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Abstract: This paper presented a particle swarm optimization algorithm (PSO) for solving vehicle routing problem 
(VRP) which involves single depot and clustered customers. Three different solution representations and decoding 
methods are proposed for solving VRP using PSO. These representations are similar in the use of particle with 2m 
dimension to represent m vehicles. In the decoding step, these particle dimensions are transforming to a priority matrix of 
vehicle to serve each customer. These representations are different on how to create customer priority list: the first 
representation directly uses the customer list data as the customer priority list; the second preprocesses the customer list 
data according to its polar angle as the customer priority list; the third uses random-key to build the customer priority list. 
The customer priority list and vehicle priority matrix are utilized for constructing vehicle routes at the end of the decoding 
step. A computational experiment is conducted by applying the proposed algorithm on the benchmark data set of 
capacitated vehicle routing problem (CVRP) and the vehicle routing problem with time windows (VRPTW). The result 
showed that the proposed algorithm with the third representation is the most effective to solve CVRP and VRPTW 
problems. 
 
Keywords: Vehicle Routing Problem, Clustered Customers, Particle Swarm Optimization, Solution Representation. 
 
 

1. INTRODUCTION 
 
Recently, the Particle Swarm Optimization (PSO) had been applied for solving the Capacitated Vehicle Routing Problem 
or CVRP (Chen et al., 2006; Ai and Kachitvichyanukul, 2007). The CVRP is the basic variant of the Vehicle Routing 
Problem (VRP), which is a problem to design a set of vehicle routes in which a fixed fleet of delivery vehicles of uniform 
capacity must service known customer demands for a single commodity from a single depot at minimum cost. The general 
requirements of this problem are (1) each route starts and ends at the depot, (2) each customer is visited exactly once by 
exactly one vehicle, (3) the total demand of each route does not exceed vehicle capacity, and (4) the total duration of each 
route (including travel and service times) does not exceed a preset limit. Christofides et al. (1979) provided a 
comprehensive review on problem formulation and solution methods for the CVRP. 

Particle Swarm Optimization (PSO) is a population based search method proposed by Kennedy and Eberhart (1995), 
which were motivated by the behavior of group organism such as bee swarm, fish school, and bird flock. PSO imitated the 
physical movements of the individuals in the swarm as a searching method, altogether with its cognitive and social 
behavior as local and global exploration abilities. In the PSO, a solution of a specific problem is being represented by a 
position of an n-dimensional particle. The particle searches for solution by moving through search space with a velocity 
vector. The PSO algorithm starts with population of particles with random initial position and velocity. The population of 
particles is usually called a swarm. In one iteration step, every particle is moved from previous position to the new 
position based on its velocity; and its velocity is updated based on its personal best position and the global best position 
obtained so far. Once a particle reach a position which has a better objective function than the previous best objective 
function for this particle, the personal best position is updated. Also, if it found better objective function than the previous 
best objective function of the whole swarm, the global best position is updated. A brief and complete survey on PSO 
mechanism, technique, and application is provided by Kennedy and Eberhart (2001) and also Clerc (2006). 

The PSO works on finding the best position and commonly the position is represented by number. To make PSO 
applicable to a specific problem; the relationship between the position of particles and the solutions of that problem must 
be clearly defined. In CVRP case, the particle’s position represents the vehicle route. The two published PSO for CVRP 
applied different type of position representation: Chen et al. (2006) used discrete value of position, while Ai and 
Kachitvichyanukul (2007) used real value of position. The difference of the position representation has two consequences: 
different mechanism for particles movement and different decoding method for transforming particle to vehicle route. The 
real value PSO is favorable since it has simpler particle movement mechanism and more flexible decoding method than 
the discrete value PSO. It was shown by the computational result of these PSO that the real value PSO is capable to solve 

 

 



larger problem with faster computational time than the discrete value PSO, even though the real value PSO is 
implemented without any local search or other hybrid method (Ai and Kachitvichyanukul, 2007). 

This paper studies further the capability of the real value PSO by focus only on the problem with single depot and 
clustered customers and extend the work not only for the capacitated problem, but also for the vehicle routing problem 
with time window (VRPTW). The VRPTW extends the CVRP by one additional set of constraints, in which each 
customer must be served by a vehicle within a certain given time window. Three different solution representations and its 
decoding method for transforming particle to vehicle route are proposed here based on the real value PSO for CVRP (Ai 
and Kachitvichyanukul, 2007). The PSO framework for CVRP is also extended to the general VRP and applied here using 
three different solution representations and decoding methods. 

The remainder of this paper is organized as follow: Section 2 reviews PSO framework for solving VRP. Section 3 
explains the proposed solution representations and decoding methods. Section 4 discusses the computational experiment 
of the PSO on benchmark data set. Finally, Section 5 concludes the result of this study. 
 
 

2. PSO FRAMEWORK FOR SOLVING VRP 
 
The PSO framework for solving VRP is presented in Algorithm 1 for review purpose. The algorithm is exactly same with 
the PSO framework for CVRP (Ai and Kachitvichyanukul, 2007), which is developed based on GLNPSO, a PSO 
Algorithm with multiple social learning structures (Pongchairerks and Kachitvichyanukul, 2005).  

In this algorithm, the particles are initialized in step 1, their corresponding fitness value are evaluated in steps 2-3, 
their cognitive and social information are updated in steps 4-7, and their positions are updated in step 8. Step 9 is the 
controlling step for repeating or stopping the iteration. This framework can be applied to different VRP variant with 
different solution representation by changing the decoding method in step 2. 
 
Notation 
t  : Iteration index; 1t T= …  
i  : Particle index, 1i I= …  
d  : Dimension index,  1d D= …
u  : Uniform random number in the interval [ ]0,1  

( )w t  : Inertia weight in the  iteration tht
( )idv t  : Velocity of the  particle at the  dimension in the  iteration thi thd tht
( )idx t  : Position of the  particle at the  dimension in the  iteration thi thd tht

idp  : Personal best position (pbest) of the  particle at the  dimension thi thd
gdp  : Global best position (gbest) at the  dimension thd
L
idp  : Local best position (lbest) of the  particle at the  dimension thi thd
N
idp  : Near neighbor best position (nbest) of the  particle at the  dimension thi thd
pc  : Personal best position acceleration constant 

gc  : Global best position acceleration constant 

lc  : Local best position acceleration constant 

nc  : Near neighbor best position acceleration constant 

iX  : Vector position of the  particle, thi 1 2i i iDx x x⎡ ⎤⎣ ⎦  

iV  : Vector velocity of the  particle, thi 1 2i i iDv v v⎡ ⎤⎣ ⎦ 

iP  : Vector personal best position of the  particle, thi 1 2i i iDp p p⎡ ⎤⎣ ⎦  

gP  : Vector global best position, 1 2g g gp p p⎡ ⎤⎣ ⎦D  

L
iP  : Vector local best position of the  particle, thi 1 2

L L L
i i iDp p p⎡ ⎤

⎣ ⎦  

 
Algorithm 1: PSO Framework for VRP 
1. Initialize  particles as a population, generate the  particle with random position I thi iX  in the range , 

velocity  and personal best  for 

min max,x x⎡ ⎤
⎣ ⎦

0iV = iP X= i I1i = … . Set iteration 1t = . 

 

 



2. For , decode 1i = … I ( )iX t  to a set of vehicle route .  iR

3. For , compute the performance measurement of , and set this as the fitness value of 1i = … I iR iX , ( )iXϕ . 

4. Update pbest: For , update , if 1i = … I i iP X= ( ) ( )i iX Pϕ ϕ< . 

5. Update gbest: For , update , if 1i = … I igP P= ( ) ( )i gP Pϕ ϕ< . 

6. Update lbest: For , among all pbest from 1i = … I K  neighbors of the  particle, set the personal best which 
obtains the least fitness value to be 

thi
L

iP . 
7. Generate nbest: For , and , set  that maximizing fitness-distance-ratio (1i = … I D1d = … N

id jdp p= FDR ) for 
1j I= … . Where FDR  is defined as 

 
( ) ( )i

id jd

jX P
FDR

x p

ϕ ϕ−
=

−
 which  i j≠ (1) 

 
8. Update the velocity and the position of each  particle: thi
 

( ) ( ) ( ) ( )1
1
t Tw t w T w w T

T
−

= + −⎡ ⎤⎣ ⎦−
 (2) 

 
( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )(1 L N

id id p id id g gd id l id id n id idv t w t v t c u p x t c u p x t c u p x t c u p x t+ = + − + − + − + − )  (3) 
 

( ) ( ) ( )1 1id id idx t x t v t+ = + +  (4) 
 
9. If the stopping criterion is met, i.e. , stop. Otherwise, t T= 1t t= +  and return to step 2. 
  
 

3. SOLUTION REPRESENTATIONS AND DECODING METHODS 
 
Previous work of PSO for CVRP used a solution representation that incorporating idea of representing each vehicle by 
reference point in two-dimensional Cartesian map (Ai and Kachitvichyanukul, 2007). The reference point is called 
vehicle route orientation within this paper. Route orientation of a vehicle is defined as a point in the service map that 
represents a certain area in which the vehicle is most likely to serve. As a consequence, a vehicle route will tend to 
aggregate around its corresponding route orientation. A simple illustration of relationship between vehicle route and route 
orientation is shown in Figure 1. It is seen that each vehicle covers certain service area that can be represented by the route 
orientation point. The computational result of previous work of PSO for CVRP also showed that the idea of vehicle route 
orientation is effective for problems with clustered customers.  
 

 
 

Figure 1. Vehicle Routes and Route Orientation 

 

 



This paper explored further the idea of vehicle route orientation by proposing three different solution representations 
and testing them on VRP with clustered customers. These representations are using the same idea of vehicle route 
orientation in which a particle will consist of 2m dimensions representing m vehicles. In the decoding process, every two 
dimensions of position are transformed to a vehicle route orientation point on a Cartesian map. The differences among 
these representations are related to the additional dimensions of particle and the specific steps in the decoding method for 
constructing vehicle routes. 

The basic mechanism of the proposed decoding methods is illustrated in Figure 2. Three steps are taken in order to 
decode the solution representation into VRP solution. First, extract customer list data or customer coordinate from the 
problem information or the corresponding particle position to make a priority list of customers. Second, convert the 
corresponding 2m dimensions into the route orientation point of vehicles and use this information altogether with the 
customer coordinate to create priority matrix of vehicles. Third, construct the vehicle routes based on the customer 
priority list and vehicle priority matrix.  

The major differences among the decoding method of the three solution representations (A, B, and C), are also 
shown in Figure 2. In step 1 of the decoding method, solution representations A and B only used the problem information 
such as customer list data and customer coordinate, while solution representation C is using both the problem information 
and particle position. The details of each solution representations and decoding step will be discussed in the following 
sub-sections.  

 
 

 
Figure 2. Basic Mechanism of the Proposed Decoding Method 

 
 

3.1 Solution Representations 
 
Solution representations A and B are different with solution representation C in term of the numbers of particle dimension. 
While the solution representation A and B use 2m dimensional particle, the solution representation C needs 2m+n 
dimensional particle to represent solutions for VRP with n customers and m vehicles. Each particle dimension is encoded 
as a real number. For all representations, the 2m dimensions are related to vehicles, each vehicle is represented by two 
dimensions. These dimensions will be extracted as the orientation point of vehicles in the Cartesian map.  

Especially for representation C, the n dimensions represent priorities of customers; each customer is represented by 
one dimension. The values in these dimensions will be converted to customer priority list in the decoding step. For 
representation A and B, the customer priority list is constructed based on the problem information only since there is no 
dimension in the particle related to the customers. The summary of solution representations and its main conversion are 
displayed in Figure 3. 

 
 

 

 



 
Figure 3. Solution Representations and Its Conversion 

 
 
3.2 Decoding Method Step 1 
 
The first step of decoding method is setting a priority list of customers. Each solution representation is using different 
method to create the customer priority list. The customer list data, which is a list of customer ID in the original problem 
data set, is directly used as the customer priority list for solution representation A; The customer list data is preprocessed 
according to its polar angle as the customer priority list for solution representation B; The n dimensions of particle is 
converted to the customer priority list for solution representation C. 

No further explanation is needed for the first step of decoding method for solution representation A. The details of 
the step for solution representation B and C is presented in Algorithm 2 and 3, respectively. 

 
Algorithm 2: Step 1 of Decoding Method for Solution Representation B  
1. Calculate the polar angle of each customer relative to the depot. 
2. Sort the customer index based on its polar angle in ascending order. 
3. Take the sorted customer index as the customer priority list. 
 
Algorithm 3: Step 1 of Decoding Method for Solution Representation C  
1. Take out the last n dimension of position value as the corresponding position value of customers.  
2. Sort the customer index based on its corresponding position value in ascending order. 
3. Take the sorted customer index as the customer priority list. 
 

Note that the customer priority list for solution representations A and B remain the same for all particles during 
overall iterative process. Hence, it is only predetermined once before the iteration process begin. In term of computational 
effort, this is an advantage of these solution representations over the solution representation C in which the customer 
priority list must be updated for every particles in each iteration.  
 
 
3.3 Decoding Method Step 2 
 
The second step is to extract the route orientation point of vehicles and to construct the priority matrix of vehicle. The 
matrix is constructed based on the relative distance between these points and customers location. The distance can be 
calculated as long as the reference points and the customer locations are placed in the same Cartesian map. A customer is 
prioritized to be served by vehicle with closer distance. For convenience of the subsequent step, each row in the matrix 
keeps the vehicle priority for serving customer with the same index in the customer priority list. 

This step is identical for all representations, since the representations are using the same 2m dimensions of particle to 
represent m orientation points. The detail of this step is explained in Algorithm 4. 

 

 



Algorithm 4: Step 2 of Decoding Method 
1. Take out the 2m dimension of position value as the vehicle route orientation points. 
2. For each customer in the customer priority list: 

a. Calculate the Euclidean distance between the customer and vehicle route orientation points.  
b. Sort the vehicle index based on its Euclidean distance in ascending order. 
c. Take the sorted vehicle index as the corresponding row for the customer in the vehicle priority matrix. 

 
 
3.4 Decoding Method Step 3 
 
The last decoding step is to construct routes based on the customer priority list and the vehicle priority matrix. One by one 
each customer in the customer priority list is assigned to a vehicle based on its priority and other problem constraints, such 
as vehicle capacity constraint, service duration constraint, and time window constraint. This newly assigned customer 
may be inserted to the best sequence in the existing vehicle route based on the least additional cost. This heuristic is 
usually called the cheapest insertion heuristic. Another effort to improve solution quality of the route is to re-optimize the 
emerging route using some improvement heuristic methods, i.e. 2-opt method. The detail of this step is described in 
Algorithm 5. This step is also identical for all representations. 
 
Algorithm 5: Step 3 of Decoding Method 
For each customer in the customer priority list, starting from the first to the last priority: 
1. Set j as the first vehicle priority of the customer. 
2. Make a new candidate route by inserting the customer to the position which has the smallest additional cost in route j. 
3. Check feasibility of the candidate route by evaluating all constraints: vehicle capacity, service duration, and time 

window constraints. 
4. If a feasible solution is reached, update route j with the candidate route and re-optimize emerging route with 2-opt 

method; then return to step 1 with the next customer. 
5. If the candidate route is infeasible, set j as the next vehicle priority of the customer; then go to step 2. 
 
 

4. COMPUTATIONAL EXPERIMENTS 
 
Computational experiment is conducted in order to evaluate the effectiveness of each solution representations. All 
solution representations are tested using the same PSO Algorithm (Algorithm 1 in section 2) and the same benchmark 
problems of CVRP and VRPTW. Four problems with clustered customers from the CVRP benchmark data (Christofides, 
1979) are used, which are consists of 100 customers (vrpnc12 and vrpnc14) and 120 customers (vrpnc11 and vrpnc13). 
For VRPTW case, seventeen problems of 100 customers from benchmark data of Solomon (1987) are used (C101 – C109, 
C201 – C208).  

The algorithm is implemented in C# language using Microsoft Visual Studio.NET 1.1 on a PC with Intel P4 3.4 GHz 
– 1 GB RAM. For each data set, 5 replications of the algorithm are tried. The PSO parameters are set similar with the 
previous work of Ai and Kachitvichyanukul (2007). The parameters are: Number of Particle, ; Number of 
Iteration, ; Number of Neighbor, 

100I =
1000T = 5K = ; First inertia weight, ( )1 0.9w = ; Last inertia weight, ( ) 0.4w T = ; 

Personal best position acceleration constant, 0.5pc = ; Global best position acceleration constant, ; Local best 
position acceleration constant, ; Near neighbor best position acceleration constant, . The range of initial 

position is 

0.5gc =

1.5lc = 1.5nc =

[ ]min max, 0,1X X⎡ ⎤ =⎣ ⎦ 00 , since the position of customer and depot in the map for all problem is located within 
this range. 

Summary of the computational result is presented in Table 1 comprise of the average of objective function 
values, the percentage deviation of the average values from the best known solution (% Dev), and the standard deviation 
of the objective function of each instance using three proposed solution representations. The percentage of deviation from 
best-known solution is calculated by the following equation: 

 
*% 100%

*
Dev ϕ ϕ

ϕ
−

= ×  (5) 

where 
% Dev  : Percentage of deviation from best-known solution 
ϕ  : Objective function of current solution 

*ϕ  : Objective function of best known solution 

 

 



Information about the best known solution for CVRP instance is obtained from the VRP-Web 
(http://neo.lcc.uma.es/radi-aeb/WebVRP/index.html?/results/BestResults.htm) and for VRPTW is obtained from the 
Solomon’s website (http://web.cba.neu.edu/~msolomon/problems.htm).  

The best found solution among iterations and the average computation time (displayed as minutes: seconds) for each 
instance using three proposed solution representations is summarized in Table 2.  

 
 

Table 1. Summary of PSO Solution: Average, % Dev, and Standard Deviation 
 

Average PSO Solution % Dev of PSO Solution Standard Deviation 
Instance 

Best 
Known 
Solution A B C A B C A B C 

vrpnc11 1042.11 1070.05 1069.87 1055.68 2.68% 2.66% 1.30% 10.44 0.00 8.54 
vrpnc12 819.56 839.43 832.29 821.90 2.42% 1.55% 0.29% 0.48 18.97 2.18 
vrpnc13 1541.14 1604.55 1588.28 1572.32 4.11% 3.06% 2.02% 9.20 13.18 6.71 
vrpnc14 866.37 903.87 877.00 874.08 4.33% 1.23% 0.89% 11.56 2.30 9.06 

C101 827.3 828.94 828.94 828.94 0.20% 0.20% 0.20% 0.00  0.00 0.00 
C102 827.3 847.80 981.64 828.94 2.48% 18.66% 0.20% 8.82  22.65 0.00 
C103 826.3 865.87 883.57 828.94 4.79% 6.93% 0.32% 12.53  11.43 0.00 
C104 822.9 933.46 888.83 828.94 13.44% 8.01% 0.73% 32.72  3.55 0.00 
C105 827.3 828.94 828.94 828.94 0.20% 0.20% 0.20% 0.00  0.00 0.00 
C106 827.3 828.94 890.03 828.94 0.20% 7.58% 0.20% 0.00  26.55 0.00 
C107 827.3 828.94 828.94 828.94 0.20% 0.20% 0.20% 0.00  0.00  0.00 
C108 827.3 855.92 853.62 828.94 3.46% 3.18% 0.20% 1.79  0.00   0.00 
C109 827.3 858.88 973.04 828.94 3.82% 17.62% 0.20% 0.00   30.03 0.00 
C201 589.1 591.56 591.56 591.56 0.42% 0.42% 0.42% 0.00 0.00 0.00 
C202 589.1 638.14 910.91 591.56 8.32% 54.63% 0.42% 0.00 32.91 0.00 
C203 588.7 807.21 806.37 594.79 37.12% 36.97% 1.03% 0.00 35.21 4.95 
C204 588.1 759.79 769.54 590.60 29.19% 30.85% 0.42% 10.69 0.00 0.00 
C205 586.4 714.88 680.59 588.88 21.91% 16.06% 0.42% 14.83 0.00 0.00 
C206 586.0 691.31 693.43 588.49 17.97% 18.33% 0.43% 0.00 6.34 0.00 
C207 585.8 606.32 621.63 588.29 3.50% 6.12% 0.42% 0.00 0.00 0.00 
C208 585.8 627.01 652.23 588.32 7.03% 11.34% 0.43% 0.00 0.00 0.00 

 
 

Table 1 shows that that the average objective function value of solution representation A and B is quite similar. It is 
also shown that the objective function values obtained from these representations are worse than the objective function 
values obtained from algorithm using solution representation C. This finding is emphasized by the analogues pattern of 
the best found objective function value in Table 2, in which the result of solution representation C is better than the result 
of solution representation A and B. The best found objective function of solution representation is C very close to the best 
known solution, in most case less than 0.5% deviation from the best known solution.  

In term of standard deviation of the objective function value, Table 1 shows that the solution representation C also 
outperformed solution representations A and B. The standard deviation of C is generally smaller than A and B for each 
instance. More over, the standard deviation of C is consistently small, while unstable standard deviation is shown in the 
result of A and B. The results with small standard deviation demonstrate the robustness of the proposed method since the 
solutions among replications are very consistent even though the method is a random search algorithm. 

It is evident from the average and standard deviation of the objective function value that solution representation C 
gives better solution than solution representations A and B. The better result may come from the method for constructing 
the customer priority list. Solution representation C has advantage of more degree of freedom for constructing the 
customer priority list. It incorporates n dimensions of position, in which numerous combinations of customer priority list 
could be constructed, while the others only used single customer priority list throughout the iteration process. It means 
that more diverse solutions could be generated during iteration process using solution representation C, since different 
customer priority list may lead to different solutions. This diversification of solutions will increase the possibility to find 
a better solution. 

 

 

http://neo.lcc.uma.es/radi-aeb/WebVRP/index.html?/results/BestResults.htm
http://web.cba.neu.edu/%7Emsolomon/problems.htm


Table 2. Best Found Solution and Average Computational Time 
 

Best Found PSO Solution % Dev of Best Found  Average Time (minutes) 
Instance 

Best 
Known 
Solution A B C A B C A B C 

vrpnc11 1042.11 1061.56 1069.87 1045.52 1.87% 2.66% 0.33% 02:12 02:10 03:25 
vrpnc12 819.56 838.91 823.38 820.62 2.36% 0.47% 0.13% 01:29 01:29 02:29 
vrpnc13 1541.14 1597.90 1569.93 1567.13 3.68% 1.87% 1.69% 02:48 02:46 03:27 
vrpnc14 866.37 884.61 874.00 867.73 2.11% 0.88% 0.16% 01:48 02:01 02:35 

C101 827.3 828.94 828.94 828.94 0.20% 0.20% 0.20% 03:52 03:49 03:49 
C102 827.3 843.86 950.46 828.94 2.00% 14.89% 0.20% 03:30 04:27 03:47 
C103 826.3 852.17 875.92 828.94 3.13% 6.00% 0.32% 03:20 03:26 03:31 
C104 822.9 898.13 886.72 828.94 9.14% 7.76% 0.73% 03:01 03:05 03:13 
C105 827.3 828.94 828.94 828.94 0.20% 0.20% 0.20% 03:39 03:37 03:40 
C106 827.3 828.94 864.32 828.94 0.20% 4.47% 0.20% 03:37 04:50 03:45 
C107 827.3 828.94 828.94 828.94 0.20% 0.20% 0.20% 03:28 03:11 03:34 
C108 827.3 852.72 853.62 828.94 3.07% 3.18% 0.20% 03:33 03:22 03:36 
C109 827.3 858.88 941.97 828.94 3.82% 13.86% 0.20% 03:00 03:51 03:28 
C201 589.1 591.56 591.56 591.56 0.42% 0.42% 0.42% 11:22 10:06 09:29 
C202 589.1 638.14 875.14 591.56 8.32% 48.56% 0.42% 10:31 15:34 09:47 
C203 588.7 807.21 790.63 591.17 37.12% 34.30% 0.42% 11:07 14:30 10:01 
C204 588.1 751.99 769.54 590.60 27.87% 30.85% 0.42% 11:19 11:04 09:11 
C205 586.4 708.24 680.59 588.88 20.78% 16.06% 0.42% 10:25 10:10 09:28 
C206 586.0 691.31 690.60 588.49 17.97% 17.85% 0.43% 08:55 10:21 09:25 
C207 585.8 606.32 621.63 588.29 3.50% 6.12% 0.42% 09:33 10:45 09:01 
C208 585.8 627.01 652.23 588.32 7.03% 11.34% 0.43% 09:18 09:17 09:27 

 
 

The computational time for all solution representation is generally reasonable short. It is shown in Table 2 that the 
computational time for CVRP instances are not more than 4 minutes, for VRPTW-C1xx instances are less than 5 minutes, 
and for VRPTW-C2xx instances are less than 16 minutes.  

The hypothesis that the solution representations A and B lead to faster time than that obtained from solution 
representation C due to the effort to set the customer priority list is only demonstrated by the result of CVRP instances. It 
is clearly shown in Table 2 that the average computational time of solution representation A and B for CVRP instances are 
quite similar, while the solution representation C gives longer computational time. However, the hypothesis is not 
confirmed for the case of VRPTW since the computational time for all representations are mostly similar and there is no 
clear pattern in the computational time results. This result implies that the step of setting customer priority list is dominant 
in CVRP case, while it is not dominant in VRPTW case. The step for route construction is dominating the computational 
effort in the VRPTW case, in which extra effort for constraints checking is required. 

It is also shown in Table 2 that the VRPTW-C2xx instances required much longer computational time than 
VRPTW-C1xx instances even though all instances are considering the same number of customers. This difference may 
came from the different number of vehicles and the computational process related to the number of vehicles. Note that 
instances C1xx use 10 vehicles to serve 100 customers, while instances C2xx use 3 vehicles to serve 100 customers. 
Smaller number of vehicles can reduce the computational effort in the step of setting vehicle priority, but it will increase 
the computational effort in the step for route construction. The effort reduction in the setting of vehicle priority is related 
to the distance calculation and sorting procedures, where the smaller number of vehicles leads to the faster procedures. 
The effort in the route construction step is for finding the best insertion point and re-optimizing using 2-opt method. The 
smaller number of vehicles means the larger number of customers in one route and it causes these steps to be slower. This 
computational result showed that the time required to construct the route is dominating the time required to set vehicle 
priority, so that the computational time for VRPTW-C2xx instances are longer than VRPTW-C1xx instances.  
 
 

5. CONCLUSION 
 
The computational result shows that the PSO with the solution representation that incorporating random-key to build the 
customer priority list is very effective to solve the VRP with clustered customers. The effectiveness of the proposed 
method comes from the idea of vehicle orientation, route construction heuristics, and the simplicity of the PSO. The 
vehicle orientation ensures that the constructed route will cover only a narrow area. The route construction heuristics is 

 

 



capable to increase the solution quality of the route. Also, the structure and mechanism of PSO are facilitating to generate 
diverse solutions and always maintaining or improving the best found solution. 

The computational time aspect of the proposed algorithm need to be further improved. The details of the algorithm 
and programming implementation need to be studied further, since some problem instances, i.e. VRPTW-C2xx instances, 
still required long computational time. The main objective of this further study would be improving the algorithm and 
programming implementation in order to reduce the computational time without reducing solution quality.  

Some further research for applying the proposed method to other VRP variants or type of problem is promising. 
Since the variants of VRP differ from one another only on the specific problem constraints, the only adjustment needed is 
at the constraint feasibility checking on the decoding method. However, the effectiveness of this idea should be further 
assessed.  
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