAVFAVQKGEMLFGYQPCATKDPRVFG 

HvAOS2          ELTKSAVWEALRLDPAVKFQYGRAKADMNIESHDAVFAVKKGEMLFGYQPCATKDPRVFG 

OsAOS2          ELTRSVVWEALRLDPPVRFQYGRAKADLEIESHDASFAIKKGEMLFGYQPCATRDPRVFG 

OsAOS3          ELTTSVVWEALRLDPPVRFQYGRAKADLEIESHDASFAIKKGEMLFGYQPCATRDPRVFG 

OsAOS1          ELTRSVVWEALRLDPPVRFQYGRAKADLEIESHDASFAIKKGEMLFGYQPCATRDPRVFG 

PaAOS1          PLTKSVVYESLRIEPPVPPQYGKAKSNFTIESHDATFEVKKGEMLFGYQPFATKDPKVF- 

AaAOS           PLMKSVVYESLRIEPPVALQYGKAKKDMTIESHDAVFKVKEGEMLFGYQPFATKDPKIF- 

LeAOS1          PLMKSVVYESLRIEPPVASQYGRAKHDMVIESHDASFEIKEGELLYGYQPFATKDPKIF- 

StAOS1          PLMKSVVYESLRIEPPVASQYGRAKHDMVIESHDASFEIKEGELLYGFQPFATKDPKIF- 

InAOS           PLMKSVVYEALRIEPPVPAQYGRAKRDFVVESHDAVFEVKEGEMLFGFQPFATKDPKIF- 

LeAOS2          PLMKSVVYEALRVDPPVASQYGRAKQDLKIESHDAVFEVKKGEILFGYQPFATKDPKIF- 

StAOS2          PLMKSVVYEALRVDPPVASQYGRAKQDLKIESHDAVFEVKKGEMLFGYQPFATKDPKIF- 

StAOS           PLMKSVVYEALRVDPPVASQYGRAKQDLKIESHDAVFEVKKGEMLFGYQPFATKDPKIF- 

NaAOS           PVMKSVVYEALRIDPPVASQYGRAKRDLMIESHDGVFEVKKGEMLFGYQPFATRDPKIF- 

VvAOS           PLMKSTVYEAFRIEPPVALQYGKAKQDLVIESHDSVFEVKEGEMLFGYQPFATKDPKIF- 

MtAOS           PLMKSVVYEAFRIDPPVPLQFGRAKRDMVIENHENGFLVKKGELLLGYQPFATKDPKIF- 

GmAOS           PLMKSVVYEAFRIDPPVALQFGRAKRDLIIESHDHAFQVKEGEMLFGYQPFATKDPRIF- 

GmAOS1          PLMKSVVYEAFRIDPPVPLQFGRAKRDLIIESHDHAFQVKEGEMLFGYQPFATKDPRIF- 

CmAOS           PLMKSVVYEALRIEPPVPVQYGRAKKDLVVESHDAAFEIKEGEVICGYQPFATRDPKIF- 

LuAOS           PLMKSVVYETLRIEPPVALQYGKAKKDFILESHEAAYQVKEGEMLFGYQPFATKDPKIF- 

AtAOS           ELTKSVVYECLRFEPPVTAQYGRAKKDLVIESHDAAFKVKAGEMLYGYQPLATRDPKIF- 
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StAOS3          PLVKSVVYETLRMDPPVPFQTVKARKNIIVSNHEASFLIKKDELIFGYQPLATKDSKVF- 

LeAOS3          PLVKSVVYETLRMDPPVPFQTVKARKNIIITNHESSFLIKKDELIFGYQPLATKDSKVF- 

 

 

HvAOS1          STAREFVGDRFVG-EGSKLLQYVYWSNGRETESPSVDNKQCPGKNLVVLVGRLLVVELFL 

HvAOS2          PTAREFVGDRFVGKEGSKLLKYVYWSNGRETESPSVHNKQCPGKNLVVLVGRLLVVELFL 

OsAOS2          ATAREFVGDRFVGEEGRKLLQYVYWSNGRETENPSVDNKQCPGKNLVVLVGRLLLVELFL 

OsAOS3          ATAREFVGDRFVGEEGRKLLQYVYWSNGRETENPSVDNKQCPGKNLVVLVGRLLLVELFL 

OsAOS1          ATAREFVGDRFVGEEGRKLLQYVYWSNGRETENPSVDNKQCPGKNLVVLVGRLLLVELFL 

PaAOS1          DRPEEYVPDRFVG-DGEALLKYVWWSNGPETESPTVENKQCAGKDFVVLITRLFVIELFR 

AaAOS           DRPEESVPDRFVG-EGEKLLKYVTWSNGPETETPTAGNKQCAGKDFVVLITRLFVIELFR 

LeAOS1          DRSEEFVADRFKGEEGEKLLKHVLWSNGSETENASINNKQCAGKDFVVLVSRLLLVELFL 

StAOS1          DRSEEFVADRFIGEEGEKLLKHVLWSNGSETENPSINNKQCAGKDFVVLVSRLLLVELFL 

InAOS           DRAEEFVPDRFTGENANELLSHVLWSNGPETESPTVNNKQCAGKDFVVLVSRLMVVELFL 

LeAOS2          DRPGEFVADRFVGEEGEKLLKHVLWSNGPETESPTVGNKQCAGKDFVVMVSRLFVTEFFL 

StAOS2          DRPEEFVADRFVG-EGEKLLKYVLWSNGPETESPTVGNKQCAGKDFVVMVSRLFVTEFFL 

StAOS           DRPEEFVADRFVGEEGEKLLKYVLWSNGPETESPTVGNKQCAGRDFVVMVSRLFVTEFFL 

NaAOS           DRPDEFVPDRFVGEEGEKLLKHVLWSNGPETESPTVENKQCAGKDFVVLVSRLLVTEFFL 

VvAOS           ERSEEFVPDRFVG-EGEKLLKHVLWSNGPETENPTLGNKQCAGKDFVVLAARLFVVELFL 

MtAOS           ERAEEFVADRFVGDEGEKLLKHVLWSNGPESQSPTVGNKQCAGKDFTTLISRLLVVELFL 

GmAOS           ERAEEFVGDRFVGEEGEKLLKHVLWSNGPETESPTLGNKQCAGKDFVTLVSRLFVVEFFL 

GmAOS1          ERAEEFVGDRFVGEEGEKLLKHVLWSNGPETESPTIGNKQCAGKDFVTLVSRLLVVEFFL 

CmAOS           DRADELVPDRFTG-EGEELLKHVIWSNGPETQSPSVQNKQCAGKDFIVFISRLLVVELFL 

LuAOS           DRPEEFVADRFVG-EGVKLMEYVMWSNGPETETPSVANKQCAGKDFVVMAARLFVVELFK 

AtAOS           DRADEFVPERFVGEEGEKLLRHVLWSNGPETETPTVGNKQCAGKDFVVLVARLFVIEIFR 

StAOS3          KNAEEFNPDRFVG-YGEKLLKYVYWSNGKETDNPTVNDKQCPGKDLIVLLGRLLVVEFFM 

LeAOS3          KNAEEFNPDRFVG-GGEKLLKYVYWSNGKEIDNPSVNDKQCPGKDLIVLMGRLLVVEFFM 

 

 

HvAOS1          RYDTFTADVGVDLLG------PKVEFTGVTKATSGPG--AV 

HvAOS2          RYDTFTAKVGLDLLG------TKVEFTGVTKATSGVAD-AV 

OsAOS2          RYDTFTAEAG-----------KKVVITGVTKASTSAVNRTA 

OsAOS3          RYDTFTAEAG-----------KKVVITGVTKASTSAVNRTA 

OsAOS1          RYDTFTAEAG-----------KKVVITGVTKASTSAVNRTA 

PaAOS1          RYDSFEIELGESPLG------AAVTLTFLKRASI------- 

AaAOS           RYDSFDIEVGASPLG------AKITLTSLKRARV------- 

LeAOS1          RYDSFEIEVGASPLG------AAITLTSLRRASF------- 

StAOS1          RYDSFEIEVGASPLG------AAITLTSLRRASF------- 

InAOS           RYDSFDIEVGTSPLG------ASVTVTSLKRASF------- 

LeAOS2          RYGTLNVDVGTSALG------SSITITSLKKA--------- 

StAOS2          RYDTFNVDVGKSALG------ASITITSLKKA--------- 

StAOS           RYDTFNVDVDKSALG------ASITITSLKKA--------- 

NaAOS           RYDTLDIDVGTSPLG------AKITITSLKRA--------- 

VvAOS           RYDSFDIEVGTSLLG------SAINLTSLKRASF------- 

MtAOS           RYDSFEIQVGNSPLG------PSITLTSLKRSSF------- 

GmAOS           RYDSFEIQVGTSPLG------SSVTITSLKRASF------- 

GmAOS1          RYDSFEIQVGTSPLG------SSVTITSLKRASF------- 

CmAOS           RYDSFDIEASNTPLGAAVTVSAAVTVTSLKKASF------- 

LuAOS           RYDSFDIEVGTSSLG------ASITLTSLKRSTF------- 

AtAOS           RYDSFDIEVGTSPLG------SSVNFSSLRKASF------- 

StAOS3          RYDTFEIEFGKLLLG------SKVTFKSLTKATS------- 

LeAOS3          RYDTFEVEFGKLLLG------SKVTFKSLTKATS------- 

 
 
Figure C.4 Multiple alignment of CYP74A enzymes polypeptide sequences  
Multiple alignment sequence of CYP74A enzymes Sub-family member polypeptide sequences to generate 
cladogram diagram relationship (Figure 2.6). Deduce amino acid sequences of CYP74A enzymes members is a 
collection of previously identified in other species (Howe and Schilmiller, 2002; Mei et al., 2006; Stumpe and 
Feussner, 2006; Kongrit et al., 2007; Pajerowska-Mukhtar et al., 2008; Stumpe et al., 2008; Wu et al., 2008; 
Podolyan, 2010; Zhu et al., 2012). Sequence details a shown on the Table 3.3  
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C.5 Predicted chloroplast transit peptide region (cTP) of CYP74 enzymes 
polypeptide sequences 

CYP74                Length       Score  cTP       CS-    cTP- 

(ID)                                              score  length 

--------------------------------------------------------------- 

MsHPL1                   480    0.487   -   3.271     59 

MsHPL2                   480    0.484   -   2.624     59 

MsHPL3                   480    0.483   -   2.624     59 

AtHPL                    458    0.496   -   9.162     33 

LeHPL                    476    0.490   -   0.069     17 

CaHPL                    480    0.492   -   3.781     82 

StHPL                    480    0.498   -   3.781     82 

NaHPL                    456    0.497   -   3.781     58 

HvHPL                    476    0.475   -   1.489     42 

MaHPL                    388    0.446   -   2.207     64 

ZmHPL                    448    0.473   -   4.885     32 

CsHPL1                   478    0.440   -   1.333     64 

PgHPL                    450    0.479   -   1.768     40 

StDES                    478    0.429   -   0.729     25 

LeDES                    478    0.429   -   0.729     25 

NtDES                    478    0.428   -   1.954      7 

HvAOS1                   480    0.452   -   3.395     12 

HvAOS2                   487    0.437   -   1.695      4 

OsAOS2                   478    0.439   -   2.199     13 

PaAOS1                   473    0.450   -   6.737     53 

LeAOS1                   465    0.490   -   0.698     45 

LeAOS2                   510    0.483   -   1.584     31 

StAOS1                   492    0.482   -   0.698     72 

StAOS2                   478    0.436   -   1.617     92 

AtAOS                    486    0.437   -   2.137     11 

CmAOS                    493    0.475   -  -0.191     28 

LuAOS                    493    0.439   -  -2.799     20 

MtAOS                    487    0.440   -   0.390      2 

CmHPL                    481    0.450   -   6.737     57 

MtHPL1                   482    0.436   -   2.662      3 

MtHPL2                   485    0.458   -   0.698     61 

StAOS3                   491    0.431   -   0.516     12 

LeAOS3                   491    0.435   -   4.498     57 

NaAOS                    475    0.433   -   0.256     47 

StAOS                    479    0.433   -  -1.601      8 

CaDES                    478    0.430   -   0.729     25 

GmAOS                    488    0.457   -   0.698     68 

GmAOS1                   488    0.457   -   2.124     10 

AaAOS                    491    0.481   -  -1.701      2 

InAOS                    486    0.461   -   2.183     56 

OsAOS1                   478    0.439   -   2.199     13 

OsAOS3                   478    0.441   -   2.199     13 

VvHPL1                   456    0.490   -  -0.033     33 

VvHPL2                   431    0.463   -   1.542     56 

VvHPLA                   423    0.487   -  -3.007     10 

VvAOS                    473    0.444   -   3.922     44 

VvHPLB                   483    0.457   -   1.928      8 

VvHPLC                   483    0.475   -   1.804      2 

VvHPLD                   431    0.475   -   1.542     56 

VvHPLE                   431    0.468   -   1.542     56 

VvHPLF                   487    0.465   -   6.737     65 

--------------------------------------------------------------- 

Figure C.5 Multiple alignment of CYP74A enzymes polypeptide sequences 
Chloroplast transit peptide region of CYP74 enzymes family member based on ChloroP1.1 software 
(Emanuelsson et al., 1999) prediction. Details sequences a shown on the Table 3.4 
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C.6 Multiple alignment of nucleotide sequences to assessed grapevine AOS 
and Arabidopsis AOS gene insert in pARTBGW binary vector  

C.6.1 pARTBGW:35S promoter:VvAOS  

 

Figure C.6 pARTBGW:35S promoter:VvAOS 
Binary vector pARTBGW incorporated with VvAOS was sequenced using pART 35S primer (Forward primer at 
3’end region of 35S promoter) in order to confirm gene insertion and it direction within the plasmid vector. 
Underline “CACC” region indicate a starting point for the VvAOS gene insert. Multiple alignment sequencing was 
carried out between Reference sequence (pARTBGW:35S-promoter:VvAOS constructed bioinformatically via 
Lasergene software by DNASTAR Inc, Madison, USA), AtAOS gene, CaMV 35S promoter gene sequences and 
pARTBGW:35S-promoter:VvAOS sequencing result to confirm insertion  
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C.6.2 pARTBGW:35S promoter:AtAOS  

 

Figure C.7 pARTBGW:35S promoter:AtAOS 
Binary vector pARTBGW incorporated with AtAOS was sequenced using pART 35S primer (Forward primer at 
3’end region of 35S promoter) in order to confirm gene insertion and it direction within the plasmid vector. 
Underline “CACC” region indicate a starting point for the AtAOS gene insert. Multiple alignment sequencing was 
carried out between Reference sequence (pARTBGW:35S-promoter:AtAOS constructed bioinformatically via 
Lasergene software by DNASTAR Inc, Madison, USA), AtAOS gene, CaMV 35S promoter gene sequences and 
pARTBGW:35S-promoter:AtAOS sequencing result to confirm insertion 
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reaction. Colony PCR reaction was carried out based on the standard reaction suggested by the 

polymerase manufacturer and PCR parameter respected to the insert gene.  
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E.3 PCR method to assessed of homozygous and complemented (AOS 
function) Arabidopsis aos mutant 

 

Figure E.3 PCR method to assess of homozygous and complemented (AOS function) Arabidopsis aos mutant 
PCR methods to assessed complemented (AOS function) to separate from homozygous Arabidopsis aos mutant 

progenies. Arabidopsis was used as a control comparison. 

E.4 Quantification of derivatized Jasmonic acid (Methyl jasmonate) via 
GC/MS  

Figure E.4 Quantification of derivatized Jasmonic acid  
Jasmonic acid was derivatized and quantified via GC-MS method. Dihydrojasmonic acid (blue arrow) was used as 
an internal standard to quantify jasmonic acid (red arrow) in the sample. 

 

 




