BAB V

KESIMPULAN DAN SARAN

V.1. Kesimpulan

Dalam melaksanakan proyek konstruksi, kontraktor akan membentuk suatu tim kerja yang ditempatkan di lokasi proyek yang biasa disebut tim proyek yang bertanggungjawab melaksanakan kegiatan proyek secara keseluruhan mulai dari awal hingga akhir kegiatan. Tim ini antara lain terdiri atas pimpinan proyek, kepala perencana dan pengendalian, kepala desain engineering, manajer lapangan, bagian pengadaan, bagian administrasi, kepala keuangan dan akuntansi, bagian keamanan, bagian pelaksana serta bagian mekanikal dan elektrikal.

Dari hasil analisis pada bab sebelumnya dapat disimpulkan bahwa

View metadata, citation and similar papers at core.ac.uk

dan pimpinan proyek sebagian besar memilih nilai proyek sebagai faktor yang sangat berpengaruh dalam penentuan tim proyek, hal ini terlihat dari hasil ranking yang didapat dari analisis IPR, yang urutannya adalah sebagai berikut :

1. Nilai proyek (ranking 1).

prought to you by 🖉 CORE

- 2. Kompleksitas atau kerumitan proyek (ranking 2).
- 3. Ukuran atau luas proyek (ranking 3).
- 4. Keahlian masing-masing anggota (ranking 4).
- 5. Durasi pelaksanaan (ranking 5,5).
- 6. Kepadatan jadwal kegiatan (ranking 5,5).
- 7. Teknologi yang digunakan (ranking 7).

Jumlah anggota tim proyek harus sesuai dengan proyek yang ditangani. Faktor-faktor yang dijadikan pertimbangan dalam menentukan jumlah anggota tim proyek yaitu : nilai proyek, ukuran atau luas proyek, durasi pelaksanaan, kompleksitas atau kerumitan proyek, keahlian masing-masing anggota, kepadatan jadwal kegiatan dan teknologi yang digunakan. Dari hasil analisis data, maka dapat disimpulkan bahwa faktor utama yang paling berpengaruh dalam penentuan jumlah anggota tim proyek adalah nilai proyek. Hal ini dapat dilihat pada rumusan yang didapat dari hasil analisis uji regresi berganda :

$$X = 10,019 + 4,359.10^{-10} X_1$$

Dimana :

Y = Anggota

 $X_1 = Nilai proyek$

Berikut ditampilkan tabel jumlah anggota tim berdasarkan rumusan dari hasil analisis regresi serta berdasarkan data kuesioner dan laporan Kerja Praktik (data primer dan sekunder). Hanya sebagian data saja yang dilampirkan dari seluruh data yang telah dianalisis.

1	abel V.I Jumlah Angg	ota 1 im Riil da	an Jumlah A	nggota	Tim dari Rumus
No.	Nama	Nilai	Jenis	Jum	lah Anggota Tim
	Proyek/Kontraktor	Proyek	Data	Riil	Berdasarkan
		(milyar Rp)			Rumus
1.	BNI	4,5811	Sekunder	11	12
2.	U. Janabadra	10,666726	Sekunder	16	15
3.	H. Cakrakembang	1,7	Sekunder	12	11
4.	P. Sanata Dharma	2,135093	Sekunder	10	11
5.	BDNI	2,125	Sekunder	11	11
6.	P.B. Soegito	1,75	Primer	10	11
7.	P.T. Adhi Karya	10	Primer	14	14
8.	P.B. Rahayu	1,888888	Primer	10	11
9.	P.T. SBL	5,25	Primer	12	12
10.	P.T. PP	1	Primer	10	10

Tabel V.1 Jumlah Anggota Tim Rijl dan Jumlah Anggota Tim dari Rumus

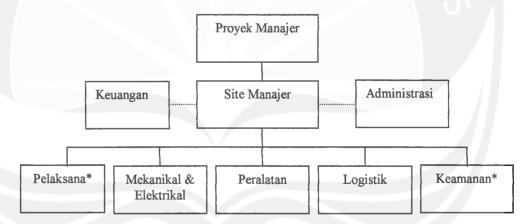
Lyson 8223 / TSMK

V.2. Saran

Dalam pelaksanaan penelitian ini, penyusun menyadari bahwa data yang diperoleh baik dari segi kualitas dan kuantitas masih kurang. Sehingga melalui kesempatan ini, penyusun bermaksud memberikan saran kepada para peneliti selanjutnya dan kontraktor di bidang industri konstruksi terutama para responden, yang sekiranya saran tersebut dapat bermanfaat untuk penelitian tentang tim proyek konstruksi selanjutnya. Penyusun merasa sudah saatnya dalam penentuan tim proyek konstruksi dan jumlah anggotanya harus mempertimbangkan nilai proyek. Sehingga tim yang dibentuk dapat bekerja secara optimal dan dapat dimanajemeni dengan baik.

Untuk selanjutnya apabila pembaca tertarik untuk meneliti tentang hal ini, dianjurkan agar dapat menganalisis lebih lanjut faktor-faktor tersebut, sehingga dapat lebih mudah bagi kontraktor untuk membuat pertimbangan dalam penentuan tim proyek.

Berikut ini merupakan usulan struktur organisasi dan jumlah anggota tim proyek pada proyek gedung perkantoran PT. BHS, jalan Solo No. 157 Yogyakarta yang bernilai Rp 3.000.000.000,00.


Lyson 8223 / TSMK

1. Struktur organisasi yang ada (jumlah anggota 7 orang)

Gambar V.1. Struktur Organisasi Proyek Pembangunan PT. BHS

2. Struktur organisasi yang diusulkan (jumlah anggota 11 orang)

* Terdiri dari dua orang anggota

Gambar V.2. Usulan Struktur Organisasi Proyek Pembangunan PT. BHS

Lyson 8223 / TSMK

KATA TUTUP

Dengan selesainya penulisan tugas Akhir ini, penyusun mengucapkan puji syukur kepada Tuhan atas kesempatan yang diberikan. Tugas akhir ini masih jauh dari sempurna karena adanya keterbatasan penyusun dan sumber-sumber penulisan yang dipakai, dengan ini penyusun mengharapkan kritik dan saran yang membangun agar nantinya dapat berguna bagi penulis maupun pembaca tugas akhir ini.

Akhir kata, semoga tugas akhir ini berguna bagi semua orang khususnya orang-orang yang berkecimpung di bidang yang sama.

DAFTAR PUSTAKA

- 1. Goestiandi, Juli-Agustus 2000, Pahamilah Tim Proyek Anda, Konstruksi.
- Halpin D.W. and Woodhead R.W., 1980, Contruction Management, John Wiley and Sons, Inc., Canada.
- Hensey, M., 2000, Self-Managed Teams: Readiness Test, Journal of Management in Engineering.
- 4. Oberlender, G.D., 1993, Project Management for Engineering and Construction, McGraw-Hill, Inc., Singapore.
- 5. Ritz, G.J., 1994, Total Construction Project Management, McGraw-Hill, Inc., Singapore.
- Rohlander, D.G., 1999, *The Perfect Team*, Journal of Management in Engineering.
- Rosenau, Jr M.D., 1998, Successful Project Management, John Wiley and Sons, Inc., Canada.
- Santoso, S., 1999, SPSS Mengolah Data Statistik Secara Profesional, PT Elex Media Komputindo, Jakarta.
- 9. Snowdon, M., 1977, Manajemen Proyek Teknik, Kurnia Esa, Jakarta.
- Soeharto, I., 1997, Manajemen Proyek Dari Konseptual Sampai Operasional, Erlangga, Jakarta.
- 11. Suryanto, T., September 1999, Pengaruh Kepuasan Kerja Terhadap Produktivitas Kerja Manajer Menengah pada Perusahaan Jasa Konstruksi, Tugas Akhir Strata Satu, Universitas Atma Jaya Yogyakarta.

Kepada

Yth. Bapak / Ibu

Direktur / Project Manager / Site Manager / Pimpinan Proyek

di

Dengan hormat,

Saya yang bertanda tangan di bawah ini :

Nama : Lyson

No. Mahasiswa : 8223 / TSMK

Alamat : Jalan Babarsari - Tambak Bayan IX / 2 Yogyakarta akan melakukan penelitian Tugas Akhir Strata Satu dengan judul **"Studi** Mengenai Penentuan Tim Proyek Konstruksi".

Berkaitan dengan hal tersebut di atas kiranya Bapak / Ibu berkenan untuk mengisi kuisioner yang terlampir dengan jawaban yang tepat dan sejujur-jujurnya. Jawaban yang Bapak / Ibu berikan akan dijamin kerahasiaannya dan hanya dipergunakan sebagai bahan penelitian untuk penulisan tugas akhir ini.

Demikian surat permohonan ini saya buat, atas kerjasama yang Bapak / Ibu berikan saya mengucapkan banyak terima kasih.

Yogyakarta,....

Lyson

Kuesioner

STUDI MENGENAI PENENTUAN TIM PROYEK KONSTRUKSI

Tim proyek yang dimaksud di sini adalah tim inti yang berada di lokasi proyek, yang anggotanya antara lain sebagai berikut :

- Pimpinan Proyek.
- Kepala Perencana dan Pengendalian (Proyek Kontrol).
- Kepala Desain Engineering.
- Manajer Lapangan (Site Manager).
- Bagian Pengadaan (Logistik).
- Bagian Administrasi, Personalia dan Jasa-jasa.
- Kepala Keuangan dan Akutansi.
- Bagian Keamanan.
- Bagian Pelaksana.
- Bagian Mekanikal dan Elektrikal.

Daftar Pertanyaan :

Jabatan Responden

a. Direktur b. Manajer Proyek c. Site Manager d. Pimpinan Proyek

I. Faktor-faktor yang menjadi pertimbangan dalam penentuan tim proyek
Berilah tanda (✓) pada salah satu jawaban dari pertanyaan berikut sesuai dengan pengalaman Anda, dengan kode :

1 = tidak berpengaruh

2 = kurang berpengaruh

3 = sedang

4 = berpengaruh

5 = sangat berpengaruh

		P	engar	uh te	rhada	p		
No	Faktor-faktor	Jumlah Anggota						
		1	2	3	4	5		
1.	Nilai Proyek (Rp)		9					
2:	Ukuran atau Luas Proyek (M ²)							
3.	Durasi Pelaksanaan							
4.	Kompleksitas atau Kerumitan Proyek							
5.	Keahlian Masing-masing Anggota							
6.	Kepadatan Jadwal Kegiatan							
7.	Teknologi yang Digunakan							

II. Penentuan Jumlah Anggota

II.1. Berilah jawaban singkat pada pertanyaan di bawah ini

1. Berapa besar nilai proyek terakhir yang Anda tangani (dalam Rp)?

2. Berapa ukuran atau luas bangunan proyek terakhir yang Anda tangani (dalam M^2)?

- 3. Berapakah durasi keseluruhan dari kegiatan proyek terakhir yang Anda tangani (dalam hari)?
- II.2. Lingkari salah satu jawaban pada skala yang sesuai dengan proyek terakhir yang Anda tangani
- 4. Tingkat kompleksitas atau kerumitan proyek yang Anda tangani adalah :

2 1 3 4 5 mudah rumit

5. Keahlian masing-masing anggota tim proyek Anda adalah :

sangat ahli				kurang ahli
attii				81111
Kepadatan	jadwal kegi	atan yang Ai	nda tangan	i adalah :

6.

7. dalam pelaksanaan kegiatan dan sistem informasi yang Teknologi digunakan pada proyek yang Anda tangani adalah :

1 3 5 2 4 tinggi sederhana

II.3. Jawablah pertanyaan di bawah ini dengan singkat

8. Berapa jumlah anggota tim proyek pada proyek terakhir yang Anda tangani tersebut?

Untuk memenuhi persyaratan penelitian Tugas Akhir Strata Satu, peneliti mengharapkan kesediaan Bapak / Ibu untuk membubuhkan tanda tangan dan cap perusahaan pada tempat yang tersedia. Atas kesediaannya peneliti mengucapkan banyak terima kasih.

(

Tertanda

	id	tipedata	proyek	ang	nilai	ukuran	durasi	komple	ahli
1	1.00	sekunder	UII	15	16000000000	15200	610		•
2	2.00	sekunder	SMU Tarki	15	1910000000	2229.4	253		
3	3.00	sekunder	Bank BNI	11	4581100000	2198.0	300		
4	4.00	sekunder	Asrama Haji	11	1121257000	1332.6	180		
5	5.00	sekunder	U.Janabadra	16	10666726000	8600.0	730		
6	6.00	sekunder	U.Sadar	7	4440000000	6180.0	180		
7	7.00	sekunder	Cakrakemban	12	1700000000	1500.0	240		
8	8.00	sekunder	U.Cokroamino	7	1720243140	1480.5	547		
9	9.00	sekunder	PT.BHS	9	700000000	1200.0	180		
10	10.0	sekunder	ISI	5	1851905000	3160.0	210		
11	11.0	sekunder	P.Sadar	10	2135093000	3936.0	350	\sim	
12	12.0	sekunder	Aprt.Sejahte	14	1068100000	10028	240		
13	13.0	sekunder	JHSD	10	41600000000	64157	730		
14	14.0	sekunder	Singosaren	15	4000000000	10800	540		
15	15.0	sekunder	Perhutani	10	8299800300	7012.0	360		
16	16.0	sekunder	Bank EXIM	38	41700000000	89644	480		
17	17.0	sekunder	Bapindo	15	46250000000	132000	730		
18	18.0	sekunder	BDNI	11	2125000000	4071.4	300		
19	19.0	sekunder	Hotel Sahid	16	4997000000	5700.0	600		
20	20.0	sekunder	UAJY(III)	11	3187800000	8019.0	300		
21	21.0	sekunder	Citraland	23	10585975000	10586	720		
22	22.0	sekunder	Getraco	38	50600000000	39630	600		
23	23.0	sekunder	RS.Bethesda	11	4150000000	9125.8	365		
24	24.0	sekunder	Ruko TipTop	10	120000000	1680.0	300		
25	25.0	sekunder	Telkom	22	15732584000	15921	730		
26	26.0	sekunder	Aprt.Pavilio	29	31750000000	86400	600		•
27	27.0	sekunder	BCA	20	6789228000	11909	330		•
28	28.0	sekunder	Galeria	33	22000000000	42000	450		

-

		jadwal	tekno
	1		
	2		•
	3		
	4		
	5		
	6		•
	7		
	8		· < (
•	9		
	10	· .	\sum
	11	•	
	12		
	13		
	14		
	15		
	16		•
	17		
	18		
	19		
	20		
	21		
	22		
	23		
	24		
	25		
	26		
	27		
	28		• •

1-2

	id	tipedata	proyek	ang	nilai	ukuran	durasi	komple	ahli
29	29.0	sekunder	BHS	11	500000000	4814.6	960		
30	30.0	sekunder	Ramai	11	550000000	15000	219		
31	31.0	primer	Yasapola	8	1429000000	2000.0	180	4	3
3 2	32.0	primer	Budhi Karya	7	1235000000	1114.0	180,	3	3
33	33.0	primer	PB.Soegito	10	1750000000	3500.0	210	3	3
34	34.0	primer	Adhi Karya	14	1000000000	12500	434	5	1
3 5	35.0	primer	CV. Trisula	10	1075000000	1650.0	280	3	4
3 6	36.0	primer	CV. Bhinneka	5	1035150000	1000.0	90	3	2
37	37.0	primer	CV. SRA	4	1046000000	1000.0	75	3	3
38	38.0	primer	Intantunggal	5	100000000	1200.0	180	2	4
39	39.0	primer	CV. Gita	17	150000000	2000.0	120	4	3
40	40.0	primer	PB. Rahayu	10	1888888000	5840.0	270	2	3
41	41.0	primer	Biro I&P A-Z	5	100000000	2150.0	210	4	4
42	42.0	primer	CV. Asa Pers	8	106000000	800.00	120	3	3
43	43.0	primer	PT. Pembina	15	400000000	8000.0	510	2	2
44	44.0	primer	PT. STC	25	1000000000	11000	155	4	1
45	45.0	primer	PT. CGA	24	8675000000	8300.0	395	3	3
46	46.0	primer	CV. Aji Kary	8	1225000000	800.00	100	3	2
4 7	47.0	primer	PT. SBL	12	5250000000	5900.0	210	4	2
4 8	48.0	primer	PT. MAI	10	150000000	2000.0	720	3	4
49	49.0	primer	PT. Winata	8	1239000000	320.00	180	3	3
50	50.0	primer	PT. Wika	10	900000000	1500.0	270	4	2
51	51.0	primer	CV. Prima	8	1007963000	950.00	270	4	2
52	52.0	primer	Biro HAKA	25	270000000	1650.0	160	3	3
53	53.0	primer	PT. Fathoni	15	3051000000	3800.0	400	4	2
54	54.0	primer	PT. BCP	6	1616000000	1600.0	120	4	2
55	55.0	primer	Pimpus Muha	6	300000000	1800.0	210	2	3
56	56.0	primer	PT. AKA	5	2439000000	2400.0	240	3	2

•

	jadwal	tekno			
29					
30		-			
31	3	4			
32	2	3			
33	4	4			
34	5	2			
35	3	3			
36	5	3			
37	5	3			
38	5	2			
39	4	3			
40	5	4			
41	4	4			
42	3	3			
43	4	2			
44	5	2			
45	4	3			
4 6	5	3			
47	5	3			
48	4	4			
49	4	2			
50	5	1			
51	4	3			
52	4	3			
53	5	2			
54	5	3			
55	4	2			
56	4	4			

2-2

68

	id	tipedata	proyek	ang	nilai	ukuran	durasi	komple	ahli	ļ
57	57.0	primer	PT. Adhitam	15	3800000000	6000.0	90	3	2	
58	58.0	primer	PT. Talenta	16	500000000	10000	1825	4	2	
59	59.0	primer	PB. Putra	10	1063474000	1000.0	110	4	3	
60	60.0	primer	PT. PP	10	100000000	200.00	110	3	3	

6

.

70

	jadwal	tekno
7	5	2
8	4	2
59	5	3
50	3	4

.

Regression

Descriptive Statistics

		Std.	
	Mean	Deviation	N
ANGGOTA	11.03	5.85	30
NILAI	3.0E+09	2.8E+09	30
UKURAN	3399.1333	3419.0429	30
DURASI	280.80	324.71	30
KOMPLEKS	3.30	.75	30
KEAHLIAN	2.63	.81	30
JADWAL	4.23	.82	30
TEKNOLOG	2.87	.82	30

		ANGGOT			
		А	NILAI	UKURAN	DURASI
Pearson	ANGGOTA	1.000	.618	.619	.234
Correlation	NILAI	.618	1.000	.785	.251
	UKURAN	.619	.785	1.000	.487
	DURASI	.234	.251	.487	1.000
	KOMPLEKS	.194	.376	.262	.147
	KEAHLIAN	304	601	556	108
	JADWAL	.085	.328	.277	066
	TEKNOLOG	265	536	319	189
Sig.	ANGGOTA	×.	.000	.000	.107
(1-tailed)	NILAI	.000		.000	.090
	UKURAN	.000	.000		.003
	DURASI	.107	.090	.003	
	KOMPLEKS	.152	.020	.081	.218
	KEAHLIAN	.051	.000	.001	.285
	JADWAL	.328	.038	.069	.364
	TEKNOLOG	.078	.001	.043	.158
N	ANGGOTA	30	30	30	30
	NILAI	30	30	30	30
	UKURAN	30	30	30	30
	DURASI	30	30	30	30
	KOMPLEKS	30	30	30	30
	KEAHLIAN	30	30	30	30
	JADWAL	30	30	30	30
	TEKNOLOG	30	30	30	30

Correlations

Correlations

1						
			KOMPLEKS	KEAHLIAN	JADWAL	TEKNOLOG
	Pearson	ANGGOTA	.194	304	.085	265
	Correlation	NILAI	.376	601	.328	536
		UKURAN	.262	556	.277	319
		DURASI	.147	108	066	189
		KOMPLEKS	1.000	438	.163	101
		KEAHLIAN	438	1.000	440	.444
		JADWAL	.163	440	1.000	364
	~ 5	TEKNOLOG	101	.444	364	1.000
1	Sig.	ANGGOTA	.152	.051	.328	.078
	(1-tailed)	NILAI	.020	.000	.038	.001
		UKURAN	.081	.001	.069	.043
		DURASI	.218	.285	.364	.158
		KOMPLEKS		.008	.194	.298
		KEAHLIAN	.008		.007	.007
		JADWAL	.194	.007		.024
		TEKNOLOG	.298	.007	.024	
1	N	ANGGOTA	30	30	30	30
		NILAI	30	30	30	30
		UKURAN	30	30	30	30
		DURASI	30	30	30	30
		KOMPLEKS	30	30	30	30
		KEAHLIAN	30	30	30	30
		JADWAL	30	30	30	30
		TEKNOLOG	30	30	30	30

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	TEKNOL OG, KOMPLE KS, DURASI, JADWAL, UKURAN, KEAHLIA N, NILAI ^a		Enter
2		KOMPLE KS	Backward (criterion: Probability of F-to-remo ve >= .100).

Variables Entered/Removed^b

1	Medel	Variables	Variables	Mathad
	Model	Entered	Removed	Method
	3	jn	TEKNOL OG	Backward (criterion: Probability of F-to-remo Ve >= .100). Backward
	en		DURASI	(criterion: Probability of F-to-remo ve >= .100).
	5		KEAHLIA N	Backward (criterion: Probability of F-to-remo ve >=
	6		JADWAL	.100). Backward (criterion: Probability of
	7		NILAI	F-to-remo ve >= .100). Backward (criterion: Probability of
				F-to-remo ve >= .100).

a. All requested variables entered.

b. Dependent Variable: ANGGOTA

Model Summary^h

Modei	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.677 ^a	.459	.286	4.94
2	.677 ^b	.458	.317	4.83
3	.676 ^c	.457	.344	4.73
4	.673 ^d	.453	.366	4.66
5	.668 ^e	.446	.382	4.60
6 🦾	.655 ^f	.429	.386	4.58
7	.619 ^g	.384	.362	4.67

a. Predictors: (Constant), TEKNOLOG, KOMPLEKS, DURASI, JADWAL, UKURAN, KEAHLIAN, NILAI

b. Predictors: (Constant), TEKNOLOG, DURASI, JADWAL, UKURAN, KEAHLIAN, NILAI

c. Predictors: (Constant), DURASI, JADWAL, UKURAN, KEAHLIAN, NILAI

d. Predictors: (Constant), JADWAL, UKURAN, KEAHLIAN, NILAI

e. Predictors: (Constant), JADWAL, UKURAN, NILAI

f. Predictors: (Constant), UKURAN, NILA!

g. Predictors: (Constant), UKURAN

h. Dependent Variable: ANGGOTA

ANOVAh

		Sum of		Mean
Model		Squares	df	Square
1	Regression	454.491	7	64.927
	Residual	536.476	22	24.385
	Total	990.967	29	
2	Regression	454.001	6	75.667
	Residual	536.966	23	23.346
	Total	990.967	29	0
3	Regression	453.239	5	90.648
	Residual	537.728	24	22.405
	Total	990.967	29	
4	Regression	449.177	4	112.294
	Residual	541.790	25	21.672
	Total	990.967	29	
5	Regression	441.937	3	147.312
	Residual	549.030	26	21.117
	Total	990.967	29	
6	Regression	424.691	2	212.345
	Residual	566.276	27	20.973
	Total	990.967	29	
7	Regression	380.057	1	380.057
	Residual	610.910	28	21.818
	Total	990.967	29	

ANOVA^h

Model		F	Sig.
1	Regression Residual Total	2.663	.037ª
2	Regression Residual Total	3.241	.019 ^b
3	Regression Residual Total	4.046	.008 ^c
4	Regression Residual Total	5.182	.004 ^d
5	Regression Residual Total	6.976	.001 ^e
6	Regression Residual Total	10.125	.001 ^f
7	Regression Residual Total	17.419	.000 ⁹

a. Predictors: (Constant), TEKNOLOG, KOMPLEKS, DURASI, JADWAL, UKURAN, KEAHLIAN, NILAI

 b. Predictors: (Constant), TEKNOLOG, DURASI, JADWAL, UKURAN, KEAHLIAN, NILAI

c. Predictors: (Constant), DURASI, JADWAL, UKURAN, KEAHLIAN, NILAI

d. Predictors: (Constant), JADWAL, UKURAN, KEAHLIAN, NILAI

e. Predictors: (Constant), JADWAL, UKURAN, NILA!

f. Predictors: (Constant), UKURAN, NILAI

g. Predictors: (Constant), UKURAN

h. Dependent Variable: ANGGOTA

Coefficients^a

		Unstandardized Coefficients		Standardi zed Coefficie	
Madal				nts Rota	
Model 1	(Constant)	B 7.964	Std. Error 10.740	Beta	t .742
	NILAI	7.508E-10	.000	.364	1.125
	UKURAN	8.084E-04	.001	.473	1.448
	DURASI	-1.68E-03	.001	093	461
1 C	KOMPLEKS	.207	1.459	.027	.142
1	KEAHLIAN	1.029	1.671	.142	.616
	JADWAL	928	1.311	130	708
	TEKNOLOG	318	1.524	045	209
2	(Constant)	8.624	9.472	.010	.910
	NILAI	7.809E-10	.000	.379	1.262
	UKURAN	7.880E-04	.001	.461	1.492
	DURASI	-1.57E-03	.003	087	450
	KEAHLIAN	.942	1.522	.130	.619
	JADWAL	921	1.282	129	718
	TEKNOLOG	259	1.435	036	181
3	(Constant)	7.688	7.768		.990
	NILAI	8.324E-10	.000	.404	1.547
	UKURAN	7.560E-04	.000	.442	1.551
	DURASI	-1.40E-03	.003	078	426
	KEAHLIAN	.891	1.465	.123	.608
	JADWAL	866	1.219	121	710
4	(Constant)	7.335	7.596		.966
	NILAI	8.722E-10	.000	.423	1.674
	UKURAN	6.516E-04	.000	.381	1.574
	KEAHLIAN	.828	1.433	.115	.578
	JADWAL	780	1.183	109	660
5	(Constant)	10.830	4.538		2.387
	NILAI	7.887E-10	.000	.383	1.596
	UKURAN	6.116E-04	.000	.358	1.518
	JADWAL	999	1.106	140	904
6	(Constant)	6.888	1.247		5.526
	NILAI	7.060E-10	.000	.342	1.459
	UKURAN	5.992E-04	.000	.350	1.493
7	(Constant)	7.434	1.213		6.130
	UKURAN	1.059E-03	.000	.619	4.174

Coefficients^a

			Collinearity Statistics	
Modei	(0	Sig.	Tolerance	VIF
1	(Constant)	.466		
	NILAI	.273	.235	4.257
	UKURAN	.162	.231	4.336
	DURASI	.649	.600	1.668
	KOMPLEKS	.889	.703	1.423
	KEAHLIAN	.544	.460	2.172
102	JADWAL	.486	.733	1.365
	TEKNOLOG	.837	.539	1.855
2	(Constant)	.372		
	NILAI	.220	.261	3.826
	UKURAN	.149	.247	4.048
	DURASI	.657	.631	1.585
	KEAHLIAN	.542	.532	1.881
	JADWAL	.480	.734	1.363
	TEKNOLOG	.858	.582	1.718
3	(Constant)	.332		
	NILAI	.135	.332	3.013
	UKURAN	.134	.278	3.593
	DURASI	.674	.681	1.469
	KEAHLIAN	.549	.551	1.816
	JADWAL	.485	.778	1.285
4	(Constant)	.343		
	NILAI	.107	.342	2.922
	UKURAN	.128	.373	2.682
	KEAHLIAN	.568	.556	1.798
	JADWAL	.516	.800	1.250
5	(Constant)	.025		
	NILAI	.123	.371	2.697
	UKURAN	.141	.384	2.607
	JADWAL	.374	.891	1.122
6	(Constant)	.000		
	NILAI	.156	.384	2.604
	UKURAN	.147	.384	2.604
7	(Constant)	.000		
L	UKURAN	.000	1.000	1.000

a. Dependent Variable: ANGGOTA

1				
				Condition
	Model	Dimension	Eigenvalue	Index
ł	1	1	6.474	1.000
		2	.867	2.733
		3	.431	3.875
		4	.101	8.022
		5	5.908E-02	10.467
		6	4.292E-02	12.281
4		7	4.292E-02 2.033E-02	17.846
		8	5.545E-02	34.167
	2	1	<u>5.545</u> <u>-03</u> 5.534	1.000
1	20	2	.852	2.548
		2		2.540
	- <i>1</i>	3	.427 9.666E-02	7.566
		4 5		10.512
			5.008E-02	
		в 7	3.322E-02	12.906
	0	1	6.428E-03	29.342
	3		4.713	1.000
		2	.720	2.559
		3	.427	3.322
		4	8.390E-02	7.495
		5	4.790E-02	9.919
		6	8.397E-03	23.691
	4	1	4.147	1.000
		2	.690	2.452
		3	.105	6.298
		4	5.019E-02	9.090
		5	8.484E-03	22.108
	5	1	3.409	1.000
		2	.472	2.688
		3	.103	5.752
		4	1.654E-02	14.356
	6	1	2.562	1.000
		2	.335	2.765
		3	.103	4.987
	7	1	1.711	1.000
		2	.289	2.433

			Variance P	roportions	
Model	Dimension	(Constant)	NILAI	UKURAN	DURASI
1	1	.00	.00	.00	.00
1	2	.00	.03	.04	.05
	3	.00	.05	.01	.57
	4	.00	.25	.56	.14
	5	.00	.21	.00	.00
	6	.00	.12	.05	.00
	7	.00	.30	.34	.22
	8	1.00	.03	.00	.01
2	1	.00	.00	.00	.01
\sim	2	.00	.03	.04	.05
	3	.00	.06	.01	.61
	4	.00	.37	.61	.14
	5	.00	.22	.00	.01
	6	.00	.17	.32	.13
	7	.99	.14	.02	.06
3	1	.00	.01	.00	.01
	2	.00	.04	.05	.04
	3	.00	.08	.01	.65
	4	.00	.77	.87	.22
	5	.00	.08	.06	.06
	6	.99	.02	.00	.01
4	1	.00	.01	.01	
	2	.00	.07	.09	
	3	.00	.72	.89	
	4	.00	.19	.00	
6	5	.99	.02	.02	
5	1	.00	.01	.01	
	2	.02	.08	.12	
	3	.00	.88	.87	
6	1	.98	.03	.00	
	2	.05	.02 .07	.03	
	2	.94	.07 .91	.10 .87	
7	1	.01	.ฮา	.07	
ľ	2	.14		. 14 .86	

.

			Variance P	roportions	
Model	Dimension	KOMPLEKS	KEAHLIAN	JADWAL	TEKNOLOG
1	1	.00	.00	.00	.00
	2	.00	.01	.00	.01
	3	.00	.00	.00	.00
	4	.02	.00	.00	.06
	5	.16	.32	.05	.00
	6	.11	.03	.27	.26
	7	.54	.27	.14	.56
	8	.18	.38	.53	.11
2	1		.00	.00	.00
	2		.01	.00	.01
	3		.00	.00	.00
	4		.01	.01	.06
	5		.21	.29	.05
	6		.52	.01	.59
	7		.26	.69	.29
3	1		.00	.00	
	2		.02	.00	}
	3		.00	.00	
	4		.00	.00	
	5	-	.43	.27	
	6		.55	.72	
4	1	Property of	.00	.00	
	2		.02	.00	
	3		.01	.00	
	4		.39	.28	
	5		.58	.72	
5	1			.00	
	2			.01	
	3			.00	
	4	•		.98	
6	1				
	2				
	3				
7	1				
	2				

a. Dependent Variable: ANGGOTA

4

Excluded Variables^g

Madal		Dete la		Cir.	Partial
Model	KOMPLEKS	Beta In	t	Sig.	Correlation
2		.027 ^a	.142	.889	.030
3	KOMPLEKS	.016 ^b	.090	.929	.019
	TEKNOLOG	036 ^b	181	.858	038
4	KOMPLEKS	.005 ^c	.027	.978	.006
	TEKNOLOG	012 ^c	062	.951	013
6	DURASI	078 ^c	426	.674	087
5	KOMPLEKS	024 ^d	147	.884	029
0.01	TEKNOLOG	.005 ^d	.026	.979	.005
	DURASI	066 ^d	371	.714	074
	KEAHLIAN	.115 ^d	.578	.568	.115
6	KOMPLEKS	030 ^e	190	.851	037
	TEKNOLOG	.044 ^e	.246	.808	.048
	DURASI	032 ^e	181	.857	036
	KEAHLIAN	.157 ^e	.843	.407	.163
	JADWAL	140 ^e	904	.374	175
7	KOMPLEKS	.035 ^f	.221	.827	.042
	TEKNOLOG	075 ^f	475	.639	091
	DURASI	089 ^f	515	.611	099
	KEAHLIAN	.059 ^f	.323	.749	.062
	JADWAL	094 ^f	602	.552	115
	NILAI	.342 ^f	1.459	.156	.270

Excluded Variables^g

		Collinearity Statistics		tics
				Minimum
Model		Tolerance	VIF	Tolerance
2	KOMPLEKS	.703	1.423	.231
3	KOMPLEKS	.759	1.317	.270
	TEKNOLOG	.582	1.718	.247
4	KOMPLEKS	.776	1.288	.329
	TEKNOLOG	.628	1.592	.282
<u>د</u>	DURASI	.681	1.469	.278
5	KOMPLEKS	.854	1.171	.343
0.21	TEKNOLOG	.643	1.554	.292
	DURASI	.688	1.454	.289
	KEAHLIAN	.556	1.798	.342
6	KOMPLEKS	.856	1.168	.353
	TEKNOLOG	.685	1.459	.293
	DURASI	.718	1.393	.294
	KEAHLIAN	.620	1.613	.344
	JADWAL	.891	1.122	.371
7	KOMPLEKS	.931	1.074	.931
	TEKNOLOG	.898	1.113	.898
	DURASI	.763	1.311	.763
	KEAHLIAN	.691	1.447	.691
	JADWAL	.923	1.083	.923
	NILAI	.384	2.604	.384

a. Predictors in the Model: (Constant), TEKNOLOG, DURASI, JADWAL, UKURAN, KEAHLIAN, NILAI

b. Predictors in the Model: (Constant), DURASI, JADWAL, UKURAN, KEAHLIAN, NILAI

c. Predictors in the Model: (Constant), JADWAL, UKURAN, KEAHLIAN, NILAI

d. Predictors in the Model: (Constant), JADWAL, UKURAN, NILAI

e. Predictors in the Model: (Constant), UKURAN, NILAI

f. Predictors in the Model: (Constant), UKURAN

g. Dependent Variable: ANGGOTA

Casewise Diagnostics^a

Case	KONTRAKT	Std.	ANGGOT
Number		Residual	A
22	Biro HAKA	3.387	25

a. Dependent Variable: ANGGOTA

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	7.65	20.67	11.03	3.62	30
Residual	-6.67	15.82	-2.07E-16	4.59	30
Std. Predicted Value	936	2.662	.000	1.000	30
Std. Residual	-1.428	3.387	.000	.983	30

a. Dependent Variable: ANGGOTA

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
ANGGOT A	15.53	8.70	30
NILAI	1.2E+10	1.5E+10	30
LUAS	20517.15	31815.52	30
DURASI	444.47	215.25	30

Correlations

		ANGGOT A	NILAI	LUAS	DURASI
Pearson Correlation	ANGGOT A	1.000	.674	.524	.348
	NILAI	.674	1.000	.872	.505
	LUAS	.524	.872	1.000	.410
	DURASI	.348	.505	.410	1.000
Sig. (1-tailed)	ANGGOT A		.000	.001	.030
	NILAI	.000		.000	.002
	LUAS	.001	.000		.012
	DURASI	.030	.002	.012	
N	ANGGOT A	30	30 -	30	30
	NILAI	30	30	30	30
	LUAS	30	30	30	30
	DURASI	30	30	30	30

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	DURASI, LUAS, NILAI ^a		Enter
2	j,n	DURASI	Backward (criterion: Probability of F-to-remo
32			ve >= .100). Backward (criterion: Probability
		LUAS	of F-to-remo ve >= .100).

a. All requested variables entered.

b. Dependent Variable: ANGGOTA

Model Summary^d

				Adjusted	Std. Error of the
	Model	R	R Square	R Square	Estimate
	1	.686ª	.470	.409	6.69
ł	2	.686 ^b	.470	.431	6.56
l	3	.674 ^c	.454	.434	6.55

a. Predictors: (Constant), DURASI, LUAS, NILAI

b. Predictors: (Constant), LUAS, NILAI

c. Predictors: (Constant), NILAI

d. Dependent Variable: ANGGOTA

ANOVAd

Model		Sum of Squares	df	Mean Square
1	Regression	1032.694	3	344.231
	Residual	1162.772	26	44.722
	Total	2195.467	29	
2	Regression	1032.694	2	516.347
	Residual	1162.772	27	43.066
	Total	2195.467	29	\sim
3	Regression	996.029	1	996.029
<u> </u>	Residual	1199.438	28	42.837
	Total	2195.467	29	

ANOVAd

Model		F	Sig.
1	Regression Residual Total	7.697	.001 ^a
2	Regression Residual Total	11.990	.000 ^b
3	Regression Residual Total	23.252	.000 ^c

a. Predictors: (Constant), DURASI, LUAS, NILAI

b. Predictors: (Constant), LUAS, NILAI

c. Predictors: (Constant), NILAI

d. Dependent Variable: ANGGOTA

Coefficients^a

		Unstandardized Coefficients		Standardi zed Coefficie nts	
Model		В	Std. Error	Beta	t
1	(Constant)	10.682	2.861		3.734
	NILAI	5.276E-10	.000	.903	2.928
	LUAS	-7.21E-05	.000	264	903
	DURASI	1.020E-05	.007	.000	.002
2	(Constant)	10.686	1.555		6.872
	NILAI	5.277E-10	.000	.903	3.162
	LUAS	-7.21E-05	.000	264	923
3	(Constant)	10.816	1.544		7.003
	NILAI	3.935E-10	.000	.674	4.822

Coefficients^a

				Collinearity Statistics	
	Model		Sig.	Tolerance	VIF
ľ	1	(Constant)	.001		
		NILAI	.007	.214	4.669
		LUAS	.375	.239	4.180
		DURASI	.999	.741	1.350
Ī	2	(Constant)	.000		
		NILAI	.004	.240	4.159
1		LUAS	.364	.240	4.159
I	3	(Constant)	.000		
1	<u> </u>	NILAI	.000	1.000	1.000

a. Dependent Variable: ANGGOTA

Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	3.192	1.000
	2	.641	2.231
	3	9.649E-02	5.752
	4	6.976E-02	6.765
2	1	2.408	1.000
	2	.510	2.173
	3	8.194E-02	5.421
3	1	1.633	1.000
	2	.367	2.111

		Variance Proportions				
Model	Dimension	(Constant)	NILAI	LUAS	DURASI	
1	1	.01	.01	.01	.01	
	2	.10	.03	.09	.03	
	3	.58	.22	.38	.44	
	4	.31	.74	.52	.52	
2	1	.06	.02	.03		
	2	.85	.02	.07		
	3	.09	.96	.91		
3	1	.18	.18		\sim	
10.	2	.82	.82			

a. Dependent Variable: ANGGOTA

Excluded Variables^c

Model		Beta In	t	Sig.	Partial Correlation
2	DURASI	.000 ^a	.002	.999	.000
3	DURASI	.011 ^b	.066	.948	.013
	LUAS	264 ^b	923	.364	175

Excluded Variables^c

		Colli	nearity Statis	tics
Model		Tolerance	VIF	Minimum Tolerance
2	DURASI	.741	1.350	.214
3	DURASI	.745	1.343	.745
	LUAS	.240	4.159	.240

a. Predictors in the Model: (Constant), LUAS, NILAI

b. Predictors in the Model: (Constant), NILAI

c. Dependent Variable: ANGGOTA

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	11.24	30.73	15.53	5.86	30
Residual Std.	-17.19	13.53	-2.37E-16	6.43	30
Predicted Value	733	2.593	.000	1.000	30
Std. Residual	-2.626	2.067	.000	.983	30

a. Dependent Variable: ANGGOTA

Regression

•

Descriptive Statistics

	Mean	Std. Deviation	Z
ANGGOT	13.28	7.69	60
NILAI	7.5E+09	1.2E+10	60
UKURAN	11958.14	24037.04	60

Correlations

-	100 I I I I I I I I I I I I I I I I I I			
		ANGGOT		
		A	NILAI	UKURAN
Pearson Correlation	ANGGOT A	1.000	.655	.524
	NILAI	.655	1.000	.885
	UKURAN	.524	.885	1.000
Sig. (1-tailed)	ANGGOT A		000	000
	NILAI	000	•	000
	UKURAN	000	000	•
z	ANGGOT A	60	60	60
	NILAI	60	60	60
	UKURAN	09	60	60

, lumine

Variables Entered/Removed^b

.

	Variables	Variables	
Model	Entered	Removed	Method
-	UKURAN, NILAI ^a	-	Enter
2	Ĩ		Backward
			(criterion: Probability
		UKURAN	of
			F-to-remo
			Ve >==
			.100).

a. All requested variables entered.

b. Dependent Variable: ANGGOTA

Model Summary

R Square R Square Estimate 666a443424 5.84 655b420 5.86

a. Predictors: (Constant), UKURAN, NILAI

b. Predictors: (Constant), NILAI

n lumine

0	
4	
N	
0	
Z	
∢	

		Sum of		Mean		
Model		Squares	df	Square	ц	Sig.
-	Regression	1547.566	2	773.783	22.704	.000
	Residual	1942.617	57	34.081		
	Total	3490.183	59			
2	Regression	1497.761	1	1497.761	43.600	9000 ⁻
	Residual	1992.422	58	34.352		
	Total	3490.183	59			
a. Predicto	a. Predictors: (Constant), UKURAN, NILAI	UKURAN, NI	LAI			

b. Predictors: (Constant), NILAIc. Dependent Variable: ANGGOTA

Coefficients^a

c. Dependent Variable: ANGGOTA Model Unstandardized Coefficients B Std. Er 9.869 NILAI 5.871E-10 UKURAN -8.21E-05 0.1019 NILAI 4.359E-10
--

a. Dependent Variable: ANGGOTA

			Condition	Varia	Variance Proportions	ons
Model	Dimension	Eigenvalue	Index	(Constant)	NILAI	UKURAN
1	-	2.292	1.000	.07	.03	.03
	2	.623	1.917	.84	.02	.05
	e	8.488E-02	5.196	60.	96.	.92
2	-	1.547	1.000	.23	.23	
	7	.453	1.848	77.	77.	
	C Decodert Verichle: ANGOTA	NICCOTA				

a. Dependent Variable: ANGGOTA

Excluded Variables^b

_		_	-
stics	Minimum	Tolerance	.217
nearity Statis		VIF	4.618
Colli		Tolerance	.217
	Partial	Correlation	158
		Sig.	.232
		t	-1.209
		Beta In	257ª
			UKURAN
		Model	2

a. Predictors in the Model: (Constant), NILAI

PERPUSTAKAAN FAK. TEKNIK-SIPIL UNIVERSITAS ATMA JAYA

b. Dependent Variable: ANGGOTA