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Abstract 

The spatial distribution of agro-environmental policy benefits has important implications for the efficient allocation 

of management effort. The practical convenience of relying on sample mean values of individual benefits for 

aggregation can come at the cost of biased aggregate estimates. The main objective of this paper is to test 

spatial hypotheses regarding respondents’ local water quality and quantity, and their willingness-to-pay for 

improvements in water quality attributes. This paper combines choice experiment and spatially related water 

quality data via a Geographical Information System (GIS) to develop a method that evaluates the influence of 

respondents’ local water quality on willingness-to-pay for river and stream conservation programs in Canterbury, 

New Zealand. Results showed that those respondents who live in the vicinity of low quality waterways are willing 

to pay more for improvements relative to those who live near to high quality waterways. The study also found 

that disregarding the influence of respondents’ local water quality data has a significant impact on the magnitude 

of welfare estimates and causes substantial underestimation of aggregated benefits.  
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The choices made by researchers when aggregating individual benefits can significantly affect the 

estimates that are available to be used in cost benefit analysis (Morrison, 2000). Aggregation of environmental 

values commonly relies on sample mean values of individual benefits. However, individuals’ locations in relation 

to impact sites (proximity) may influence valuation and hence, it is important to account for spatial differences in 

estimating aggregate benefits (Bateman et al., 2006). Analysis of how values differ spatially within the population 

being aggregated can mitigate bias by identifying values conditional on spatially related variables that are 

hypothesised to influence individual preferences. 

This paper employed choice experiment (CE) methodology and spatially related water quality data in a 

Geographical Information System (GIS) to evaluate the influence of local water quality on respondents’ 

willingness-to-pay (WTP) for river and stream conservation programs in Canterbury, New Zealand. Identification 

and estimation of spatial patterns of nonmarket values have taken many forms in the literature. Hedonic studies 

are perhaps the most widespread approach to estimating spatial relationships of nonmarket values (MacDonald 

et al. 2010; Agee and Crocker, 2010; Kong et al., 2007). Travel cost valuation methodology explicitly 

incorporates geographical locations of respondents into the analysis (Taylor et al., 2010). A growing number of 

applications of these methods employ GIS tools to enhance accuracy of metrics and spatial modelling (Bateman 

et al., 2002). Comparison of separate models for individual regions is a traditional approach to investigating 

spatially differing values (Birol et al., 2006). However, this type of analysis does not systematically incorporate 

local spatially related variables into models and thus, fails to provide regionally specific benefit estimation.   

Application of unadjusted existing nonmarket values to geographic maps has also been used to assess 

total values of conservation programs (Naidoo and Ricketts, 2006; Egoh et al., 2008; Nengwang et al., 2009, 

Jenkins et al., 2010). This approach is a rudimentary form of benefit transfer and more sophisticated forms use 

valuation functions that vary across spatial as well as socio-demographic variables (Bateman et al., 2006; 

Plummer, 2009). Geostatistical interpolation methods have also been employed to assess the spatial distribution 

of nonmarket benefits (Campbell et al., 2009). Distance from a site being valued has received significant 

attention in the literature as a source of spatial preference heterogeneity. Highly significant distance decay in 

values has been found demonstrating that reliance on sample mean WTP can result in biased estimates (Hanley 
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et al., 2003; Bateman et al., 2006). Concu (2007) was one of the first authors to have conducted a distance 

decay analysis using CE method. The author concluded that distance omission produces underestimation of 

aggregate benefits and losses.  

Other sources of spatial preference heterogeneity have been identified in a somewhat limited pool of 

studies outside of the revealed preference and distance decay literature. Brouwer et al. (2010) used CE method 

to examine spatial preference variability in the valuation of water quality improvements for the Guadalquivir River 

Basin in the south of Spain. The authors investigate whether respondents’ value improvements in their own sub-

basin more than three other sub-basins by specifying dummy variables for each of the four sub-basins. 

Parameters on interactions of these dummy variables with the environmental attributes were estimated. Results 

indicated that respondents’ valued the change of water quality significantly more for their respective sub-basins, 

but only for the highest level of water quality considered. The authors found that not accounting for spatial 

preference heterogeneity results in an underestimation of around 30 percent of the estimated value for the 

highest water quality level in the whole river basin. In an alternative approach, Condon et al. (2007) examined 

the influence of respondents’ geographical location on values for rural land conservation programs in Florida. 

The study used a 20 kilometre (km) radius around respondents and four variables hypothesised to affect 

individual values which are constructed using a GIS. Results revealed that the share of agricultural land and 

distance to the coast are statistically significant influences on respondents’ values. The authors found that 

compared to using sample mean values, aggregate values incorporating the respondents’ geographic 

information were approximately 17 percent and 50 percent lower for the highest and lowest valued programs 

respectively. Comparing this outcome with that of Brouwer et al. (2010), emphasises that the direction of 

aggregation bias from using sample mean values is not always obvious a priori.  

This study considered respondents’ local water quality conditions as a source of spatial preference 

heterogeneity in valuing stream and river conservation programs in Canterbury. While providing specific policy 

advice to regional water managers, this study also has wider implications. Firstly, this paper contributes to the 

overall spatial preference heterogeneity literature, where evidence in New Zealand is limited. Secondly, this 
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study provides an application supporting the use of methods that integrate spatial analysis into valuation 

exercises that enhances welfare estimates.   

 

 2. Background  

Canterbury is the largest region in New Zealand, with an area of 45,346 km2 and a population of 

approximately 500,000 (SNZ, 2007). Environment Canterbury is the regional council for Canterbury and is 

responsible for a wide variety of functions including environmental monitoring and investigations, regional policy 

and planning, water permits and discharge permits.  The Canterbury region has a 160 year history of agricultural 

production and is currently experiencing a significant trend in water intensive dairy farming replacing traditional 

dry land pastoral and arable farming. Dairy stock unit numbers have increased rapidly and continue to do so. The 

environmental implications of these land use changes and intensification of production have been extensively 

researched with a growing body of scientific literature outlining the impending consequences if inadequate action 

is taken. Studies of trends in water quality and contrasting land cover indicate a positive relationship between 

dairy stock numbers and decreasing water quality (Larned et al., 2004). Increases in water borne pathogens 

such as Campylobacter have been reported (Ross and Donnison, 2003) and there are risks of irreversible 

damages of land application of animal effluent as long term consequences are not well understood (Wang and 

Magesan, 2004). The rate of fertiliser and pesticide applications has increased dramatically over the past decade 

and are forecast to continue increasing (PCE, 2004) with evidence of increases in nitrogen and dissolved 

reactive phosphorous in waterways (Cameron and Di, 2004). There has been a significant increase in 

groundwater abstraction associated with land use intensification, contributing to a decline in groundwater levels 

and reduced flows in rivers and lowland streams.  Environment Canterbury records show a 260 per cent increase 

in the amount of irrigated land from 1985 to 2005, and some 70 per cent of consumptive use of water in the 

region is for pastoral purposes. Increased irrigation allows more intensive use of land and leads to increased 

agricultural production.  

In the application of agri-environmental water quality policy, some progress has been made in reducing 

point sources of pollution, however, non-point sources remain difficult to manage. Recent water quality planning 
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has spurred development of policies such as the Dairying and Clean Streams Accord that targets farming 

practices on dairy farms, the Restorative Programme for Lowland Streams that aims to return water to dry 

streams and ensure minimum environmental flows, and the Living Streams project that encourages sustainable 

land use and riparian management practices. 

 

3. Method  

This study employed a CE to estimate the benefits of environmental policies aimed at reducing 

agricultural impacts on Canterbury waterways.1 The respondent is presented with choice sets made up of several 

alternatives and each alternative is made up of combinations of environmental attributes reflecting policy 

outcomes. Combinations of attributes and their levels are varied systematically in the alternatives according to 

experimental design theory. The respondent is asked to choose the alternative from a choice set with the 

combination of attribute levels (policy outcomes) they prefer most. The resulting data are analysed using 

probabilistic models that relate the probability of an alternative being chosen to the levels of the attributes. 

The development of the set of attributes to be valued consisted of two main procedures. First, a survey 

was conducted of relevant policy documents and expert based opinion of Environment Canterbury policy 

analysts. Second, focus groups and cognitive interviews (Dillman, 2007) were carried out with rural and urban 

Canterbury residents. Three environmental attributes were identified to be included in the CE and these are 

shown in Table 1. The cost attribute is defined as an annual household payment via council rates. The payment 

vehicle was framed as an ongoing annual cost as participants of resident focus groups and interviews indicated 

that they considered that funding would be required continuously for policy activities such as monitoring and 

enforcement.  

Insert Table 1 here 

                                                           

1 Louviere et al. (2000) provides a thorough presentation of choice experiments for the interested reader. 



6 

 

   

 

The first water quality attribute is the risk of people getting sick from pathogens in animal wastes that 

end up in waterways. Exposure is by way of recreational contact, and risk is measured as the number of people 

out of one thousand that would become sick annually. This type of presentation of risk has been used elsewhere 

to value risk tradeoffs in water quality attributes (Adamowicz, 2007). The magnitude of changes in levels was 

guided by studies that examined current and potential water borne pathogen risks to human health in New 

Zealand (McBride et al., 2002).   

The second water quality attribute allowed us to value the impact of excess nutrients on the ecological 

quality of rivers and streams. The descriptions of the ecological levels for water quality were in accord with 

Environment Canterbury measurement using the Quantitative Macro Invertebrate Index developed by them. 

Table 2 shows the descriptions used. 

Insert Table 2 here  

The third water quality attribute was used to value the impact of low-flow conditions. This attribute was 

measured as the number of months that a river is in low-flow.  A waterway is experiencing low-flow conditions 

when the flow rate falls below a minimum level necessary to protect recreational and ecological quality. The 

description of the impact of low-flow conditions on rivers and streams followed New Zealand Ministry for the 

Environment recommendations and the range in levels was guided by flow rate data from the Environment 

Canterbury website (www.ecan.govt.nz).  

The experimental design involved three attributes with three levels and the cost attribute with six levels 

(33 x 61) which were combined in a D-efficient fractional factorial main effects experimental design, providing 18 

profiles. The choice sets were constructed following the procedure proposed by Street et al. (2005) which were 

then randomly blocked into 3 versions of 6 choice sets. Each choice question had three alternatives and the third 

alternative was always a constant base alternative (current condition). This meant that each respondent in each 

choice set had to choose either an improved environmental management plan (Alternative 2 or 3) or the current 

plan (Alternative 1). The constant base alternative was assumed to be a worsening condition of rivers and 

streams if no change in management occurs. In this alternative, there is no additional payment by the household, 



7 

 

   

 

however it is assumed that the risk of getting sick will be at its greatest level, ecological quality will be at its 

lowest level, and the number of low-flow months will be at its highest level.  

The survey consisted of three sections. The first section sought to measure respondents’ attitudes 

towards agri-environmental policy in Canterbury, and to indicate how rivers and streams are important to them. 

The second section consisted of the choice sets and the third section concluded with household socio-

demographic questions. The first and third sections were designed to capture preference heterogeneity that was 

not captured by the attributes in the choice sets.  

The variation generated between the attribute levels and the alternative chosen is modelled using a 

discrete choice probabilistic method where the dependent variable is the probability of choosing an alternative 

given the levels of attributes in that chosen alternative. This study fits a Random Parameter Logit (RPL) model to 

the data obtained in the CE.2 The deterministic part of the individual indirect utility function estimated takes the 

general functional form:  

* *ij j k ijk ki ijk jm j mi kn ijk ni

k k m n

V ASC X X ASC S X S               (1) 

where ASC is an alternative specific constant for alternative j, k is a vector of coefficients associated with the kth 

attribute, X includes household cost as well as the attributes that describe water quality, ki is a vector of k 

deviation parameters which represents how the tastes of individual i differ from the average taste (βk), jm is the 

vector of coefficients of the interactions between the ASC and the mth socioeconomic characteristic of individual 

i (Smi) and kn is the vector of coefficients of the interactions between the kth attribute and the nth local water 

quality characteristic of individual i (Sni).  This last element of the utility function contained the respondents’ local 

water quality data that is hypothesised to influence their WTP for the attributes contained in X.   

The choice data were analysed using NLOGIT 4.0™ statistical software. Model variables are 

summarised in Table 3. The attributes are effects coded into two variables for each attribute with the lowest level 

of quality being the fixed comparator for each attribute; Ecology Fair (coded 1 if Fair, 0 if Good, -1 if Poor) and 

                                                           

2 Readers who are seeking an in-depth discussion of this model can refer to Train (2003). 
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Ecology Good (coded 1 if Good, 0 if Fair, -1 if Poor); Risk10 (1 if Risk10, 0 if Risk30, -1 if Risk60) and Risk30 (1 if 

Risk30, 0 if Risk10, -1 if Risk60); Flow1 (1 if Flow1, 0 if Flow3, -1 if Flow5) and Flow3 (1 if Flow3, 0 if Flow1, -1 if 

Flow5). The non-attribute variables were interacted with the alternative specific constant.  

Insert Table 3 here 

The most common distributional functional forms for parameters are normal, lognormal, uniform and 

triangular. After evaluating the results from various distributional functional forms, we followed Hensher and 

Greene (2003) and opted for a bounded triangular distribution for all attributes. In order to take into account the 

degree of heterogeneity whilst obtaining meaningful WTP estimates, the spread of each random parameter 

distribution was restricted to be equal to the mean.3 Five hundred shuffled Halton draws were used in maximising 

the simulated Log-likelihood function. To examine if the effects coded variables for an attribute should be 

combined into a single linear variable, a Wald test was conducted to observe whether the two parameters (one 

for each of the two effects coded attribute levels) are equal. The null hypothesis of equality was rejected for all 

attributes. Thus, preferences for the two attribute levels are statistically significantly different.  

 

3.1 Water Quality Data and GIS  

Three spatially related water quality datasets hypothesised to influence respondents’ values of attributes 

were imported into the Geographical Information System ArcView 9™, along with respondents’ geocoded 

addresses. Water quality data points geographically closest to respondents, one for each of the three water 

quality variables, were obtained for use in econometric models.  Table 4 shows the current distribution of 

respondents’ local water quality measures. 

Insert Table 4 here 

The first dataset contained weekly Suitability for Recreation Grades (SRG) for 56 sites over the period 

of 2007 to 2008 February. The grades are based on a qualitative risk assessment of the susceptibility of a water 

                                                           

3 See Hensher and Greene (2003) and Hensher et al. (2005) for a description of the triangular distribution in this context. 
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body to faecal contamination, and a measurement of the faecal indicator, E. coli. There are five grades and the 

risk of becoming sick increases from very good to very poor grades with sites graded poor and very poor 

unsuitable for recreational contact. The inclusion of this data facilitated the testing of the spatial hypothesis that 

respondent’s local SRG influences their WTP to decrease the risk of becoming sick.  

The second dataset consisted of Semi Quantitative Macroinvertebrate Community Index (SQMCI) 

scores for 431 sites. This index uses measures of the abundance and diversity of aquatic invertebrates as an 

indicator of ecosystem health. The presence of pollution sensitive macroinvertebrates indicates that the body of 

water is healthy while the excessive presence of pollution tolerant macroinvertebrates indicates poor water 

quality. The inclusion of this data aided the testing of the spatial hypothesis that respondents’ local SQMCI score 

influences their WTP for improvements in ecological quality.  

The third dataset contained daily flow rate measures for 70 sites. In order to indicate which rivers were 

experiencing low flows relative to historical trends, the flow sites were categorised into stratum describing how 

flow levels have changed according to daily median flow for the last hydrological year relative to the median daily 

flow rate over the entire data series. The increase stratum ranged from 5% to 15% increased flow. The inclusion 

of this data assisted the testing of the spatial hypothesis that respondents’ local flow changes influence their 

WTP to decrease the number of low-flow months. These three spatial hypotheses were tested by interacting 

each of the respondents’ water quality measures with the cost attribute. The parameters of these variables were 

then incorporated into the estimation of respondents’ WTP for improvements in the attribute relevant to the water 

quality measure using the following equation:  

rl

k

Water Quality Measure *CostCost

   Marginal WTP Attribute X               (2)
Water Quality Measure

rl



 

 
  
  
 

 

where Water Quality Measurerl = SRG (Very Poor to Very Good), SQMCI (0 to 2,..>7) or Flow Change (Increase 

to >50% decrease)      

 The above equation was applied by Baskaran et al. (2009) in a similar approach valuing 

environmental attributes by stratifying respondents based on income levels. In this study, equation (2) stresses 
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the importance of including the interactions between the key water quality variables (SRG, SQMCI and Flow 

Change) and the selected attributes to provide extra information to policy makers on the effect in the estimated 

welfare measures for a particular level of water quality. 

 The value of benefits from combinations of attribute level changes conditional on respondents’ local 

water quality can be calculated as Compensating Surplus (CS) estimates. Estimates of CS were calculated using 

a modified standard Hanemann (1984) utility difference expression:  

 
 

Water Quality Measure *Cost rlCost

101
 CS           (3)

 Water Quality Measure 

 
  
  
 


rl

i

r

ijij
V V

 

 

where 0

ijV  is the utility derived from ‘No change’ base alternative, and 1

ijV  is the utility derived from new 

management alternatives. The following are the ‘No Change’ ( 0

ijV ) and the two new management scenarios (

1

ijV ) employed in this study: 
  

 

No change 60 people per 1000 get sick from recreational contact each year, ecological quality is 

poor, and there are 5 months of low-flow conditions. 

Management Fair 30 people per 1000 get sick from recreational contact each year, ecological quality is 

fair, and there are 3 months of low-flow conditions. 

Management Good 10 people per 1000 get sick from recreational contact each year, ecological quality is 

good, and there is 1 month of low-flow conditions. 

 

3.2 Survey Logistics 

During the months of July and August 2008, 1500 surveys were mailed to Canterbury residents using 

random sampling stratified by Territorial Local Authority to achieve a geographically representative sample. 
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Reminder postcards were sent out after two weeks, followed by another survey instrument sent to those yet to 

respond a further week on. No incentives were given to complete the survey. The mail-out procedure yielded 349 

usable responses with an effective response rate of 25 percent. In order to assess if the sample was 

representative of the Canterbury  population,  Chi-square tests were conducted. If the null hypothesis is rejected, 

it can be concluded that the Census 2006 population data were statistically significantly different from the sample 

data. It is apparent that the null hypotheses was rejected for income, education and house tenure. This means 

that the sample respondents have higher income, are more educated and have a higher home ownership 

rate.This may indicate sample selection bias toward affluent and educated groups and thus, caution should be 

taken when using these variables in the WTP estimation. However, the combination of employing an RPL model 

and water quality data should account for this bias in terms of individual heterogeneity within income groups and 

spatial differences amongst respondents when valuing attributes. To consider the geographical representation of 

the sample, a Chi-square test was conducted for the distribution of respondents according to the regions ten 

Territorial Local Authorities (TLA). Results showed that the Census and sample distributions are not statistically 

significantly different.   

A relevant concern when conducting a CE in which the experimental design is blocked is whether a 

sample contains a sufficient representation of the choice sets. The distribution of the three blocks of the 

experimental design used in this survey was 32%, 33% and 34%, and therefore, the returned surveys 

represented the choice sets adequately.    

 

4. Results and Discussion  

All parameters except Flow 1 are highly statistically significant and of the expected signs. The standard 

deviation parameters for all attributes except Flow 1 are statistically significant suggesting significant taste 

heterogeneity exists within the data for these attributes. These factors alongside the Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC) and McFadden Pseudo R2 form the basis for a test of relative model 

fit. The Psuedo-R2 in Table 5 shows that the fully specified model has an acceptable level of explanatory power. 

Improvements in the levels of the attributes increase the probability of that option being chosen, with the 
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magnitude of the probability increasing as the attribute level improves. All attributes except Flow3 are statistically 

significant at the 1% level. This indicates that respondents did not prefer the medium level of improvement of 

three months of low-flow but would rather see the highest level of improvement of one month of low-flow 

conditions. Respondents with higher household income and being a female increased the probability of choosing 

an alternative with improvements in water quality. Respondents who agreed that agricultural practice is 

environmentally safe were less likely to choose an alternative with improvements in water quality. Respondents 

who concurred that farmers should pay for water quality improvement programs were less likely to choose an 

alternative with improvements in water quality. Similarly, respondents who indicated that commercial use of water 

is important were less likely to choose an alternative with improvements in water quality. In view of interactions 

between the water quality and cost attributes, it is apparent that the estimated coefficients for SRG, Flow Change 

and SQMCI are significant at the 1%, 5% and 10% levels, respectively.  

Insert Table 5 here 

4.1 WTP and CS Estimates 

 Table 6 shows WTP for three bands of water quality data for each attribute. The water quality data 

are averaged within the three bands. In generating Table 6 we first apply equation two without incorporating any 

information about respondents’ local water quality. Equation two thus simplifies to the ratio of attribute and cost 

coefficients, yielding the last column of Table 6. The incorporation of respondents’ local water quality adds the 

product of a water quality interaction coefficient and quality level to the denominator of equation 2. This is 

calculated for each attribute and associated water quality level resulting in the middle three columns of Table 6.    

    Insert Table 6 here 

 Looking at Table 6 we see that respondents’ WTP increases as water quality deteriorates. 

Respondents with low SRG have higher WTP in order to reduce the risk of getting sick relative to respondents 

with high SRG. Respondents with low SQMCI scores have higher WTP in order to improve ecological quality 

relative to respondents with high SQMCI scores. Respondents who experience a high number of low-flow 

months are willing to pay more so as to reduce the number of low-flow months relative to respondents who 
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experience a low number of low-flow months. It is also interesting to note that there is a substantial difference in 

terms of absolute mean WTP values between the respondents’ local water quality grades and the overall sample 

mean estimates. Thus, accounting for respondents’ local water conditions in nonmarket valuation can lead to 

WTP changing considerably. This suggests that valuing water quality attributes by stratifying individuals based 

on close proximity to rivers and streams may enhance reliability of welfare measures. As mentioned, more 

affluent and more educated respondents are overrepresented in the sample and as a result, may over or under 

estimate the ‘true’ WTP if we rely on the traditional sample mean WTP estimation approach. 

Compensating Surplus (CS) measures policy outcomes that indicate WTP for a change in water quality 

from the ‘No Change’ option presented in the choice sets to a combination of attributes that depict water quality 

improvements (Fair and Good Management Scenarios). Calculating Canterbury spatially weighted aggregate CS 

that takes into account the influence of respondents local water quality involves identifying the percentage of 

respondents who live in the combinations of the three water quality variables (SRG, SCMI Flow Change) 

multiplied by both the number of households in Canterbury and average CS estimates as shown in Table 7.  For 

example, in the first row 24 per cent of the sample faced this combination of water quality variables and 

associated CS values calculated using equation 3. To form an estimate for the Good Management scenario for 

Canterbury we first assume that 24 per cent of the policy target also face this combination and multiply the  $141 

individual household estimate by 24 per cent of the 201,660 households in the Canterbury region (SNZ, 2007), 

yielding $6.7 million.  Results of this calculation for each combination of water quality variables are shown in 

Table 7 as weighted aggregates. Summing these values produces the $27.4 million estimate presented in Table 

8.  

Insert Table 7 here  

 Table 8 also presents estimates using sample mean values where CS estimates do not account for 

respondents’ close proximity to river and stream water quality characteristics. This enables a comparison of the 

CS estimates with and without local water quality data. In order to aggregate the CS across the population, 

assumptions have to be made about the non-respondents who did not return the survey. For illustrative purpose, 

we calculate the average aggregate CS based on different multiplier assumptions as suggested by Mitchell and 



14 

 

   

 

Carson (1989). We calculated aggregate CS based on the multipliers 0, 0.5 and 1. If 0 is used as a multiplier, we 

assume that non-respondents are not willing to pay anything. If the multiplier is 0.5, we assume that each non-

respondents’ WTP is half of the WTP of a sample respondent. The third assumption is that non-respondents 

have the same mean WTP as respondents and the multiplier is 1. The results of these calculations are presented 

in Table 8.   

Insert Table 8 here 

In Table 8, it is noticeable that the aggregation that takes into account the respondents’ local water 

quality data is 125 per cent higher for the Fair Management scenario ((22.9 - 10.2)/10.2) and 130 per cent higher 

for the Good Management scenario ((27.4 - 11.9)/11.9) assuming non-respondents have the same mean WTP 

as sample respondents. This suggests that water management programs in Canterbury would be undervalued if 

the traditional sample mean CS was used to assess aggregate benefits. Using respondents’ local water quality 

data facilitated a more accurate reflection of the distribution of benefits and thus a more appropriate estimation 

method. The increase in CS from base to Fair and Good Management scenarios indicate that respondents’ local 

rivers and streams are generally poor in quality and are willing to pay more for higher levels of improvements in 

water quality.  

 

 5. Policy Implications and Conclusions  

 The results reported in this paper have important policy implications for both agri-environmental 

policy managers and for choice modelling practitioners. For policy managers, practical application of policies with 

strict budget constraints inevitably necessitates trade-offs being made. The trade-offs could be based upon 

aspects of water quality, which rivers and streams are to be targeted, and which one to be chosen first.  The 

results of this study may help to answer these questions. First, recognizing the importance of the selected 

attributes that require greatest attention can be considered. Based upon the results from this study, Canterbury 

residents will benefit most by improving the ecological quality, followed by reducing the risk of sickness and 

finally, by reducing the number of months that a river is in low-flow.  Secondly, by showing that further benefit is 



15 

 

   

 

gained by initially targeting the relatively lower quality rivers and streams. For policy practitioners, by modelling 

the relationship between the GIS based water quality data applying the method developed in this paper, they will 

be able to use the estimated values as proxies of benefits to evaluate policy actions across rivers and streams 

within Canterbury.  

 Implications for choice modelling practitioners stem from the finding that individual welfare is spatially 

sensitive, and that omission of this facet from aggregate CS calculations may bias results.  The primary 

purpose of this paper was to test spatial hypotheses regarding respondents’ local water quality and quantity, and 

their WTP for improvements in water quality attributes. We found that WTP is sensitive to local water quality. This 

paper also presented aggregate benefit values that are suitable for cost-benefit analysis. Benefits of 

combinations of policy outcomes can be assessed using CS estimates. This study found that inclusion of 

respondents’ local water quality data has a significant impact on the magnitude of CS estimates. Aggregate CS 

estimates that incorporate spatially related water quality data are more than 100 per cent larger than traditional 

sample mean CS estimates. 

 The main contribution of this paper is the development of a method to incorporate respondents’ local 

water quality data via GIS in estimating WTP and CS for agri-environmental policy. By including respondents’ 

local water quality data, the analyst is able to form a range of estimates dependent on the specific areas of water 

quality. In short, the spatially distributed WTP estimates for highest (lowest) levels of improvements in water 

quality attributes are greater (smaller) than the sample average WTP. Therefore, benefit aggregation based on 

sample average WTP with no spatially distributed water quality information may result in biased estimates.  

Further research investigating the spatial impact of policies is needed to form a better understanding of how 

individual benefits relate to the costs of policy implementation. That analysis could also be conducted employing 

GIS and, combined with spatial WTP data, could aid in identifying where policy is achieving a net benefit.  
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Table 1: Attributes and levels used in choice sets 

Attribute Base level Improvement level 

Health Risk 60 10 and 30 people/1000/year 

Ecology Poor Fair and Good 

Flow 5 1 and 3 months of low-flow/year 

Cost $0 $15, $30, $45, $60, $75, $90 per domicile per year 
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Table 2: Ecology attribute level definitions 

Poor Quality  Weeds are the only aquatic plants present and cover most of the stream channel. 

The stream-bed is covered mostly by thick green algae mats. Only pollution 

tolerant insect populations are present. No fish species are present.     

Fair Quality About 50% of stream channel covered by plants. Few types of aquatic plants, 

insects and fish. Algae cover about 20% of stream bed. Population densities are 

reduced. 

Good Quality Less than 50% of stream channel covered by plants. Algae cover less than 20% of 

stream-bed; there is a diverse and abundant range of aquatic plants, fish and 

insects. Insect communities are dominated by favourable species with pollution 

sensitive populations present. 
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Table 3: Model variables 

Risk 10 10 people/1000/year sick from recreational contact  
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Risk 30  30 people/1000/year sick from recreational contact 

Ecology Good Ecological quality is good 

Ecology Fair Ecological quality is fair 

Flow 1 1 month of low-flow/year 

Flow 3 3 months of low-flow/year 

Cost $15, $30, $45, $60, $75 and $90 per household per year 

ASC  Alternative specific constant 1 if alternative 2 or 3, 0 otherwise 

Income Household gross annual income 

Safe Respondent agrees that agriculture is environmentally safe 

Commercial Respondent indicates commercial use of water is important 

Businesses Respondent indicates farms should pay for water improvement policy 

SRG Measure of pathogen presence 

SQMCI Score Measure of ecological quality 

Flow Change Change in flow conditions 
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Table 4: Distribution of respondents’ local water quality  

SRG 
% of 

Sample 

 

 

SQMCI Median  

Score 

% of 

Sample 
 Flow Change 

% of 

sample 

Very Poor 70  0 to 2 13  Increase 6 

Poor 4  2 to 3 26  0 to 10% decrease 44 

Fair 7  3 to 4 17  10% to 20% decrease 9 

Good 4  4 to 6 24  20% to 30% decrease 14 

Very Good 15  6 to 7 11  30% to 40% decrease 18 

  > 7 9  > 50% decrease 9 
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Table 5: Random Parameter Logit model 

Random Parameters Coefficient Standard error 

Risk 10 0.496*** (0.06) 
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Risk 30 0.201*** (0.06) 

Ecology Fair 0.249*** (0.66) 

Ecology Good 0.701*** (0.08) 

Flow 1 0.329*** (0.07) 

Flow 3 -0.108 (0.07) 

Cost -0.057*** (0.01) 

Non-random Parameters   

ASC 0.317 (0.41) 

Safe -1.28*** (0.25) 

Commercial -1.23*** (0.37) 

Gender 0.699*** (0.25) 

Income 0.183*** (0.06) 

Businesses -6.13*** (0.46) 

SRG x Cost 0.0046*** (0.001) 

Flow Change x Cost 0.0056*** (0.001) 

SQMCI x Cost 0.0018* (0.0001) 

Derived Standard Deviations of Random Parameter Distributions 

Risk 10 0.496*** (0.06) 

Risk 30 0.402*** (0.13) 

Ecology Fair 0.249*** (0.06) 

Ecology Good 0.701*** (0.08) 

Flow 1 0.329*** (0.07) 

Flow 3 0.108 (0.07) 

Cost 0.057*** (0.01) 

Model statistics   

Log Likelihood -1464  

McFadden Pseudo R2 0.37  

AIC 1.41  

BIC 1.45  

Observations 2094  
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*, **, *** indicates significance at 10, 5 and 1% level. 

 

  

 

 

 

 

 

 

 

Table 6: Willingness-to-Pay (2008 NZ$ per annum) 

Attributes and 

Water Quality 

Variables 

WTP ($) Using Local Water Quality  

Sample Mean WTP($): 

Without Local 

Water Quality  

 

SRG < 2 2 ≤ grade ≤  4 4 <  

Risk 10 20.5 (0.6 - 0.3) 16.6 (1.3 - 31.9) 14.1 (1.6 - 6.5) 19.1 (2.2 - 34.6) 

Risk 30 16.1 (2.3 - 4.5) 13.1 (1.4 - 27.5) 11 (0.9 - 22.9) 14.9 (2.4 - 20.9) 

SQMCI ≤ 2 2 < score < 5 5 ≤  

Ecology Good 27.4 (6.4 - 49) 24.7 (5.8 - 43.4) 23.1 (5.7-0.6) 25.6 (8.5 - 41.3) 

Ecology Fair 18.9 (4.5 - 4.1) 17 (3.7 - 30.3) 15.9 (3.6-8.2) 16.1 (4.7 - 26.6) 

Flow Change > 30% less Up to 30% less Increase  

Flow 1 15 (4.7 - 27.5) 9.6 (2.7 - 18.8) 5.7 (1.7-12.9) 7.1 (1.6 - 13.4) 

95% Confidence intervals in brackets calculated from unconditional parameter distribution. 
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Table 7: Compensating Surplus (2008 NZ$ per annum)  

Local Water Quality 
Respondent 

Distribution 

Individual Compensating 

Surplus ($) 

Weighted 

Aggregate CS 

($000’s) 

SRG Flow change SQMCI  Fair Management Good Management Good Management 

< 2 up to 30% less 2 < Score < 5 24% 118 (33 - 203) 141 (20 - 262) 6,730 

< 2 up to 30% less 5 ≤ 16% 106 (39 - 174) 127 (28 - 225) 4,050 
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< 2 > 30% less 2 < Score < 5 11% 147 (33 - 260) 177 (20 - 330) 4,044 

< 2 up to 30% less ≤ 2 10% 132 (30 - 236) 158 (14 - 304) 3,043 

2 ≤ grade ≤ 4 up to 30% less 2 < Score < 5 7% 100 (42 - 160) 119 (32 - 208) 1,765 

< 2 > 30% less 5 ≤ 5% 132 (30 - 236) 158 (13 - 304) 1,565 

4 < up to 30% less 2 < Score < 5 4% 83 (44 - 122) 98 (37 - 160) 851 

4 < > 30% less 2 < Score < 5 3% 97 (43 - 152) 115 (33 - 197) 744 

4 < up to 30% less 5 ≤ 3% 77 (44 - 111) 91 (37 - 146) 683 

2 ≤ grade ≤ 4 > 30% less 2 < Score < 5 3% 124 (31 - 217) 147 (16 - 280) 776 

2 ≤ grade ≤ 4 up to 30% less 5 ≤ 2% 92 (43 - 141) 109 (35 - 185) 531 

2 ≤ grade ≤ 4 > 30% less 5 ≤ 2% 111 (38 - 184) 132 (27 - 238) 560 

< 2 Increase 5 ≤ 2% 77 (44 - 111) 91 (37 - 146) 314 

< 2 Increase 2 < Score < 5 2% 83 (44 - 122) 98 (37 - 160) 417 

< 2 > 30% less ≤ 2 1% 168 (16 - 322) 201 (8 - 396) 244 

2 ≤ grade ≤ 4 up to 30% less ≤ 2 1% 111 (38 - 184) 132 (27 - 238) 232 

4 < > 30% less 5 ≤ 1% 89 (44 - 135) 106 (36 - 176) 321 

4 < Increase 5 ≤ 1% 61 (40 - 82) 72 (36 - 109) 87 

4 < Increase 2 < Score < 5 1% 64 (42 - 87) 76 (36 - 116) 88 

4 < up to 30% less ≤ 2 1% 89 (44 - 135) 106 (36 - 176) 306 

95% Confidence intervals in brackets calculated from unconditional parameter estimates. 
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Table 8: Canterbury Aggregate Compensating Surplus (2008 NZ$ millions/annum) 

Aggregation multiplier α = 1  α = 0.5  α = 0 

Management scenario Fair Good  Fair Good  Fair Good 

Spatially weighted CS aggregation                  22.9 27.4  13.7 17.1  5.6 6.7 

Sample mean CS aggregation         10.2 11.9  6.3 7.4  2.5 2.1 
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