
Title Page 

Microbial factors associated with the natural suppression of 

take-all in wheat in New Zealand 

 

A thesis 

submitted in partial fulfilment 

of the requirements for the Degree of 

Doctor of Philosophy 

At 

Lincoln University, 

Canterbury, New Zealand 

 

by 

Soon Fang Chng 

 

Lincoln University 

2009



 ii 

Abstract of a thesis submitted in partial fulfilment of the requirements 

for the Degree of Doctor of Philosophy 

Abstract 

Microbial factors associated with the natural suppression of take-

all in wheat in New Zealand 

by Soon Fang Chng 

Take-all, caused by the soilborne fungus, Gaeumannomyces graminis var. tritici (Ggt), is an 

important root disease of wheat that can be reduced by take-all decline (TAD) in successive 

wheat crops, due to general and/or specific suppression. A study of 112 New Zealand wheat soils 

in 2003 had shown that Ggt DNA concentrations (analysed using real-time PCR) increased with 

successive years of wheat crops (1-3 y) and generally reflected take-all severity in subsequent 

crops. However, some wheat soils with high Ggt DNA concentrations had low take-all, 

suggesting presence of TAD. This study investigated 26 such soils for presence of TAD and 

possible suppressive mechanisms, and characterised the microorganisms from wheat roots and 

rhizosphere using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis 

(DGGE).  

A preliminary pot trial of 29 soils (including three from ryegrass fields) amended with 12.5% 

w/w Ggt inoculum, screened their suppressiveness against take-all in a growth chamber. Results 

indicated that the inoculum level was too high to detect the differences between soils and that the 

environmental conditions used were unsuitable. Comparison between the Ggt DNA 
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concentrations of the same soils collected in 2003 and in 2004 (collected for the pot trial), 

showed that most soils cropped with 2, 3 and 4 y of successive wheat had reduced Ggt DNA 

concentrations (by 195-2911 pg g
-1

 soil), and their disease incidences revealed 11 of the 29 test 

soils with potential take-all suppressiveness. 

Further pot trials improved the protocols, such that they were able to differentiate the magnitudes 

of suppressiveness among the soils. The first of the subsequent trials, using 4% w/w Ggt 

inoculum level, controlled conditions at 16°C, 80% RH with alternate 12 h light/dark conditions, 

and watering the plants twice weekly to field capacity (FC), screened 13 soils for their 

suppressiveness against take-all. The 13 soils consisted of 11 from the preliminary trial, one 

wheat soil that had been cropped with 9 y of wheat (considered likely to be suppressive), and a 

conducive ryegrass soil. The results revealed that 10 of these soils were suppressive to take-all. 

However, in only four of them were the effects related to high levels of microbial/biological 

involvement in the suppression, which were assessed in an experiment that first sterilised the 

soils. In a repeat trial using five of the soils H1, H3, M2, P7 (previously cropped with 3, 3, 4 and 

9 y successive wheat, respectively) and H15 (previously cropped with 5 y of ryegrass), three of 

them (H1, H3 and M2) had reduced Ggt DNA concentrations (>1000 pg g
-1

 soil reductions), and 

were confirmed to be suppressive to take-all. A pot trial, in which 1% of each soil was 

transferred into a γ-irradiated base soil amended with 0.1% Ggt inoculum, indicated that soils H1 
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and H3 (3 y wheat) were specific in their suppressiveness, and M2 (4 y wheat) was general in its 

suppressiveness.  

The microbial communities within the rhizosphere and roots of plants grown in the soils, which 

demonstrated conduciveness, specific or general suppressiveness to take-all, were characterised 

using PCR-DGGE, and identities of the distinguishing microorganisms (which differentiated the 

soils) identified by sequence analysis. Results showed similar clusters of microorganisms associated 

with conducive and suppressive soils, both for specific and general suppression. Further excision, 

re-amplification, cloning and sequencing of the distinguishing bands showed that some 

actinomycetes (Streptomyces bingchengensis, Terrabacter sp. and Nocardioides sp.), ascomycetes 

(Fusarium lateritium and Microdochium bolleyi) and an unidentified fungus, were associated with 

the suppressive soils (specific and general). Others, such as the proteobacteria (Pseudomonas putida 

and P. fluorescens), an actinomycete (Nocardioides oleivorans), ascomycete (Gibberella zeae), and 

basidiomycete (Penicillium allii), were unique in the specific suppressiveness. This indicated 

commonality of some microorganisms in the take-all suppressive soils, with a selected 

distinguishing group responsible for specific suppressiveness. General suppressiveness was 

considered to be due to no specific microorganisms, as seen in soil M2. 

An attempt to induce TAD by growing successive wheat crops in pots of Ggt-infested soils was 

unsuccessful with no TAD effects shown, possibly due to variable Ggt DNA concentrations in 



 v 

the soils and addition of nutrients during the experiment. Increasing numbers of Pseudomonas 

fluorescens CFU in the rhizosphere of plants, during successive wheat crops was independent of 

the Ggt DNA concentrations and disease incidence, suggesting that increases in P. fluorescens 

numbers were associated with wheat monoculture. 

This study has demonstrated that TAD in New Zealand was due to both specific and general 

suppressiveness, and has identified the distinguishing microorganisms associated with the 

suppression. Since most of these distinguishing microorganisms are known to show antagonistic 

activities against Ggt or other soilborne pathogens, they are likely to act as antagonists of Ggt in 

the field. Future work should focus on validating their effects either individually, or 

interactively, on Ggt in plate and pot assays and under field conditions.  

Keywords: Gaeumannomyces graminis var. tritici, take-all, successive wheat, DNA, inoculum, 

suppressive soils, take-all decline, denaturing gradient gel electrophoresis, DGGE, microbial 

populations, Pseudomonas fluorescens. 
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Chapter 1  
Introduction 

1.1 Wheat production in New Zealand 

In New Zealand, wheat is primarily grown for domestic consumption and is milled for flour. 

Some wheat grain and the by-products of flour milling, bran and pollard, are used for stock feed. 

An estimated 40, 000 hectares (ha) was grown with wheat, producing 328, 000 tonnes of grain in 

the year ended June 2007 (Ministry of Agriculture and Forestry 2007). Nearly 70% of New 

Zealand wheat crops are grown in Canterbury, where the growing and harvesting conditions are 

most favourable (Ministry of Agriculture and Forestry 2005). The wheat industry was worth 

NZ$113.3 million per annum during the year ended June 2007, at a contract price of NZ$315 

tonne
-1

, contributing significantly to the New Zealand arable sector, which was worth NZ$379 

million (Ministry of Agriculture and Forestry 2004, 2007). 

1.2 Significance of take-all in wheat 

Take-all, caused by Gaeumannomyces graminis (Sacc.) Arx and Oliver var. tritici Walker (Ggt ) 

is considered one of the most damaging root diseases of wheat (Triticum aestivum L.) worldwide 

(Wiese 1998). It was first found in South Australia in the 1850s (Hornby et al. 1998) and now 

has a cosmopolitan distribution in temperate regions of the world (Figure 1.1), extending to the 

tropics at high elevations (Mathre 1992). Recently, take-all has been found in arid wheat 

producing areas of the world, where irrigation has been used, including Montana, Texas, North 

Dakota, Idaho, Washington, and Oregon in the USA, and in Israel (Mathre 2000). It was first 

reported on wheat in New Zealand in 1913 (Cockayne 1913; Pennycook 1989). 

In Australia, take-all was estimated to have caused an average of 18% crop loss in 1986/87 

(Oerke et al. 1994). Information on the impact of take-all on wheat grown in New Zealand is 

limited as research focusing on this disease only began in recent years. In a survey for the 1995-

96 growing season, take-all was found in 10% of the 157 wheat fields assessed (Braithwaite et 

al. 1998). An extensive survey by Cromey et al. (2006) in New Zealand wheat and barley fields 

over three growing seasons during 1999-2002 (38, 91 and 113 fields for respective seasons) 

found that in total, 30% of the fields had greater than 20% incidence of take-all. This would 

reduce crop yield in individual fields by at least 15% and result in yield loss of around 5% across 

all the fields surveyed. Assuming wheat is valued at $300 tonne
-1

, and the total annual New 
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Zealand production is 328, 000 tonnes (Ministry of Agriculture and Forestry 2007), a 

conservative estimation of NZ$5 million could be lost each year due to this disease.  

 

 

 

[This figure has been removed for copyright compliance.] 

 

 

 

Figure 1.1  World distribution of take-all in 1972 (Hornby et al. 1998). 

1.3 Biology of Gaeumannomyces graminis var. tritici and 
related fungi 

Ggt belongs to the phylum Ascomycota; sub-division Ascomycotina; class Ascomycetes; order 

Diaporthales; family Magnapothaceae (Hornby et al. 1998), and tends to have a Phialophora-

like anamorph (Walker 1981; Hornby et al. 1998), which allows it to be identified in culture. The 

three other varieties closely related to Ggt are var. avenae (Gga), var. graminis (Ggg), and var. 

maydisal (Ggm). All these varieties are similar in their morphological characteristics, but can be 

differentiated by the size of their ascospores, pathogenicity and extent of infection on the roots of 

hosts. Ggt attacks wheat, barley and some susceptible grasses but not oats (Hornby et al. 1998; 

Wiese 1998), whereas Gga infects oats, wheat, barley and other grasses. Oats are resistant to Ggt 

mainly because of the four antifungal avenacins, A-1, A-2, B-1 and B-2, present in their roots 

(Crombie & Crombie 1986). Ggg is pathogenic to turf grasses but is weakly pathogenic to wheat 

(Wiese 1998). Ggm, a maize pathogen in China, is the most recently proposed Gaeumannomyces 

variety (Hornby et al. 1998). Ggt, Gga and Ggm produce simple hyphopodia on the surfaces of 

host tissues while Ggg produces both simple and lobed hyphopodia. Gga generally has longer 

ascospores (65 m to 176 m) than Ggt (27 m to 124 m) (Mathre 1992), whereas those of 
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Ggg are similar in length to those of Ggt (27 m to 124 m ) (Hornby et al. 1998). Ggm has 

ascospores 55.5 m to 85.5 m in length with one end being pointed (Hornby et al. 1998). 

1.4 Isolation of Ggt from infected roots 

The fungus can be readily isolated from infected crop debris and plant parts such as stem bases, 

sub-coronal internodes, crown roots or seminal roots (Hornby et al. 1998). Isolation from soil 

can be achieved by growing susceptible hosts as baits and by subsequently isolating the fungus 

from the lesions on infected roots (Cunningham 1981; Hornby et al. 1998). Potato dextrose agar 

(PDA) amended with antibiotics, and semi-selective media SM-GGT3 (Juhnke et al. 1984), R-

PDA (Duffy & Weller 1994) and SM-GGT4 (Elliott 1991), can be used to aid the isolation and 

identification of the fungus. Both SM-GGT3 and SM-GGT4 contain PDA amended with L-

DOPA, which turns black in close proximity to growing hyphae of Ggt, plus antibiotics and 

antifungal agents to restrict growth of competing organisms. R-PDA consists of diluted PDA 

amended with rifampicin and tolclofos-methyl; Ggt is able to alter the colour of rifampicin in R-

PDA from orange to purple in as little as 24 h.  

Colonies of Ggt grown for 2-4 d on PDA at 20°C display a pronounced whorled appearance in 

culture, caused by the curling back of hyphal tips (Cunningham 1981; Hornby et al. 1998). 

Hyphae are generally pale in colour, and the majority darken with age. The intensity of 

pigmentation is a hereditary trait, but is affected very much by the substrates present in the 

medium (Cunningham 1981). Figure 1.2a shows the colony characteristics of Ggt on PDA. 

1.5 Disease symptoms and damage 

Early infection during the seedling stage (infection of seminal roots) can affect yield by limiting 

tiller formation and causing premature death of tillers (Wiese 1998). Wheat infected with take-all 

generally shows above ground symptoms such as yellowing of the lower leaves on tillers and 

stunting of growth. The small heads may also mature early or appear bleached (Figure 1.2b), 

when they are usually sterile due to restriction of water flow to the tops (Cook 2003). The 

shrivelled grains caused by early maturation of tillers is also highly susceptible to infection by 

fungi such as Cladosporium herbarum or Alternaria spp. (Colhoun 1971). Severe infection by 

Ggt may also weaken the culm bases (Wiese 1998),  allowing the plants to be easily pulled from 

the soil or broken off near the soil line (Wiese 1998; Cook 2003). Below ground symptoms, 

including dark lesions caused by the dark runner hyphae of Ggt (Figure 1.2c) (Colhoun 1971; 
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Wiese 1998), are restricted to infected roots if soil moisture is limited during early crop 

development. With sufficient soil moisture throughout the whole growing season, the blackening 

will extend into the crown and up the culm base, where it is visible beneath the lowest leaf 

sheath as a distinct, superficial, dark, shiny mycelium plate surrounding the culm (Figure 1.2d) 

(Wiese 1998).  

   

(a)       

    

(b)       

    

(c)        

    

(d)       

    

    
 

Figure 1.2  (a) Colony characteristics of 8 d old Ggt on PDA; (b) autumn wheat crop at GS 65 

showing whitehead symptoms; (c) runner hyphae of Ggt on wheat roots and (d) blackening of 

wheat stem bases and root systems.
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1.6 Disease cycle  

Take-all infection can occur at any growth stage of the wheat plant (Wiese 1998). Primary 

infection of autumn-sown wheat by Ggt takes place from growth stages (GS) 15 to 29 

(seedling to tillering) (see Appendix 1 A1. 1 for cereal growth stages) as the roots grow 

through the soil near, or come into contact with, infested debris from the previous growing 

seasons (Wiese 1998; Hornby & Beale undated). The dark runner hyphae of Ggt (Figure 

1.2c) residing in the crop debris will first colonise the roots superficially, and then 

penetrate directly by hyaline hyphae beneath the hyphopodia into the root cortices and 

across the endodermis into the stele, where they obtain nutrients, carbon and energy (Cook 

2003). Infection in this way can occur throughout the whole growing season, but 

temperatures between 10 and 20°C are optimal (Wiese 1998), meaning that primary 

infection usually occurs in autumn and there will be very little further root infection and 

symptom development in the winter.  

Lesion development and secondary infection by root-to-root contact of the wheat, often 

begins in spring around GS30 (stem elongation), when temperatures start to rise (Hornby et 

al. 1998; Hornby & Beale undated). From late spring to summer when the crop is at GS45 

(booting stage) to before anthesis (GS69), plants may start showing symptoms such as 

uneven growth, stunting, and stem blackening. At completion of anthesis (GS69), white 

heads may become apparent (Hornby et al. 1998).  

Spread of Ggt via ascospores is rather insignificant and relatively unimportant 

epidemiologically (Hornby et al. 1998; Wiese 1998). Ascospores from perithecia on the 

stem bases or stubble, may be discharged into the air by active ejection from the ascus and 

dispersed by splashing rain, and to some extent by wind (Hornby 1981). At least 0.25 mm 

of rain is required early in the season to cause release of spores that infect the crop. 

Infection can be through the proximal parts of the seminal roots of seeds sown on the soil 

surface (not deep down into the soil), or through root hairs by tropical growth of the 

hyphae towards the roots (Hornby 1981; Skou 1981). Ascospores discharged during the 

summer are not able to survive and germinate under dry conditions, nor can they enter the 

soil for the hyphae to infect the roots, therefore rarely cause infection. However, 

susceptible grass weeds infected by the ascospores in the early season may act as primary 

or secondary infection sources throughout the growing season (Skou 1981; Hornby et al. 

1998; Wiese 1998). 
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1.7 Factors affecting Ggt as soil inoculum 

1.7.1 Competitive saprophytic ability 

Ggt is a root inhabiting fungus with little competitive saprophytic ability (CSA) and 

growth in soil in the absence of host-plant roots (Skou 1981). Between crops, it survives by 

living saprophytically in infested host residue from previous crops, and as a pathogen of 

susceptible grass weed species, acting as inoculum sources for the subsequent crops 

(Garrett 1981; Shipton 1981). Over 402 grass species have been listed as hosts of Ggt 

(Nilsson 1969), including species of Bromus, Hordeum, and Triticum, and species of 

Dactylis, Festuca, Lolium, Elytrigia and Poa , but not oats (Nilsson & Smith 1981). The 

amount of Ggt inoculum available to infect subsequent crops depends on the ability of the 

fungus to survive in the field and compete with other microflora for substrates in the dead 

host tissues (Garrett 1970). 

Ggt lacks the ability to persist in the rhizosphere of non-hosts (Skou 1981), hence, even 

when the Ggt infested stubble was in close proximity to other dead debris (such as 

ploughed-in wheat straw) in the field, the extent of its saprophytic colonisation by growing 

through the soil, was found to be very minimal (Shipton 1981). Poor or decreased CSA of 

Ggt with increasing levels of competition from other microorganisms, was confirmed by 

Butler (1953) and Garrett (1970) in pot experiments, through the addition of Ggt inoculum 

and non-sterilised soils to sterilised soils. Garrett (1976) later showed that the penetration 

rate of the fungus into mature cell walls of the straws, was dependent on the rate of 

enzymic degradation of the walls around the apices of penetrating hyphae. Other attributes  

contributing to the poor CSA of Ggt, include slow germination and growth, poor 

production of celluloytic and lignolytic enzymes to degrade the cell walls of  the roots for 

hyphal penetration and many other interacting factors, which in turn, dictate the potential 

for its pathogenic activity (Shipton 1981). 

All the above information indicates that, in the absence of susceptible hosts, the quantity of 

Ggt inoculum present in the infested crop debris is on a path of continual reduction and 

degradation, as it is a poor competitor in the soil, and without CSA, further saprophytic 

colonisation is minimal. 
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1.7.2 Nitrogen 

Once Ggt becomes established on a suitable substrate, maintenance of inoculum (resting 

mycelium) becomes vital for its survival (Garrett 1970). The supply of soluble nitrogen (N) 

to Ggt within the straw, or diffusing in from the soil, is one of the most important factors 

regulating its survival (Huber 1981). This was demonstrated by Garrett (1938), who found 

that Ggt died out early from almost undecomposed straw in induced N-deficient soils. 

When the soil was amended with dried blood (containing 13% N), the death of the fungus 

was delayed even when the straws became almost fully decomposed. In contrast, decline of 

the fungus was accelerated by the addition of rye-grass meal, which delayed 

decomposition of the straw by taking up the available N. He later concluded that ample N 

would promote a greater and more sustained development of the dark mycelium of Ggt 

within the infected straw as the fungus assimilated more of the undecomposed 

carbohydrate reserves of the straw (Garrett 1940). However, if the soil is well aerated, it 

might favour microbial activity and hasten the disappearance of Ggt by promoting more 

rapid consumption of the available food material by both the pathogen itself and by other 

associated microorganisms (Garrett 1940).  

Similar results were reported also by Butler (1953), who found that Ggt remained viable in 

89% of the test straws for 20 wk in N-enriched soil, but its viability fell rapidly after 12 wk 

in N-deficient soil. However, the direct effects of N-amendment (in contrast to its effect as 

mediated by other microorganisms) on the viability of Ggt were not considered, as non-

sterilised soils were used in their studies.  

Chambers and Flentje (1969) used gamma-irradiated N-enriched soils and managed to 

separate the direct effect of N on Ggt from the effect mediated by other soil microbes. 

They reported 86% of straws buried in un-amended (no N added), irradiated soil for 24 wk 

still contained viable Ggt, but only 67% of straws still contained viable Ggt when soil 

microorganisms were included by using the unsterilised soil. Conversely, 99% of straws 

still contained viable Ggt after 24 wk when N was added to the unsterilised soil, which 

contained soil microorganisms. They suggested that the survival of Ggt was dependent on 

the availability of N rather than on the competition and antagonism of other soil organisms. 

Garrett (1963; 1966; 1967; 1970; 1976; 1976) examined the effect of decomposition rate of 

the cellulose of straws on the saprophytic survival of Ggt. He concluded that the 



 8 

relationship between the cellulolysis rate of straw tissue by the fungus and the general 

metabolic rate of the fungus are the two main factors determining the saprophytic survival 

of the fungus in the straw. General metabolic rate determines the rate at which 

carbohydrates are consumed by the processes of respiration and growth, while cellulolysis 

rate determines the rate at which soluble carbohydrates are made available for the 

metabolism of the fungus (Garrett 1970). Only when the cellulolysis rate is adequate to 

maintain the general metabolic rate, will a fungus be able to continue to survive in the 

straw tissues. Hence, a fast-growing fungus with a high metabolic rate will require a higher 

rate of cellulolysis to supply its needs than will a slow-growing fungus with a low 

metabolic rate.  

A cellulolysis adequacy index (C.A.I.), which is a ratio obtained by dividing cellulolysis 

rate by the linear growth rate of the fungus (as a general metabolic rate) was proposed by 

Garrett (1963) to express these relationships. If the CAI is less than unity, it indicates a 

need for extra N for maximum survival, whereas an index of more than unity indicates that 

increased supply of N will reduce longevity. Ggt has a CAI of between 0.3 and 0.5 and 

therefore, will respond positively to N-amendment (Garrett 1967). However, he also found 

that the Ggt inoculum potential (ability to cause maximum root infection) developed more 

quickly at the higher N levels, at which cellulolysis was most vigorous, but rapidly 

declined at the highest N level. This means that whether in the presence of microbial 

competitors or not, the optimum level of N for Ggt is that just sufficient to maintain the 

cellulolysis at a rate adequate for its survival. In contrast, Scott (1969a) reported that Ggt‟s 

survival was determined mostly by the degree of success in saprophytic competition with 

other microorganisms in high N soils.  

For decomposition to take place at a high rate, the level of N must be quite high (Deacon 

1997). This is expressed as the carbon and nitrogen (C:N) ratio of a material assuming that 

both C and N substrates are in utilisable forms. For instance, wheat straw has a C:N ratio at 

about 80:1, whereas fungal hyphae have a C:N ratio at about 10:1 depending on their age 

and other factors. During fungal growth, one third of C will be converted into cellular 

material, the other two thirds being respired as carbon dioxide (CO2). Similar things 

happen when a fungus is growing on plant material that is breaking down. For instance, for 

a material with C:N ratio of 100:1, when 10 of its C units are combined with one N unit in 

the fungal mycelium, this will release 20 C units as CO2 and there will still be 70 C units 

left in the residual substrate. Decomposition will stop at this point because the fungus is 
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starved from the lack of N for growth and enzyme production. With the above information, 

the conclusion given by Chambers and Flentje (1969) on the acceleration of the loss of the 

Ggt viability in colonised straws buried in irradiated N-deficient soil with other introduced 

microorganisms, could be explained. Introduced microorganisms could have competed 

with Ggt to use the available N to convert C for growth and enzyme production. In 

addition, nitrogen depletion could also drive fungal succession to take place (Deacon 

1997). The early colonisers, which used up the available nitrogen, might not be efficient in 

recycling their mycelial nitrogen reserves, thereby resulting in their starvation. Other fungi 

would replace them, using their lytic products as a nitrogen source (Garrett 1940). 

In summary, Ggt survives well in infested wheat residues with increasing soluble N, but 

only up to a point where excess N will hasten decomposition of the residues and promote 

succession of other microorgnisms.  

1.7.3 Temperature and moisture 

Temperature and moisture are important in determining the survival of Ggt inoculum and 

hence take-all (Cook 1981). Work summarised by Deacon (1997) showed that when wheat 

plants were grown in sterilised soil inoculated with Ggt, the pathogen was able to cause 

progressively more disease on the roots (>50% - 90% roots infection) as the soil 

temperature was raised from 13 to 23°C, or even 27°C, which is the optimum temperature 

for its growth on agar. However, in natural, non-sterile soil, the amount of disease declined 

as the temperature was raised above 18°C (Deacon 1997). The inference drawn from the 

study was that higher temperatures favour other microorganisms even more than they 

favour the Ggt. These other microbes may be able to inhibit and antagonise the Ggt or to 

compete for saprophytic degradation of the wheat residues, causing death of Ggt (Garrett 

1934; Deacon 1997), thus other interacting factors must be taken into account in natural 

conditions. This information also indicates that temperatures between 12 to 18°C are 

sufficient for infection to take place.  

Studies have indicated that take-all is prevalent in moist soil in the field, largely due to the 

high water potential requirement for the pathogen to grow and infect the host in the top 

25 cm of soil, where it is first to dry when rain or irrigation ceases (Cook 1981). Ggt does 

not grow at soil matric potentials drier than -3.5 to -4.0 MPa and its growth rate is reduced 

by half at -1.5 to -2.0 MPa, which is quickly achieved in the top layer of soil during 
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prolonged periods with no rain or irrigation. Hence, water must be supplied to the soil 

regularly for severe take-all to develop.  

A few researchers have studied the effects of temperature and moisture on the survival of 

Ggt during soil storage, but they have had varied results. The fungus itself is reported to be 

capable of tolerating extreme temperatures during soil storage. When introduced into 

sterilised soil, its viability was not affected by repeated temperature alternations between 

21 and -29°C, and it tolerated 45°C for 30 min (Shipton 1981). MacNish (1973) conducted 

a bioassay using soil cores stored at various environmental conditions. He found that the 

viability of Ggt was not affected when soils were stored for at least nine wk in dry and cool 

conditions (-25 MPa to -98 MPa at 15°C) and moist, cool conditions (-0.4 MPa to -0.7 

MPa at 15°C). Disease incidence, however, decreased by 50% for soils stored under very 

dry and hot soil regimes (-98 MPa at 35°C) for 9 wk, and was totally eliminated from the 

soils stored under wet and hot conditions (-0.01 MPa to -0.2 MPa at 35°C) for 4 wk. 

Wong (1984) incubated soils inoculated with Ggt-infected wheat straws to four 

temperature-moisture regimes for 3 months and later assessed the lesions on the roots of 

wheat seedlings planted in the soils as baits. He found that Ggt survived best in cool dry 

soil (15°C at < -10 MPa) (100% survival), followed by warm dry soil (30°C at <-10 MPa) 

(63 to 97% survival). The fungus was eliminated from warm, moist soil (30°C at -

0.3 MPa), but in cool moist soil (15°C at -0.3 MPa), its survival was 18 to 40%. Exactly 

how these percentage survival rates of Ggt were derived was however not explained by the 

author. 

As the elimination of Ggt was based on „zero‟ disease incidence observed on the roots of 

the tested wheat seedlings for both researchers, and re-isolation of the fungus from the 

soils was not attempted, it is not clear whether the fungus was truly eliminated as it could 

have lost virulence or pathogenicity under undesirable storage conditions. The various 

temperature-moisture regimes used in their studies suggested however, that Ggt was able 

to survive even under the very dry conditions, which were up to 65 times (at -98 MPa) 

beyond permanent wilting point (approximately -1.5 MPa), and that cool temperatures 

were preferred to warm temperatures. While the soils tested were stored at constant 

conditions for a period, the survival and infectivity of Ggt under wetting and drying cycles 

were not explored. 
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1.8 Management of take-all 

1.8.1 Chemical controls 

Effective chemical control of many root diseases has almost always depended on the use of 

soil fumigants or fungicides, which may be applied to the soil as drenches and/or 

incorporated mechanically, as sprays and in seed treatments (Hornby et al. 1998; Cook 

2003). To provide effective control for crops known to be at risk from severe take-all, 

fungicide applications could be incorporated into an integrated disease management 

programme (Bateman 1989). 

1.8.1.1 Soil fumigation 

Soil applied fumigants will decrease Ggt to insignificant levels, but they are costly and 

therefore not commercially practical for an arable crop such as wheat (Hornby et al. 1998; 

Cook 2003). Fumigation is useful as an experimental tool, in particular, where larger 

factorial experiments are involved. For instance, an average yield increase of about 1 t ha
-1

 

for spring and winter wheat representing five locations over the years 1993 to 1996 after 

fumigation, has been reported in the USA (Cook et al. 2002). It has been suggested that the 

increased crop yield may be due to the flush of N, released by the killed microbial biomass 

in the soil following fumigation, but this cannot account for the amount of increased crop 

yield (Cook 1992). It was subsequently shown that the increased growth and yield response 

of crops by fumigation is due to improved root health and better nutrient exploration by the 

roots because of the death of soil pathogens (including Ggt and nematodes) (Cook 2003). 

However, there may also be a rapid build-up of Ggt following the year of treatment 

because of a decreased abundance and diversity of non-target antagonistic microflora in the 

soil (Hornby et al. 1998). Consequently, severe infection often results if another cereal 

crop is grown without re-application of the chemical.  

The large volumes and high concentrations needed, and hence the risk of contaminating 

groundwater, also preclude fumigation as a practical treatment for controlling take-all 

(Hornby et al. 1998). In addition, their high cost, broad spectrum of activity and 

environmentally unfriendly effects (such as the effect of methyl bromide on the ozone 

layer) means that it is still impossible to use fumigants for a large scale crops such as 

commercially grown wheat. 
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1.8.1.2 Soil fungicides 

Considerable work has been carried out in the UK. with fungicides applied to the soil as 

drenches and/or incorporated mechanically (Bateman 1980; Bateman & Nicholls 1982; 

Bateman 1984; Bateman et al. 1994). Bateman et al. (1994) suggested that for a soil-

applied fungicide to be effective in controlling take-all, it has to meet the following 

requirements: (i) good intrinsic fungitoxicity, (ii) some mobility in soil water, and (iii) 

season-long persistence. In their evaluation of the efficacy of six fungicides in controlling 

naturally-occurring take-all on winter wheat at two sites from 1986 to 1987, they reported 

nuarimol and triadimenol (sterol biosyntheis-inhibiting fungicides) to be the most 

effective. Triadimenol and nuarimol, were able to control take-all and improve yields when 

applied to the soil at 1-2 kg ha
-1

, but these rates are considered to be uneconomical for a 

low-value crop such as wheat. 

Workers in Victoria, Australia tested the efficacy of different systemic fungicides and 

found that both benzimidazole and triazole, when formulated into clay granules or pellets 

and applied at 1.5 kg ha
-1

 in the seed furrow at the time of seeding, gave control in 

naturally infested fields (Ballinger & Kollmorgen 1986a, 1986b). However, in a similar 

trial, Cook (2003) found that greater rates were needed (>1.5 kg ha
-1

) to give useful control 

of up to 100% fewer deadheads and more than 200% greater yield, thus, making this 

approach uneconomical.  

The cost of treatment and the fact that control is only partial and variable, are the main 

reasons why soil-applied fungicides are not being used commercially for control of take-

all. Moreover, fungicides applied to the soil may contaminate groundwater, hence it is 

important that they are applied at the smallest possible effective rates (Bateman 1989). 

Besides, soil fungicides may also decrease the abundance and diversity of non-target 

antagonists of Ggt, some of which are implicated in useful, natural biological control of 

take-all, thereby delaying the onset of take-all decline (TAD) (Wong 1981). For instance, 

in continuous winter wheat experiments at Rothamsted, a benomyl trial had slightly 

increased take-all in the second year after treatment; which did not occur with nuarimol, 

probably because it was more persistent (Bateman 1984). In the third year after treatment, 

neither of these fungicides appeared to have delayed the onset of TAD, which is the result 

of natural biological control and often occurs in monocultures after the peak of take-all has 

been reached (Bateman 1989). TAD will be described in Section 1.8.4. 
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1.8.1.3 Seed treatment 

Research on chemical control over the past 20 years has mostly focused on fungicide 

treatment of seeds as only small quantities of fungicides are required to provide early 

season control (Cook 2003). Again, sterol biosynthesis-inhibiting fungicides, particularly 

triadimenol, have shown potential (Cook 2003). Triadimenol was first found to be useful in 

delaying take-all development on irrigated spring wheat in Montana by Mathre et al. 

(1986). They reported that triadimenol, when applied at 0.22 ml a.i. kg
-1

 of seeds, was able 

to delay above ground symptoms on wheat by up to 53 d and to reduce numbers of root 

lesions at harvest by 50%. They explained that this chemical was able to delay infection by 

Ggt long enough to provide yield increases in winter wheat.  

In France, silthiofam (Latitude
®
) has been reported as the most promising chemical to be 

used for controlling take-all. Schoeny and Lucas (1999) did a comprehensive study on the 

epidemiology of take-all to evaluate the efficacy of this fungicide at 0.25 and 0.5 g a.i. kg
-1

 

of seeds. They found that throughout the cropping season take-all incidence in plants 

treated with the higher rate of fungicide was delayed by 3 to 5 wk, and disease severity 

decreased by 67 to 81%. However, if the epidemic started late in the growing season only 

moderate control was obtained, and fungicides applied at both rates were able to increase 

yield by 10 and 15%, respectively. 

A trial conducted in New Zealand in the 2002/2003 season, to compare various fungicide 

treatments, however, exhibited some controversial results. The per kg rates used to treat 

autumn-sown seeds were 0.1 and 0.2 g a.i. triadimenol (Baytan Universal
®

), 0.07 and 

0.14 g a.i. silthiofam (Latitude
®
), 1.5 and 3.0 g a.i. fluquinconazole and 0.3 and 0.6 g a.i. 

prochloraz (Jockey
®

). Results showed that at both application rates, triadimenol and 

silthiofam were able to reduce disease severity on the roots, early in the season, by 32 and 

25%, respectively, but did not affect disease severity or symptom development 

(whiteheads) later in the season. These two fungicides however did not significantly 

increase yield. The combined fluquinconazole and prochloraz (Jockey
®

), on the other hand, 

decreased whiteheads by an average of 84% at both rates and disease severity by 57 and 

75%, respectively. Conversely, Jockey also reduced seedling emergence by 47.6% and did 

not increase yield (Cromey, unpublished data). 

The usefulness of triadimenol in controlling take-all has been inconsistent mainly because, 

like most systemic fungicides, triadimenol moves very inefficiently, or not at all, to the 
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roots where the early protection is needed (Cook 1994). Seeds treated with this chemical 

were reported to have only 0.2 to 0.7% of the chemical in the seedling roots, compared to 

7.7% in the shoot, and 12 to 18% in the seed up to 28 d after sowing. About 56 to 74% of 

the chemical entered the soil where potentially it could provide direct inhibition of the 

pathogen (Cook 1994). 

1.8.1.4 Foliar treatment 

Foliar application of the many systemic phloem-translocated fungicides used to control 

foliar diseases, was found to be ineffective in controlling take-all, unless applied at high 

frequencies and concentrations (Bateman 1989). For instance, azoxystrobin (Amistar
®
), a 

broad spectrum fungicide with systemic translaminar activity, had to be applied at 

250 g ha
-1

 (500 g a.i. kg
-1

 soil) on a wheat crop, in autumn, spring and summer (at GS21, 

31 and 45, respectively), to reduce take-all severity (from TAR = 200 to 165) (Jenkyn et al. 

2000). The fungicide efficacy in this trial was probably due to the high number of sprays 

applied, the ability of the chemical to move through the soil to the roots to control Ggt and 

the improved capacity of the plants to resist attack by other pathogens (Jenkyn et al. 2000).  

Development of fungicides capable of being translocated in the phloem of the plants has 

raised the possibility of controlling root diseases (Bateman 1989; Hornby et al. 1998). 

However, most of the phloem-translocated fungicides currently available are active against 

oomycete pathogens, and none is active against Ggt (Hornby et al. 1998). Furthermore, the 

relatively low application rates and the inaccessibility of the fungicide to the inoculum, 

mean that conventional spray application of fungicides is unlikely to be successful in 

controlling take-all. 

1.8.2 Cultural practices 

Extensive efforts have been made trying to find resistance genes in wheat, barley and their 

closest relatives to Ggt, but to date, useful genes for resistance are still absent. According 

to Hornby et al. (1998), the most effective control strategy for decreasing the effects of 

take-all was by manipulating the agronomic practices, which have subsequently been 

shown to reduce the severity of take-all in fields. However, none of these practices 

provides more than a modest level of control (Cook 2003).  
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1.8.2.1 Crop rotation 

With the specialised nature of Ggt and its dependency on infested host remains for its 

survival within a food base, it is not surprising that crop rotation is the only cultural control 

method that works consistently and is economic for controlling take-all (Cook 2003). The 

time required for the break crops before returning to a susceptible cereal varies from area 

to area, depending on the climate and soil characteristics. In warm rainy areas (much of 

Europe and the southeast of USA), 1 y out of wheat after a wheat harvest will allow 

sufficient time for the decomposition of infested host remains, thereby reducing Ggt 

inoculum potential to below an economic threshold (Cook 2003). On the other hand, soils 

in the rain-fed (non-irrigated) intermountain Pacific Northwest are too dry for microbial 

activity during the warm summer and autumn months and too cold during the wet winter 

and spring months. Therefore, it will take at least 2 y out of wheat to lower the inoculum 

potential of Ggt below an economic threshold in this region (Cook 2003). 

Hornby et al. (1998) recommended short rotations that prevent the field from ever 

developing severe take-all, or continuous cropping with a single cereal species which 

exploits the TAD phenomenon, over the intermediate rotations that are so often practised. 

For instance, if a break crop is introduced every fifth year, at least two of the four cereal 

crops in the rotation are likely to suffer from moderate to severe take-all. However, the 

need for profitability, lack of suitable alternative crops and unsuitability of some wheat-

growing areas for alternative crops, means that much wheat is grown as part of short runs 

(1-3 y) of cereals, in which the take-all problem persists and TAD (will be discussed in 

Section 1.8.4) is unlikely to develop (Hornby & Beale undated). Table 1.1 shows some 

examples of the risk of take-all in susceptible cereals after different crops. Barley, rye and 

triticale are less susceptible to take-all than wheat, hence will be safer to be grown in high-

risk soils or situations. Oats being resistant to Ggt, make an acceptable break crop, except 

where Gga is known to be a problem (Hornby et al. 1998). 
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Table 1.1  Examples of risk of take-all in susceptible cereals after different crops 

(Hornby & Beale undated). 

Risk of take-all Previous crop or land use 

High Wheat, barley, triticale 

 

Medium Rye, grassland, set-aside 

 

Low Oilseed rape, linseed, maize, 

sugar beet, potatoes, peas, 

beans, oats 

 

It is important to plan the crop rotation carefully as crops such as oilseed rape, if followed 

by beans and then wheat, can promote increase of take-all in the subsequent second wheat 

crop. This is because oilseed rape leaves more residual N in the soil, which could favour 

the saprophytic survival of Ggt (Hornby & Beale undated). In addition, this crop also 

allows more cereal volunteers to carry Ggt over to the next crop, because of minimal 

cultivation before sowing giving rise to more inoculum developing in the next wheat crop 

after beans (Hornby & Beale undated). Rape also has high glucosinolate content, which 

may cause natural bio-fumigation and decrease the microflora antagonistic to Ggt, thus 

increasing take-all in subsequent wheat crops. Pastures such as cocksfoot, clovers and 

ryegrass (used for animal grazing) that are free from grass weeds (such as Elytrigia repens 

and Bromus spp.), also make acceptable breaks, and although they may carry Ggt they also 

carry the antagonist, Phialophora graminicola, which is able to suppress the pathogen‟s 

development in a subsequent cereal crop (Hornby et al. 1998). 

The trend towards increasing the proportion of non-cereal crop in arable rotations has been 

limited by pathological considerations as well. For example, over-cropping with pulses can 

lead to problems with a foot rot complex (mainly caused by Fusarium and Phoma spp.). 

Rape, spring beans and linseed are all susceptible to Sclerotinia sclerotiorum, and winter 

beans, if cropped too frequently, can suffer severe attacks by Sclerotinia trifoliorum. Short 

sequences of cereals can, thus, be valuable in reducing disease risks for other crops in the 

rotation, but of course such sequences carry their own disease problem (Hornby et al. 

1998). 
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1.8.2.2 Direct drilling 

Direct drilling or “no-till”, by which seeds are drilled directly into the soil without prior 

cultivation or disturbance of soil and stubbles, is becoming a more common method in 

wheat production in many countries (Cook 2003). Direct-drill systems can affect take-all  

in several ways, and these effects are summarised by Yarham (1981) as below: 

 Non-disturbance of the soil favours the development of perennial grass weeds, 

which if susceptible to Ggt, can act as carriers for the inoculum. 

 Larger fragments of wheat crop debris left near the soil surface may result in a 

concentration of inoculum in the top few centimetres of soil into which the seed is 

drilled, thereby increasing chances of infection. 

 Ggt inoculum levels can decline more markedly in unploughed soils grown with 

consecutive wheat crops between late winter and mid-summer than in ploughed 

soils, due to increased decomposition of debris and increased biological activity by 

competitors and antagonists of Ggt in the soil closer to the surface (Hornby 1975). 

 The increase in bulk density (i.e. decrease in pore size) and the increased biological 

activity and aerobic respiration in the upper layers of the soil, result in increased 

carbon dioxide (CO2) levels (Deacon 1997). Combinations of depleted oxygen and 

high CO2 in the water film in the soil, and high bulk density, are sufficient to 

restrict rooting and reduce Ggt‟s survival and take-all development. 

 The marked stratification of soil will cause phosphorus (P) to accumulate in soil 

surface layers, and the better-nourished plants will then be less susceptible to take-

all. 

 Mineralisation of soil nitrogen will also be decreased, thereby, influencing disease 

development through its effect on the nutrition of both host and parasite. 

 

In New Zealand, a 3 y field trial which included two tillage systems (disc cultivation and 

direct drilling), was established as part of the study investigating the effects of various crop 

management regimes (tillage, residue management and types of winter crops) on take-all 

(Cromey et al. 2004). The results showed significantly lower disease incidence (13% 

infected tillers) on crops established from direct drilling, than those established after 

discing (57% infected tillers. This conclusion was based on assessing the tillers from about 

100 plants (Cromey, personal communication), and indicated that direct drill could help 
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reduce the risk of take-all. In the trial, other management regimes, including the removal of 

residue from a previous crop and growing wheat after 2 y of ryegrass, were also 

demonstrated to reduce the risk of take-all in the field. With so many interacting factors 

influencing disease development, it is not surprising that reports on the effect of direct 

drilling on take-all have been variable. 

1.8.2.3 Soil fertilisation and host-plant nutrition 

Plants with missing and damaged roots because of take-all are less efficient in the uptake 

of nitrogen, phosphorus, potassium and other major and trace nutrients (Cook 2003). The 

addition of these nutrients, especially nitrogen (N) during tillering, stem elongation, or 

both stages of plant development, will lessen the limiting effects of take-all, helping the 

crop to outgrow the disease (Cook 2003). In general, increased N decreases the disease, but 

high soluble N level in the soil actually favours the survival of the pathogen in the absence 

of hosts up to a point where excess levels of N will hasten decomposition of the residues 

by a succession of other microorganisms, that can compete with Ggt for available N 

(discussed in Section 1.7.2). However, managing take-all by adding more nutrients can 

also lead to leaching of unused nutrients, especially soluble N causing more groundwater 

pollution (Huber 1981; Cook 2003). 

When plants already deficient in the relatively immobile nutrients, such as phosphorus and 

other trace nutrients (e.g. copper, zinc and manganese), are infected by Ggt, their damaged 

roots will have reduced absorptive capacity for nutrients and water (Huber 1981). 

Deficiencies in the immobile nutrients will then become more acute, thereby increasing the 

susceptibility of the host and causing rapid development of the disease (Cook 1982, 2003). 

The availability of trace nutrients to the crop is markedly affected by pH (Huber 1981). 

Alkaline soils are generally more conducive to take-all and tend to lower the availability of 

many trace elements including iron, zinc, manganese, copper and boron but not 

molybdenum, while many of these trace elements are more available in acid soils (Huber 

1981). The degree of nutrient deficiency caused by the loss of absorptive capacity 

however, can vary considerably from plant to plant and from area to area within the field. 

Attempts to overcome these localised and sporadic deficiencies with increased applications 

over the entire field may be unnecessary in regions where the crop is healthy (Cook 2003). 
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1.8.3 Disease prediction by quantitative soil analysis of 
Gaeumannomyces graminis var. tritici 

Recent advances in molecular techniques, such as real-time PCR (polymerase chain 

reaction), have allowed workers in South Australia (CSIRO
1
 Entomology and SARDI

2
) to 

develop a quantitative test for Ggt DNA concentrations in the soil using Taq-Man
®
 real-

time PCR, (Herdina & Roget 2000; Ophel-Keller & McKay 2001; Ophel-Keller et al. 

2008). The Ggt DNA concentrations can be used to predict take-all severity/risk prior to 

sowing subsequent wheat crops. Risk categories for take-all were developed by relating 

disease levels obtained from bioassays to the subsequent development of take-all in the 

field (Hornby 1981; Herdina & Roget 2000) (Ophel-Keller et al. 2008). The DNA 

concentrations were then calibrated by standardising the bioassay results on a 0-100 scale 

to maintain continuity (Ophel-Keller et al. 2008). The risk categories developed in 

Australia were: below detection limit (<5 pg g
-1

 soil), low (5-130 pg g
-1

 soil), medium 

(131-325 pg g
-1

 soil) and high (>325 pg g-1 soil) (Ophel-Keller et al. 2008). These risk 

categories are referred to throughout this thesis. Since completion of this research, SARDI 

has modified the risk categories to suit New Zealand conditions. These are: below 

detection limit (<5 pg g
-1

 soil), low (5-96 pg g
-1

 soil), medium (96-256 pg g
-1

 soil) and high 

(>256 pg g
-1

 soil). Direct measurement of Ggt DNA concentrations in the soil enables 

growers to decide whether fields can be safely replanted with wheat or barley, or whether 

break crops are needed. However, studies carried out in Australia, which compared their 

Ggt DNA concentrations in soils from the fields with subsequent disease ratings obtained 

from wheat plants grown in these soils in pot assays, have not always shown good 

correlations (Herdina & Roget 1999, 2000). 

In New Zealand, the Ggt DNA concentrations in the soils of 112 paddocks with varying 

wheat cropping histories (previously cropped with 0-3 y of wheat) were assessed by the 

RDTS
3
, SARDI in April 2003, prior to sowing autumn wheat (Cromey et al. 2004). Results 

showed increased mean Ggt DNA concentrations from 106 to 1419 pg g
-1

 of soil reflecting 

the years of prior wheat crops (0-3 y) (2002/03 season). The „pre-sowing‟ Ggt DNA 

concentrations of these soils correlated moderately with the take-all severity (expressed as 

a disease index) in subsequent crops (2003/04 season) (r = 0.5), which at the time, would 

have been cropped with 1-4 y of wheat (Figure 1.3) (Cromey, unpul. data). It appears that 

                                                 
1 Commonwealth Scientific and Industrial Research Organisation 
2 South Australian Research & Development Institute  
3 Root Disease Testing Service 
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direct measurement of Ggt inoculum in the soil with this method predicts the take-all risk 

in the subsequent wheat crops moderately well. This service for measuring soil Ggt DNA 

concentrations, has been available commercially to New Zealand growers since 2008. 

These results on the correlation of the pre-sowing Ggt DNA concentrations, with the actual 

take-all severity of a subsequent crop, were not yet available when this literature review 

was prepared.  
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Figure 1.3  Pre-sowing Ggt DNA concentrations of soils from 112 wheat fields, in relation 

to the take-all indices of the subsequent wheat crops grown in the same fields (Cromey, 

unpubl. data). Take-all risk categories for subsequent crops at the time of assessment are 

indicated by the graph segments as low, medium and high with Ggt DNA concentrations of 

5-130, 131-325 and >325 pg g
-1

 soil, respectively. 

 

1.8.4 Biological control 

Increasing public concern over the use of agrichemicals in the environment, which causes 

groundwater and environmental pollution, and the lack of effective fungicides to control 

take-all, have resulted in escalating pressure to search for alternative control measures and 

biological control has received increasing attention. 

1.8.4.1 Take-all suppressive soils  

Soil suppressiveness is a widespread and well-known phenomenon, which is usually 

complex and not easily understood. Baker and Cook (1974) classified the inhospitality 
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characteristics of certain soils to plant pathogens into these categories: (1) the pathogens 

cannot establish in the soil, (2) they establish in the soil but fail to cause disease symptoms 

on the plants, or (3) they establish in the soil and initially cause disease symptoms on the 

plants, but disease severity declines over time with successive planting of the same crop in 

the soil. These categories however, do not imply that only biological principles are 

responsible for regulating the suppressiveness, since abiotic factors such as environmental 

conditions (temperature and moisture), soil, fertilisers and pH can play a part in regulating 

the survival and activities of pathogens. 

Hornby (1983) summarised the types of suppressive conditions, including TAD, that 

decrease take-all severity (Table 1.2). He suggested that the differences between the seven 

types of suppression are not distinctive. It is possible that types I and II are closely related, 

IV and VI may be modifications of general antagonism by non-hosts. Type VII has been 

added to accommodate disease suppression that occurs after exposure of the host to 

avirulent and hypovirulent fungi (i.e. cross-protection). Type VI suppression is non-

transferable due to general antagonism, while types I, IV and possibly VII are transferable 

(Hornby 1983). According to Hornby (1983), any of the take-all suppression types may 

take place but the most commonly occurring suppression type is TAD. The author 

mentioned that low soil pH (3.5-5.0 and sometimes pH5.0-6.0) might promote Ggt‟s 

production of diffusible inhibitors that can prevent its growth, and thus the disease, and 

therefore development of TAD. However, he did not discuss the roles played by the abiotic 

factors, such as nutrients, soil characteristics, soil pH, water and climate on the 

mechanisms involved in the other six types of take-all suppression.  

When wheat crops are grown successively in a field, the level of take-all disease can build 

up progressively, reaching a peak in the third or fourth year. Provided that sufficient N is 

available, disease levels can then decline spontaneously in the following years, so that 

wheat can be grown continuously with acceptable yields (Figure 1.4). This phenomenon, 

which has been reported in many countries, including Australia, Canada, USA, 

Switzerland, UK, France, Yugoslavia, Denmark and Holland, is known as TAD (Rovira & 

Wildermuth 1981; Deacon 1997; Mazzola 2002; Weller et al. 2002).  
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Table 1.2  Characteristics of the seven types of take-all suppression suggested by Hornby 

(1983). 

Suppression 

type 

Suppression 

characteristic 

Development 

requirements
 

Development 

period 

Characteristics of 

suppressive soil 

(SS) type H P D
a
 

I Take-all decline 

(TAD) 

+ + S+
b
 Few seasons Induced  

(by monoculture) 

II 

 

Long-term + + + Over 200 y of 

permanent 

cultivation and 

cropped with 

wheat 

Long-standing 

III 

 

Long-term, 

without severe 

disease 

+ + - Many years of 

wheat 

Long-standing 

IV Non-host (crop-

dependent) 

- - - One to several 

seasons 

Induced generally 

by rotations,  

by grass or 

grass/legume leys 

V Added pathogen - + - Short  Induced  

by natural 

antagonists in the 

soil 

VI General 

antagonism 

- - - „Immediate‟ Not usually 

considered within 

SS range 

VII Cross-

protection 

+ -
c 

- „Immediate‟ Introduced
d 

a
H, host; P, pathogen; D, disease. 

b
Disease levels required (+), required to be severe (S+) or not required (-). 

c
Avirulent pathogen may be added to the soil. 

d
Where organisms are added to the soil rather than on the seed. 
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[This figure has been remove for copyright compliance.] 

 

 

 

Figure 1.4  Diagrammatic illustration of take-all decline in continuous cereal crops 

and its effect on yield (Deacon 1997). 

 

TAD is the most thoroughly studied of the various types of take-all suppression. For this 

phenomenon to occur, it requires monoculture of a susceptible host such as wheat for 

several years and presence of Ggt with at least one severe outbreak of take-all (Weller et 

al. 2002). The number of wheat crops required before the onset of TAD can vary 

considerably depending on the location of the field, soil type and environmental conditions 

(Weller et al. 2002). Although TAD suppressiveness can be reduced or eliminated by 

breaking monoculture with a non-host crop, a field with a long history of TAD can regain 

suppressiveness once a wheat or barley crop is again grown (Weller et al. 2002). In 

countries such as the USA, farmers who practise intensive or continuous cereal cropping 

for economical reasons are incorporating TAD in their farming systems (Cook 2003). 

Most New Zealand growers tend to grow wheat crops within short runs of cereals (such as 

barley, triticale and oats) to avoid severe take-all outbreaks. During the 2-3 y of cereals, the 

take-all problem frequently increases but the cereal-growing period is probably too short to 

allow development of TAD. To date, it is not known whether TAD or any other form of 

take-all suppressive soils occur in New Zealand as research in this areas has not yet been 

conducted. However, Cromey et al. (2004) reported increasing mean Ggt inoculum 

concentrations in New Zealand soils with each consecutive wheat crop from 0 to 3 y, 

which suggests that the take-all risk in New Zealand wheat crops increases at least into the 

fourth year of continuous wheat. 
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1.9 Mechanisms of take-all decline 

The mechanisms involved in TAD are thought to include the combined effects of specific 

suppression of the pathogen and general suppression prior to its development (Gerlagh 

1968; Graham & Mitchell 1999).  

General suppression develops when the soil conditions are suitable for many antagonistic 

effects by the microbiota in the rhizosphere. It includes competition for resources (such as 

carbon and energy in the food base), antagonism in lesions by secondary colonists, and 

stimulation of host defence mechanisms, which together act to lower the inoculum 

potential of Ggt, hence no one microorganism is responsible for it (Cook 2003). The 

suppression factor is not destroyed by heating soil to 60°C, and is not transferable with 

introduction of small soil volumes to non-suppressive soils (Rovira & Wildermuth 1981).  

The occurrence of specific suppression is due, at least in part, to the activities of individual 

species or select groups of microorganisms during some stage in the life cycle of the 

pathogen. It is a result of the previous cropping system, which for Ggt is cereal 

monoculture, and occurs in the rhizosphere and in lesions rather than in the bulk soil. This 

suppression factor is transferable and can be destroyed at 60°C (Rovira & Wildermuth 

1981; Cook 2003). Characteristics of specific and general suppressions are shown in Table 

1.3. 

The terms „pathogen-suppressive‟ and „disease-suppressive‟ have been used to describe 

suppressive soils but these terms seem to have been used interchangeably and the 

differences between them are not clear. Hornby (1983) described pathogen-suppression as 

being the suppression which occurs when the pathogen is growing saprophytically in the 

debris or surviving in the soil (resting phase), with disease-suppression being the 

suppression of the pathogen‟s parasitic growth in the host. However, there is strong 

support for presence of antagonistic mechanisms in suppression, indicating that the term 

„pathogen suppression‟ may be more appropriate (Hornby 1983). The potential for disease 

control by natural antagonism exists in many soils, but its expression depends on a fine 

balance between conditions favourable to the pathogen versus conditions favourable to 

antagonists (Cook 1982). 
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Table 1.3  Causes and the main characteristics of two types of suppressiveness to take-all 

in soils (Hornby et al. 1998). 

Suppression 

type
Causes Characteristics 

Continuous wheat with take-all Eliminated by moist heat (60°C for 30 

min)

Additions of Ggt mycelia to soil Eliminated by chemical fumigants

Addition of other fungi 

(antagonists/competitors) to soil

Operates below 20°C and masked by non-

transferable suppression above 25°C

Operates primarily in the rhizosphere

Increased microbial activity with 

increased organic amendments and 

fertility build-up

Not eliminated by moist heat

NH4
+
-N uptake by roots Reduced but not eliminated by fumigation

Non-host plants Operates at all soil temperatures but 

increases above 5°C

High soil temperatures Operates primarily in bulk soil
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Mazzola (2002) on the other hand, considered that all soils capable of suppressing soil-

borne plant diseases were disease-suppressive soils. Although it has been suggested that 

the term „disease-suppressive‟ should be limited to situations involving a clearly identified 

biological component, abiotic elements of the soil have been shown to have a role in 

disease suppression as well. Abiotic characteristics, including chemical and physical 

attributes of the soil (such as pH, organic matter and clay content), can suppress plant 

diseases directly or indirectly through their impact on soil microbial activity (Mazzola 

2002). 

Simon et al. (1987) investigated the association between pathogen-suppressive effects and 

disease suppression, and found that soils cropped with consecutive wheat (7-8 y) were able 

to suppress both saprophytic growth and the parasitic activity of Ggt. They suggested that 

pathogen-suppression and disease-suppression did not occur independently, and that 

disease-suppression was a result of pathogen-suppression. Whether the suppressiveness of 

the soils investigated was of the TAD phenomenon was not mentioned. It seems that 

disease suppression, pathogen suppression, specific suppression and general suppression 

share some similar principles and suppressive characteristics, but because most suppressive 
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soils are so poorly understood, it is difficult to assign them to either of the disease or 

pathogen suppressive categories.  

To date, it is still uncertain whether an individual or a select group of microorganisms in 

the soil causes TAD. In addition, most studies on TAD (Wildermuth 1980; Andrade et al. 

1994) were carried out on a few confirmed TAD sites, which did not allow for wider 

investigations into the variations between field locations and other factors on a larger scale. 

As TAD is a common suppression phenomenon and has been reported in many countries, 

it is likely that it could occur in New Zealand. Once the mechanisms for TAD suppression, 

including the effect of soil characteristics, are clearly understood, it should be possible to 

reproduce the phenomenon in many locations, including New Zealand. Moreover, it is 

necessary to verify the relationship between Ggt inoculum levels and disease incidence in 

TAD soils in New Zealand, as well as the other interacting factors (outlined in the previous 

sections) that could also play a part in the microbial activities which are responsible for the 

onset of TAD. 

1.9.1.1 Interactions of microbial antagonists with Ggt  

Past studies have indicated that biological factors are responsible for the mechanisms of 

soil suppressiveness, mainly because sterilisation of soils removes the suppressive activity 

(Baker & Cook 1974; Van Os & Van Ginkel 2001; Mazzola 2004). Hence, most 

investigations into the biological control of Ggt have focused on the interaction among the 

pathogen, host, and bio-control agents introduced into the rhizosphere (Weller et al. 2002). 

They include the following: 

1. Introduction of cold tolerant strains of Gaeumannomyces graminis var. graminis 

and a Phialophora sp. with lobed hyphopodia via seed-furrow to cross-protect the 

hosts from being infected by Ggt (Wong et al. 1996). 

2. Seed or soil inoculation with a sterile red fungus to limit take-all through 

competition for thiamine and induce host plant resistance (Shankar et al. 1994; 

Aberra et al. 1998). This fungus was identified as Limonomyces roseipellis in a 

rDNA variation study (Andjic et al. 2005). 
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3. Seed inoculation with a Bacillus sp. that produced a broad-spectrum antibiotic 

inhibitory to Ggt and other wheat root pathogens, Rhizoctonia solani AG8 and 

Pythium spp. (Kim et al. 1997). 

4. Seed inoculation with a Pseudomonas fluorescens isolate that produced the 

antibiotic (phenazine-1-carboxylic acid or PCA) (Cook 2003). It delayed take-all 

infection by competing with Ggt to colonise the root tips, and exploiting the 

nutrients released from the damaged tissues in root lesions, so that less Ggt 

inoculum was left for the following wheat crop (Deacon 1997). 

5. Incorporation of the non-pathogenic Phialophora spp. close to the seeds at 

planting, to provide a source of competition in the wheat rhizosphere and to induce 

host plant resistance (Mathre et al. 1998). 

6. Seed inoculation with Microdochium (Idriella) bolleyi to allow colonisation of the 

naturally senescing cortical cells of cereal roots during the early stages of the crop, 

to outcompete Ggt for infection sites and nutrients (Kirk & Deacon 1987a, 1987b). 

7. Antagonism of Ggt on cultures by Trichoderma lignorum, Penicillium waksmanii, 

P. restrictum, P. oxalicum and P. multicolor, which were isolated from wheat soils 

(Hornby et al. 1998).  

Of the above, Pseudomonas fluorescens varieties which are naturally present in TAD soils, 

are believed to play the major role in suppressing take-all by producing the antibiotic 2,-4-

diacetylphloroglucinol (DAPG). Extensive studies carried out by Raaijmakers and co-

workers (1997; 1998; 1999; 2001) revealed that DAPG-producing P. fluorescens 

populations present in TAD soils at rhizosphere populations of 10
5
 to 10

6 
CFU g

-1
 of roots, 

were sufficient to fully suppress take-all. Suppression was lost when DAPG-producing 

strains were eliminated from TAD soils but was restored by adding a small amount of 

TAD soil mixed with DAPG-producing strains at less than 10
5
 CFU g

-1
 of roots.  

Although P. fluorescens has been found to be effective against the take-all pathogen, the 

expectation that one type of soil bacterium could effectively control a disease in field soils 

may be too optimistic. This is because the diversity of soil flora and fauna, as well as the 

physical characteristics of natural soil environments can affect the potential activities of the 

antagonists and pathogens. In order to understand soil suppressiveness better, the identity 
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and the biological activity of the diverse microbial populations/community that inhabit the 

rhizosphere in both take-all suppressive and conducive soils must also be considered, 

particularly if some of these species display different or complementary modes of action or 

abilities to colonise the roots. Future research needs to pay more attention to the 

mechanisms operating in a natural biological control phenomenon, such as TAD, which 

appears to be more reliable and effective than the vast majority of introduced biological 

control agents. 

1.10 Characterising microbial components associated with 
soil suppressiveness 

Numerous methods, such as fumigation/extraction, plate counts, direct microscopic counts, 

enzyme assays and substrate utilisation profiles, have been used to investigate the 

microbial communities in soils. However, these methods have their strengths and 

weaknesses. They may only determine the general microbial biomass (in the case of 

fumigation/extraction), or their activities (in the case of enzyme production), without 

concern for the identification or characterisation of individuals within the community 

(Mazzola 2004). Substrate utilisation profiles (e.g. carbon utilisation and lipid 

composition) can allow identification of individuals from different taxa (Garbeva et al. 

2004), but cannot monitor the abundance of specific microorganisms (Mazzola 2004). 

Conventional cultivation techniques (e.g. plate and direct microscopic counts) do not 

reflect the actual microbial community as many microbes from the soil environments 

cannot be cultured (Hartman et al. 1997). 

In contrast, methods involving applications of molecular techniques based on nucleic acid 

compositions can provide information on the relative abundance and the activities or 

functions of microbial populations over a range of taxonomic levels (Weller et al. 2002). 

Although DNA-based methods are in principle, reproducible and robust, they are 

susceptible to the potential biases that are inherent in both nucleic acid extractions and 

PCR amplifications (Garbeva et al. 2004). Some of the advantages and disadvantages of 

using molecular-based fingerprinting methods are outlined in Table 1.4. 
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Table 1.4  Advantages and disadvantages of molecular-based microbial community 

fingerprinting methods (Garbeva et al. 2004) 

Advantages Disadvantages

1. Dependence on efficient cell lysis only and not 

on the physiological status of cells.

1. Incomplete lysis of some species, notably gram-

positive spore-formers.

2. Direct picture of the diversity of dominant 

microbial types, including the unculturables.

2. Possible biases in DNA extraction and PCR 

amplification due to inhibition by soil compounds.

3. Direct assessment of shifts in microbial 

community structure.

3. Possible presence of one particular sequence or 

band in different organisms.

4. Ease in handling, thus allowing simultaneous 

analysis of high sample numbers.

4. Heterogeneous bands that may originate from 

one bacterial strain due to heterogeneity in the 

rDNA genes producing double bands.

5. Reproducible results. 5. Phylogenetic information only is usually obtained, 

and the link to functional information is difficult.

6. Generation of sequences resulting in 

identification and specific probes to track the 

specific organism in the ecosystem

 

Denaturing gradient gel electrophoresis (DGGE) is one of the most commonly used 

techniques for characterising/profiling the microbial communities in soil and rhizosphere 

(Garbeva et al. 2004). It involves DNA extraction, purification and specific amplification 

of the rDNA segments (most commonly) by using PCR with universal primers, which 

target the 16S region of bacteria and ITS, 18S or 28S regions of fungi. The double stranded 

PCR products have a GC clamped end to avoid complete disassociation, and are subjected 

to a DGGE gel containing a linearly increasing gradient of denaturing chemicals. The 

DNA fragments are separated in the gradient gels because as they reach higher levels of 

denaturing chemicals they begin to „melt‟ at a point in the gel that is determined by the 

sequence of the fragment, which differs for different microbial (Muyzer et al. 1993; 

O'Callaghan et al. 2003). Once the double strands are split completely (but held together 

by the GC clamp), they are physically prevented from migrating any further on the gel. 

PCR mixes containing numerous species will produce a profile in which each band will 

represent a taxon (O'Callaghan et al. 2003). Subsequent cloning and sequence analysis of 

the excised bands from the DGGE profiles, can provide information on the identities of the 

microorganisms through database searches (Muyzer et al. 1993; O'Callaghan et al. 2006). 

The DGGE method can be used to compare the microbial populations present in take-all 

suppressive and conducive soils in New Zealand and to identify the microorganisms that 

inhabit the roots and the rhizosphere soil. Knowledge of those which may be associated 
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with take-all suppressiveness, either individually or as a group, could allow development 

of better strategies for control of take-all. For instance, if an individual or a specific group 

of microorganisms is implicated as being associated with suppressive soils, more studies 

can be developed to determine their functions/roles in the suppressiveness. Once these 

functions are known, the microorganisms could be introduced into the soil. Alternatively, 

genetic markers can also be developed to enumerate the specific populations in the 

suppressive soils. 

1.11 Overall aim and hypothesis of PhD research 

The underlying hypothesis of this research was that TAD was a specific suppression 

caused by an individual or a selected group of microorganisms, which suppressed Ggt in 

the rhizosphere and roots of the host. The specific objectives involved in providing 

evidence for this hypothesis were:  

1. To investigate the effects of successive wheat cropping on Ggt DNA concentrations 

and disease incidence and to identify soils in New Zealand that are suppressive to 

take-all. 

2. To optimise the efficacy of pot assays used for screening take-all suppressive soils.  

3. To determine the mechanisms involved in TAD suppressiveness in pot assays.  

4. To characterise and compare the microbiota in the roots and rhizosphere of wheat 

plants grown in take-all suppressive and conducive soils using DGGE techniques. 

5. To investigate the complex interactions between take-all development and the 

population dynamics of Pseudomonas fluorescens in soils which were naturally 

infested with Ggt, and the possible involvement of some soil physico-chemical 

properties over successive wheat cropping. 

The individual chapters in this thesis consist of their own Abstract, Introduction, 

Materials and Methods, Discussion and Reference sections in a similar style to that 

prepared for submission for publication. This format has sometimes, inevitably, 

resulted in repetition of content in some chapters. However, attempts have been made 

to keep this repetition to the minimum where possible. All ANOVA tables derived 

from statistical analyses of the results from the experiments are presented in Appendix 

5. 
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Chapter 2  
Gaeumannomyces graminis var. tritici concentrations in 

soils from successive wheat cropping and resulting 
disease incidence 

2.1 Abstract 

The 26 soils naturally infested with Gaeumannomyces graminis var. tritici (Ggt) were 

chosen after a survey on 112 New Zealand cereal fields in 2003/04 season had indicated 

their potential in suppressing take-all development. Some of the soils were from fields 

previously cropped with 3-4 y of wheat (Triticum aestivum L.), barley (Hordeum vulgare) 

or triticale, which were considered likely to express take-all decline, and some were from 

fields with high natural Ggt inoculum concentrations before sowing but low take-all 

severity in the subsequent crops. Of the 26 soils, 12 were collected from the St Andrews 

region, South Island, New Zealand, and represented 1-4 y of successive wheat cropping 

(three of each). Three soils from ryegrass fields (2,
 
2 and 5 y), also from the St Andrews 

region, were included to represent 0 y of wheat cropping, giving 29 soils in total. The 

natural Ggt DNA concentrations in the soils were determined using real-time PCR and all 

soils were amended with 12.5% w/w Ggt inoculum. The relationship between disease 

incidence and successive years of wheat crops, and plant growth were investigated with a 

pot experiment.  

Overall, the results showed that there was high variation between soils, which masked the 

potential trends. This was probably caused by too high an inoculum level and differences 

in soil origins. However, results from the 15 St Andrews soils showed that greater years of 

successive wheat cropping resulted in higher Ggt DNA concentrations (P<0.001) and 

disease incidence (P<0.05), but variable fresh and dry weights of roots and shoots 

(P<0.001). The mean Ggt DNA concentrations and disease incidences on the roots of 

potted plants were also highly correlated (r = 0.76). In addition, comparisons of the Ggt 

DNA concentrations in some soils before sowing and after the last harvest of wheat, with 

the disease incidence in the pot trial, showed that 11 out of the 29 soils had the potential 

for take-all suppressiveness. 

Keywords: Gaeumannomyces graminis var. tritici, take-all, successive wheat, DNA, 

inoculum, suppressive soils, take-all decline, plant growth 
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2.2 Introduction 

Control of take-all, in many areas of the world, is achieved by limiting the numbers of 

successive susceptible crops such as wheat (Triticum aestivum L.), or barley (Hordeum 

vulgare L.) to no more than two (Graham & Mitchell 1999). However, continuous 

cropping of wheat in the same field has been reported to result in take-all decline (TAD), 

in which the disease is naturally suppressed (Cook et al. 1986). TAD has been shown to be 

associated with the depletion of the nutrients required by the pathogen, due to natural 

decomposition of plant materials, and the presence of competing and antagonistic soil 

microorganisms, such as fluorescent Pseudomonas spp. (Graham & Mitchell 1999). In the 

development of the TAD phenomenon under successive years of wheat crops, the disease 

peaks at least once and declines to low but fluctuating levels (Cook & Naiki 1982; 

McSpadden Gardener & Weller 2001). 

The association of disease severity or incidence with host crop successions, has been 

widely studied, with TAD reported to commence from the second to seventh year of wheat 

succession (Hornby & Henden 1986; Werker et al. 1991; Lebreton et al. 2004). Past 

studies that investigated the relationship between Ggt inoculum concentrations and years 

of successive wheat, were mostly by examining the extent of hyphal growth within the 

roots (Pope & Jackson 1973; Wildermuth & Rovira 1977), counting colonised residual 

wheat material or other propagules, lesion sizes (Cook et al. 1986) and pathogen recovery 

frequencies using conventional isolation techniques (Cook & Naiki 1982). Advances in the 

development of molecular tools in recent years have allowed investigations into the 

relationships between Ggt population structure (Lebreton et al. 2004), genotypic 

frequencies (Lebreton et al. 2007) and disease severity with successive wheat cropping. 

A quantitative real-time PCR (polymerase chain reaction) has been developed to measure 

Ggt DNA concentrations in the soil to predict take-all risk prior to sowing subsequent 

wheat, and the service is provided to growers by CSIRO
1
 Entomology and SARDI

2
, 

Australia (Herdina & Roget 2000; Ophel-Keller & McKay 2001). However, the disease 

severity levels found in pot assays did not always show good correlations with the Ggt 

DNA concentrations in the corresponding soils (Herdina & Roget 1999, 2000). Similar 

poor correlations were obtained with the results in a New Zealand survey carried out 

                                                 
1 Commonwealth Scientific and Industrial Research Organisation 
2 South Australian Research & Development Institute  
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during 2002-04 on 112 soils from fields with varying wheat cropping histories by Cromey 

et al. (2004). They found Ggt DNA concentrations of 106-1419 pg g
-1 

soil from fields with 

0-3 y of previous successive wheat (in the 2002/03 season), suggesting that take-all risk in 

New Zealand wheat could increase up to the third or fourth year of continuous wheat. 

These „pre-sowing‟ Ggt DNA concentrations correlated marginally with the take-all 

severity (expressed as a disease index) in subsequent crops (2003/04 season) (r = 0.5), 

which at the time, would have been cropped with 1-4 y of wheat (Cromey, unpul. data). 

However, a number of the soils with relatively high Ggt inoculum concentrations (>325 

pg g
-1

 soil), had low take-all severity (take-all index <20) in subsequent crops. This raised 

the question of whether these fields might be experiencing some form of suppression. 

According to Hornby (1983), there are seven types of take-all suppression including TAD, 

and any soils that suppress plant disease, or the pathogenic fungi within them, are 

considered as suppressive soils (Hornby et al. 1998). To date, the occurrence of TAD or 

any other forms of take-all suppressive soils has not been reported in New Zealand. 

This chapter reports on (1) changes in soil Ggt DNA concentrations from before sowing 

and after crop harvest in fields that had 1-4 y of successive wheat crops; (2) a pot 

experiment investigating wheat take-all incidence and plant growth; (3) the potential for 

take-all suppressiveness in these soils, determined by comparing soil Ggt DNA 

concentrations with disease incidence. 

2.3 Materials and methods 

2.3.1 Soil sampling and processing 

In March 2004, soils were collected after crop harvest from 26 wheat fields and three 

ryegrass fields in the South Island, New Zealand. These fields were chosen from those in 

an earlier take-all survey carried out from 112 wheat fields for 2003/04 seasons by Cromey 

et al. (2004) to identify potential take-all suppressive soils. The fields selected represented 

a range of cropping histories, including fields previously cropped with 3-4 y of wheat, 

which could potentially express TAD, and fields with high Ggt inoculum concentrations 

(greater than 325pg Ggt DNA g
-1

 soil) but low take-all severity (disease index<20), at the 

time of assessment. 

Among the 29 sites chosen, a subset of 15 were from the same region, St Andrews, and 

represented three sites each of 0-4 y of successive wheat crops. The three sites with 0 y of 
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wheat were cropped with Lolium perenne L. (perennial ryegrass) in the field (Table 2.1). 

Being from the same region with similar environmental conditions, the 15 soils were 

anticipated to be relatively similar in their physical properties, and thus would be ideal for 

investigating the effects of different successive wheat cropping histories on Ggt soil 

inoculum and disease levels and their effects on subsequent plant growth. 

To provide the amount of soil required from each field, soil blocks of at least 10 cm
 
 

10 cm  10 cm were cut with a spade from ten sampling points spaced within a 1 ha zone 

of the field along a „W‟ pattern (Van Elsas et al. 2002). This provided at least 10,000 cm
3
 

of soil from each site. Soils from each site were placed in two 30 L bins, partially dried at 

25°C overnight, and then passed through a 4 mm sieve to homogenise the texture and 

remove any stones present. Crop debris caught in the sieve was returned to the soil as it 

was considered part of the natural Ggt inoculum. Soils from each site were pooled, 

thoroughly mixed together and stored until required at 4°C in 50 L bins covered loosely 

with plastic sheets. Prior to use, at least 300 g of each soil was sent to the Root Disease 

Testing Service (SARDI, Adelaide) for analysis of Ggt DNA concentrations.  

The DNA analysis was performed by real-time PCR using TaqMan
® 

MGB (tm) probes and 

Qiagen Quanti Tect probe Master Mix in 10 µL reactions on an ABI PRISM
®

 7900HT 

Sequence Detection System. Thermal cycling conditions were: an initial temperature of 

95°C for 15 min to activate the Taq Polymerase followed by a melting step of 95°C for 

15 s, and a combined annealing/extension step at 60°C for 1 min for 40 cycles. Standards 

were produced using DNA extracted from aseptically grown Ggt mycelium. The DNA was 

diluted though a 10-fold serial dilution from 200 pg µL
-1

 to 2 fg µL
-1

. Due to commercial 

sensitivity, the procedures involved in the DNA extraction were not disclosed. The 

resulting Ggt DNA concentrations (in pg g
-1

 soil) quantified from the collected soils were 

treated as the „post-harvest‟ data and were included in the analyses throughout the current 

study. Site information including locations determined by a global positioning system 

(GPS) and cropping histories are shown in Table 2.1. 

Basic physico-chemical properties of the soils were determined by R. J. Hill Laboratories 

Ltd., Hamilton, New Zealand and Crop & Food Research Ltd., Lincoln, New Zealand    

(Table 2.2), and the soil types are listed in Appendix 2. The basic soil profile included pH, 

Olsen phosphorus, potassium, calcium, magnesium, sodium, cation exchange capacity and 

base saturation data. These tests are recommended on most agricultural or horticultural 
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soils (R. J. Hill Laboratories Ltd 2002). Anaerobically mineralised N (also known as 

available N) was included in the test because this nutrient has been found to be the most 

important fertiliser element in New Zealand cereal crops or arable soils. It is also a good 

indicator of biological activity and is closely related to microbial biomass (R. J. Hill 

Laboratories Ltd 2002). The main reason for conducting these tests was to rule out 

low/insufficient levels of nutrients as a limiting factor in plant growth. Investigation into 

the effects of nutrients on controlling take-all was not the focus in this study. All nutrients 

reported were in plant available forms and were compared to the desired/acceptable levels 

recommended for New Zealand crops. A brief description of the methods used in the basic 

soil and mineral N analyses are showed in Appendix 2. The test results for most soils 

indicated that the Olsen P and K concentrations were below the recommended range and 

that the N concentrations were at the lower end of the acceptable range (Table 2.3). The 

soils had cation exchange capacity (CEC) within the normal range, indicating that all soils 

were capable of storing nutrients (Morton et al. 2000). Microbial biomass C in the soils 

was also analysed to provide information on the active microbial population present in the 

soil. This test was done with hot-water extractable C method described by Ghani et al. 

(2003). 

2.3.2 Pot experiment 

The experiment, consisting of 29 soil samples, with or without added Ggt inoculum, was 

set out in a two-way randomised block design. The purpose of adding inoculum was to 

determine whether different soils had the capacity to inhibit the pathogenic activity of Ggt 

(Hornby 1983). Soils from the 15 St Andrews fields previously cropped with 0-4 y of 

wheat (three replicates of each) were treated as a subset. Each treatment was replicated 

four times to give a total of 232 pots. 

Soil inoculation was carried out by hand mixing one part of pooled Ggt inoculum to seven 

parts of soil to give a final weight of 300 g of soil mixture per pot (size, 400 mL, height 

10 cm). Ggt inoculum was prepared according to the method described by Hollins et al. 

(1986) except that autoclave bags (36 x 48 cm, able withstand temperatures up to 150°C; 

Raylab NZ Ltd., Auckland, New Zealand) instead of conical flasks were used for growing 

the inoculum. The pooled inoculum was made up of five Ggt isolates H11T3R1/3, A3SL4, 

BIOMILL1SC3, H9T3R1/1.2 and BIO3, which were obtained from Elytrigia repens 

rhizomes and wheat roots in 2002/03 (Crop & Food Research culture collection). 
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Table 2.1  Site information and cropping histories of fields (2003/04) where soils were 

sampled. The 15 soils sampled from the St Andrews region are shaded. 

19
99

/0
0

20
00

/0
1

20
01

/0
2

20
02

/0
3

20
03

/0
4 Years 

of 

wheat 

Years 

of 

cereal                     

B3 840 High 13.88 750 834 W P W W W 3 3 S45°51.1', E168°34.0'

B6 1206 High 5.81 184 229 Dt W W W W 4 4 S45°51.0', E168°34.0'

B8 377 High 8.81 61 107 O W P W W 2 2 S45°53.4', E168°34.8'

C1 330 High 15.55 589 606 W C W B W 1 3 S43°55.4', E171°48.0'

C3 181 Medium 28.07 1026 1096 - Po+W W B W 1 4 S43°55.4', E171°48.2'

C6 3 BDL 11.28 111 136 - B W W W 3 4 S43°58.8', E171°48.2'

C12 2924 High 9.25 22 13 B B L W W 2 2 S43°45.2', E171°53.8'

G2 2251 High 17.59 1048 1723 W W Po W W+G 2 2 S43°58.5', E170°50.7'

H1 1250 High 17.56 148 171 B G W W W 3 3 S44°31.2', E171°06.9'

H2 687 High 21.26 686 195 C Pa Pa W W 2 2 S44°31.2', E171°06.8'

H3 1526 High 10.20 150 110 Pa Pa W W W 3 3 S44°31.1', E171°06.5'

H4 1 BDL 6.79 2 0 C Pa Pa Pa W 1 1 S44°31.0', E171°05.7'

H5 42 Low 8.77 244 491 G W W G W 1 1 S44°30.8', E171°05.6'

H6 250 Medium 48.99 1395 330 W P G W W 2 2 S44°30.5', E171°05.9'

H7 477 High 81.20 397 283 Pa W W W W 4 4 S44°30.5', E171°06.8'

H8 2540 High 53.18 1257 1745 Rg W W W W 4 4 S44°29.3', E171°04.6'

H9 54 Low 30.94 327 232 Pa Pa W W W 3 3 S44°29.2', E171°05.2'

H10 1321 High 86.06 1365 166 Pa W W W W 4 4 S44°28.6', E171°05.6'

H11 6 Low 4.83 105 12 W W G W W 2 2 S44°28.3', E171°05.7'

H12 19 Low 4.51 457 60 Pa W W G W 1 1 S44°28.2', E171°05.6'

H13 NA NA NA NA 11 Rg Rg Rg Rg Rg 0 0 S44°29.7', E171°05.9'

H14 NA NA NA NA 21 Rg Rg Rg Rg Rg 0 0 S44°30.7', E171°05.7'

H15 NA NA NA NA 0 Rg Rg Rg Rg Rg 0 0 S44°30.5', E171°06.5'

I6 564 High 9.30 997 2052 BR W B L W 1 1 S44°09.3', E171°12.4'

L9 1136 High 13.97 256 1 G Pa Pa W W 2 2 S44°41.6', E171°04.7'

M2 2348 High 27.13 1683 719 G W W W W 4 4 S44°44.1', E171°06.5'

M3 1447 High 23.70 2992 2788 G W W W W 4 4 S44°44.1', E171°06.5'

M10 55 Low 5.64 1582 86 G W W W W 4 4 S44°44.0', E171°07.1'

M11 1961 High 54.03 2985 522 G W W W W 4 4 S44°44.3', E171°05.5'

1
Ggt  was analysed with soil collected from 25 positions (two soil cores at each position) along a 'W' pattern over the whole 

  field using soil corers (20 mm dia., 10 cm depth).

2
Take-all risk categories developed by SARDI for Australia at the time of quantitative DNA analysis of Ggt in 2003/04:

Low risk: 5-130 pg Ggt  DNA g
-1

 of soil 

Medium risk: 131-325 pg Ggt  DNA g
-1

 soil

High risk: >325 pg Ggt  DNA g
-1

 soil

BDL: DNA below detection limit

3
Take-all disease index = (0a+10b+30c+60d+100e)/T

 where a, b, c, d and e = number of plants in each of the infection categories below, and T= total number of plants.

  Infection categories:

0 no infection

1 slight (1-10% of roots infected)

2 moderate (11-30% of roots infected)

3 high (31-60% of roots infected)

4 severe (61-100% of roots infected)

4
Ggt  was analysed with soil collected from 10 positions (2 × 10 cm

3 
soil blocks at each position) along a 'W' pattern over the 

  whole field using a spade.

5
Preceding crops: wheat (W), pea (P),  dogtail (Dt), oat (O), clover (C), grass (G), potato (PO), ryegrass (RG), pasture (PA), 

barley (B), borage radish (BR), linseed (L).

GPS Location

5
Preceding crops

4
Post-harvest Ggt DNA 

analysed from  soils 

collected for the pot 

experiment 2004 (pg g
-1 

soil) 

Field 

code

1
Pre-sowing 

Ggt DNA pg g
-1 

soil (2003)
2
Risk

3
Dec 03 

Take-all 

index

1
Post-harvest 

Ggt DNA pg g
-1 

soil (2004)

2003/04
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Table 2.2  Some physico-chemical properties of soils sampled. 

Normal 

range 5.3-6.1 20-30 0.5-0.8 5.0-12.0 0.8-3 0-0.5 12-25 50-85

Soil 

texture pH

Olsen P 

(mg l
-1

)

1
Potassium 

(me 100 g
-1

)

Calcium 

(me 100 g
-1

)

Magnesium 

(me 100 g
-1

)

Sodium   

(me 100 g
-1

)

2
CEC            

(me 100 g
-1

)

Base 

Saturation (%)

B3 Silt loam 5.6 14 0.30 7.30 0.31 0.09 16 51 24.52 366.36

B6 Silt loam 5.5 21 0.38 6.20 0.22 0.07 17 41 22.13 351.29

B8 Silt loam 5.8 21 0.53 6.60 0.33 0.07 16 46 15.51 345.02

C1 Silt loam 5.8 20 0.78 7.70 0.68 0.10 15 63 22.80 586.09

C3 Silt loam 6.3 16 0.90 10.70 0.83 0.11 16 76 26.32 549.09

C6 Silt loam 5.7 25 0.49 8.80 1.36 0.14 17 62 26.97 561.39

C12 Loamy silt 6.0 19 0.37 7.90 0.41 0.09 13 69 43.07 436.49

G2 Silt loam 6.0 29 0.38 8.70 0.38 0.14 17 58 38.82 660.53

H1 Silt loam 5.7 28 0.42 11.50 0.93 0.09 20 66 34.11 491.50

H2 Silt loam 6.0 14 0.34 11.80 1.07 0.10 18 74 25.09 496.01

H3 Silt loam 6.1 41 0.38 13.40 1.12 0.12 19 78 33.80 470.73

H4 Silt loam 6.0 20 0.29 9.50 0.95 0.11 16 66 26.07 451.76

H5 Silt loam 5.9 15 0.25 7.80 0.87 0.13 15 60 20.37 376.95

H6 Silt loam 5.9 19 0.21 9.50 1.01 0.11 16 69 26.51 406.83

H7 Silt loam 6.2 36 0.19 11.10 1.07 0.14 16 77 16.05 399.87

H8 Silt loam 6.1 18 0.27 10.80 1.22 0.13 17 73 41.07 577.11

H9 Silt loam 6.5 16 0.27 11.80 1.44 0.13 17 79 21.17 462.11

H10 Silt loam 6.1 16 0.43 8.60 1.09 0.09 15 67 29.46 510.14

H11 Silt loam 5.6 21 0.46 6.30 1.06 0.09 15 53 25.10 369.48

H12 Silt loam 6.4 14 0.39 11.20 1.14 0.11 16 80 21.66 490.13

H13 Silt loam 6.6 7 0.16 9.70 1.04 0.28 14 81 12.63 467.91

H14 Silt loam 6.2 14 0.14 8.90 1.05 0.21 14 74 25.38 457.89

H15 Silt loam 6.6 21 0.20 11.50 1.12 0.20 15 87 15.35 420.90

I6 Loamy silt 5.5 12 0.23 6.90 0.74 0.14 15 54 55.18 436.83

L9 Silt loam 6.2 13 0.22 8.80 1.07 0.12 15 66 16.67 509.70

M2 Silt loam 5.7 37 0.26 7.40 0.81 0.10 14 62 19.15 460.68

M3 Silt loam 5.8 43 0.26 7.40 0.75 0.10 14 62 21.24 382.33

M10 Silt loam 6.6 42 0.17 14.00 1.03 0.12 17 91 13.20 519.06

M11 Silt loam 6.9 43 0.26 12.60 0.90 0.24 14 100 17.94 476.41

1
 'me' refers to milliequivalents

2
 Cation exchange capacity

Microbial 

biomass C 

(µg g
-1

)

Field 

code

Min N    

(µg g
-1

)
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Table 2.3  Sutiability of Nitrogen levels for New Zealand arable crops, as recommended 

by R. J. Hill Laboratories Ltd (2002). 

Levels  

Anaerobically 

mineralisable 

N (µg g
-1

 soil) 

Available N 

(kg ha
-1

) 

Very low <35 <50 

Low 35-50 50-150 

Medium 50-80 150-250 

High 80-240 250-350 

Very high >240 >350 

 

Methods on preparation of Ggt inoculum and soil inoculation are described in Appendix 3, 

A3. 1. To ensure that all the Ggt isolates used were var. tritici, their pathogenicity on wheat 

and Avena sativa L. (oat), which Ggt does not infect (Deacon 1997), was determined 

earlier using the methods described by Chng et al. (2005) (Appendix 3, A3. 2). Each pot 

was planted with four pre-germinated healthy wheat seedlings (cultivar Regency, line 

03/W/01P). Methods on pre-germination of seeds are presented in Appendix 3, A3. 3.  

After planting, each pot received 20 mL of nutrient solution to give final concentrations for 

N, P, K and S of 150, 50, 100 and 20 µg g
-1

 soil, respectively (see Appendix 3, A3. 4 for 

nutrient calculations), before topping up with water to field capacity (FC) (-5 kPa) by 

weight (Appendix 3, A3. 5 and Appendix 5, A5. 1). The experiment was conducted in 

growth chambers (Conviron, Controlled Environments Ltd., Canada) maintained at 16°C 

with alternate 12 h light/dark photoperiods, photosynthetic photon flux density, (PPFD) of 

375 µmols
-1

m
-2

 at pot height (10 cm) and 80% relative humidity (RH) for 4 wk (Figure 

2.1). 

Due to the large size of the trial, two of the replicates (blocks) were run in each of the two 

growth chambers. The assumption was made that conditions in the growth chambers were 

similar for both times and that the replications would allow determination of any variations 

caused between growth chambers and time differences. All pots received water once 

weekly to FC by weight. 
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Figure 2.1  Set-up of pot assay in growth chamber. 

 

2.3.3 Disease assessment 

Roots were washed carefully in a bucket of tap water and assessed for infection. Infection 

was defined as at least one take-all lesion per root axis. Numbers of healthy and infected 

root axes on both seminal and nodal root systems were recorded and percent infected roots 

per pot were then calculated using the formula: 

100%  
plant)per  axesroot  ofNumber (

plant)per  axesroot  infected ofNumber (
 pot per  (%) roots Infected 



















 

Since there was a possibility that degree of infection could affect the root function and 

plant growth, fresh and dry weights of both roots and shoots were obtained before and after 

drying them at 70°C for 24 h.  

2.3.4 Statistical analyses 

Data on the post-harvest Ggt DNA concentrations for all the 29 test soils were analysed 

using one-way analysis of variance (ANOVA). The post-harvest Ggt DNA concentrations 

were those obtained from analysing the soils collected for the pot experiment (Table 2.1). 

Ggt DNA concentrations of the 15 St Andrews soils, which had been grown with 0-4 y of 

wheat, were analysed as a subset of the 29 soils using ANOVA. Data on percent roots 

infected were first transformed by adjusted logit to stabilise the variance and then 
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subjected to ANOVA. The fresh and dry weights of both the roots and shoots were also 

included in the analysis. 

2.4 Results 

2.4.1 Ggt DNA concentrations in field soils with different 
periods of successive wheat cropping 

Results obtained from analysing the 29 soils showed that the mean Ggt DNA 

concentrations in the soils after crop harvest (2003/04) differed (P<0.001), with y 1 and 4 

wheat soils having the highest natural Ggt DNA concentrations (718 and 817 pg g
-1

 soil, 

respectively) (Figure 2.2). Mean Ggt DNA concentrations in the 15 St Andrews soils 

varied significantly with years of successive wheat cropping (P<0.001) (Figure 2.2), with 

slightly increasing Ggt DNA concentrations during y 0-1 (0-200 pg g
-1

 soil), relatively 

constant concentrations during y 1-3, and then increasing concentrations after y 3. 

Years of successive wheat cropping

0 1 2 3 4

P
o

s
t-

h
a

rv
e

s
t 

G
g

t 
D

N
A

 c
o

n
c

e
n

tr
a

ti
o

n
s

 (
p

g
-1

 s
o

il
)

0

200

400

600

800

1000

1200
All 29 test soils 

15 St. Andrews soils

All soils St Andrews soils 
          

 

Figure 2.2  The relationship between years of successive wheat cropping and the mean 

post-harvest Ggt DNA concentrations in soils in the 2003/04 season. Error bars are the 

least significant differences (LSD) at the 5% level (df = 115 for both analyses). 

 

Comparisons were also conducted between the pre-sowing and post-harvest Ggt DNA 

concentrations in individual soils (excluding the three ryegrass soils) (Figure 2.3). Results 

showed that a single wheat crop caused the Ggt DNA concentrations to increase or remain 

constant for most soils (Figure 2.3a), and to nearly always decrease after 2, 3 and 4 y of 

successive wheat crops (Figure 2.3b, c and d). The decrease in Ggt DNA concentrations 
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for a number of these soils (e.g. L9, C12 and H3), was sufficient to have their take-all risk 

levels reduced from high to medium or low. An exception was observed in soil M3, which 

had 4 y of successive wheat crops and experienced an increase in Ggt DNA concentrations 

(Figure 2.3d).  
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Figure 2.3  Pre-sowing and post-harvest Ggt DNA concentrations for field soils with 

1-4 y of successive wheat cropping in the 2003/04 season (a - d). The red dotted 

lines represent the three take-all risk categories used at the time of soil selection, 

with the vertical and horizontal lines applied to the pre-sowing and post-harvest data, 

respectively. The area between the first two lines is low risk (5-130 pg g
-1 

of soil), 

between second and third lines is medium risk (131-325 pg DNA g
-1 

soil), and 

beyond the third line is high risk (>325 pg g
-1 

soil). 
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2.4.2 Disease incidence from the pot experiment 

The purpose of adding inoculum was to determine whether different soils had the capacity 

to inhibit the pathogenic activity of the added Ggt (Hornby 1983). However, initial 

analysis of the full data set showed that roots of wheat plants grown in all soils with added 

Ggt inoculum were more severely infected than those grown in the same soils with no 

added Ggt inoculum (P<0.05) (73 and 9% infected roots, respectively), thus not 

differentiating the magnitudes of suppressiveness among the soils. Further analyses 

therefore focused only on plants grown in uninoculated soils, some of which were soils 

naturally infested with Ggt. 

Results from the overall analysis of plants grown in uninoculated soils showed that mean 

disease incidence was significantly affected by successive wheat crops (P<0.005), with 

percent infected roots increasing in soils during 0-1 y and then remaining constant in soils 

during 1-4 y of successive wheat crops (Figure 2.4a). However, analysis from the 15 St 

Andrews soils (Figure 2.4b) showed a different trend from the overall analysis. There was 

a clear trend of increasing root infection with increasing successive wheat crops (P<0.05). 
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Figure 2.4  The logit-transformed mean percent infected roots of plants grown in (a) all the 

test soils and (b) in the 15 St. Andrews soils. Data in parentheses are the back-transformed 

mean percent infected roots. Error bars are the least significant differences (LSD) at the 

5% level (df = 114). 
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There were also significant variations between different soils that had the same successive 

wheat cropping histories for both the overall analysis (29 soils) (P<0.05) (Figure 2.5a) and 

the analysis of the 15 St Andrews soils (P<0.05) (Figure 2.5b). Variation between the 15 St 

Andrews soils was, however, not as great as those in the 29 soils (overall analysis). The 

variation in St Andrews soils was mainly caused by the differences in percent infected 

roots between the three soils cropped with 0 y of wheat (i.e. H15, H14 and H13), and 

between H1 and H3, which were cropped with 3 y of wheat.  
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Figure 2.5  Variations between soils with the same wheat cropping histories on the logit-

transformed mean percent infected roots of plants grown in (a) all the test soils and (b) in 

the 15 St Andrews soils. Error bars are the least significant differences at the 5% level (df 

= 114). 

 

2.4.3 Soil Ggt DNA concentrations and disease incidence from 
the pot experiment 

When comparing mean Ggt DNA concentrations (Figure 2.2) in the 29 soils used for the 

pot experiment with the back-transformed means of percent infected roots for the wheat 

plants grown in them (Figure 2.4a), there was no clear relationship between the pairs of 

values (r = 0.20). However, for the 15 St Andrews soils, the mean Ggt DNA concentrations 

were strongly correlated with the back-transformed means of percent infected roots (r = 

0.76) (Figure 2.6). Comparisons using the raw data of percent infected roots for the 15 St 

Andrews soils, however, showed no relationship with Ggt DNA concentrations (r = 0.36). 
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The changes in soil Ggt DNA concentrations from pre-sowing to after crop harvest 

(2003/04 season), which might indicate the presence of a TAD soil, were plotted against 

the back-transformed mean percent infected roots in the pot experiment of the 26 soils 

(excluding the three ryegrass soils, Figure 2.7). Based on the information that diminishing 

pathogen in soil with declining, low or no disease during continued monoculture of wheat, 

are indications of TAD (Baker & Cook 1974), the results identified a number of soils with 

potential suppression. Eleven of the 29 soils, C12, H2, L9, H1, H3, B6, H7, H10, G2, M2 

and H8, experienced large decreases in Ggt DNA concentrations that also coincided with 

the low percent infected roots (< 20% roots infected). 
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Figure 2.6  Relationship between the mean Ggt DNA concentrations and the 

logit mean percent infected roots in St Andrews soils. 
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Figure 2.7  Change in Ggt inoculum concentrations from pre-sowing  to post crop harvest 

in the 2003/04 season for field soils with 1 to 4 y of successive wheat cropping (a – d), 

relative to mean percent infected roots (back-transformed) of wheat plants grown in the 

same soils in a pot experiment.
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2.4.4 Fresh and dry weights from pot experiment 

From the overall analysis of plants grown in the 29 soils, shoot weights (both dry and 

fresh) were significantly affected by years of successive wheat cropping (P<0.001 for both 

dry and fresh weights). The lowest mean shoot weights were from plants grown in soils 

cropped with 2 y of successive wheat crops (fresh = 2.09 g and dry = 0.38 g) (Figures 2.8a-

b). Root fresh and dry weights were however, not affected by years of successive wheat 

crops (Figures 2.8a-b). There were significant variations between different soils of the 

same wheat cropping histories in both the root (P<0.005) and shoot (P<0.001) weights (dry 

and fresh) (Figure 2.9). 

Plants grown in the 15 St Andrews soils however, showed slightly different trends from the 

overall analysis. Both root and shoot dry and fresh weights of plants differed according to 

the years of successive wheat crops (P<0.05 for both root dry and fresh weights and 

P<0.001 for both shoot dry and fresh weights) (Figure 2.10a and b). Mean shoot fresh and 

dry weights (1.89 and 0.36 g, respectively) and root fresh and dry weights (3.23 and 0.41 g, 

respectively) were lowest on plants grown in soils with two successive years of wheat 

(P<0.001 for shoots and P<0.05 for roots). In general, roots had higher mean fresh and dry 

weights than shoots except for year 0, when the shoot mean dry weight (0.5g) was higher 

than that of roots (0.47g) (Figure 2.10b). There was no significant variation (P≥0.05) 

between soils of the same wheat cropping histories for plant dry and fresh weights. 
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Figure 2.8  Mean (a) fresh and (b) dry weights of plants grown in the 29 test soils naturally 

infested with Ggt. Error bars are the least significant differences (LSD) at the 5% level (df 

= 114). 
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(d) Shoot fresh weight
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Figure 2.9  Mean weights of plants grown in different soils of the same wheat cropping 

histories (a) root dry; (b) root fresh; (c) shoot dry; and (d) shoot fresh weights. Error bars 

are the least significant differences (LSD) at the 5% level (df = 114). 
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(a) Fresh weight 
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Figure 2.10  Mean (a) fresh and (b) dry weights of plants grown in the 15 St Andrews 

soils. Error bars are the least significant differences (LSD) at the 5% level (df = 114). 

 

2.5 Discussion 

The mean Ggt DNA concentrations for the 29 soils used in this study did not show a clear 

trend of increase with the increasing years of successive wheat crops (Figure 2.2). This was 

probably due to the large variations between soils from different regions. Many soil factors 

such as nutrition, physical properties, texture, structural stability and constitution, which 

may affect available water capacity and water release characteristics, can also affect plant 

growth and take-all severity (McLaren & Cameron 1996; Hornby et al. 1998). In this 

study, the test soils did vary in soil types, textures and water holding capacity at FC 

(Appendix 2, Appendix 5, A5. 1). However, their water release characteristics and so the 

amount of water available to the plants, were unknown. In addition, soils from different 

sites might have differential rates of decline in their Ggt inoculum concentrations 

depending on the environmental conditions and the time of soil sampling. For instance, 

Bithell et al. (in press: 2009) investigated the changes in Ggt DNA inoculum 

concentrations in 10 New Zealand second year wheat fields after crop harvest and reported 

monthly decreases of inoculum from 350 to 103 pg g
-1

 of soil from harvest. They attributed 

the decline of inoculums was related to the breakdown of viable Ggt infested 

propagules/host residues in the soil after crop harvest. Disease incidence in subsequent 

crops might also be affected by other factors such as variation of aggressive Ggt strains 
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between soils, and the gradual reduction and replacement of the aggressive strains by the 

less aggressive strains (Shipton 1977; Lebreton et al. 2004). 

In this study, additional assessment of the microbial biomass C concentrations (Table 2.2), 

which represented both the active and inactive microorganisms (Sparling 1997), were not 

significantly affected by the increasing successive wheat crops (Table 2.2), and were 

poorly correlated to the Ggt DNA concentrations in the 29 soils (r = 0.49). According to 

Deacon (1997), some of the different microorganisms present in the soils, could suppress 

the disease to some extent by antagonising or competing with Ggt to reduce/prevent 

infection of plant roots. However, direct measurement of the microbial biomass C levels in 

the soils, would not give an indication of the different groups of microorganisms, and the 

microbial activities (Nsabimana et al. 2004) present. This was because other parameters, 

such as CO2 respiration and substrate utilisations, were not investigated. Therefore, the 

direct relationship between microbial biomass C and individual microbial populations 

cannot be determined. Future work will have to investigate the different populations of the 

microorganisms in soils cropped with different years of successive wheat crops. 

For the 15 St Andrews soils, the mean Ggt DNA concentrations increased during y 0-1, 

remained constant during y -3 and increased after y 3 (Figure 2.2), results which are 

similar to those reported by Cromey et al. (2004), who used Ggt DNA concentrations 

instead of disease incidence or severity to explore the potential existence of TAD in New 

Zealand. As wheat is the most susceptible cereal crop to take-all (Scott 1981), it is 

expected that growing this crop successively, will result in carry-over of Ggt inoculum at a 

maximum level, into the next crop (Cromey et al. 2004). However, the phenomenon of 

TAD, which has been reported to occur after 4-6 successive wheat crops in the fields 

(McSpadden Gardener & Weller 2001; Mazzola 2002; Weller et al. 2002), was not 

observed from analysing the Ggt DNA data of the 15 St Andrews soils in this study. 

Similar to the 29 soils, additional analysis of the 15 St Andrews soils, also showed poor 

correlation between the Ggt DNA concentrations and the microbial biomass C (r = 0.49).  

Although the 29 soils varied in their original Ggt DNA concentrations due to site 

variations, they were still useful in studying the effects of a single wheat crop in 2003/04 

on Ggt DNA concentrations. For these 29 individual soils, the Ggt DNA concentrations 

increased for nearly all the soils in the first year of wheat cropping (Figure 2.3a-d). This 

was expected as most of the preceding crops grown in the fields (Table 2.1) were 
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susceptible to Ggt, thus providing sources of inoculum for the wheat crop (Nilsson & 

Smith 1981; Chng et al. 2005). Most soils in their second, third and fourth successive years 

of wheat cropping showed stable or decreasing Ggt DNA concentrations (Figure 2.3), 

suggesting that suppression of Ggt could have already begun to occur in these soils. 

The initial aim of the current pot experiment was to investigate the potential differences in 

suppressiveness between the soils. However, given that the roots of all the plants grown in 

the inoculated soils were severely infected, it is likely that this inoculum dosage was too 

high to detect any potential differences in suppressiveness between the soils. Past research 

on screening for suppressive soil was mainly carried out by introducing uniform amounts 

of Ggt inoculum into samples of suspected suppressive soils, to determine whether the 

soils had the capacity to inhibit the pathogenic activity of Ggt (Hornby 1983). The putative 

suppressive soil was either mixed with a sterilised (steamed, autoclaved or fumigated) base 

soil, sand or potting media (Pope & Jackson 1973; Shipton et al. 1973; Pope & Hornby 

1975; Andrade et al. 1994), or was tested on its own (Shipton et al. 1973; Pope & Hornby 

1975; Andrade et al. 1994). Both of these methods were capable of determining the 

differing infectivity between the soils. However, if a test soil is suppressive, the addition of 

a small amount of it (1% w/w) into a non-suppressive soil (i.e. sterilised soil) will transfer 

its suppressive factor, resulting in the non-suppressive soil becoming suppressive 

(Wildermuth 1980). In the current study, the soils were used on their own mainly because 

of the impracticability of transferring 29 test soils into a sterilised base soil, which 

presumably would be required in a huge amount due to the pot replicates necessary for the 

experiment. The Ggt inoculum dosage used (equivalent to 12.5%) was recommended by 

Hollins et al. (1986) for investigating the relative resistance of various grasses to take-all, 

and was clearly too great for this wheat trial. A separate trial to determine a suitable 

inoculation dose for optimum disease expression, and detecting potential soil 

suppressiveness was later set up (Chapter 3).  

In the pot experiment, the significant difference found in the mean percent infected roots of 

the 29 soils, which included ryegrass (y 0) soils and soils with successive wheat cropping 

histories (Figure 2.4a), might be due to the low Ggt DNA concentrations (nearly 0 pg g
-1

 

soil) in the ryegrass soils. Since ryegrass is putatively less susceptible to Ggt (Nilsson & 

Smith 1981; Chng et al. 2005), these soils would have less inoculum in the pot trial. The 

poor correlations between the successive wheat crops and Ggt DNA concentrations, and 
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between the Ggt DNA concentrations and disease incidence, indicate that soil 

characteristics can complicate any causative relationships between the factors. There was 

also a possibility that the natural Ggt inoculums present in different soils might vary in 

their virulence and aggressiveness and the subsequent infectivity as well (Cunningham 

1981). 

For the 15 St Andrews soils, the mean percent infected roots also increased with successive 

wheat crops (Figure 2.4b). A similar trend was also reported at Rothamsted in the UK in 

research done from 1989 to 1994 on a wheat field naturally infested with Ggt with TAD 

happening after 4 y of successive wheat (Hornby et al. 1998). The variations in percent 

infected roots (Figure 2.5b) between different soils that had the same successive wheat 

cropping histories were, however, insignificant when compared to the same analysis for the 

29 soils, indicating  a lesser effect of soil physical properties in this case.  

Despite the strong correlation between the mean Ggt DNA concentrations, and the mean 

percent infected roots (r = 0.76), it was not possible to confidently claim that the DNA-

assay was able to accurately predict the disease levels from the pot experiment. This was 

mainly because of the poor correlation between the raw data of Ggt DNA concentrations 

and the raw data of percent infected roots (r = 0.36). These results agree with those of 

Herdina & Roget (1999; 2000), who reported poor predictions between the two parameters 

in their publications (R
2 
= 0.43 and 0.63, respectively). They concluded that the problems 

could be attributed to insufficient soil samples collected from each field, and the difficulty 

in differentiating soils with low Ggt DNA concentrations from those with medium Ggt 

DNA concentrations. In the present study, all the plants were harvested at an early growth 

stage (GS15) (Tottman 1987) (after 28 d), and so it is anticipated that they were still 

epidemically at their primary state of infection, which may have contributed to the poor 

correlation between the Ggt DNA concentrations and the percent infected roots. Bailey & 

Gilligan (1999) investigated the dynamics of primary and secondary infection in take-all 

epidemics in a pot experiment, and predicted that plants grown at 15°C in a growth 

chamber, would begin secondary infection after 170 d. Their results also showed that the 

proportion of infected roots, both seminal and adventitious, would only reflect the levels of 

initial infective inoculum after about 380 d of growth, which was 30-50 d beyond the 

expected harvesting time. 
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To measure the capacity of soils to suppress the pathogen, most researchers compared the 

disease incidence or severity with that of a known disease suppressive soil, which had been 

in monoculture of wheat for 5 or more years, and had been observed to express the 

symptoms of TAD (Pope & Jackson 1973; Shipton et al. 1973; Wildermuth 1980; Cook et 

al. 1986; Simon et al. 1987). As TAD has not been reported in New Zealand, it was 

impossible to include a known TAD soil as a suppressive soil control in the present study. 

Hence, comparison was made between the differences in Ggt DNA concentrations from 

pre-sowing to after crop harvest in the field, with the mean percent infected roots of plants 

grown in the pots of individual soils (Figure 2.7). According to Baker & Cook (1974), soils 

showing diminished pathogen and declined disease incidence/severity during continued 

monoculture of wheat, could be undergoing TAD, therefore, 11 out of the 29 soils screened 

in this study could be potential take-all suppressive soils. Separate studies will have to be 

conducted to confirm their suppressiveness and the suppressive mechanisms (Chapters 5 

and 6).  

Plants grown in the 29 soils had decreasing shoot dry and fresh weights for the first 0-2 y 

and remained constant after the second year of successive wheat crops (Figure 2.8), 

indicating poorer plant growth in these soils. However, there were large variations in the 

root and shoot weights of plants from soils of different origins.  

For the 15 St Andrews soils which had similar soil type, texture (Appendix 2) and physical 

properties, the fresh and dry weights (roots and shoots) better-reflected different successive 

wheat cropping histories. In these soils, the lowest above and below ground dry and fresh 

weights were found in plants grown in soils cropped with 2 y of successive wheat, with 

increases from y 3 soils and smaller decreases from y 4 soils (Figure 2.10). The reason 

behind this trend was unclear as there were no direct relationships between the shoot and 

root dry and fresh weights and the disease incidences (r = 0.02, 0.04, 0.2 and 0.20, 

respectively) or the Ggt DNA concentrations in the field soils before the pot trial (r = 0.06, 

0.03, 0.01 and 0.02, respectively). Hornby (1981) also reported similar results with yield 

not being consistently related to soil inoculum levels or the incidence of disease. However, 

the moderate correlations between the root and shoot dry weights and between the root and 

shoot fresh weights, had indicated that the two growth components (roots and shoots) were 

greatly dependent on each other. In this trial, the soils were also very dry at the time of 
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harvest suggesting that watering once weekly might have been insufficient for growth of 

plants and might have not been ideal for optimising disease infection and expression.  

Results in this chapter indicated that the 29 soils were more variable than the 15 St 

Andrews soils, and so less able to demonstrate effects of years of successive wheat 

cropping on disease progress, plant growth and natural Ggt DNA concentrations. This was 

probably due to the complex interactions between Ggt DNA concentrations, soil physical 

properties and the microbial activities in the different soils from different sites. Results 

from the St Andrews soils showed that both disease incidence and natural Ggt DNA 

concentrations increased with successive wheat crops. The TAD phenomenon was not 

observed in this analysis. However, when differences in Ggt DNA concentrations from 

field soils taken pre-sowing and after the last harvest were examined, most soils of 2, 3 and 

4 y of successive wheat crops had more reduced Ggt DNA concentrations (195-2911 pg g
-1

 

soil) than 1 y wheat soils, which had increased Ggt DNA concentrations (41-1488 pg g
-1

 

soil). Even though there was a possibility that natural biological suppression on Ggt could 

be taking place from before and after crop growth, the likelihood of Ggt inoculum 

reductions in the soils due to seasonal changes, management practises before planting, and 

the breaking down of host residues for inoculums survival, cannot be dismissed. The 

individual soils from successive wheat cropping that had reduced Ggt DNA concentrations 

and low disease incidence (11 of the 29 test soils) were considered as potential take-all 

suppressive soils. More studies are required to confirm their suppressiveness and the 

suppressive mechanisms involved (Chapters 5 and 6). 
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Chapter 3  
Inoculation of soils with different levels of 

Gaeumannomyces graminis var. tritici to detect differing 
take-all suppressiveness 

3.1 Abstract 

The practice of introducing the pathogen, Gaeumannomyces graminis var. tritici (Ggt) into 

soils (as inoculum grown on oat grains, sand/maizemeal mixtures or in the form of infested 

soil residues), to screen for take-all suppressiveness has been widely used in field or 

laboratory trials but the amounts of Ggt inoculum reported have varied greatly. In our study, 

the effects of adding sand/maizemeal inoculum to soil at five different levels of Ggt (0, 0.2, 

0.5, 1 and 4% w/w) were investigated in a pot assay using wheat plants. Three soils with 

different cropping histories (5 y ryegrass, 8 and 2 y wheat) had different concentrations of Ggt 

DNA (0, 200 and 1126 pg g
-1

 soil, respectively), and, therefore, represented soils likely to 

have different magnitudes of putative take-all suppressiveness (i.e. non-suppressive non-

wheat, potentially suppressive wheat and non-suppressive wheat soils). After 4 wk growth at 

19°C, plant assessments showed that introducing 4% w/w of Ggt inoculum effectively 

differentiated the suppressiveness among the soils (P<0.01). The take-all root incidences were 

83, 69 and 81%, respectively. The 4% (w/w) inoculum rate did not reduce root growth of the 

wheat plants, and is therefore an appropriate level for investigating take-all suppressiveness in 

different soils. 

Keywords: Gaeumannomyces graminis var. tritici, Ggt, take-all, inoculum, suppressive soils, 

DNA, plant growth 

3.2 Introduction 

The role of soils in suppressing wheat take-all, caused by the pathogenic fungus 

Gaeumannomyces graminis (Sacc.) von Arx & Olivier var. tritici Walker (Ggt), has been the 

subject of investigations by many researchers. This is particularly true with take-all decline 

(TAD), which is one of the most thoroughly studied of all suppressive soils (Hornby et al. 

1998). TAD can develop during continuous wheat monoculture for 4 to 6 y (McSpadden 

Gardener & Weller 2001). It usually takes at least one severe outbreak of take-all, after which 

the disease may spontaneously reduce, resulting in increased yield (Weller et al. 2002). 
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Traditionally, assessment of take-all suppressiveness has been done by growing susceptible 

wheat plants in pots of the soil. Their subsequent symptoms indicate the soil‟s suppressive 

properties, without any need to amend the soil (Rovira & Wildermuth 1981). The control 

plants, which provided contrasts to the treatments, are usually grown in autoclaved or 

sterilised soil that had Ggt added to it. However, the problem with using un-amended soil is 

that one cannot determine whether the low disease levels are due to low inoculum potential 

(ability to cause an infection), or high suppressiveness (Rovira & Wildermuth 1981), a 

problem encountered in Chapter 2 as well. 

The addition of Ggt inoculum to the soil may overcome this problem (Lester & Shipton 1967) 

provided that the added inoculum is made up of propagules with uniform size that are able to 

cause uniform and reproducible levels of disease on the roots (Simon et al. 1987). However, 

the amount of Ggt inoculum reported in the literature for screening take-all suppression 

properties has differed, with different types of culture media also being used. For instance, oat 

kernel inoculum has been used at 0.1% (Wildermuth 1982a, 1982b; Andrade et al. 1994a, 

1994b), 0.15 and 0.45% (Weller et al. 1985), whilst ground oat was used at 0.1% 

(Wildermuth & Rovira 1977; Wildermuth 1980) and 0.5% (Hiddink et al. 2005), and a sand 

and wheat meal mixture at 20% (Lester & Shipton 1967). The need for a suitable Ggt 

inoculum concentration in the screening process for suppressive soil was also identified in 

Chapter 2. This research investigated the effects of soil amendment with various Ggt 

inoculum levels on plants that were grown in a range of soils previously selected for their 

differences in putative take-all suppressiveness, so that a suitable inoculums level could be 

determined and used in suppressive screening in the future. 

3.3 Materials and methods 

3.3.1 Soil sampling and processing 

The three soils H15, P7 and R1 were collected from fields with different wheat cropping 

histories in St Andrews, Methven and Ashburton regions respectively of the South Island, 

New Zealand. Soil H15, which was included in a previous study (Chapter 2), was collected in 

March 2004 from a field cropped with 5 y of Lolium perenne L. (perennial ryegrass). This soil 

therefore represented a putative non-suppressive soil control that was not naturally infested 

with Ggt. Both P7 and R1 soils were collected in Nov 2004 from wheat fields known to have 

a history of take-all. Soil P7 was from a field cropped with 8 y of wheat, and so represented a 

soil with potential take-all suppressiveness that was naturally infested with Ggt. Soil R1 was 
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from a field cropped with 2 y of wheat, and so represented a putative non-suppressive soil that 

was naturally infested with Ggt. 

Ten soil blocks of 10 cm  10 cm  10 cm were collected from each field using a spade to 

cut into the soil surface. The ten sampling points (providing at least 10,000 cm
3
 of soil) were 

spaced within a 1 ha zone of the field along a „W‟ pattern (Van Elsas et al. 2002). The soil 

from each field was placed in two 30 L bins, partially dried at 25°C overnight and then passed 

through a 4 mm sieve to homogenise the soil. Any stone caught in the sieve was discarded, 

while crop debris, which was considered as part of the inoculum, was returned to the soil. 

Sieved soils from each field were pooled and mixed thoroughly on a tarpaulin and then stored 

at 4°C in 30 L bins until use. 

Samples were taken from each mixed soil for analysis; a 300 g sample was sent to SARDI for 

Ggt DNA analysis, and 150 g samples were sent to R.J. Hill Laboratories Ltd., Hamilton, 

New Zealand and to Crop & Food Research Ltd., Lincoln, New Zealand, for basic soil 

physico-chemical analyses. The methods on Ggt DNA quantification and other physico-

chemical properties of the soils were outlined in Chapter 2. Tension tables were used to 

determine the moisture contents (MC) of all the soils at field capacity (FC) as described by 

Klute (1986) (Appendix 3, A3. 5). Table 3.1 shows the site information of the three soils 

including cropping histories, soil types, and textures, and Ggt DNA concentrations. Test 

results on the physico-chemical properties of the soils are presented in Table 3.2. 

3.3.2 Ggt inoculum production 

A mixed Ggt inoculum was made up of equal proportions of the five isolates H11T3 R1/3, 

A3SL4, H9T3 R1/1.2, Biomill1SC3 and BIO3, which were from the culture collections at the 

New Zealand Institute for Crop & Food Research Ltd. (Lincoln, New Zealand). Each culture 

was grown in a sand / maizemeal mixture, as described by Hollins et al. (1986), except that 

the growing medium was prepared in clear autoclavable bags (36 x 48 cm, capable of 

withstanding temperatures up to 150°C, Raylab NZ Ltd., Auckland, New Zealand) instead of 

conical flasks. Each bag had a 10 cm long, 5 cm diameter aluminium tube attached in the 

opening using rubber bands, and this was sealed by plugging with cotton wool and covering 

with foil. The medium was then thoroughly shaken and autoclaved at 121°C for 1 h.  

Once the sterilised medium was cooled, each bag was inoculated with 40 potato dextrose agar 

(PDA) discs (8 mm diameter) cut from the actively growing edge of an 8 d old Ggt isolate 

culture. The inoculated medium was then shaken by hand before incubating at 23°C for 3 wk 
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and shaken weekly. Prior to use, the five different Ggt isolates grown in separate bags of 

sand/maizemeal media were pooled and mixed thoroughly in one of the bags. 

3.3.3 Pot experiment 

The pot experiment was set out in a two-way randomised block design consisting of three 

soils amended with Ggt inoculum at 0, 0.2, 0.5, 1 and 4% weight by weight (w/w) with four 

replicates of each treatment combination. Soil amendment was carried out by hand mixing the 

required amount of Ggt inoculum with the soil to give a final weight of 300 g of soil mixture 

per 400 mL pot. 

Each pot was planted with four pre-germinated healthy wheat seedlings (cultivar Regency, 

line 03/W/01P) (Appendix 3, A3. 3) and received 20 mL of a nutrient solution to provide 

adequate nutrients in the soil (N = 150, P = 50, K = 100 and S = 20 µg g
-1

 soil) (Appendix 3, 

A3. 4). All the pots were then watered to FC (− 5 kPa) by weight (Appendix 3, A3. 5 and 

Appendix 5, A5. 1) and incubated in a growth chamber (Conviron, Controlled Environments 

Ltd., Canada) for 4 wk. The growth chamber was maintained at 19°C with alternate 12 h 

light/dark photoperiods, photosynthetic photon flux density (PPFD) of 375 µmols
-1

m
-2

 at pot 

height (10 cm) and 80% relative humidity (RH). All the pots received water to their FC by 

weight twice per week. 

3.3.4 Disease assessment and other measurements 

Roots were washed carefully in a bucket of tap water and assessed for infection, being classed 

infected if they had at least one take-all lesion per root axis. It was assumed that the 4 wk 

duration of growth would allow primary infection, and so the extent of take-all lesions on the 

roots (severity) between plants from different soils would not be that great. Therefore, disease 

assessment was conducted by counting the numbers of healthy and infected root axes on both 

seminal and nodal root systems. Numbers of healthy and infected root axes on both seminal 

and nodal root systems were recorded and percent infected roots per pot were then calculated 

using the formula: 

100%  
plant)per  axesroot  ofNumber (

plant)per  axesroot  infected ofNumber (
 pot per  (%) roots Infected 



















 

 

 



 69 

Table 3.1  Field location and cropping history, as well as some properties of the three soils used in the pot experiment. 

1
9
9
7
/9

8

1
9
9
8
/9

9

1
9
9
9
/0

0

2
0
0
0
/0

1

2
0
0
1
/0

2

2
0
0
2
/0

3

2
0
0
3
/0

4

2
0
0
4
/0

5

Original At FC

H15 S44°30.5', E171°06.5' Claremont silt loam Silt loam - - Rg Rg Rg Rg Rg Rg 0 0 - 18.51 34.69

P7 S43°44.3', E171°38.6' Mayfield silt loam Silt loam W W W W W W W W 8 200 Medium 10.85 30.74

R1 S44°02.5', E171°43.3' Templeton silt loam Silt loam - - - P W Rg W W 2 1126 High 20.49 28.38

P<0.05 P<0.005

LSD = 7.46 LSD = 2.42

1
Preceding crops: Ryegrass (RG)

Wheat (W)

Pea (P)

2
Take-all risk categories developed by SARDI for Australia at the time of quantitative DNA analysis of Ggt in 2003/04:

Low risk: 5-130 pg Ggt  DNA g
-1

 of soil 

Medium risk: 131-325 pg Ggt  DNA g
-1

 soil

High risk: >325 pg Ggt  DNA g
-1

 soil

Field code

1
Preceding crops

GPS Location

Moisture content (% W/W)
Years of 

wheat 
Soil type

Soil 

texture

Ggt DNA 

pg g
-1 

soil  
2
Risk

 

Table 3.2  Physico-chemical properties of the three soils used in the pot experiment. 

Normal    

range 5.3-6.1 20-30 0.5-0.8 5.0-12.0 0.8-3.0 0-0.5 12-25 50-85

H15 6.6 21 0.2 11.5 1.12 0.2 15 87 15.35

P7 6.1 26 0.47 12.5 0.78 0.19 18 78 57.48

R1 6.4 48 1.07 9.6 1.98 0.42 16 83 36.33
1
milliequivalents

2
 cation exchange capacity

Field code

Min N   

μg g
-1 

soil
Base   

Saturation (%)pH

Olsen P  

(mg L
-1

)

Potassium  

(
1
me 100 g

-1
)

Calcium       

(me 100 g
-1

)

Magnesium   

(me 100 g
-1

)

Sodium        

(me 100 g
-1

)

2
CEC          

(me 100 g
-1

)
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Fresh and dry weights of both roots and shoots were obtained before and after drying them 

at 70°C for 24 h. Since water uptake by the plants was also considered to reflect their 

growth and disease symptoms, the total for each pot over the trial was calculated from the 

amounts added at each watering time.  

3.3.5 Statistical analyses 

Statistical analyses of the percent infected roots, root and shoot dry and fresh weights and 

total water uptake were analysed using two-way Analysis of Variance (ANOVA). ANOVA 

tables are shown in Appendix 5, A5. 3. 

 

3.4 Results 

3.4.1 Disease incidence 

Plants grown in soils amended with Ggt inoculum had significant increases in mean 

incidence of infected roots with increasing Ggt inoculum levels (P<0.001) (Figure 3.1). 

The highest incidence of root infection (77.4%) occurred in plants grown in soils amended 

with 4% of Ggt inoculum. There was evidence of soil origins causing a significant 

difference on root infection (P<0.01) (Figure 3.2), and of them interacting with the Ggt 

inoculum levels (P<0.05) (Figure 3.3). From 0 to 1% added Ggt inoculum, incidence of 

infected roots significantly increased in all the soils. At 1% added Ggt inoculum, soil H15 

had the highest incidence of infected roots, with soils P7 and R1 having significantly lower 

incidence. However, at 4% added Ggt inoculum, incidence of infected roots was the lowest 

in soil P7 and highest for soils H15 and R1. 
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Figure 3.1  Mean incidence of infected wheat roots in soils with different levels of added 

Ggt inoculum. Error bar is the least significant difference (LSD) at the 5% level (d.f. = 59). 
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Figure 3.2  Mean incidence of infected wheat roots in the three soils treated with different 

levels of Ggt inoculum. Error bar is the least significant difference (LSD) at the 5% level 

(d.f. = 59). 
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Figure 3.3  Variations in incidence of infected roots on wheat plants grown in the three 

soils treated with different levels of Ggt inoculum. Error bar is the least significant 

difference (LSD) at the 5% level (d.f. = 59). 

 

3.4.2 Plant dry and fresh weights 

Overall, root and shoot weights were greater in nil or low inoculum treatments than in high 

inoculum treatments (Figures 3.4 a and b). However, differences were significant only for 

shoot dry (P<0.001) and root fresh (P<0.01) weights with the lowest (0.63 g and 3.1 g, 

respectively), being at 4% added inoculum.  

There was significant variation between different soils in dry and fresh weights of both 

roots (P<0.01 and P<0.001, respectively) and shoots (P<0.001 for both) (Figure 3.5), with 

consistent trends of plants in soil R1 having the lowest root and shoot dry and fresh 

weights, which were significantly different (P<0.05) to plants in soil P7, which had the 

highest weights. There was however no significant difference between plants grown in 

soils P7 and H15 in their root and shoot dry weights, whereas, plants grown in soils H15 

and R1 were similar and lowest in their root and shoot fresh weights. There was no 

interaction effect on plant dry and fresh weights between the different soils and the levels 

of added Ggt inoculum. 
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Figure 3.4  Mean weights of plants grown in soils amended with different levels of Ggt 

inoculum (a) root and shoot dry and (b) root and shoot fresh weights. Error bars are the 

least significant differences at the 5% level (d.f. = 59), and apply only to the individual 

plant variables. 
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Figure 3.5  Root and shoot (a) dry and (b) fresh weights of plants grown in the three soils 

amended with different levels of Ggt inoculum. Error bars are the least significant 

differences (LSD) at the 5% level (d.f. = 59), and apply only to the individual plant 

variables. 
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3.4.3 Water uptake 

Mean total water uptake by the plants decreased significantly with increasing levels of 

added Ggt inoculum (P<0.001) (Figure 3.6), with total water uptake being lowest (299 g) 

for plants grown in soils amended with 4% Ggt inoculum. Different soils also varied in 

their total water uptake (P<0.01) (Figure 3.7). Least water was used by plants grown in soil 

R1 (276 g). There was however, no difference in total water uptake between plants grown 

in P7 and H15. There was no interaction effect on the amount of total water uptake by the 

plants between different soils and the levels of added Ggt inoculum. 
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Figure 3.6  Mean total water uptake for plants grown in soils amended with different 

levels of Ggt inoculum. Error bar is the least significant difference at the 5% level (d.f. 

= 59). 
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Figure 3.7  Mean total water uptake for plants grown in the three soils amended with 

different levels of Ggt inoculum. Error bar is the least significant difference at the 5% 

level (d.f. = 59). 

 

3.5 Discussion 

Microbial activities in the soils are believed to be responsible for the onset of TAD (Rovira 

& Wildermuth 1981; Weller et al. 2002; Cook 2003), with the magnitude of suppression 

being largely dependent on the amount of the pathogen relative to the natural antagonists 

present in the soil (Cook 2003). In the current research, the main objective was to 

introduce different levels of Ggt inoculum into soils with differing magnitudes of putative 

suppressiveness to develop a pot trial protocol that could determine whether the soils had 

the capacity to inhibit the pathogenic activity of Ggt (Hornby 1983). 

The increasing disease incidence found with increasing Ggt inoculum levels agreed with 

results reported by Shipton et al. (1973), who compared a range of inoculum levels (4%, 

17%, 50% and 91% v/v) in a form of milled oat kernels and sand (1.9 v/v), introduced into 

three different soils to test for the suppressive properties of the soils. They reported that 

lowest numbers of infected plants consistently occurred in soils amended with 4% Ggt 

inoculum, and that higher inoculation rates appeared to swamp the antagonists present in 

the suppressive soils.  
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In the current study, mean total water uptake was reduced with increasing added Ggt 

inoculum but root dry weight was not affected by the inoculum, suggesting that the 

function of the roots in water uptake had been impaired (pathogen-induced water stress). 

The decreasing root fresh weight with increasing Ggt inoculum also indicated inhibition of 

the root system in absorbing water. According to Pillinger et al. (2005), either a reduction 

in the size of the root system, or a reduction in the efficiency of uptake function by the 

roots can reduce the root system‟s ability to supply the plants with adequate water and 

nutrients. However, Asher (1972) showed that infected root systems could translocate a 

greater proportion of their total assimilates to produce extensive systems of adventitious 

roots, thereby compensating for infection. As root systems were not partitioned into 

primary and adventitious roots in this study, the potential increase in numbers of 

adventitious roots, which may have grown to compensate for the infected root system, was 

unknown. Besides altering root morphology, infection may also reduce leaf expansion and 

therefore the total shoot dry weight (Ayres 1978). In this study, this reduction of shoot dry 

weights was only apparent with 4% added Ggt, suggesting that this concentration was the 

most suitable level for inducing water stress in plants, and for distinguishing the 

suppressive levels of the different soils (Figure 3.4). However, as inoculum levels higher 

than 4% were not included in this experiment, the possibility that the higher inoculum 

levels could have been even better at distinguishing the differing levels of suppressiveness, 

cannot be dismissed.  

Comparison of the three soils, which were amended with different levels of Ggt inoculum 

showed least disease in P7 (Figure 3.2). This soil was previously cropped with 8 y of 

wheat, and was therefore expected to exhibit greater suppression to take-all than both H15 

and R1, possibly due to the greater numbers of natural antagonists in the soil (Cook 2003). 

Plants in H15 (with 0 pg Ggt DNA soil g
-1

) had similar levels of infection to R1 (with 

1126 pg Ggt DNA soil g
-1

), whereas P7 had 200 pg Ggt DNA soil g
-1

. This suggests that 

the low disease incidence in P7 was not caused by the lower natural Ggt inoculum present. 

The higher root and shoot dry and fresh weights of P7 plants also indicated less effect on 

plant growth and root functions than from H15 and R1, which were formerly cropped with 

6 y of ryegrass and 2 y of wheat, respectively. The disease incidence at 0% Ggt inoculum 

did not reflect the natural Ggt DNA concentrations present in the three soils (Figure 3.3). 

This  could be due to the reason that the natural Ggt inoculums present in different soils 

might vary in their virulence and aggressiveness and the subsequent infectivity 
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(Cunningham 1981). In addition, presenting disease incidence (by counting the numbers of 

infected roots) might not reflect the actual infectivity of the natural Ggt inoculums present 

in the soils as well. In future experiments, disease severity using a rating system (i.e. by 

estimating the area of root system covered with lesions) should be considered instead. 

Other factors such as soil texture, structural stability, depth, available water capacity, pH 

and nutritional status of the soil can all affect take-all severity (Hornby et al. 1998). The 

pH (6) of all the soils in this study (Table 3.1), was considered suitable for take-all 

infection (Cook 1981), and nutrient status, especially N, was never a limiting factor here 

since the rate of 150 kg ha
-1 

was considered suitable for optimal plant growth (Hornby et 

al. 1998). Therefore, the possibility of these factors affecting disease incidence was 

dismissed. Mean total water uptake in H15 was similar to that in P7, which may have been 

due to its higher water content at field capacity (Table 3.1). Soil type is reported to affect 

the occurrence of take-all mainly because of its effect on soil structure and available water 

content (Hornby et al. 1998). All the soils in this study were silt loams which are mainly 

made up of clay and sand (McLaren & Cameron 1996), but because the fraction of each 

aggregate type and the soil water release characteristics were not measured, their available 

water capacities (i.e. the amount of water which a soil can store for plant growth (McLaren 

& Cameron 1996)) were unknown.  

The three soils also responded differently to the added inoculum concentrations, especially 

at 1 and 4%. The introduction of 4% of Ggt inoculum into the soils was sufficient to 

distinguish between soils with different wheat cropping histories (P7 against R1 and H15). 

This result was similar to a report by Lester & Shipton (1967), who also found that on 

plants grown in a pot assay the lowest levels of root infection were in soils with 5 or more 

years of consecutive wheat or barley crops. The effective inoculum concentration of 4% 

found in this study agrees with Shipton et al. (1973), who reported that soils demonstrated 

high levels of suppression when amended with 4% of Ggt inoculum. The media used for 

inoculum growth in both studies were very similar with the current study using 1:7 (w/w) 

sand and maizemeal mixture, whilst Shipton et al. (1973) prepared their inoculum in a 

milled oat kernels and sand (1:9 volume by volume, v/v) mixture.  

Other inoculum concentrations and media have also been reported. Wildermuth (1982b), 

Andrade et al.(1994b), Weller et al. (1985), Wilermuth & Rovira (1977), Wildermuth 

(1980) and Hiddink et al. (2005) used much lower inoculum concentrations (0.1 to 0.5%), 
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whereas Lester and Shipton (1967) used a much higher concentration (20%) in screening 

for the magnitude of take-all suppressive soils. However, comparison between these two 

groups is difficult due to their different methods of scoring disease. The inoculum growth 

medium used by the former group was either whole oat kernels or ground oats, and their 

mean disease scores, over a 0-8 and a 0-7 range, were 1.6 and 3 respectively (with 2 being 

lesions present on three or more roots, and with 3 being lesions present on all the roots). 

The latter group, (Lester & Shipton 1967) used sand and wheat meal mixtures as inoculum 

growth medium and reported plants in suppressive soils generally had 11 to 14% of their 

roots infected, although one of the few suppressive soils investigated, had up to 42% of 

roots infected.  

Simon & Rovira (1985) compared plant response to Ggt inoculum prepared in ryegrass 

seeds with those prepared in millet seeds and found that millet seeds produced consistently 

more severe disease than the ryegrass. They explained that the larger size and weight of the 

millet seeds (5.3 mg vs. 1.8 mg for ryegrass) contained larger food reserves to support the 

infective Ggt, therefore causing more disease. The inclusion of inert material such as sand 

in the medium in the current study might dilute the food reserve for Ggt growth, therefore 

resulting in the need to incorporate a greater inoculum concentration to obtain a similar 

plant disease response. Clearly, the type of substrates used in the production of Ggt 

inoculum, is likely to be one of the factors determining the ultimate infectivity levels.  

Other factors such as isolate pathogenicity and aggressiveness, inoculum placement and 

the properties of the test soil have also been reported to influence the effectiveness of the 

inoculum (Cunningham 1981). However, in this study, the use of five pooled pathogenic 

Ggt isolates mixed thoroughly into the homogenised soil might have gone some way to 

prevent such variability. In non-sterilised soils, where artificial inoculum was added, 

temperatures and moisture potential were also known to affect the efficacy of the assays, 

mainly due to the modification caused by the interaction between these factors and the 

microbial antagonisms (Hornby 1981). Future studies could investigate the influence of 

these two factors in pot bioassays used for screening take-all suppressive soils. 

In conclusion, introducing 4% of Ggt inoculum into the soils enabled the antagonistic 

activities in the soils to be reflected through the differing disease incidences, and hence 

allowed the differentiation of soils with different take-all suppressiveness. This inoculum 



 79 

concentration will be used in screening soils with differing take-all suppressiveness in 

future experiments (Chapters 4 and 5). 
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Chapter 4  
Manipulating controlled environmental conditions to 

maximise efficacy in screening of take-all suppressive 
soils 

4.1 Abstract 

Take-all suppressive soils have been studied worldwide with particular emphasis on the 

role of the soil microbiota in suppressing the pathogen, Gaeumannomyces graminis var. 

tritici (Ggt). Under controlled environmental conditions, pot bioassays that use plants as 

indicators of disease potential can indicate the magnitudes of suppression exerted by the 

microbiota in these soils. However, the environmental conditions reported to be used for 

pot bioassays have varied and provided different results, possibly because they were not 

optimal for the potential antagonistic microbes present in the soil. This research was 

undertaken to investigate the effects of different temperatures and watering regimes on 

disease expression and plant growth. The results indicated that with sieved test soils, a pot 

bioassay conducted in a 16°C growth chamber, with watering twice a week to field 

capacity (w/w), could be used to distinguish the differing magnitudes of suppressiveness 

between the test soils. 

Keywords: Gaeumannomyces graminis var. tritici, take-all, successive wheat, DNA, 

inoculum, suppressive soils, take-all decline, plant growth 

4.2 Introduction 

Soil suppressiveness can be an important factor in the epidemiology and control of take-all 

in wheat, caused by the soilborne fungus, Gaeumannomyces graminis (Sacc.) von Arx & 

Olivier var. tritici Walker (Ggt). This phenomenon, which appears to be complex, has been 

the subject of many investigations with much emphasis on the properties of suppressive 

soils, the causes of suppression and its role in disease management. Assessment on the 

magnitude of suppression in the field can be difficult, mainly because of the many factors 

(such as climate, soil and the uneven distribution of inoculum in the soil), which may 

influence the level and severity of the disease (Rovira & Wildermuth 1981).  

The presence of suppressiveness in a soil can be demonstrated in the laboratory by 

bringing together the soil, a susceptible crop and pathogen (Rovira & Wildermuth 1981; 

Hornby 1983). Many studies have used pot or tube bio-assays to confirm the existence 
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and/or magnitude of soil suppressiveness (Lester & Shipton 1967; Shipton et al. 1973; 

Baker & Cook 1974; Wildermuth 1980; Andrade et al. 1994a, 1994b; Hiddink et al. 2005).  

The controlled environment conditions such as temperatures and watering regimes used for 

pot experiments have varied between studies. For instance, while investigating the effect of 

mixed and single crops on disease suppressive soils, Hiddink et al. (2005) conducted their 

pot bioassay in a greenhouse at about 20°C with watering as required (not defined). 

However, Shipton et al. (1973) and Wildermuth (1980) conducted pot bioassays in an 

incubator at 20°C without mentioning the watering regime. Methods for maintaining the 

water potential at -8 kPa were described by Wildermuth (1982), who ran a bioassay in a 

controlled environment room at 15°C, with a 12 h photoperiod, to investigate the effects of 

Ggt suppressive soils on other soil fungi. In all the above studies, the soils were mixed and 

sieved before use, but MacNish et al. (1973) used undisturbed soil cores in their bioassays, 

which were maintained at 15°C and watered to -60 kPa every second day. 

Several studies have demonstrated the importance of conditions, such as temperature, 

water and soil aeration, on the rates of infection by Ggt (Grose et al. 1984; Wong 1984; 

Cotterill & Sivasithamparam 1987; Augustin et al. 1997). Hence, it is crucial in a pot 

bioassay that the stress effects (such as retarded growth) and disease symptoms expressed 

by the plants are not induced by the conditions under which it is conducted, but by the 

pathogen present in the soil. These conditions must therefore, not restrict plant growth, 

permit infection to take place and allow other potential antagonists in the soils to react to 

the introduced pathogen. In order to optimise the efficacy of the pot bioassay used for take-

all suppressive soil screening, this study aimed to determine the various environmental 

conditions most suitable for disease expression and growth of wheat plants. 

4.3 Materials and methods 

4.3.1 Soil samples 

Three soils P7, R1 and R1a were collected from fields with different wheat cropping 

histories from Methven and Ashburton in the South Island, New Zealand. Soil P7 was from 

a field cropped with 8 y of wheat and so potentially suppressive to take-all, whereas, soils 

R1 and R1a were cropped with 2 y of wheat and so represented conducive soils.  

Soils P7 and R1 were collected before the 2004/05 crop harvest, in November 2004, when 

the crop was at booting stage [GS40, (Tottman 1987)]. Sampling, drying, sieving, soil 
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testing (Ggt DNA and physico-chemical analyses) and storage of the two soils were carried 

out according to the methods described in Chapter 3. Soil R1a was collected from the same 

field but earlier (September 2004) than R1, for a separate pot bioassay study by a different 

researcher who used a different growth chamber and unsieved soil. In this separate study, a 

much higher root infection (average 23% infected roots, unpublished data) was reported 

than the one reported in Chapter 3, therefore, this soil was included in the current study to 

investigate the effect of sieving on disease incidence. The soil was collected in much 

smaller sampling volumes than used for soils P7 and R1 by taking two soil cores (20 mm 

dia., 100 cm depth) from 25 positions (providing at least 650 cm
3
), along a „W‟ pattern 

over the whole field. The soil was placed onto a tray (40 by 25 cm) and partially dried 

overnight at 25°C, but was not homogenised by sieving. It was stored at room temperature 

(20°C) and was thoroughly hand mixed before the current pot bioassay. Since both soils 

were from the same field, their physico-chemical properties were similar. The Ggt DNA 

analysis for this soil was carried out before sowing of wheat crop in the field for the 

2004/05 season. Table 4.1 shows the site information, cropping histories, soil types, 

textures and Ggt DNA concentrations of the soils. Soil physico-chemical properties are 

presented in Table 4.2. The methods on Ggt DNA quantification and other physico-

chemical properties of the soils were outlined in Chapter 2. 

4.3.2 Pot bioassay experiment 

The set up of the pot bioassay was similar to that in Chapter 3, with each pot of test soil 

being amended with 4% (w/w) mixed Ggt inoculum to give a final weight of 300 g, and 

planted with four pre-germinated healthy wheat seedlings (Appendix 3, A3. 3). Detailed 

accounts on the preparation of inoculum and soil inoculation are in Chapter 3. 

All the pots were then watered either by weight to field capacity (FC, at -5 kPa) twice per 

week (Wt), or saturated with water by continuously sitting pots in separate 2 L containers 

filled with 1 L of water (F). All the F Pots had four holes (5 mm diameter) drilled at the 

bottom to allow water uptake to the soil via capillary action. To avoid any confounding 

effects that nutrient solution might have on the watering treatment, no nutrient solution was 

applied to the pots in this study. 

The experiment was conducted in three growth chambers C16, C19 and MC16. Both C16 

and C19 were standard growth chambers (Conviron, Controlled Environments Ltd., 

Canada) maintained at 16 and 19°C respectively. MC16 was a modified growth chamber 



 85 

(CoolRite, Refrigeration and Air Conditioning Ltd., Christchurch, New Zealand) 

maintained at 16°C. This growth chamber was also used in the separate study for soil R1a 

referred to above (Section 4.3.1). Only C16 and C19 were maintained at 80% relative 

humidity (RH), since there was no RH control for MC16. However, open containers of 

water situated within the growth chambers were considered likely to increase the RH in 

MC16 to 80% or greater. All the growth chambers were maintained at alternate 12 h 

diurnal light/dark photoperiods. The light intensity in different growth chambers was not 

measured. 

The pots were laid out in randomised complete blocks with each soil by water treatment 

being replicated four times within each growth chamber, to give 72 pots in total. However, 

due to limited numbers of available growth chambers, they were not replicated. Sieving 

was not the main factor in the experiment, but was included for comparison between 

sieved R1 and non-sieved R1a soils from the same field. Set up of the pot bioassay in 

MC16 is shown in Figure 4.1. The experiment was conducted for 4 wk and during this 

period, the amount of water used over time for Wt pots was recorded, but water use over 

time for F pots were not measured as the pots were not sealed. 

 

Figure 4.1  Set up of pot experiment in C16. 
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Table 4.1  Field location and cropping history, as well as some properties of the three soils used in the pot experiment. 

1
9
9
7
/9

8

1
9
9
8
/9

9

1
9
9
9
/0

0

2
0
0
0
/0

1

2
0
0
1
/0

2

2
0
0
2
/0

3

2
0
0
3
/0

4

2
0
0
4
/0

5

Original At FC

P7 S43°44.3', E171°38.6' Mayfield silt loam Silt loam W W W W W W W W 8 200 Medium 10.85 30.74

R1 S44°02.5', E171°43.3' Templeton silt loam Silt loam - - - P W Rg W W 2 1126 High 20.49 28.38

R1a S44°02.5', E171°43.3' Templeton silt loam Silt loam - - - P W Rg W W 2 1692 High 1.66 29.70

1
Preceding crops: 

Ryegrass (RG)

Wheat (W)

Pea (P)

2
Take-all risk categories developed by SARDI for Australia at the time of quantitative DNA analysis of Ggt in 2003/04:

Low risk: 5-130 pg Ggt  DNA g
-1

 of soil 

Medium risk: 131-325 pg Ggt  DNA g
-1

 soil

High risk: >325 pg Ggt  DNA g
-1

 soil

Moisture content (% W/W)

Years of 

wheat 
GPS Location Soil type

Soil 

texture

Field 

code

Ggt DNA 

pg g
-1 

soil 
2
Risk

1
Preceding crops

 

Table 4.2  Physico-chemical properties of the two soils used in the pot experiment. 

Normal    range 5.3-6.1 20-30 0.5-0.8 5.0-12.0 0.8-3.0 0-0.5 12-25 50-85

P7 6.1 26 0.47 12.5 0.78 0.19 18 78 57.48

R1 6.4 48 1.07 9.6 1.98 0.42 16 83 36.33
1
 milliequivalents

2
 cation exchange capacity

Min N              

(μg g
-1

 soil)

pH

Olsen P  

(mg L
-1

)

Potassium  

(
1
me 100 g

-1
)

Calcium       

(me 100 g
-1

)

Magnesium   

(me 100 g
-1

)

Sodium        

(me 100 g
-1

)

2
CEC          

(me 100 g
-1

)

Base   

Saturation (%)

Field code
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4.3.3 Disease assessment and other measurements 

Methods for root washing, disease assessment, calculations on incidence of infected roots 

(%) and fresh and dry weights of plant growth components were as described in Chapter 3. 

4.3.4 Statistical analyses 

Statistical analyses of the incidence of infected roots (%) and all the growth components of 

plants (root and shoot dry and fresh weights) for the general treatments were analysed 

using analysis of variance (ANOVA). The mean water uptake over time for the plants 

watered by Wt was analysed with ANOVA, treating „time‟ as a split-plot treatment, and 

adjusting for the repeated measures using the Greenhouse-Geisser epsilon correction factor  

(Greenhouse & Geisser 1959). All the ANOVA tables of the analyses are presented in 

Appendix 5, A5. 4. 

4.4 Results 

4.4.1 Effects of environmental conditions on disease 
incidence 

The analyses showed that the proportions of infected roots on the plants were affected by 

the different growth chambers, soils, watering regimes and sieving (P<0.05, <0.001, 

<0.001, and <0.05, respectively). The percent infected roots differed significantly between 

growth chambers MC16 and C19, but not between MC16 and C16, or between C16 and 

C19. Plants grown in MC16 had the greatest proportion of roots infected (43%) (Figure 

4.2a). The highest percent of infected roots (46%) occurred on plants in soil R1, while 

those in P7 and R1a showed similarly lower infection incidence (35%) (Figure 4.2b). 

Comparison of the two watering regimes showed that Wt plants had 15.7% more infected 

roots than F plants (Figure 4.2c). The incidence of infected roots was higher in sieved soil 

(41%) than in the unsieved soil (35%) (Figure 4.2d). 
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Figure 4.2  Mean incidence of infected wheat roots in (a) different growth chambers 

and (b) soils, subjected to (c) the two watering regimes and (d) with sieving. Error 

bars are the least significant differences (LSD) at the 5% level [df = 9 (a) and 45 (b-

d)]. 

 

There was a marginal 3-way interaction effect for incidence of root infection between 

growth chambers, soils and watering regimes (P = 0.08) (Figure 4.3). In general, the 

disease incidence was higher in Wt than F watering regimes, and on plants grown in soil 

R1. Plants in soils P7 and R1a had similarly low incidence of root infection. Overall, R1 

plants watered by Wt maintained in MC16 had the greatest proportion of their roots 

infected (65%), while those in P7, watered by F maintained in MC16 had the least 
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proportion of their roots infected (22%). There was also a marginal 3-way interaction for 

incidence of root infection between growth chambers, sieving and watering regimes (P = 

0.07), however, the sieving treatment was shown as a soil type, the results being 

represented in its interaction with growth chambers and water regime Figure 4.3.  
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Figure 4.3  Mean incidence of infected wheat roots on plants grown in different 

growth chambers (C16, C19 and MC16) and soils (P7, R1 and R1a) with different 

watering regimes (Wt =  by weight and F = saturation). Error bar is the least 

significant difference (LSD) at the 5% level (df = 54). 

 

4.4.2 Effects of environmental conditions on plant dry weights 

The growth components of the plants were affected by the different growth chambers, soils 

and watering regimes in the pot bioassay experiment. The mean root and shoot dry weights 

of plants differed substantially between the growth chambers (P<0.001 for both variables), 

with plants in MC16 consistently producing the least root and shoot dry weights (0.1 and 

0.2 g, respectively) (Figure 4.4a). In contrast, plants in C16 produced the greatest root and 

shoot dry weights (0.5 and 0.7 g, respectively). Root and shoot dry weights of plants also 

varied with soils (P<0.001 for both variables) (Figure 4.4b), with the least root and shoot 

dry weights (0.3 and 0.4 g, respectively) being consistently found on R1 plants. On the 

other hand, R1a plants produced the highest root and shoot dry weights (0.38 and 0.58 g, 

respectively). The different watering regimes also affected root and shoot dry weights 

(P<0.001 for both variables) (Figure 4.4c), with Wt plants having higher mean root dry 

weight than F plants (0.4 and 0.3 g, respectively), but significantly decreased shoot dry 
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weight (0.42 and 0.53 g, respectively). Sieving also affected root and shoot dry weights of 

plants substantially (P<0.001 and <0.05, respectively), with plants in sieved soils 

consistently producing lower dry weights of roots and shoot (0.3 and 0.6 g, respectively) 

(Figure 4.4d). 
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Figure 4.4  Mean dry root and shoot weights of plants grown (a) in different growth 

chambers, (b) in different soils, (c) with different watering regimes and (d) in soils 

with sieving treatments. Error bars are the least significant differences (LSD) at the 

5% level (df = 9 (a) and 45 (b-d) and apply only to the individual plant variables. 
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There were also significant 2-way interaction effects on mean root dry weights between 

growth chambers and soils, and between growth chambers and watering regimes (P<0.001 

for both) (Figures 4.5a-b). The growth chamber and soil interaction showed that plants in 

the different soils reacted differently in C16 and C19, but were the same in MC16 (4.5a). 

In growth chambers C16 and C19, mean root dry weight was the highest in R1a plants 

followed by P7 and R1 plants. The different watering regimes, also responded differently 

to the growth chambers, with Wt plants producing higher root dry weights in C16 and C19 

than F plants, but not in MC16, where they were the same for the two watering regimes 

(4.5b). The greatest differences in root dry weights due to soils and watering regimes 

occurred in C16. Plants grown in the three soils also responded differently to the two 

watering regimes (P<0.05) (4.5c). The greatest root dry weights were in R1a plants, 

followed by P7 and R1 plants, all watered by Wt. Root dry weights of F plants were not 

significantly different between P7 and R1, and between P7 and R1a. 

From visual assessment, the plants in MC16 consistently had smaller root systems than 

those in C16 and C19 regardless of soils and watering regimes (Figure 4.6). In addition, R1 

plants had much smaller root systems than P7 and R1a plants, especially for those 

maintained in growth chambers C16 and C19. 
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Figure 4.5  Mean root dry weight of plants grown in (a) soils maintained in different 

growth chambers, (b) watering regimes carried out in different growth chambers and 

(c) soils with different watering regimes. Error bars are the least significant 

differences (LSD) at the 5% level (df = 46, 31 and 45, respectively). 
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Figure 4.6  Comparative sizes of root systems of plants grown in the three soils 

subjected to the two watering regimes and maintained in the three growth 

chambers. 
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Shoot dry weight was also significantly affected by the 2-way and 3-way interactions of all 

the main treatments (P<0.001and <0.05, respectively). However, only the results on the 3-

way interaction (growth chamber, soil and watering regime), which are considered more 

relevant are presented (Figure 4.7). Similar to the root dry weight (4.5a), plants in the 

different soils also reacted differently in C16 and C19, but were similar in MC16 (Figure 

4.7). Plants in growth chamber C16, however, had greatest shoot weights overall, with 

greater differences between soils than in C19. Contrary to the root dry weight data, F 

plants in general, produced greater shoot dry weight than Wt plants. The results on the 

interaction between sieving and other main factors are not specifically presented here for 

the same reasons stated in Section 4.4.1.  
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Figure 4.7  Mean shoot dry weights of plants grown in different soils (P7, R1 and 

R1a) subjected to different watering regimes (Wt = by weight and F = saturation) 

maintained in growth chambers. Error bar is the least significant difference at the 

5% level (df = 50). 
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4.4.3 Water uptake 

Mean biweekly total water uptake per pot in the Wt treatment was significantly affected by 

the growth chambers, soils and time (P<0.001 for all treatments). Mean biweekly water use 

was the greatest in growth chamber C19 (32 g) followed by C16 (25 g) and MC16 (14 g) 

(Figure 4.8a), and greater in soils P7 and R1a (26 and 29 g, respectively) than R1 (17 g) 

(Figure 4.8b). The mean biweekly water uptake by the plants increased over time until day 

19 and then remained at about 35 g with fluctuations (Figure 4.9).  

The mean biweekly water uptake was also significantly affected by the 2-way and 3-way 

interactions of the main treatments (P<0.001 for the 2-way interaction and P = 0.001 for 

the 3-way interaction). The results of the 3–way interaction (i.e. growth chamber, soil and 

time), which were considered more relevant are presented in Figure 4.10. In general, R1 

plants used significantly less water over time than P7 and R1a plants in C16 and C19, 

whereas all the plants in MC16 used similar amounts of water over time.  
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Figure 4.8  Mean water uptake by Wt plants in the three (a) different growth 

chambers and (b) soils. Error bars are the least significant differences (LSD) at the 

5% level (df =  9 and 18, respectively). 
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Figure 4.9  Mean biweekly water uptake over time by Wt plants. Error bar is 

the least significant difference (LSD) at the 5% level (df = 216). 
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Figure 4.10  Mean water uptake over time by plants watered by Wt during the pot 

bioassay in the three growth chambers (C16, C19 and MC16) and soils (P7, R1 and 

R1a). Error bar is the least significant difference (LSD) at the 5% level (df = 216) 
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4.5 Discussion 

The current study aimed to optimise the methods capable of clearly differentiating 

suppressive from conducive soils, and used P7 and R1, the soils identified as such in 

Chapter 3 to accomplish this. Although soil R1 was conducive to take-all as expected, soil 

R1a, which came from the same site and also had a relatively high Ggt inoculum 

concentration, was not as conducive to take-all as soil R1. The plants maintained in soil R1 

displayed similarly low levels of take-all as P7 plants. The differences between soils R1 

and R1a were that the former soil was collected at a later time, sieved, mixed, and stored at 

4°C until use, whereas R1a was collected at an earlier time, not sieved or mixed, and had 

been stored at room temperature (about 18°C) until use. 

The higher incidence of infected roots in sieved R1 soil than unsieved R1a soil disagrees 

with the results of MacNish (1973), who reported that sieving the soil caused a reduction in 

the incidence of infected roots. However, because MacNish (1973) discarded all the debris 

caught in the sieve, it was likely that he had reduced the amount of original inoculum. In 

this study, there was no or very little change to the original inoculum concentration as all 

the debris caught in the sieve (4 mm aperture), was returned to the soil. The greater activity 

of Ggt in sieved soil found here was consistent with early work by Garrett (1934; 1936; 

1937), who concluded that Ggt favoured aerated and light textured soils, as caused by 

sieving.  

Sieving the soils may also have distributed the Ggt inoculum more uniformly through the 

soil, thereby increasing the chances of contact between the roots and the pathogen. For the 

plant roots to become infected, they need to be in close enough proximity with an 

inoculum unit for the hyphae of the pathogen to detect and grow towards the roots (Wiese 

1998). Thus the more uniformly distributed inoculum may have led to the higher 

proportion of infected roots and reduced plant growth in R1 soil, compared to plants grown 

in R1a. Most studies involving the use of bioassays to investigate take-all suppressiveness 

have incorporated soil sieving and returning of the caught plant material back into the 

sieved soils, prior to the assays (Lester & Shipton 1967; Shipton et al. 1973; Wildermuth 

1980; Cook et al. 1986; Andrade et al. 1994b; Hiddink et al. 2005). In addition, the 

differences in sampling dates, sieving and mixing treatments, as well as storage conditions 

and durations between soils R1 and R1a, might have led to significant biological 

differences between the two soils, thereby causing differences in their conduciveness.  
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It is generally accepted that take-all disease is most severe at soil temperatures of 12-16°C, 

which is also the optimum temperature range for the host (Baker & Cook 1974). This 

observation agrees with one by (Deacon 1997) who reported that under natural conditions 

in non-sterilised soil, the infection declines as the temperature is raised above 18°C. 

However in the present research, the plants maintained in 16°C (C16) and 19°C (C19) 

provided similar root disease incidences (Figure 4.2a), which indicates that the New 

Zealand isolates of Ggt survived and were infective under both temperature regimes.  

Soil P7 had lower disease incidence than soil R1 (Figure 4.2b), with correspondingly 

higher shoot and root weights (Figure 4.4b) as well as water uptake (Figure 4.8b), a trend 

which was consistent in growth chambers C16 and C19. As both soils had very similar 

water contents at FC (Table 4.1), the higher mean water uptake by P7 plants than R1 plants 

in both growth chambers could not be due to their differing water holding capacities. 

Although the amount of available water was unknown (moisture release characteristics of 

these soils were not analysed), the significant differences in the mean water uptake 

between the two soils were clearly related to the differing disease incidence.  

In the current trial, the F plants consistently had lower incidence of root infection than Wt 

plants. This result agrees with early work by Wong (1984), Glenn et al. (1987) and 

Heritage et al. (1989), who demonstrated that increasing the soil moisture (i.e. water 

potential) from -10 kPa to -1 kPa (saturation point), reduced the infectivity of Ggt in the 

soils. However, if soil becomes drier than the optimum for Ggt, the pathogen‟s growth and 

infectivity are also reduced, as reported by Grose et al. (1984) and Campbell & Clor 

(1985), in whose trials, soil moisture potentials ranged from -10 kPa to -108 kPa. In pure 

culture or in sterilised soil, Ggt was also reported to progressively grow more slowly as the 

water potential was adjusted to below -100 kPa, and to cease growth at -4500 to -5000 kPa 

(Baker & Cook 1974). Clearly, Ggt remains viable under conditions of extreme dryness, 

and it tolerates moisture levels close to FC but not beyond (such as when waterlogged). 

Hence, it seems likely that in this study the Ggt inoculum (both natural and introduced) in 

F soils had become less active over the 4 wk experimental period, thereby resulting in less 

disease incidence than in the Wt soils, making watering by Wt more suitable for Ggt 

infection. 

The F plants consistently produced lower root and greater shoot dry weights in the present 

study. Continuous saturation of soils has been known to impair root growth and 
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regeneration, by reducing soil aeration, increasing CO2 levels and reducing oxygen levels 

in the soils (Baker & Cook 1974). In addition, prolonged oxygen deficiency in the 

rhizosphere may also lead to accumulation of toxic ions in the roots (Levitt 1972). During 

an investigation of the effects of different environmental conditions on various 

Gaeumannomyces/Phialophora-complex fungi, wheat shoot growth was reported by 

Augustin et al. (1997) to be affected by moisture levels. They found that when the Ggt 

inoculated soils were kept at 85% of their maximum water holding capacity (close to FC), 

shoot dry weights were highest (up to 0.13 g) for plants grown in the soils. They suggested 

that the combined effects of soil moisture and higher temperature (18°C day and 9°C 

night) conditions might have stimulated plant growth. The authors however, did not assess 

the plants for Ggt infection. In this study, the Wt plants, produced greater root and lower 

shoot dry weights than F plants (Figure 4.4a). The possibility of infected root systems 

trans-locating a greater proportion of their total assimilates to produce more adventitious 

roots to compensate for infection (Asher 1972; Pillinger et al. 2005) could account for this 

response.  

In natural soil, it is possible that any change in water potential will place the pathogen at a 

greater or lesser competitive advantage, relative to the other organisms in the soil (Cook & 

Papendick 1972). For instance, soil water potential of -1000 to -1500 kPa (i.e. very dry 

conditions) has been reported to favour the growth of Fusarium culmorum (which causes 

root, crown, and foot rot of wheat) and to reduce the effect of antagonistic soil bacteria, 

which do not survive well under these conditions (Cook & Papendick 1972). When 

investigating the suppression of Pythium root rot in bulbous Iris spp. in relation to the 

biomass and activity of the soil microflora in a pot experiment, Van Os & Van Ginkel 

(2001) found flooding increased the growth rate of the P. macrosporum in the soil by 

100%, resulting in 40% more root rot than in the untreated soils. In their flooding 

treatment, the containers (1.4 × 0.85 × 0.85 m) of soils were flooded with water up to 5 cm 

above the soil surface, while the water levels in the untreated soils were maintained at 

60 cm below the soil surface, which resembled the standard groundwater level in 

ornamental bulb culture on sandy soils. However, Van Os & Van Ginkel (2001) found that 

the total microbial biomass was unchanged through flooding, and that the microbial 

activities (e.g. dehydrogenase activity and 
14

CO2 –respiration) in the soil were significantly 

reduced by it, facts which appear to conflict with the increased growth and pathogenicity 

of the fungus. 
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The reaction of an organism to its abiotic environment is not just due to the direct 

consequence of that environment, but also results from the effects of the environmental 

conditions on the surrounding microorganisms. For example, it is known that intermittent 

wetting of soil could increase the decomposition of soil organic matter and the availability 

of organic substrates, thereby resulting in a flush of microbial activity and increase in the 

biomass of fungal hyphae and bacteria  (Jager & Bruins 1975). In this research project, 

watering of the plants with Wt could be considered a form of intermittent wetting, 

potentially allowing the antagonistic microorganisms to be more active. The results of this 

trial indicated that the Wt watering system is likely to improve the sensitivity of future pot 

bioassays that aim to evaluate suppressive soils. 

In this study, plants in growth chamber MC16 consistently had the highest proportion of 

their roots infected, produced the lowest root and shoot dry weights, were observed to have 

the smallest root systems and had the lowest water uptake over time. The possibility of 

temperature being a contributing factor was dismissed, mainly because plants in MC16 had 

similar root infection incidence as those in C16, which had higher root and shoot dry 

weights. Therefore, this strongly implies that the root infection of plants in this chamber 

was not caused by any of the treatments, but was an effect of the chamber itself. It is 

therefore, considered inadvisable to conduct further pot bioassay screening for suppressive 

soils in MC16. 

The plants in C19 had lower dry weights than the C16 plants, and thus could not account 

for the higher mean water uptake over time in C19. The only explanation for this was the 

possibly greater evapo-transpiration rate being caused by the higher temperature. Although 

higher transpiration may create root stresses and facilitate infection by pathogens (Baker & 

Cook 1974), the disease incidence on plants in both chambers was similar. However, due 

to lower plant dry weights in this chamber, it appeared less suitable for conducting future 

pot bioassays for soil suppressiveness screening experiments. Even though the growth 

chamber treatment was not replicated due to limited growth chambers available, the 

differences on growth, disease incidence and total water uptake for plants maintained in the 

individual growth chambers were consistently significant. 

This research has highlighted the importance of ensuring consistency in treatment of the 

designated soils and choosing the most appropriate environmental conditions for the pot 

bioassays that aim to screen take-all suppressive soils. The recommendations for future 
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screening of take-all suppressive soils would be to subject the test soils to similar soil 

treatment such as sieving, to conduct the pot bioassay in the Conviron growth chamber 

maintained at 16°C, alternate 12 h light/dark photoperiod, and to water the plants to FC 

twice per week by weight (Chapter 5). 
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Chapter 5  
Take-all decline in New Zealand wheat soils and its 

potential mechanisms 

5.1 Abstract 

In many countries, take-all, a root disease caused by Gaeumannomyces graminis var. tritici 

(Ggt) has been shown to decline naturally after successive monoculture of wheat for a 

number of years, a phenomenon called, take-all decline (TAD). This paper describes three 

pot experiments that investigated the occurrence of TAD in New Zealand wheat soils, and 

the mechanisms associated with their suppressiveness. The first experiment compared 13 

soils, which had different histories of wheat cropping. Ggt inoculum (4% w/w, as sand and 

maizemeal mixtures) was added to the natural and sterilised soils to measure the 

magnitudes of their suppressiveness, and to determine their levels of biological 

involvement. From the calculated differences in root disease severity (take-all ratings, 

TAR) between natural soils ±Ggt, and between autoclaved and non-sterilised soils 

amended with Ggt, the soils were grouped into categories 1-4. The results showed that 10 

soils were suppressive to take-all; however, for only four soils were the effects related to 

high levels of biological involvement, as indicated by the effect of soil sterilisation prior to 

addition of Ggt. The experiment was repeated using only five of the soils, and gave similar 

results (on suppressive levels) to the first experiment, demonstrating the reliability of the 

methods. However, two of the soils (P7 and M2) fluctuated in levels of biological 

involvement (TAR in M2 increased by 60 and P7 decreased by 55). In a third experiment, 

the successful transference of the suppressiveness of two suppressive soils (H1 and H3) 

into a γ-irradiated base soil indicated that they had specific suppressiveness, which was of 

a biological nature. Soil P7, which had low suppression, showed characteristics of a 

specific suppressive soil, but the levels of microbial involvement were somehow impaired 

by other factors, thereby repressing the expression of the suppressiveness. The 

suppressiveness in another soil (M2) was not transferable, indicating that it had general 

suppressiveness, most probably caused by the conditions in the soil being suitable for the 

microbial biota to compete with Ggt. These results collectively indicated that the TAD 

soils in New Zealand were associated with both specific and general suppressions. 

Keywords: Gaeumannomyces graminis var. tritici, take-all, successive wheat, DNA, 

inoculum, suppressive soils, take-all decline, screening  
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5.2 Introduction 

Take-all, caused by Gaeumannomyces graminis (Sacc.) von Arx & Oliver var. tritici 

Walker, is one of the most important root diseases of wheat (Triticum aestivum L.), 

worldwide (Weller et al. 1985; Cook 2003). Control of this disease has proven to be 

difficult mainly because breeding of take-all resistant wheat cultivars has been 

unsuccessful and there has been limited effectiveness of chemical control methods (Weller 

et al. 2002). Crop rotation through the use of break crops other than wheat, barley, or other 

susceptible hosts for 1 or 2 y, depending on the soil and climate of the area, is known to be 

the most effective method in controlling the disease (Yarham 1981; Cook 2003). 

Although take-all was first reported in New Zealand in 1913 (Cockayne 1913), there have 

been few published reports on its impact on New Zealand wheat production. A survey in 

the 1995-96 growing season found take-all in 10% of the 157 wheat fields surveyed 

(Braithwaite et al. 1998), but more recent surveys carried out in 167 commercial cereal 

fields over three growing seasons in 1999-2002 by Cromey et al. (2006) found take-all in 

45% of the fields. They also found that when the preceding crop was wheat, take-all 

incidence was high, with 61% of the fields showing average take-all incidence of over 

20%. However, 39% of these fields had less than 20% take-all incidence, which led the 

authors to hypothesise that wheat cropping histories might affect the Ggt inoculum 

concentrations in the soils. They, therefore, conducted quantitative assessment of the soil 

Ggt DNA concentrations (Ophel-Keller & McKay 2001) before and after cereal crops in 

the 2003/04 growing season (Cromey et al. 2004). Their study on 112 soils from fields 

with varying wheat cropping histories (from non-wheat to 3 y of successive wheat ) found 

that before sowing there were higher Ggt DNA concentrations (from 106 pg g
-1

 soil to 

1419 pg  g
-1

 soil) with increasing years of successive wheat cropping, probably due to 

inoculum carry-over. However, in some soils which had been cropped with 3 and 4 y of 

wheat, their relatively high inoculum concentrations (>325 pg g
-1

 soil) and so high risk to 

take-all, before sowing, were not reflected by the low levels of take-all in the subsequent 

crop (take-all indices <20) (unpubl. data), indicating that some form of suppression to take-

all might have occurred. Since take-all suppression has been reported to occur in wheat 

monoculture, with the take-all severity reaching a maximum in 2-7 y (depending on soil, 

environmental conditions and locations) and subsequently declining (Baker & Cook 1974; 

Rovira & Wildermuth 1981; Deacon 1997; Mazzola 2002; Weller et al. 2002), it therefore, 



 106 

seemed likely that the soils, which had been cropped successively with wheat for a few 

years, could be experiencing take-all decline (TAD). 

Suppressive soils are defined as those soils in which disease development is suppressed 

even though the pathogen and susceptible host are present (Baker & Cook 1974), and the 

environmental conditions are suitable for the infection to take place (Cook & Baker 1983). 

The suppression may be due to a direct effect of the soil on the pathogen (pathogen 

suppressive soils), or to an indirect effect mediated through the host plant (disease-

suppressive soils), and is related to both biotic and abiotic characteristics of the soil 

(Whipps 1997). In soils cropped successively with 7-8 y of wheat, both characteristics 

were reported to be associated with the suppression (Simon et al. 1987).  

The mechanisms reported to be responsible for TAD have so far varied, but most have 

concluded that TAD is associated with both general and specific suppressions (Gerlagh 

1968; Graham & Mitchell 1999; Cook 2003). In general suppression, the infection 

potential of the pathogen is reduced by competition from other fungi and bacteria in the 

root zone (Graham & Mitchell 1999). It usually occurs in soils that have conditions ideal 

for the proliferation of microorganisms (Weller et al. 2002; Cook 2003). This type of 

suppression is not destroyed by heating the soil to 60°C, and is not transferable between 

soils (Rovira & Wildermuth 1981). In specific suppression however, the infection and 

secondary spread of the pathogen are limited by the presence of antagonistic 

microorganisms in the rhizosphere and in young lesions (Graham & Mitchell 1999; Cook 

2003). Specific suppression is thought to be due, at least in part, to the effects of an 

individual or a select group of microoorganisms, and so is transferable between soils (Cook 

2003). The suppressive properties can be eliminated by using aerated steam to raise the soil 

temperature to 60°C or greater for 30 min (Graham & Mitchell 1999).  

To date, take-all suppressive soils have not been reported in New Zealand as they have in 

many countries such as India, the USA, Japan, France, Switzerland and the United 

Kingdom, but the studies in Chapter 2 on some of the soils from the 2003/04 survey 

(Cromey et al. 2004) indicated that this phenomenon is likely in New Zealand. This study 

aimed to confirm the suppressive properties of these soils and to investigate the 

mechanisms associated with the suppressiveness.  
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5.3 Materials and methods 

5.3.1 Soil samples 

Of the 13 soils studied, 12 soils were collected after crop harvest in March 2004 and one 

(P7) in October 2005, when the crop was at GS39 before the booting stage (GS40, 

Appendix 1, A1. 1). The soils from fields in the South Island, New Zealand, had different 

histories of wheat cropping and take-all disease. Their selection was based on the results 

from earlier studies (Chapter 2), which indicated that some of the soils, B6, C12, H1, H2, 

H3, H7, H10, G2, L9, and M2, may have had take-all suppressiveness, while soils H9 and 

H15 were non-suppressive, with soil H15 being from a field cropped with 5 y of perennial 

ryegrass (Lolium perenne L.). 

Sampling, drying, sieving and storage of the soils were carried out using the methods 

outlined in Chapter 3. Ggt DNA quantification and other physico-chemical properties of all 

the soils were determined as in the Chapter 2 study. Table 5.1 shows the site information, 

including cropping histories, soil types, textures, and Ggt DNA concentrations, and Table 

5.2 shows the physico-chemical properties of the soils. Information on field management 

practices and crop yield of the four wheat soils, which was provided by the growers, is 

shown in Appendix 5, A5. 5. 

5.3.2 Experiment 1: Screening of soils for suppressiveness 

5.3.2.1 Pot bioassay  

Each pot (400 mL) contained 300 g of test soil (sterilised or non-sterilised), and was either 

amended with 4% (w/w) of mixed Ggt inoculum (isolates H11T3 R1/3, A3SL4, H9T3 

R1/1.2 and Biomill1SC3) prepared in a sand / maizemeal mixture, as outlined in Chapter 3 

or uninoculated, being amended with 4% (w/w) of sand / maizemeal mixture. The 

sterilised soils, packed in bags (36 x 48 cm, capable of withstanding temperatures up to 

150°C, Raylab NZ Ltd., Auckland, New Zealand) of 5 kg, were autoclaved twice at 121°C 

and 15 psi, for 1 h each time (Alef 1995). Prior to use, soil sterility was ensured by making 

soil dilutions (10
-1

 to 10
-3

), using 1 g of soil from each bag, and plating 0.1 mL of the 

dilutions onto nutrient agar and potato dextrose agar (PDA) plates. The plates were 

maintained at 25°C for 2 wk with frequent checks for bacterial and fungal growth. No 

bacterial and fungal colonies were found on the PDA plates inoculated with the γ-

irradiated soil, hence the base soil was considered free of any organisms contributing to 
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biological activity prior to conducting the trial. Each pot was planted with four pre-

germinated healthy wheat seedlings (Appendix 3, A3. 3), received 20 mL of a nutrient 

solution and were then watered to the soil‟s field capacity (FC, at -5 kPa) by weight 

following the methods in Chapter 3 and Appendix 3, A3. 4. 

The pots were laid out in a randomised complete block design, with each treatment 

replicated four times, giving 208 pots in total. Due to the large size of the experiment, it 

was conducted in two growth chambers (Conviron, Controlled Environments Ltd., 

Canada), with each chamber accommodating two replicates. The growth chambers were 

maintained at 16°C with alternate 12 h light/dark photoperiods and 80% relative humidity 

for 4 wk. Throughout this period, all the pots were watered to FC by weight twice per 

week. These controlled conditions and the watering frequency were found in Chapter 4 to 

be ideal for conducting the pot bioassays that investigated take-all suppressive soils. 

5.3.2.2 Disease assessment 

For disease assessment of each pot, the roots were washed carefully in a bucket of water 

and then examined for take-all lesions in water against a white background. However, the 

amount of disease visible on the root systems were found to vary substantially for plants 

grown in different soils. Therefore, instead of measuring disease incidence (i.e. by 

counting the numbers of roots with lesions), disease severity was determined by estimating 

the percentage area of each root system covered with take-all lesions. The infected plants 

were categorised as „slight‟ (< 25% of root area covered with lesions), „moderate‟ (25-75% 

of root area covered with lesions) and ‟severe‟ (>75% of root area covered with lesions), 

by using the infection keys (Appendix 3. A3. 6) developed at Rothamsted Research Station 

(Hornby et al. 1998). The take-all rating (TAR) for each pot was then calculated using the 

formula of Dyke & Slope (1978): 

infection severe with plants % c              

infection moderate with plants %  b              

infectionslight  with plants %  a              

 , Where

3(c)  2(b)  1(a)  TAR                   









 

This calculation leads to a maximum TAR score of 300. 
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Table 5.1  Field locations, cropping histories and some properties of the soils used in the pot experiments. 

1
9
9
7
/9

8

1
9
9
8
/9

9

1
9
9
9
/0

0

2
0
0
0
/0

1

2
0
0
1
/0

2

2
0
0
2
/0

3

2
0
0
3
/0

4

2
0
0
4
/0

5

2
0
0
5
/0

6

B6 S45°51.0', E168°34.0' Kaweku Silt loam - - Dt W W W W - - 4 1206 5.8 184

C12 S43°45.2', E171°53.8' Hatfield silt loam + Templeton silt loam Loamy silt - - B B L W W - - 2 2924 9.3 22

G2 S43°58.5', E170°50.7' Ashwick stony silt loam Silt loam - - W W Po W W+G - - 2 2251 17.6 1048

H1 S44°31.2', E171°06.9' Templeton silt loam + Waitohi silt loam + Claremont silt loam easy rolling phase Silt loam - - B G W W W - - 3 1250 17.6 148

H2 S44°31.2', E171°06.8' Templeton silt loam + Waitohi silt loam + Claremont silt loam easy rolling phase Silt loam - - C Pa Pa W W - - 2 687 21.3 686

H3 S44°31.1', E171°06.5' Templeton silt loam + Waitohi silt loam + Claremont silt loam easy rolling phase Silt loam - - Pa Pa W W W - - 3 1526 10.2 150

H7 S44°30.5', E171°06.8' Claremont silt loam easy rolling phase + Waitohi silt loam Silt loam - - Pa W W W W - - 4 477 81.2 397

H9 S44°29.2', E171°05.2' Timaru silt loam Silt loam - - Pa Pa W W W - - 3 54 30.9 327

H10 S44°28.6', E171°05.6' Timaru silt loam Silt loam - - Pa W W W W - - 4 1321 86.1 1365

H15 S44°30.5', E171°06.5' Claremont silt loam Silt loam - - Rg Rg Rg Rg Rg - - 0 - - 0

L9 S44°41.6', E171°04.7' Timaru silt loam + Claremont silt loam easy rolling phase Silt loam - - G Pa Pa W W - - 2 1136 14.0 256

M2 S44°44.1', E171°06.5' Waitohi silt loam Silt loam - - G W W W W - - 4 2348 27.1 1683

P7 S43°44.3', E171°38.6' Mayfield silt loam Silt loam W W W W W W W W W 9 168 44.1 103

1
Preceding crops: 

dogtail (Dt), wheat (W), pea (P), oat (O), clover (C), grass seed production (G), potato (PO), ryegrass (RG), pasture for grazing(PA), 

barley (b), borage radish (BR), linseed (L).

2
Pre-sowing Ggt  in the field was analysed with soil collected from 25 posiitons (two soil cores at each position) along a 'W' pattern over the whole field using soil corers (20 mm dia., 10 cm depth).

3
Take-all disease index = (0a+10b+30c+60d+100e)/T,

 where a, b, c, d and e = number of plants in each of the infection categories below, and T= total number of plants.

  Infection categories:

0 no infection

1 slight (1-10% of roots infected)

2 moderate (11-30% of roots infected)

3 high (31-60% of roots infected)

4 severe (61-100% of roots infected)

4
Post-harvest Ggt  in the field was analysed from the soils collected after crop harvest for the current study in 2004. An exception was P7, which was collected during crop growth in 2005.

5
Take-all risk categories developed by SARDI in 2005: 

BDL: <5 pg Ggt  DNA g
-1

 of soil 

Low risk: 5.1 - 96 pg Ggt  DNA g
-1

 of soil 

Medium risk: 96.1 - 256 pg Ggt DNA g
-1

 of soil 

High risk: >256.1 pg Ggt  DNA g
-1

 of soil 

1
Preceding crops

Years 

of 

wheat 

2
Pre-sowing Ggt 

DNA pg g
-1

 soil

3
Disease assesment 

during grain-filling 

(Take-all index)

4
Post- harvest 

Ggt DNA pg g
-1 

soil 

GPS Location
Field 

code
Soil type

Soil 

texture
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Table 5.2  Physico-chemical properties of the soils used in the pot experiments. 

Normal 

range 5.3-6.1 20-30 0.5-0.8 5.0-12.0 0.8-3 0-0.5 12-25 50-85

pH

Olsen P 

(mg L
-1

)

Potassium 

(
1
me 100 g

-1
)

Calcium     

(me 100 g
-1

)

Magnesium 

(me 100 g
-1

)

Sodium     

(me 100 g
-1

)

2
CEC            

(me 100 g
-1

)

Base Saturation 

(%) Original At FC

B6 5.5 21 0.38 6.20 0.22 0.07 17 41 22.13 24.45 34.28

C12 6.0 19 0.37 7.90 0.41 0.09 13 69 43.07 13.60 31.95

G2 6.0 29 0.38 8.70 0.38 0.14 17 58 38.82 22.55 41.97

H1 5.7 28 0.42 11.50 0.93 0.09 20 66 34.11 21.38 35.85

H2 6.0 14 0.34 11.80 1.07 0.10 18 74 25.09 20.45 32.36

H3 6.1 41 0.38 13.40 1.12 0.12 19 78 33.80 20.40 35.84

H7 6.2 36 0.19 11.10 1.07 0.14 16 77 16.05 20.71 34.22

H9 6.5 16 0.27 11.80 1.44 0.13 17 79 21.17 21.49 33.18

H10 6.1 16 0.43 8.60 1.09 0.09 15 67 29.46 25.15 32.98

H15 6.6 21 0.20 11.50 1.12 0.20 15 87 15.35 18.51 34.69

L9 6.2 13 0.22 8.80 1.07 0.12 15 66 16.67 21.41 33.44

M2 5.7 37 0.26 7.40 0.81 0.10 14 62 19.15 21.06 33.63

P7 6.0 31 0.26 11.50 0.40 0.10 16 76 57.48 28.57 30.74

Base soil 6.5 21 0.83 10.20 0.84 0.23 15 82 124.00 14.52 20.16

1
milliequivalents

2
Cation exchange capacity

Field 

code

Moisture content (% w/w)Min N        

(μg g
-1

 soil)
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5.3.2.3 Statistical analyses and other calculations 

Since no take-all lesions were found on the roots of plants grown in the sterilised soils that 

were not inoculated with Ggt (i.e. Ster+Inoc-), so the TAR data for this treatment were 

excluded from the statistical analyses. All the other TAR data were analysed with ANOVA 

(Appendix 5, A5. 5) using two sets of contrasts. One compared Ggt inoculation (±) for the 

non-sterilised soils (i.e. „Ster- Inoc+‟ against „Ster- Inoc-‟), and the other compared soil 

sterilisation (±) for the Ggt inoculated treatments (i.e. „Ster- Inoc+‟ against „Ster+ Inoc+‟).  

To provide a better understanding of the analyses, it was necessary to calculate the 

increases or differences in the mean TAR, in response to the treatments. The principles of 

this approach were similar to the ones applied by Gilligan et al. (1994), Ausgustin et al. 

(1997) and Andrade et al. (1994a), who included changes in root infection, shoot dry and 

fresh weights to the different treatments, such as Ggt addition, to effectively differentiate 

the effects of the different parameters (such as root parts) or soils investigated. In addition, 

most studies on take-all suppressive soils treated the non-inoculated, sterilised soils as 

controls (Shipton et al. 1973; Cook et al. 1986; Andrade et al. 1994a, 1994b) and 

presented the results on all the treatments for comparisons, usually between three to five 

soils. With 13 soils to investigate for suppressiveness, it was necessary to eliminate 

confusion by calculating and presenting the increases in TAR after the Ggt inoculation and 

the soil sterilisation treatments. These were calculated from the mean results using the 

following formulae: 

   

   

            

 added with soil Sterilised     InocSter                 

 added with soil sterilised-Non     Inoc  -Ster                 

               added without soil sterilised-Non       -Inoc  -Ster                 

 , Where

)Inoc-(Ster of TARMean )Inoc(Ster of TARMean  ion sterilisat soil  todue  Increase

 Inoc-)-(Ster of TARMean )Inoc-(Ster of TARMean  n inoculatio   todue  Increase

Ggt

Gg











t

Ggt

 Ggt

2, and 1  sExperiment in soil eachfor TAR  in  Increase
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    

             

   added with soil  Inoc

 added without soil  -Inoc                   

 Where,

-Inoc of TARMean Inoc of TARMean  n inoculatio    todue  Increase

 ,

Ggt                   

Ggt

Ggt




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In these cases, the comparisons made were between soil treatments whose plants had a 

significant increase in TAR after the treatments, with those that had zero or non-significant 

increases. Hence, the zero or non-significant increases in the TAR of plants (i.e. increase of 

TAR < the LSD value) in response to the addition of Ggt inoculum, would indicate that the 

soils were suppressive to take-all. In contrast, a significant increase in the TAR (i.e. 

increase of TAR > LSD value), when the same soil was sterilised prior to inoculation, 

would indicate that the suppression was probably biological in nature. Based on these 

principles, the following four categories were developed to separate the suppression 

properties of the soils:  

Category Description

1 Soils are weakly suppressive with low levels of biological involvement (TARGgt >LSDGgt  and TARSter <LSDSter ) 

2 Soils are weakly suppressive with high levels of biological involvement (TARGgt >LSDGgt and TARSter> >LSDSter ) 

3 Soils are highly suppressive with low levels of biological involvement (TARGgt <LSDGgt and TARSter <LSDSter ) 

4 Soils are highly suppressive with high levels of biological involvement (TARGgt <LSDGgt and TARSter >LSDSter ) 

Where, 

TARGgt 
= the mean increases in TAR of plants grown in non-sterilised soils added with Ggt  inoculum.

LSDGgt = the LSD value at 5% level, where the TARGgt  is significantly higher than zero increase.

TARSter
= the mean increases in TAR of plants grown in sterilised soils added with Ggt inoculum.

LSDSter = the LSD value at 5% level, where TARSter  is significantly higher than zero increase.  

 

5.3.3 Experiment 2: Reproducibility of the screening 
experiment 

Based on the results obtained from Experiment 1 (Section 5.3.2), the pot bioassay was 

repeated with five of the soils using the same sterilisation and inoculation treatments, 

replications and incubation conditions, as outlined in Experiment 1 (Section 5.3.2.1). Of 

the five soils chosen, two wheat soils represented Category 4 (highly suppressive with high 
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levels of biological involvement), one represented Category 3 (highly suppressive with low 

levels of biological involvement), one in Category 2 (conducive with a lower level of 

biological involvement), and a non-wheat soil in Category 2 (conducive and had higher 

levels of biological involvement). For this assay, six pre-germinated wheat seedlings were 

planted in each pot, with the two extra seedlings being intended for later use in a separate 

study that investigated the microbial profile within the roots and in the rhizosphere soil 

(Chapter 6). Disease severity assessment and statistical analyses were carried out as 

previously described in Section 5.3.2.2. 

5.3.4 Experiment 3: Transferability of suppressive properties 
between soils 

5.3.4.1 Inoculum preparation 

A mixed Ggt inoculum comprising the same four isolates used in Experiments 1 and 2, 

(Sections 5.3.2 and 5.3.3) was prepared according to the methods described by Weller & 

Cook (1983) with a few modifications. The growing medium of oat kernels was autoclaved 

in bags (similar to those used in Experiment 1, Section 5.3.2.1), each inoculated with one 

of the Ggt isolates and incubated for 3 wk as described in Chapter 3. The oat kernels 

colonised by the different Ggt isolates were spread out separately onto trays (45 cm × 

35 cm), and air-dried at room temperature (approximately 20°C) for 4 d. The dried cultures 

were then ground in 100 mL batches using a grinder (model FR15, Girmi, Italy) for four 

5 s durations, to reduce the inoculum size to approximately 1 mm diameter. The ground 

cultures of the four Ggt isolates were then thoroughly mixed. 

5.3.4.2 Pot bioassay 

The pot bioassay was set up as described by Weller & Cook (1983), with the five test soils 

H1, H3, H15, M2 and P7, as in Experiment 2 to provide potential sources of suppressive 

microorganisms. A base soil (Templeton silt loam) had been collected from Lincoln, New 

Zealand (location S43°37.8′, E172°28.8′) in March 2006, from the sides of a field cropped 

with wheat, and subjected to the same processing treatments (air-drying, sieving and 

storage) as the test soils (Section 5.3.2). Its physico-chemical properties are in Table 5.2. 

The soils were packed and sealed into 20 cm × 20 cm polythene bags (each containing 2 kg 

of soil) and sent to a commercial laboratory (Schering Plough Animal Health Ltd., Upper 

Hutt, New Zealand) for gamma (γ) irradiation at 2.5 Mrad (a dose rate of 2 Mrad h
-1

) (Alef 

1995). Sterility of the soils was ensured using the procedures described in Experiment 1 
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(Section 5.3.2.1). No bacterial and fungal colonies were found on the subsequent PDA 

plates used for checking soil sterility. 

The pots were set up by mixing 0.1% (w/w) of the pooled Ggt inoculum and 1% (w/w) of 

the test soil to the base soil to give the mixture a final weight of 300 g. For the non-

inoculated treatments, ground oat kernels that had no Ggt growing on them were mixed 

with the soils at the same rate. Each pot was planted with four pre-germinated healthy 

wheat seedlings, to which a nutrient solution and water was added by weight as described 

in Experiments 1 and 2. For the base soil, the FC was 20.2% measured at -5 kPa. The final 

concentrations of the major nutrients in the soils are listed in Chapter 3 and Appendix 3, 

A3. 4. The pots were laid out in a growth chamber in a randomised complete block design, 

with four replicates per treatment combination. The chamber conditions and the watering 

frequency of the trial were similar to those used in Experiments 1 and 2. Disease severity 

on the roots was assessed with the same methods as in Section 5.3.2.2. The TAR data from 

Experiment 3 were analysed with ANOVA (Appendix 5, A5. 5) and the increases or 

differences in the mean TAR, in response to the inoculation treatment were also calculated 

as described in Experiment 1 (Section 5.3.2.3). 

5.4 Results 

5.4.1 Occurrence of take-all suppressive soil  

5.4.1.1 Experiment 1: Screening of soils for suppressiveness  

Disease severity (mean take-all ratings, TAR) in roots differed substantially with different 

soil origins (P<0.05) (Figure 5.1). Plants in soils B6, G2 and M2 were less severely 

infected (TAR of 110, 102 and 100, respectively) than those from the other soils. Overall, 

the mean TAR were significantly increased when the soils were sterilised prior to addition 

of Ggt inoculum (P<0.001). The highest TAR occurred in Ster+Inoc+ plants followed by 

the Ster-Inoc+ and the Ster-Inoc- plants (Figure 5.2).  
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Figure 5.1  The mean TAR (take-all ratings) of plants grown in different soils. 

Error bar is the least significant difference (LSD) at the 5% level (df = 114). 
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Figure 5.2  The mean TAR (take-all ratings) of plants grown in soils subjected to 

the three soil sterilisation and Ggt inoculation treatments. Error bar is the least 

significant difference (LSD) at the 5% level (df = 114). 
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When comparing Ster-Inoc+ with Ster+Inoc+ plants, TAR was significantly affected by a 

3-way interaction between the soil origins, soil sterilisation and the Ggt inoculation 

treatments (P = 0.01), with the P7, C12, H1, H3, L9 and H15 plants having increased TAR 

in soil with sterilisation (Figure 5.3). However, in non-sterilised soils, the TAR showed no 

significant interaction between Ggt inoculation and the soil origins (P>0.01), with the 

majority of the soils except P7, H2 and H15, having similar TAR (Figure 5.4). Plants in 

P7, H2 and H15 on the other hand, had increased TAR (by 56, 56 and 52, respectively) due 

to the addition of Ggt inoculum.  
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Figure 5.3  TAR (take-all ratings) of plants grown in soils with or without 

sterilisation prior to adding Ggt inoculum. Error bar represents the least significant 

difference (LSD) at the 5% level (df = 114). 
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Figure 5.4  The mean TAR (take-all ratings) of plants grown in non-sterilised soils 

with or without added Ggt inoculum. Error bar represents the least significant 

difference (LSD) at the 5% level (df = 114). 

 

The increases in the mean TAR of plants after adding Ggt inoculum to the non-sterilised 

soils (Figure 5.4), relative to the increases in the mean TAR of plants in response to soil 

sterilisation before adding Ggt inoculum (Figure 5.3), are shown in Figure 5.5. The control 

soil H15, was conducive to take-all and had a high level of biological involvement 

(Category 2). Similarly, soil P7, being in Category 2, was also conducive to take-all but 

with a lower level of biological involvement. Soils G2, M2, B6, H7, H9, H10, C12, L9, H1 

and H3 were able to suppress take-all, but had varying levels of biological involvement. 

Soils C12, L9, H1 and H3 fell into Category 4, being highly suppressive and having high 

levels of biological involvement. Among these four soils, H1 and H3 were most 

suppressive to take-all and had the highest levels of biological involvement present.  
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Mean increases in TAR due to decreased biological involvement 
in the sterilised soil (versus non-sterilsed soil)
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Figure 5.5  Increases in the mean TAR (take-all ratings) of plants, which were grown in 

non-sterilised versus sterilised soils, both being inoculated with Ggt before planting (x-

axis), relative to the increases in the mean TAR of plants grown in non-sterilised soils with 

and without added Ggt inoculum (y-axis). The vertical dotted line represents the least 

significant difference (LSD) at the 5% level compared to zero or non-significant increase 

in the mean TAR (df = 114) for the x-axis, while the horizontal dotted line is the LSD at 

the 5% level compared to zero or non-significant increase in the mean TAR (df = 114) for 

the y-axis. 

 

5.4.1.2 Experiment 2: Reproducibility of the screening 
experiment 

This was a repeated trial of Experiment 1 (Section 5.4.1.1) with five of the soils, H1, H3, 

M2, P7 and H15. Soils H1 and H3 represented Category 4 (highly suppressive with high 

involvement of biological component in suppression), M2, Category 3 (highly suppressive 

with low involvement of biological component in suppression ), P7, Category 2 (conducive 

with a lower involvement of biological component), and H15, a non-wheat soil in Category 

2 (conducive and had higher involvement of biological component). The mean TAR of 

roots differed substantially with the origins of the five soils (P<0.001) (Figure 5.6), the 

plants grown in soil P7 being most severely infected (TAR = 167), followed by H15 (TAR 

= 142). The effects of soil sterilisation prior to Ggt inoculation treatments showed similar 
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trends to those obtained in Experiment 1, with the roots of Ster+Inoc+ plants being the 

most severely infected, followed by the Ster-Inoc+ and the Ster-Inoc- plants (P<0.001) 

(Figure 5.7). 
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Figure 5.6  Mean TAR (take-all ratings) of plants grown in different soils. Error 

bar is the least significant difference (LSD) at the 5% level (df = 42). 
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Figure 5.7  Mean TAR (take-all ratings) of plants grown in soils subjected to the 

three sterilisation and Ggt inoculation treatments. Error bar is the least significant 

difference (LSD) at the 5% level (df = 42). 

 

Figure 5.8 shows the calculated increases in the mean TAR of plants in response to the 

addition of Ggt to non-sterilised soil, relative to the calculated increases in the mean TAR 
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of plants in response to soil sterilisation before the addition of Ggt inoculum. The increases 

in TAR for the control soil, H15, after soil sterilisation and the addition of Ggt, were again 

in Category 2 (conducive with a high level of biological involvement) as in Experiment 1. 

Soils H1 and H3, having no change in their mean TAR with the treatments, were also in 

the same category (4) as in Experiment 1. However, although the mean TAR of soil M2 

remained low after the addition of Ggt inoculum, it increased by 56 with the sterilisation 

treatment, moving it from Category 3 into 4. The mean TAR of soil P7 increased by 44 

after the addition of Ggt inoculum to non-sterilised soil, and was still conducive to take-all. 

Prior sterilisation of soil P7 however, did not increase the TAR as much as it did in 

Experiment 1, causing it to be classified in Category 1, not 2 as before. 

Mean increases in TAR due to decreased biological involvement
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Figure 5.8  Mean increases in the TAR (take-all ratings) of plants, which were grown 

in non-sterilised versus sterilised soils, both being inoculated with Ggt before planting 

(x-axis), relative to the differences in plants grown in non-sterilised soils with and 

without added Ggt inoculum (y-axis). The vertical dotted line represents the least 

significant difference (LSD) at the 5% level compared to zero or non-significant 

increase in TAR (df = 42) for the x-axis, while the horizontal dotted line is the LSD at 

the 5% level compared to zero or non-significant increase in TAR (df = 42) for the y-

axis.  
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5.4.2 Experiment 3: Transferability of suppressive properties 
between soils  

In inoculated soils, the disease severity (mean TAR) of plants was much greater (P<0.001) 

(TAR =125) than in uninoculated soils (TAR = 86). The mean TAR also varied with soil 

origins (P<0.001), being greatest for plants grown in pots of γ-irradiated soil amended with 

1% of soil M2 (TAR = 131) (Figure 5.9). There was also a significant interaction effect 

between Ggt inoculation and soil origins on disease severity (P<0.05). Figure 5.10 shows 

the calculated increases in the TAR of plants in response to the addition of Ggt to the γ-

irradiated base soils, which already had 1% of the five different test soils added to them. 

For soils amended with H15 and M2, inoculation significantly increased their mean TAR 

(by 75 and 63, respectively), whereas soils amended with H1, H3 or P7 had little change in 

the mean TAR. This indicated that the characteristics of soils H1, H3 and P7 were 

transferred into the base soil.  
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Figure 5.9  Mean TAR (take-all ratings) of plants grown in the γ-irradiated 

base soil, to which was added 1% of the five different test soils and ± Ggt 

inoculum. Error bar is the least significant difference (LSD) at the 5% level (df 

= 27). 
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Figure 5.10  Increases in the mean TAR (take-all ratings) of plants due to addition of Ggt 

inoculum to the γ-irradiated base soil, to which was added 1% of the five different test 

soils. The dotted line is the least significant difference (LSD) at the 5% level compared to 

„0‟ or non-significant increase in TAR after the addition of Ggt inoculum (df = 27). 

 

5.4.3 Comparative analyses of the suppressiveness of soils 
between the three pot experiments  

Figure 5.11 summarises the increases in the mean TAR of plants due to the addition of Ggt 

inoculum to the five soils for the three pot experiments. The increases in the mean TAR for 

the control soil H15, and the suppressive soils H1 and H3, were reproducible, showing 

consistent results throughout the three experiments. However, the apparent suppression of 

soil M2 in Experiments 1 and 2 was not transferable, and so addition of inoculum 

increased the mean TAR in Experiment 3 by approximately 60. Soil P7 had a higher TAR 

(by 44) in Experiment 2 than Experiment 1. However, when a small amount of this soil 

was transferred into a γ-irradiated base soil with or without Ggt inoculum added 

(Experiment 3), the mean increase in TAR due to the added Ggt inoculum, was only 19. 

Such a low increase, compared to the effect of adding inoculum to the sterilised soils of 

Experiments 1 and 2, which had increased mean TAR of 56 and 100, indicated that this 

soil and soils H1 and H3, had transferable properties of suppressiveness.  
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Figure 5.11  Increases in the mean TAR (take-all ratings) of plants due to 

addition of Ggt inoculum to the five soils in the three experiments. Error bars 

are the least significant differences (LSD) at the 5% levels compared to „0‟ or 

non-significant increase in TAR after the addition of Ggt inoculum (df = 114, 

42 and 27, respectively). 

 

5.5 Discussion 

In this research, all the test soils either had low disease severity coupled with high Ggt 

DNA inoculum concentrations in the field prior to sowing, or were in their third, fourth or 

ninth year of wheat cropping (Table 5.1). Weller et al. (2002) considered the monoculture 

of a susceptible host, the presence of Ggt, and at least one severe outbreak of take-all, as 

the three components required for TAD to eventuate. Whereas Whipps (1997) considered 

the ideal soils for the initial selection of antagonists are those in which diseases should 

occur but fail to materialise, mainly because these soils have already provided a range of 

indigenous potential antagonists. These soils therefore fitted the criteria for selection 

because TAD could already have begun to happen in them. However, the timing of the 

possible take-all outbreaks in the fields was unknown at the time of the soil collection 

during the 2003/04 survey.  
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For the selected soils of different origins, the initial mean TAR between the treatments 

with and without the addition of Ggt inoculum, could not indicate the presence of a 

suppressive soil and the mechanisms involved in any suppression (Figures 5.1 and 5.4). 

This was because the soils had varying amounts of natural inoculum, hence, the addition of 

Ggt inoculum increased the total Ggt inoculum and so the disease severity. However, the 

calculated increases in the mean TAR in the soils, due to the uniform addition of Ggt 

inoculum, indicated the differing magnitudes of suppressiveness among the soils. This pot 

bioassay (Experiment 1) was therefore, capable of effectively distinguishing the levels of 

suppressiveness in the New Zealand wheat soils, some of which showed high suppression 

to take-all (i.e. increase in TAR<LSD of-y-axis in Figure 5.5). The reliability of the 

method was shown by the repeated pot bioassay (Experiment 2), which demonstrated 

consistent increases in the mean TAR of the five test soils in response to the addition of 

Ggt inoculum.  

The variation in the levels of take-all suppression exhibited by the soils in this study could 

be attributed in part, to the impact of their different wheat cropping histories on the 

microbiota in the soils. Field studies have consistently shown that previous cropping 

histories could affect the extent and the speed of TAD development, and that the number of 

wheat crops required before its onset, varied with the location of the field, the soil type and 

the environmental conditions (Shipton 1975). It has also been reported that different 

degrees of biological buffering in relation to the Ggt inoculum in the soil can be achieved 

by introducing different host crops into the field (Baker & Cook 1974). Cultivation of a 

rotation of different crops in a given field will maintain the microbiota in a greater state of 

flux, resulting in different microorganisms dominating the microbiota each year. In 

contrast, repeated monoculture of a particular crop, will favour the perpetuation of 

dominating species, eventually leading to a stable microbiota (Baker & Cook 1974). 

Hence, the dominating microbial populations, or the antagonists associated with TAD, are 

likely to differ between soils with different durations of wheat monoculture and different 

rotation crops, resulting in their differing suppression capabilities as well. 

Another explanation for the TAD mechanism during wheat monoculture is that there is a 

gradual reduction in populations of the aggressive Ggt strains, which are replaced by less 

aggressive strains that allow other soil antagonists to compete for colonisation sites on the 

roots (Shipton 1977). Lebreton and co-workers (2004) investigated the changes in the 
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population structure of Ggt using the RAPD (Random Amplification Polymorphism DNA) 

markers and AFLP (Amplified Fragment Length Polymorphism) fingerprinting systems. 

They found that the populations of aggressive Ggt strains in the soil increased to reach a 

peak after three or four consecutive wheat crops and then decreased to the same population 

as the less aggressive Ggt strains by the sixth crop. This shift in the Ggt population 

structure was proven in a later study to correlate positively with a polyetic take-all 

epidemic in the field (Lebreton et al. 2007). When TAD was observed, the population of 

the aggressive Ggt strains was low in the first wheat crop, highest in the fifth wheat crop 

and decreased to an intermediate level by the tenth consecutive wheat crop. They 

hypothesised that the aggressive Ggt group was sensitive to the antagonistic microflora in 

the soil during the parasitic phase, therefore resulting in the selection of a less aggressive 

population. 

In this research programme, autoclaving of soils caused TAR to increase when Ggt 

inoculum was also added (Figures 5.2 and 5.6), indicating that sterilisation caused loss of 

suppressiveness, which is consistent with its known capacity to destroy the soil‟s biotic 

characteristics (Whipps 1997). A similar result was reported by Shipton et al. (1973), who 

took three soils from fields, which were previously cropped with 4 and 12 y of irrigated 

wheat and 22 y of dryland wheat/barley (number of years for each rotation was not 

specified), and pasteurised each of them at 60, 70, 80 and 121°C for 30 min. The 

pasteurised soils were then assayed for antagonism by transferring 1% w/w of each soil, 

which was also inoculated with 0.5% w/w Ggt, into a methyl bromide fumigated base soil. 

They reported that the suppressive effect could be eliminated in all the soils at 60°C. They 

proposed that the thermal tolerant actinomycetes or spore-forming bacteria, which 

generally survive at this temperature, would not be responsible for the suppression, and 

that the heat-killed soil fungi and non-spore forming bacteria were more likely to be 

responsible for it.  

In a similar study, Cook and co-workers (1986) investigated the infection efficiency (i.e. 

number of lesions/infections per unit weight of inoculum) of Ggt inoculum in a TAD soil 

(20 y of wheat cropping). They found that when the suppressive soil was pasteurised at 

60°C before adding the Ggt inoculum (oat grain), the infection efficiency of Ggt was 

greater than in a pasteurised conducive soil. They postulated that soil pasteurisation would 

eliminate the microorganisms that might act as colonists of the Ggt inoculum, resulting in a 



 126 

flush of carbon and energy (i.e. increasing nutrients in the food base), especially in 

suppressive soils, thereby enhancing the survival and infectivity of Ggt and increasing root 

infection. The effects of potential proliferation of the fewer heat-resistant microorganisms 

in the pasteurised suppressive soil, were however, not discussed by the authors. These two 

studies have demonstrated that any biological components of suppression were likely to be 

altered by heat-treating the soil at temperatures as low as 60°C.  

Soils G2, M2, H7, H9, B6 and H10 had no or very little increase in TAR due to 

autoclaving before adding the Ggt inoculum in Experiment 1 (i.e. increase in TAR<LSD of 

x-axis in Figure 5.5), which may have been because they had a form of „general 

suppression‟. General suppression may incorporate a continuum of antagonistic effects, 

including competition for resources (such as carbon and energy in the food base) by the 

microbiota in the rhizosphere, antagonism in lesions, and stimulation of host defence 

mechanisms, which can all lower the inoculum potential of Ggt (Cook 2003). The level of 

general suppression provided is, therefore, a characteristic of the soil and probably not 

caused by the cropping system, but might be associated with organic amendment, fertility 

build up and soil temperatures (Rovira & Wildermuth 1981; Weller et al. 2002). In other 

words, the suppression is a characteristic of the soil, which by being ideal for the 

proliferation of many/a diversity of microorganisms, or the stimulation of host defence 

(Weller et al. 2002; Cook 2003) is, hence, not related to any one microorganism (Weller et 

al. 2002). This suppression is not destroyed by 60°C, and the suppression factor is not 

transferable (Rovira & Wildermuth 1981).  

In Experiment 1, soil M2, which was grown with 4 y of consecutive wheat, had low TAR, 

that did not increase greatly when the soil was autoclaved and inoculated with Ggt. 

However, in Experiment 2, the TAR were low only in non-sterilised soil, being 

significantly higher in the autoclaved soil treatment. This indicates that there might be a 

biological basis for the low levels of disease suppression. In Experiment 3, its 

suppressiveness was shown not to be transferred with a small amount of the soil added to 

the γ-irradiated base soil, indicating that it might have a general form of suppression to 

take-all. Gerlach (1968) did a series of studies to demonstrate TAD with wheat 

monoculture in the Dutch polder soils and reported that although TAD could be due to a 

specific suppression of the pathogen, general suppression usually occurs before the onset 

of specific suppression. The relatively low levels of take-all in the field in relation to the 
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high Ggt DNA concentrations, which reduced during the 2004/05 wheat crop, appeared to 

support this hypothesis (Table 5.1). However, more work is required to validate this 

hypothesis as other characteristics, including the non-elimination of the suppressiveness by 

soil fumigation, and the operation of suppressiveness in bulk soil but not in the 

rhizosphere, are indications of general suppression as well (Hornby et al. 1998).  

Sterilising the soils prior to inoculation and planting, can indicate the natural levels of 

possible biological involvement that could be associated with the suppression, which 

Experiment 3 showed was due to populations of specific microorganisms in soils H1 and 

H3 (i.e. specific suppression). When small portions of these two soils were transferred into 

the γ-irradiated base soil that contained added Ggt inoculum, they conferred similar levels 

of suppression as found in the non-sterilised soils in Experiments 1 and 2. In a similar 

study by Shipton et al (1973), 1% (w/w) of a 5 y untreated wheat soil in Lind, eastern 

Washington was incorporated into a soil plot of the same field which previously had been 

fumigated with methyl bromide and inoculated with 0.5% (w/w) Gaeumannomyces 

graminis (Gg) to a depth of 12-15 cm. They reported that for the subsequent wheat crop in 

the fumigated soil, addition of the untreated wheat soil was able to reinstate the 

suppressiveness. In another field study conducted in Puyallup, Washington (Shipton et al. 

1973), methyl bromide fumigated soil plots were inoculated with 0.5% (w/w) Gg before 

adding 1% (w/w) of either suppressive soils, from 12 and 22 y continuous wheat crops 

obtained from Quincy and Pullman respectively, or virgin (non-wheat) soils from nearby 

sites. After 3 mth, they found that the fumigated plots amended with the long-term wheat 

soils, were able to provide higher levels of suppression to take-all (43 and 59% of crops 

being infected) than those amended with the virgin soils (74 and 71% of crops being 

infected). Both of these studies have demonstrated that microorganisms antagonistic to Ggt 

were associated with these examples of TAD, and the suppressiveness was thus 

transferable into the fumigated soil in the field. 

Other soil-borne diseases have been successfully controlled by transferring the suppressive 

properties from one soil into another. For example, the antagonists in a soil suppressive to 

Streptomyces scabies could be transferred into an untreated conducive soil at 50% (w/w) to 

give control of scab in potatoes just as well as the suppressive soil itself (Menzies 1959). 

Scher & Baker (1980) showed that when a suppressive soil was added at 50 or 70% to a 

conducive soil previously inoculated with 1% (w/w) Fusarium oxysporum, it significantly 
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decreased the incidence of Fusarium wilt disease in flax (Linum usitatissimum). In these 

studies, the suppressiveness was removed from the soils when they were autoclaved at 

121°C or steamed at 57°C, indicating a similar characteristic to take-all suppressive soils 

(Hornby 1983). 

The 3 y successive wheat cropping in the H1 and H3 fields, has been considered as 

sufficient for the development of specific suppression or TAD in soils (Baker & Cook 

1974). Their Ggt DNA concentrations, which reduced significantly during the season, to 

12 and 10% of pre-sowing levels, respectively (Table 5.1) are also consistent with reports 

of the development of specific suppression. Hornby (1983) considered that a drop in the 

levels of the natural Ggt inoculums in a soil from beginning to the end of the growing 

season indicated that the pathogen was being suppressed, probably by inhibition of 

saprophytic growth in the debris or survival in the soil. However, soils B6, C12 and G2 

also had similar reductions in Ggt DNA during the season without any further evidence of 

being suppressive, so this phenomenon alone is not conclusive evidence of a suppressive 

soil developing. Past research has shown that Ggt has poor competitive saprophytic ability, 

and that throughout the saprophytic period in the soil the inoculum continually reduces 

through degradation of the crop debris (Garrett 1970, 1975, 1981; Shipton 1981; Skou 

1981). Future studies should investigate the relationships between the Ggt DNA 

concentrations in/on the roots of the host and disease severity, during the crop cycles of 

successive wheat monoculture. Such a study would improve understanding of suppression 

processes/mechanisms on the parasitic and saprophytic interactions of Ggt in the soil. 

In the present study, soil H15, which was from a field grown with 5 y of perennial ryegrass 

and had no Ggt DNA (Table 5.1), was incorporated as a control soil for all the 

experiments. Despite the indication of high biological involvement present, it was more 

conducive to take-all after the addition of Ggt than most of the other wheat soils tested. 

This result disagrees with Hornby (1983), who categorised soils grown with one to several 

seasons of grass or grass/legume leys, which are not susceptible to take-all, as Type IV 

suppressive soil capable of suppressing take-all in the field when wheat was cropped. The 

principle applied here is very similar to that applied in practising crop rotation with non-

hosts, to eliminate or reduce the natural Ggt inoculum concentrations, by starving the 

pathogen of nitrogen needed during its saprophytic survival in the host residues (Garrett 

1947). As there was no recorded evidence of any Ggt in soil H15 prior to the ryegrass crop, 
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the possibility that Ggt had been present, but eliminated from the soil was dismissed. 

Hence, the TAR obtained from H15 in the current study was thought to indicate only the 

disease caused by the introduced Ggt.  

The development of take-all suppression in pasture soils, was also investigated by 

Wildermuth (1980) in a wheat pot assay study. He used a fumigated soil amended with 1% 

of field soils, which were cropped with either 10 or 24 y of continuous pasture, and added 

0.1% Ggt inoculum (grown in ground oat). The study showed that the 10 y pasture soil was 

non-suppressive to take-all (disease rating = 5.5), while the 24 y pasture soil was able to 

give similar suppression as that of a suppressive soil (disease rating = 3.1). Wildermuth 

(1980) proposed that the suppressiveness in the 24 y pasture soil was a form of transferable 

suppression, caused by a non-pathogenic dark runner-hyphae fungus. However, he did not 

provide any explanation for the conduciveness of the 10 y pasture soil or the types of 

pastures previously grown in these fields. Other research studies have shown that the 

suppressiveness of pasture soils to take-all was due to the increased populations of 

Phialophora radicicola Cain var. graminicola, a fungus non-pathogenic to wheat (Garrett 

1941; Deacon 1973b, 1973a; Speakman et al. 1978; Hornby et al. 1998). In the present 

study, the lack of suppression to take-all by H15 after the addition of Ggt inoculum in 

Experiments 1 and 2, and the high TAR in a γ-irradiated base soil which was then amended 

with some of H15 soil, suggests that this soil had no transferable suppressive 

characteristics due to the presences of microorganisms antagonistic to Ggt.  

The soil expected to have the greatest chances of being suppressive was P7, because it had 

the longest period of continuous wheat cropping (9 y) and low concentrations of Ggt DNA 

at the start of the trials (Table 5.1). However, in Experiments 1 and 2, the addition of Ggt 

inoculum to this soil caused large increases in disease severity. In Experiment 3, the 

addition of a small amount of the non-sterilised P7 to the γ-irradiated base soil caused a 

reversal of the expected decrease in disease levels due to inoculation. These results indicate 

that the mechanism of the suppressiveness in the soil could be specific, but it was not well 

expressed in the original bulk soil of Experiments 1 and 2. A similar result was reported by 

Andrade et al. (1994a), who found that one of the three soils investigated for suppressive 

mechanisms demonstrated a relatively low level of activity in the original soil. However, 

when they transferred a small amount of it to a chemically and physically different soil (to 

constitute 1% of the mixture), the mixed soil became suppressive to take-all and increased 

shoot dry weights. However, the authors did not provide any explanation for this 
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phenomenon. In this research, no bacterial and fungal colonies was found growing on any 

of the culture plates of the γ-irradiated base soil when checked for its sterility, and so the 

likelihood of inadequate or uneven removal of any biologically active microorganisms, 

which might affect the suppressiveness of soil P7 in the transference trial (Experiment 3) 

was dismissed. However, most soil microorganisms are not culturable using conventional 

isolation techniques, and so it was possible that some, which were resistant to the 

irradiation treatment, could have remained in the soil. A later study that characterised the 

microbial populations in the roots and rhizosphere of plants grown the five test soils in this 

PhD programme, however, showed that soil P7 was indeed a conducive soil that had 

similar microbial profiles as that of the conducive ryegrass soil, H15 (Chapter 6). 

Test results indicating low concentrations of soil Ggt DNA identified the low levels of 

inoculum in soil samples. In P7, the initially low concentrations of soil Ggt DNA may have 

been due to the pre-treatment of seeds in 2003/04 with the systemic fungicide, Raxil
®
 

(Bayer Crop Science, Auckland, New Zealand), whose active ingredient is tebuconazole, 

which is of the triazole group (Young 2008). This compound has been reported to reduce 

the growth of Ggt on culture plates (Cotterill 1991), but not to reduce take-all incidence in 

a pot trial where the fungicide was applied to the Ggt-inoculated soils, although it did 

cause an increase in the dry weights of roots and shoots in the wheat plants (Cotterill et al. 

1992). A similar field trial that used wheat seeds treated with fluquinconazole (another 

triazole fungicide), reported decreases in take-all severity while crop yield increased 

(Dawson & Bateman 2001). In that study, the fungal communities on the roots of wheat 

plants collected from the field were also identified using culture-based methods. The seed 

treatment was found to have little effect on the overall fungal community, but did affect the 

isolation frequencies in some groups, in particular increasing frequency of Microdochium 

sp. (formerly known as Idriella sp.) and decreasing frequency of Fusarium avenaceum, 

especially in the months when take-all symptoms were less severe.  

The methods employed in this chapter provided ways to measure suppressiveness in 

different wheat soils, to distinguish some suppressive mechanisms, and have allowed 

identification of TAD soils in New Zealand. Of the soils tested, H1 and H3 provided 

specific suppression, which was transferable between soils indicating the role of specific 

biological factors. Soil M2 appeared to have a general suppression, which was not 

transferable, but also showed some involvement of biological components in its 

suppression. However, more investigations involving chemical fumigating and heat-
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treating the soils at different temperatures, are required to validate the mechanisms of 

suppression in these soils. Future work will also attempt to characterise and compare the 

microbial profiles in the roots of plants grown in soils exhibiting the two forms of 

suppression and to identify the types of microorganisms associated with them (Chapter 6).
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Chapter 6  
Characterisation of the microbial populations in the 

rhizosphere and the roots of wheat plants grown in soils 
with different suppressiveness to take-all using 

denaturing gradient gel electrophoresis 

6.1 Abstract 

Take-all, caused by the soilborne fungus, Gaeumannomyces graminis var. tritici (Ggt) is an 

important root disease of wheat. Monoculturing of wheat has been shown to induce take-all 

decline (TAD), a natural suppression of the disease thought to include the combined effects 

of both general and specific suppressions. Reports of research trials using a range of 

microorganisms, including the proteobacteria, ascomycetes and actinobacteria isolated from 

TAD soils, have demonstrated control of Ggt through three-way interactions among the 

pathogen, the host, and an antagonistic or a competing microorganism, indicating their 

potential as biocontrol agents. This study used the molecular technique, denaturing gradient 

gel electrophoresis (DGGE), to investigate the numbers and diversity of the 

microorganisms in the rhizosphere and roots of wheat plants grown in five New Zealand 

soils (H15, P7, H1, H3 and M2) which represented different types of take-all 

suppressiveness. The DGGE analysis of amplified rDNA sequences, which represented four 

microbial groups, bacteria, fungi, actinomycetes and ascomycetes, revealed consistent 

banding patterns for soils of different take-all suppressive characteristics, with diversities 

ranging from 19-30 genera. Since the microbial diversities did not vary between the 

rhizosphere and roots of wheat plants grown in these soils, the richness of microbial flora 

was clearly not associated with the suppressiveness. Cluster analyses of the banding profiles 

of the soils however, showed that the conducive soils, H15 and P7, were most similar in 

their banding patterns (similarity = 0.76), followed by the specific suppressive soils, H1 and 

H3 (similarity = 0.67), whereas, the general suppressive soil, M2 (similarity = 0.58), was 

the most different from the other soils. Principal component analysis indicated that the 

actinomycetes, Glycomyces sp. Streptomyces sp., Actinosynnema violaceoruber, Hongia sp. 

and Actinokineospora diospyrosa, were most commonly associated with take-all 

conduciveness, and some microorganisms were associated with the suppressiveness in 

TAD. The actinomycetes Streptomyces bingchengensis, Terrabacter sp. and Nocardioides 

sp., and ascomycetes Fusarium lateritium and Microdochium bolleyi, were unique to the 

take-all suppressive soils (H1, H3 and M2), but not the conducive soils (H15 and P7). 
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Further differentiation of the specific from the general suppressive soils was associated with 

presence of the proteobacteria Pseudomonas putida and P. fluorescens, the actinomycete 

Nocardioides oleivorans, ascomycete Gibberella zeae, and basidiomycete Penicillium allii, 

in the specific suppressive soils (H1 and or H3). Nearly all the distinguishing 

microorganisms identified in these suppressive soils (both specific and general), have been 

reported to antagonise Ggt or other soilborne pathogens to some degree. They are therefore 

likely to have specific functions in the suppressiveness of these soils to take-all. 

Keywords: denaturing gradient gel electrophoresis, DGGE, Gaeumannomyces graminis var. 

tritici, take-all, suppressive soils, take-all decline, microbial populations  

6.2 Introduction 

The occurrence of soils suppressive to take-all, a root disease of wheat caused by the 

soilborne fungus Gaeumannomyces graminis (Sacc.) von Arx & Oliver var. tritici Walker, 

is well documented (Gerlagh 1968; Shipton et al. 1973; Cook & Rovira 1976; Andrade et 

al. 1994a, 1994b). In these soils, disease severity is reduced even when the pathogen is 

present, and the environmental factors are suitable for the development of the disease (Cook 

& Baker 1983). A severe outbreak of take-all within a 4-6 y monoculture of wheat, can 

induce development of a natural suppression known as take-all decline (TAD) (McSpadden 

Gardener & Weller 2001). Past studies have indicated that the mechanisms involved in 

TAD include the combined effects of both „general‟ and „specific‟ suppressions (Graham & 

Mitchell 1999; Cook 2003). General suppression develops when the soil conditions are 

suitable for many antagonistic activities by the microbiota in the rhizosphere soil and roots, 

with no single microorganism or a specific group of microorganisms being solely 

responsible for the suppression (Cook 2003; Janvier et al. 2007). Specific suppression 

operates against a background of general suppression, but is more qualitative, owing to the 

more specific effects of the individual, or selected groups of antagonistic microorganisms, 

present in the rhizosphere soil and in young lesions on the infected roots (Graham & 

Mitchell 1999; Janvier et al. 2007). 

Many microorganisms representing different taxonomic groups have been isolated from 

TAD soils, and shown to control Ggt. The reported control mechanisms include cross-

protection of the roots by the non-pathogenic Gaeumannomyces graminis and Phialophora 

graminicola (Deacon 1976; Wong et al. 1996; Zriba et al. 1999), hyphal lysis of Ggt by an 
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unidentified sterile red fungus (Shankar et al. 1994; Aberra et al. 1998), antibiosis by a 

Trichoderma sp. (Simon 1989; Duffy et al. 1996), a Bacillus sp. (Kim et al. 1997), a 

Pseudomonas sp. (Weller 1983; Weller & Cook 1983; Weller et al. 1988; Raaijmakers & 

Weller 2001) and a Penicillium sp. (Hornby et al. 1998), as well as competition by 

Microdochium bolleyi (Kirk & Deacon 1987b, 1987a). Many Actinomycetes, in particular 

Streptomyces spp., are also reported to be associated with TAD soils (Zogg & Jäggi 1974; 

Sivasithamparam & Parker 1978; Andrade et al. 1994b). However, since the TAD 

characteristics of soils are lost through autoclaving at 121°C and steam pasteurisation at 

60°C, it is clear that heat-resistant microorganisms, especially the actinomycetes, are not 

involved in TAD (Weller et al. 2002), leaving the heat-sensitive microorganism(s) (e.g. 

Pseudomonas spp.) as probable agents of the suppressiveness (Cook & Rovira 1976). Since 

so many different spices of microorganisms have been reported to control Ggt, it seems 

likely that different microorganisms are involved in take-all suppression in different sites. 

Most of the studies that attempted to identify the causes of TAD focused on the three-way 

interaction among the pathogen, the host, and the potential biocontrol agent. They did not 

consider the roles of other interspecies interaction in the roots and rhizosphere, and their 

ecological context. Since many studies have reported that the microbial diversity and 

abundance within the wheat rhizosphere changed with successive years of wheat cropping 

(Cook & Rovira 1976; Sarniguet & Lucas 1992; Raaijmakers et al. 1997; Raaijmakers & 

Weller 1998), it is relevant to investigate the relationships between soil suppressiveness in 

TAD and the composition of the microbial communities in the roots and rhizosphere soil. 

In the past, the techniques used to study the soil microbial communities have depended 

upon cultural methods for estimating size and diversity of the microbial populations 

(Garbeva et al. 2004). However, it is widely acknowledged that these methods have 

underestimated numbers of species responsible, as only 1% of the bacteria and 17% of the 

fungi known to be present in the soil, can be cultured by common laboratory techniques 

(Hawksworth 1991; Bridge & Spooner 2001; Kirk et al. 2004). Other techniques such as 

direct plate counts, analysis of carbon utilisation in BIOLOG microplates and fatty acid 

methyl ester analysis, have also been used to estimate the microbial diversity or their 

activities (in the case of enzyme production), but cannot identify the microorganism in soil 

communities (Kirk et al. 2004; Mazzola 2004).  
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Molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), have been 

able to characterise/profile the soil microbial communities and to identify the dominant 

microorganisms present (Muyzer et al. 1993; Kowalchuk et al. 2003; Garbeva et al. 2004). 

DGGE involves total DNA extraction from environmental samples, and subsequent 

amplification of rDNA segments (most commonly) by using PCR with universal primers, 

which target the 16S region of bacteria and ITS, 18S or 28S regions of fungi. The double 

stranded PCR products have a GC clamped end to avoid complete disassociation, and are 

subjected to a DGGE gel containing a linearly increasing gradient of denaturing chemicals. 

As the DNA fragments reached higher levels of denaturing chemicals, they begin to 

disassociate at a point in the gel that is determined by the sequences of the fragments 

(Muyzer et al. 1993). Once the double strands are split completely (but held together by the 

GC clamp) they are physically prevented from migrating any further in the gel. As the 

sequences differ for different microbial species, this method can be used with a mixture of 

numerous species, with each band in the profile representing a taxon (O'Callaghan et al. 

2003). Subsequent cloning and sequence analysis of the excised bands from the DGGE 

profiles, can provide information on the identities of the microorganisms through database 

searches (Muyzer et al. 1993; O'Callaghan et al. 2006). 

In a previous study (Chapter 5), the suppressive soils in New Zealand were found to exhibit 

both general and specific types of suppression. This chapter aims to use PCR-DGGE to 

characterise and compare the microbial communities within the roots and rhizosphere of 

plants grown in soils, which demonstrated conduciveness and suppressiveness (both 

specific and general suppression) to take-all, and to identify the microorganisms associated 

with them by addressing the following questions: 

1. Do the microbial communities in the rhizosphere and roots, as determined by 

DGGE, differ between general and specific suppressive soils? 

2. Which microorganisms are associated with the specific suppressiveness? 

3. Is the whole microbiota responsible for the general suppressiveness? 

4. Are soil microorganisms associated with the conduciveness of soils to take-all? 

The initial part of this chapter reports the genetic identities of the Ggt isolates used as 

inocula in prior experiments in this PhD programme (Chapters 2 to 5). The second part 
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reports the similarities and differences of the microbial DGGE fingerprints associated with 

soils of different take-all suppressiveness, by performing an image analysis of the rDNA 

fingerprints. Finally, the distinguishing bands that were revealed by the PCR-DGGE 

analysis were cloned and identified by sequence analysis.  

6.3 Materials and methods 

6.3.1 Part 1: Confirmation of Ggt isolates used in the pot 
assays 

6.3.1.1 Ggt isolates 

Eleven New Zealand Ggt isolates (New Zealand Institute for Crop & Food Research Ltd.) 

and one isolate from Germany (German National Resource Centre for Biological Material, 

DSMZ), were included in this study (Table 6.1). Among the New Zealand isolates, 10 were 

from the roots of wheat and one was from the rhizomes of Elytrigia repens. The five 

isolates used as a mixed inoculum in all the pot experiments in Chapters 2 to 5 (shaded in 

Table 6.1) were pathogenic to wheat (Appendix 3, A3. 2). 

Table 6.1  The origins of the twelve Ggt isolates used in this study. The five 

isolates shaded in grey were used as a mixed inoculum in Chapters 2-5. 

Ggt  isolate Country Plant / host source

A3SL4 New Zealand
Rhizomes of 

Elytrigia repens

H9T3R1/1.2 New Zealand Roots of wheat

BIOMILL New Zealand Roots of wheat

H9T3R3 New Zealand Roots of wheat

BIOMILLSC3 New Zealand Roots of wheat

H11T3R1/3 New Zealand Roots of wheat

BIO3 New Zealand Roots of wheat

WF99/3 New Zealand Roots of wheat

BIO4B New Zealand Roots of wheat

BIO4A New Zealand Roots of wheat

MAL 1/8 New Zealand Roots of wheat

DSMZ12044 Germany Roots of wheat  

6.3.1.2 DNA extraction from isolates 

Potato dextrose agar (PDA) discs (1 mm dia.) from colony edges of 8 d old Ggt cultures 

(maintained at 23°C), were transferred separately to Petri plates (5 cm dia.) containing 

5 mL of potato dextrose broth (PDB). After 2 wk incubation at 22°C, mycelial mats were 

lifted from the PDB with sterile 1 mL pipette tips and gently pressed between wads of 3-4 
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sterile paper towels, folded in half, to remove the excess liquid. For each isolate, mycelium 

(100 mg) was transferred into a 1.5 mL microfuge tube (Raylab NZ Ltd., Auckland, New 

Zealand), and DNA extraction was performed using a Puregene plant DNA extraction kit 

(Progenz NZ Ltd., Auckland, New Zealand) according to the manufacturer‟s instructions. 

The final pellet was suspended in 100 μL of sterile water. The quantity and quality of the 

extracted genomic DNA (gDNA) fragments of each Ggt isolate were then determined via 

gel electrophoresis of 5 μL aliquots loaded onto a 1% (w/v) agarose gel stained with 

ethidium bromide (Appendix 4, A4. 5). The gels were then visualised under UV and the 

bands compared to a high DNA mass ladder (Invitrogen, Auckland, New Zealand). Where 

necessary, the gDNA suspension was diluted with sterile Millipore filtered water to give a 

final concentration of 10-50 ng µL
-1

 (i.e. the recommended concentration for a 25 µL PCR 

reaction mixture). 

6.3.1.3 The amplification and sequencing of the ITS-region 

The extracted gDNA of the 12 Ggt isolates were subjected to PCR using the universal 

primers ITS4 (5′-TCCT CCGCTTATTGATATGC-3′) and ITS5 (5′-

GGAAGTAAAAGTCGTAACAAGG-3′), which target the amplification of the ITS1, 5.8s 

and ITS2 regions of the ribosomal DNA (rDNA) complex (White et al. 1990). 

Amplifications were performed in 25 μL reaction mixtures containing the following: 

 1×buffer (Roche diagnostics NZ Ltd., Auckland, New Zealand). 

 200 μM each of dATP, dTTP, dGTP and dCTP (Roche diagnostics NZ Ltd., 

Auckland, New Zealand). 

 0.2 μM of each primer (Invitrogen New Zealand Ltd, Auckland). 

 One unit of Taq DNA polymerase (Roche diagnostics NZ Ltd., Auckland, New 

Zealand). 

 UltraPure™ DNase/RNase-free distilled water (Invitrogen New Zealand Ltd, 

Auckland). 

 10-50 ng of template DNA. 

 

A reaction, with no template DNA added, was used as a negative control to test for the 

presence of DNA contaminants in the reaction mixtures. PCR reactions, performed in a 

GeneAmp
®
 PCR System 9700 (Applied Biosystems, Foster City, U.S.A.), consisted of an 
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initial denaturation at 95°C for 2 min, followed by 35 cycles of denaturation at 95°C for 

30 s, annealing at 55°C for 30 s, and extension at 72°C for 45 s. After the 35 cycles, a 

completion step for extension at 72°C for 10 min was performed. Aliquots of 2 μL of the 

resulting amplicons were then assessed via electrophoresis on a 1% (w/v) agarose gel 

stained with ethidium bromide, and compared to a low DNA mass ladder (Invitrogen New 

Zealand Ltd., Auckland) to estimate the quantities. All the amplicons were purified using a 

QIAquick PCR Purification Kit (QIAGEN, Biolab Ltd., Auckland, New Zealand), 

suspended in sterile Millipore filtered water to give final concentrations of 10-50 ng µL
-1

, 

and sent to the National Centre for Advanced Bio-Protection Technologies, Lincoln 

University, New Zealand, for sequencing. The nucleotide sequences were compared to 

those available in the Genbank database (http://www.ncbi.nlm.nih.gov/Genbank/) using the 

Basic Local Alignment Search Tool (BLAST).  

6.3.2 Part 2: Characterisation of the microbial populations 
associated with take-all suppressiveness 

6.3.2.1 DNA extraction from the root/rhizosphere samples 

DNA extraction was performed on roots of wheat (Triticum aestivum L.) plants grown in 

five soils (H1, H3, P7, M2 and H15) of varying suppressiveness to take-all. The cropping 

histories of these five soils and some information on the mechanisms of suppression as 

determined in the pot experiments previously conducted (Chapter 5, Experiments 1, 2 and 

3), are summarised in Table 6.2. H1 and H3 were TAD soils with the characteristics of 

specific (S) suppression with high levels of biological activities, and the suppressiveness 

was transferable to another soil. M2 was a general (G) suppressive soil with variable levels 

of biological activities present, and its suppressiveness was not transferrable to another soil. 

Soil H15, which was from a field cropped with 5 y of perennial ryegrass (Lolium perenne 

L.), and had high levels of biological activities present, was included as a control (i.e. 

conducive, C). Soil P7 (C/S), when in bulk, showed similar levels of conduciveness to take-

all as soil H15, and had variable levels of biological involvement. However, when it was 

transferred into the sterile base soil (1% in the base soil), it was able to cause a decrease in 

disease levels due to inoculation (Chapter 5).  
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Table 6.2  Characteristics of the five soils, which were determined in the Chapter 5 

studies, including their wheat cropping histories, increases in disease severity (TAR) 

after the addition of Ggt, and potential mechanisms of suppressiveness, used in the 

current DGGE study.  

Field 

code 

Years 

of 

wheat 

1
Increase in 

TAR after 

the addition 

of Ggt 

Levels of 

biological 

involvemen

t 

Transferability of 

the suppressiveness 

into another soil 

(Yes/No) 

2
Mechanism of suppression 

(abbreviation) 

      

M2 4 +6 Variable No General (G) 

H1 3 0 High Yes Specific (S) 

H3 3 0 High Yes Specific (S) 

P7 9 +56 Variable Yes Conducive (C) / specific (S) 

H15 0 +52 High No Conducive (C) 

      
 

1TAR represents take-all rating, a disease severity measure calculated from the formula of Dyke & Slope (1978):   

                       TAR = 1(a) + 2(b) + 3(c)  

  Where, 
                  a = % plants with slight infection (<25% of root area covered with lesions) 

                  b = % plants with moderate infection (25-75% of root area covered with lesions) 

                  c = % plants with severe infection (>75% of root area covered with lesions) 

  
2 The mechanisms of suppression in the soils were determined via investigating the transferability of the suppressive      

characteristics in these soils to a sterile base soil, and added with Ggt inoculum (Chapter 5). 

G = the suppressiveness in the general suppressive soil was not transferrable to a sterile base soil.  

S = the suppressiveness in the specific suppressive soil was transferable to a sterile base soil. 

C = the soil was conducive to take-all, thus when it transferred to a sterile base soil, the base soil remained conducive  

       to the disease.  

C/S = the soil was conducive to take-all, but when it was transferred into a sterile base soil, it was able to cause a   

          decrease in disease levels. 

      

 

DNA was extracted from the roots/rhizosphere (pooled) of the two extra wheat plants 

grown in each of the non-autoclaved pots of soils, to which Ggt had been added 

(Experiment 2, Chapter 5). The rhizosphere is known to consist of three different regions: 

endo-rhizosphere which comprises the root tissues; rhizoplane which is the root bi-

dimensional surface and ecto-rhizosphere, which represents the adjacent soil (Lynch 1990; 

Lemanceau et al. 1995) (in: Botelho & Mendonca-Hagler 2006). Plants were taken from the 

Ggt inoculated soils because this was the treatment used to measure the differing take-all 

suppressiveness (Chapter 5). In the Experiment 2 pot assay (Chapter 5), there were four 

replicates of each soil sample for the Ggt treatment, with two plants per replicate pot being 

carried over into the current study, to give four replicates of roots/DNA samples of each 

soil. In order to include only the microorganisms in the closely adhered rhizosphere and 

rhizoplane soils, and the endophytes in the endo-rhizosphere zone for gDNA extraction 
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(Gobat et al. 2004), nearly all the excess soil on the roots of the two plants was shaken off 

and the roots were not washed.  

Extraction was conducted according to the protocols used by Russell and Bulman (2005) 

with modifications. The roots were cut into small pieces (about 1 cm in length), with 

scissors that had been wiped with handy towels moistened with 95% alcohol, dipped in 

95% alcohol and flame sterilised between pot replicates. Cut roots from each pot were then 

pooled and mixed on a piece of sterilised aluminium foil and a 100 mg sub-sample placed 

in a 2 mL screw cap microfuge tube (Raylab NZ Ltd., Auckland, New Zealand) containing 

1 g of stainless steel beads (2.3 mm dia.). After addition of 1 mL of 

cetyltrimethylammonium bromide (CTAB) buffer (20 mM Tris pH 8, 20 mM EDTA, 0.8 M 

NaCl and 2% CTAB) and 200 μL of 5% sarcosyl (5% w/v aqueous solution of N-lauryl 

sarcosine sodium salt), the roots were disrupted using a MiniBeadbeater8
TM

 cell disrupter 

(Biospec Products, BioLab Scientific NZ). In order to prevent over-heating and breaking of 

the microfuge tubes in the bead-beating motion, disruption was performed twice at 1 min 

each time, with a 1 min cooling in ice between the two disruptions. The tubes were then 

incubated at 65°C for 1 h. Impurities were extracted from the gDNA of the disrupted roots 

by adding 800 μL of chloroform:iso-amyl alcohol (24:1), mixing, centrifuging at 13, 

000 rpm for 1 min, and subsequently transferring the supernatant to a clean tube. An equal 

volume of 100% isopropanol was then added to the supernatant (to precipitate the gDNA) 

and the tube was centrifuged at 13, 000 rpm for 5 min. The resultant pellet was washed in 

500 µL of 70% ethanol, air-dried at room temperature for 30 min, and then suspended in 

50 μL of 10 mM TE buffer (10 mM Tris, 1 mM EDTA, pH 8). The quantity and the quality 

of the extracted DNA were then determined by running an aliquot (2 μL) on a 1% agarose 

gel and comparing it to a high DNA mass ladder (Invitrogen New Zealand Ltd., Auckland) 

as described in Section 6.3.1.2. The root/rhizosphere samples each yielded 10 to 30 ng µL
-1

 

of gDNA. All gDNA samples were serial diluted prior to PCR amplifications. Samples 

from soil H3 were diluted by 20 times (i.e. 1:20), while those from soils H1, M2, P7 and 

H15 were diluted by 10 times (1:10) using molecular grade water.  

6.3.2.2 PCR amplification of group targeted rDNA gene 
fragments for DGGE analysis 

Universal primers, that targeted the rDNA sections of the 16S and the ITS regions of the 

general bacterial (F984GC and L1401 or R1378) and fungal (ITS1FGC and ITS2) 
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populations (Table 6.3) were used to amplify these regions from the total extracted gDNA 

template (1 μL) of each root/rhizosphere sample. Group-specific primers targeting the 

rDNA sections of the actinomycetes (16S) (primers, F243 and R513GC) and the 

ascomycetes (ITS) (primers, ITS4Asco and ITS3GC) that may have been present in the 

samples, were also employed (Table 6.3). A GC-rich sequence was attached to the 5′ end of 

one of a primer set, to prevent complete melting of the PCR products during separation in 

the denaturing gradient gel (Heuer et al. 2001) (Table 6.3). The product sizes yielded by 

these primer sets (about 300-400 bp), were suitable for separation by DGGE (Nikolcheva & 

Bärlocher 2004). The rDNA of the four Ggt isolates (A3SL4, H9T3R1/1.2, BIOMILLSC3 

and H11T3R1/3, Section 6.3.1.3) used as a mixed inoculum in the previous study (Chapter 

5), was also amplified (ITS regions) with the same primer set specific for the fungal 

populations, and these amplicons were later included in the fungal denaturing gradient gel, 

to act as markers (Section 6.3.2.3). The volume of the reaction mixture and the final 

concentrations of the reagents were as described in Section 6.3.1.3. PCR reactions, 

performed in a GeneAmp
®
 PCR System 9700 (Applied Biosystems, Foster City, U.S.A.), 

consisted of an initial denaturation at 94°C for 2 min, followed by 35 cycles of denaturation 

at 94°C for 30 s, annealing at the respective temperatures for each primer set (Table 6.3) for 

60 s, and extension at 72°C for 1 min. After the 35 cycles, a final extension step at 72°C for 

10 min was performed. The resulting amplicons were then assessed via gel electrophoresis 

as described in Section 6.3.1.3. 

Table 6.3  Primers used to target and amplify the rDNA gene regions of bacteria, fungi, 

actinomycetes and ascomycetes.  

rDNA target 
1
Primer 

2
Sequence (5′→3′) 

Annealing 

temp 
Reference 

Bacteria (16S) 

F984GC 

L1401 or 

R1378 

gc-AACGCGAAGAACCTTAC 

CGGTGTGTACAAGGCCCGGGAAGG 
60°C 

Heuer & Smalla 

(1997) and Hiddink 

et al. (2005b) 

     

Fungi (ITS) 
ITS1FGC 

ITS2 

gc-CTTGGTCATTTAGAGGAAGTAA 

GCTGCGTTCTTCATCGATGC 
55°C 

White et al. (1990)  

Gardes & Bruns 

(1993) 

     

Actinomycetes 

(16S) 

F243 

R513GC 

GGATGAGCCCGCGGCCTA 

gc-CGGCCGCGGCTGCTGGCACGTA 
63°C Heuer et al. (1997)  

     

Ascomycetes 

(ITS) 

ITS4Asco 

ITS3GC 

3
CGTTACTRRGGCAATCCCTGTTG 

gc-GCATCGATGAAGAACGCAGC 
55°C 

Nikolcheva & 

Bärlocher (2004); 

White et al. (1990) 
1
F and R indicate forward and reverse primers, respectively.

 

2
gc indicate the G+C-rich sequence (cgcccgccgcgcgcggcgggcggggcgggggcacgggggg) attached at the 5′ end.

 

3
Nucleotides AA were used in place of RR in this study.  
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6.3.2.3 Denaturing gradient gel electrophoresis (DGGE) 

DGGE analysis was performed using the DCode Mutation Detection System (BioRad, Life 

Science Research, Hercules, California). The polyacrylamide gel (BioRad, Life Science 

Research, Hercules, California) was made to the concentration of 8% w/v (using 40% 

acrylamide:bisacrylamide 37.5:1) as recommended by the manufacturers for separating 

double stranded rDNA sized 200-400 bp. The amplified rDNA products (in aliquots of 

8 μL) were separated with the respective denaturing gradients specific for the four 

microbial groups as outlined in Table 6.4. These gradients were modified from those 

references listed in Table 6.3 and were found to produce good resolutions of separation. 

Hence, they were the most suitable for the current study. The 100% denaturant consisted of 

7 M urea and 40% (v/v) formamide. Electrophoresis was performed in 1×TAE buffer at 

58°C, and constant voltage of 85 V for 16 h. The gels were silver-stained according to the 

protocols of Heuer et al. (2001), sandwiched between a Gelbond
TM

 sheet (BioRad, Life 

Science Research, Hercules, California) and a sheet of cellophane, and dried overnight at 

60°C in an oven to allow long term storage of the gels. 

 

Table 6.4  Vertical denaturing gradient of the 8% polyacrylamide gels used in 

DGGE to separate the double stranded rDNA of the targeted microbial groups. 

Microbial group 
1
Vertical denaturing gradient 

Bacteria 45-55%

Fungi 30-38%

Actinomycetes 55-70%

Ascomycetes 35-50%

1 
100% consists of 7 M urea and 40% formamide  

 

6.3.2.4 Band scoring and statistical analyses 

The computer software package GelCompar II (Applied Maths, Sint-Martens-Latem, 

Belgium) was used to analyse the DGGE banding profiles. To compare band profiles across 
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soils, gels were first normalised using selected bands present on a single gel. Each band was 

assigned a number with increasing order, representing its distance of migration (expressed 

as percent) from the top of the gel. For each sample replicate, bands at each migration point 

were scored as either present or absent. The resulting binomial data was then subject to 

cluster analysis using the Jaccard similarity coefficient, and the un-weighted paired-group 

method with arithmetic mean (UPGMA) (Manly 2005). For each microbial group, the 

distinguishing bands that differentiated the soils from one another were determined by 

principal component analyses (PCA). In this comparison, a band was considered present 

only when it was in the same position in at least three of the four replicates in one soil, but 

was treated as absent if it was only present in one or two replicates of the soil. A summary 

of the bands present and the assigned band numbers in the individual soils for the four 

microbial groups are in Appendix 5, A6. 2. All analyses were performed with the statistical 

package GenStat Release 9.2 (Lawes Agricultural Trust, Rothamsted Experimental Station, 

2007). 

6.3.2.5 Recovery, re-amplification, cloning and sequencing of the 
distinguishing DGGE bands 

The distinguishing DGGE bands, as determined from PCA, were excised from the dried 

gels, re-amplified, cloned and sequenced. Excision was done by cutting the innermost 

portion (about 2 mm in length) of each band with a new sterile scalpel to avoid 

contamination of other DNA bands. DNA was eluted from the polyacrylamde matrix, by 

placing the excised band in a 1.5 mL microfuge tube (Raylab NZ Ltd., Auckland, New 

Zealand) containing 50 μL of 1×TAE buffer (pH 8), and breaking the gel matrix with a 

disposable sterile loop before incubating at 50°C for 2 h with occasional vortexing. Re-

amplification of the recovered band was performed using 1 μL of this mixture as template 

and the same thermal cycler conditions as for the original amplification for DGGE analysis 

(Section 6.3.2.2) with the exception of replacing the GC-clamped primer with the same 

primer minus the clamp sequence. Sub-samples of amplified products of the bacterial and 

fungal populations were initially sequenced (National Centre for Advanced Bio-Protection 

Technologies, Lincoln University, New Zealand). However, these resulting sequences 

revealed the presence of more than one microorganism in many of the products. Hence, a 

decision was made to clone all the amplified products using either the PCR
®
4-TOPO

® 
or 

the TOPO TA Cloning
®

 Kits (Invitrogen, Auckland, New Zealand), following the methods 

of the manufacturer. Five clones were randomly selected from each amplified product 



 148 

(representing one DGGE band), purified using QIAquick PCR Purification Kit (QIAGEN, 

Biolab Ltd., Auckland, New Zealand) and sequenced again (Macrogen sequencing services, 

Macrogen Ltd. Seoul, Korea). Sequences were compared to those available in the Genbank 

using the Blastn search to identify the microorganisms represented by the bands. The 

microorganism, which represented the majority of the five clones from each band, was 

considered the dominant specie that made up that band.  

6.4 Results 

6.4.1 Identity confirmation of the Ggt isolates 

Using primers ITS4 and ITS5, the rDNA at the ITS regions of the 12 Ggt isolates were 

successfully amplified, consistently yielding fragment sizes of 600 bp and DNA 

concentrations of 15 ng μL
-1

. The sequences of the 11 New Zealand Ggt isolates, including 

the ones used in a mixed inoculum in the pot bioassays in this PhD research, matched 

Gaeumannomyce graminis var. tritici in Genbank (Table 6.5). The sequence of the German 

isolate, DSMZ12044, was closest to an isolate of Phialophora sp., which is the anamorph 

of Gaeumannomyces graminis (Table 6.5). The nucleotide sequences of all the 12 Ggt 

isolates are in Appendix 5, A6. 1.  

 

Table 6.5  Genbank ITS sequence comparisons for the 12 Ggt isolates showing their 

nearest relatives in Genbank. 

Ggt  isolate Matched 

nucleotides (%)

Nearest relative (Blast) on queried 

sequence

Genbank 

accession No. 

A3SL4 99 Gaeumannomyces graminis var. tritici AF508155

H9T3R1/1.2 99 Gaeumannomyces graminis var. tritici AF508155

BIOMILL 99 Gaeumannomyces graminis var. tritici AF508155

H9T3R3 100 Gaeumannomyces graminis var. tritici U17222

BIOMILLSC3 99 Gaeumannomyces graminis var. tritici AF508155

H11T3R1/3 99 Gaeumannomyces graminis var. tritici U17222

BIO3 100 Gaeumannomyces graminis var. tritici U17220

WF99/3 99 Gaeumannomyces graminis var. tritici AF508155

BIO4B 99 Gaeumannomyces graminis var. tritici U17222

BIO4A 99 Gaeumannomyces graminis var. tritici U17222

MAL 1/8 99 Gaeumannomyces graminis var. tritici U17220

DSMZ12044 99 Phialophora sp. U17216  

 



 149 

6.4.2 Microbial communities in the rhizosphere and roots of 
wheat plants grown in soils of different suppressiveness 

The banding patterns generated on the DGGE gels revealed 40, 44, 28 and 40 individual 

bands for the respective four microbial groups, bacteria, fungi, actinomycetes and 

ascomycetes. Table 6.6 shows the number of bands, which were present in at least three 

replicates of each of the soils. In general, there were large differences between individual 

soils, with the general bacterial population being the most diverse within the 

roots/rhizosphere. Soil H3 (S = specific suppression) had 31 bands, while soil H1 (S) 

produced the lowest number of bands (19 bands) (Table 6.6). Soils H15 (C = conducive), 

M2 (G = general suppression) and P7 (C/S) were similar in the diversities of their bacterial 

populations (about 23 bands). For the fungal population, soil H3 (S) also had the highest 

numbers of bands. Soils H1 (S) and H15 (C) produced a similar numbers of bands (25 and 

24, respectively), whereas P7 (C/S) and M2 (G) produced similar numbers of bands (18 and 

19, respectively). For actinomycetes, soil H3 (S) had the least number of bands (16), while 

the rest of the soils had similar numbers of bands. For ascomycetes, soil M2 (G) had the 

fewest bands (19) (Table 6.6).  

 

Table 6.6  Number of bands present in at least three replicates of each soil for the four 

microbial groups. Data in parentheses are the total number of bands separated by DGGE 

for that particular soil. 

Number of bands present

Microbial group soil

Bacteria 19 (23) 31 (38) 24 (25) 23 (28) 23 (26)

Fungi 25 (33) 34 (39) 18 (22) 19 (29) 24 (34)

Actinomycetes 25 (33) 16 (16) 25 (29) 30 (32) 30 (32)

Ascomycetes 23 (23) 22 (23) 19 (19) 22 (23) 24 (25)

M2 P7H1 H15H3

Specific 

(S) 

Conducive 

(C)

Conducive/

Specific 

(C/S)

Type of suppression 

(abbreviation)

Specific 

(S)

General 

(G) 
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6.4.3 Similarities among the five soils in the banding patterns 
derived from DGGE analyses 

Similarity analysis on the total 152 bands of the four DGGE gels showed greater 

differences between the banding patterns / profiles of different soils (range = 0.21), than 

between the replicates for a single soil (range = 0.03 to 0.09). The similarity matrix, 

showing the calculated means of each soil, and the resulting UPGMA dendogram, are 

presented in Figure 6.1. Cluster analysis of the soils showed that H15 (C) and P7 (C/S) 

were most similar in their banding patterns, followed by soils H1 (S) and H3 (S), whereas 

M2 (G) was the most different from the other four soils (Figure 6.1). The complete 

similarity matrix is shown in Appendix 5, A6.3a. 

H1    1     
H15 0.63 1    
H3 0.67 0.64 1   
M2 0.64 0.58 0.55 1  
P7 0.61 0.76 0.62 0.60 1 

  H1  H15  H3  M2  P7 

  
 

 

Similarity

0.60.70.80.91.0

M2 4

M2 3

M2 2

M2 1

P7 3

P7 2

P7 4

P7 1

H15 4

H15 3

H15 2

H15 1

H3 4

H3 3

H3 2

H3 1

H1 4

H1 3

H1 2

H1 1

 

Figure 6.1  The mean similarity matrix and dendogram showing the relationships 

among the five soils from cluster analysis of the 152 bands separated on the four 

DGGE gels specific for bacteria, fungi, actinomycetes and ascomycetes. Similarity is 

expressed as a value of the Jaccard correlation coefficient with a value of „0‟ 

indicating the soils had no bands in common (i.e. completely different), whereas a 

value of „1‟ indicated the soils had the same bands present (i.e. completely identical). 

The letters S, C and G represent specific suppressive, conducive, general suppressive 

soils, respectively. The numbers next to the soil codes are the replicate numbers.  

S 

S 

C 

C/S 

G 
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6.4.4 Identification of bands that differentiated the soils 

6.4.4.1 Principal component analyses 

Principal component analyses (PCA) of all the bands present in all four microbial groups, 

showed that between the five soils, 88% of the variation was accounted for by the first three 

principal components (36, 34 and 18%, respectively). A scatter plot matrix of the first three 

principal components is shown in Figure 6.2. The plots represent three side views of a 

single cube formed by plotting the data with the three axes (components) in three 

dimensions. In this illustration, the cube is presented in two dimensions. In order to 

visualise the cube, the three faces have to be folded in. In the first principal component, the 

soils were differentiated into two groups, H1, H3 & M2 (suppressive soils) and P7 & H15 

(conducive soils) (best represented in Figure 6.2, face a). In the second component, soil H3 

(S) was separated from H15 & P7 (C and C/S, respectively), and M2 (G) was further 

separated from H1 & H3 (S) (best represented in Figure 6.2, face b). In the third 

component, soil H1 (S) was separated even further from H3, and H15 (C) was separated 

slightly from P7 (C/S) (best represented in Figure 6.2, face c). 

For the four microbial groups, the bands responsible for distinguishing the soils in PCA are 

summarised in Table 6.7. The larger component coefficient (ignoring the negative sign) 

represents greater importance of that band class in the separation. As the aim was to 

identify key microorganisms that distinguished the different suppressive soil types (Chapter 

5), only bands derived from the PCA (Table 6.7) which also met the following criteria were 

sequenced: 

1) Band classes present only in H1 and/or H3, which were both specific 

suppressive soils with high levels of biological involvement. 

2) Band classes present only in M2, a general suppressive soil by which the 

suppressiveness was non-transferable to another soil, and had fluctuating levels 

of biological component. 

3) Band classes present only in H1, H3 and M2, which were all suppressive soils, 

but varied in their mechanisms of suppression. 
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Figure 6.2  A scatter plot matrix of the first three principal components showing the 

separation of the five soils from the analyses on the bands separated on the four DGGE 

gels specific for bacteria, fungi, actinomycetes and ascomycetes, respectively. The plots 

represent three side views (faces a, b and c) of a single cube formed by plotting the data 

using the three axes (components) in three dimensions. The letters, C, S and G in 

parentheses, represent conducive, specific and general suppressive soils, respectively. 

The component coefficient refers to the length of the vector in relation to the principal 

component of interest. 
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4) Band classes present only in H15 (conducive) and P7 (conducive in the bulk 

soil, but found to be suppressive when a small amount of it was transferred 

to another soil). 

5) Band classes present only in H15, P7 and M2 (conducive and general 

suppressive soils). 

 

The number of distinguishing bands selected from the DGGE gels of bacteria, fungi, 

actinomycetes and ascomycetes were, seven, seven, six and four, respectively (highlighted 

in Table 6.7). When the four microbial groups were analysed separately, similar 

distinguishing bands were found responsible for the differentiation of soils as well, hence, 

the results of these are not presented. The DGGE band profiles of the four microbial groups, 

and the positions of the excised bands, are shown in Figures 6.3 and 6.4.  
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Table 6.7 a-c  Results of the principal component analysis, showing the first three principal components and the bands responsible for the 

separation of the five soils. The number of replicates, in which the distinguishing bands occurred, is also included. Highlighted bands were 

excised, re-amplified, cloned and sequenced.  

(a) 1
st

 principal component (b) 2
nd

 principal component (c) 3
rd

 principal component

Soil Soil Soil 

H1 H15 H3 M2 P7 H1 H15 H3 M2 P7 H1 H15 H3 M2 P7

0.197 16 Bacteria 0 4 4 0 4 -0.186 19 Bacteria 4 0 4 0 1 -0.131 12 Bacteria 0 0 4 0 0

-0.171 33 Bacteria 4 0 4 4 0 -0.159 13 Bacteria 1 0 4 0 0 -0.143 15 Bacteria 0 0 4 0 2

-0.171 36 Bacteria 4 0 4 4 0 -0.145 12 Bacteria 0 0 4 0 0 -0.153 25 Bacteria 1 4 4 4 4

-0.171 37 Bacteria 4 0 4 4 0 -0.124 33 Bacteria 4 0 4 4 0 -0.166 29 Bacteria 1 3 4 4 4

0.132 39 Bacteria 4 4 4 0 4 -0.124 36 Bacteria 4 0 4 4 0 -0.204 17 Bacteria 0 4 4 4 4

0.165 21 Fungi 2 4 4 0 4 -0.124 37 Bacteria 4 0 4 4 0 -0.204 20 Bacteria 0 4 4 4 4

-0.148 9 Fungi 4 1 4 4 0 -0.203 25 Fungi 4 0 4 0 0 -0.204 24 Bacteria 0 4 4 4 4

-0.148 12 Fungi 4 1 4 4 0 0.184 35 Fungi 0 4 0 3 4 -0.204 31 Bacteria 0 4 4 4 4

-0.132 1 Fungi 0 0 0 4 0 -0.139 34 Fungi 1 0 4 1 0 -0.204 34 Bacteria 0 4 4 4 4

-0.132 6 Fungi 0 0 0 4 0 -0.132 14 Fungi 4 4 4 0 1 -0.154 44 Fungi 0 0 4 0 4

0.135 5 Fungi 0 3 4 0 2 -0.122 33 Fungi 1 0 4 1 1 0.233 11 Actinomycetes 4 4 0 0 4

0.132 11 Fungi 4 4 4 0 4 -0.120 10 Fungi 4 1 4 0 4 0.153 37 Actinomycetes 4 0 0 2 0

0.132 13 Fungi 4 4 4 0 4 0.189 24 Actinomycetes 1 4 0 4 4 0.137 19 Actinomycetes 4 4 0 4 3

0.132 27 Fungi 4 4 4 0 4 0.157 18 Actinomycetes 2 4 0 4 3 0.131 9 Actinomycetes 4 4 0 4 4

0.132 28 Fungi 4 4 4 0 4 0.145 9 Actinomycetes 4 4 0 4 4 0.131 17 Actinomycetes 4 4 0 4 4

-0.197 33 Actinomycetes 4 0 0 4 0 0.145 17 Actinomycetes 4 4 0 4 4 0.131 21 Actinomycetes 4 4 0 4 4

0.171 10 Actinomycetes 0 4 0 0 4 0.145 21 Actinomycetes 4 4 0 4 4 -0.499 2 Ascomycetes 4 4 0 4 0

0.171 26 Actinomycetes 0 4 0 0 4 0.127 19 Actinomycetes 4 4 0 4 3 -0.446 24 Ascomycetes 4 4 0 4 4

0.171 29 Actinomycetes 0 4 0 0 4 0.124 10 Actinomycetes 0 4 0 0 4 -0.446 16 Ascomycetes 4 4 0 4 4

0.171 30 Actinomycetes 0 4 0 0 4 0.124 26 Actinomycetes 0 4 0 0 4 0.305 7 Ascomycetes 0 4 4 4 4

0.152 22 Actinomycetes 0 4 0 0 3 0.124 29 Actinomycetes 0 4 0 0 4 0.232 21 Ascomycetes 4 0 4 4 0

-0.131 37 Actinomycetes 4 0 0 2 0 0.124 30 Actinomycetes 0 4 0 0 4 0.214 8 Ascomycetes 0 4 4 0 4

0.129 8 Actinomycetes 3 4 4 0 3 -0.203 17 Ascomycetes 4 0 4 0 0 0.185 12 Ascomycetes 0 1 1 4 4

0.313 3 Ascomycetes 4 4 4 0 0 0.203 26 Ascomycetes 0 4 0 4 4

0.306 4 Ascomycetes 4 4 4 0 1 0.145 16 Ascomycetes 4 4 0 4 4

0.284 27 Ascomycetes 4 4 4 0 4 0.145 24 Ascomycetes 4 4 0 4 4

-0.284 1 Ascomycetes 0 0 0 4 0 -0.150 3 Ascomycetes 4 4 4 0 0

0.284 5 Ascomycetes 4 4 4 0 4 -0.132 4 Ascomycetes 4 4 4 0 1

0.284 10 Ascomycetes 4 4 4 0 4 0.127 12 Ascomycetes 4 4 0 4 3

0.284 11 Ascomycetes 4 4 4 0 4 -0.124 21 Ascomycetes 4 0 4 4 0

0.284 19 Ascomycetes 4 4 4 0 4

0.269 17 Ascomycetes 4 0 4 0 0

-0.269 26 Ascomycetes 0 4 0 4 4

-0.261 12 Ascomycetes 0 1 1 4 4

1
 The component coefficient in negative refers to the length of the vector in the opposite direction in relation to the principal component of interest.

Present in no. of replicates
Band 

class no.

Microbial 

group

1
Component 

coefficient

Band 

class no.

Microbial 

group

Present in no. of replicates
1
Component 

coefficient
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1
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Figure 6.3  DGGE analyses with the primers specific for the general (a) bacterial 

and (b) fungal populations in the rhizosphere/roots of wheat plants grown in the five 

soils. M represents the marker lane, which comprised the four Ggt isolates. The 

numbers 1-4 in both gels represent the replicate number of the soil. Other numbers 

with arrows indicate the bands excised.
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(a) Actinomycetes 
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(b) Ascomycetes 

 

Figure 6.4  DGGE analyses with the primers specific for (a) actinomycetes and 

(b) ascomycetes in the rhizosphere/roots of wheat plants grown in the five soils. 

The numbers 1-4 in both gels represent the replicate number of the soil. Other 

numbers with arrows indicate the bands excised.
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6.4.4.2 Sequence analysis of the distinguishing DGGE bands 

Table 6.8 shows the microorganisms found in Genbank, whose sequences most closely 

matched those of the distinguishing DGGE bands. All the nucleotide sequences of the 

distinguishing bands blast searched in Genbank are in Appendix 5, A6. 4. Within the roots 

and rhizosphere of wheat plants grown in soils differing in their suppressiveness, there 

were four, five, five and seven distinguishing genera for the respective microbial groups, 

bacterial, fungal, actinomycetes and ascomycetes. In general, the dominating 

distinguishing bacterial genus was Pseudomonas, which was most common in the roots 

and rhizosphere of plants from specific suppressive soil, H3 (S). The genus, Penicillium, 

dominated among the distinguishing bands in the fungal DGGE profiles, while in the 

actinomycete DGGE profiles, most of the distinguishing bands belonged to the genus, 

Streptomyces. The remaining distinguishing bands from the ascomycete DGGE profiles 

were made up of various genera (Table 6.8). 

The group of three suppressive soils (i.e. H1, H3 and M2) had six distinguishing bands in 

common, which were only present in the roots and rhizosphere of plants from these soils. 

Their sequences matched Streptomyces bingchengensis, Terrabacter sp., Niocardioides 

sp., Fusarium lateritium, Microdochium bolleyi and an uncultured fungal clone, whose 

next closest matched relative was Mortierella elongata.  

When the soils were grouped according to their suppressive mechanisms, the specific 

suppressive soils, H1 and H3, shared two distinguishing microorganisms, Nocardioides 

oleivorans and Gibberella zeae. The sequences from the four distinguishing bands 

generated only in H3 soils, were identified as Pseudomonas putida, P. fluorescens, and 

Penicillium echinulatum and P. allii. As for the general suppressive soil, M2, sequences of 

the distinguishing bands matched those of Penicillium echinulatum. However, as soil H3 

(S) also shared P. echinulatum as one of its distinguishing microorganisms, P. 

echinulatum, was not unique to soil M2 (G). Soil H1 did not produce any bands that would 

distinguish it from the other soils.  

The similarity between the band profiles of soils H15 (C) and P7 (C/S) was largely due to 

five bands, which represented mainly actinomycetes. The nucleotide sequences of these 

bands, which were found only in these two soils, matched those of Glycomyces sp. 

Streptomyces sp., Actinosynnema violaceoruber, Hongia sp. and Actinokineospora 

diospyrosa.  
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Table 6.8  Identities of microorganisms, indicated by matching Genbank database 

sequences to the sequences derived from the distinguishing bands generated on the 

DGGE profiles specific for the bacterial, fungal, actinomycete and ascomycete rDNA. 

DGGE band no. Present in soil
1
Mechanism of  

suppression

2
Most closely related microbial 

sequence

Sequence 

similarity 

(%) 

Accession no. 

Bacterial 16S

12 H3 S Pseudomonas putida 100 DQ48475.1

13 H3 S Pseudomonas fluorescens 100 EF672049.1

19 H1 and H3 S Nocardioides oleivorans 94 AJ698724.1

33 H1, H3 and M2 S, S and G Streptomyces bingchengensis 100 DQ449953.1

36 H1, H3 and M2 S, S and G Terrabacter sp. 95 AF408951.1

37 H1, H3 and M2 S, S and G Nocardioides  sp. 96 EF466121.1

Fungal ITS

6 M2 G Penicillium echinulatum 100 AJ246146

9 H1, H3 and M2 S, S and G Fusarium lateritium 100 AF310979

12 H1, H3 and M2 S, S and G
Uncultured soil fungus clone / 

Mortierella elongata
96 / 91

DQ420868.1 / 

AJ878534.1

25 H1 and H3 S Gibberella zeae 100 AB250414.1

33 H3 S Penicillium echinulatum 100 AJ246146

34 H3 S Penicillium allii 99 AF218787

35 H15, M2, P7 C, G and C/S Pleospora herbarum 97 DQ491516.1

Actinomycetes

10 H15 and P7 C and C/S Glycomyces  sp. 98 EF212018.1

22 H15 and P7 C and C/S Streptomyces  sp. 100 EU216730.1

24 H15, M2 and P7 C, G and C/S Streptomyces  globosus 99 EU196532.1

26 H15 and P7 C and C/S Actinosynnema violaceoruber 100 AB28426.1

29 H15 and P7 C and C/S Hongia  sp. 100 AB124389.1

30 H15 and P7 C and C/S Actinokineospora diospyrosa 100 AF114797.1

Ascomycetes

1 M2 G Penicillium echinulatum 98 AF033473.1

17 H1 and H3 S Gibberella zeae 99 AY188924.1

21 H1, H3 and M2 S, S and G Microdochium bolleyi 99 AJ279454.1

26 H15, M2 and P7 C, G and C/S Penicillium dipodomyicola 100 DQ339570.1

1
Mechanism of suppression represented by the soil

S Specific suppression

G General suppression

C Conducive

C/S A conducive soil, which was able to cause decrease in disease levels due to inoculation, 

when a very small amout of it was transferred into a sterile soil.
2
In the case where the closest match was from an unidentified / uncultured microorganism, 

 the next closest known microorganism is also listed.  

 

6.5 Discussion 

Many studies have indicated that the onset of TAD is attributed to the microbial activities 

in soils (Rovira & Wildermuth 1981; Weller et al. 2002; Cook 2003). In previous studies 

associated with this research programme (Chapter 5), high levels of biological involvement 

were indicated in New Zealand suppressive soils, suggesting the possible involvement of 

microorganisms in the suppressiveness. The present study used the molecular method of 

PCR-DGGE to compare the microbial communities in the rhizosphere and roots of wheat 

plants grown in the soils, either suppressive or conducive to take-all. From these 
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comparisons, key microorganisms that might be responsible for the suppression were 

identified. Primer sets and PCR conditions were successfully employed to amplify the 

targeted regions specific for the four respective microbial groups, bacteria (16S), fungi 

(ITS), actinomycetes (16S) and ascomycetes (ITS). The band data generated by DGGE, 

were highly reproducible between replicates, demonstrating the suitability of using the 

additional pot replications set up within the pot assays into the current study.  

In this study, the total number of bands, which represented the numbers of 

microorganisms, varied largely between soils with different types of suppression (Table 

6.6). This suggests that soil suppressiveness is not dependent on the diversity of 

microorganisms in each microbial community structure, but on the presence of specific 

groups of microorganisms. Past studies using conventional isolation techniques to compare 

the microbial populations in TAD and conducive soils, have had varying results. For 

instance, over a 3 y experiment, Bateman & Hornby (1999) found no clear relationships 

between the total number of soil fungal species or abundance of individual fungal species, 

and the differing successive wheat cropping histories (1, 3, 9 and 39 y). Pope (1972) 

reported that populations in bulk soils were 60-75% greater in TAD soils than in the non-

decline soils for bacteria and 12% greater for actinomycetes, but similar for the fungal 

population. He therefore concluded that specific suppression was due principally to 

bacteria and general suppression to fungi. Vojinović (1972; 1973) (in: Baker & Cook 

1974) on the other hand, found no difference in the total numbers of microorganisms 

isolated from the bulk TAD and conducive soils. However, greater numbers of 

microorganisms were isolated from the roots of wheat plants grown in TAD soils, with 

actinomycetes and bacteria being isolated three times more often, than in the conducive 

soils. Of all the microorganisms they isolated, 33% of the actinomycetes, 1% of the 

bacteria and 10% of the fungi, tested effective in inhibiting the growth of Ggt in sterile 

conditions (i.e. in vitro), but they were less effective in non-sterile soil (in: Baker & Cook 

1974; Shipton 1975). These results suggest that some microflora in TAD soils, were able to 

antagonise and reduce the inoculum potential of Ggt, and that the antagonistic activity 

against the parasitic phase of the pathogen (i.e. in or on the roots), was relatively more 

important than that against the saprophytic phase (i.e. in the debris, which decomposed 

over time) (Shipton 1975). Given that Ggt infects only living roots (Cook 2003), and the 

development of TAD in wheat was disrupted when other susceptible hosts, such as Holcus 

lanatus, were grown as break crops (Hornby et al. 1998), it suggests that the antagonistic 
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microflora may be specific to wheat. Hence, all the above examples suggest that the 

microbial populations associated with TAD probably inhabit the rhizosphere/ roots of 

wheat.  

This study reports the first use of PCR-DGGE to investigate microbial communities in the 

rhizosphere/roots of wheat plants grown in soils with different take-all suppressiveness 

(specific and general suppressiveness), although it has been reported for investigations of 

bulk soils, which had been subjected to different cropping systems. For instance, Hiddink 

and co-workers (2005b) used DGGE to investigate the effects of growing single and mixed 

crops (brussels sprouts, barley and the mix of these crops, or triticale, white clover and the 

mix of these crops) in different field soils on the bacterial and fungal communities. Their 

results did not show any difference in the microbial diversities between soils grown with 

different crops in different locations. However, after conducting principal component 

analyses of the numbers of bands and intensity data for the bacterial and fungal 

communities, they were able to cluster the soils according to their location origins, 

suggesting that the types of microorganisms inhabiting the soils were specific to the 

soils/crops. However, as not all DNA templates amplify equally due to occurrence of 

anomalies with PCR (Garbeva et al. 2004), the results derived from the band intensity data 

in their study may be considered dubious. In a different study, Hiddink et al. (2005a) 

compared the bacterial communities and the suppressiveness to Ggt between organic and 

conventionally managed soils grown with barley, wheat or triticale. They found greater 

take-all suppression in organic soils grown with barley and wheat, than in the 

conventionally managed soils. Since the organic soils also had twice the microbial activity 

of the conventionally managed soils (by CO2 respiration assessments), and higher bacterial 

diversity (Shannon-Weaver index = 0.5), they postulated that the microbial populations in 

these soils might be responsible for the disease suppression. However, the authors did not 

specify the key microorganisms that might be responsible for the suppression. Collectively, 

both studies conducted by Hiddink et al. (2005a; 2005b) showed that the types of crops 

grown and locations of the fields, may influence the microbial diversity and activity in the 

soil.  

In the current study, the banding patterns, generated by DGGE, of soils H15 (C) and P7 

(C/S) were highly similar (Figure 6.1). This suggests that P7 was indeed conducive to take-

all despite its longer wheat cropping history (9 y) and expression in specific 
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suppressiveness, when a small amount of the soil was transferred into a sterile (γ-

irradiated) soil (to constitute 1% of the mixture), with added Ggt inoculum (Chapter 5). 

Furthermore, cluster (Figure 6.1) and principal component (2
nd

 component, Figure 6.2) 

analyses of the banding patterns of the four microbial groups (bacteria, fungi, 

actinomycetes and ascomycetes, respectively), clustered the soils into three distinctive 

groups according to their types of suppressiveness: specific suppressive soils (H1 and H3), 

general suppressive soil (M2) and conducive soils (H15 and P7). This implies that the 

microorganisms present in the rhizosphere/roots of wheat plants, are specific to soils of 

similar suppressive properties. It is, therefore, likely that they are associated with the take-

all suppressiveness and conduciveness of these soils.  

Some limitations are known to be specific for DGGE. For instance, one rDNA sequence 

may produce two or more bands on the gel due to heterogeneities of some rDNA 

sequences (Nübel et al. 1996) (in: Heuer & Smalla 1997). Alternatively, similar 

electrophoretic mobilities or only one band, may be observed for closely related and even 

for phylogenetically unrelated rDNA sequences of different microbial species (Heuer & 

Smalla 1997; Kowalchuk et al. 2003). These limitations were also encountered in the 

current study. The effects caused by the latter problem were reduced by randomly picking 

out five clones for re-amplification and sequencing. However, not all bands gave the same 

identity for all five clones. Therefore, the most occurring identities of the five were 

recorded (Section 6.3.2.5). Results might have been more reliable if more clones (e.g. 10) 

were selected for amplification and sequencing, which was not possible in the current 

study due to financial and time constraints. The DGGE method used in the current study 

was capable of profiling the microbial communities in the root/rhizosphere of plants grown 

in soils exhibiting different suppressive activities. However, there was no guarantee that all 

the distinguishing microorganisms present in the root/rhizosphere samples were detected 

by this method. In addition, the fungal and the bacterial primers yielded similar or fewer 

bands than the actinomycete and ascomycete primers for most of the five soils tested 

(Table 6.6), suggesting that either the ascomycetes or actinomycetes were most dominant 

in the rhizosphere/roots of wheat plants in these soils, or that the general fungal and 

bacterial primers were not as universal/sensitive as they should have been. Future 

experiments involving profiling the microbial community in the rhizosphere/roots of plants 

should use group-specific primers (e.g. those specific to oomycetes, basidiomyces, 

pseudomonads, and Streptomyces spp.) to discount the latter possibility. Another factor 
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which may have affected the specificity of the method is the short rDNA fragments (300-

550 bp) targeted by the primers used in this study. Short fragments are generally known to 

provide better resolution on the DGGE but yield less sequence information (Kowalchuk et 

al. 2003), although some authors have reported high quality DGGE resolution using DNA 

fragments in excess of 1 kb (Vainio & Hantula 2000). Due to the above limitations, the 

results obtained from DGGE should be interpreted with caution.  

In the current study, the clustering of the five soils into conducive (H15 and P7) and 

suppressive (H1, H3 and M2) soils was due, in part, to the presence of some distinguishing 

actinomycetes in the conducive soils, but not the suppressive soils (Table 6.8). This has 

ruled out the involvement of these actinomycetes, Glycomyces sp., Streptomyces sp., 

Actinosynnema violaceoruber, Hongia sp. and Actinokineospora diospyrosa, in the 

suppressiveness of TAD soils. With the exception of Streptomyces sp., there have been no 

reports on the interaction of these actinomycetes with Ggt. However, Actinosynnema sp. 

and Hongia sp. were consistently isolated from the roots of wheat plants grown in soils 

conducive to take-all in an Australian study investigating the molecular interactions of 

endophytic actinobacteria in wheat and arabidopsis (Conn 2005). The absence of most of 

these distinguishing actinobacteria (excluding Streptomyces sp.) in the suppressive soils 

also raised the question of whether these indigenous species could have inhibited the 

activities of microorganisms potentially responsible for suppressiveness, and thus the 

expression of TAD, in soil P7. Future studies, such as plate assays, could investigate their 

roles in inhibiting other antagonists isolated from the suppressive soils and in pot trial, 

when introduced into the suppressive soils. The presence of different species of 

Streptomyces in the rhizosphere and the roots of plants grown in all the five soils (Table 

6.8), suggests that this bacterium could be a common microorganism in the soils, and thus, 

may play no particular role in TAD. indeed, Coombs and co-workers (2004), showed that 

not all Streptomyces spp. are able to suppress Ggt. They screened 34 Streptomyces isolates 

for their anti-fungal activities against Ggt in a plate assay, and reported that only 64% of 

the Streptomyces isolates inhibited the growth of Ggt. Some Streptomyces spp. may even 

play a role in take-all conduciveness.  

In this study, the differentiation between the conducive soils (H1 and H15) and the 

suppressive soils (H1, H3 and M2), was also partly due to the presence of some other 

microorganisms, which were present in the suppressive soils (H1, H3 and M2), but not the 
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conducive soils (H15 and P7) (Table 6.8). This suggests that these microorganisms, which 

included Streptomyces bingchengensis, Terrabacter sp., Nocardioides sp., Fusarium 

lateritium, Microdochium bolleyi and an unidentified soil fungus (Table 6.8), could be 

responsible for the suppressiveness. The microorganisms, Streptomyces spp., Nocardiodes 

spp., and Microdochium bolleyi, have been shown to suppress Ggt in both plate and plant 

assays (Lascaris & Deacon 1991; Coombs & Franco 2003; Conn & Franco 2004). In 

Australia, Nocardiodes sp., S. argenteolus and S. caviscabies were demonstrated to control 

Ggt and reduce root infection by up to 25, 37 and 41%, respectively, in a pot assay using 

field soils (Coombs et al. 2004). In glasshouse trials conducted by Kirk & Deacon (1987b; 

Kirk & Deacon 1987a), Microdochium bolleyi, which is frequently isolated from the roots 

and stem bases of cereals and grasses (Lascaris & Deacon 1991), when used as a seed-

applied inoculum was able to control Ggt and reduce take-all. However, Deacon & Berry 

(1993) concluded that effective control of take-all only occurred if the population of M. 

bolleyi greatly exceeded that of Ggt, and this was most likely when Ggt had to infect from 

a critically low food base (i.e. continuously fragmenting and decomposing crop residues).  

To date, there is no recorded evidence of Fusarium lateritium‟s capability in controlling 

Ggt, but the efficacy of F. lateritium as a biocontrol agent to other soil pathogens is widely 

documented. For instance, F. lateritium was demonstrated to reduce infection by 

Sclerotinia sclerotiorum in lettuce, by inhibiting ascospore germination in the soil (Sitepu 

& Wallace 1984), and to reduce infection of grapevine pruning wounds by Eutypa lata (Ho 

et al. 2005; John et al. 2005), by transforming the toxin, Eutypine, secreted by the 

pathogen, into a non-toxic form (Christen et al. 2005).  

The other two actinobacteria, Streptomyces bingchengensis and Terrabacter sp., have no 

previously reported activity against Ggt or any other soilborne pathogens. Streptomyces 

bingchengensis was identified in this study by matching with a partial nucleotide sequence 

submitted to Genbank from China, the only other identification (Gao et al. 2006). A 

Terrabacter sp. has also been identified from wheat roots using T-RFLP methods in 

Australia (Conn & Franco 2004; Conn 2005). In New Zealand, a Terrabacter sp. was 

isolated from soils contaminated with the insecticide 1, 1, 1-trichloro-2-2-bis (4-

chlorophenyl) ethane (DDT), once used extensively to control both agricultural pests and 

disease vectors, and was able to degrade the toxic residual compounds in the soil (Aislabie 

et al. 1999; Aislabie 2000).  
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In the current study, further differentiation of the suppressive soils (H1, H3 and M2) into 

specific and general suppressiveness (Figure 6.2), was partly due to the presence of some 

distinguishing microorganisms in the soils that had specific suppression (H1 and/or H3), 

but not in the soil that had general suppression (M2). The presence of the distinguishing 

microorganisms, Pseudomonas putida, P. fluorescens, Nocardioides oleivorans, 

Gibberella zeae and Penicillium allii in the specific suppressive soils, suggests that they 

could be responsible for the specific suppressiveness. However, the 94% sequence match 

of the bacterial DGGE band 19 to Nocardioides oleivorans has brought about the question 

of whether this percentage match was sufficient to claim the identity of the band.  

The antagonistic effects of Pseudomonas spp. on Ggt are widely documented. For instance 

P. fluorescens, P. aureofaciens and P. chloraphis have been reported to antagonise Ggt 

through the productions of the antibiotic, phenazin-1carboxylic acid (PC acid) and other 

metabolites (Thomashow & Weller 1988; Hornby et al. 1998; Delaney et al. 2001). 

Fluorescent Pseudomonas spp., such as P. putida, are also known to produce siderophores, 

which are high-affinity Fe
3+

 chelators that enhance microbial acquisition of iron (Fe) in Fe 

deficient environments (Scher & Baker 1982). For instance, Kloepper et al. (1980) 

inoculated a take-all conducive soil with Ggt and a fluorescent Pseudomonas sp. (isolated 

from a suppressive soil), or its siderophore pseudobactin, and were able to cause the soil to 

become suppressive. They postulated that the microbial siderophores efficiently chelated 

Fe
3+ 

in soils, making it unavailable to pathogens, thus inhibiting their growth. For this 

reason, amendment of the suppressive soils with exogenous Fe, could presumably convert 

them to conducive soils by repressing the production of siderophores (Kloepper et al. 

1980). When the ethylenediaminedi-O-hydroxyphenylacetic acid (EDDHA) or the ferrated 

form (FeEDDHA) of Pseudomonas putida (another fluorescent pseudomonad), which was 

isolated from a fusarium wilt suppressive soil, was added to a conducive soil, the soil 

became suppressive to the fusarium wilt pathogen (F. oxysporum f. sp. lini) of flax, 

cucumber and radish in plant assays (Scher & Baker 1982). Conversely, Brisbane & 

Rovira (1988) did not find any effect of the addition of the Fe chelators (such as 

FeNaEDTA) on the inhibition of Ggt by Pseudomonas spp. in tube assays, but they found 

that a yellow crystalline compound, most probably a PC acid (phenazin-1carboxylic acid), 

was responsible for the suppression of the fungus. In Switzerland, hydrogen cyanide 

(HCN), produced by a certain fluorescent Pseudomonas sp., was able to suppress take-all 

(Hornby et al. 1998). The effectiveness of PC acid depends on the soil and rhizosphere pH, 
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while the production of siderophores depends on the level of available iron in the soil, 

which is also dependent upon pH (Brisbane & Rovira 1988), and soil type (i.e. type of clay 

mineral in the soil) (Hornby et al. 1998). Another antibiotic, 2,-4-diacetylphloro-glucinol 

(DAPG or phl) produced by Pseudomonas fluorescens, has been implicated in the 

development of TAD (Thomashow & Weller 1988; Harrison et al. 1993; Raaijmakers & 

Weller 1998; Coombs et al. 2004). It seems that many fluorescent Pseudomonas spp. are 

capable of antagonising Ggt, but the mechanisms may vary with the species. In this study, 

attempts were made to amplify the 16S regions using primers [S-G-Psmn-028-a-S-20 (PS-

for) and S-G-Psmn-1258-a-A-18 (PS rev-GC)] specific for the Pseudomonas genus 

(Widmer et al. 1998), but these primers were not successful (results not presented). 

Studies on the interaction of Gibberella zeae and Ggt are restricted to work done by 

Wildermuth (1982a; 1982b). Wildermuth‟s studies (1982a; 1982b) have shown that similar 

levels of take-all suppression to that provided by the take-all suppressive soil (disease 

ratings = 2.1 and 2.3, respectively), could be obtained when a take-all suppressive soil 

(1%) was introduced into a fumigated soil prior to inoculation with G. zeae (0.5 g g
-1

 soil 

as colonised oat inoculum). The severity of root rot (caused by G. zeae) on wheat plants 

grown in the amended soil was also reduced (disease rating decreased from 4.8 to 1.8). The 

author hypothesised that the specific suppression in the introduced soil inhibited the 

pathogenicity of G. zeae resulting in reduced head blight on plants. As there has been no 

reported antagonistic activity of G. zeae against Ggt or any other soilborne pathogens, the 

role of G. zeae in the specific suppressiveness of TAD soil is therefore unknown. In 

addition, at the time of Wildermuth studies (1982a; 1982b), G. zeae was known to be the 

teleomorph of Fusarium graminearum, a causal agent of fusarium head blight and 

fusarium crown rot. Since then, a different species of Fusarium, pseudograminearum, was 

identified to be the causal agent of fusarium crown rot. Hence, it was highly probable that 

the G. zeae, which Wildermuth (1982a; 1982b) was referring to, was actually F. 

pseudograminearum. Future work will have to investigate the interaction between G. zeae 

and Ggt in a plate assay and a pot trial. 

In vitro antagonism to Ggt has been demonstrated by many Penicillium spp. isolated from 

wheat soils (Sivasithamparam & Parker 1980; Dewan & Sivasithamparam 1988; Hornby et 

al. 1998), but this has not been reported specifically for the two Penicillium spp. (P. 

echinulatum and P. allii) identified in this study (Table 6.8). Both bands 6 (from M2) and 
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33 (from H3) on the fungal DGGE gel matched P. echinulatum, indicating that two 

migratory positions are possible for this fungus. According to Kisand & Wikner (2003), it 

is possible that a single DNA sequence (individual microorganism) can have more than 

one migration point on a DGGE gel (i.e. having multiple melting domains). As a result, 

several bands can be generated from a single sequence. Since soils H3 (S) and M2 (G) 

shared Penicillium echinulatum as a distinguishing microorganisms, it was not unique to 

soil M2 (G). This suggests that the general suppressive soil, M2, had no distinguishing 

microorganisms that would differentiate it from the specific suppressive soils. 

The molecular method, DGGE, used in this study was able to characterise the microbial 

populations in the rhizosphere and the roots of plants grown in soils of different 

suppressiveness. The five wheat soils representing different take-all suppressiveness were 

clustered into conducive and suppressive types, with the latter being further clustered into 

specific and general suppressive soils. The clustering was not dependent on the microbial 

diversities in the rhizosphere and the roots, but was due to the presence of specific 

microorganisms. The actinomycetes (Glycomyces sp. Streptomyces sp., Actinosynnema 

violaceoruber, Hongia sp. and Actinokineospora diospyrosa) were associated with take-all 

conduciveness, but no specific groups were associated with take-all suppressiveness. While 

some actinomycetes (Streptomyces bingchengensis, Terrabacter sp. and Nocardioides sp.) 

and ascomycetes (Fusarium lateritium and Microdochium bolleyi) were shown to associate 

with suppressive soils in general, others, such as the proteobacteria (Pseudomonas putida 

and P. fluorescens), an actinomycete (Nocardioides oleivorans), ascomycete (Gibberella 

zeae), and basidiomycete (Penicillium allii), were unique in the specific suppressiveness. 

In contrast, the general suppressive soil had no distinguishing microorganism that would 

differentiate it from the specific suppressive soils. As nearly all the distinguishing 

microorganisms identified in this study, have been shown to control Ggt or other soilborne 

pathogens to some degree, they are likely to be associated to the suppressiveness of these 

soils to take-all. 

6.6 Acknowledgement 

The author would like to thank Ms Ruth Butler for guidance and assistance in the statistical 

analyses of the data in this study. 



 167 

6.7 References 

Aberra, M.B.; Seah, S.; Sivasithamparam, K. 1998. Suppression of the take-all fungus 

(Gaeumannomyces graminis var. tritici) by a sterile red fungus through induced 

resistance in wheat (Triticum aestivum) seedling roots. Soil Biology & Biochemistry 

30 (10/11): 1457-1461. 

Aislabie, J. 2000. Soil bacterium to degrade DDE. Soil Horizons. Palmerston North, N.Z. 

Landcare Research Ltd. Available: 

http://www.landcare.cri.nz/information_services/publications/newsletters/soilhoriz

ons/ [7
th

 Jan/2008]. 

Aislabie, J.; Davison, A.D.; Boul, H.L.; Franzmann, P.D.; Jardine, D.R.; Karuso, P. 1999. 

Isolation of Terrabacter sp strain DDE-1, which metabolizes 1,1-dichloro-2,2-

bis(4-chlorophenyl)ethylene when induced with biphenyl. Applied and 

Environmental Microbiology 65 (12): 5607-5611. 

Andrade, O.A.; Mathre, D.E.; Sands, D.C. 1994a. Suppression of Gaeumannomyces 

graminis var. tritici in Montana soils and its transferability between soils. Soil 

Biology & Biochemistry 26 (3): 397-402. 

Andrade, O.A.; Mathre, D.E.; Sands, D.C. 1994b. Natural suppression of take-all disease 

of wheat in Montana soils. Plant and Soil 164 (1): 9-18. 

Baker, K.F.; Cook, R.J. 1974. Biological control of plant pathogens. Freeman., San 

Francisco. 433 p. 

Bateman, G.L.; Hornby, D. 1999. Comparison of natural and artificial epidemics of take-

all in sequences of winter wheat crops. Annals of Applied Biology 135 (3): 555-

571. 

Botelho, G.R.; Mendonca-Hagler, L.C. 2006. Fluorescent pseudomonads associated with 

the rhizosphere of crops - An overview. Brazilian Journal of Microbiology 37 (4): 

401-416. 

Bridge, P.; Spooner, B. 2001. Soil fungi: diversity and detection. Plant and Soil 232 (1-2): 

147-154. 

Brisbane, P.G.; Rovira, A.D. 1988. Mechanisms of inhibition of Gaeumannomyces 

graminis var. tritici by fluorescent pseudomonads. Plant Pathology 37 (1): 104-

111. 

Christen, D.; Tharin, M.; Perrin-Cherioux, S.; Abou-Mansour, E.; Tabacchi, R.; Defago, G. 

2005. Transformation of Eutypa dieback and Esca disease pathogen toxins by 

antagonistic fungal strains reveals a second detoxification pathway not present in 

Vitis vinifera. Journal of Agricultural and Food Chemistry 53 (18): 7043-7051. 

Conn, V.M. 2005. Molecular interactions of endophytic actinobacteria in wheat and 

arabidopsis. PhD Thesis, Department of Medical Biotechnology.  Flinder 

University, Adelaide. 283 p. 

http://www.landcare.cri.nz/information_services/publications/newsletters/soilhorizons/
http://www.landcare.cri.nz/information_services/publications/newsletters/soilhorizons/


 168 

Conn, V.M.; Franco, C.M.M. 2004. Effect of microbial inoculants on the indigenous 

actinobacterial endophyte population in the roots of wheat as determined by 

terminal restriction fragment length polymorphism. Applied and Environmental 

Microbiology 70 (11): 6407-6413. 

Cook, R.J. 2003. Take-all of wheat. Physiological and Molecular Plant Pathology 62 (2): 

73-86. 

Cook, R.J.; Baker, K.F. 1983. The nature and practice of biological control of plant 

pathogens. American Phytopathological Society, St. Paul, Minnesota USA. 539 pp. 

p. 

Cook, R.J.; Rovira, A.D. 1976. The role of bacteria in the biological control of 

Gaeumannomyces graminis by suppressive soils. Soil Biology & Biochemistry 8: 

269-273. 

Coombs, J.T.; Franco, C.M.M. 2003. Isolation and identification of actinobacteria from 

surface-sterilized wheat roots. Applied and Environmental Microbiology 69 (9): 

5603-5608. 

Coombs, J.T.; Michelsen, P.P.; Franco, C.M.M. 2004. Evaluation of endophytic 

actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. 

Biological Control 29 (3): 359-366. 

Deacon, J.W. 1976. Biological control of the take-all fungus, Gaeumannomyces graminis, 

by Phialophora radicicola and similar fungi. Soil Biology & Biochemistry 8 (4): 

275-283. 

Deacon, J.W.; Berry, L.A. 1993. Biocontrol of soil-borne plant pathogens: concepts and 

their application. Pesticide Science 37 (4): 417-426. 

Delaney, S.M.; Mavrodi, D.V.; Bonsall, R.F.; Thomashow, L.S. 2001. phzO, a gene for 

biosynthesis of 2-hydrolyated phenazine compounds in Pseudomonas aureofaciens 

30-84. Journal of Bacteriology 183 (1): 318-327. 

Dewan, M.M.; Sivasithamparam, K. 1988. Occurrence of species of Aspergillus and 

Penicillium in roots of wheat and ryegrass and their effects on root rot caused by 

Gaeumannomyces graminis var. tritici. Australian Journal of Botany 36 (6): 701-

710. 

Duffy, B.K.; Simon, A.; Weller, D.M. 1996. Combination of Trichoderma koningii with 

fluorescent Pseudomonas for control of take-all on wheat. Phytopathology 86 (2): 

188-194. 

Dyke, G.V.; Slope, D.B. 1978. Effects of previous legume and oat crops on grain yield and 

take-all in spring barley. Journal of Agricultural Science, UK 91 (2): 443-451. 

Gao, A.; Wang, X.; Xiang, W.; Gao, J.; Wang, Q. 2006. Selection and identification of an 

actinomycete producing high active antibiotics against acarine. NCBI Nucleotide 

data base. Available: 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=91178060. [4
th 

Jan/2008]. 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=91178060


 169 

Garbeva, P.; van Veen, J.A.; van Elsas, J.D. 2004. Microbial Diversity in Soil: Selection of 

Microbial Populations by Plant and Soil Type and Implications for Disease 

Suppressiveness. Annual Review of Phytopathology 42: 243-270. 

Gardes, M.; Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes - 

application to the identification of mycorrhizae and rusts. Molecular Ecology 2 (2): 

113-118. 

Gerlagh, M. 1968. Introduction of Ophiobolus graminis into new polders and its decline. 

Netherlands Journal of Plant Pathology 74 (Supplement 2): 1-97. 

Gobat, J.-M.; Aragno, M.; Mattey, W. 2004. The living soil: Fundamentals of soil science 

and soil biology. Science Publishers, Inc., UK. 626 p. 

Graham, J.H.; Mitchell, D.J. 1999. Biological control of soilborne plant pathogens and 

nematodes. In: Principles and applications of soil microbiology. Sylvia, D.M.; 

Fuhrmann, J.J.; Hartel, P.G.; Zuberer, D.A. ed. Prentice Hall, New Jersey. Pp. 427-

446. 

Harrison, L.A.; Letendre, L.; Kovacevich, P.; Pierson, E.; Weller, D. 1993. Purification of 

an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a 

biocontrol agent, Pseudomonas aureofaciens. Soil Biology & Biochemistry 25 (2): 

215-221. 

Hawksworth, D.L. 1991. The fungal dimension of biodiversity: magnitude, significance, 

and conservation. Mycological Research 95: 641-655. 

Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E.M.H. 1997. Analysis of 

actinomycete communities by specific amplification of genes encoding 16S rRNA 

and gel-electrophoretic separation in denaturing gradients. Applied and 

Environmental Microbiology 63 (8): 3233-3241. 

Heuer, H.; Smalla, K. 1997. Application of denaturing gradient gel electrophoresis and 

temperature gradient gel electrophoresis for studying soil microbial communities. 

In: Modern soil microbiology. Elsas, J.D.v.; Trevors, J.T.; Wellington, E.M.H. ed. 

Marcel Dekker, Inc., New York. Pp. 353-373. 

Heuer, H.; Wieland, G.; Schonfeld, J.; Schonwalder, A.; Gomes, N.C.M.; Smalla, K. 2001. 

Bacterial community profiling using DGGE or TGGE analysis. In: Environmental 

Molecular Microbiology : Protocols and Applications. Horizon Scientific Press, 

Wymondham. Pp. 177-190. 

Hiddink, G.A.; Bruggen, A.H.C.v.; Termorshuizen, A.J.; Raaijmakers, J.M.; Semenov, 

A.V. 2005a. Effect of organic management of soils on suppressiveness to 

Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas 

fluorescens. European Journal of Plant Pathology 113 (4): 417-435. 

Hiddink, G.A.; Termorshuizen, A.J.; Raaijmakers, J.M.; Bruggen, A.H.C.v. 2005b. Effect 

of mixed and single crops on disease suppressiveness of soils. Phytopathology 95 

(11): 1325-1332. 



 170 

Ho, M.A.; Squire, L.M.; Sabeh, N.C.; Giles, D.K.; VanderGheynst, J.S. 2005. Design and 

evaluation of a grapevine pruner for biofungicide application. Bioresource 

Technology 96 (8): 963-968. 

Hornby, D.; Bateman, G.L.; Gutteridge, R.J.; Ward, E.; Yarham, D.J. 1998. Take-all 

disease of cereals: A regional perspective. CAB International, UK. 384 p. 

Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. 

2007. Soil health through soil disease suppression: Which strategy from descriptors 

to indicators? Soil Biology & Biochemistry 39 (1): 1-23. 

John, S.; Wicks, T.J.; Hunt, J.S.; Lorimer, M.F.; Oakey, H.; Scott, E.S. 2005. Protection of 

grapevine pruning wounds from infection by Eutypa lata using Trichoderma 

harzianum and Fusarium lateritium. Australasian Plant Pathology 34 (4): 569-575. 

Kim, D.; Cook, R.J.; Weller, D.M. 1997. Bacillus sp. L324-92 for biological control of 

three root diseases of wheat grown with reduced tillage. Phytopathology 87 (5): 

551-558. 

Kirk, J.J.; Deacon, J.W. 1987a. Invasion of naturally senescing root cortices of cereal and 

grass seedlings by Microdochium bolleyi. Plant and Soil 98 (2): 239-246. 

Kirk, J.J.; Deacon, J.W. 1987b. Control of the take-all fungus by Microdochium bolleyi, 

and interactions involving M. bolleyi, Phialophora graminicola and Periconia 

macrospinosa on cereal roots. Plant and Soil 98 (2): 231-237. 

Kirk, J.L.; Beaudette, L.A.; Hart, M.; Moutoglis, P.; Khironomos, J.N.; Lee, H.; Trevors, 

J.T. 2004. Methods of studying soil microbial diversity. Journal of Microbiological 

Methods 58 (2): 169-188. 

Kisand, V.; Wikner, J. 2003. Limited resolution of 16S rDNA DGGE caused by melting 

properties and closely related DNA sequences. Journal of Microbiological Methods 

54 (2): 183-191. 

Kloepper, J.W.; Leong, J.; Teintze, M.; Schroth, M. 1980. Pseudomonas siderophores: A 

mechanism explaining disease-suppressive soils. Current Microbiology 4 (5): 317-

320. 

Kowalchuk, G.A.; Os, G.J.; Aartrijk, J.; Veen, J.A. 2003. Microbial community responses 

to disease management soil treatments used in flower bulb cultivation. Biology and 

Fertility of Soils 37 (1): 55-63. 

Lascaris, D.; Deacon, J.W. 1991. Colonization of wheat roots from seed-applied spores of 

Idriella (Microdochium) bolleyi: a biocontrol agent of take-all. Biocontrol Science 

and Technology 1 (3): 229-240. 

Lemanceau, P.; Corberand, T.; Gardan, L.; Latour, X.; Laguerre, G.; Boeufgras, J.M.; 

Alabouvette, C. 1995. Effects of two plant species, flax (Linum usitatissinum L.) 

and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne 

populations of fluorescent pseudomonads. Applied and Environmental 

Microbiology 61 (3): 1004-1012. 



 171 

Lynch, J.M. 1990. The rhizosphere. John Wiley & Sons Ltd., Chichester, West Sussex, 

England. 458 p. 

Manly, B.F.J. 2005. Multivariate statistical methods : a primer. 3rd Edition. 3rd. Chapman 

and Hall, London. 215 p. 

Mazzola, M. 2004. Assessment and Management of Soil Microbial Community Structure 

for Disease Suppression. Annual Review of Phytopathology 42: 35-59. 

McSpadden Gardener, B.B.; Weller, D.M. 2001. Changes in Populations of Rhizosphere 

Bacteria Associated with Take-All Disease of Wheat. Applied and Environmental 

Microbiology 67 (10): 4414-4425. 

Muyzer, G.; Waal, E.C.d.; Uitterlinden, A.G. 1993. Profiling of complex microbial 

populations by denaturing gradient gel electrophoresis analysis of polymerase chain 

reaction-amplified genes coding fro 16S rRNA. Applied and Environmental 

Microbiology 59 (3): 695-700. 

Nikolcheva, L.G.; Bärlocher, F. 2004. Taxon-specific fungal primers reveal unexpectedly 

high diversity during leaf decomposition in a stream. Mycological Progress 3 (1): 

41-49. 

Nübel, U.; Engelen, B.; Felske, A.; Snaidr, J.; Wieshuber, A.; Amann, R.I.; Ludwig, W.; 

Backhaus, H. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in 

Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. 

Journal of Bacteriology 178 (19): 5636-5643. 

O'Callaghan, M.; Gerard, E.M.; Heilig, G.H.J.; Zhang, H.; Jackson, T.A.; Glare, T.R. 

2003. Denaturing gradient gel electrophoresis - a tool for plant protection research. 

New Zealand Plant Protection, Proceedings of a conference, Chateau on the Park, 

Christchurch, New Zealand, 12-14 August 2003, Rotorua New Zealand. volume 56. 

Pp. 143-150. 

O'Callaghan, M.; Lorenz, N.; Gerard, E.M. 2006. Characterization of phylloplane and 

rhizosphere microbial populations using PCR and denaturing gradient gel 

electrophoresis (DGGE). Molecular approaches to soil, rhizosphere and plant 

microorganism analysis: 99-115. 

Pope, A.M.S. 1972. The decline phenomenon in take-all disease of wheat. PhD Thesis,  

University of Surrey, Guildford, England. 161 p. 

Raaijmakers, J.M.; Weller, D.M. 1998. Natural plant protection by 2,4-

diacetylphloroglucinol - Producing Pseudomonas spp. in take-all decline soils. 

Molecular Plant-Microbe Interactions 11 (2): 144-152. 

Raaijmakers, J.M.; Weller, D.M. 2001. Exploiting genotypic diversity of 2,4-

diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior 

root-colonizing P. fluorescens strain Q8r1-96. Applied and Environmental 

Microbiology 67 (6): 2545-2554. 



 172 

Raaijmakers, J.M.; Weller, D.M.; Thomashow, L.S. 1997. Frequency of antibiotic-

producing Pseudomonas spp. in natural environments. Applied and Environmental 

Microbiology 63 (3): 881-887. 

Rovira, A.D.; Wildermuth, G.B. 1981. The nature and mechanisms of suppression. In: 

Biology and control of take-all. Asher, M.J.C.; Shipton, P.J. ed. Academic Press 

Inc. (London) Ltd., London. Pp. 385-415. 

Russell, J.; Bulman, S. 2005. The liverwort Marchantia foliacea forms a specialized 

symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytologist 

165 (2): 567-579. 

Sarniguet, A.; Lucas, P. 1992. Evaluation of populations of fluorescent pseudomonads 

related to decline of take-all patch on turfgrass. Plant and Soil 145: 11-15. 

Scher, F.M.; Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator 

on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 

72 (12): 1567-1573. 

Shankar, M.; Kurtboke, D.I.; Gillespie-Sasse, L.M.J.; Rowland, C.Y.; Sivasithamparam, K. 

1994. Possible roles of competition for thiamine, production of inhibitory 

compounds, and hyphal interactions in suppression of the take-all fungus by a 

sterile red fungus. Canadian Journal of Microbiology 40 (6): 478-483. 

Shipton, P.J. 1975. Take-all decline during cereal monoculture. In: Biology and control of 

soil-borne plant pathogens : Third International Symposium on Factors 

Determining the Behavior of Plant Pathogens in Soil, held at University of 

Minnesota, Minneapolis, 5-12 September 1973, in conjunction with the Second 

International Congress of Plant Pathology Bruehl, G.W. ed. American 

Phytopathological Society, St. Paul, Minn. Pp. 137-144. 

Shipton, P.J.; Cook, R.J.; Sitton, J.W. 1973. Occurrence and transfer of a biological factor 

in soil that suppresses take-all of wheat in Eastern Washington. Phytopathology 63 

(4): 511-517. 

Simon, A. 1989. Biological control of take-all of wheat by Trichoderma koningii under 

controlled environmental conditions. Soil Biology & Biochemistry 21 (2): 323-326. 

Sitepu, D.; Wallace, H.R. 1984. Biological-control of Sclerotinia sclerotiorum in luttuce 

by Fusarium lateritium. Australian Journal of Experimental Agriculture 24 (125): 

272-276. 

Sivasithamparam, K.; Parker, C.A. 1978. Effects of certain isolates of bacteria and 

actinomycetes on Gaeumannomyces graminis var. tritici and take-all of wheat. 

Australian Journal of Botany 26 (6): 773-782. 

Sivasithamparam, K.; Parker, C.A. 1980. Interaction of certain isolates of soil fungi with 

Gaeumannomyces graminis var. tritici on agar media. Australian Journal of Botany 

28 (4): 411-419. 



 173 

Thomashow, L.S.; Weller, D.M. 1988. Role of Phenazine antibiotic from Pseudomonas 

fluorescens in biological control of Gaeumannomyces graminis var. tritici. Journal 

of Bacteriology 170 (8): 3499-3508. 

Vainio, E.J.; Hantula, J. 2000. Direct analysis of wood-inhabiting fungi using denaturing 

gradient gel electrophoresis of amplified ribosomal DNA. Mycological Research 

104: 927-936. 

Vojinović, Ž.D. 1972. Antagonists from soil and rhizosphere to phytopathogens. Final 

technical report. Institute of soil science, Beograd, Yugoslavia. 130 p. 

Vojinović, Ž.D. 1973. The influence of micro-organisms following Ophiobolus graminis 

Sacc. on its further pathogenicity. EPPO Bulletin (No. 9): 91-101. 

Weller, D.M. 1983. Colonization of wheat roots by a fluorescent pseudomonad suppressive 

to take-all. Phytopathology 73 (11): 1548-1553. 

Weller, D.M.; Cook, R.J. 1983. Suppression of take-all of wheat by seed treatments with 

fluorescent pseudomonads. Phytopathology 73 (3): 463-469. 

Weller, D.M.; Howie, W.J.; Cook, R.J. 1988. Relationship between in vitro inhibition of 

Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by 

fluorescent pseudomonads. Phytopathology 78 (8): 1094-1100. 

Weller, D.M.; Raaijmakers, J.M.; Gardener, B.B.M.; Thomashow, L.S. 2002. Microbial 

populations responsible for specific soil suppressiveness to plant pathogens. Annual 

Review of Phytopathology 40: 309-348. 

White, T.J.; Bruns, T.; Lee, S.; Tayler, J. 1990. Amplification and direct sequencing of 

fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: A guide to 

methods and applications. Innis, M.A.; Gelfand, D.H.; Sninsky, J.J.; White, T.J. ed. 

Academic Press Inc., California. Pp. 315-322. 

Widmer, F.; Seidler, R.J.; Gillevet, P.M.; Watrud, L.S.; Giovanni, G.D.D. 1998. A Highly 

Selective PCR Protocol for Detecting 16S rRNA Genes of the Genus Pseudomonas 

(Sensu Stricto) in Environmental Samples. Applied and Environmental 

Microbiology 64: 2545-2553. 

Wildermuth, G.B. 1982a. Soils suppressive to Gaeumannomyces graminis var. tritici: 

induction by other fungi. Soil Biology & Biochemistry 14 (6): 569-573. 

Wildermuth, G.B. 1982b. Soils suppressive to Gaeumannomyces graminis var. tritici: 

effects on other fungi. Soil Biology & Biochemistry 14 (6): 561-567. 

Wong, P.T.W.; Mead, J.A.; Holley, M.P. 1996. Enhanced field control of wheat take-all 

using cold tolerant isolates of Gaeumannomyces graminis var. graminis and 

Phialophora sp. (lobed hyphopodia). Plant Pathology 45 (2): 285-293. 

Zogg, H.; Jäggi, W. 1974. Studies on the biological soil disinfection. VII. Contribution to 

the take-all decline (Gaeumannomyces graminis) imitated by means of laboratory 

trials and some of its possible mechanisms. Phytopathologische Zeitschrift 81 (2): 

160-169. 



 174 

Zriba, N.; Sherwood, J.E.; Mathre, D.E. 1999. Characterization and effectiveness of 

Phialophora spp. isolated from a Montana take-all suppressive soil in controlling 

take-all disease of wheat. Canadian Journal of Plant Pathology-Review 21 (2): 

110-118. 

 

 



 175 

Chapter 7   
Attempted induction of soil suppressiveness to take-all in 

a pot experiment  

7.1 Abstract 

The complex interaction between take-all decline (TAD) and Pseudomonas spp. has been 

widely reported, but specific information on their interaction with the development of TAD 

during successive wheat monoculture and soil nutrition is limited. This research was 

undertaken to induce TAD under controlled conditions by growing wheat successively 

seven times to simulate seven growth seasons, in bins of soils naturally infested with the 

pathogen, Gaeumannomyces graminis var. tritici (Ggt). The interaction between disease 

incidence, concentrations of the pathogen‟s DNA, the numbers of P. fluorescens and some 

physico-chemical properties of the soils was also investigated during the course of the 

study. The results showed fluctuations in disease incidence (30-55%) and Ggt DNA 

concentrations (45-289 pg g
-1

 soil) with successive wheat crops (P<0.005 and <0.001, 

respectively), indicating unsuccessful induction of TAD, possibly due to the varying Ggt 

inoculum concentrations and other conditions between the soils. However, the strong 

correlation between disease incidence and Ggt DNA concentrations (r = 0.88) from 

seasons 1-5 until nutrient solution was added before season 6, indicated that soil nutrition 

might play a role in the control of take-all. When the mean available N and Olsen P 

concentrations were at their maxima (127 kg g
-1

 soil and 78 mg L
-1

 soil, respectively) at 

season 6, disease incidence declined from 57 to 35% in all the soils, while Ggt DNA 

concentration remained high (289 pg g
-1

 soil). Although both nutrients could have reduced 

incidence of the disease by promoting root growth, the available N could also have 

enhanced the survival of the pathogen. The numbers of P. fluorescens increased from 4.14 

to 6.92 (log10) CFU g
-1

 roots with increasing successive wheat crops (P<0.001), but was 

not correlated to disease incidence and so may have been a natural event. More work is 

required to validate this and to investigate the tolerance of the bacteria to Na in the soil.  

Keywords: Gaeumannomyces graminis var. tritici, take-all, take-all decline, Pseudomonas 

fluorescens, soil nutrition 
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7.2 Introduction 

Take-all decline (TAD), a natural process by which soil becomes suppressive to take-all, 

which is caused by Gaeumannomyces graminis (Sacc.) von Arx & Olivier var. tritici 

Walker (Ggt), has been observed worldwide when wheat monoculture occurs continuously 

for 4-6 y (McSpadden Gardener & Weller 2001; Mazzola 2002). It begins, in the season 

after a severe outbreak of the disease, usually during the second or third year of 

monoculture, with a spontaneous decline in disease severity that results in increased yield 

(Weller et al. 2002). Many studies have provided evidence that this suppressiveness is 

attributed to the increased populations and activities of the 2,4-diacetylphloroglucinol (2,4-

DAPG)-producing fluorescent pseudomonads (Cook & Rovira 1976; Simon & 

Sivasithamparam 1989; Raaijmakers et al. 1997; Raaijmakers & Weller 1998; Raaijmakers 

et al. 1999; McSpadden Gardener et al. 2000; McSpadden Gardener & Weller 2001; 

Mazzola 2002). Since an investigation using denaturing gradient gel electrophoresis 

techniques (Chapter 6) found two Pseudomonas spp. including P. fluorescens in a New 

Zealand TAD soil, this study investigated natural incidence of take-all and the populations 

of P. fluorescens in soils that had increasing seasons of successive wheat cropping.  

Soil suppressiveness is also known to be affected by some physico-chemical properties, 

such as nutrition and soil pH, which may act to favour the activity of a specific antagonist 

to the pathogen (Höper & Alabouvette 1996). In pure culture, Ggt is capable of growth 

over a wide range of pH values, with pH 6-7 being optimum for its growth 

(Sivasithamparam & Parker 1981). However, in natural soil conditions, severe take-all has 

been reported in both alkaline (Yarham 1981; Reis et al. 1983) and acidic (Hornby et al. 

1998) soils, at pH levels above and below the optimal for growth of the pathogen. This 

could be due to the great variability amongst strains of Ggt and their tolerance of pH 

ranges (Sivasithamparam & Parker 1981).  

The influence of nutrition on take-all has been reviewed by Huber (1981; 1989) and 

Hornby (1985). They reported that disease incidence was reduced by high concentrations 

of N, P, K (in the form of potassium chloride), S, Mg and Cl, while Ca and K (in the form 

of potassium nitrate) were reported to increase disease severity. However, the availability 

of these nutrients to the plants depends on soil pH. For instance, P is maximally available 

at pH 6.5 and less available above and below this pH (Cook 1981); liming has been 

reported to increase take-all if it increases the pH beyond the optimal range, and to 
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predispose the host to nutrient deficiencies for elements such as Cu, Mn, Fe, Zn and Mg, 

which become less available in alkaline conditions.  

This paper describes an attempt to induce TAD experimentally by growing wheat 

successively in soils naturally infested with Ggt within a controlled environment, and to 

investigate the complex interaction between take-all, populations of P. fluorescens, natural 

Ggt inoculum concentrations and some physico-chemical properties of the soils during the 

successive wheat crops.  

7.3 Materials and methods 

7.3.1 Soil sampling 

The four soils P2, P5, P6 and R1 were collected in Feb 2005 from fields with different 

wheat cropping histories, in the Methven and Ashburton regions, South Island, New 

Zealand. These fields, which had been cropped with 2-4 y of wheat, had high 

concentrations of natural Ggt DNA inoculum and were conducive to take-all, thus making 

the soils ideal for inducing TAD. About 40 L
 
of soil was collected from each field by 

sampling four soil blocks (10 cm × 10 cm × 10 cm each) from each of 10 sampling points. 

The 10 sampling points were spaced evenly within a 1 ha zone of the field along a „W‟ 

pattern (Van Elsas et al. 2002). Collected soils were processed and stored using the 

methods outlined in Chapter 3. Ggt DNA quantifications and other soil physico-chemical 

properties of all the soils were determined as in the Chapter 2 study. The site information, 

including cropping histories, soil types, Ggt DNA concentrations and the physico-chemical 

properties of the soils are shown in Tables 7.1 and 7.2 , respectively.  
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Table 7.1  Field locations, cropping histories and some properties of the soils used in the Experiment 1. 

2
0
0
0
/0

1

2
0
0
1
/0

2

2
0
0
2
/0

3

2
0
0
3
/0

4

2
0
0
4
/0

5

P2 S43°43.9′ E171°38.2′      Mayfield silt loam Medium loam W GS W W W 3 533 High 32.0 678

P5 S43°43.3′ E171°37.9′ Mayfield silt loam Medium loam B W W W W 4 511 High 37.5 199

P6 S43°43.3′ E171°38.3′ Mayfield silt loam Medium loam FS FS W w W 3 688 High 40.5 357

R1 S44°02.5′ E171°49.3′  Templeton shallow silt loam Heavy medium light clay silt - W RS W W 2 1692 High 28.0 205
1
Preceding crops: 

W Wheat

GS Non-specified grass for seed production

FS Fescue for seed production 

RS Ryegrass for seed production

2 
Analysis was carried out with soil collected from 25 posiitons (two soil cores at each position) along a 'W' pattern over the whole field using soil borers (20 mm dia., 10 cm depth).

3
Take-all risk categories developed by SARDI at the time of quantitative DNA analysis in 2004/05: 

Low risk: 5 - 130 pg Ggt  DNA g
-1

 of soil 

Medium risk: 131 - 325 pg Ggt DNA g
-1

 of soil 

High risk: >325 pg Ggt  DNA g
-1

 of soil 

 4
Take-all disease index = (0a+10b+30c+60d+100e)/T,

  where a, b, c, d and e = number of plants in each of the infection categories below, and T= total number of plants.

  Infection categories:

0 no infection

1 slight (1-10% of roots infected)

2 moderate (11-30% of roots infected)

3 high (31-60% of roots infected)

4 severe (61-100% of roots infected)

3
Risk to take-

all for the 

subsequent 

crop 

Ggt DNA 

concentrations in soils 

collected in Feb 2005 

for the pot experiment  

(pg g
-1

 soil)

Years 

of 

wheat 

2
Pre-sowing  Ggt 

DNA concentrations 

in the 2004/05  season 

(pg g
-1

 soil) 

4
Disease assesment 

(Oct 2004)              

(Take-all index)

Preceding crops

Field 

code
GPS Location Soil type Soil texture
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Table 7.2  Physico-chemical properties of the soils used in Experiment 1. 

Normal 

range 5.3-6.1 20-30 0.5-0.8 5.0-12.0 0.8-3 0-0.5 12-25 50-85

pH
Olsen P 

(mg L
-1

)

Potassium 

(
1
me 100 g

-1
)

Calcium     

(me 100 g
-1

)

Magnesium 

(me 100 g
-1

)

Sodium     

(me 100 g
-1

)

2
CEC            

(me 100 g
-1

)

Base 

Saturation (%)
Original At FC

P2 6.1 34 0.50 9.5 0.68 0.17 14 77 19.2 17.8 33.7

P5 5.7 28 0.57 10.4 0.77 0.19 18 66 19.5 17.4 38.0

P6 5.8 25 0.52 11.9 0.93 0.19 20 69 44.5 12.5 30.9

R1 6.4 48 1.07 9.6 1.98 0.42 16 83 36.3 13.3 34.5

1
milliequivalents

2
Cation exchange capacity

Field code

Moisture content 

(% w/w)Mineral N 

(µg g
-1

 soil)
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7.3.2 Pot Experiment-Induction of TAD 

Each 20 L bin (25 × 40 × 30 cm) of test soil and was planted with 60 pre-germinated wheat 

plants (cultivar Regency, line 03/W/01P) (Appendix 3, A3. 3). Each bin received 1.15 L of 

nutrient solution to give final concentrations for N, P, K and S of 150, 50, 100 and 20 µg g
-

1
 soil, respectively, before topping up with water to the soil‟s field capacity (FC, at -5 kPa) 

by weight (Chapters 2 and 3 and Appendix 3, A3. 4). 

The bins were laid out in a randomised complete block design consisting of four soils, 

which were replicated four times to give 16 bins in total. The bins were successively 

replanted with 60 pre-germinated wheat plants to simulate seven growth „seasons‟, with 

each season being 4 wk. The experiment was conducted in a growth chamber (Conviron, 

Controlled Environments Ltd., Canada) maintained at 16°C with 12 h light/dark 

photoperiods and 80% relative humidity (Figure 7.1). Throughout each season, all the pots 

received water twice per week to the soils‟ FC. These controlled conditions and the 

watering frequency were found in Chapter 4 to be suitable for investigating take-all 

suppressiveness in the pot bioassays used in the current PhD research.  

At the end of each season, the soil was carefully loosened from the plant roots by hand. For 

each bin, about 300 g of the loosened soil was sent to SARDI
1
 for Ggt DNA quantification, 

and 150 g to a commercial laboratory (R.J. Hill Laboratories Ltd., Hamilton, New Zealand) 

for basic soil physico-chemical analyses, while the rest was returned to the original bin. 

The physico-chemical analyses included soil pH, available N, Olsen P, K, Mg, Ca and Na. 

The roots of 50 randomly selected plants were washed carefully in bucket of water and 

assessed for take-all lesions (Section 7.3.3), and the unwashed roots of the other 10 plants 

were used to investigate the population of Pseudomonas fluorescens (Section 7.3.4). Each 

bin of soil was re-planted with wheat and subject to the same management conditions 

described above. To avoid development of nutrient depletion, at the sixth season, each bin 

of soil received the same nutrients as at the time of setting up.  

                                                 
1
 South Australia Root Disease Testing Institute 
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Figure 7.1  Set up of the pot experiment in the growth chamber. 

 

7.3.3 Disease assessment  

The washed seminal and nodal roots were assessed for infection incidence, being classed 

as infected if they had at least one take-all lesion per root axis. This study was set up at the 

same time as the Chapters 3 and 4 studies, which at the time, had shown that 4 wk growth 

allowed for development of primary infection but was unlikely to provide time for lesions 

to increase significantly in size. Hence, disease incidence was considered a more 

appropriate feature to measure than disease severity. The percent of infected roots per bin 

was then calculated using the formula: 

100%  
plant)per  axesroot  ofNumber (

plant)per  axesroot  infected ofNumber (
 bin per  (%) roots Infected 



















 

7.3.4 Numbers of Pseudomonas fluorescens CFU in the 
rhizosphere and roots of wheat plants  

From the 10 randomly chosen plants from each bin at harvest, 5 g of roots with adhering 

rhizosphere soil was placed in separate Erlenmeyer flasks, which contained 50 mL of 

0.1 M magnesium sulphate (i.e. 10
-1

 dilution), and shaken for 5 min at 200 rpm on an 

orbital shaker (Chiltern Scientific, Auckland, New Zealand). Using 1 mL of the root/soil 

suspension, serial dilutions (10
-2

 to 10
-5

) were then made with sterile water. The numbers 

of Pseudomonas fluorescens, were determined by spreading 0.1 mL of each suspension 

onto three plates (i.e. three replicates) of King‟s B agar, amended with 20 mg L
-1

 of 

Trimethoprim to prevent the growth of other non-fluorescent pseudomonads (Appendix 4, 



 182 

A4. 3) (Xu & Gross 1986). The sterile water used in the dilution was also plated to check 

for background contamination by the bacterium. The plates were incubated at 25°C and 

checked for fluorescent colonies after 48 and 72 h on a UV transilluminator light (Ultra-

violet products Inc. San Gabriel, California USA). From the fluorescent colonies, which 

were suspected to be P. fluorescens (Figure 7.2), 10 were randomly chosen and sent to 

MAF [Plant Pest Information Network (PPIN), Ministry of Agriculture and Forestry, 

Lincoln, New Zealand] for further identification using Biolog GN plates (Biolog, Inc., 

USA) and conventional isolation techniques. The numbers of P. fluorescens CFU (colony 

forming unit) in each root sample were estimated from the plates, which had 3-30 

fluorescent colonies growing on each, using the following formula: 

isolation)for  used erhizospherroot   totalof g 5 (i.e. 5  T                

plated) suspension diluted of mL 0.1  (i.e. 10  P                

factordilution  D                

plateper  colonies  ofnumber  A                

unit formingcolony CFU                

Where,

 
T

PDA
sample erhizospherroot  g CFU 1-


















 


sfluorescen P.  

 

 

Figure 7.2  Fluorescent colonies of Pseudomans fluorescens at 10
-4

 dilution under UV 

light.  

 

7.3.5 Data analysis 

Data on the disease incidence, Ggt DNA concentrations, numbers of P. fluorescens CFU 

(log transformed) and nutrient status were analysed with ANOVA by treating the 

successive wheat seasons as a split plot factor and adjusting the analysis for the repeated 
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measurements using the Greenhouse Geisser epsilon correction factor (Greenhouse & 

Geisser 1959) on GenStat, 9
th

 Ed (2005) (VSN International Ltd, Oxford). The correlations 

between disease incidence, Ggt DNA concentrations and numbers of P. fluorescens CFU, 

and between each of these variables with pH and nutrient status were also analysed. 

7.4 Results  

7.4.1 Disease incidence 

The analyses showed that the percent infected roots on the plants were significantly 

affected by the successive wheat seasons and soil origins (P<0.005 for both). The mean 

percent infected roots initially decreased over seasons 1-3 (from 43 to 32%), then increased 

up to 55% after season 5, and finally dropped to 35% after seasons 6 and 7 (Figure 7.3a). 

Overall, plants grown in soil P2 had the highest incidence of infected roots (46%) followed 

by soil R1 (42%), while plants in soils P5 and P6 had significantly lower incidences (36 

and 37%, respectively) (Figure 7.3b). The same trend across seasons was observed for all 

soils, as there was no significant interaction between the successive seasons of wheat and 

soil origins on the disease incidence. 
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Figure 7.3  Mean incidence of take-all infected roots on wheat plants grown in (a) soils 

grown with successive wheat crops and (b) the four soils tested over seven successive 

wheat seasons. Arrow indicates the time when the second nutrient solution was added into 

the soils. Error bars are the least significant differences (LSD) at the 5% level (df = 111). 
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7.4.2 Ggt DNA concentrations 

Overall, the successive seasons of wheat caused a significant effect on the soil Ggt DNA 

concentrations (P<0.001). Initially, the mean Ggt DNA concentration decreased (from 161 

to 45 pg g
-1 

soil (P<0.005) in a similar trend to that of the disease incidence for seasons 1-3 

(Figure 7.3a). However, the mean DNA concentration then increased, peaking after season 

6 (289 pg g
-1 

soil), not season 5 as with disease incidence (Figure 7.3a), and then decreased 

to 194 pg g
-1 

soil after season 7 as also shown in disease incidence (Figure 7.3a). There was 

evidence of soil origins causing a significant difference on the Ggt DNA concentrations 

(P<0.05) with the lowest Ggt DNA concentration (95 pg g
-1 

soil) being in soil P5, while 

soil P2 had the highest (195 pg g
-1 

soil) (P<0.05) (7.4b). There was no significant 

interaction between the successive seasons of wheat and soil origins on the Ggt DNA 

concentrations.  
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Figure 7.4  Mean Ggt DNA concentrations in (a) soils grown with successive wheat crops 

and (b) the four soils tested over seven successive wheat seasons. Arrow indicates the time 

when the second nutrient solution was added into the soils. Error bars are the least 

significant differences (LSD) at the 5% level (df = 111). 

 

7.4.3 Numbers of Pseudomonas fluorescens colonies in the 
roots of wheat plants 

The fluorescent colonies growing on King‟s B agar that were selected (10 each time) for 

identification were all identified as Pseudomonas fluorescens. In general, the mean 
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numbers of P. fluorescens CFU (colony forming units) were significantly affected by the 

successive wheat seasons and soil origins (P<0.001 and <0.05, respectively). The mean 

numbers of P. fluorescens CFU gradually increased with increasing successive wheat 

seasons, reaching a maximum of 6.92 (log10) CFU g
-1

 roots after season 7 (Figure 7.5a). Of 

the four soils tested, P5 produced the lowest numbers of P. fluorescens CFU, being 

5.01 (log10) CFU g
-1

 roots, whereas the other three soils produced similarly higher numbers 

of P. fluorescens CFU, being 5.7, 5.7 and 6 (log10) CFU g
-1

 roots (Figure 7.5b). There was 

no significant interaction between the successive wheat seasons and soil treatments on the 

numbers of P. fluorescens CFU.  
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Figure 7.5  Mean numbers of Pseudomonas fluorescens CFU in the roots of wheat 

plants grown in (a) soils grown with successive wheat crops and (b) the four soils 

tested over seven successive wheat seasons. Arrow indicates the time when the second 

nutrient solution was added into the soils. Error bars are the least significant differences 

(LSD) at the 5% level (df = 111). 

 

7.4.4 Soil pH 

There was a significant effect of successive seasons of wheat crops on soil pH (P<0.001), 

with the mean pH progressively increasing over seasons 1-4 (from 5.4 to 6.1), being 

constant for season 5 (Figure 7.6a). After season 6, the mean pH dropped to 5.6, which was 

similar to that after season 2, and subsequently increased again to be similar to that after 

seasons 4 and 5 (pH 6.1). The soil pH also varied significantly with soil origins (P<0.001), 

with soils P2 and R1 (pH 6 and 6.2, respectively) having significantly higher pH than P5 
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and P6, which were similar (pH 5.5 and 5.7, respectively) (Figure 7.6b). There was a 

significant interaction with successive wheat seasons and soil origins (P<0.001) (Figure 

7.7). Over the seven successive seasons, all the four soils had similar trends in pH shift, 

with gradual increases for seasons 1-4, a decrease after season 6 and then an increase after 

season 7. In general, soil P5 had the lowest pH throughout the seven successive seasons of 

wheat crops, followed by soils P6, P2 and R1. 
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Figure 7.6  Mean pH of (a) soils grown with successive wheat crops and (b) the four soils 

tested over seven successive wheat seasons. Arrow indicates the time when the second 

nutrient solution was added into the soils. Error bars are the least significant differences 

(LSD) at the 5% level (df = 111). 
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Figure 7.7  Mean pH of the four soils sown with successive seasons of wheat crops. 

Arrow indicates the time when the second nutrient solution was added into the soils. 

Error bar is the least significant difference (LSD) at the 5% level (df = 111). 

 

7.4.5 Nutrient status in the soil 

In the present study, nutrient solution was added to the bins of soils twice, first being at the 

time of setting up season 1, and the second being before season 6. Statistical analyses 

showed that the concentrations of Mg were significantly affected by soil origins (P<0.001), 

but not the successive seasons of wheat crops. The mean Mg concentration was highest in 

soil R1 (1.9 me 100 g
-1

 soil) followed by soil P6 (0.9 me 100 g
-1

 soil), whereas Mg 

concentrations in soils P2 and P5 were similarly low (0.6 me 100 g
-1

 soil) (Figure 7.8). 

There was no interaction effect between successive seasons of wheat crops and soil origins 

on the Mg concentrations.  

The Ca concentrations were significantly affected by successive seasons of wheat and soil 

origins (P = 0.003 and <0.001, respectively). The effects of successive seasons of wheat 

alone had indicated that the highest mean Ca concentration (10.9 me 100 g
-1

 soil) was after 

season 7, which was significantly higher than all the other seasons except season 2 (Figure 

7.9a). Season 6 had the significantly lowest mean Ca concentration (10.2 me 100 g
-1

 soil), 

whereas the Ca concentrations did not differ among seasons 1-5 (being 10.5-10.6 me 100 
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g
-1

 soil). Of the four soils tested, soil P6 had the highest Ca concentration (mean 

concentration = 11.8 me 100 g
-1

 soil), followed by soils P2, P5 and R1 (11.5, 9.9 and 

8.9 me 100 g
-1

 soil, respectively) (Figure 7.9b). There was no interaction effect between 

successive seasons of wheat crops and soil origins on the Ca concentrations. 
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Figure 7.8  Mean Magnesium concentrations in the four soils tested over seven 

successive wheat seasons. Error bar is the least significant difference at the 5% level 

(df = 111). 
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Figure 7.9  Mean calcium concentrations of (a) soils grown with successive seasons 

of wheat crops and (b) in the four soils tested over seven successive wheat seasons. 

Arrow indicates the time when the second nutrient solution was added into the soils. 

Error bars are the least significant differences at the 5% level (df = 111).
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The concentrations of available N, Olsen P, K, and Na in the soils were significantly 

affected by the successive seasons of wheat crops and soil origins (P<0.001 for all 

nutrients for both effects). There were significant interaction effects between successive 

seasons of wheat crops and soil origins on the concentrations of available N, Na and K (P = 

0.024, <0.001 and <0.001, respectively), and a marginal interaction effect on Olsen P (P = 

0.073). As the mean concentrations of available N, Olsen P, K, and Na, showed similar 

trends to that of the interaction effects (Appendix 5, A7. 2 and A7. 3), only the results from 

the interaction effects are presented (Figures 7.10a-d). Since similar trends were also 

shown in the mean concentrations for Mg and Ca (Figures 7.8 and 7.9; Appendix 5, A7. 2 

and A7. 3), the mean results from the non-significant interaction effects are also included 

(Figures 7.10e-f). 

Both the available N and Olsen P concentrations shifted in very similar trends over the 

different numbers of successive sowings for nearly all the soils (Figures 7.10a-b). In 

general, the available N and Olsen P concentrations in the soils decreased gradually over 

seasons 1-5, increased after season 6 and decreased thereafter. An exception occurred in 

soil P2, for which the available N remained relatively uniform throughout the successive 

seasons of wheat crops (Figure 7.10a). In all soils, the K concentrations also decreased 

with successive seasons of wheat, but the Na concentrations increased steadily over the 

successive seasons of wheat crops (Figures 7.10c-d). For all the soils, the mean 

concentrations of Mg and Ca remained reasonably constant for the successive wheat crops 

grown (Figures 7.10e-f). Overall, soil R1 had the highest pH (Figure 7.7), available N, 

Olsen P, Na, K and Mg concentrations (Figure 7.10). 
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Figure 7.10  Mean concentrations of (a) available nitrogen, (b) Olsen phosphorus, (c) 

sodium, (d) potassium, (e) magnesium and (f) calcium in the four soils sown with 

successive seasons of wheat crops. Arrows indicate the time when the second nutrient 

solution was added into the soils. Error bars are the least significant differences at the 5% 

level (df = 111). 
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7.4.6 Correlations between the parameters  

Initial analyses using the complete raw data set showed poor correlations between disease 

incidence and Ggt DNA concentrations, numbers of P. fluorescens CFU or pH, as well as 

between these four parameters and the individual nutrients. However, further analyses 

using the mean values of the individual parameters from the successive seasons of wheat 

crops showed high correlations between some of them (correlation coefficient, r > 0.7). 

Therefore, the results from analysing the means of successive seasons of wheat crops are 

presented in Table 7.3, and a matrix of scatter plots showing the relationships among these 

parameters are presented in Appendix 5, A7. 4. Overall, there were no significant 

correlations between the disease incidence and Ggt DNA concentrations (r = 0.12), and 

between these two variables and the numbers of P. fluorescens CFU (r = 0.25 and 0.34, 

respectively) (Table 7.3). However, there was a strong correlation between the 

concentrations of soil Ggt DNA and Olsen P (r = 0.71). The increasing numbers of P. 

fluorescens CFU was found to correlate strongly with the Na and K concentrations (r = 

0.96 and -0.87, respectively) (Appendix 5, A7. 4).  
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Table 7.3  A matrix showing the correlations between the parameters measured (disease incidence, Ggt DNA concentrations, or numbers of P. 

fluorescens CFU, pH and nutrient status). A negative correlation coefficient indicates that the two variables are inversely related. The highlighted 

coefficients are the ones that showed strong relationships (r > 0.7). 

% infected roots 1

Ggt  DNA 0.126 1

Pseudomonas -0.254 0.338 1

pH 0.351 -0.234 0.564 1

Available N -0.452 0.472 -0.271 -0.833 1

Ca -0.043 -0.314 0.260 0.246 -0.636 1

K -0.050 -0.091 -0.868 -0.875 0.549 -0.137 1

Mg -0.320 -0.534 0.119 0.224 -0.168 0.106 -0.151 1

Na -0.068 0.468 0.958 0.614 -0.258 0.116 -0.886 0.028 1

Olsen P -0.512 0.711 0.115 -0.705 0.875 -0.352 0.292 -0.337 0.102 1

% infected roots  Ggt DNA  Pseudomonas  pH  Available N  Ca  K Mg  Na  Olsen P  
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7.5 Discussion 

The current study was set up to attempt induction of suppressiveness in pots of soils 

naturally infested with Ggt by growing seasons of wheat, 4 wk each, successively in the 

same soils, as reported by Deacon (1997). Hence, all the four soils selected for the study 

had natural concentrations of Ggt inoculum sufficient to cause high severity or incidence 

of take-all (Table 7.1). However, results did not reflect those reported for TAD, which 

occurred after 4-6 successive wheat crops in the field (McSpadden Gardener & Weller 

2001; Mazzola 2002; Weller et al. 2002), since there was no severe outbreak or sustained 

decreases in incidence of the disease and concentrations of Ggt inoculum (Figures 7.3 and 

7.4). In fact, disease incidence and Ggt inoculum concentrations fluctuated throughout the 

whole course of the pot monoculture, indicating unsuccessful induction of suppressiveness. 

Although up to eight consecutive years of monoculture of barley crops has been reported 

for TAD to occur elsewhere (Hornby & Henden 1986), there was no guarantee that TAD 

would definitely develop when wheat is grown continuously. For instance, in this PhD 

research programme, one of the soils, which had been grown with wheat for 9 y, did not 

show to suppress take-all in the Chapters 5 and 6 studies.  

Some studies have attempted to induce take-all suppression in pot assays by introducing 

Ggt inoculum into the soils (Gerlagh 1968; Zogg & Jäggi 1974; Wildermuth 1980). For 

instance, Wildermuth (1980) added an unknown quantity of either dead or living Ggt 

inoculum into fumigated soils and planted with wheat for 28 d, after which it was claimed 

that „slightly suppressive‟ and „suppressive‟ soils had been successfully induced. The 

mechanisms for the suppressiveness of these soils were not convincing mainly because 

there were likely to be few or no natural soil organisms/antagonists in the fumigated soils, 

which is generally considered a necessary component of suppressiveness. These artificially 

created „slightly suppressive‟ and „suppressive‟ soils were used by the author as controls in 

a pot trial to compare their suppressiveness (as severity of root infection on wheat plants) 

with that of other field soils cropped with various numbers of continuous wheat crops. In 

the study, a fumigated soil was supplemented with 1% (w/w) of each test soils (including 

the two induced suppressive soils) and 0.1% of Ggt (on ground oat), and wheat plants were 

grown in them for 28 d. The created suppressive soils provided a standard for determining 

suppression of the test soils. 
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Zogg and Jäggi (1974) tried to induce take-all suppression by adding 4 wk old Ggt mycelia 

(unspecified amount) into different soils at weekly intervals for 5, 9 and 18 times. For each 

interval, wheat plants were grown in a portion of the soils at 0, 1 or 3 d after being mixed 

with the Ggt inoculum. For the soils that were assayed immediately after being mixed with 

the Ggt inoculum, the disease severity decreased steadily (from 46-48% to 4-19%) across 

the increasing periods of adding Ggt inoculum. For the soils that were assayed either 1 or 

3 d after being mixed with the Ggt inoculum, the disease severity varied initially (30-66%) 

for all three periods of adding the Ggt inoculum, and declined thereafter (to 7-8%). The 

occurrence of severe disease symptoms before the onset of decline was however, not 

reported. Zogg and Jäggi (1974) postulated that adding Ggt inoculum on repeated 

occasions had caused increasing populations of soil bacteria and actinomycetes, which 

were responsible for the suppressiveness. Moreover, they also found that up to 60% of the 

bacterial isolates showed some forms of antagonistic actions to Ggt on various media (e.g. 

2% malt extract agar). Using a similar technique, Pope et al. (1974) conducted a pot assay 

using soils that had consecutive monthly crops of wheat seedlings and addition of Ggt 

inoculum between the successive wheat crops. They found that regardless of the numbers 

of successive wheat crops (i.e. third, sixth or thirteenth successive wheat), root infection 

increased with the second and third successive crop in the assay and thereafter decreased. 

These results indicated that with repeated additions of Ggt inoculum to the soil, TAD could 

be induced experimentally, and that the populations of bacteria and actinomycetes in the 

soils could increase with successive wheat cropping.  

Ggt is a semi-obligate fungus, which survives saprophytically in soils as mycelium in host 

plant debris (Wilkinson et al. 1985), hence, the natural Ggt inocula in the soils in this 

study, which were initially high, could have been reduced by the repeated destructive 

harvesting of the wheat plants as seen during the first few wheat seasons (Figure 7.4). Soils 

P5, P6 and R1 had demonstrated decreases in Ggt DNA concentrations from the beginning 

to end of their last field season (by 312, 331 and 1487 pg g
-1

 soil, respectively) (Table 7.1), 

suggesting that the inocula in the soils were in decline. As expected, soil P2, which 

increased in Ggt DNA concentration from 533 to 678 pg g
-1

 soil during the 2004/05 field 

season (Table 7.1), had the highest mean percent infected roots and Ggt DNA 

concentration (Figures 7.3b and 7.4b) in the pot experiment. This may have been because it 

was less suppressive than the other three soils. 
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In this study, the poor correlation between disease incidence and Ggt DNA concentrations 

(Table 7.3) was mainly associated with the highest Ggt DNA concentration occurring after 

season 6 instead of after season 5, when the disease incidence was highest (Figures 7.3 and 

7.4). Both variables were however, strongly correlated from seasons 1-5 (r = 0.88), 

indicating that the extent of infection on the roots was related to the amount of natural Ggt 

inoculum in the soils until season 5. This may have indicated the beginning of suppression 

but further wheat seasons would have been needed to show it. However, the application of 

nutrient solutions to all the soils at season 6 was considered the most probable cause for the 

differences seen. This was supported by soil analyses, which showed increased available N 

and Olsen P concentrations at season 6, to concentrations (125 kg g
-1

 soil and 78 mg L
-1

 

soil, respectively) more similar to those at season 1 (110 kg g
-1

 soil and 65 mg L
-1

 soil, 

respectively), when the nutrient solution was added. Other nutrients, including Na, K and 

Ca, were only slightly affected by the addition of nutrient solution at season 6. 

In this study, the concentrations of K decreased with increasing successive sowing, and did 

not increase very much with the addition of nutrients at season 6. This suggests that the 

amount of K in the nutrient solution was not as high as the initial level in the soils. In fact, 

for soils P2, P5 and P6 since season 3, the nutrient had been deficient and below the 

recommended concentrations (0.5-0.8 me 100
-1

g soil) for New Zealand cereal crops (R. J. 

Hill Laboratories Ltd 2002). Few references imply a separate role for K relative to take-all, 

but it has been suggested to reduce take-all when applied together with N and P (Huber 

1981).  

Overall, the available N and Olsen P concentrations in the soils decreased from seasons 1 

to 5 (Figure 7.10) and showed an opposite trend to that of disease incidence (Figure 7.3), 

suggesting that these two elements might play a part in reducing disease incidence. In the 

field, increased application rates of N and P, especially at critical stages of plant growth, 

such as tillering and stem elongation, is known to promote new root growth, thereby 

compensating for any diseased roots and so improving the host‟s capacity to tolerate Ggt 

infection (Huber 1981; Hornby et al. 1998; Cook 2003). In the pot trial, Olsen P 

concentrations in all the soils were still within the range (20-30 mg L
-1

 soil, R. J. Hill 

Laboratories Ltd., Hamilton, New Zealand) recommended for growing wheat, but the 

available N levels were always below the recommended rate (150 kg ha
-1

) for optimal 

growth (Hornby et al. 1998). 
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The application of nutrients at season 6 might have contributed to the high Ggt 

concentration in the soils (Figure 7.4), in spite of decreased disease incidence at that point, 

since N is believed to favour the saprophytic survival of the Ggt in the absence of host 

(Garrett 1938; Huber 1981). However, if the soil is well aerated, it might favour microbial 

activity and hasten the disappearance of Ggt by promoting more rapid consumption of the 

available food material by both the pathogen itself and by other associated microorganisms 

(Chambers & Flentje 1969).  

At present, there is insufficient evidence to determine whether the general effects of N on 

suppressive organisms are affected by the forms of N in the fertilisers (Alabouvette et al. 

2004). This is because almost all studies on the effects of N on disease suppression have 

been confounded by, or shown to be caused by, the effects of nitrate and ammonium ions 

on rhizosphere pH (Smiley & Cook 1973). The form of nutrients applied may also affect 

take-all incidence/severity. For example, Smiley & Cook (1973) reported that when N was 

applied in the ammonium form (i.e. as NH4
+
), the rhizosphere pH became more acidic 

(<5), inhibiting the growth of Ggt completely and resulting in reduced disease ratings 

(decreased from 5 to 1). Further work conducted by Smiley (1978a; 1978b) also showed 

that the populations of P. fluorescens capable of inhibiting the growth of Ggt on the wheat 

roots, were 10-67% higher in the soils fertilised with ammonium N than those fertilised 

with nitrate N. These problems however, should have been minimised in this study as N 

was applied as ammonium nitrate (NH4NO3). 

Although the soil pH differed significantly between the soils, they showed similar changes 

at each successive season (Figure 7.7) and remained within the acidic range of 4.8-6.1. It is 

evident that the declined pH at season 6 (Figure 7.6) was due to the addition of nutrient 

solution. It is known that Ca, Mg, Na and K, are most readily available in neutral (pH=7) 

or alkaline (pH>7) soils mainly because under acidic conditions, they are excluded from 

cation exchange sites by H
+
 and Al

3+
 (McLaren & Cameron 1996). The effects of pH in the 

range 4.5-8.5 on the availability of nutrients (added as Hoagland‟s solution at normal to 

three times the normal strength) to wheat and the resulting take-all severity, were 

investigated by Reis and co-workers (1983) in pot experiments. They found that disease 

severity increased with increasing pH but not with the increasing concentrations of Ca or 

Mg, and suggested that pH above 6.5, was favourable to take-all. In the current study, pH 

did not increase above 6.5 and so was unlikely to have affected the results. The Ca and Mg 

concentrations were within the recommended range (5-12 and 0.8-3 me g
-1 

soil, 
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respectively) for New Zealand cereal (R. J. Hill Laboratories Ltd 2002), and remained 

relatively constant throughout the course of this study, indicating that these nutrients were 

absorbed at very low rates. The roles of other micronutrients such as manganese (Mn), can 

also affect take-all incidence/severity (Huber & McCay Buis 1993), but they were not 

assessed in this study. 

In spite of the variation in disease incidence and Ggt DNA concentrations in this study 

(Figures 7.3 and 7.4), the mean numbers of P. fluorescens CFU increased steadily with 

successive seasons of wheat crops from 4.1 to 6.9 (log10) CFU g
-1

 roots with adhered soil 

(i.e. equivalent to 10
4.1

 and 10
6.9

 CFU g
-1

 roots with adhered soil) (Figure 7.5). The 

presence of Pseudomonas spp. in the soil has been linked to the suppression of Ggt and the 

development of TAD. For instance, Raaijmakers et al. (1997) used molecular techniques to 

show that 2,4-diacetylphloroglucinol (DAPG)-producing strains of Pseudomonas spp. were 

present in only TAD soils, and when the fluorescent Pseudomonas spp. were eliminated, 

the suppressiveness was lost (Raaijmakers & Weller 1998). A series of pot experiments 

also revealed that the DAPG-producing Pseudomonas spp. were naturally present in TAD 

soils at rhizosphere populations of 10
5
-10

6 
CFU g

-1
 soil, which were sufficient to suppress 

take-all (Raaijmakers et al. 1999). This suggests that in the current study, the mean 

numbers of P. fluorescens CFU in the rhizosphere were sufficient to suppress take-all from 

season 2 onwards. However, it was not known whether the P. fluorescens isolated from the 

roots, belonged to the 2,4-DAPG-producing strains. The increased numbers of P. 

fluorescens colonies could also be a natural event, which had occurred with the successive 

seasons of wheat crops (Zogg & Jäggi 1974), since there was no correlation between the 

numbers of P. fluorescens CFU and the disease incidence or Ggt DNA concentrations 

(Table 7.3). However, in a previous study, which investigated the microbial populations 

using denaturing gradient gel electrophoresis, Pseuodomonas spp. were implicated to be 

associated with a New Zealand soil that was specific in its suppressiveness (Chapter 6).  

The strong correlation between the numbers of P. fluorescens CFU and the concentrations 

of Na (Table 7.3), suggests that Na might have a positive effect on the bacterium. Using a 

tube assay, Ownley et al. (2003) investigated the efficacy of a phenazin-1carboxylic acid-

producing P. fluorescens strain in controlling Ggt (applied as an oat inoculum), by treating 

the seeds with the bacterium and adding 5 mL of nutrients solution twice weekly. They 

found negative correlations between the concentrations of Na and the disease ratings on the 
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wheat roots (r = -0.64 to -0.68). Ownley et al. (2003) hypothesised that Na might have 

improved the biocontrol activity of the P. fluorescens. In the current study, the exact effect 

of Na on the numbers of P. fluorescens CFU was unknown, although many Pseudomonas 

spp. are known to be halophilic (i.e. able to tolerate saline conditions) (DasSarma & 

Massachusetts 2001). In addition, the strong correlation did not mean that there was a 

direct effect of Na on P. fluorescens CFU. More carefully designed experiments are 

required to verify or investigate the direct and indirect effects of Na on the survival of P. 

fluorescens under a range of soil conditions. 

The results in this study indicated that the relationship between the disease incidence and 

Ggt DNA concentrations in the soils, might be partly dependent on some of the nutrients, 

particularly, the concentrations of available N and Olsen P. More experiments are required 

to verify the possible roles of the increased available N and Olsen P on disease incidence, 

root growth to offset the disease incidence, and the survival of soil Ggt. The increased 

numbers of P. fluorescens CFU with successive seasons of wheat crops might be a natural 

event independent of the Ggt DNA concentrations and disease incidence. However, more 

work is required to validate the tolerance of P. fluorescens to Na in the soil. This study 

failed to show development of TAD under controlled conditions probably because the 

additions of nutrients at seasons 1 and 6, and the repeated removal of roots or Ggt during 

destructive harvesting, caused conflicting effects. Other soil microflora, which could play a 

part in the development of TAD, might had been removed with the roots during harvest as 

well. The destructive harvesting of plants was essential for the successive monitoring of 

disease parameters. Future experiments aimed at inducing TAD will have to minimise the 

variations by adding small amounts of the nutrient solutions and Ggt inoculum into the 

soils before each new season, and to include an additional set of soils for disease/inoculum 

monitoring. 
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Chapter 8  
Concluding discussion 

This study was undertaken to investigate the hypothesis that take-all decline (TAD) is 

a specific suppression caused by an individual or a selected group of microorganisms, 

which suppressed Ggt in the rhizosphere of the host. This chapter summarises the 

results of the many experiments undertaken in this research programme and 

comments on the possible mechanisms behind the soil suppressiveness. It also 

proposes some future experiments and some potential uses of these findings in the 

context of controlling take-all in New Zealand wheat cropping. 

8.1 Prediction of take-all risk in subsequent wheat crop 
by quantification of Ggt DNA concentrations in soil 

Major findings from using Ggt DNA concentrations in soils selected for this study 

were:  

 In some test soils that had several years of continuous wheat cropping and 

take-all disease, the decreased Ggt DNA concentrations and disease incidence 

in the subsequent wheat crops, indicated presence of potential take-all 

suppressive soils.  

 The numbers of successive wheat crops required before the onset of 

suppressiveness varied, possibly due to the differences in soil origins, soil Ggt 

DNA concentrations, the microbial status of the soils, and crop management 

factors, such as fertilisation. 

The prediction of take-all risk by quantifying Ggt DNA concentrations in soils prior 

to sowing subsequent wheat crops, has been available commercially to Australian 

growers since 2001 (Ophel-Keller & McKay 2001), and New Zealand growers since 

2008. In this study, the DNA quantification service was used to measure the amount 

of natural Ggt inoculum in the soils. However, there were poor or variable 

correlations between the soil Ggt DNA concentrations (raw data) and the subsequent 

disease levels in the host plants (Chapters 2 and 7). Cook (1985) also reported that a 

high concentration of Ggt inoculum does not always denote high incidence or severity 

of disease in a subsequent wheat crop. In this study, the mean values of Ggt DNA 
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concentrations and soil origins, compared over successive seasons of wheat, were 

positively correlated with each other. This suggests that other factors, such as the 

physical and chemical properties (e.g. nutrient status) of the soils, and environmental 

conditions might have an impact on the natural Ggt inoculum concentrations within 

the soils. Similar effects have been reported in the literature (Herdina & Roget 1999, 

2000). These studies indicate that the differences in soil origins need to be minimised, 

by sampling soils from the same region and optimising experimental protocols and 

design, to achieve strong correlations between the Ggt DNA concentrations in the soil 

and the take-all incidence in the subsequent crop. 

Some of the soils used in this study were from fields which had high Ggt DNA 

concentrations but low levels of take-all severity and were cropped with 3 and 4 y of 

wheat successively, so could be starting to express TAD (McSpadden Gardener & 

Weller 2001). Clearly, a soil undergoing TAD might be unsuitable for predicting take-

all risks in the subsequent wheat crops by Ggt DNA quantification. However, the 

number of successive wheat crops before the onset of TAD has been reported to vary 

for different soils, generally ranging from 3 to 6 y (Weller et al. 2002). Alternatively, 

a soil grown with wheat for successive years may not even develop TAD. Factors 

such as variation of aggressive Ggt strains between soils, gradual reduction and 

replacement of the aggressive strains by the less aggressive strains (Shipton 1977; 

Lebreton et al. 2004), and reduction of inoculum over time due to the breakdown of 

viable Ggt infected propagules/host residue (in press:Bithell et al. 2009), might also 

affect the inoculum and disease correlation.  

The DNA quantification tool is still useful for New Zealand growers to predict take-

all risks during the early successive wheat crops. However, growers should be aware 

of the limitations and that soils showing significant reductions in Ggt DNA 

concentrations after a wheat crop, and declined disease severity in a subsequent crop, 

could be undergoing TAD. 
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8.2 Efficacy of the pot assays used for screening of 
take-all suppressive soils 

The Major finding from the development studies was:  

 Identification of the controlled conditions, at 16°C, 80% RH with alternate 

12 h light/dark conditions, and watering the plants twice weekly to FC, that 

were suitable for differentiating soils with different levels of suppressiveness 

in pot assays used in this PhD research programme. 

Assessment of take-all suppressiveness in the field can be difficult mainly due to the 

presence of many varying factors, such as climate, physico-chemical properties and 

the uneven concentrations of Ggt inoculum between soils of different origins (Rovira 

& Wildermuth 1981). The present study therefore began by developing a reliable pot 

assay to investigate the potential of take-all suppressiveness in the New Zealand 

wheat soils, as determined by comparing the Ggt DNA concentrations and the 

subsequent disease incidence in individual soils (Chapter 2). The results did reveal 

which soils had potential take-all suppressiveness but also led to further studies which 

aimed to improve the methodology (Chapters 3 and 4) by choosing the most 

appropriate Ggt inoculum level, ensuring consistency in treatment of the designated 

soils, and selecting the environmental conditions most suitable for disease 

development. The identified conditions were shown to permit plant growth and to 

demonstrate different levels of suppressiveness in different soils (Chapter 5, 

Experiments 1 and 2). A drawback of this study was that a TAD soil was not included 

as a positive control in the pot assays, but no such soil had been identified in New 

Zealand at the time. It is proposed that for future screening of suppressive soils, a 

known suppressive soil and a fallow soil be included in the pot assay as positive and 

negative controls, respectively. 

8.3 New Zealand TAD soils and their possible 
mechanisms 

Major findings from studies that investigated the occurrence of TAD in New Zealand 

wheat soils were: 

 Identification of three suppressive soils, H1, H3 and M2, from the 12 potential 

New Zealand wheat soils screened for TAD.  
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 The transferability trial indicated that the TAD mechanisms were specific for 

soils H1 and H3, and general for soil M2. 

 High levels of biological/microbial involvement were present in soils that 

were specific in suppression. 

The existence of soils with the natural ability to suppress take-all has prompted 

researchers to investigate the mechanisms by which the suppressive effects are 

mediated (Baker & Cook 1974; Chin-A-Woeng et al. 2003). Past studies on 

suppression were not able to separate inoculum from disease, but this problem was 

overcome in this study by using real-time PCR to quantify the concentrations of Ggt 

DNA in the soils and relate them to the subsequent disease levels. Experiments 1 and 

2 in Chapter 5 were designed to determine the suppressive properties of 12 New 

Zealand wheat soils that seemed likely to experience TAD, and to investigate the 

possible mechanisms associated with the suppressiveness. The results showed that the 

wheat soils, H1, H3 (3 y of consecutive wheat) and M2 (4 y of consecutive wheat), 

were suppressive to take-all, and also experienced Ggt DNA reductions (>1000 pg g
-1

 

soil) (Chapter 2). This indicated potential TAD in the early successive wheat crops, 

with a suppressive effect labelled by Hornby (1983) as „pathogen suppression‟, which 

occurs when the pathogen grows saprophytically in the debris. However, in the 

current experiments, Ggt DNA concentrations were analysed from bulk soils and so 

the suppressive effect could not be distinguished from „disease suppression‟, which 

occurs when Ggt survives parasitically within the host. Past research (Simon et al. 

1987) has indicated that pathogen and disease suppressions did not occur 

independently. To determine whether simultaneous suppression of Ggt could occur 

saprophytically in the soil and parasitically in the host, the DNA concentrations of the 

pathogen inhabiting the rhizosphere of the host must be measured as well.  

From Experiments 1 and 2 (Chapter 5), the suppressiveness of soils H1 and H3 was 

shown to be due to a biotic factor or associated with microbial nature since 

autoclaving these soils caused consistent increases in disease severity. For the 

autoclaved M2 soil, increases in the disease severity and levels of biological 

involvement were inconsistent. In Experiment 3, addition of a small amount (1% 

w/w) of soil H1 or H3 to a γ-irradiated soil inoculated with Ggt (0.1% w/w), changed 

the γ-irradiated soil into a suppressive one (Experiment 3, Chapter 5). However, this 



 207 

transference of suppressiveness did not occur for soil M2. According to Cook & 

Rovira  (1976), one of the most important characteristics which distinguishes specific 

and general suppression is the transferability of the suppressive factors from a specific 

suppressive soil into a natural, or sterilised soil which has no microorganisms present. 

The results from this study collectively suggest that the mechanisms of the TAD 

suppressiveness could be „specific‟ for soils H1 and H3, and „general‟ for soil M2. In 

future, incorporation of a specific suppressive soil into a conducive soil may be an 

alternative way of controlling take-all in the field by accelerating the development of 

TAD in the conducive soil. Soil P7, which was found to be conducive in Experiments 

1 and 2, also showed some suppression to Ggt after a small amount of it was 

transferred into the γ-irradiated base soil. The results of these studies demonstrate the 

complexities of the interactions among the soil chemical, physical and biological 

properties, and raised questions about the robustness of its suppressiveness. This soil 

was initially categorised as one that could be either conducive or specific in 

suppressiveness, but was later indicated to be conducive due to the similarity in its 

DGGE banding patterns with those from the non-suppressive soil control (H15, 

ryegrass soil) in the Chapter 6 study. 

8.4 Microorganisms associated with the 
suppressiveness of TAD 

Major findings from the PCR-DGGE analyses of roots and rhizosphere soils were: 

 The microbial DGGE fingerprints were similar for soils with similar 

suppressiveness, thus able to differentiate the soils into their suppressive types. 

 The presence of some specific microorganisms, not the microbial diversities, 

in the rhizosphere and roots of plants in the soils, was responsible for the 

differentiation of the soils. 

 In general, Streptomyces bingchengensis, Terrabacter sp., Nocardioides sp., 

Fusarium lateritium, Microdochium bolleyi and an unidentified fungus, were 

associated with the suppressive soils, but Pseudomonas putida, P. fluorescens, 

Nocardioides oleivorans, Gibberella zeae, and Penicillium allii were unique in 

the specific suppressiveness. 
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The study conducted in Chapter 6 used PCR-DGGE to characterise and compare the 

microbial communities within the rhizosphere of plants grown in soils that had 

demonstrated conduciveness and suppressiveness (both specific and general) to take-

all. Rhizosphere competence is viewed as an ecologically desirable attribute for 

microorganisms, when screening for those with potential growth promotion or control 

activities against root-infecting pathogens (Whipps 1997). In this study, total DNA 

was extracted from the roots and rhizosphere soil of wheat plants, which had grown in 

the suppressive soils in a pot assay (Experiment 2, Chapter 5). 

Overall, the PCR-DGGE analyses supported the results of pot assays. The test soils 

were clustered into conducive and suppressive types, also into specific or general 

suppression, with similar microbial DGGE fingerprints for soils with similar 

suppressiveness. However, the diversity of microorganisms in the rhizosphere/roots of 

plants grown in the individual soils (indicated by the number of bands), were not 

responsible for this clustering, rather it was the presence of distinguishing bands that 

was associated with the soil suppressiveness. Further excision, re-amplification, 

cloning and sequencing of the distinguishing bands that differentiated the soils, 

showed that some actinomycetes (Streptomyces bingchengensis, Terrabacter sp. and 

Nocardioides sp.), ascomycetes (Fusarium lateritium and Microdochium bolleyi) and 

an unidentified fungus, were associated with the suppressive soils (both specific and 

general). Others, such as the proteobacteria (Pseudomonas putida and P. fluorescens), 

an actinomycete (Nocardioides oleivorans), ascomycete (Gibberella zeae), and 

basidiomycete (Penicillium allii) were unique in the specific suppressiveness. This 

suggests that some microorganisms were common in all take-all suppressive soils, but 

a selected group of distinguishing microorganisms might be responsible for or 

associated with specific suppressiveness. Since nearly all of these distinguishing 

microorganisms in the suppressive soils have been reported to show antagonistic 

activities against Ggt or other soilborne pathogens, they are likely to be associated 

with the suppressiveness. However, due to the many limitations that come with 

DGGE, the results have to be interpreted with caution. More work is required to 

validate the effects of the distinguishing microorganisms, either individually or 

interactively, against Ggt in plate assays and/or pot experiments before confident 

conclusions can be drawn. The absence of distinguishing microorganisms in the 
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general suppressive soil agrees with Cook (2003) and Weller et al. (2002), who stated 

that general suppression is not related to any one microorganism.  

Knowledge of the microorganisms responsible for take-all suppressiveness, could 

allow development of better strategies for control of the disease in the future, for 

example by introducing them into the soil. Genetic markers could also be developed 

to enumerate the distinguishing microorganisms in the suppressive soil, providing 

growers with decision-making tools to be used before planting wheat in the same 

field. 

8.5 Fluorescent Pseudomonas spp. as potential 
biological control agents of Ggt  

Major findings on fluorescent Pseudomonas from the TAD induction trial were: 

 The numbers of Pseudomonas fluorescens CFU in the rhizosphere of wheat 

plants in pots of soils naturally infested with Ggt increased over successive 

wheat seasons. 

 The increases in the numbers of Pseudomonas fluorescens CFU did not 

correlate with either disease incidence or Ggt DNA concentrations. 

The involvement of fluorescent pseudomonads in the suppressiveness of TAD has 

been widely reported (Cook & Rovira 1976; Simon & Sivasithamparam 1989; 

Raaijmakers et al. 1997; Raaijmakers & Weller 1998; Raaijmakers et al. 1999; 

McSpadden Gardener et al. 2000; McSpadden Gardener & Weller 2001; Mazzola 

2002). Although Pseudomonas putida and P. fluorescens were found in the PCR-

DGGE study (Chapter 6), to be associated with the specific suppressiveness of the 

New Zealand TAD soils, other microorganisms were also unique to the 

suppressiveness. An attempt to induce TAD suppressiveness showed that the numbers 

of P. fluorescens CFU in the rhizosphere of plants grown in pots of soils naturally 

infested with Ggt, did increase with successive wheat crops (Chapter 7). However, 

this was independent of the Ggt DNA concentrations and disease incidence, 

suggesting that the increase in the numbers of P. fluorescens CFU might be a natural 

event regardless of Ggt inoculum concentrations in the soil. In addition, the numbers 

of P. fluorescens CFU was also found to correlate positively with the Na 
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concentrations in the soil. However, more research is required to validate this effect 

since strong correlation did not mean that there was a direct effect of Na on P. 

fluorescens CFU. If the types of antibiotics, metabolites or siderophores, which are 

believed to play a part in inhibiting Ggt (Scher & Baker 1982; Thomashow & Weller 

1988; Hornby et al. 1998; Delaney et al. 2001), are produced by the P. putida and P. 

fluorescens identified in this study, this may allow their antagonistic activities against 

Ggt to be determined. 

8.6 Soil nutrition and TAD induction 

The major finding on soil nutrition from the TAD induction trial was: 

 The decreased disease incidence at season 6 coincided with the high 

concentrations of available N and Olsen P, which were added prior to setting 

up the season 6 trial. 

An attempt to induce TAD experimentally was unsuccessful in the present study 

(Chapter 7), since results did not reflect the common symptoms reported for TAD, 

which were reported to occur after 4-6 successive wheat crops in the field 

(McSpadden Gardener & Weller 2001; Mazzola 2002; Weller et al. 2002). This 

indicates that other factors (e.g. variable concentrations of Ggt DNA in the soils and 

the additions of nutrients mid way through the experiment), might have influenced the 

induction process. Although the influences of nutrition on TAD was not the main 

focus in this study, some of the nutrients measured, particularly the higher 

concentrations of available N and Olsen P, seemed to be associated with lower disease 

incidence and high Ggt DNA concentrations in the soils. This may have been due to 

reported effects (Huber 1981; Hornby et al. 1998; Cook 2003) of high concentrations 

of available N and Olsen P in the soils reducing the disease incidence by promoting 

root growth. The same increases in N and P were reported to improve the survival and 

so increase the concentration of Ggt in soils (Garrett 1938, 1940; Chambers & Flentje 

1969; Huber 1981). More experiments are required to investigate the possible roles of 

available N and Olsen P on disease incidence, root growth and the survival of Ggt and 

on distinguishing microorganisms in the rhizosphere/roots during consecutive wheat 

cropping. However, these effects of N and P on the development of TAD indicate that 

New Zealand growers practising monoculture of wheat for successive seasons should 
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consider applying sufficient nutrients to the soils annually to encourage plant vigour 

and also potential development of TAD.  

For the current research, financial constraints allowed seasonal analysis of nutrient 

concentrations in the soils of only the basic soil nutrients, not other micronutrients 

which may affect disease incidence. For instance, it is well established that the 

available manganese (Mn) in the soil is inversely related to take-all incidence or 

severity (Thompson & Huber 2007). Therefore, future work investigating the effects 

of soil nutrients on TAD should include both the major and micronutrients. 

8.7 The modified hypothesis 

The initial hypothesis proposed for this study was that TAD was a specific 

suppression caused by individual or selected groups of microorganisms. Some soils 

had specific suppression with distinguishing microorganisms unique to these soils 

(Section 8.4), thus agreeing with the initial hypothesis. According to Cook et al. 

(1986), Ggt development in suppressive soils is limited by suppression of the 

pathogen (i.e. parasitic stage) after initial infection of roots. Since the distinguishing 

microorganisms were determined from the total DNA extracted from the roots, this 

indicated likely antagonistic effects on the parasitic and endophytic Ggt. However, the 

results also showed that at least one TAD soil was associated with general 

suppression, the microorganisms within the rhizosphere and roots of plants acting to 

suppress the pathogen during its pre-penetration and penetration stages (i.e. resting 

phase and saprophytic stage) (Cook et al. 1986). Clearly, the initial hypothesis should 

have been expanded into the following: 

Take all decline is due to either specific suppression, which is associated with 

an individual or a selected group of microorganisms that suppress Ggt in the 

rhizosphere and roots of the host, or due to general suppression, which is not 

associated with any distinguishing microorganisms.  

8.8 Recommendations for future research 

This study has proposed the possible mechanisms behind TAD and identified the 

microorganisms associated with the suppression, but has also provided further key 

questions on the factors affecting the natural suppression of take-all. Further research 
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in some areas has to be carried out to give a more complete understanding of the 

mechanisms and microbial interactions in TAD. These are listed below: 

1. Improvement to the  prediction of take-all risks in subsequent wheat crops using 

Ggt DNA concentrations  

a) Using soils of similar origins to establish better correlation between the Ggt 

DNA concentrations in bulk soil and the subsequent disease severity/incidence 

of plants in pot assays or in the field, so that take-all risk in subsequent crops 

can be predicted accurately.  

2. Investigations into the possibility of soils with general suppressiveness developing 

specific suppression over time 

b) Simultaneous measurements of the Ggt DNA concentration should be made in 

the soil and within the roots of host plants grown in the same soil over 

successive seasons of wheat crops. This will show whether suppression can 

target the Ggt growing saprophytically in the soil and parasitically in the host 

and whether these change over time. 

c) Use of PCR-DGGE for continued characterisation of the microbial 

populations within the rhizosphere/roots of plants grown in the general 

suppressive soils over successive seasons of wheat in inoculated pot assays. 

This will show whether microbial populations change over successive wheat 

seasons. 

3. Investigations into soil nutrient effects on take-all levels  

d) Pot and field experiments to investigate the effects of nutrients (in particular N 

and P) in promoting new roots to offset diseased roots of plants infected with 

Ggt over time. This could be achieved by measuring cumulative new roots (by 

total weight) relative to the infected roots over time.  

e) Pot and field experiments to investigate whether optimum N and P 

concentrations in consecutive wheat crops increased the rate of initial take-all 

development and subsequently TAD development. This could be achieved by 
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monitoring field Ggt DNA concentrations and disease incidence, followed by 

pot trials as detailed in this thesis. 

4. Continued improvement in protocols for pot assays to investigate the mechanisms 

of soil suppressiveness 

f) Further pot assays to confirm the mechanisms of suppression (i.e. specific and 

general forms of suppressiveness) proposed in this thesis should integrate 

other known/reported characteristics, to reduce ambiguity in defining 

suppression types (Rovira & Cook 1981). These include: 

o steam treating the soils at a range of temperatures around 60°C since 

specific suppression is known to be eliminated at this temperature, 

whereas general suppression remains functional. 

o fumigating the soils to determine the persistence of the 

suppressiveness, since specific suppression is known to be eliminated 

by fumigation, whilst general suppression is reduced but not eliminated 

by this treatment. 

5. Investigations into the mechanisms used by the distinguishing microorganisms to 

antagonise Ggt and the prospects of using them as biocontrol control agents 

 Field studies and pot assays to investigate the efficacy and ecological fitness 

of the distinguishing microorganisms as biocontrol agents against Ggt under 

controlled and natural conditions. 

 Field trials to encourage or accelerate the development of TAD in conducive 

soil by introducing the distinguishing microorganisms or a portion of a 

specific suppressive soil. 

 In vitro studies using plate assays to identify the antagonistic mechanisms 

used by the distinguishing microorganisms individually and as a group against 

Ggt, and against one another.  
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 Identification of the types of antibiotics, metabolites or siderophores, produced 

by the P. putida and P. fluorescens from the specific suppressive soils, and 

investigation of their activities against Ggt. 

6. Development of molecular markers 

 Molecular studies to design and develop genetic probes or markers for 

analysing the rhizosphere soil and roots of wheat plants grown in a soil. 

Detection of the distinguishing microorganisms could provide a tool to 

determine the suppressive types (specific suppressiveness and conduciveness) 

of the soil. 

8.9 Concluding remarks 

This study has enhanced our understanding of the microbial interaction within the 

rhizosphere/roots of plants grown in soils with differing suppressiveness to take-all, 

and has also identified some key factors, such as soil physico-chemical properties and 

nutrients, which may affect the development of TAD. It has verified the initial 

hypothesis proposed for this thesis by identifying specific suppressive soils in New 

Zealand as well as finding soils with general suppression. This study has, therefore, 

provided valuable information that will improve the prospects of integrating 

suppressive soils into conventional cropping systems, and acted as a foundation for 

further research into the possibility of using the distinguishing microorganisms as 

natural control agents against Ggt. 
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Appendices  

Appendix 1  Growth stages of cereals 
 

A1. 1 Decimal codes for growth stages of cereals (Tottman 1987) 

 
0  Germination  5  Inflorescence (ear/panicle) emergence 

00  Dry Seed  50  --- 

01  Start of imbibition  51  First spikelet of inflorescence just visible 

02  ---  52  --- 

03  Imbibition complete  53  1/4 of inflorescence emerged 

04  ---  54  --- 

05  Radicle emerged from seed  55  1/2 of inflorescence emerged 

06  -  56  --- 

07  Coleoptile emerged from seed  57  3/4 of inflorescence emerged 

08  ---  58  --- 

09  Leaf just at coleoptile tip  59  Emergence of inflorescence completed 

       

1  Seedling Growth  6  Anthesis (flowering) 

10  First leaf through coleoptile  60  --- 

11  First leaf unfolded  61  Beginning of anthesis 

12  2 leaf unfolded  62  --- 

13  3 leaf unfolded  63  --- 

14  4 leaf unfolded  64  --- 

15  5 leaf unfolded  65  Anthesis half way 

16  6 leaf unfolded  66  --- 

17  7 leaf unfolded  67  --- 

18  8 leaf unfolded  68  --- 

19  9 or more leaves unfolded  69  Anthesis completed 

       

2  Tillering  7  Milk Development 

20  Main shoot only  70  --- 

21  Main shoot and 1 tiller  71  Caryopsis (kernel) water ripe 

22  Main shoot and 2 tillers  72  --- 

23  Main shoot and 3 tillers  73  Early milk 

24  Main shoot and 4 tillers  74  --- 

25  Main shoot and 5 tillers  75  Medium milk 

26  Main shoot and 6 tillers  76  --- 

27  Main shoot and 7 tillers  77  Late milk 

28  Main shoot and 8 tillers  78  --- 

29  Main shoot and 9 or more tillers  79  --- 

       

3  Stem Elongation  8  Dough Development 

30  Ear at 1 cm (psuedostem erect)  80  --- 

31  First node detectable  81  --- 

32  2nd node detectable  82  --- 

33  3rd node detectable  83  Early dough 

34  4th node detectable  84  --- 

35  5th node detectable  85  Soft dough 

36  6th node detectable  86  --- 

37  Flag leaf just visible  87  Hard dough 

38  ---  88  --- 

39  Flag leaf ligule just visible  89  --- 

       

4  Booting  9  Ripening 

40  ---  90  --- 

41  Flag leaf sheath extending  91  Caryopsis hard (difficult to divide) 

42  ---  92  Caryopsis hard (not dented by thumbnail) 

43  Boots just visibly swollen  93  Caryopsis loosening in daytime 

44  ---  94  Over-ripe, straw dead and collapsing 

45  Boots swollen  95  Seed dormant 

46  ---  96  Viable seed giving 50% germination 

47  Flag leaf sheath opening  97  Seed not dormant 

48  ---  98  Secondary dormancy induced 

49  First awns visible  99  Secondary dormancy lost 
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Appendix 2  Soil types of tested soils and descriptions of the 

methods used for basic soil and mineral N analyses 
 

a) Soil types of tested soils (Kear et al. 1967) 

Field 

Codes Soil types 

B3 Kaweku 

B6 Kaweku 

B8 Kaweku 

C1 Waimakariri silt loam 

C3 Waimakariri silt loam + Templeton silt loam 

C6 Wakana silt loam 

C12 Hatfield silt loam + Barrhill fine sandy loam 

G2 Ashwick stony silt loam 

H1 Templeton silt loam + Waitohi silt loam + Claremont silt loam easy rolling phase 

H2 Templeton silt loam + Waitohi silt loam + Claremont silt loam easy rolling phase 

H3 Templeton silt loam + Waitohi silt loam + Claremont silt loam easy rolling phase 

H4 Templeton silt loam + Waitohi silt loam + Claremont silt loam easy rolling phase 

H5 Waitohi silt loam + Claremont silt loam 

H6 Claremont silt loam easy rolling phase 

H7 Claremont silt loam easy rolling phase + Waitohi silt loam 

H8 Claremont silt loam easy rolling phase + Timaru silt loam 

H9 Timaru silt loam 

H10 Timaru silt loam 

H11 Timaru silt loam 

H12 Timaru silt loam 

H13 Claremont silt loam easy rolling phase 

H14 Waitohi silt loam + Claremont silt loam easy rolling phase 

H15 Claremont silt loam easy rolling phase. 

I6 Waitohi silt loam 

L9 Timaru silt loam + Claremont silt loam easy rolling phase 

M2 Waitohi silt loam 

M3 Waitohi silt loam 

M10 Waitohi silt loam 

M11 Waitohi silt loam 

 



 220 

b) Methods used in the basic soil and mineral N analyses (R. J. Hill Laboratories 

Ltd., 2002). 

 

Analyte Method

Soil preparation (dry) Air dried at 35°C overnight (residual moisture typically 4%).

Available nitrogen Anaerobic incubation followed by extraction using 2M KCL followed by 

Berthelot colorimetry. Calculation based on 15 cm depth sample.

Anaerobically mineralisable N As for available N but reported as µg g
-1.

pH 1:2 (v/v) soil: water slurry followed by potentiometric determination of 

pH.

Phosphorus Olsen extraction followed by Molybdenum Blue colorimetry.

Potassium, calcium, 

magnsium and sodium

1 M neutral ammonium acetate extraction followed by ICP-OES.

CEC Summation of extractable Cations (K, Ca, Mg, Na) and extractable 

acidity.

Base saturation Calculated from Extractable Cations and Cation Exchange Capacity.

Volume weight The weight/volume ratio of dried, ground soil.
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Appendix 3  General methods 
 

A3. 1  Preparation of Ggt inoculum and inoculation of soils in pot 

experiments 

A sand/maizemeal mixture or culture medium was prepared by mixing 500 g sand (2 mm), 

15 g ground maize meal and 65 mL of water in a clear autoclavable bag (36 x 48 cm, 

capable of withstanding temperatures up to 150°C (Raylab NZ Ltd., Auckland, New 

Zealand). A 10 cm long, 5 cm diameter aluminium tube was secured to the opening of the 

bag using rubber bands and was sealed by plugging with cotton wool, and covered with 

foil. The medium was then thoroughly shaken and autoclaved at 121°C for 1 h. Once the 

sterilised medium was cooled, 40 circular potato dextrose agar (PDA) discs (8 mm 

diameter) from the actively growing edges of an 8 d old Ggt culture were added to the bag. 

The inoculated culture media was then shaken by hand before incubating at 23°C for 3 wk 

and shaken weekly. Prior to use, the five different Ggt isolates grown in separate bags of 

sand/maizemeal media were pooled and mixed thoroughly in one of the bags. Soil 

inoculation was carried out by mixing the required amount of Ggt inoculum with the soil to 

give 300 g of soil mixture per 400 mL pot. 

 

A3. 2  Pathogenicity test of Ggt isolates 

The pathogenicity of the Ggt isolates used in the experiments was tested by inoculating 7 d 

old wheat and oat seedlings (five of each), which were pre-germinated on the same 

moistened buff germination paper rolls (Anchor Paper Ltd, Minnesota, USA). Inoculation 

was done by placing a circular potato dextrose agar (PDA) disc (8 mm diameter) from the 

actively growing edges of an 8 d old Ggt culture (grown at 23°C), 2 mm above the tip of 

the root radical. There were four replicates for each isolate treatment. The paper rolls were 

then placed in separate plastic bags, sealed and incubated at 25°C for a further 10 d. 

Results obtained after 10 d showed that 100% of wheat seedlings inoculated with the five 

Ggt isolates had lesions on their roots and penetrated hyphae present within the root 

cortices. Symptoms of root infection was not found on any of the control oat seedlings. 

 

A3. 3  Pre-germination of seeds 

All the wheat seedlings used in the experiments were pre-germinated on three moistened 

buff germination papers (Anchor papers Ltd., Minnesota, USA), rolled up, and then sealed 

in plastic bags and incubated at 25°C for 3 d before planting. 
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A3. 4  Calculations for nutrient solutions used in pot experiment 

(a) Ammonium nitrate (NH4NO3) required to give N = 150 µg g
-1

 soil 

For 300 g of soil pot
-1

, 

g 0.045
g 45000 

300150  rate  N Required





  

For 0.045 g N, 

g 0.0129 
(28) N of mass atomic Total

(80.04) NONH of mass mol. Total
 0.045  rate NONH Required 34

34













 

 (b) Potassium phosphate (KH2PO4) required to give P = 50 µg g
-1

 soil 

For 300 g of soil pot
-1

, 

g 0.015
g 15000 

30050  rate P Required





  

For 0.015 g P, 

g 0.066 
(30.97) P of mass atomic Total

(136.09) POKH of mass mol. Total
 0.015  rate POKH Required 42

42













 

(c) Potassium sulphate (K2SO4) required to give S = 20 µg g
-1

 soil 

For 300 g of soil pot
-1

, 

g 0.006
g 6000 

30020  rate S Required





  

For 0.006 g S, 

g 0.033 
(32.06) S of mass atomic Total

(174.25) SOK of mass mol. Total
 0.006  rate SOK Required 42

42













 

(d) KH2PO4 and K2SO4 required to give K = 100 µg g
-1

 soil  

300 g of soil pot
-1

, 

g 0.03
g 30000 

300100  rateK  Required





  
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 

g 019.0
(136.09) POKH of mass mol. Total

(39.1)K  of mass atomic Total0.66
  POKH of g 0.066 (b)in present K 

42

42






 

 

g 015.0 

(174.25) SOK of mass mol. Total

(78.2)K  of mass atomic Total0.33
  SOK of g 0.033 (c)in present K 

42

42






 

g 0.034 
g 0.0150.019g  SOK andPOKH from obtainedK  Total 42 42




 

The amount of K at 0.034 g, has exceeded the amount required to get 100 µg g
-1 

soil, 

hence, was sufficient for the plants. 

The calculated amounts of chemicals in (a), (b) and (c) were required to prepare 20 mL of 

nutrient solutions, but these were prepared in greater volumes depending on the number of 

pots in each trial. 

 

A3. 5  Moisture contents of test soils at field capacity 

Prior to conducting the pot assays, the original moisture contents (MC) and the MC at field 

capacity (FC) of the soils were determined for watering purposes. The original MC were 

determined by weighing three replicates of each soil sample (about 5 g each) prior to 

drying in the oven at 105°C for 24 h. The oven-dried soils were then weighed again. 

 

Original MC (%) was calculated with the formula: 

 

%100
(g) Dry weight

(g) Dry weight - (g) Wet weight
   w/w)(% MC 








  

 

MC of all the soils at FC were determined by using the tension tables based on the 

principles described by (Klute 1986). Three replicates of each soil sample (about 5 g each) 

were placed onto circular (90mm diameter) Whatman
®
 glass micro-fibre papers 

(Whatman, International Ltd., USA) separately, and left on the tension tables, which were 

made up of silica flour and sand, and maintained at a suction pressure of -5 kPa by 

adjusting the height of an attached water bottle next to apparatus to 50 cm below the 

tension table. This pressure of -5kPa equates to the minimum amount of water retained by 

the soils at FC (McLaren & Cameron 1996). After 3 d, the soils were weighed, dried at 

105°C for 24 h and weighed again. Wet and dry weights obtained were used to calculate 

the MC of soils at FC using the same formula used for calculating the original MC. The 

amount of water (weight by weight) required by each soil to reach FC was then calculated 

with the formula: 

 



 224 

(g)pot each in  soil ofamount  Total 
100

MC original % - FCat  MC %
  FCreach   water toReqired 










 

All the data were then analysed with one-way ANOVA. Results obtained are presented in 

Appendix 5, A5. 1. The weights of nutrient solutions (20 mL), pots and soils were all taken 

into considerations when applying water to FC. 

 

 

A3. 6  Infection keys used in Chapter 5 (Hornby et al. 1998). 

 

 
 

 

 

SIigtlt Moderate Sewte

<25'4 25-75'4 >75'4

Se re

<25%
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Appendix 4 Media, gels and solutions 
 

A4. 1  Potato dextrose agar (PDA) 

39 g    Potato dextrose agar (Difco Laboratories, Detroit, USA) 

1000 mL   Reverse osmosis water  

 

The agar was mixed thoroughly with the water and heated with frequent agitation in a 

microwave (1000 Watts) for about 1 min to completely dissolve the powder. The agar 

solution was then autoclaved at 121°C and 15 psi for 15 min. 

 

 

A4. 2  Nutrient Agar 

23 g   Nutrient Agar (Difco Laboratories, Detroit, USA) 

1000 mL  Reverse osmosis water 

 

The agar was mixed thoroughtly with the water and heated with frequent agitation in a 

microwave (1000 Watts) for about 1 min to completely dissolve the powder. The agar 

solution was then autoclaved at 121°C and 15 psi for 15 min. 

 

 

A4. 3  Modified King's B agar 

15 g   Bateriological Agar (Difco Laboratories, Detroit, USA) 

20 g    Peptone (Difco Laboratories, Detroit, USA) 

1000 mL  Reverse osmosis water 

1.5 g    K2HPO4 (MERCK, Merck KGaA, Germany) 

1.5 g   MgSO4.7H2O (BDH Laboratory Supplies, England) 

10 mL   Glycerol (BDH, VWR International Ltd, England) 

1 mL   Trimethoprim (20 mg L
-1

) (Sigma Chemical Co., USA) 

 

The agar and peptone were mixed thoroughly with the water and heated with frequent 

agitation in a microwave (1000 Watts) for about 1 min to completely dissolve the powders. 

The rest of the ingredients excluding antibiotic were then added to the agar solution and 

the pH adjusted to 7.2. The medium was then autoclaved at 121°C at 15 psi for 15 min. 

The molten agar was cooled to approximately 50°C and the antibiotic was added 

aseptically. Antibiotic stock was prepared by dissolving 0.5 g of Trimethoprim in 25 mL of 

Dimethyl sulphoxide (DMSO). 
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A4. 4  Potato dextrose broth (PDB) 

24 g   Potato dextrose broth (Difco laboratories, Detroit, USA) 

1000 mL  Reverse osmosis water 

 

The PDB powder was added to the water and autoclaved at 121°C and 15 psi for 15 min. 

 

 

A4. 5  1% (w/v) agarose gel 

0.3 g    Agarose (Sigma, St. Louis, United States) 

30 mL   0.5×TBE buffer (Tris Boric EDTA) 

 

Dissolve and heat the mixture in the microwave on high power for 1min. Cool the molten 

agar to about 50°C and add 3 μL of ethidium bromide. 
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Appendix 5 Additional results and ANOVA tables of statistical 

analyses  
 

Chapter 2 

A5. 1  Means of original moisture content and moisture content at FC of 

soils 

Soil Sample 
Mean moisture content (%) 

Original FC 

B3 24.77 33.16 

B6 24.45 34.28 

B8 27.86 35.73 

C1 17.40 32.48 

C3 16.95 36.63 

C6 18.56 33.24 

C12 13.60 31.95 

G2 22.50 41.97 

H1 21.38 35.85 

H2 20.45 32.36 

H3 20.40 35.84 

H4 20.41 31.82 

H5 20.09 36.22 

H6 23.06 32.73 

H7 20.71 34.22 

H8 27.97 34.97 

H9 21.49 33.18 

H10 25.15 32.98 

H11 23.42 30.90 

H12 22.00 34.74 

H13 14.16 35.67 

H14 15.67 35.41 

H15 18.51 34.69 

I6 21.06 38.96 

L9 21.41 33.44 

M2 21.06 33.63 

M3 22.23 35.41 

M10 20.34 35.45 

M11 18.02 32.19 

Significance p<0.001 p<0.001 

LSD at 5% 11.61 1.89 
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A5. 2  Analysis of variance 

A5.2 a  ANOVA of moisture contents of soils 

 

Original % MC of soils 

Source of variation df s.s. m.s. v.r. F pr. 

Rep stratum 2 7.703 3.8515 3.98  

Rep.Units.stratum      

Soils 28 1010.21 36.079 37.33 <.001 

Residual 56 54.1299 0.9666   

Total 86 1072.04       

 

% MC at FC of soils 

Source of variation df s.s. m.s. v.r. F pr. 

Rep stratum 2 4.226 2.113 1.58  

Rep.Units.stratum      

Soils 28 437.378 15.621 11.7 <.001 

Residual 56 74.734 1.335   

Total 86 516.337       

 

 

A5.2 b  ANOVA of Ggt DNA concentrations of soils after crop harvest (quantified 

from soils collected for the pot experiment) 

Ggt DNA concentrations for the 29 test soils 

Source of variation df s.s. m.s. v.r. F pr. 

Block_Rep stratum 3 0 0 0   

Block_Rep.Units. stratum      

Years of wheat cropping 4 8767899 2E+06 4.91 0.001 

Residual 108 4.8E+07 446359     

Total 115 5.7E+07       

 

Ggt DNA concentrations for St Andrews soils 

Source of variation df s.s. m.s. v.r. F pr. 

Block_Rep stratum 3 0 0 0  

Block_Rep.Units. stratum      

Years of wheat cropping  5 1.2E+07 2E+06 5.87 <.001 

Years of wheat.cropping.soils 10 7000856 700086 1.77 0.076 

Residual 97 3.8E+07 395482   

Total 115 5.7E+07       
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A5.2 c  ANOVA of percent infected roots from the pot experiment 

 

Initial analysis on transformed percent infected roots of the whole pot experiment 

(including both inoculated and uninoculated soils). Transformation was done with adjusted 

logit: LOG ((0.5 + percent infected roots) / (100.5 - percent infected roots)). 

Source of variation      df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3  121.427 40.476 40.59  

Block_Rep.Units. stratum       

Inoc 1  613.736 613.74 615.43 <.001 

Years of wheat cropping 4  12.943 3.2357 3.24 0.014 

Inoc.Years of wheat cropping 4  11.8377 2.9594 2.97 0.021 

Years of wheat cropping.Soils 24  30.9975 1.2916 1.3 0.174 

Inoc.Years of wheat cropping.Soils 24  29.5033 1.2293 1.23 0.221 

Residual 168 -3 167.537 0.9972   

Total 228 -3 982.687    

 

Analysis on transformed percent infected roots of the 29 test soils without added Ggt 

inoculum. Transformation was done with adjusted logit: LOG ((0.5 + percent infected 

roots) / (100.5 - percent infected roots)). 

Source of variation df (m.v). s.s. m.s. v.r. F pr. 

Block_Rep stratum 3  146.163 48.721 34.88  

Block_Rep.Units. stratum       

Years of wheat cropping 4  22.366 5.591 4 0.005 

Years of wheat cropping.Soils 24  55.983 2.333 1.67 0.046 

Residual 83 -1 115.922 1.397   

Total 114 -1 340.128       

 

Analysis on transformed percent infected roots of the 15 St Andrews soils without added 

Ggt inoculum. Transformation was done with adjusted logit: LOG ((0.5 + percent infected 

roots) / (100.5 - percent infected roots)). 

Source of variation df(m.v.) (m.V.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3  146.163 48.721 34.88  

Block_Rep.Units. stratum       

Set 1  7.552 7.552 5.41 0.022 

Set.not St Andrews 13  22.63 1.741 1.25 0.263 
Set.St Andrews years of wheat 
cropping 4 

 
19.289 4.822 3.45 0.012 

Set.St Andrews years of wheat .St 
Andrews soils 10 

 
28.877 2.888 2.07 0.036 

Residual 83 -1 115.922 1.397   

Total 114 -1 340.128       
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A5.2 d  ANOVA of the root and shoot dry and fresh weights from the pot experiment 

 

Shoot fresh weight of the 29 test soils without added Ggt 

Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3   45.997 15.332 106.09   

Block_Rep.Units.stratum       

Years of wheat cropping 4   4.4485 1.1121 7.7 <.001 

Years of wheat cropping.Soils 24   14.574 0.6073 4.2 <.001 

Residual 83 -1 11.995 0.1445     

Total 114 -1 77.006       

 

Shoot dry weight of the 29 test soils without added Ggt 

Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3   0.2515 0.0838 16.78   

Block_Rep.Units.stratum       

Years of wheat cropping 4   0.1417 0.0354 7.09 <.001 

Years of wheat cropping.Soils 24   0.4574 0.0191 3.82 <.001 

Residual 83 -1 0.4145 0.005     

Total 114 -1 1.2604       

 

Root fresh weight of the 29 test soils without added Ggt inoculum 

Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3   23.274 7.7581 16.93   

Block_Rep.Units.stratum       

Years of wheat cropping 4   1.4489 0.3622 0.79 0.535 

Years of wheat cropping.soils 24   22.697 0.9457 2.06 0.008 

Residual 83 -1 38.04 0.4583     

Total 114 -1 85.347       

 

Root dry weight of the 29 test soils without added Ggt inoculum 

Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3   0.5848 0.1949 31.45   

Block_Rep.Units. stratum       

Years of wheat cropping 4   0.0044 0.0011 0.18 0.949 

Years of wheat cropping.Soils 24   0.2603 0.0108 1.75 0.033 

Residual 83 -1 0.5144 0.0062     

Total 114 -1 1.354       

 

Root dry weight of the 15 Andrews soils without added Ggt inoculum 

Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3   0.5848 0.1949 31.45   

Block_Rep.Units. stratum       

Set 1   0.0002 0.0002 0.04 0.846 

Set.not St Andrews 13   0.1736 0.0134 2.16 0.019 

Set.St Andrews years of wheat cropping 4   0.0345 0.0086 1.39 0.243 
Set.St Andrews years of wheat 
cropping.St Andrews soils 10   0.0563 0.0056 0.91 0.529 

Residual 83 -1 0.5144 0.0062     

Total 114 -1 1.354       
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Root fresh weight of the 15 St Andrews soils without added Ggt inoculum 

Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3  23.274 7.7581 16.93  

Block_Rep.Units. stratum       

Set 1  0.6141 0.6141 1.34 0.25 

Set.not St Andrews 13  11.565 0.8896 1.94 0.037 
Set.St Andrews years of wheat 
cropping 4  5.5626 1.3907 3.03 0.022 
Set.St Andrews years of wheat 
cropping.St Andrews soils 10  6.4039 0.6404 1.4 0.196 

Residual 83 -1 38.04 0.4583   

Total 114 -1 85.347    

 

Shoot dry weight of the 15 St Andrews soils without added Ggt inoculum 

Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3   0.2515 0.0838 16.78   

Block_Rep.Units. stratum       

Set 1   0.0163 0.0163 3.26 0.074 

Set.not St Andrews 13   0.378 0.0291 5.82 <.001 
Set.St Andrews years of wheat 
cropping 4   0.1359 0.034 6.8 <.001 
Set.St Andrews years of wheat 
cropping.St Andrews soils 10   0.0689 0.0069 1.38 0.204 

Residual 83 -1 0.4145 0.005     

Total 114 -1 1.2604       

 

Shoot fresh weight of the 15 St Andrews soils without added Ggt inoculum 

Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block_Rep stratum 3   45.997 15.332 106.09   

Block_Rep.Units. stratum       

Set 1   0.4236 0.4236 2.93 0.091 

Set.not St Andrews 13   11.835 0.9104 6.3 <.001 
Set.St Andres years of wheat 
cropping 4   4.8662 1.2166 8.42 <.001 
Set.St Andrews years of wheat 
cropping.St Andrews soils 10   1.8978 0.1898 1.31 0.237 

Residual 83 -1 11.995 0.1445     

Total 114 -1 77.006       
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A5. 3  Analysis of Variance 

A5.3 a  ANOVA of percent infected roots from the pot experiment 

 

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 274.96 91.65 1.42  

Block.Units.stratum      

% inoc  4 40132.35 10033.09 155.46 <.001 

Soil 2 832.74 416.37 6.45 0.004 

% inoc.Soil 8 1363.37 170.42 2.64 0.019 

Residual 42 2710.64 64.54    

Total 59 45314.07       

 

 

A5.3 b  ANOVA of root and shoot dry and fresh weights 

Root dry weight 

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 0.043167 0.014389 3.47  

Block.Units.stratum      

% inoc 4 0.035667 0.008917 2.15 0.092 

Soil 2 0.044333 0.022167 5.34 0.009 

% inoc.Soil 8 0.032333 0.004042 0.97 0.469 

Residual 42 0.174333 0.004151    

Total 59 0.329833       

 

Shoot dry weight 
Source of variation df (m.v.) s.s. m.s. v.r. F pr. 

Block stratum 3  0.049603 0.016534 3.71  

Block.Units.stratum       

% inoc 4  0.109159 0.02729 6.13 <.001 

Soil 2  0.162738 0.081369 18.26 <.001 

% inoc.Sol 8  0.06389 0.007986 1.79 0.107 

Residual 41 -1 0.182663 0.004455    

Total 58 -1 0.559322       

 

Root fresh weight 

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 9.57 3.19 8.75  

Block.Units.stratum      

% inoc 4 6.231 1.5577 4.27 0.005 

soil 2 5.7 2.85 7.81 0.001 

% inoc.Soil 8 2.025 0.2531 0.69 0.695 

Residual 42 15.32 0.3648    

Total 59 38.846       
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Shoot fresh weight  

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 2.7613 0.9204 3.03  

Block.Units.stratum      

% inoc 4 1.3883 0.3471 1.14 0.35 

Soil 2 5.356 2.678 8.81 <.001 

% inoc.Soil 8 3.4507 0.4313 1.42 0.217 

Residual 42 12.7637 0.3039    

Total 59 25.72       

 

A5.3 c  ANOVA of water uptake 

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 1130.5 376.8 1.06  

Block..Units.stratum      

% inoc 4 13080.7 3270.2 9.22 <.001 

Soil 2 69704.9 34852.5 98.29 <.001 

% inoc.Soil 8 2912.9 364.1 1.03 0.431 

Residual 42 14892.7 354.6    

Total 59 101721.7       
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A5. 4  Analysis of Variance 

A5.4 a  ANOVA of percent infected roots 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 630.02 315.01 5.56 0.027 

Residual 9 509.57 56.62 0.69   

Chamber.Block.Plots stratum      

Soils 2 1904.24 952.12 11.61 <.001 

Water 1 4388.33 4388.33 53.5 <.001 

Chamber.Soils 4 315.17 78.79 0.96 0.438 

Chamber.Water 2 242.07 121.04 1.48 0.239 

Soils.Water 2 312 156 1.9 0.161 

Chamber.Soils.Water 4 731.38 182.85 2.23 0.081 

Residual 45 3691.12 82.02     

Total 71 12723.9       

 

 

A5.4 b  ANOVA of root and shoot dry and fresh weights 

Root dry weight 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 1.72 0.86 254.47 <.001 

Residual 9 0.030417 0.00338 0.97   

Chamber.Block.Plots stratum      

Soils 2 0.1875 0.09375 26.86 <.001 

Water 1 0.233472 0.233472 66.88 <.001 

Chamber.Soils 4 0.085 0.02125 6.09 <.001 

Chamber.Water 2 0.187778 0.093889 26.9 <.001 

Soils.Water 2 0.030278 0.015139 4.34 0.019 

Chamber.Soils.Water 4 0.027222 0.006806 1.95 0.119 

Residual 45 0.157083 0.003491     

Total 71 2.65875       

 

 

Shoot dry weight 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 2.491944 1.245972 154.67 <.001 

Residual 9 0.0725 0.008056 1.88   

Chamber.Block.Plots stratum      

Soils 2 0.567778 0.283889 66.36 <.001 

Water 1 0.245 0.245 57.27 <.001 

Chamber.Soils 4 0.117222 0.029306 6.85 <.001 

Chamber.Water 2 0.0975 0.04875 11.4 <.001 

Soils.Water 2 0.13 0.065 15.19 <.001 

Chamber.Soils.Water 4 0.05 0.0125 2.92 0.031 

Residual 45 0.1925 0.004278     

Total 71 3.964444       
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Root fresh weight 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 212.909 106.454 86.99 <.001 

Residual 9 11.014 1.224 1.13   

Chamber.Block.Plots stratum      

Soils 2 30.501 15.251 14.07 <.001 

Water 1 3.645 3.645 3.36 0.073 

Chamber.Soils 4 21.307 5.327 4.91 0.002 

Chamber.Water 2 15.656 7.828 7.22 0.002 

Soils.Water 2 2.303 1.152 1.06 0.354 

Chamber.Soils.Water 4 4.273 1.068 0.99 0.425 

Residual 45 48.791 1.084     

Total 71 350.399       

 

 

Shoot fresh weight 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 17.52528 8.76264 62.88 <.001 

Residual 9 1.25417 0.13935 1.48   

Chamber.Block.Plots stratum      

Soils 2 27.90861 13.95431 148.6 <.001 

Water 1 0.88889 0.88889 9.47 0.004 

Chamber.Soils 4 4.94639 1.2366 13.17 <.001 

Chamber.Water 2 0.70194 0.35097 3.74 0.032 

Soil.Water 2 6.59528 3.29764 35.12 <.001 

Chamber.Soils.Water 4 0.62639 0.1566 1.67 0.174 

Residual 45 4.22583 0.09391     

Total 71 64.67278       

 

 

A5.4 c  ANOVA of soil sieving 

Percent infected roots 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 630.02 315.01 5.56 0.027 

Residual 9 509.57 56.62 0.69   

Chamber.Block.Plots stratum      

Sieving 1 447.73 447.73 5.46 0.024 

Water 1 4388.33 4388.33 53.5 <.001 

Chamber.Sieving 2 0.44 0.22 0 0.997 

Sieving.Soils 1 1456.51 1456.51 17.76 <.001 

Chamber.Water 2 242.07 121.04 1.48 0.239 

Sieving.Water 1 74.79 74.79 0.91 0.345 

Chamber.Sieving.Soils 2 314.73 157.37 1.92 0.159 

Chamber.Sieving.Water 2 455.08 227.54 2.77 0.073 

Sieving.Soils.Water 1 237.21 237.21 2.89 0.096 

Chamber.Sieving.Soils.Water 2 276.31 138.15 1.68 0.197 

Residual 45 3691.12 82.02     

Total 71 12723.9       
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Root dry weight 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 1.72 0.86 254.47 <.001 

Residual 9 0.030417 0.00338 0.97   

Chamber.Block.Plots stratum      

Sieving 1 0.140625 0.140625 40.29 <.001 

Water 1 0.233472 0.233472 66.88 <.001 

Chamber.Sieving 2 0.06125 0.030625 8.77 <.001 

Sieving.Soils 1 0.046875 0.046875 13.43 <.001 

Chamber.Water 2 0.187778 0.093889 26.9 <.001 

Sieving.Water 1 0.025069 0.025069 7.18 0.01 

Chamber.Sieving.Soils 2 0.02375 0.011875 3.4 0.042 

Chamber.Sieving.Water 2 0.021806 0.010903 3.12 0.054 

Sieving.Soils.Water 1 0.005208 0.005208 1.49 0.228 

Chamber.Sieving.Soils.Water 2 0.005417 0.002708 0.78 0.466 

Residual 45 0.157083 0.003491     

Total 71 2.65875       

 

Shoot dry weight 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 2.491944 1.245972 154.67 <.001 

Residual 9 0.0725 0.008056 1.88   

Chamber.Block.Plots stratum      

Sieving 1 0.380278 0.380278 88.9 <.001 

Water 1 0.245 0.245 57.27 <.001 

Chamber.Sieving 2 0.045972 0.022986 5.37 0.008 

Sieving.Soils 1 0.1875 0.1875 43.83 <.001 

Chamber.Water 2 0.0975 0.04875 11.4 <.001 

Sieving.Water 1 0.1225 0.1225 28.64 <.001 

Chamber.Sieving.Soils 2 0.07125 0.035625 8.33 <.001 

Chamber.Sieving.Water 2 0.04875 0.024375 5.7 0.006 

Sieving.Soils.Water 1 0.0075 0.0075 1.75 0.192 

Chamber.Sieving.Soils.Water 2 0.00125 0.000625 0.15 0.864 

Residual 45 0.1925 0.004278     

Total 71 3.964444       
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Root fresh weight 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 212.909 106.454 86.99 <.001 

Residual 9 11.014 1.224 1.13   

Chamber.Block.Plots stratum      

Sieving 1 6.418 6.418 5.92 0.019 

Water 1 3.645 3.645 3.36 0.073 

Chamber.Sieving 2 2.407 1.203 1.11 0.338 

Sieving.Soils 1 24.083 24.083 22.21 <.001 

Chamber.Water 2 15.656 7.828 7.22 0.002 

Sieving.Water 1 0.902 0.902 0.83 0.366 

Chamber.Sieving.Soils 2 18.9 9.45 8.72 <.001 

Chamber.Sieving.Water 2 0.823 0.411 0.38 0.686 

Sieving.Soils.Water 1 1.401 1.401 1.29 0.262 

Chamber.Sieving.Soils.Water 2 3.45 1.725 1.59 0.215 

Residual 45 48.791 1.084     

Total 71 350.399       

 

 

Shoot fresh weight 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 17.52528 8.76264 62.88 <.001 

Residual 9 1.25417 0.13935 1.48   

Chamber.Block.Plots stratum      

Sieving 1 19.06778 19.06778 203.05 <.001 

Water 1 0.88889 0.88889 9.47 0.004 

Chamber.Sieving 2 0.38097 0.19049 2.03 0.143 

Sieving.Soils 1 8.84083 8.84083 94.14 <.001 

Chamber.Water 2 0.70194 0.35097 3.74 0.032 

Sieving.Water 1 6.58778 6.58778 70.15 <.001 

Chamber.Sieving.Soils 2 4.56542 2.28271 24.31 <.001 

Chamber.Sieving.Water 2 0.54764 0.27382 2.92 0.064 

Sieving.Soils.Water 1 0.0075 0.0075 0.08 0.779 

Chamber.Sieving.Soils.Water 2 0.07875 0.03938 0.42 0.66 

Residual 45 4.22583 0.09391     

Total 71 64.67278       
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A5.4 d  ANOVA on repeated measurement of water use 

Source of variation df s.s. m.s. v.r. F pr. 

Chamber.Block stratum      

Chamber 2 16937.29 8468.643 85.92 <.001 

Residual 9 887.047 98.561 0.83   

Chamber.Block.Plots stratum      

Soil_type 2 7694.078 3847.039 32.48 <.001 

Chamber.Soil_type 4 2473.69 618.423 5.22 0.006 

Residual 18 2132.072 118.448 15.25   
Chamber.Block.Plots.Time 
stratum      

df correction factor 0.3685      

Time 8 41462.84 5182.854 667.4 <.001 

Chamber.Time 16 3462.401 216.4 27.87 <.001 

Time.Soil_type 16 2637.588 164.849 21.23 <.001 

Chamber.Time.Soil_type 32 786.643 24.583 3.17 0.001 

Residual 216 1677.408 7.766     

Total 323 80151.05       

       

(df are multiplied by the correction factors before calculating F probabilities) 
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A5. 5  Field management practice and crop yield information of the four 

wheat soils provided by the growers 

Soil / season

Residue 

management 

after crop

Pre-sowing 

cultivation

1
Weed 

Problems

Glyphosate 

application 

before  

sowing

Fertiliser application 

before crop sowing

Seed treatment before 

sowing

Irrigation 

during 

growing 

season

Yield (t ha
-1

) 

H1

1999/00 - Min-tillage - - - - - -

2000/01 - Min-tillage - - - - - -

2001/02 - Plough, min-tillage - - - - - -

2002/03 Burned Min-tillage - - - - - -

2003/04 - Min-tillage C Yes - No No -

2004/05 - - - - - - - -

2005/06 - - - - - - - -

H3

1999/00 - - - - - - - -

2000/01 - - - - - - - -

2001/02 - Plough - - - - - -

2002/03 Burned Min-tillage - - - - - -

2003/04 - Min-tillage RB and FP Yes 
10 % potash super (400 kg 

ha
-1

) and N (180 kg ha
-1

)
No No 4.4

2004/05 - - - - - - - -

2005/06 - - - - - - - -

M2

1999/00 - Plough - - - - - -

2000/01 Incorporated Plough - Yes - - - -

2001/02 Burned Min-tillage - Yes - - - -

2002/03 Burned Min-tillage - Yes - - - -

2003/04 - Min-tillage

MW, WW, 

F, C and 

WO

Yes

Sulphur super + copper (1000 

kg ha
-1

), urea (130 kg ha
-1

) 

and Potassium choloride (75 

kg ha
-1

)

No Yes 7.8

2004/05 - - - - - - - -

2005/06 - - - - - - - -

P7

1999/00 - - - - - - - -

2000/01 Burned Min-tillage - Yes - - - -

2001/02 Burned Min-tillage - Yes - - - -

2002/03 Burned Min-tillage - Yes - - - -

2003/04 Burned Min-tillage - Yes - - - -

2004/05 Baled plough
CW, B and 

RG
Yes

Sulphur super (600 kg ha
-1

) 

and urea (520 kg ha
-1

)

Raxil
®
 (containing active 

ingredient 25 g L
-1 

tebuconazole) and Gaucho® 

(containing active ingredient 

600 g L
 -1

 imidacloprid)

Yes 12.24

2005/06 Burned Min-tillage
CW, B and 

RG
Yes

Sulphur super (500kg ha
-1

) 

and urea (550 kg ha
-1

)

Raxil
®
 (containing active 

ingredient 25 g L
-1 

tebuconazole)

Yes 9.64

1 
Weed proplems

C Couch

RB Ripgut brome

FP  field pansy

MW Mayweed

WW Wireweed

F Fumitory

C Cleaves

WO Wild oats

CW Chickweed

B Brome

RG Ryegrass  
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A5. 6  Analysis of Variance 

A5.6 a  Experiment 1-ANOVA on TAR 

 

Effect of sterilisation on inoculated soils  

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 1903 634.3 0.83   

      

Block.Plot_no stratum      

Soil 12 20412.2 1701 2.23 0.014 

Inoc 1 66354.2 66354.2 87.15 <.001 

Soil.Inoc 12 16342.6 1361.9 1.79 0.058 

Inoc.Ster 1 41733.4 41733.4 54.81 <.001 

Soil.Inoc.Ster 12 21322.1 1776.8 2.33 0.01 

Residual 114 86794.9 761.4     

Total 155 254862.4       

 
 

Effect of inoculation on non-sterilised soil 

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 1903 634.3 0.83   

      

Block.Plot_no stratum      

Soil 12 20412.2 1701 2.23 0.014 

Ster 1 93461.5 93461.5 122.76 <.001 

Soil.Ster 12 27724.8 2310.4 3.03 <.001 

Ster.Inoc 1 14626.1 14626.1 19.21 <.001 

Soil.Ster.Inoc 12 9939.9 828.3 1.09 0.377 

Residual 114 86794.9 761.4     

Total 155 254862.4       

 

A5.6 b  Experiment 2-ANOVA on TAR 

 

Effect of sterilisation on inoculated soils  

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 101.9 34 0.1   

Block.PlotNo stratum      

Soil 4 22342.6 5585.6 17.19 <.001 

Inoc 1 43446.8 43446.8 133.7 <.001 

Soil.Inoc 4 11692.1 2923 9 <.001 

Inoc.Ster 1 16000 16000 49.24 <.001 

Soil.Inoc.Ster 4 4694.4 1173.6 3.61 0.013 

Residual 42 13648.1 325     

Total 59 111925.9       
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Effect of inoculation on non-sterilised soil 

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 101.9 34 0.1   

Block.PlotNo stratum      

Soil 4 22342.6 5585.6 17.19 <.001 

Ster 1 45695 45695 140.62 <.001 

Soil.Ster 4 2803.2 700.8 2.16 0.091 

Ster.Inoc 1 13751.7 13751.7 42.32 <.001 

Soil.Ster.Inoc 4 13583.3 3395.8 10.45 <.001 

Residual 42 13648.1 325     

Total 59 111925.9       

 

A5.6 c  Experiment 3-ANOVA on TAR 

 

Source of variation df s.s. m.s. v.r. F pr. 

Block stratum 3 171.9 57.3 0.14  

Block.*Units* stratum      

Soil_sample 4 7875 1968.8 4.73 0.005 

inoc 1 15015.6 15015.6 36.09 <.001 

Soil_sample.inoc 4 6312.5 1578.1 3.79 0.014 

Residual 27 11234.4 416.1    

Total 39 40609.4       
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A6. 1  Amplified products of the ITS rDNA fragments from the 12 Ggt 

isolates and their nucleotide sequences 

A6.1 a  Amplified products of the ITS rDNA fragments from the 12 Ggt isolates on 

1% agarose gel. Lanes 1 and 9 are the high molar mass ladders, while lanes 8 and 16 

are the negative controls. Lanes 2-7 represent Ggt isolates A3SL4, H9T3R1/1.2, 

BIOMILL, H9T3R3, BIOMILLSC3 and H11T3R1/3, respectively. Lanes 10-15 are 

BIO3, WF99/3, BIO4B, BIO4A, MAL1/8 and DSMZ12044, respectively. 
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A6.1 b  A3SL4 

GTCGCGGGTATTCCTACCTGATCCGAGGTCAACCTAAGAAGTTTAGGGG

GTTTAGCGGCTGGAGCCCGCCGGGAAGCCTCCGAACGAAGCGCGTTTTA

CCGCGAGTTACTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGG

GGGCCCCGACCGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTT

GAGTGGTGAAATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCG

GGCGCAATGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTC

ACATTACTTATCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAG

AGATCCGTTGTTGAAAGTTTTAATTATTTGGTTTTGTACTCAGAGATACA

CTAAAATTCAGGGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGG

CCATCGTCCGCCGAAGCAACAGTAAAGGTATGTTCACAGGGGGTTGGA

GTTTTTCAACTCTGTAATGATCCCTCCGCTGGTTCACCAACG 

 

A6.1 c  H9T3R1/1.2 

GGTATTCCTACCTGATCCGAGGTCACCTAAGAAGTTTAGGGGGTTTAGC

GGCTGGAGCCCGCCGGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGA

GTTACTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCC

CGACCGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGG

TGAAATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCA

ATGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTA

CTTATCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCC
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GTTGTTGAAAGTTTTAATTATTTGGTTTTGTACTCAGAGATACACTAAAA

TTCAGGGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGCGCCAT

CGTCCGCCGAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTT

CAACTCTGTAATGATCCCTCCGCTGGTTCACCAACGGAGACC 

 

A6.1 d  BIOMILL 

TTCCTACCTGATCCGAGGTCAACCTAAGAAGTTTAGGGGGTTTAGCGGC

TGGAGCCCGCCGGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGAGTT

ACTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCCCGA

CCGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGGTGA

AATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATG

TGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTA

TCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTG

TTGAAAGTTTTAATTATTTGGTTTTGTACTCAGAGATACACTAAAATTCA

GGGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGCCATCGTCCG

CCGAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTCAACTC

TGTAATGATCCCTCCGCTGGTTCACCAACGGAGACCTTGTTACACCTTTT

TACTTCCA 

 

A6.1 e  H9T3R3 

TTCCTACCTGATCCGAGGTCAACCTAAGAAGTTTAGGGGGTTTAGCGGC

TGGAGCCCGCCGGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGAGTT

ACTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCCCGA

CCGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGGTGA

AATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATG

TGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTA

TCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTG

TTGAAAGTTTTAATTATTTGGTTTTATACTCAGAGATACACTAAAATTCA

GGGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGGCCATCGTCC

GCCGAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTCAACT

CTGTAATGATCCCTCCGCTGGTTCACCAACGGAGACCTTGTTACgACTTT

TACTTCCA 

 

A6.1 f  BIOMILLSC3 

TTCCTACCTGATCCGAGGTCACCTAAGAAGTTTAGGGGGTTTAGCGGCT

GGAGCCCGCCGGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGAGTTA

CTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCCCGAC

CGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGGTGAA

ATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATGT

GCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTAT

CGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTGT

TGAAAGTTTTAATTATTTGGTTTTGTACTCAGAGATACACTAAAATTCAG

GGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGCCATCGTCCGC

CGAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTCAACTCT

GTAATGATCCCTCCGCTGGTTCACCAACGGAGACCTTGTTACACCTTTTA

CTTCCA 
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A6.1 g  H11T3R1/3 

GGTATTCCTACCTGATCCGAGGTCACCTAAGAAGTTTAGGGGGTTTAGC

GGCTGGAGCCCGCCGGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGA

GTTACTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCC

CGACCGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGG

TGAAATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCA

ATGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTA

CTTATCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCC

GTTGTTGAAAGTTTTAATTATTTGGTTTTATACTCAGAGATACACTAAAA

TTCAGGGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGGCCATC

GTCCGCCGAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTC

AACTCTGTAATGATCCCTCCGCTGGTTCACCAACGGAGACCTTGATACA

ACC 

 

A6.1 h  BIO3 

TTCCTACCTGATCCGAGGTCACCTAAGGAGTTTAGGGGGTTTAGCGGCT

GGAGCCCGCCAGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGAGTTA

CTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCCCGAC

CGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGGTGAA

ATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATGT

GCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTAT

CGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTGT

TGAAAGTTTTAATTATTTGGTTTTGTACTCAGAGATACACTAAAATTCAG

GGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGCCATCGTCCGC

CGAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTCAACTCT

GTAATGATCCCTCCGCTGGTTCACCAACGGAGACCTTGATACGACTTTTT

TACTTCC 

 

A6.1 i  WF99/3 

ATTCCTACCTGATCCGAGGTCACCTAAGAAGTTTAGGGGGTTTAGCGGC

TGGAGCCCGCCGGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGAGTT

ACTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCCCGA

CCGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGGTGA

AATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATG

TGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTA

TCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTG

TTGAAAGTTTTAATTATTTGGTTTTGTACTCAGAGATACACTAAAATTCA

GGGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGCCATCGTCCG

CCGAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTCAACTC

TGTAATGATCCCTCCGCTGGTTCACCAACGGAGACCTTGTTACGACCTTT

TACTTCCA 
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A6.1 j  BIO4B 

TGATCCGAGGTCAACCTAAGAAGTTTAGGGGGTTTAGCGGCTGGAGCCC

GCCGGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGAGTTACTGCGTTC

AGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCCCGACCGCCGGGC

GGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGGTGAAATGACGCTC

GGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATGTGCGTTCAAA

GATTCGATGATTCACTGAATTCTGCAATTCACATTACTTATCGCATTTCG

CTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTGTTGAAAGTTT

TAATTATTTGGTTTTATACTCAGAGATACACTAAAATTCAGGGTTTGTAA

CCTCCGGCGGCGTCCGGCCCCCGGGGGGGGCCATCGTCCGCCGAAGCA

ACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTCAACTCTGTAATGA

TCCCTCCGCTGGTTCACCAACGGAGACCTTGTTACGACTTTTACTTCCA 

 

A6.1 k  BIO4A 

TTTCCTACCTGATCCGAGGTCACCTAAGAAGTTTAGGGGGTTTAGCGGC

TGGAGCCCGCCGGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGAGTT

ACTGCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCCCGA

CCGCCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGGTGA

AATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATG

TGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTA

TCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTG

TTGAAAGTTTTAATTATTTGGTTTTATACTCAGAGATACACTAAAATTCA

GGGTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGGCCATCGTCC

GCCGAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTCAACT

CTGTAATGATCCCTCCGCTGGTTCACCAACGGAGACCTTGTTACGACTTT

TACTTC 

 

A6.1 l  MAL 1/8 

TCCTACCTGATCCGAGGTCACCTAAGGAGTTTAGGGGGTTTAGCGGCTG

GAGCCCGCCAGGAAGCCTCCGAACGAAGCGCGTTTTACCGCGAGTTACT

GCGTTCAGGGTCCTGGCGAGACCGCCGATGTTCTTGGGGGCCCCGACCG

CCGGGCGGCCGGGTGCCCCAACACCAAGCTGGGCTTGAGTGGTGAAAT

GACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATGTGC

GTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTATCG

CATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTGTTG

AAAGTTTTAATTATTTGGTTTTGTACTCAGAGATACACTAAAATTCAGG

GTTTGTAACCTCCGGCGGCGTCCGGCCCCCGGGGGGGCCATCGTCCGCC

GAAGCAACAGTAAAGGTATGTTCACAGGGGTTGGAGTTTTTCAACTCTG

TAATGATCCCTCCGCTGGTTCACCAACGGAGACCTAGTTACACCTTTTAC

TTCA 
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A6.1 m  DSMZ12044 

TTCCTACCTGATCCGAGGTCACCTAAGAAGTTTAGGGGGTTTAGCGGCT

GGAGCCCGCCGGGAAAGCCTCCGAGCGAAGCGCGTTTTACCGCGAGTT

ACTGCGCTCAGGGTCCTAGCGAGACCGCCGATGTTCTTGGGGGCCCCGA

CCGCCGGGCGGCCGGGTGCCCCAACGCCAAGCTGGGCTTGAGTGGTGA

AATGACGCTCGGACAGGCATGCCCGCCGGAATACCGGCGGGCGCAATG

TGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTA

TCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTG

TTGAAAGTTTTAATTATTTGGTTTCGTACTCAGGAGATACACTAAAATTC

AGGGTTTGTAACCTCCGGCGGCGTCCGGCCCGGGGGCCATCGTCCGCCG

AAGCAACAGTAAAGGTAGGTTCACAGGGGTTGGAGTTTTTCAACTCTGT

AATGATCCCTCCGCTGGTTCACCAACGGAGACCTTGTTAC 
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A6. 2  Summary of number of replicates where a band was present for the five soils. DBM refere to the distance of 

band migration (mm) along the gel. 

Band 

No. DBM H1 H15 H3 M2 P7
Band 

No. DBM H1 H15 H3 M2 P7
Band 

No. DBM H1 H15 H3 M2 P7
Band 

No. DBM H1 H15 H3 M2 P7

1 10.5 4 4 4 4 4 1 7.9 2 4 4 0 1 1 10.5 4 4 4 4 4 1 9.4 0 0 0 4 0

2 16.0 4 3 4 4 4 2 9.7 0 3 4 0 1 2 11.5 2 4 0 4 0 2 11.5 4 4 0 4 0

3 19.1 4 4 4 4 4 3 11.0 4 4 4 0 2 3 13.1 3 4 4 4 4 3 14.1 4 4 4 0 0

4 20.9 0 0 2 0 0 4 12.7 4 4 4 4 0 3a 18.7 1 0 0 0 1 4 15.0 4 4 4 0 1

5 22.3 1 0 2 0 0 5 14.7 0 3 4 0 2 4 20.5 4 4 4 4 4 5 16.4 4 4 4 0 4

6 24.5 0 1 0 0 1 6 15.8 0 0 0 4 0 5 22.8 4 4 4 4 4 6 17.1 4 4 4 4 4

7 25.9 0 1 0 0 1 7 17.0 4 4 4 4 0 5a 24.1 1 1 0 0 0 7 18.4 0 4 4 4 4

8 26.8 0 0 1 0 0 8 18.2 4 1 4 4 3 6 25.0 4 4 4 4 4 8 19.0 0 4 4 0 4

9 31.5 4 4 4 4 4 9 19.5 4 1 4 4 0 7 29.5 4 4 4 4 4 9 19.7 4 4 4 4 4

10 37.2 4 4 4 4 4 10 20.6 4 1 4 0 4 8 31.3 3 4 4 0 3 10 23.9 4 4 4 0 4

11 40.0 0 2 4 0 2 11 22.8 4 4 4 0 4 8a 33.3 1 4 0 0 0 11 26.5 4 4 4 0 4

12 43.6 0 0 4 0 0 12 24.7 4 1 4 4 0 9 36.8 4 4 0 4 4 12 29.1 0 1 1 4 4

13 45.1 1 0 4 0 0 13 26.2 4 4 4 0 4 10 38.4 0 4 0 0 4 13 35.0 4 4 4 4 4

14 46.3 0 0 2 1 0 14 28.2 4 4 4 0 1 11 39.9 4 4 0 0 4 14 56.7 4 4 4 4 4

15 47.1 0 0 4 0 2 15 30.0 4 4 4 4 4 12 41.8 4 4 4 4 4 15 60.1 4 4 4 4 4

16 48.7 0 4 4 0 4 16 31.0 4 1 4 4 3 13 46.5 4 4 4 4 4 16 62.1 4 4 0 4 4

17 51.3 0 4 4 4 4 17 38.1 4 4 4 4 4 14 50.6 4 4 4 4 4 17 63.5 4 0 4 0 0

18 52.5 0 0 1 0 0 18 46.1 0 2 2 0 0 15 51.8 4 4 4 4 4 18 65.8 4 4 4 4 4

19 53.9 4 0 4 0 1 19 47.6 0 1 3 0 0 16 53.5 4 4 4 4 4 19 68.2 4 4 4 0 4

20 55.3 0 4 4 4 4 20 49.8 4 4 4 4 0 17 55.5 4 4 0 4 4 20 69.7 4 4 4 4 4

21 56.7 0 0 2 0 0 21 50.9 2 4 4 0 4 18 57.7 2 4 0 4 3 21 71.1 4 0 4 4 0

22 57.8 0 0 1 0 0 22 52.2 1 0 1 0 0 19 58.9 4 4 0 4 3 22 72.8 4 4 4 4 4

23 60.6 4 4 4 4 4 23 53.6 4 4 4 4 1 20 59.8 0 1 0 0 2 23 74.8 4 4 4 4 4

24 62.6 0 4 4 4 4 24 55.3 4 3 4 0 4 21 61.2 4 4 0 4 4 24 78.6 4 4 0 4 4

25 64.9 1 4 4 4 4 25 56.7 4 0 4 0 0 22 63.0 0 4 0 0 3 25 80.1 4 4 4 4 4

26 66.7 4 4 4 4 4 26 58.2 4 4 4 4 4 23 64.0 4 4 4 4 4 26 82.1 0 4 0 4 4

27 68.3 4 4 4 4 4 27 60.3 4 4 4 0 4 24 65.3 1 4 0 4 4 27 83.8 4 4 4 0 4

28 69.3 4 4 4 4 4 28 62.0 4 4 4 0 4 25 66.5 4 4 4 4 4 28 86.3 4 4 4 4 4

29 70.7 1 3 4 4 4 29 63.1 4 0 4 4 4 26 68.2 0 4 0 0 4

30 72.3 4 4 4 4 4 30 64.3 4 4 4 4 4 27 69.5 4 4 4 4 4

31 73.0 0 4 4 4 4 31 65.9 4 4 4 4 4 28 70.8 4 4 4 4 4

32 74.5 4 4 4 4 4 32 67.6 4 0 4 4 4 29 71.4 0 4 0 0 4

33 76.2 4 0 4 4 0 33 69.5 1 0 4 1 1 30 72.5 0 4 0 0 4

34 77.1 0 4 4 4 4 34 70.7 1 0 4 1 0 31 73.4 4 0 0 4 4

35 79.4 4 4 4 4 4 35 72.4 0 4 0 3 4 32 74.1 4 0 0 4 4

36 80.8 4 0 4 4 0 36 74.3 4 4 4 4 4 33 76.6 4 0 0 4 0

37 82.6 4 0 4 4 0 37 76.2 1 4 1 0 1 34 80.0 0 0 0 1 0

38 84.4 4 4 4 4 3 38 78.2 1 0 0 0 0 35 80.8 1 0 0 2 0

39 86.1 4 4 4 0 4 39 79.6 0 0 0 0 1 36 83.3 1 0 0 1 0

40 87.9 4 4 4 4 4 40 83.9 0 1 1 0 0 37 85.1 3 0 0 2 0

41 86.5 0 1 1 0 0

42 90.4 0 1 0 1 0

43 92.8 2 3 4 2 2
44 95.2 0 0 4 0 4

Fungal ITS Actinomycetes AscomycetesBacterial 16S
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A6. 3  Similarity among the soils derived from the cluster analyses using 

the Jaccard method on bands separated on DGGE gels. Numbers next to 

the soil codes on each axis are the replicate numbers of the rhizosphere 

samples loaded onto the gel. 

A6.3a  On all the 152 DGGE bands of the four microbial groups  

 
H1 1 1                    
 2 0.88 1                   
 3 0.88 0.93 1                  
 4 0.84 0.87 0.89 1                 

H15 1 0.62 0.63 0.65 0.65 1                
 2 0.61 0.62 0.64 0.66 0.93 1               
 3 0.60 0.61 0.64 0.66 0.92 0.93 1              
 4 0.61 0.61 0.63 0.64 0.85 0.88 0.87 1             

H3 1 0.69 0.68 0.67 0.66 0.63 0.63 0.62 0.65 1            
 2 0.69 0.69 0.67 0.66 0.63 0.65 0.62 0.66 0.95 1           
 3 0.69 0.68 0.68 0.67 0.63 0.64 0.63 0.63 0.92 0.92 1          
 4 0.68 0.67 0.67 0.66 0.63 0.65 0.63 0.66 0.93 0.93 0.94 1         

M2 1 0.62 0.62 0.64 0.68 0.57 0.57 0.57 0.58 0.55 0.56 0.56 0.54 1        
 2 0.61 0.62 0.63 0.67 0.57 0.58 0.57 0.59 0.53 0.54 0.53 0.52 0.94 1       
 3 0.61 0.63 0.65 0.68 0.58 0.58 0.59 0.59 0.55 0.56 0.55 0.54 0.94 0.92 1      
 4 0.61 0.63 0.63 0.66 0.59 0.60 0.58 0.60 0.56 0.56 0.55 0.55 0.93 0.94 0.97 1     

P7 1 0.58 0.57 0.60 0.63 0.74 0.75 0.75 0.71 0.57 0.58 0.57 0.56 0.61 0.60 0.62 0.62 1    
 2 0.60 0.60 0.63 0.63 0.77 0.78 0.80 0.76 0.64 0.65 0.64 0.63 0.59 0.58 0.60 0.60 0.91 1   
 3 0.61 0.60 0.61 0.62 0.75 0.77 0.75 0.74 0.63 0.64 0.63 0.62 0.59 0.59 0.60 0.62 0.89 0.87 1  
 4 0.62 0.59 0.62 0.62 0.78 0.76 0.75 0.74 0.63 0.65 0.64 0.64 0.59 0.58 0.59 0.60 0.84 0.87 0.85 1 

  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
  H1    H15    H3    M2    P7    

  
 

A6.3b  On all the bands from the Bacterial DGGE analysis  

 
H1 1 1                    
 2 0.95 1                   
 3 1 0.95 1                  
 4 0.86 0.83 0.86 1                 

H15 1 0.54 0.52 0.54 0.53 1                
 2 0.56 0.54 0.56 0.61 0.88 1               
 3 0.50 0.48 0.50 0.55 0.81 0.92 1              
 4 0.54 0.52 0.54 0.59 0.85 0.96 0.96 1             

H3 1 0.56 0.59 0.56 0.60 0.61 0.68 0.68 0.71 1            
 2 0.59 0.63 0.59 0.64 0.65 0.72 0.72 0.75 0.94 1           
 3 0.54 0.57 0.54 0.63 0.59 0.66 0.66 0.69 0.82 0.86 1          
 4 0.56 0.59 0.56 0.65 0.61 0.68 0.68 0.71 0.89 0.89 0.92 1         

M2 1 0.65 0.63 0.65 0.70 0.71 0.81 0.74 0.78 0.71 0.75 0.69 0.71 1        
 2 0.65 0.63 0.65 0.70 0.71 0.81 0.74 0.78 0.71 0.75 0.69 0.71 1 1       
 3 0.65 0.63 0.65 0.70 0.71 0.81 0.74 0.78 0.71 0.75 0.69 0.71 1 1 1      
 4 0.63 0.61 0.63 0.68 0.69 0.78 0.71 0.75 0.74 0.73 0.67 0.74 0.96 0.96 0.96 1     

P7 1 0.52 0.50 0.52 0.57 0.84 0.96 0.88 0.92 0.65 0.69 0.63 0.65 0.77 0.77 0.77 0.74 1    
 2 0.52 0.50 0.52 0.57 0.81 0.92 0.92 0.96 0.74 0.78 0.71 0.74 0.75 0.75 0.75 0.72 0.88 1   
 3 0.56 0.54 0.56 0.61 0.88 1 0.92 0.96 0.68 0.72 0.66 0.68 0.81 0.81 0.81 0.78 0.96 0.92 1  
 4 0.52 0.50 0.52 0.56 0.86 0.82 0.82 0.86 0.72 0.76 0.70 0.72 0.68 0.68 0.68 0.66 0.79 0.89 0.82 1 

  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
  H1    H15    H3    M2    P7    

  
 

A6.3c  On all the bands from the fungal DGGE analysis 

 
H1 1 1                    
 2 0.81 1                   
 3 0.78 0.90 1                  
 4 0.87 0.86 0.89 1                 

H15 1 0.57 0.61 0.63 0.59 1                
 2 0.53 0.56 0.58 0.55 0.85 1               
 3 0.53 0.56 0.63 0.60 0.88 0.81 1              
 4 0.56 0.59 0.61 0.58 0.70 0.70 0.66 1             

H3 1 0.81 0.75 0.72 0.74 0.62 0.58 0.54 0.65 1            
 2 0.78 0.78 0.70 0.72 0.61 0.61 0.53 0.63 0.92 1           
 3 0.85 0.79 0.76 0.79 0.66 0.61 0.57 0.60 0.94 0.92 1          
 4 0.76 0.71 0.73 0.70 0.63 0.63 0.55 0.70 0.89 0.92 0.89 1         

M2 1 0.56 0.50 0.52 0.53 0.36 0.32 0.35 0.38 0.49 0.47 0.51 0.46 1        
 2 0.52 0.55 0.52 0.53 0.41 0.36 0.35 0.46 0.45 0.44 0.47 0.42 0.82 1       
 3 0.52 0.55 0.57 0.59 0.35 0.31 0.34 0.37 0.44 0.43 0.47 0.42 0.85 0.85 1      
 4 0.53 0.57 0.53 0.55 0.42 0.38 0.37 0.43 0.46 0.45 0.49 0.44 0.86 0.95 0.89 1     

P7 1 0.50 0.48 0.50 0.57 0.48 0.43 0.48 0.36 0.47 0.46 0.50 0.45 0.36 0.36 0.35 0.37 1    
 2 0.53 0.56 0.58 0.60 0.57 0.52 0.57 0.43 0.58 0.57 0.62 0.55 0.35 0.35 0.34 0.37 0.82 1   
 3 0.55 0.53 0.50 0.57 0.53 0.53 0.48 0.49 0.56 0.54 0.59 0.53 0.32 0.37 0.31 0.38 0.77 0.72 1  
 4 0.60 0.54 0.56 0.58 0.59 0.55 0.50 0.50 0.61 0.59 0.64 0.62 0.39 0.39 0.34 0.41 0.69 0.71 0.74 1 

  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
  H1    H15    H3    M2    P7    
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A6.3d  On all the bands from the actinomycete DGGE analysis  

 
H1 1 1                    
 2 0.83 1                   
 3 0.86 0.89 1                  
 4 0.73 0.80 0.83 1                 

H15 1 0.57 0.62 0.65 0.69 1                
 2 0.57 0.62 0.65 0.69 1 1               
 3 0.57 0.62 0.65 0.69 1 1 1              
 4 0.58 0.58 0.61 0.65 0.94 0.94 0.94 1             

H3 1 0.57 0.58 0.62 0.50 0.53 0.53 0.53 0.50 1            
 2 0.57 0.58 0.62 0.50 0.53 0.53 0.53 0.50 1 1           
 3 0.57 0.58 0.62 0.50 0.53 0.53 0.53 0.50 1 1 1          
 4 0.57 0.58 0.62 0.50 0.53 0.53 0.53 0.50 1 1 1 1         

M2 1 0.72 0.79 0.83 0.93 0.63 0.63 0.63 0.59 0.54 0.54 0.54 0.54 1        
 2 0.73 0.74 0.77 0.87 0.59 0.59 0.59 0.56 0.50 0.50 0.50 0.50 0.93 1       
 3 0.71 0.79 0.82 0.86 0.67 0.67 0.67 0.63 0.58 0.58 0.58 0.58 0.93 0.86 1      
 4 0.71 0.79 0.82 0.86 0.67 0.67 0.67 0.63 0.58 0.58 0.58 0.58 0.93 0.86 1 1     

P7 1 0.61 0.62 0.70 0.69 0.82 0.82 0.82 0.82 0.48 0.48 0.48 0.48 0.68 0.64 0.72 0.72 1    
 2 0.64 0.65 0.73 0.67 0.85 0.85 0.85 0.85 0.52 0.52 0.52 0.52 0.66 0.62 0.70 0.70 0.97 1   
 3 0.67 0.68 0.71 0.65 0.78 0.78 0.78 0.74 0.59 0.59 0.59 0.59 0.64 0.60 0.68 0.68 0.84 0.87 1  
 4 0.69 0.65 0.73 0.67 0.85 0.85 0.85 0.80 0.52 0.52 0.52 0.52 0.66 0.62 0.70 0.70 0.91 0.94 0.87 1 

  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
  H1    H15    H3    M2    P7    

  
 

A6.3e  On all the bands from the ascomycete DGGE analysis 

 
H1 1 1                    
 2 1 1                   
 3 1 1 1                  
 4 1 1 1 1                 

H15 1 0.81 0.81 0.81 0.81 1                
 2 0.81 0.81 0.81 0.81 1 1               
 3 0.81 0.81 0.81 0.81 1 1 1              
 4 0.78 0.78 0.78 0.78 0.96 0.96 0.96 1             

H3 1 0.80 0.80 0.80 0.80 0.77 0.77 0.77 0.74 1            
 2 0.77 0.77 0.77 0.77 0.74 0.74 0.74 0.78 0.96 1           
 3 0.80 0.80 0.80 0.80 0.77 0.77 0.77 0.74 1 0.96 1          
 4 0.80 0.80 0.80 0.80 0.77 0.77 0.77 0.74 1 0.96 1 1         

M2 1 0.56 0.56 0.56 0.56 0.59 0.59 0.59 0.63 0.46 0.50 0.46 0.46 1        
 2 0.56 0.56 0.56 0.56 0.59 0.59 0.59 0.63 0.46 0.50 0.46 0.46 1 1       
 3 0.56 0.56 0.56 0.56 0.59 0.59 0.59 0.63 0.46 0.50 0.46 0.46 1 1 1      
 4 0.56 0.56 0.56 0.56 0.59 0.59 0.59 0.63 0.46 0.50 0.46 0.46 1 1 1 1     

P7 1 0.67 0.67 0.67 0.67 0.84 0.84 0.84 0.88 0.69 0.73 0.69 0.69 0.64 0.64 0.64 0.64 1    
 2 0.70 0.70 0.70 0.70 0.88 0.88 0.88 0.92 0.73 0.77 0.73 0.73 0.62 0.62 0.62 0.62 0.96 1   
 3 0.67 0.67 0.67 0.67 0.84 0.84 0.84 0.88 0.69 0.73 0.69 0.69 0.64 0.64 0.64 0.64 1 0.96 1  
 4 0.67 0.67 0.67 0.67 0.84 0.84 0.84 0.88 0.69 0.73 0.69 0.69 0.64 0.64 0.64 0.64 1 0.96 1 1 

  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
  H1    H15    H3    M2    P7    

  
 

A6. 4  Nucleotide sequences of the distinguishing bands generated on 

DGGE specific for the four microbial groups 

A6.4 1  Bacterial band 12 

GTACCGCGACATTCTGATTCGCGATTACTAGCGATTCCGACTTCACGCAGTCGA

GTTGCAGACTGCGATCCGGACTACGATCGGGTTTGTGGGATTAGCTCCACCTCG

CGGCTTGGCAACCCTCTGTACCGACCATTGTAGCACGTGTGTAGCCCAGGCCG

TAAGGGCCATGATGACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGA

GCGCTCTAGGGCACT 
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A6.4 2  Bacterial band 13 

GACATTCTGATTCGCGATTACTAGCGATTCCGACTTCACGCAGTCGAGTTGCAG

ACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG

GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCAGGCCGTAAGGGC

CATGATGACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCC

TTAGAGTGCCCACCATAACGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTT

ACGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCAC

CTGTCTCAATGTTCCCGAAGGCACCAATCCATCTCTGGAAAGTTCATTGGATGT

CAAGGCCTGGTAAGGTTCTTCGCGTT 

 

A6.4 3  Bacterial band 14 

GATTCCGCGTCACTGCTGATTCTCGCGATTCCTGCCATTCCCACTTCCGGAAGC

CAAGTTGCAAACGCGATCCGGACTACGATCGGTTTTTTGGGATTAGCTCCACCT

CGCGGCTTGGCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCAGGC

CGTAAGGGCCATGATGACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCG

GCAGTCTCCTTAGAAGTGCCCACCATTACGTGCTGGTAACTAAGGACAAGGGT

TGCGCTCGTTACGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGC

CATGCAGCACCTGTCTCAATGTTCCCGAAGGCACCAATCCATCTCTGGAAAGTT

CATTGGATGTCAAGGCCTGGTAAGGTTCTTCGCGTTCCCCCCGGGCCCCCGCCC

CCCCC 

 

A6.4 4  Bacterial band 19 

ATCTGCGATTACTAGCGATTCCGACTTCATGGGGTCGAGTTGCAGACCCCAATC

CGAACTGAGACAGGCTTTTTGAGATTCGCTCCGCCTCACGGGATCGCAGCCCA

TTGTACCGTGCCATTGTAGCACGTGTGAAGCCCTGGCATAAGGGGCAATGATG

ACTTGACGTCATCCCCACCTTCCTCCGATTTGCCCCCGGCGGTCTCCTGTGAGT

CCCCACCATTACGTGCTGATAACTGACAACAAGGGTTGCGCTCGTTGCGGGAC

TTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCACCACCTGTA 

 

A6.4 5  Bacterial band 33 

CAAGGCTTGACATACACCGGAAACATCCAGAGATGGGTGCCCCCTTGTGGTCG

GTGTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA

GTCCCGCAACGAGCGCAACCCTTGTTCTGTGTTGCCAGCATGCCCTTCGGGGTG

ATGGGGACTCACAGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGACGA

CGTCAAGTCATCATGCCCCTTATGTCTTGGGCTTCACGCATGCTACAATGGCCG

GTACAAAGGGTTGCGATACTGTGAGGTGGAGCTAATCCCAAAAAGCCGGTCTC

AGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGGAGTTGCTAGTAAT

CGCAGATCAGCATTGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGA 
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A6.4 6  Bacterial band 36  

CGGGGGTTGCTTGTTCTGCGATTACTAGCGACTCCGACTTCAGGGGGTCAAGTT

GCAAACTCCAAtCCGAACTGAGACGGGTTTTTTGGGATTCGCTCCCCCTTCGCG

GTTTCGCACCCCTTTGTACCGGCCATTGTAGCATGTGTGAACCCCAAGACATAA

GGGGCATGATGATTTGACGTCCTCCCCACCTTCCTCCGAGTTGACCCCGGCAGT

CTCCTATAGAGTCCCCACCATTACGTGCTGGCAACAAAGAACGAGGGTTGCGC

TCGTTGCGGTACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGC

ACCACCTGTACACCTCC 

 

A6.4 7  Bacterial band 37 

CGTTGCTGATCTGCGATTACTAGCGACTCCGACTTCATGGAGTCGAGTTGCAGA

CTCCAATCCGAACTGAGACCGGCTTTTCTGGGATTCGCTCCACCTCGCGGTATC

GCAGCCCTTTGTACCGGCCATTGTAGCATGTGTGAAGCCCTGGACATAAGGGG

CATGATGACTTGACGTCATCCCCACCTTCCTCCGATTTGACCCCGGCAGTCTCC

TAAGAGTCCCCACCATTACGTGCTGGCAACATAGAAACGAGGGTTGCGCTCTT

GGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCATGCACCAC

CTGTGAAACGGCCCCAAAGG 

 

A6.4 8  Fungal band 6 

TTAATAATTTATATTTTCACTCAGACTTCAATCTTCAGACAGAGTTCGAGGGTG

TCTTCGGCGGGCGCGGGCCCGGGGGCGTGAGCCCCCCGGCGGCCTGTAAAGGC

GGGCCCGCCGAAGCAACAAGGTAAAATAAACACGGGTGGGAGGTTGGACCCA

GAGGGCCCTCACTCGGTAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTGT

TACGACTTTTACTTCCTCTAAATGACC 

 

A6.4 9  Fungal band 9 

AAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACCGAGTT

TACAACTCCCAAACCCCTGTGAACATACCTTAATGTTGCCTCGGCGGATCAGCC

CGCGCCCCGTAAAACGGGACGGCCCGCCAGAGGACCCAAACTCTAATGTTTCT

TATTGTAACTTCTGAGTAAAACAAACAAATAAATCAAAACTTTCAACAACGGA

TCTCTTGGTTCTGGCATCGATGAAGAACGCAGCA 

 

A6.4 10  Fungal band 12 

GATGAAAGTTGTATTTTGAATTGTTTATTCATCAATATTTTTCCGATCAAAGAG

TATATAAAATAAAGGTTGATGTTGGGTCGATCTCCATGAAGAAGATCGACTGA

CATTGCACACAAGGTGGATATGGATTTAAAAAGTGCCATAAAACACTTATTAT

GAATGATCCTTCCGCAGGTTCACCTACCGAAACCTAGTTTCGACTTTTACTTCC

TCTAAATGACCTATCACGTGCCCCACTTCCGCAAAAC 
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A6.4 11  Fungal band 25 

AAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACCGAGTT

TACAACTCCCAAACCCCTGTGAACATACCTTATGTTGCCTCGGCGGATCAGCCC

GCGCCCCGTAAAAAGGGACGGCCCGCCGCAGGAACCCTAAACTCTGTTTTTAG

TGGAACTTCTGAGTATAAAAAACAAATAAATCAAAACTTTCAACAACGGATCT

CTTGGTTCTGGCATCGATGAAGAACGCAGCA 

 

A6.4 12  Fungal band 33 

TTTAATAATTTATATTTTCACTCAGACTTCAATCTTCAGACAGAGTTCGAGGGT

GTCTTCGGCGGGCGCGGGCCCGGGGGCGTGAGCCCCCCGGCGGCCTGTAAAGG

CGGGCCCGCCGAAGCAACAAGGTAAAATAAACACGGGTGGGAGGTTGGACCC

AGAGGGCCCTCACTCGGTAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTG

TTACGACTTTTACTTCCTCTAAATGACCAAGCCCGT 

 

A6.4 13  Fungal band 34 

AGTTTTAATAATTTATATTTTCACTCAGACTTCAATCTTCAGACAGAGTTCGAG

GGTGTCTTCGGCGGGCGCGGGCCCGGGGGCGTGAGCCCCCCGGCGGCCAGTAA

AGGCGGGCCCGCCGAAGCAACAAGGTAAAATAAACACGGGTGGGAGGTTGGA

CCCAAAGGGCCCTCACTCGGTAATGATCCTTCCGCAGGTTCACCTACGGAAAC

CTTGTTACGACTTTTACTTCCTCTAAATGACCAAGC 

 

A6.4 14  Fungal band 35 

CAGAACCAAGAGATCCGTTGTTGAAAGTTGTAATAATTACATTGTGTACTGAC

GCTGATTGCAATTACAAAAAAAGGTTTATGGTTGGGTCCTGGTGGCGGGCGAA

CCCGCCCAGGAAACAAGAAGTGCGCAAAAGACATGGGTGAATAATTCAGACA

AGCTGGAGCCCTCACCGAGATGAGGTCCCAACCTGCTTTCATATTGTGTAATGA

TCCCTCCGCAGGTTCACCTACGGAGACCTTGTTACGACTTTTACTTCCTCTAAA

TGACCAAGA 

 

A6.4 15  Actinomycete band 10 

TCAGCTTGTTGGTGAGGTGAAAGCTCACCAAGGCTTTGACGGGTAACCGGCCT

GAGAGGGCGGTCGGTCACATTGGGACTGAGATACGGCCCAGACTCCTACGGGA

GGCAGCAGTGGGGAATTTTGCACAATGGGCGGAAGCCTGATGCANCGACNCC

NCGTGAGGGATGACGGCTTTCGGGTTGTAAACCTCTTTTATCCACCACGAAGG

CTCCGTATTCGCGGGGTTGACGGTAGTGGTTGAATAAGCGCCGGCTAACTACGT

GCCAGCAGCCGCGGCCGA 
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A6.4 16  Actinomycete band 22 

TCAGCTTGTTGGTGAGGTAGTGGCTCACCAAGGCGACGACGGGTAGCCGGCCT

GAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGG

AGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGC

CGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAAG

CGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGC

CGCGGCCGA 

 

A6.4 17  Actinomycete band 24 

TCAGCTTGTTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCC

TGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGG

GAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACG

CCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAA

GCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAG

CCGCGGCCGA 

 

A6.4 18  Actinomycete band 26 

TCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCT

GAGAGGGTGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGG

AGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGC

CGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAG

CGCAAGTGACGGTACCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCC

GCGGCCGA 

 

A6.4 19  Actinomycete band 29 

TCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGTCGACGGGTAGCCGGCCT

GAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGG

AGGCAGCAGTGGGGAATATTGCGCAATGGACGGAAGTCTGACGCAGCAACGC

CGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAG

CGAGAGTGACGGTACCTGCAGAAGAAGGACCGGCCAACTACGTGCCAGCAGC

CGCGGCCGA 

 

A6.4 20  Actinomycete band 30 

TCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCT

GAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGG

AGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGC

CGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAG

CGCAAGTGACGGTACCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCC

GCGGCCGA 
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A6.4 21  Ascomycete band 1 

AAATCCCTGCTGCGTTCTTCATCGATGCAGAACGCAGCGAAATGCGATACGTA

ATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCC

CTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGG

CTTGTGTGTTGGGCCCCGTCCTCCGATTTCCGGGGGACGGGCCCGAAAGGCAG

CGGCGGCACCGCGTCCGGTCCTCAAGCGTATGGGGCTTTGTCACCCGCTCTGTA

GGCCCGGCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAGGTTGACCTCGGA

TCAGGTAGGGATACCCGCTGAATTTAAGCATATCAATAAGCGGAGGAAAAGA

AACCAACAGGGATTGCCTTAGTAACGA 

 

A6.4 22  Ascomycete band 17 

GTTTCTTTTCCTCCGCTTATTGATATGCTTAAGTTCAGCGGGTATTCCTACCTGA

TCCGAGGTCAACATTCAGAAGTTGGGGTTTAACGGCGTGGCCGCGACGATTAC

CAGTAACGATATGTAAATTACTACGCTATGGAAGCTCGACGTGACCGCCAATG

TATTTGGGGAGTGCAGCAGGACTGCAGCTCCCAACACCAAGCTGGGCTTGAGG

GTTGAAATGACGCTCGAACAGGCATGCCCGCCAGAATACTGGCGGGCGCAATG

TGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTATCGC

ATTTTGCTGCGTTCTTCATCGATGCA 

 

A6.4 23  Ascomycete band 21 

GTTTCTTTTCCTCCGCTTATTGATATGCTTAAGTTCAGCGGGTATTCCTACCTGA

TCCGAGGTCAACCATTAAAAAAGTGCCCCCCGAGAGGGTGCGGTTTATGGCTG

TCGTCTGGCCGGCTTGCAGAAGCGAGATAAAAAATTACTACGCTCAGAGCACG

AACAGACTCCGCCACTGGTTTTGAGGAGCTGCGTATTAGGCAGTCTCCCAACA

CTAAGCTAGGCTTAAGGGTTGAAATGACGCTCGAACAGGCATGCCCACTAGAA

TACTAATGGGCGCAATGTCCGTTCAAAGATTCGATGATTCACTGAATTCTGCAA

TTCACATTACTTATCGCATTTCGCTGCGTTCTTCATCGATGCA 

 

A6.4 24  Ascomycete band 26 

GTTTCTTTTCCTCCGCTTATTGATATGCTTAAGTTCAGCGGGTATCCCTACCTGA

TCCGAGGTCAACCTGGATAAAAATTTGGGTTGATCGGCAAGCGCCGGCCGGGC

CTACAGAGCGGGTGACAAAGCCCCATACGCTCGAGGACTGGACGCGGTGCCGC

CGCTGCCTTTCGGGCCCGTCCCCCGGAATCGGAGGACGGGGCCCAACACACAA

GCCGTGCTTGAGGGCAGCAATGACGCTCGGACAGGCATGCCCCCCGGAATACC

AGGGGGCGCAATGTGCGTTCAAAGACTCGATGATTCACTGAATTTGCAATTCA

CATTACGTATCGCATTTCGCTGCGTTCTTCATCGATGCA 
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Chapter 7 

A7. 1  Analysis of variance 

A7.1 a  Percent infected roots 

Source of variation df s.s. m.s. v.r. F pr. 

Blk stratum 3 239.74 79.91 1.28   

Blk.Plot stratum      

soil 3 1927.52 642.51 10.32 0.003 

Residual 9 560.31 62.26 1.06   
Blk.Plot.*Units* 
stratum      

Sowing 6 5840.4 973.4 16.56 <.001 

soil.Sowing 18 1012.57 56.25 0.96 0.516 

Residual 72 4231.54 58.77     

Total 111 13812.08       

 

A7.1 b  Ggt DNA concentrations 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 5733 1911 0.30   

Blk_1.Plot_1 stratum      

soil_1 3 140305 46768 7.28 0.009 

Residual 9 57827 6425 1.46   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.4276      

Sowing 6 701255 116876 26.61 <.001 

Sowing.soil_1 18 127022 7057 1.61 0.166 

Residual 72 316260 4392     

Total 111 1348401 58.77     

 

A7.1 c  Population of Pseudomonas fluorescens (log 10) 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 11.230 3.743 3.62   

Blk_1.Plot_1 stratum      

soil_1 3 17.594 5.865 5.68 0.018 

Residual 9 9.298 1.033 0.90   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.5309      

Sowing 6 74.547 12.425 10.79 <.001 

Sowing.soil_1 18 16.818 0.934 0.81 0.615 

Residual 72 82.915 1.152     

Total 111 212.402       
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A7.1 d  pH 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 0.10884 0.03628 1.29   

Blk_1.Plot_1 stratum      

soil_1 3 9.33812 3.11271 110.75 <.001 

Residual 9 0.25295 0.02811 2.13   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.3622      

Sowing 6 6.84107 1.14018 86.35 <.001 

Sowing.soil_1 18 0.6025 0.03347 2.53 0.042 

Residual 72 0.95071 0.0132     

Total 111 18.0942       

 

A7.1 e  Available N 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 558.2 186.1 2.96   

Blk_1.Plot_1 stratum      

soil_1 3 20997.8 6999.3 111.18 <.001 

Residual 9 566.6 63 0.45   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.6874      

Sowing 6 11787.4 1964.6 13.96 <.001 

Sowing.soil_1 18 5603.5 311.3 2.21 0.024 

Residual 72 10134.2 140.8     

Total 111 49647.7       

 

A7.1 f  Olsen P 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 78.36 26.12 0.89   

Blk_1.Plot_1 stratum      

soil_1 3 5433.71 1811.24 62.03 <.001 

Residual 9 262.79 29.2 1.23   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.3828     

Sowing 6 7006.87 1167.81 49.06 <.001 

Sowing.soil_1 18 918.41 51.02 2.14 0.073 

Residual 72 1713.86 23.8     

Total 111 15414       
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A7.1 g  Potassium 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 0.014603 0.004868 4.18   

Blk_1.Plot_1 stratum      

soil_1 3 2.374653 0.791551 680.27 <.001 

Residual 9 0.010472 0.001164 0.62   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.4157      

Sowing 6 1.114605 0.185768 98.35 <.001 

Sowing.soil_1 18 0.273166 0.015176 8.03 <.001 

Residual 72 0.136 0.001889     

Total 111 3.923499       

 

A7.1 h  Magnesium 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 0.00691 0.002303 0.89   

Blk_1.Plot_1 stratum      

soil_1 3 29.220567 9.740189 3749.52 <.001 

Residual 9 0.023379 0.002598 2   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.3815     

Sowing 6 0.014736 0.002456 1.89 0.165 

Sowing.soil_1 18 0.044514 0.002473 1.91 0.108 

Residual 72 0.093436 0.001298     

Total 111 29.403542       

 

A7.1 i  Calcium 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 0.9974 0.3325 3.21   

Blk_1.Plot_1 stratum      

soil_1 3 153.5903 51.1968 494.27 <.001 

Residual 9 0.9322 0.1036 0.92   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.4498     

Sowing 6 4.1896 0.6983 6.2 0.003 

Sowing.soil_1 18 2.3104 0.1284 1.14 0.364 

Residual 72 8.1029 0.1125     

Total 111 170.1228       
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A7.1 j  Sodium 

Source of variation df s.s. m.s. v.r. F pr. 

Blk_1 stratum 3 0.0072714 0.002424 1.29   

Blk_1.Plot_1 stratum      

soil_1 3 1.0689857 0.356329 189.6 <.001 

Residual 9 0.0169143 0.001879 3.79   
Blk_1.Plot_1.Sowing 
stratum     

df correction factor 0.4814     

Sowing 6 0.1900464 0.031674 63.95 <.001 

Sowing.soil_1 18 0.0562893 0.003127 6.31 <.001 

Residual 72 0.0356643 0.000495     

Total 111 1.3751714       
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A7. 2  Mean concentrations of the various nutrients in soils grown with 

successive seasons of wheat crops. 
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A7. 3  Mean concentrations of the various nutrients in the four tested 

soils. 
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