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Abstract 
This thesis presents a comparative study of electronic nose technologies for the detection 

of colorectal cancer from healthy and disease controls using gases/volatiles in urine 

headspace. A review is made of the clinical features of lower gastro-intestinal diseases and 

the sensing technologies available to electronic noses. The literature surrounding the 

detection of cancers and other diseases by sensing of gases and volatiles is also reviewed. 

An investigation into the common volatile components of urine headspace is conducted 

experimentally using a gas chromatograph – mass spectrometer (451 Scion SQ, Bruker 

Corp), resulting in 10 candidate chemicals with links to gut bacteria and diet. A humidity 

generation unit was developed and integrated with a volatile testing rig to aid in assessing 

the response of different electronic nose technologies to volatile chemical groups. 

Four electronic nose systems were tested in parallel studies using urine headspace samples 

from patients of colorectal cancer (CRC) and irritable bowel syndrome (IBS), as well as 

healthy volunteers. This involved pre-classified multivariate analysis techniques followed by 

K-Nearest-Neighbour validation for sensitivity and specificity.  A commercial electronic 

nose based on metal oxide sensors (Fox 4000, AlphaMOS Ltd) analysed 93 urine samples 

giving a sensitivity and specificity to colorectal cancer of 54% and 48%. A field asymmetric 

ion mobility spectrometer that is commercially available (Lonestar, Owlstone Ltd) was 

tested using 133 samples of CRC and volunteer samples, yielding 88% disease sensitivity 

and 60% specificity. A new electronic nose system was developed using state-of-the-art 

ampere-metric and optical sensors and tested against 92 urine samples, giving a respective 

sensitivity and specificity to CRC against IBS controls of 78% and 79%. A final instrument 

was developed that includes a micro-packed GC column and an array of micro-hotplate 

metal oxide sensors, which analysed 49 samples to give a 92% sensitivity and 77% 

specificity to CRC against IBS. 
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1. Introduction 
1.1. Clinical Scope 

Colorectal cancer is a highly prevalent form of cancer with a high associated mortality, 

especially in the Western world and increasingly in those areas that are acquiring the 

modern Western lifestyle (1). There was an average annual incidence of the disease in 

developed, Western countries of 13.4% of total cancer cases, with an average of 7.8% 

elsewhere in the world. The UK has seen a rising incidence of this cancer from 1990 to 2010 

of over 125% (2), and there are similar trends being shown in the USA and in the rest of 

Europe (1). The quality of life for patients both before and after successful treatment of 

tumours can be severely impacted, with typical symptoms including: mobility, 

pain/discomfort, psychological well-being, bowel control, urination, body image and 

sexuality (3). It has been shown that 50 – 80% of patients have some form of complication 

even after treatment has finished, depending on their age group. The 5-year survival rate is 

relatively high (93.2%) for Stage 1 colorectal cancer, however this rate is reduced with 

every subsequent stage of cancer severity resulting in a minimum 5-year survival rate of 

8.1% for stage four cancers (4). The global mortality rate for this disease was recently 

estimated at 394,000 deaths per year, which is the fourth highest amongst cancer-related 

deaths (1). It is important to have a diagnostic method that can reliably distinguish this 

disease in the earliest stage of development possible. 

The symptoms presented by patients can include rectal bleeding, abdominal pain, weight 

loss, anaemia and a variety of different deviations from normal bowel habit (5). However 

there is a high level of variation between suffers, and symptoms are often very similar to 

those for many other disease of the lower gastro-intestinal tract such as ulcerative colitis 

(UC), Crohns disease (CD) and irritable bowel syndrome (IBS). The first two of these can be 
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highly debilitating and aggressive diseases in their own right, with many overlapping 

features and an associated mortality (6). Irritable bowel syndrome is potentially a series of 

condition affecting a much larger fraction of the population compared to colorectal cancer, 

although it has much better overall prognosis and very different treatment regime (7).  

 

Figure 1.1: Illustration of the proportions of screening and diagnostic (symptomatic 

consulter) populations that suffer from CRC (yellow) and do not (white) out of 100. 

The current definitive diagnostic method for colorectal cancer is colonoscopy with 

biopsy, which is a highly invasive technique that requires both skill and time to 

complete successfully and incurs a high associated cost for each procedure. The typical 

fraction of patients who undergo a colonoscopy and have malignant carcinomas is 

shown in Figure 1.1. The prevalence of colorectal cancer is three orders of magnitude 

lower than that of irritable bowel syndrome (1, 8), but there are some distinctive 

symptoms (such as rectal bleeding) that allow many patients in the diagnostic 

population to be triaged away from colonoscopy. The screening population has been 

specifically chosen from a high risk age group (over 60’s in the UK), and so proportional 

numbers will also be higher than in the full population.  
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There is a number of different scanning and chemical technologies that have been 

highlighted as non-invasive screening and diagnostic triage tools for colorectal cancer 

including computer tomography (CT) colonoscopy and tests on patient faecal samples 

(9). While improvements are being made in these techniques, they generally do not 

provide reliable sensitivity to the disease to provide a definitive diagnosis. In addition, 

the current popular screening and triage methods (Faecal Occult Blood and Faecal 

Immunochemical Testing) require patients to collect a stool sample of significant size to 

hand in to clinical staff. This process is known to have a very low acceptance level 

among patients, meaning that either quality of diagnosis or patient ease is affected. 

 

Figure 1.2: Patient pathways from first contact to resolution for screening (left) and 

symptomatic (right) populations (10) 

The current process of definitive colorectal cancer diagnosis requires patients to visit 

primary healthcare centres multiple times, often with lengthy wait times for sample testing 

by specialist groups (10). The full processes of diagnosis for patients in the screening and 

symptomatic populations are shown in Figure 1.2. The average length of time between 

symptom initiation and diagnosis for a population of Spanish patients during 2006 – 2009 
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was 128 days, with a further 155 days of treatment time (11). The main factors that 

affected these time intervals were related to the perceptions of the patient and consulted 

healthcare professionals to their symptoms. There is also a very high monetary cost to look 

after patients of colorectal cancer, with individual costs of surgical procedures in the UK 

ranging between £4493 and £8308 in 2012 (10). The associated per-instance cost of 

colonoscopy is also very high, with estimated figures in the US from 2000 being nearly $700 

per session (approximately £500 if it were in the UK) (12).  

In this light, it would be highly beneficial for both patients and healthcare providers if 

another technique was available to be used at the point of initial screening (Figure 1.2 top 

left) or triage (Figure 1.2 top right) to better and more rapidly distinguish between cancer 

and non-cancer cases. This technique could be employed during the two week wait period 

between initial appointments and further review in the NHS, which would enhance its 

ability in such an enriched population (10). This could greatly reduce the number of 

colonoscopies required in primary healthcare centres, resulting in both lower costs and 

shorter waiting times. This should aid patient mortality rates and help reduce severe 

symptoms by achieving earlier diagnosis before the disease can develop. There is therefore 

a need for new non-invasive diagnostic tools that can be used at the point of care, 

preferably by non-specialist medical staff, to perform reliable diagnostic triage and/or 

screening. Patient urine samples have been collected at the University Hospital of Coventry 

and Warwickshire prospectively during a period just prior to bowel preparation for 

colonoscopy, as shown in the symptomatic population diagram in Figure 1.2. These are 

available for investigation, along with healthy urine samples from among volunteer hospital 

staff, under the Ethical Approval Number 09/H1211/38. 
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1.2. Basis of Approach 
Associations between the aromas given off by biological media and underlying disease of 

patients suffering from pulmonary tuberculosis and bladder ulcerations have been 

mentioned in the Hippocratic writings (13). The popularity of techniques involving 

peripheral factors that can add to diagnostic information, such as the smell emanating from 

patients, was boosted in modern times by a report in the 1980’s (14). This report 

highlighted that particular effluvia from biological waste products and exhaled breath could 

be linked to metabolic disease, uremia and many others. In that same decade, a technology 

was newly developed that employed an array of gas sensors to behave as an olfactory unit 

similar to a biological nose (15). There have been a large number of studies released since 

then that have strived to use this ‘electronic nose’ technology in biomedical applications 

(16). There have also been numerous reviews of these investigations, but very few of these 

have any direct experimental comparisons of different instruments using the same test 

methodology and timeframe. There are a wide variety of commercial electronic noses 

available (detailed in Chapter 2), and many of these have been used in investigations into 

the detection of cancers (including colorectal cancer specifically). However, the 

instruments currently studied do not include all of the recent sensor technologies that 

could be utilised in this approach. There remains a large degree of uncertainty in which 

combination of technologies would be the most suitable for the distinction between lower 

gastro-intestinal diseases such as colorectal cancer, inflammatory bowel disease an irritable 

bowel syndrome. A significant step can be made in clarifying this situation by comparative 

experimental assessment of multiple different technologies, using parallel testing 

methodologies. 

For a new technology to be adopted within clinical practice, it must be accepted to have 

made an improvement in at least one aspect (such as disease sensitivity) displayed by 

current methods while at least maintaining the level of other aspects (such as usability). A 
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number of deliverables should ideally be set based on clinical demand, to be used as a 

metric for comparing the technologies under test. A list of such pre-requisite features has 

been compiled for a diagnostic triage tool for detecting colorectal cancer in Table 1.1, taken 

from discussions with gastroenterologists that are experts in this clinical pathway. The aim 

for a candidate technology is to be a non-invasive point-of-care solution for the distinction 

of colorectal cancer from controls. The highest priority is given to sensitivity to disease, 

with other features such as rapid analysis, portability and robustness of design given a 

secondary level of importance. 

Deliverables Clinical Reasoning 

Sufficient sensitivity to detect patients 
that are suffering from colorectal 

cancer 

Highest priority, as paramount to maintaining an 
acceptable level of patient care and safety 

Sufficient specificity to screen out 
patients not suffering from colorectal 

cancer 

Reduces the number of patients undergoing unnecessary 
endoscopy 

Ability to be used as a stand-alone 
device 

Allows for use within clinic without any need for prior 
setup or external analysis 

Non-invasive technique 
Higher patient acceptance, giving higher quality of life  

and lower refusal rate 

Use of ‘acceptable’ medium for 
analysis 

Higher patient acceptance, giving higher quality of life  
and lower refusal rate 

Reasonable degree of portability 
Allows transport between rooms and areas without 

excessive effort 

Low technical knowledge required for 
analysis 

Potential for front-line clinical staff to use without 
extensive training 

Relative low cost per treatment 
compared to colonoscopy 

Improves overall cost of lower gastro-intestinal (GI) 
disease diagnosis for healthcare centres 

Reasonable analysis time 
Increases the speed at which patients can be triaged, 

with potential for analysis as they wait 

Ability to be serviced and maintained 
easily 

Provides quick turn-around to minimise the time that the 
device is out-of-use 

Ability to store patient data for later 
use and updates 

Each confirmed diagnosis can be added to training set for 
improved diagnostic strength 

Robust design that cannot be easily 
damaged by contact 

Minimises chance of device being put out-of-use by 
unexpected damage 

Table 1.1: List of deliverables for a new screening/ diagnostic triage tool being introduced 

to clinic 
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1.3. Project Aims 
This study presents an investigation into the use of ‘electronic nose’ technology as a point-

of-care solution for the detection of colorectal cancer. The biological medium used for this 

investigation is the headspace of urine. Urine is already a widely collected biological 

sample, and thus has a high level of patient acceptance. There have been a wide variety of 

studies conducted on the gaseous and volatile contents of urine (17, 18). There is some 

degree of consensus of constituent chemicals between these studies, which adds some 

confidence in using this biological medium as a valid method for discriminatory test for 

colorectal cancer. 

Candidate technologies are compared by their ability to distinguish urine samples taken 

from known patients of colorectal cancer from controls taken from irritable bowel 

syndrome sufferers and healthy volunteers. The included technologies constitute a variety 

of the ‘state-of-the-art’ in terms of sensing and separation techniques. Some of these were 

found in commercially-available instruments, while others were acquired individually and 

constructed into systems that were designed and built in-house to achieve the deliverables 

described in Section 1.2. A significant amount of background work was also carried out to 

construct appropriate testing rigs for the instruments, and to determine the common 

content of urine headspace for determining the validity of the approach. The electronic 

noses under test will analyse a cohort of urine samples with a common test methodology, 

aiming to distinguish colorectal cancer samples from healthy and diseased controls. At the 

end of this project, the candidate technologies will be compared against their success in 

fulfilling the deliverables. 

1.4. Thesis Structure 

Chapter 2 is a review section, which first outlines the current clinical situation of related 

lower gastro-intestinal diseases with regards to prevalence, pathological features and 
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current diagnostic methods. The technologies and techniques available within the field of 

electronic noses is then reviewed, followed by a literature review of research looking into 

the use of volatile biomarkers for disease.  

A body of new experimental research into the volatile content of urine headspace by gas 

chromatograph-mass spectrometer is presented in Chapter 3. This section has a focus on 

finding commonality among the chemicals found in the patient samples of many different 

gastro-intestinal diseases, as well as some degree of distinction between them using 

chemical incidence levels. 

Chapter 4 presents new comparative experimental research on two commercially-available 

instruments (AlphaMOS Fox 4000, Owlstone Lonestar). This made use of single volatile 

samples to check the sensitivity and drift of the sensors, and then analysed cohorts of urine 

samples from colorectal cancer patients as well as controls of irritable bowel syndrome and 

healthy volunteers. 

The next chapter (Chapter 5) details the design and construction of a new electronic nose, 

with an array of electrochemical and optical gas sensors that have previously not been used 

in commercial instruments. This system is developed as a test platform that achieves some 

of the pre-requisite deliverables. Single volatile samples are then used to check sensitivity 

levels and develop an experimental method. 

Chapter 6 presents the design and construction of another new instrument building on 

lessons learnt from the work in Chapter 5, which combines the retention-based temporal 

separation of gas chromatography with the pattern-based discrimination techniques used 

in electronic noses. The micro-hotplate metal oxide sensors used in this instrument have 

not yet been used with a chromatography column. This instrument has been developed 
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with the point-of-care application in mind, and aims to meet the deliverables for a new 

diagnostic triage tool. Single volatile samples were again used to determine a suitable 

method, as well as sensitivity and separation levels. 

The experimental testing of the two in-house built electronic noses using comparative 

urine sample sets is detailed in Chapter 7. The ability of both machines to distinguish 

colorectal cancer from irritable bowel syndrome and healthy controls is presented.  

The results of all of the tested technologies are compared in the concluding chapter, and 

the merits and limitations of the investigation are explored. 
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2. Literature Review: Volatile 
Analytics in Digestive Disease 
2.1. Overview of Lower Gastrointestinal Disease 

The main initiative behind this investigation is to compare the feasibility and development 

potential of a low-cost, non-invasive method for diagnosing lower GI diseases at the point 

of care.  There are an increasing number of cases of GI disease patients within the 

developed world, and therefore it is becoming a common health issue in later life for 

individuals in the UK, United States and other Western countries (1). The relative global 

prevalence of these diseases over the years of 2013 and 2014 are shown in the pie chart in 

Figure 2.1. A large majority – approximately 11% of the international population – of lower 

GI patients suffer from IBS, with much smaller proportions of relatively equal size have 

ulcerative colitis (UC) or colorectal cancer (CRC). Finally, the smallest proportion of the 

global population suffers from Crohns disease, with an overall prevalence of 0.0322% (2). 

 

Figure 2.1: Chart showing relative global prevalence of digestive disease (2, 3, 4) 
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2.1.1. Non-Inflammatory Disease: Irritable Bowel Syndrome  

Affecting approximately 20% of adults in the western world, this is the most prevalent 

lower gastro-intestinal disease. There are three categories based on the manner in which 

stool frequency is altered, either by diarrhoea (IBS-D), constipation (IBS-C) or an alternating 

mix of the two (IBS-A) (1).   

2.1.1.1. Disease Prevalence 

The prevalence of IBS varies between 0 – 20 % of the total population in different regions 

internationally (2). This difference is generally associated with prevalence of the modern 

“western” diet in the country of study, with populations of the USA and UK both being on 

the high end of the scale. Countries with a simpler, less excessive diet such as France and 

Thailand have a much lower reported prevalence of 4.7 – 5.7%. However, there is not a 

high level of confidence in the numbers quoted as the metrics of actual disease prevalence 

must usually be estimated. This is due to a number of investigational studies showing that 

up to 70% of the symptomatic population do not consult with a physician (5). There have 

been a large number of studies that estimate the percentage of the population being 

affected by IBS by community survey, leading to end estimates that are highly varied. For 

example, estimates of UK prevalence (a country with relatively high levels of medical 

standards, awareness and access) have included values in a range between 6.1% and 21.6% 

depending on the population being surveyed (6, 7). This leads to a large degree of 

uncertainty in the patient demographics and population magnitude for this disease. 

By far the majority of reported cases suffer from IBS-D, with the most documented cause 

being Bile Acid Malabsorption (BAM) or the dysfunction of the bowel to re-absorb bile acids 

that are secreted to aid in the digestion process.  There have been links to other means of 

dysfunction, such as Fat Malabsorption, but these are less well-attributed (1).  Many 

studies featuring large population sizes have seen similar relative prevalence of the three 
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IBS sub-types, where just over half of the reported sufferers being classed with IBS-D with 

the remainder being fairly equally divided between IBS-C and IBS-A (8). 

There are some significant features in the demographics of patients reporting IBS 

symptoms that are consistent on the international scale. Disease rates are seen to be 67% 

higher in women than in men in a large number of regions (9), with a female prevalence of 

14.0% compared to that of 8.9% for the male population.  There are others areas such as 

South Asia and South America where the gap between sexes is less distinguished; this could 

be due to a more equal likelihood for men and women with symptoms to seek primary care 

advice. There is another shift in likelihood of symptoms with increasing age, where those 

under 50 years of age have a 25% higher prevalence than those who are older (10). This 

result points to a potential easing of symptoms with increasing age, or to an increase in 

overall epidemiology in newer generations.  Studies have shown that IBS prevalence could 

be associated with both lower and higher end socioeconomic status, with an additional 

negative relationship between the percentages of the population employed in manual 

labour jobs (11, 12). Finally, there could be a hereditary component in the disease, with risk 

of IBS being approximately twice as high if an individual has a biological relative with the 

disease (13). 

2.1.1.2. Associated Pathology   

Table 2.1 shows the criteria that are used clinically to constitute a diagnosis of the disease 

state of IBS. These have been adjusted and re-released in the years, indicated on the top 

row of the table, as the understanding of the disease by the medical community grew. The 

key symptoms shown below include pain or discomfort in the abdominal region that is 

associated with a change in stool frequency, consistency and an inability to temporarily 

relieve these complications. In most cases, these only present themselves in intermittent 

periods of a few days with subsequent remission, thought this is not always the case (14). 
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The wide variety in the symptomatic patterns of IBS patients is captured in the Rome 

classifications, where the subjects can experience any combination of alteration in stool 

frequency, consistency, straining and urgency of defaecation. The classification of a patient 

into the three sub-categories is solely based on whether over 25% of their stools are ‘loose’ 

(IBS-D), ‘hard’ (IBS-C) or both (IBS-A). There are a large number of links to the daily routine 

of the patients and the onset or ‘flaring’ of IBS symptoms. These include reports of 

increased defaecation in the morning, increased onset after meals, and aggravation of 

symptoms by stress created by a number of different factors.   

Table 2.1: Pathological criteria for distinction of IBS (14)  

An important factor in IBS distinction is the lack of a number of alarm features that, if 

present, would point a clinician away from this disease and potentially to another with 

much higher severity, as shown in Table 2.2 (14). These have also been shown to add to the 

accuracy of diagnosis for all digestive disease, with a much lower risk of later escalation 

Manning (1978)  Rome I (1989)  Rome II (1999)  Rome III (2006)  

2 or more of the 
following 

symptoms: 
- Abdominal 
distension 

- Pain relief with 
defecation 

- Frequent stools 
with pain 

- Looser stools 
with pain 

- Passage of mucus 
- Sensation of 

incomplete 
evacuation 

 
 

At least 3 months of 
continuous or 

recurrent abdominal 
pain: 

- Relieved with 
defecation 

or 
- Associated with 
change in stool 

consistency 
With at least 2 of the 
following on at least 

25% of days: 
- Altered stool 

frequency 
- Altered stool form 

- Altered stool passage 
- Passage of mucus 

- Bloating or 
abdominal distension 

At least 12 weeks 
in past 12 months 
of continuous or 

recurrent 
abdominal pain or 

discomfort 
With at least 2 of 

the following: 
- Relief with 
defecation 

- Altered stool 
frequency 

- Altered stool form 
- Onset of 

symptoms more 
than 12 months 
before diagnosis 

 
 
 
 

At least 3 days per 
month in past 12 

weeks of continuous 
or recurrent 

abdominal pain or 
discomfort 

With at least 2 of 
the following: 

- Relief with 
defecation 

- Altered stool 
frequency 

- Altered stool form 
- Onset of symptoms 
more than 6 months 

before diagnosis 
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another disease (15). These alarm features include a number of criteria based on symptoms 

and demographics of the patient. Distinction of IBS is important clinically as it leads to the 

least complication in terms of overall health as compared to most other lower gastro-

intestinal diseases.  The severity of IBS does not extend much beyond the symptoms 

themselves, although these can cause a large degree of discomfort, pain and reduced 

quality of life (16).   

Alarm Features List: 

Age >50 years 

Short history of symptoms 

Documented weight loss 

Nocturnal Symptoms 

Male sex 

Family history of colon cancer 

Anaemia 

Rectal bleeding 

Recent antibiotic use 

Table 2.2: Alarm features for indicating negative diagnosis of IBS (14) 

2.1.1.3. Current Diagnostic Methods 

There are no currently-known consistent biological markers that can be used for diagnosis 

of IBS in general, and the accepted method involves the positive distinction of symptom 

criteria and the absence of alarm features described above (17). However, a number of 

diagnostic tests may be performed in order to rule out the presence of other gastro-

intestinal diseases with additional severity of pathological complications. A complete blood 

count may be executed in order distinguish anaemia, and stool tests can be performed to 

check for bacterial infection, parasites or faecal occult blood. There are more invasive 

procedures that can be undertaken as a more definitive test for negative diagnosis, such as 

direct visual colonoscopy, capsule endoscopy and barium enema. The final category of tests 

that are commonly performed are psychological in nature and used to indicate anxiety, 

depression or other problems that may be linked to the pathology. The main arguments for 
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performing these tests include a deviation from the standard IBS characteristics such as 

inclusion of one or more alarm features. There are also wider factors that affect the 

inclusion of these tests in the diagnostic approach involving their availability and cost 

within the clinical environment.  

The most common subset of the disease is IBS-D, for which one underlying cause that is 

better understood is the inability of the GI tract to effectively re-absorb bile acids and is 

denoted bile acid diarrhoea (BAD) (18). This subset of the disease has been indicated in 

several studies that 68% of IBS-D patients in a large population had mild to severe BAD. The 

current ‘gold standard’ diagnostic method for BAD is the SeHCAT retention test, which 

involves injecting a photo-fluorescent tag that binds to bile acids and detecting how much 

is retained by the body after a period of one week (2). However, this technique is not 

employed internationally and many countries including the US omit it due to its cost 

implications. 

2.1.2. Inflammatory Bowel Disease (IBD) 

This group actually incorporates a variety of conditions which are based around the 

inflammation of different areas of the bowel. The most observable of these includes 

ulcerative colitis and Crohns disease, which are both centred in the colon and lower bowel. 

Another large portion of IBD cases do not have a clearly-identified region of effect in the GI 

tract, and so are denoted IBD unclassified (IBDU) (19). 

2.1.2.1. Disease Prevalence 

Both UC and CD have a high prevalence within the Western developed world, with the 

highest figures internationally being found in Europe at 505 and 322 per 100,000 per 

person years respectively (20). The prevalence in many other countries in developing 

economic areas are also increasing, such as East Asia and Africa (21). This ratio is also likely 



Literature Review: Volatile Analytics in Digestive Disease 

18 
 

to be on the rise in all countries, due to high incidence levels and the chronic nature of IBD 

with low associated mortality. The emergence of IBD in developing countries in Asia has 

been manifested by an initial rise in UC followed by an increase in CD prevalence. This 

pattern supports the theory that shifts in lifestyle are key factors in the epidemiology of IBD 

(2). Further links can be made between specifically the diet and lifestyle of a region and the 

prevalence of IBD by the demonstration of particular studies, which showed that paediatric 

emigrants to British Columbia had an even higher incidence of IBD than the general 

paediatric population (22). 

IBD prevalence in the paediatric population has been found to be dominated by CD 

incidence, with studies showing a higher level as compared to UC in countries such as 

Sweden, Norway, Finland and Canada (2). The rates of IBD have been found to be relatively 

similar across both sexes, although some have shown a higher incidence in males when 

aged 5-14 years. Investigations into the change in incidence levels of IBD with age have 

shown a peak between 20 and 39 years (23) with the potential for a second rise at 

approximately age 60 (24). 

A wide variety of environmental factors have been shown to influence the development of 

UC and CD, a large number of which are illustrated on the Venn diagram in Figure 2.2. 

There are many dietary factors that can affect IBD prevalence, with a high carbohydrate/fat 

content causing detrimental effects and the inclusion of foods with high fibre and vitamin D 

having a protective influence. Other ingested products such as antibiotics and oral 

contraceptives can also lead to an increased risk, as well as a more complex relationship 

with breast feeding in infants (25). Other risk factors include those relating to the general 

environment experienced in many economically developed countries, such as an urban 

setting, stress, smoking and air pollution. Interestingly, it has also been noted that smoking 

may have a protective effect from ulcerative colitis (26). 
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Figure 2.2: Venn diagram of environmental factors with an effect on UC and CD 

development (2) 

2.1.2.2. Associated Pathology  

Both forms of IBD are characterised by a chronic inflammation of the lower GI tract that 

can “flare” for periods of up to two weeks with subsequent months with only mild 

symptoms. The pathology of UC and CD affects the right and left colon at varying degrees, 

and is presented in symptoms including bloody diarrhoea (main symptom), abdominal pain, 

fever, and a large number of other potential signs (2). There is a wide range of severities 

associated with both of these disease modes, but in most cases of CD or severe UC there is 

a very significant impact on the well-being and quality of life of patients. In the former case, 

a terminal form of inflammation often occurs and resolution of severe symptoms is only 

achieved by surgical treatment or removal of the lower GI tract (19). 
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Many of the macroscopic features of both UC and CD are included in Table 2.3, which 

shows a degree of commonality between the two but also highlights areas of distinction. 

Both modes of disease involve inflammation of some regions of the GI tract with ulcers, 

legions and/or polyps lining the interior walls, the aggravation of which being the main 

cause of pain and bleeding (27). Ulcerative colitis is more localised within the colon and 

rectum, with a diffuse distribution of ulcers and pseudopolyps in these areas with a 

relatively low risk for complication (as compared to CD). A degree of atrophy of mucosa can 

be seen in this form of IBD, producing well-like ulcers that penetrate through the GI tract 

layers (28). There are rare cases where “backwash-ileitis” can occur, in which the 

inflammation extends up to the ileum and can be very difficult to distinguish from the more 

terminal form of ileitis found in CD (29).  CD contrasts this with a more segmented 

inflammation that can cover the whole GI tract, commonly including the ileum while the 

rectum is usually spared of symptoms. There is also the potential for a large host of 

features to classify this disease visually, including lesions, fissures, deep ulcers, strictures 

and an associated increase in the wall thickness of the GI tract. There are also a large 

number of microscopic pathological features for UC and CD that supports the distinction of 

the two by the regional continuity of inflammation (both chronic and acute) (27). There are 

also specific complications associated with each disease mode, such as hyperplasia or 

metaplasia of particular tissue cells. 
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Macroscopic features used for the diagnosis of IBD. 

  Ulcerative colitis  Crohn's disease 

Localization GI tract   Especially colon and rectum Whole GI tract 

Ileum   Not except in backwash-ileitis Often involved 

Colon  Left > right Right > left 

Rectum Commonly involved Typically spared 

Distribution GI tract   Diffuse (continuous) Segmental (discontinuous) 

Ulcers   Superficial ulcers 
Aphtoid ulcers, confluent 
deep linear ulcers 

Pseudopolyps   Common Uncommon 

Skip-lesions  Absent  Present 

Cobblestone-pattern  Absent  Present 

Deep fissures  Absent except in fulminant colitis  Present 

Fistulae   Absent except in fulminant colitis Present 

Mucosal atrophy  Marked  Minimal 

Thickness of the wall Normal Increased 

Fat wrapping  Absent  Present 

Strictures  Uncommon  Present 

Table 2.3: List of macroscopic features for UC and CD diagnosis (27) 

2.1.2.3. Current Diagnostic Methods 

The current methods for diagnosis include a variety of indicators, including differentiation 

by intra- and extra-intestinal symptoms, sensing of relevant biomarkers, cross-sectional 

imaging and various forms of endoscopy. Both forms of IBD can include symptoms such as 

faecal blood, chronic diarrhoea and abdominal pain, but with other features that 

differentiate them statistically from each-other (19). Ulcerative colitis patients are more 

likely to report visible blood in the stool and rectal urgency, with Crohns disease presenting 

from more systemic symptoms such as a significant weight loss, fever and tachycardia (30). 

Extra-intestinal manifestations such as enteropathic arthritis and metabolic osteopathy can 

be seen in patient fractions of 24 - 40% (31) and 22 - 67% (32) respectively, with the 

prevalence being greater in CD for the former case and roughly equal in the latter. Stool 

samples are often examined to look for a variety of biomarkers normally constituent in 

serum, intestinal mucosa and cellular sources (19) to indicate some of the pathologies 

described in Section 2.1.2.2, as well as to check for infection as an alternate explanation for 
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symptoms (2). Cross-sectional imaging is used primarily upon first diagnosis of CD to stage 

the inflammatory and obstructive natures of the disease as well as for follow-up monitoring 

(33). 

The definitive initial examination for diagnosis and classification of IBD has continued to be 

ileo-colonoscopy for a number of decades (34). There are a significant number of 

macroscopic features that distinguish both UC and CD specifically (as shown in Section 

2.1.2.2), that can also be seen visually using an endoscope and lead to a high confidence 

diagnosis in at least 75% of cases. Many of the differentiating characteristics described can 

be used to accurately distinguish CD from UC in the vast majority of cases, with a marked 

minority of studies presenting atypical and mixed features (35). Additional confidence may 

be gained from histopathology of terminal ileum and colorectal specimens to check for the 

distinctive microscopic features that are also present. This confidence is such that 

examination of specimens from at least 5 sites along the colon, rectum and ileum during 

ileo-colonoscopy the recognised “gold-standard” diagnostic and classification tool for IBD. 

In addition, endoscopy of the small bowel (36) and upper GI tract (37) may also increase 

confidence in classification of CD due to its potential to present itself throughout the entire 

system. 

The main issues with the level of complexity involved in the current diagnostic method is 

the time period from initial report of symptoms to definitive diagnosis from the patient 

point of view, and the cost required for this confidence level for the healthcare centre. The 

first of these has been addressed by a number of studies; one of these reported that delay 

in diagnosis of CD was the most severe with only 75% of patients being diagnosed within 24 

months (38). The cost models for IBD modes are very significant due to their chronic, 

severe nature with a lower relative morbidity. A recent UK investigation into annual costs 



Literature Review: Volatile Analytics in Digestive Disease 

23 
 

for NHS trusts showed an average estimated £3084 per UC patient and £6256 per CD 

patient, increasing to £10760 and £10513 for severe cases of the respective diseases (39). 

2.1.3. Colorectal Cancer  

Colorectal cancer (CRC) remains one of the leading causes of cancer-related death in 

Europe and the USA (40) (41), and is becoming more prevalent in these areas as time goes 

on. 

2.1.3.1. Disease Prevalence 

Over 9% of cancer incidence internationally can be attributed to CRC, which is currently the 

third leading form of cancer in terms of commonality while being fourth in levels of cancer-

related death (42). In the USA alone the 2005 annual rate of new cases has been 108,100, 

with 40,800 deaths in that same year. Prevalence of the disease seems to be nearly equal 

between men and women, with the fraction of incident cancer caused by CRC in men and 

women being 9.4% and 10.1% respectively (43). However, CRC is much more common in 

developed Western-cultured countries, with these regions experiencing incidence rates up 

to 10 times what is seen in those that are less developed (44). This variation may be due to 

the potential for extreme underreporting in the latter category, but may also relate to 

differences in diet and/or lifestyle between these geographical areas. Mortality from CRC 

has significantly decreased in developed nations in North America, Western Europe and 

Australia (45). Meanwhile, in developing countries that are beginning to experience a more 

western lifestyle such as in Eastern Europe, associated mortality has increased by 5 – 15 % 

every 5 years (46). 

There are a variety of factors associated with the risk of developing CRC, which can be 

broadly divided into two categories: those that cannot be modified by a change in lifestyle, 

and those that will decrease chance of incidence if an adjustment is made. A list of 
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affecters in both categories is shown in Table 2.4. The chance of diagnosis of CRC increases 

from the age of 40 to a progressively greater extent with increasing years, whereby 90% of 

cases are found in those aged 50 or older (47). However, there is an increasing shift of 

incidence within the population aged 10 – 49 (48). Adenomatous polyps are precursors to 

colorectal cancer, with nearly 95% of cases developing from them after an estimated 5 to 

10 years to become malignant (49). Adenoma removal may reduce the chance of CRC 

incidence, but there is also an associated increase in additional cancer development in this 

area. There is also a relationship between IBD sufferers and future development of CRC, 

with the risk of malignancy being increased an estimated 4 – 20 times (46). There also 

seems to be some inherited risk of CRC development, with approximately 5 – 10% of 

incidences being attributed to recognised conditions such as familial adenomatous 

polyposis and hereditary nonpolyposis colorectal cancer (50). Overall, 20% of those 

diagnosed with CRC have one or more family members that also suffer from the disease, 

but it is not clear which of these are purely hereditary and which are as a result of shared 

environmental factors (51). 

There are a wide variety of environmental factors involved in increased CRC risk, which are 

not fully understood, but can be managed in order to reduce the chance of incidence in 

individuals. There are very strong links to changes in dietary practices and reduction in risk 

of diagnosis by up to 70% (52). Negative dietary factors include consumption of high fat 

content foods (46) and large quantities of meat (53), while the dietary intake of fruits, 

vegetables and other foods that are high in fibre has a positive effect (46, 54). Many of 

these aspects that are associated with increased risk are common constituents of a western 

diet. In addition to this, physical inactivity and excess body weight are two more 

environmental factors that could heavily affect up to a third of CRC cases (49). There has 

been a well-reported inverse association between risk of diagnosis and physical activity 
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intensity and frequency. Smoking of tobacco cigarettes also has a very negative effect on 

the lower GI system; up to 12% of CRC deaths have been reported to be attributed to 

smoking (55). The habit has also been linked to the formation of adenomatous polyps (56). 

Heavy consumption of alcohol has been found to factor into the diagnosis of CRC at a 

younger age, with an additional negative interaction with smoking (55). 

Risk Factors 

Unaffectable Environmental 

Age in years Diet and nutrition 

Adenomatous polyps (PS) Physical activity and obesity 

Inflammatory Bowel Disease (IBD) Cigarette smoking 

Family history of CRC or PS Heavy alcohol consumpton 

Inherited genetic risk   

Table 2.4: List of personal and environmental risk factors for CRC (42)  

The survival rate of CRC varies with the stage of disease found at diagnosis, with a range of 

5-year survival rate for local, regional and distant metastatic cancers being at 90%, 70% and 

10% respectively (57). The average 5-year survival rate in the United States has risen 

considerably in recent years, with a change from 1995 to 2000 of 11-14% for both men and 

women (58). 

2.1.3.2. Associated Pathology  

There are a variety of symptoms related to CRC, all of which can be also associated with 

other lower GI diseases. Therefore, it is difficult for clinicians to determine the exact 

symptoms that will point to CRC specifically, especially in cases where the patient does not 

fit into the higher risk age range of 40 years or greater. A systematic review of the 

likelihood of symptoms to be attributed to a positive cancer diagnosis has been compiled 

from a total of 23 independent studies with hundreds of thousands of patients in 2011 (59). 

The statistical results of this review are shown in Table 2.5, including the sensitivities, 

specificities and positive/negative likelihoods of all of the common CRC-associated 
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symptoms. Boundaries for a Confidence Interval have been added on either side of each 

statistical value for each symptom, such that 95% of all cases would have values within the 

range given in brackets. All of the symptoms included had a relatively poor sensitivity, 

highlighting the difficulty in using pathology to classify the disease. In addition to these 

results, paired symptoms were also studied to determine if a match could be made to 

maximise positive likelihood. However, the results of this analysis were a relatively poor 

sensitivity to CRC from other lower GI diseases. This study concluded a similar situation to 

that implied by current National Institute for Health and Care Excellence (NICE) guidelines 

(60), that those suffering from CRC are very likely to present almost all of the symptoms 

shown in Table 2.5 but this will not specifically indicate this condition. 

Symptom 
Sensitivity 
% (95% CI) 

Specificity 
% (95% CI) 

Positive likelihood 
ratio (95% CI) 

Negative 
likelihood 

ratio (95% CI) 

Rectal bleeding 17 (16.4 to 18.4) 98 (98.3 to 98.6) 5.31 (1.65 to 17.07)  0.77 (0.57 to 1.03) 

Abdominal pain 31 (29.6 to 32.0) 91 (91.1 to 91.6) 2.47 (1.09 to 5.61) 0.75 (0.62 to 0.90) 

Weight loss 11 (10.6 to 12.3) 96 (95.7 to 96.1) 3.48 (2.08 to 5.80) 0.82 (0.69 to 0.97 

Diarrhoea 19 (18.3 to 20.3) 94 (93.8 to 94.2) 2.44 (1.57 to 3.79) 0.86 (0.70 to 1.04) 

Constipation 27 (25.9 to 28.2) 89 (88.7 to 89.3) 1.74 (1.11 to 2.72) 0.84 (0.79 to 0.88) 

Anaemia 37 (35.7 to 39.1) 92 (91.2 to 92.3) 4.62 (3.03 to 7.06) 0.68 (0.65 to 0.71) 

Change in 
bowel habit 11 (10.4 to 12.1) 99 (98.9 to 99.1) 

11.47 (10.12 to 
13.00) 0.90 (0.89 to 0.91) 

Bloating 54 (38.7 to 67.9) 39 (33.4 to 45.6) 0.88 (0.63 to 1.15) 1.18 (0.79 to 1.64) 

Table 2.5: List of macroscopic symptoms of CRC (59)  

The key pathologies that are used to classify CRC in a specific way are those presented on 

the interior of the colon as discovered by colonoscopy (61). Colorectal carcinomas can be 

classified into Types 0 – 4, which are distinguished on an approximate scale of the depth of 

infiltration into surrounding tissue in the colonic wall.  Type 0 carcinomas are in the early 

stage of development and the rest are in more advanced stages. A cross-sectional diagram 

showing Types 1-4 of advanced carcinomas is shown in Figure 2.3. The range includes 

protuberant tumours (Type 1), as well as ulcerative legions with either clear margins (Type 
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2) or infiltration of the surrounding tissue to a marginal (Type 3) or diffuse (Type 4) level. 

Type 2 is the most common class of carcinoma found clinically, and can potentially be 

detected from other examinations aside from endoscopy. 

 

Figure 2.3: Type 1 – 4 classifications of colorectal carcinoma (61) 

Colonoscopy can yield discovery of a range of different carcinomas and adenomatous 

polyps that appear to be very similar, with an adenoma width of 2 cm having a 40% chance 

of being malignant (62). The factors that have a relationship with risk of malignancy include 

carcinoma size, number, and some components of morphology (63). A widely-used method 

for distinguishing between different forms of early colorectal carcinomas is the Paris 

classification, for which a flow diagram is included in Figure 2.4 (64). The candidate lesions 

are first classified as “polypoid” (Type 0-I) or “non-polypoid” (Type 0-II), with the former 

having two sub-classes based on the morphology of the polyp in question. The “non-

polypoid” lesions are sub-classified by their elevation level as compared to the surrounding 

colonic wall, giving a final denunciation of Type 0-IIa, b or c.  
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Figure 2.4: Paris classification of superficial colorectal carcinoma (61) 

These classification systems are used to predict the level of tissue invasion by the 

carcinomas present, helping to stage the disease and estimate the risk of metastasis to the 

lymph nodes. This provides a suitable basis for selection of treatment, usually between 

endoscopic treatment and surgical removal of some or all of the colon (61). For example, 

Type 0-I lesions have an increased risk of invasion to the submucosal layer of the colon with 

increasing size, while Type 0-IIc lesions have a tendency for deeper infiltration despite a 

much smaller size. 

2.1.3.3. Current Diagnostic Methods 

There is a need for an effective and unobtrusive method for screening at risk individuals.  

This is largely due to the broad overlap of symptoms exhibited from patients suffering from 

CRC and from those with other lower GI diseases such as IBS. The definitive diagnostic test 

for this disease is colonoscopy, which is well-established in informing treatment choices 

based on the criteria described above (4). It has been shown that a large-scale colonoscopy 

screening program for a national population of individuals aged 55 or older would be highly 

effective in detecting adenomas and Type 0 carcinomas (65) However, this technique is 
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highly invasive, with disruptive bowel preparations required beforehand and not 

sufficiently cost effective for large-scale screening purposes. The cost of a single 

colonoscopy as estimated by American Medicare payments in 2000 is approximately 

$695.95 (66). This has led to costs simply becoming too high to establish an effective 

screening method for colon cancer in the UK, and only the beginnings of a program in the 

USA (67). 

Current non-invasive options for CRC diagnosis have shifted from the traditional method of 

measuring faecal occult blood due to a relatively low sensitivity to the disease (68). 

However, a relative cost of faecal occult blood testing in the USA is significantly less than 

colonoscopy at $3.50 for a single treatment, giving it the potential to be a useful tool in 

clinical triage as an inclusion criterion (66). The recent preferred diagnostic tool is Faecal 

Immunochemical Testing (FIT) for haemoglobin at specific cut-off thresholds. A 

comparative study of the diagnostic value of the technique against the NICE referral criteria 

for colonoscopy has reported it to be more accurate than these symptom-based guidelines 

(69). This method shows an impressive specificity of 87-96% towards the disease, but has a 

high variation in reported sensitivity with the potential to produce reasonably low values 

(66-88%) (67). Another technique that has been employed more recently is multi-target 

stool DNA testing against some of the genetic components found in malignant and polypoid 

lesions (70). A comparative study on an asymptomatic screening population has shown a 

higher sensitivity to malignant, advanced pre-cancerous and polypoid lesions as compared 

to FIT. This technique looks to be promising as a screening and diagnostic tool, but has not 

been fully qualified for large-scale implementation.  

Despite these clinical diagnostic tools, the initial discovery of CRC-associated symptoms 

does not lead directly to a path towards definitive diagnosis. There is a complicated 

psychological relationship between the presence of symptoms and the response to these 
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by both the patient and any consulted phsyicians (71). These factors can lead to very 

significant delays in the diagnostic process, with studies finding a waiting period of over 4 

months for half of patients and over 6 months for a third (72). Endoscopic treatment and 

surgical resection of primary carcinomas has been reported to be very beneficial to the 

survival time of CRC patients, but there is a large negative impact on this time for cases of 

more advanced stages of the disease (4, 73). Therefore, it is imperative that the clinical 

community strives to minimise the time from initial discovery of CRC symptoms to final 

diagnosis. 

2.2. Overview of Electronic Nose Technology 

An electronic nose can be considered an umbrella term, which can be used to describe any 

instrument formed from an array of sensors with overlapping sensitivity. First developed in 

the 1980’s (74), it is an attempted to mimic the biological olfactory system by evaluating 

the total chemical profile of a complex mixture of chemical compounds, instead of 

detecting each individually. An overview on the functionality of an electronic nose system is 

shown in Figure 2.5; direct comparisons are made with the biological counterparts in the 

human olfactory system. A traditional electronic nose is formed from an array of chemical 

sensors broadly tuned to different chemical groups, similar to the human nose. When a 

sample is presented to the array, as each sensor is different, its response to that complex 

odour is unique, which can be learnt with a pattern recognition algorithm. These sensors 

are normally set into one or more gas chambers that are fed by a pneumatic system, which 

handles the introduction to and removal of samples from the sensors. The raw signals from 

the gas sensor array are then processed using both electronic hardware and software to 

extract the important features of the data. The sensory pathway from the nose to the brain 

handles the olfactory data in a similar way. There is an element of learning in both machine 

and biology, by which a neural network familiarises itself with common patterns of 
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responses from similar samples. Electronic nose systems can combine these elements to 

distinguish between different classes of samples with distinctive patterns, in a similar way 

to that employed by the human olfactory system. 

 

Figure 2.5: Comparison between the human and electronic nose 

2.2.1. Sensor Technologies 

This section describes a variety of sensors that are currently commercially-available and 

have the potential to be used in an electronic nose. Some of the technologies included are 

not currently employed by such instruments, but have the potential to be included in 

sensing arrays and take a role in providing targeted distinction for lower GI diseases. 

2.2.1.1. Metal Oxide Sensors 

The most common method for measuring target gases makes use of inorganic Metal Oxides 

(MOX) such as aluminium oxide or zinc oxide for electro-resistive detection of gases and 

volatiles.  These materials have a porous outer layer that oxygen and water vapour will 

chemically bond to in ambient air, which in turn allows target gases to bond onto the 

surface of the sensor (75). A band gap diagram showing the specific electron energies for 
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the bonded and un-bonded states of some common MOX sensor materials and Hydrogen 

Sulphide (H2S) is shown in Figure 2.6 (76). In this case, the energies of H2S electrons are 

shown as bounded lines below the H2S label on the top of the diagram. The solid line bands 

for the metal oxide compounds (underneath the other three top labels) are filled energy 

levels and the dashed lines are unfilled. Energy must be given to the H2S electrons 

(equivalent to a vertical move upwards on the diagram) in order for bonding to occur. This 

shows that bonding of H2S is more likely on copper as compared with aluminium and 

chromium oxides, as the unfilled energy level bands for this metal are vertically closer to 

those occupied by the gases electrons in their natural state. This means that less energy is 

required for bonding to copper than is needed for bonding to the other two materials. 

 

Figure 2.6: Band gap energy diagram for Al8O12, Cr8O12 and Cu with H2S (76) 

The addition of the extra chemicals effectively dopes the semiconductor, and either 

increases or decreases the overall resistance of the sensor by a small amount depending on 
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the target gas.  Figures 2.7 and 2.8 show two structural implementations of MOX sensors, 

with the former being the more widely-available thick film method and the latter a thin-

film method deposited on a planar substrate.  

 

Figure 2.7: Structural diagram of a thick film metal oxide gas sensor 

Careful measurement of the sensor resistance allows for monitoring of the gas species that 

have become bonded to the sensor (as shown in Figure 2.8).  Some selectivity can be 

achieved by introducing filters, changing the sensing materials and increasing heater 

temperature, but this is a broad-range technique which is not currently truly selective.  

However, an array of different sensors used in parallel can provide a measure for detailed 

changes in the composition of a sample, with no indication of the species responsible. (77) 

These sensors must also be heated to very high temperatures (usually over 200 oC) to 

increase conductivity of the sensing material and decrease the time for bonding and 

separation to occur with sensitive chemicals.  Regardless of high temperature purging after 

each sample, the response of these sensors will end up drifting long-term due to some 

species becoming irreversibly bonded to the surface, and to the active sites becoming 

redistributed within the semiconductors as part of the relaxation process of the material 

(78).  Despite these disadvantages, this technique produces extremely sensitive devices 
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with ranges as low as 10-100 parts per billion (ppb) and so is widespread within current 

commercial electronic noses. (79) 

 

Figure 2.8: Structural diagram of a thin film metal oxide gas sensor (80) 

2.2.1.2. Electrochemical Cells 

Electrochemical sensors were first used in the 1950’s in order to monitor oxygen levels, but 

have since been expanded to target a wide range of gases. The most common application 

for these sensors continues to be environmental monitoring for oxygen and toxic gases 

(81). Their operation is based on a pair of electrodes named the ‘working’ and ‘counter’ 

electrodes with a constant potential difference between them.   A particular target gas, 

specified by the level of voltage difference, will react with these electrodes within a 

suitable medium of electrolyte to create an electrical current.  This current can then be 

measured by introducing a resistive load onto the end of the sensor circuit.  The potential 

difference is kept constant by the introduction of a third, reference electrode in order to 

maintain the same sensitivity over a long period of time (81).  The addition of a suitable gas 

permeable membrane on the sensor chamber’s gas entrance can prevent the electrolyte 

from leaking out, prevent water vapour from entering the chamber, control which gases 

are being introduced to the electrodes and limit their concentrations. While the current 

signal output of these sensors is not ideal and their sensitivity has traditionally been lower 
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than other technologies, the newest generation of electrochemical sensors have 

sensitivities in the ppm (parts per million) range and can be reliably used over long periods 

of time (over two years) at room temperature.  This makes them easier and less costly to 

run compared with other technologies. (82)  The overall structure of electro-chemical 

sensors is illustrated in Figure 2.9. 

 

Figure 2.9: Internal structure of a modern electrochemical gas sensor (83) 

2.2.1.3. Non-Dispersive Infrared Sensors 

Optical methods such a non-dispersive infrared (NDIR) sensing can also be used to measure 

target gases by Beer’s Law, relying upon the ability of gaseous molecules to absorb a 

specific wavelength of light when it is passed through them in an open chamber (84).  

Typically, these sensors consist of an optical chamber that contains gases to be measured, 

and a pair of different detectors that are tuned to different wavelengths. One of these is 

tuned for detection of the target gas, while the other is used as a baseline level for 

calculation of the gas concentration in the chamber. The operation of an NDIR sensing 
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chamber is shown in Figure 2.10, which incorporates an infrared (IR) source on one end 

that flashes to send light into it, with a filter that only allows the target and baseline 

wavelengths through.  Two IR detectors at the other end of the chambers monitor the 

levels of IR light sent through, and the level of absorbance by the sample is found by 

calculating the difference between these readings.  Sensors which employ this technique 

are very cost effective and reliable, as there are no chemical components which can be 

altered in the system and failure is only dependant on the lamp and circuit operation.  

However, the sensitivity of these sensors is highly compromised by the path length of IR 

light within them, and so small commercial sensors do not have a comparative sensitivity to 

the other techniques described in this section. Also, the pre-requisite for target gases of 

these sensors is a reasonable level of IR-frequency light at a specific, measurable 

wavelength that is significantly different to that of water. Therefore, this technology is 

severely limited in the range of chemicals it can detect effectively, which include CO2 and 

CH4. (85) 

 

Figure 2.10: Sensing chamber of a Non-Dispersive Infrared gas sensor (86) 

2.2.1.4. Pellistor Sensors 

One final technique which utilises the electro-resistive properties of materials is the 

Pellistor, which is used to detect the presence of combustible gases.  It is comprised of an 

alumina detector that is loaded with combustion catalyst (normally an unreactive metal, 

such as platinum or iridium), and a thin platinum wire used to heat the sensor up to around 
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500 oC (illustrated in Figure 2.11). In the presence of any combustible gases, this 

environment will cause combustion on the surface of the detector.  The heat released by 

this combustion is transferred to the alumina, which will cause a small change in its 

electrical resistance that is converted to a voltage difference by a Wheatstone bridge 

arrangement of resistors (circuit diagram shown in Figure 2.12). 

 

Figure 2.11: Pellistor catalytic gas sensor internal structure (87) 

While pellistors are a very reliable method for detecting levels of combustible gases on 

their own with a sensitivity within the ppm range, this can be inhibited or poisoned 

permanently by some of the other target gases known to be present in human secretions 

and excretions (such as H2S).  This method can also only be used for detecting combustible 

gases such as H2 and CH4.   
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Figure 2.12: Wheatstone bridge circuit for pellistor sensor 

2.2.1.5. Conductive Polymers 

The electro-resistive capability of some Conducting Polymers can also be employed to 

detect target gases within a sample. There are not many conductive polymer sensors that 

are commercially-available as individual packages, but they are used in a number of 

different commercial electronic nose instruments (described in Section 2.2.4). The principle 

of detection is almost identical to that described for metal oxide semiconductor above, 

with the nitrile, sulphile, or other groups within the polymers being used as the active site 

for bonding rather than that of oxide groups (88).  Unfortunately, devices which use this 

technology also suffer from the same drawbacks of low selectivity and long-term drift as 

metal oxides, and are less developed and widely-used due to their more recent discovery.  

(89) 

2.2.2. Ion Mobility Spectrometry 

Another technology that could be used to detect the chemical composition of gases and 

volatile mixes is Ion Mobility Spectrometry (IMS) (90). It is not an electronic nose 

technology in that a single detector is used rather than an array of sensors, but the 
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separation achieved by the technique allows for similar statistical methods to be applied 

and for it to be employed in similar application areas. In order to be detected, the 

molecules within a sample must first be ionised using one of a variety of methods.  These 

include corona discharge using high electric fields, photo-ionisation at atmospheric 

pressure, electron bombardment by electrospray ionisation and that by a radiation source.  

The technique achieves separation based on a physical characteristic of all charge particles 

known as mobility, which is a function of their relative mass and charge ratio. 

2.2.2.1. Drift Tube Ion Mobility Spectrometry 

The established and most widely-used form of ion mobility spectrometry makes use of a 

drift tube that is under a constant voltage gradient along its length, in order to pull groups 

of ions with separate mobilities across this region at different speeds (91).  An example of 

the structure and response pattern produced by one such instrument can be seen in Figure 

2.13. The ionised species are first placed in a reaction region, where some chemical 

bonding can occur, in order to halt and contain the ions to be analysed. At an established 

baseline time, an ion shutter separating the reaction and drift regions (shown as a vertical 

dotted line in Figure 2.13) opens and all ions begin moving towards the detector shown on 

the far right of the diagram. The ions will move along the drift region at different velocities, 

resulting in large groups or “swarms” of ions separating from each other based on their 

mobility coefficient through the region. The mobility coefficient is calculated using Equation 

2.1 for a constant electric field. The term vd denotes the drift velocity in m/s through a 1-

dimensional axis of space (calculated by distance from the shutter to the detector divided 

by drift time), and E is the electric field strength in V/m. 

       
(2.1) 
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The detector will respond with total ionic counts over an established period of time after 

baseline (typical time of 10 ms shown in Figure 2.13), giving a single output that shows 

peaks from multiple different “swarms” of ions. Note that this form of IMS cannot fully 

discriminate between individual ions with the singular constant voltage gradient being 

used, as there are too many species with charge/mass ratios that result in very similar drift 

velocities. 

 

Figure 2.13: Diagram showing the operation of Ion Mobility Spectrometry by drift tube, (a) 

during the initial baseline halt state, (b) after opening the ion shutter, and (c) typical 

response (11) 
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2.2.2.2. Field Asymmetric Ion Mobility Spectrometry 

Field Asymmetric Ion Mobility Spectrometry (FAIMS) is a more complex method of IMS that 

has been developed more recently to individualise the ions being analysed (92). It takes 

advantage of changes in mobility coefficient that some ionic species experience under a 

strong electric field, allowing for another metric by which ions may be separated. The 

mobility coefficient equation K is expanded to that shown in Equation 2.2, where N is a 

constant to describe the change in K under strong field conditions, and α is a function 

describing the relationship between field strength/ density ratio and ion mobility. 

  (
 

 
)        (

 

 
)  (2.2) 

As with the previous technique, ions are separated by both molecular mass and charge, by 

applying a high-voltage asymmetric waveform across two parallel plates shown in Figure 

2.14. The waveform (shown at the top of the figure) contains sections where a weak 

negative voltage is applied for a long period of time, and others where a strong positive 

voltage is applied for a short period. These sections have the same integral value as each 

other, which maintains an equal mobility coefficient based on the simpler example 

described in Section 2.2.2.1, while inducing different coefficients in the two states as 

shown in Equation 2.2. The repeated switching between a high-level positive voltage and 

low-level negative voltage will cause the ions to exhibit trajectory changes which have two 

constituent parts: a transient oscillation dependent on its changing mobility coefficient, 

and a constant attraction to one of the plates according to its overall ionic charge. In order 

to capture more than a very small subset of ions over the course of measurement, a second 

“sawtooth” waveform of compensation voltage is applied across the plates (as shown at 

the bottom of Figure 2.14). At any particular point in the waveform, the compensation 

voltage applied will negate the constant attraction offset for one small set of ions of a 
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particular mobility, which will pass through the plates to the detector beyond. The 

detection method is designed to further separate the negative and positive ions being 

analysed by using a pair of electrometers, one with a positive bias and the other with a 

negative. By sweeping the duty cycle of the compensation voltage between preset 

minimum and maximum values for each asymmetric waveform, a pair of 3-dimensional 

matrices can be built up with a comprehensive separation of the ions based on charge and 

mass.  

 

Figure 2.14:  Illustration of the operation of a Field Asymmetric Ion Mobility Spectrometer 

(93) 

2.2.3. Electronic Nose Statistical Methods 

The statistical techniques used for post-processing of electronic nose data generally follow 

a similar pattern based on the non-specific multivariate nature of the information being 

used. The process involves extracting a number of features from the response data of each 

sensor (or sections of data in the case of IMS), and performing some multivariate analysis 

on them to form a classification or regression for identification of the separation of 
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different sample groups. The steps included in this process will be described in the sections 

below. 

2.2.3.1. Feature Extraction 

The majority of multivariate techniques use individual features extracted directly from the 

sensor response, rather than assigning a score to the fit of full responses to a derived 

function (94). A list of parameters taken from sensor responses in a large range of 

electronic nose studies is shown in Table 2.6. A number of different categories are 

constituent to this list, including those measuring: some form of maximum response, the 

difference between two separate samples, an integral of some or the entire response 

signal, the differential gradient within a response, and the time taken to reach a fraction of 

the maximum response. Note that the descriptions of some of the features in Table 2.6 

directly reference other features in order to provide a succinct explanation. The features 

towards the bottom of the list are commonly used in many different studies, while a small 

number of investigations have expanded to a much wider range of specific features to 

optimise separation (95, 96). 
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Table 2.6: List of features extracted directly from sensor responses in electronic nose 

studies (94) 

In addition, there are also a number of curve fitting parameters that can be used as a 

feature to help classify electronic nose data, a common list of which is shown in Table 2.7. 

These are used by comparing either the total or partial sensor response to one of the 

equations listed, and calculating a standard deviation metric for the difference between 

them. Table includes a number of functions with polynomial, exponential and 

trigonometric components in them, with most of these being written explicitly in the 



Literature Review: Volatile Analytics in Digestive Disease 

45 
 

description. The Lorentzian and Double-sigmoid models are much more complex 

techniques involving multiple parameters with individual physical meanings, which are 

combined to give a more comprehensive method for fitting to curve profiles commonly 

seen in sensor responses. The full set of equations for both of these models, as well as the 

explicit description of their parameters, is presented in a study by Carmel et al (97). 

Model Description 

Third-order polynomial function              
     

  

Single-exponential function              
 

 
)) 

Double-exponential function            ( 
 

  
)       ( 

 

  
) 

ARX model                                 

Lorentzian model  Parameters detailed in (24REF27) 

Double-sigmoid model  Parameters detailed in (24REF27) 

Sigmoid function          (
 

           )(  
 

           )  

Fractional function     
    ⁄  

Arctangent function                ⁄   

Hyperbolic tangent function              ⁄   

Table 2.7: List of features extracted from curve fitting parameters in electronic nose (E-

nose) studies (94) 

Finally, a number of studies have transformed the domain of the responses in order to 

compact or simplify the data before taking individual features afterwards (94). These have 

included transforms using Wavelet or Fourier coefficients, to be used both in conjunction 

with the other techniques described above or as a blanket data compression technique 

before extracting all features from a dataset (98, 99). 

2.2.3.2. Classification Methods 

Once features have been extracted from the raw sensor responses, a classification method 

must be performed on the extracted values to separate distinct groups of samples. In order 

to prove the statistical relevance of the classification results, it must be subsequently 

validated by an independent technique (100). A flow diagram of the processes used for 
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sample classification in studies investigating analysis of breath is shown in Table 2.8. The 

stage immediately following the raw sensor values (shown on the second row of the 

diagram) is a pre-processing and dimension reduction step, which incorporates the feature 

extraction techniques described in Section 2.2.3.1. The majority of the studies use principle 

component analysis (PCA) and/or some form of variable selection for reducing the number 

of dimensions analysed, which involves taking individual features and comparing them 

against one another to see separation gradients between classes (100). A smaller 

proportion of studies did not reduce variables and used all raw sensor values for 

classification, while an even smaller minority used a partial least squares regression 

technique (PLS) (101). 

The next stage in the process is the actual classification step used to separate groups of 

samples based on the variables presented from the previous step. The most commonly-

employed classification method by a large margin is linear discriminant analysis (LDA) in the 

review of breath studies (100). LDA is a technique that orders features based on their 

ability to minimise spread within disease groups and maximise the separation between 

them, and applies an individual factor to each proportional to their success. All 

proportioned features are then added together to form a discriminant function for each 

inter-group separation metric. The general equation for discriminant function g(x) is 

illustrated below in Equation 2.3, where wi and xi are respectively the weights and values of 

the ‘ith’ extracted feature (ranging from 1 to d), and w0 is a constant threshold weight.  A 

number of other methods were used for classification in much smaller numbers, such as 

logistic regression, neural networks, support vector machines and random forest. 

          ∑    

 

   

 (2.3) 
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The final step included in many methods is a validation using either a repeated removal of 

single samples from the training set (“Leave-one-out” in Table 2.8), or an external 

validation using a model of the separation that was developed during a training phase of 

the analysis (100). Internal validation using a form of “leave-one-out” technique was by far 

the most commonly-used technique, with a much smaller proportion using an external 

model. There are also a surprising number of studies that have not reported any validation 

of classification results, which is represented by the “In set validation” block in Table 2.8. 

Pre-Processing Techniques Classification Techniques Validation Techniques 

PCA Neural Network 
Training phase model 
(external) validation 

Variable Selection + PCA Logistic Regression In-set validation 

Partial Least Squares (PLS) Linear Discriminant Analysis Leave-one-out 

 Support Vector Machine  

 Random Forest  

Table 2.8: Classification methods used in electronic nose studies (100) 

A systematic review and comparison was made for all combinations of these techniques to 

determine their relative performance in group separation in breath analysis studies (100). 

This resulted in a an inconclusive order for success in group distinction due to the large 

number of contributing factors that come into play, but it was found that the combination 

of PCA variable selection with LDA classification was a highly successful strategy. It was also 

reported that internal validation is essential to estimate the performance of the 

classification technique, and that external validation also improves the estimation of the 

true diagnostic value. Whatever the form of validation, appropriate metrics for the success 

of distinction is based on the sensitivity and specificity of a technique to one particular 

target group against controls. The first of these is a measure of the proportion of the target 

group samples that were correctly distinguished by the technique (the “True Positives”), 
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while the second gives the proportion of control samples that are correctly distinguished 

(the “True Negatives”). 

2.2.4. Commercial Electronic Noses 

The range of electronic noses commercially available in the current market is shown in 

Table 2.9. This list does not include a large number of models that have been developed in 

the academic sector as they have not currently been released into the wider market. It can 

be seen that typically the electronic noses currently available have an array of between 10 

and 40 sensors, with the vast majority including electro-resistive sensors such as metal 

oxides and conductive polymers (102). This is likely due to the relative ease of electronically 

interfacing directly with such sensors, their potential to be manufactured in miniature 

sizes, and their relatively high sensitivity to ppb-levels of target gases and volatiles (which 

have only recently been achieved by some other methods). The movement towards smaller 

and more portable form factors is also highlighted, with some notable exceptions from 

manufacturers looking to maintain a higher level of sensitivity and versatility (AlphaMOS 

and Lenmartz). There are some examples included that deviate from the overall trends 

described above, which use techniques such as ion mobility spectrometry, mass 

spectrometry and gas chromatography to achieve separation and distinction with only a 

single detector. 
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Electronic Nose Model Manufacturer Sensors Included Format (Portability) 

Bloodhound 307 Roboscientific Ltd. 12 conductive polymers Desktop (portable) 

Cyranose C320 Sensigent 32 conductive polymers Handheld (portable) 

Fox 2000 Alpha MOS 6 metal oxides Desktop (stationary) 

Fox 3000 Alpha MOS 12 metal oxides Desktop (stationary) 

Fox 4000 Alpha MOS 18 metal oxides Desktop (stationary) 

JPL Enose NASA 16 conductive polymers Handheld (portable) 

E-Nose Mk3 E-Nose Pty. Ltd 6 metal oxides Desktop (portable) 

Moses II 
Lenmartz 
Electronics 

8 metal oxides, 8 quartz 
microbalances, 4 
amperometrics Desktop (stationary) 

PEN 3 Airsense Analytical 10 metal oxides Desktop (portable) 

Znose 
Electronic Sensor 
Technology 

1 surface acoustic wave 
(w/ gas chromatography) Desktop (portable) 

Aeonose 
The eNose 
Company 5 metal oxides Handheld (portable) 

VSens VaporSens 8 Chemiresistors Desktop (portable) 

Lonestar Owlstone Ltd. 
field asymmetric ion 
mobility spectrometer Desktop (portable) 

MMS-1000 1st Detect mass spectrometer Desktop (portable) 

Table 2.9: List of commercially-available electronic noses on the market (102) 

2.2.5. Gas Chromatography – Mass Spectrometry 

Gas Chromatography (GC) is a method to separate the constituent molecules within gas 

and volatile mixtures according to their molecular weight and polarity (103).  This is done 

using long, thin columns with a retentive coating along the inside wall, which only gives 

gases passing through it a reduced amount of mobility (relating to polarity and weight).  

These columns are subjected to a controlled temperature increase which slowly allows 

chemical species with lower and lower mobility to pass through, where the end detector 

will respond to produce a chromatograph in terms of molecular count and time.  The 

injectors of these instruments have the option of splitting the flow of the sample to only 

allow a certain proportion of the collected sample into the column (along with an inert 

carrier gas such as Helium).  This has the effect of increasing peak sharpness, while 

decreasing sensitivity to lower concentrations of analyte. 
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This technology can be combined with mass spectrometry, resulting in a powerful set of 

tools for determining the exact chemical compounds that are found within a gas/volatile 

mixture.  Mass spectrometers operate by first ionising and breaking apart the molecules 

into constituent ion species, and then accelerating them using a potential difference into a 

right angle bend (as shown in Figure 2.15).  An electromagnetic field is applied over this 

bend, which curves the paths of the species directly in relation to their molecular weight.  

By performing a controlled sweep of electromagnetic field strength while the species is 

coming into the chamber, the full quantitative spectrum of their molecular masses can be 

detected.  Under total vacuum and a highly controlled temperature and environment, the 

proportions and levels of species masses within these spectra are almost completely 

unique to individual chemical compounds.  Large libraries of compounds and their resulting 

mass spectra (such as the National Institute of Standards and Technology (NIST) library) 

have been built up and sold commercially by analytical chemistry companies. This makes it 

possible to identify the exact gases and volatile compounds that make up a sample, 

especially when this data is supported by the positions of the GC peaks (103). 

 

Figure 2.15:  Illustration showing the operation of a mass spectrometer (104) 
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2.3. Review of Analytical Disease Detection by Gases and Volatiles 

The links between the aromas given off by patients and disease has been reported by 

medical practitioners for a long period of time.  This dates back even to Hippocrates, known 

as the father of modern medicine, who wrote that burning the sputum of a patient and 

smelling the resulting fumes could aid in discovering the source of their maladies (105).  

The great importance of extracorporeal information such as patient odours was detailed in 

a review by Fitzgerald and Tierney (106), to aid modern medical practitioners in using 

techniques for diagnosis often overlooked. Other studies have documented the power of 

evaluating ‘effluvia’ (the odour of a patient) in helping diagnosis of physiological (107), 

infectious  and non-infectious  diseases (108), as well as ingestion of drugs and chemicals 

(109). 

Many metabolic bi-products are present in all biological waste media, such as exhaled air, 

sweat, urine and faeces (110).  The exact mechanisms behind the generation of particular 

chemical groups are extremely varied and are affected by a broad spectrum of diet- and 

disease-related factors. A complex interaction of colonic cells, human gut microflora and 

invading pathogens produces the variety of gases and volatiles within the lower GI tract 

(111, 112). This group has previously hypothesised that the resultant products of this 

process could be measured in urine – so called urine metabolomics (113, 114), and later 

found evidence to support this (115, 116). A potential reason for this is the ability of 

digestive disease to alter the permeability of the GI area affected (117).   This study aims to 

support current evidence showing that the volatile and gas groups within a patient’s urine 

can be used as a bio-signature, which contains information regarding the disease state 

(118). 

Initially once physicians had classified aromas as a diagnostic tool, the utility of biological 

olfaction systems for detecting diseases was investigated before the invention of electronic 
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methods of gas recognition.  The basis for this thinking began with studies employing the 

use of dogs in detecting disease, due to their much more acute sense of smell (102).  There 

have been a large number of studies highlighting the ability in canines to discriminate 

patients of prostate, breast, ovary and lung cancers from healthy individuals (119, 120, 

121). They describe how urine and breath samples would contain some aromatic quality 

that showed their disease, and that the trained canines could detect the slight difference in 

odour.  The results of these studies, amongst many others in and outside this field or 

research that have drawn similar conclusions, have led to the question of what particular 

chemical constituents cause this difference in sample aroma. A large number of studies are 

included in this section, and a full list of these is shown in Table 2.10. 

The sampling techniques employed by the studies included in the table had similar traits 

that were identified to mitigate some confounding analysis factors. One study by Silva et al. 

took samples of morning urine after overnight fasting and stored at -80 0C in order to limit 

the effects of diet on their volatile content. After thawing of analysis, aliquots of 4 mL were 

placed in an 8 mL glass vial for analysis as this ratio of liquid to headspace volume was 

found to be optimal for release of gases and volatiles. Polar compound extraction was also 

maximised by normalising the sample pH into the range of 1-2 and ensuring that salt had 

been added to saturation. The samples were incubated at 50 0C in order to generate 

headspace for analysis (122). In another study by Di Natale et al., dipstick tests were 

performed on collection of patient urine giving information on pH, glucose, and protein 

levels to give an indication of the spread within the groups. Headspace was generated in 

sealed vials by incubation at 30 0C for 30 minutes in this case (123). Finally, Khalid et al. also 

took morning urine prior to any other medical examination, in order to remove the effect 

of diet and environmental factors. Aliquots of 0.75 mL were made on collection before 
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storage at -20 0C in sealed vials until analysis, and de-frosted at 60 0C for 50 minutes of 

headspace development (124).  

The methods that are generally employed for sample acquisition and processing stages 

shown in Figure 2.16. In this diagram, as well as in the subsequent chapters of this thesis, 

“injection” is taken to mean injection of a sample into a machine by any delivery 

mechanism either by syringe or by opening of sample flow channels. Similarly, “incubation” 

refers to the development of headspace from a liquid sample (urine or otherwise) by 

heating and/or agitation over a preset period of time. “Autosampler” is taken to mean any 

automated system that is used to prepare and inject a sample into a machine, and typically 

includes a motor-driven arm with a gas syringe on the end for sample transfer. 

 

Figure 2.16: Diagram of methods for sample acquisition and processing 

Despite the multitude of studies in the area, distinction of samples by gas and volatile 

content biological media carries an inherent sensitivity to environmental factors when 
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sampling and analysing.  These include contamination by staff or patients physically taking 

the sample, the environment surrounding the collection, storage and assay of the sample, 

as well as cross-contamination between multiple samples during joint storage (particularly 

when still in the liquid phase). Many of these issues are addressed in studies looking to 

optimise the process of solid phase microextraction (SPME) for sample pre-concentration 

(125, 126). 
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2.3.1. Biomarkers discovered using Gas Chromatography 

The invention of Gas Chromatograph technologies in the field of analytical chemistry 

presented a range of valuable tools in discovering the biochemical indicators, or 

biomarkers, of many different diseases and conditions. In particular, Gas 

Chromatograph/Mass Spectrometer (GC-MS) instruments were of significant importance 

due to the selectivity in their unique response to individual species. 

A large number of investigations into disease biomarkers have found that instead of a 

single indicator, a complex mixture of compounds from both breath and urine samples 

contributed to their unique aroma.  These have included a study by Hanson and 

Steinberger (127) to detect respiratory infections in breath, as well as investigations using 

urine samples such as Turner and Magan’s look into the indicators of renal dysfunction and 

failure (123), and another by Aathithan et al into bacteriuria (128). GC-MS instruments 

have also recently been shown to distinguish a range of different types of cancer by 

analysing the volatile compounds present in patient breath (129).  Other recent studies 

have demonstrated the ability of GC-MS to separate CRC patients specifically from controls 

using both breath (130) and urine (131) as the chosen biological medium. 

While GC-based systems are a useful tool in early analytical studies to discover chemical 

composition and could work well as a central analysis device for some clinical applications, 

it would not be feasible in a point-of-care scenario within a primary healthcare centre.  In 

order for a technology to be widely accepted in this context, it must be able to ensure 

effective diagnosis while maintaining a fast working speed with a minimal cost, and finally 

to be operated by unskilled end users (102).  The current diagnostic methods involve a 

many-staged process of building up a metabolic profile for the patient (132), which takes 

more time than many patients have from a prognostic perspective.  GC-based systems are 

extremely expensive both in initial and running costs, and require highly trained personnel 
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to maintain and run effectively (133).  Therefore, many have investigated the use of 

quicker, cheaper and more robust analytical methods, such as electronic nose technology, 

to detect differences in complex chemical output using Electronic Aroma Signature 

Patterns (134). 

2.3.2. Studies using Commercial Electronic Noses 

Many studies have been undertaken to investigate the suitability of electronic nose 

technology in aiding the diagnosis of a wide variety of infectious and non-infectious 

diseases.  These use commercial systems with various sensor technologies to measure the 

gas and volatile contents of either human breath or the headspace of bodily fluid samples. 

The aim of these studies was not to find any specific biomarkers, but to separate diseased 

and healthy individuals into distinct groups with a complex difference in chemical makeup 

(102). 

The Bloodhound BH-114 electronic nose, containing 14 conductive polymer sensors, was 

used by one group (135) to successfully categorise all but one patient samples into four 

distinct groups: uninfected urine as well as that infected with three different types of 

bacteria (E. Coli, Proteus and Staphylococcus).  This system has also been shown to detect 

the presence of the gastro-oesophageal bacteria Helicobacter pylori by Pavlou et al (136).  

Another electronic nose based on conductive polymer sensors, the Cyranose, was used by 

Dutta et al (137) to classify six different kinds of bacteria which can lead to eye infections.   

After investigating a number of data analysis techniques, the samples were successfully 

classified at an accuracy of 96% by use of a series of non-linear methods.  Another group 

(138) has also employed this device to distinguish lung cancer, a non-infectious disease, 

from breath samples of patients and healthy volunteers by PCA.  They achieved this by 

initially running a training phase whereby 60 samples from separate individuals (14 

diseased, 45 healthy) were run through to form the boundaries of the two classes.  
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Afterwards, when another similar group of samples (14 diseased, 62 healthy) were run 

through the system as unknowns for classification, the system was shown to have a 71.4% 

sensitivity and 91.9% specificity. 

Gardner et al (139) produced an early study using the metal oxide semiconductor based 

Fox 2000 system to differentiate between two types of bacterial cultures by sampling the 

headspace of the culture containers.  The Fox was able to classify the majority of the 360 

samples correctly within their own distinct groups using linear discrimination analysis 

(LDA), with an accuracy of 80 - 90%.  Fox electronic noses continued to be employed to 

investigate classification of diseased individuals, with Arasaradnam et al (140) using the Fox 

4000 to classify healthy samples and those with inflammatory bowel disease and diabetes.  

This resulted in a separation accuracy of 97% using PCA and LDA techniques for sample 

classification. 

The JPL ENose, a system comprising of 16 conductive polymer sensors, was used by Kateb 

et al (141) to distinguish between the odours of different body tissues and cell cultures, 

with an aim to use it for differentiating between cancerous tumour and healthy tissue 

during surgery.  While the results only showed separation accuracies of 19% and 22% for 

tissues and cultures respectively, the authors indicated that as the JPL ENose was 

developed for air monitoring it may not be suitable for diagnosis.  They deduced that using 

a system developed specifically to detect changes in gases and volatiles which are known to 

come from the body could improve separation results drastically. 

The zNose is an example of a commercial system developed and published in 2000 (142) 

which combines separation of gas and volatile mixtures by fast GC column with distinction 

using a single surface acoustic wave (SAW) sensor technology. It has been employed to 
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detect E.Coli, Salmonella and mycobacteria by volatile organic compounds (VOCs) to date 

(143, 144). 

More recently, there have been many advances in the field of disease detection by 

electronic nose via biological media. Commercial electronic noses based on metal oxides 

and conducting polymers have been shown in recent studies to detect lung cancers from 

healthy controls (145). Urine headspace has also been shown to be a suitable medium to 

measure by electronic nose for distinguishing prostate cancer (146).  Some instruments 

using ampero-metric sensors have also been employed to measure gas and volatile 

products in other biomedical applications, such as the discrimination of bacteria (147). 

Faecal samples from CRC patients and healthy controls have recently been run through an 

electronic nose in previous work, with 85% sensitivity and 87% specificity being achieved 

for distinction of full cancer along with a reduced success in discriminating advanced 

adenomatous ulcers (a condition which leads to a near-100% lifetime risk of developing 

CRC) (67). Another group has been developing a GC/electronic nose instrument for the 

detection of volatiles and gases to distinguish human disease using a capilliary column and 

a single metal oxide sensor. The group originally focussed on distinction of inflammatory 

bowel disease using faecal samples (148). This method has been expanded to achieve 

distinction of prostate and bladder cancers from healthy and diseased controls using urine 

samples in significant pilot studies (125, 126). However, there have been no current studies 

that combine the cross-sensitivities of multiple sensors with GC separation to distinguish 

between gastro-intestinal disease states using urine samples. 

2.4. Conclusions 

A systematic review has been conducted on a number of areas surrounding the background 

of this investigation. First of all, the clinical situation was explained for each of the key 

lower GI diseases included in this study, including the relative prevalence contributing 
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factors, the pathological features normally seen and the current diagnostic methods. It was 

found that prevalence is highly biased towards the least severe disease IBS, and that those 

with a higher associated mortality rate (such as IBD and CRC) have some internal 

pathologies that are highly distinctive. However, many of the techniques required to 

formulate a definitive diagnosis are very invasive for patients and costly to health centres, 

and the outward pathological features that can be reported by the patient are virtually 

indistinguishable between diseases. The current non-invasive diagnostic methods available 

can aid in informing physicians on how to proceed, but do not definitively show sensitivity 

or specificity that is sufficient to use as a full screening or triage tool. 

The sensing technologies and statistical methods which are currently available for use in 

electronic nose technology were then reviewed, explaining their basic principles of 

operation. An investigation was also conducted to find the list of electronic nose 

instruments that are currently available on the market. This showed that a large range of 

different sensors were available that could be appropriate for use in electronic noses, with 

some current advancements in technologies such as electro-chemical cells making them 

more suitable than they have been previously. However, the majority of instruments that 

are currently manufactured only include electro-resistive sensor arrays, meaning that it 

would be beneficial to experimentally compare these technologies within the application. 

Statistical methods being used in studies that analyse breath (a popular biological medium) 

with electronic nose technologies was also reviewed, showing popularity and success with 

techniques such as PCA, LDA and “leave-one-out” internal validation. 

A review investigation of the literature of disease detection using gas phase sample analysis 

was also conducted, showing the initial study into canine ability to detect biomarkers of 

cancers and other diseases using their sense of smell. This shifted to the distinction of 

biomarkers for various diseases and infections using gas chromatography/mass 
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spectrometry, showing a good level of distinction but poor compatibility for point-of-care 

applications in primary healthcare. Finally, a review of studies employing electronic nose 

instruments was included, showing that a large body of research has been done with both 

commercial instruments and bespoke sensor arrays. There have been a handful of reviews 

comparing these individual studies from an indirect standpoint, but it would be beneficial 

to make a direct comparison between a range of different technologies using similar 

experimental techniques and conditions. 

2.5. References 

1) Anderson, S.H.C., Davies, G., Dalton H.R., Irritable Bowel Syndrome. Key Topics in 

Gastroenterology. Oxford : BIOS Scientific Publishers Ltd., 1999. 

2) Ponder, A., Long, M.D., A clinical review of recent findings in the epidemiology of 

inflammatory bowel disease. 2013, J Clin Epidemiol 5, 237-247. 

3) Canavan, C., West, J., Card, T., The epidemiology of irritable bowel syndrome. 2014, J 

Clin Epidemiol 6, 71-80. 

4) Siegel, R., DeSantis, C., Jemal, A., Colorectal Cancer Statistics, 2014. 2014, CA Cancer 

J Clin 64, 104-117. 

5) Hungin, A.P., Chang, L., Locke, G.R., Dennis, E.H., Barghout, V., Irritable bowel 

syndrome in the United States: prevalence, characteristics, and referral. 2000, 

Gut 46(1), 78-82. 

6) Keaton, K.W., O’Donnell, L.J., Braddon, F.E., Mountford, R.A., Hugher, A.O., Cripps, 

P.J., Symptoms of irritable bowel syndrome in a British urban community: 

consulters and nonconsulters. 1992, Gastroenterology 102(6), 1962-1967. 

7) Jones, R., Lydeard, S., Irritable bowel syndrome in the general population. 1992, BMJ 

304(6819), 87-90. 



Literature Review: Volatile Analytics in Digestive Disease 

62 
 

8) Andrews, E.B., Eaton, S.C., Hollis, K.A., Hopkins, J.S., Ameen, V., Hamm, L.R., Cook, 

S.F., Tennis, P., Mangel, A.W., Prevalence and demographics of irritable bowel 

syndrome: results from a large web-based survey. 2005, Aliment Pharmacol Ther 

22, 935-942. 

9) Lovell, R.M., Ford, A.C., Effect of gender on prevalence of irritable bowel syndrome 

in the community: systematic review and meta-analysis. 2012, Am J Gastroenterol 

107(7). 991-1000. 

10) Maxwell, P.R., Mendall, M.A., Kumar, D., Irritable bowel syndrome. 1997, Lancet 

350(9092), 1691-1695. 

11) Marmot, M., Allen, J., Bell, R., Bloomer, E., Goldblatt, P., Consortium for the 

European Review of Social Determinants of Health and the Health Divide. WHO 

European review of social determinants of health and the health divide. 2012, 

Lancet 380(9846), 1011-1029. 

12) Grodzinsky, E., Hallert, C., Faresjö, T., Bergfors, E., Faresjö, A.O., Could 

gastrointestinal disorders differ in two close but divergent social environments? 

2012, Int J Health Geogr. 11:5. 

13) Locke, G.R., Zinsmeister, A.R., Talley, N.J., Fett, S.L., Melton L.J., Familial association 

in adults with gastrointestinal disorders. 2000, Mayo Clin Proc 75(9), 907-912. 

14) Spiller, R., Aziz, Q., Creed, F., Emmanuel, A., Houghton, L., Hungin, P., Jones, R., 

Kumar, D., Rubin, G., Trudgill, N., Whorwell. P., Guidelines on the irritable bowel 

syndrome: mechanisms and practical management. 2007, Gut 56, 1770-1798. 

15) Vanner, S.J., Depew, W.T., Paterson, W.G., DaCosta, L.R., Groll, A.G., Simon, J.B., 

Djurfeldt, M., Predictive value of the Rome criteria for diagnosing the irritable 

bowel syndrome. 1999, Am J Gastroenterol 94, 2912-2917. 



Literature Review: Volatile Analytics in Digestive Disease 

63 
 

16) Vandvik, P.O., Wilhelmsen, I., Ihlebaek, C., Farup, P.G., Comorbidity of irritable 

bowel syndrome in general practice: a striking feature with clinical implications. 

2004, Aliment Pharmcol Ther 20, 1195-1203. 

17) Longstreth, G.F., Drossman, D.A., Current Approach to the Diagnosis of Irritable 

Bowel Syndrome. International Foundation for Functional Gastointestinal 

Disorders, IBS (163), 2009. 

18) Wedlake, L., A’Hern, R., Russell, D., Thomas, K., Walters, J.R.F., Andreyev, H.J.N., 

Systematic review: the prevalence of idiopathic bile acid malabsorption as 

diagnosed by SeHCAT scanning in patients with diarrhoea-predominant irritable 

bowel syndrome. 2009, Aliment Pharm Ther 30, 707-717. 

19) Tontini, G.E., Vecchi, M., Pastorelli, L., Neurath, M.F., Neumann, H., Differential 

diagnosis in inflammatory bowel disease colitis: State of the art and future 

perspectives. 2015, World J Gastroentero 21(1), 21-46. 

20) Molodecky, N.A., Soon, I.S., Rabi, D.M., Ghali, W.A., Ferris, M., Chernoff, G., 

Benchimol. E.I., Panaccione. R., Ghosh, S., Barkema. H.W., Kaplan, G.G., Increasing 

incidence and prevalence of the inflammatory bowel diseases with time, based on 

systematic review. 2012, Gastroenterology 142, 46-54. 

21) Ng, S.C., Bernstein, C.N., Vatn, M.H., Lakatos, P.L., Loftus, E.V., Tysk, C., O’Morain, 

C., Colombel, J.F., Geographical variability and environmental risk factors in 

inflammatory bowel disease. 2013, Gut 62, 630-649.  

22) Pinsk, V., Lemberg, D.A., Grewal, K., Barker, C.C., Schreiber, R.A., Jacobson, K., 

Inflammatory bowel disease in the South Asian pediatric population of British 

Columbia. 2007, Am J Gastroenterol 102, 1077-1083. 

23) Katz, S., Pardi, D.S., Inflammatory bowel disease of the elderly: frequently asked 

questions (FAQs). 2011, Am J Gastroenterol 106, 1889-1897. 



Literature Review: Volatile Analytics in Digestive Disease 

64 
 

24) Ananthakreishnan, A.N., Binion, D.G., Treatment of ulcerative colitis in the elderly. 

2009, Dif Dis 27(3), 327-334. 

25) Baron, S., Turck, D., Leplat, C., Merle, V., Gower-Rousseau, C., Marti, R., Yzet, T., 

Lerebours, E., Dupas, J-L., Cortot, A., Colombel, J-F., Environmental risk factors in 

paediatric inflammatory bowel diseases: a population based case control study. 

2005, Gut 54, 357-363. 

26) Calkins, B.M., A meta-analysis of the role of smoking in inflammatory bowel 

disease. 1989, Dig Dis Sci 34, 1841-1854. 

27) Magro, F., Langner, C., Driessen, A., Ensari, A., Geboes, K., Mantzaris, G.J., 

Villanacci, V., Becheanu, G., Borralho Nunes, P., Cathomas, G., Fries, W., Jouret-

Mourin, A., Mescoli, C., de Petris, G., Rubio, C.A., Shepherd, N.A., Vieth, M., 

Eliakim, R., European consensus on the histopathology of inflammatory bowel 

disease. 2013, J Crohns Colitis 7, 827-851. 

28) Sanders, D.S., The differential diagnosis of Crohn’s disease and ulcerative colitis. 

1998, Baillieres Clin Gastroenterol 12, 19-33. 

29) Koukoulis, G.K., Ke, Y., Henley, J.D., Cummings, O.W., Detection of pyloric 

metsplasia may improve the biopsy diagnosis of Crohn’s ileitis. 2002, J Clin 

Gastroenterol 34, 141-143. 

30) Dignass, A., Eliakim, R., Magro, F., Maaser, C., Chowers, Y., Geboes, K., Mantzaris, 

G., Reinisch, W., Colombel, J.F., Vermeire, S., Travis, S., Lindsay, J.O., Van Assche, 

G., Second Erupoean evidence-based consensus on the diagnosis and 

management of ulcerative colitis part 1: definitions and diagnosis. 2012, J Crohns 

Colitis 6, 965-990. 

31) Aghazadeh, R., Zali, M.R., Bahari, A., Amin K., Ghahghaie, F., Firouzi, F., 

Inflammatory bowel disease in Iran: a review of 457 cases. 2005, J Gastroenterol 

Hepatol 20, 1691-1695. 



Literature Review: Volatile Analytics in Digestive Disease 

65 
 

32) Targownik, L.E., Bernstein, C.N., Nugent, Z., Leslie, W.D., Inflammatory bowel 

disease has a small effect on bone mineral density and risk for osteoporosis. 2013, 

Clin Gastroenterol Hepatol 11, 278-285. 

33) Panes, J., Bouhnik, Y., Reinisch, W., Stoker, J., Taylor, S.A., Baumgart, D.C., Danese, 

S., Halligan, S., Marincek, B., Matos, C., Peyrin-Biroulet, L., Rimola, J., Rogler, G., 

van Assche, G., Ardizzone, S., Ba-Ssalamah, A., Bali, M.A., Bellini, D., Biancone, L., 

Castiglione, F., Ehehalt, R., Grassi, R., Kucharzik, T., Maccioni, F., Maconi, G., 

Magro, F., Martín-Comín, J., Morana, G., Pendsé, D., Sebastian, S., Signore, A., 

Tolan, D., Tielbeek, J.A., Weishaupt, D., Wiarda, B., Laghi, A., Imaging techniques 

for assessment of inflammatory bowel disease: joint ECCO and ESGAR evidence-

based consensus guidelines. 2013, J Cohns Colitis 7, 556-585. 

34) Magro F, Langner C, Driessen A, Ensari A, Geboes K, Mantzaris GJ, Villanacci V, 

Becheanu G, Borralho Nunes P, Cathomas G, Fries W, Jouret-Mourin A, Mescoli C, 

de Petris G, Rubio CA, Shepherd NA, Vieth M, Eliakim R. European consensus on 

the histopathology of inflammatory bowel disease. 2013, J Crohns Colitis 7, 827-

851. 

35) Annese, V., Daperno, M., Rutter, M.D., Amiot, A., Bossuyt, P., East, J., Ferrante, M., 

Götz, M., Katsanos, K.H., Kießlich, R., Ordás, I., Repici, A., Rosa, B., Sebastian, S., 

Kucharzik, T., Eliakim, R., European Crohn’s and Colitis Organisation. European 

evidence based consensus for endoscopy in inflammatory bowel disease. 2013, J 

Crohns Colitis 7, 982-1018. 

36) Bourreille, A., Ignjatovic, A., Aabakken, L., Loftus, E.V., Eliakim, R., Pennazio, M., 

Bouhnik, Y., Seidman, E., Keuchel, M., Albert, J.G, Ardizzone, S., Bar-Meir, S., 

Bisschops, R., Despott, E.J., Fortun, P.F., Heuschkel, R., Kammermeier, J., Leighton, 

J.A., Mantzaris, G.J., Moussata, D., Lo, S., Paulsen, V., Panés, J., Radford-Smith, G., 

Reinisch, W., Rondonotti, E., Sanders, D.S., Swoger, J.M., Yamamoto, H., Travis, S., 



Literature Review: Volatile Analytics in Digestive Disease 

66 
 

Colombel, J.F., Van Gossum, A., Role of small-bowel endoscopy in the 

management of patients with inflammatory bowel disease: an international 

OMED-ECCO consensus. 2009, Endoscopy 41, 618-637. 

37) Van Assche, G., Dignass, A., Panes, J., Beaugerie, L., Karagiannis, J., Allez, M., 

Ochsenkühn, T., Orchard, T., Rogler, G., Louis, E., European evidence-based 

Consensus on the diagnosis and management of Crohn’s disease: Definitions and 

diagnosis. 2010, J Crohns Colitis 4, 7-27. 

38) Vavricka, S.R., Spigaglia, S.M., Rogler, G., Pittet, V., Michetti, P., Felley, C., Mottet, 

C., Braegger, C.P., Rogler, D., Straumann, A., Bauerfeind, P., Fried, M., Schoepfer, 

A.M., Systematic evaluation of risk factors for diagnostic delay in inflammatory 

bowel disease. 2012, Inflamm Bowel Dis 18(3), 495-505. 

39) Ghosh, N., Premchand, P., A UK cost of care model for inflammatory bowel disease. 

2015, Frontline Gastroenterology 0, 1-6. 

40) Siegel, R., Naishadham, D., Jemal, A. Cancer statistics, 2012. CA Cancer J Clin. 62, 

10-29. 

41) Ferlay, J., Parkin, D.M., Steliarova-Foucher, E. Estimates of cancer incidence and 

mortality in Europe in 2008. 2010 Eur. J. Cancer. 46, 765-81. 

42) Haggar, F.A., Boushey, R.P., Colorectal Cancer Epidemiology: Incidence, Mortality, 

Survival, and Risk Factors. 2009, Clin Col Rect Surg 22(4), 191-197. 

43) Boyle, P., Langman, J.S., ABC of colorectal cancer: Epidemiology. 2000, BMJ 

321(7264), 805-808. 

44) Wilmink, A.B.M., Overview of the epidemiology of colorectal cancer. 1997 Dis 

Colon Rectum 40(4), 483-493. 

45) Boyle, P., Ferlay, J., Mortality and survival in breast and colorectal cancer. 2005, Nat 

Clin Pract Oncol 2(9), 424-425. 



Literature Review: Volatile Analytics in Digestive Disease 

67 
 

46) Janout, V., Kollarova, H., Epidemiology of colorectal cancer. 2001, Biomed Pap Med 

Fac Univ Palacku Olomouc Czech Repub 145, 5-10. 

47) Ries, L.A.G., Melbert, D., Prapcho, M., SEER cancer statistics review, 1975-2005. 

2008, Bethesda, MD. 

48) O’Connell, J.B., Maggard, M.A., Livingstone, E.H., Yo C.K., Colorectal cancer in the 

young. 2004, Am Surg 2003(69), 866-872. 

49) De Jong, A.E., Morreau, H., Nagengast, F.M., Prevalence of adenomas among young 

individuals at average risk for colorectal cancer. 2005, Am J Gastroenterol 100(1), 

139-143. 

50) Jackson-Thompson, J., Ahmed, F., German, R.R., Lai, S.M., Friedman, C., Descriptive 

epidemiology of colorectal cancer in the United States, 1998-2001. 2006, Cancer 

107(5, Suppl), 1103-1111. 

51) Skibber, J., Minksy, B., Hoff, P., Cancer of the colon and rectum, DeVita, V.T., 

Hellmann, S., Rosenberg, S.A., Cancer: principles & practice of oncology. 6th ed. 

Philadelphia: Lippincott Williams & Wilkins, 2001, 1216-1271. 

52) Willett, W.C., Diet and cancer: an evolving picture. 2005, JAMA 293(2), 233-234. 

53) Larsson, S.C., Wolk, A., Meat consumption and risk of colorectal cancer: a meta-

analysis of prospective studies. 2006, Int J Cancer 119(11), 2657-2664. 

54) National Institutes of Health. What You Need To Know About Cancer of the Colon 

and Rectum. Bethesda, MD, U.S. Department of Health and Human Services & 

National Institutes of Health, 2006. 

55) Zisman, A.L., Nickolov, A., Brand, R.E., Gorchow, A., Roy, H.K., Associations between 

the age at diagnosis and location of colorectal cancer and the use of alcohol and 

tobacco: implications for screening. 2006, Arch Intern Med 166(6), 629-634. 



Literature Review: Volatile Analytics in Digestive Disease 

68 
 

56) Botteri, E., Iodice, S., Raimondi, S., Maisonneuve, P., Lowenfels, A.B., Cigarette 

smoking and adenomatous polyps: a meta-analysis. 2008, Gastroenterology 

134(2), 388-395. 

57) Jemal, A., Thun, M.J., Ries, L.A., Annual report to the nation on the status of cancer, 

1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control. 

2008, J Natl Cancer Inst 100(23), 1672-1694. 

58) Jemal, A., Clegg, L.X., Ward, E., Annual report to the nation on the status of cancer, 

1975-2001, with a special feature regarding survival. 2004, Cancer 101(1), 3-27. 

59) Astin, M., Griffin, T., Neal. R.D., Rose, P., Hamilton, W., The diagnostic value to 

symptoms for colorectal cancer in primary care: a systemic review. 2001, Br J Gen 

Pract, 231-243. 

60) Barraclough, K., The predictive value of cancer symptoms in primary care. 2010, Br 

J Gen Pract 60(578), 639-640. 

61) Kato, H., Sakamoto, T., Otsuka, H., Yamada, R., Watanabe, K., Endoscopic Diagnosis 

and Treatment for Colorectal Cancer, Ettarh, R., Colorectal Cancer – From 

Prevention to Patient Care. 2012, Intech Open. 

62) Kim, E.C., Lance, P., Colorectal polyps and their relationship to cancer. 1997, 

Gastroenterol Clin North Am 26, 1-17. 

63) Morson, B.C., Dawson, I.M.P., Gastrointestinal pathology. Oxford: Blackwell 

Scientific, 1972. 

64) Schlemper, R.J., Hirata, I., Dixon, M.F., The macroscopic classification of early 

neoplasia of the digestive tract. 2002, Endoscopy 34, 163-168. 

65) Pox, C.P., Altenhofen, L., Brenner, H., Theilmeier, A., von Stillfried, D., Schmiegel, 

W., Efficacy of a Nationwide Screening Colonoscopy Program for Colorectal 

Cancer. 2012, Gastroenterology 142, 1460-1467. 



Literature Review: Volatile Analytics in Digestive Disease 

69 
 

66) Sonnenberg, A., Delco, F., Inadomi, J.M., Cost-Effectiveness of Colonoscopy in 

Screening for Colorectal Cancer. 2000, Ann Intern Med 133, 573-584. 

67) De Meij, T.G., Ben Larbi, I., van der Schee, M.P., Lentferink, Y.E., Paff, T., Terhaar 

Sive Droste, J.S., Mulder, C.J., van Bodegraven, A.A., de Boer, N.K. Electronic nose 

can discriminate colorectal carcinoma and advanced adenomas by fecal volatile 

biomarker analysis: proof of principle study. 2014, Int. J. Cancer. 134, 1132-1138. 

68) Hirai, H.W., Tsoi, K.K.F., Chan, J.Y.C., Wong, S.H., Ching, J.Y.L., Wong, M.C.S., Wu, 

J.C.Y., Chan, F.K.L., Sung, J.J.Y., Ng, S.C., Systematic review with meta-analysis: 

faecal occult blood tests show lower colorectal cancer detection rates in the 

proximal colon in colonoscopy-verified diagnostic studies. 2016, Aliment 

Pharmacol Ther 43, 755-764. 

69) Cubiella, J., Salve, M., Diaz-Ondina, M., Vega, P., Alves, M.T., Iglesias, F., Sanchez, 

E., Macia, P., Blanco, I., Bujanda, L., Fernandez-Seara, J., Diagnostic accuracy of 

the faecal immunochemical test for colorectal cancer in symptomatic patients: 

comparison with NICE and SIGN referral criteria. 2014, Col Dis 16, 273-282. 

70) Imperiale, T.F., Ransohoff, D.F., Itzkowitz, S.H., Levin, T.R., Lavin, P., Lidgard, G.P., 

Ahlquist, D.A., Berger, B.M., Multitarget Stool DNA Testing for Colorectal-Cancer 

Screening. 2014, N Engl J Med 370, 1287-1297. 

71) Mitchell, E., Mcdonald, S., Campbell, N.C., Weller, D., Macleod, U., Influences on 

pre-hospital delay in the diagnosis of colorectal cancer: a systematic review. 2008, 

Br J Cancer 98, 60-70. 

72) Esteva, M., Leiva, A., Ramos, M., Pita-Fernández, S., González-Luján, L., 

Casamitjana, M., Sánchez, M.A., Pértega-Díaz, S., Ruiz, A., Gonzalez-Santamaría, 

P., Martín-Rabadán, M., Costa-Alcaraz, A.M., Espí, A., Macià, F., Segura, J.M., 

Lafita, S., Arnal-Monreal, F., Amengual, I., Boscá-Watts, M.M., Manzano, H., 



Literature Review: Volatile Analytics in Digestive Disease 

70 
 

Magallón, R., Factors related with symptom duration until diagnosis and 

treatment of symptomatic colorectal cancer. 2013, BMC Cancer 13(87). 

73) Ahmed, S., Leis, A., Fields, A., Chandra-Kanthan, S., Haider, K., Alvi, R., Reeder, B., 

Pahma, P., Survival Impact of Surgical Resection of Primary Tumor in Patients 

With Stage IV Colorectal Cancer: Results From a Large Population-Based Cohort 

Study. 2014, Cancer 120(5), 683-691. 

74) Persaud, K., Dodd, G.H. Analysis of discrimination mechanisms of the mammalian 

olfactory system using a model nose. 1982, Nature. 299, 352-355 

75) Boettern, L. How Oxygen, Electrochemical Toxic, and Metal Oxide Semiconductor 

Sensors Work. Biosystems, 2000. AN2000-1. 

76) Rodriquez, J.A., Charturvedi, S., Kuhn, M., Hrbek, J., Reaction of H2S and S2 with 

Metal/Oxide Surfaces: Band-Gap Size and Chemical Reactivity. 1998, J Phys Chem 

B 102, 5511-5519. 

77) AppliedSensor GmbH. Metal Oxide Semiconductor (MOS) Sensors. AppliedSensor 

GmbH, 2008. 

78) S. Di Carlo, M. Falasconi. Drift Correction Methods for Gas Chemical Sensors in 

Artificial Olfaction Systems: Techniques and Challenges. Wang, W., Advances in 

Chemical Sensors. Intech, 2012. 

79) Yamazoe, N., Sakai, G., Shimanoe, K., Oxide Semiconductor Gas Sensors. 2003, 

Catalysis Surveys from Asia, 63-75. 

80) “AppliedSensor GmbH – Chemical gas sensors to detect contaminants”, 

Biotechnology and Life Sciences in Baden-Wurttemberg, 6th March 2014, 

http://www.bio-

pro.de/magazin/thema/04546/index.html?lang=en&artikelid=/artikel/04606/inde

x.html 



Literature Review: Volatile Analytics in Digestive Disease 

71 
 

81) E2V Technologies (UK) Limited, E2V Electrochemical and Pellistor Gas Sensor 

Evaluation Kit User Guide. E2V Technologies (UK) Limited, 2010. 

82) Narayanan, S.R., Valdez, T.I., Chun, W., Design and Operation of an Electrochemical 

Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems. 2000, 

Electrochem Solid-State Lett, 117-120. 

83) Technical Specification: SO2-B4 Sulphur Dioxide Sensor – 4 Electrode, Ref. 

SO2B4/AUG14, Alphasense Ltd. 2014 

84) Gibson, D., MacGregor, C., A Novel Solid State Non-Dispersive Infrared CO2 Gas 

Sensor Compatible with Wireless and Portable Deployment. 2013, Sensors 13, 

7079-7103. 

85) Meléndez, J., de Castro, A.J., López, F., Meneses., J., Spectrally selective gas cell for 

electrooptical infrared compact multigas sensor. 1995, Sensors and Actuators A: 

Physical, 417–421 

86) “How does an NDIR CO2 Sensor Work?”, CO2Meter.com Blogs, 6th March 2014, 

http://www.co2meter.com/blogs/news/6010192-how-does-an-ndir-co2-sensor-

work 

87) “Pellistors”, City Technology Ltd., 15th May 2015, 

https://www.citytech.com/loader/frame_loader.asp?page=https://www.citytech.

com/technology/pellistors.asp 

88) Bai, H., Shi, G., Gas Sensors Based on Conducting Polymers. 2007, Sensors 7, 267-

307. 

89) Miasik, J.J., Hooper, A., Tofield, B.C., Conducting polymer gas sensors. 1986, J Chem 

Soc, Faraday Trans. 1, 1117-1126. 

90) Wohltjen, H., Mechanism of operation and design considerations for surface 

acoustic wave device vapour sensors. 1984, Sensors and Actuators 5(4), 307–325. 



Literature Review: Volatile Analytics in Digestive Disease 

72 
 

91) Eiceman, G.A., Karpas., Z., Hill., H.H. Introduction to Ion Mobility Spectrometry. Ion 

Mobility Spectrometry, Third Edition. CRC Press, Taylor & Francis Group LLC, 

2014. 

92) Buryakov, I.A., Krylov, E.V., Nazarov, E.G., Rasulev, U.K., A new method of 

separation of multi-atomic ions by mobility at atmospheric pressure usinga high-

frequency amplitude-asymmetric strong electric field. 1993, Int J Mass Spec Ion 

Proc 128, 143-148. 

93) Kolakowskia, B.M., Mester, Z., Review of applications of high-field asymmetric 

waveform ion mobility spectrometry (FAIMS) and differential mobility 

spectrometry (DMS). 2007, Analyst 132, 842-864 

94) Yan, J., Guo, X., Duan, S., Jia, P., Wang, L., Peng, C., Zhang, S., Electronic Nose 

Feature Extraction Methods: A Review. 2015, Sensors 15, 27804-27831. 

95) Eklov, T., Martensson, P., Lundstrom, I., Enhanced selectivity of MOSFET gas sensor 

by systematical analysis of transient parameters. 1997, Anal Chim Acta 353, 291-

300. 

96) Zou, X., Zhao, J., Wu, S., Huang, X., Vinegar Classification Based on Feature 

Extraction and Selection from Tin Oxide Gas Sensor Array Data. 2003, Sensors 3, 

101-109. 

97) Carmel, L., Levy, S., Lancet, D., Harel, D., A feature extraction method for chemical 

sensors in electronic noses. 2003, Sens Act B Chem 93, 67-76. 

98) Distantea, C., Leo, M., Sicilianoa, P., Persaud, K., On the study of feature extraction 

methods for an electronic nose. 2002, Sens Act B Chem 87, 274-288. 

99) Yan, J., Tian, F., He. Q., Shen, Y., Xu, S., Feng, J., Chaibou, K., Feature Extraction 

from Sensor Data for Detection of Wound Pathogen Based on Electronic Nose. 

2012, Sens Mater 24, 57-73. 



Literature Review: Volatile Analytics in Digestive Disease 

73 
 

100) Leopold, J.H., Bos, L.D.J., Sterk, P.J., Schultz, M.J., Fens, N., Horvath, I., Bikov, A., 

Montuschi, P., Di Natale, C., Yates, D.H., Abu-Hanna, A., Comparison of 

classification methods in breath analysis by electronic nose. 2015, J Breath Res 9, 

046002. 

101) Bastien, P., Vinzi, V.E., Tenehaus, M., PLS generalised linear regression. 2005, 

Comput Stat Data An 48, 17-46. 

102) Wilson, A.D., Baietto, M., Applications and advances in electronic-nose 

technologies eveloped for biomedical applications. 2011, Sensors 11, 1105-1176. 

103) Karasek, F.W. and Clement, R.E. Basic gas chromatography-mass spectrometry: 

Principles and techniques. New York : Elsevier Science, 1988. 

104) Thermo Fisher Scientific Inc. Overview of Mass Spectrometry. Thermo Scientific: 

Pierce Protein Biology Products. Thermo Fisher Scientific Inc. 06/06/2013, 

http://www.piercenet.com/browse.cfm?fldID=33C6C4ED-4B0D-49FA-ABD2-

23BCB0FADEC0. 

105) Adams, F., Hippocratic writings: Aphorisms IV, V. 1994, The Internet Classic 

Archive, pp. 1-10. 

106) Fitzgerald, F.T. Tierney, L.M., Jr., The bedside Sherlock Holmes. 1982, West J Med, 

169-175. 

107) Daughaday, W.H. The adenohypophysis., Williams R.H., Saunders, W.B., Textbook 

of Endocrinology. Philadelphia, 1968, 27-84. 

108) Liddell, K., Smell as a diagnostic marker. 1976, Postgrad Med J, 136-138. 

109) Schiffman, S.S., Williams, C.M., Science of odor as a potential health issue. 2005, J 

Environ Qual, 129-138. 

110) Buszewski, B., Kesy, M., Ligor, T., Amann, A. Human exhaled air analytics: 

biomarkers of disease. 2007, Biomed Chromatogr 21, 533-66. 



Literature Review: Volatile Analytics in Digestive Disease 

74 
 

111) Garner, C.E., Smith, S., de Lacy Costello, B., White, P., Spencer, R., Probert, C.S., 

Ratcliffe, N.M. Volatile organic compounds from feces and their potential for 

diagnosis of gastrointestinal disease. 2007, FASEB J 21, 1675-88. 

112) Probert, C.S., Ahmed, I., Khalid, T., Johnson, E., Smith, S., Ratcliffe, N. Volatile 

organic compunds as diagnostic biomarkers in gastronintestinal and liver disease. 

2009, J Gastroninestin Liver Dis 18, 337-43. 

113) Arasaradnam, R.P., Pharaoh, M.W., Williams, G.J., Nwokolo, C.U., Bardhan, K.D., 

Kumar, S. Colonic fermentation--more than meets the nose. 2009, Med 

Hypotheses 73, 753-6. 

114) Arasaradnam, R.P., Quraishi, N., Kyrou, I., Nwokolo, C.U., Joseph, M., Kumar, S., 

Bardhan, K.D., Covington, J.A. Insights into ‘Fermentonomics’: Evaluation of 

volatile organic compounds (VOCs) in human disease using an Electronic ‘e’ Nose. 

2011, J Med Eng Technol 35, 87-91. 

115) Arasaradnam, R.P., Ouaret, N., Thomas, M.G., Gold, P., Quraishi, M.N., Nwokolo, 

C.U., Bardhan, K.D., Covington, J.A. Evaluation of gut bacterial populations using 

an electronic e-nose and field asymmetric ion mobility spectrometry: further 

insights into 'fermentonomics'. 2012, J Med Eng Technol 36, 333-7. 

116) Covington, J.A., Westenbrink, E.W., Ouaret, N., Harbord, R., Bailey, C., O'Connell, 

N., Cullis, J., Williams, N., Nwokolo, C.U., Bardhan, K.D., Arasaradnam, R.P. 

Application of a novel tool for diagnosing bile acid diarrhoea. 2013, Sensors 

(Basel) 13, 11899-912. 

117) Arasaradnam, R.P., Bardhan, K.D. Bioactive foods and Extracts – Cancer treatment 

and prevention. Taylor Francis, New York 2010. 

118) Arasaradnam, R.P., Covington, J.A., Harmston, C., Nwokolo, C.U. Review article: 

next generation diagnostic modalities in gastroenterology--gas phase volatile 

compound biomarker detection. 2014, Aliment Pharmacol Ther 39, 780-9. 



Literature Review: Volatile Analytics in Digestive Disease 

75 
 

119) Lippi, G., Cervellin, G. Canine olfactory detection of cancer versus laboratory 

testing: myth or opportunity? 2012, Clin Chem Lab Med 50, 435-9. 

120) Sonoda, H., Kohnoe, S., Yamazato, T., Satoh, Y., Morizono, G., Shikata, K., Morita, 

M., Watanabe, A., Morita, M., Kakeji, Y., Inoue, F., Maehara, Y. Colorectal cancer 

screening with odour material by canine scent detection. 2011, Gut 60, 814-9. 

121) Arasaradnam, R.P., Nwokolo, C.U., Bardhan, K.D., Covington, J.A. Electronic nose 

versus canine nose: clash of the titans. 2011, Gut 60, 1768. 

122) Silva, C.L., Passos, M., Câmara, J.S. Investigation of urinary volatile organic 

metabolites as potential cancer biomarkers by solid-phase microextraction in 

combination with gas chromatography-mass spectrometry. 2011, Br J Cancer 105, 

1894-904.  

123) Hanson, C.W., Steinberger, H.A., The use of a novel electronic nose to diagnose 

the presence of intrapulmonary infection. 1998 Crit Car Med 26(1), 21-143 

124) Khalid, T., White, P., de Lacy Costello, B., Persad, R., Ewen, R., Johnsons, E., 

Probert, C.S., Ratcliffe, N., A Pilot Study Combining a GC-Sensor Device with a 

Statistical Model for the Identification of Bladder Cancer from Urine Headspace. 

2013, PLOS One 8 (7) e69602. 

125) Alpendurada, M. de F., Solid-phase microextraction: a proming technique for 

sample preparation in environmental analysis. 2000, J Chromatogr. A 889 (1-2), 3-

14. 

126) Blount, B.C., Kobelski, R.J., McElprang, D.O., Ashley, D.L., Morrow, J.C., Chambers, 

D.M., Cardinali, F.L., Quantification of 31 volatile organic compounds in whole 

blood using solid-phase microextraction and gas chromatography-mass 

spectrometry. 2006, J Chromatogr. B 832 (2), 292-301 



Literature Review: Volatile Analytics in Digestive Disease 

76 
 

127) Di Natale, C., Mantini, A., Macagnano, A., Antuzzi, D., Paolesse, R., D’Amico A., 

Electronic nose analysis of urine samples containing blood. 1999, Physiol Meas 

20(4), 377-384. 

128) Aathithan, S., Plant, J.C., Chaundry, A.N., French, G.L., Diagnosis of bacteriuria by 

detection of volatile organic compounds in urine using an automated headspace 

analyzer with multiple conducting polymer sensors. 2001, J Clin Microbiol 39(7), 

2590–2593. 

129) Peng, G., Hakim, M., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Tisch, U., 

Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled 

breath using a single array of nanosensors. 2010, Br J Cancer 103, 542-51. 

130) Altomare, D.F., Di Lena, M., Porcelli, F., Trizio, L., Travaglio, E., Tutino, M., 

Dragonieri, S., Memeo, V., de Gennaro, G. Exhaled volatile organic compounds 

identify patients with colorectal cancer. 2013, Br J Surg 100(1), 144-50. 

131) Jellum, E., Stokke, O. and Eldjam, L., Application of gas chromatography, mass 

spectrometry and computer methods in clinical biochemistry. 1973, Anal Chem 

46(7), 1099-1166. 

132) D’Amico, A., Di Natale, C., Paolesse, R., Macagnano, A., Martinelli, E., Pennazza, 

G., Santonico, M., Bernabei, M., Roscioni, C., Galluccio, G., Bono, R., Finazzi Agro, 

E., Rullo, S., Olfactory systems for medical applications. 2008, Sens Actuat B: 

Chem 130(1), pp. 458-465. 

133) Roscioni, C., De Ritis, G., On the possibilities to using odors as a diagnostic test of 

disease. 1968, Ann 1st Carlo Forlanini 28(4), 457-461. 

134) Wilson, A.D., Lester, D.G. and Oberle, C.S., Development of conductive polymer 

analysis for the rapid detection and identification of phytopathogenic microbes. 

2004, Phytopathology 94(5), 419-431. 



Literature Review: Volatile Analytics in Digestive Disease 

77 
 

135) Pavlou, A.K., Magan, N., McNulty, C., Jones, J., Sharp, D., Brown, J., Turner, A.P., 

Use of an electronic nose system for diagnoses of urinary tract infections. 2002, 

Biosens Bioelectron 17(10), 893-899. 

136) Pavlou, A.K.,  Magan, N., Sharp, D., Brown, J., Barr, H., Turner, A.P., An intelligent 

rapid odour recognition model in discrimination of Helicobacter pylori and other 

gastroesophageal isolates in vitro. 2000, Biosens Bioelectron 15(7-8), 333-342. 

137) Dutta, R., Hines, E.L., Gardner, J.W., Boilot, P., Bacteria classification using 

Cyranose 320 electronic nose. 2002, BioMed Eng OnLine 1, 1-4. 

138) Gardner, J.W., Shin, H.W., Hines, E.L., An electronic nose system to diagnose 

illness. 2000, Sens Actuat B: Chem 70(1-3), 19-24. 

139) Arasaradnam, R.P., Quraishi, N., Kyrou, I., Nwokolo, C.U., Joseph, M., Kumar, S., 

Bardhan, K.D., Covington, J.A., Insights into ‘fermentonomics’: evaluation of 

volatile organic compounds (VOCs) in human disease using an electronic ‘e-nose’. 

2011, J Med Eng & Tech 35, 87-91. 

140) Kateb, B., Ryan, M.A., Homer, M.L., Lara, L.M., Yin, Y., Higa, K., Chen, M.Y., Sniffing 

out cancer using the JPL electronic nose: A pilot study of a novel approach to 

detection and differentiation of brain cancer. 2009, NeuroImage 47(Suppl 2) T5-T9. 

141) Staples, E.J., The zNose ™, A New Electronic Nose Using Acoustic Technology. 

2000, J Acoust Soc Am. 2aEA4. 

142) Berna. Z., Webb, C.C., Erickson, M.C., Electronic nose and fast GC for detection of 

volatiles from Escherichia Coli O157:H7, Escherichia Coli and Salmonella in lettuce. 

2013, International Society for Horticultural Science 10, e17660. 

143) McNerney, R., Mallard, K., Okolo, P.I., Turner, C., Production of volatile organic 

compound by mycobacteria. 2012, FEMS Microbiol Lett 328, 150-156. 

144) Machado, R.F., Laskowski, D., Deffenderfer, O., Burch, T., Zheng, S., Mazzone, P.J., 

Mekhail, T., Jennings, C., Stoller, J.K., Pyle, J., Duncan, J., Dweik, R.A., Erzurum, 



Literature Review: Volatile Analytics in Digestive Disease 

78 
 

S.C. Detection of lung cancer by sensor array analyses of exhaled breath. 2005, 

Am J Respir Crit Care Med 171, 1286-1291. 

145) Asimakopoulos, A.D., Del Fabbro, D., Miano, R., Santonico, M., Capuano, R., 

Pennazza, G., D’Amico, A., Finazzi-Agro, E. Prostate cancer diagnosis through 

electronic nose in the urine headspace setting: a pilot study. 2014, Prostate 

Cancer P D 17, 206-211. 

146) McEntegart, C.M., Penrose, W.R., Strathmann, S., Stetter, J.R. Detection and 

discrimination of coliform bacteria with gas sensor arrays. 2000, Sens Actuat B: 

Chem 70, 170-176. 

147) Garner, C.E., Smith, S., de Lacy Costello, B., White, P., Spencer, R., Probert, C.S., 

Ratcliffe, N.M. Volatile organic compounds from feces and their potential for 

diagnosis of gastrointestinal disease. 2007, FASEB J. 21, 1675-88. 

148) Aggio, R.B.M., de Lacy Costello, B., White, P., Khalid, T., Ratcliffe, N., Persad, R., 

Probert, C.S.J., The use of a gas chromatography-sensor system combined with 

advanced statistical methods, towards the diagnosis of urological malignancies. 

2016, J Breath Res. 10 (1) e017106. 

  



Volatile Content of Urine Samples by Gas Chromatography – Mass Spectrometry 

79 
 

3. Volatile Content of Urine Samples 
by Gas Chromatography – Mass 
Spectrometry 
3.1. Scope and Disease States Studied 

While electronic nose systems are able to quickly and effectively identify groups of samples 

based on the levels of their responder chemicals (and complex mixtures thereof), they 

cannot give any more insight into the exact chemical composition. There is a large degree 

of cross-sensitivity between sensors for many common gases and volatiles, including those 

that are contained in all samples such as water vapour (1).  Therefore, further investigation 

into the specific chemical components present in urine headspace samples was run in 

parallel to the electronic nose studies. In this case, the analysis was performed with gas 

chromatograph and mass spectrometry (GC/MS).  

A large number of different disease states have been investigated by GC/MS analysis in 

order to correctly differentiate between the chemicals present in all urine and those 

unique to particular diseases. They are all conditions affecting the lower gastro-intestinal 

area that have similarities in symptoms, and are listed in Table 3.1. The table also specifies 

pre-concentration techniques that were used in samples of different disease groups to 

intensify the response of the instrument to chemicals in a particular molecular weight 

range. The technologies used for pre-concentration include In-Tube Extraction (ITEX) and 

Solid Phase Microextraction, both of which will be introduced in more detail in Section 

3.2.1. 
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Disease Group Pre-concentration Techniques 

Colorectal Cancer (CRC) ITEX + SPME 

Irritable Bowel Syndrome (IBS) ITEX + SPME 

Volunteer (V) ITEX + SPME 

Coeliac Disease (CO) ITEX + SPME 

Inflammatory Bowel Disease (IBD) ITEX 

Colorectal Polyps (PS) ITEX 

Non-Alcoholic Fatty Liver Disease (NAFLD) SPME 

Table 3.1: List of disease groups analysed by GC-MS and pre-concentration techniques 

employed 

3.2. Methods and Materials 

3.2.1. Instrument and Pre-concentration Method 

The instrument used in these studies was a Scion SQ GC/MS system manufactured by 

Bruker, and was fitted with an RXI-624Sil MS capillary column (length 20 m, ID 0.18 mm, df 

1.0 um) and used analytical grade (99.999%) helium as a carrier gas. In addition, the GC-MS 

was equipped with a CombiPAL autosampler that is currently capable of holding, sequential 

incubating and injecting up to 32 samples.  Initially, a 2.5 mL gas syringe was fitted to the 

autosampler head to directly inject a known volume of gas into the machine.  After direct 

gas injection gave insignificant sample concentration (described below) the autosampler 

was then fitted with a CTC ITEX-2 option for pre-concentrating by trapping into a 60/40 

combination of Tenax GR (80/100 mesh) and CarboSieve S III (60/80 mesh).  This 

combination is effective at trapping low-mid molecular weight volatiles and gases, while 

retaining some larger chain hydrocarbons.  This same autosampler was also improved later 

by attaching a SPME pre-concentration fibre composed of poly-dimethylsiloxane (PDMS) of 

thickness 100 um and length 1 cm in place of the ITEX-2.  This SPME pre-concentrator must 

be exposed to the volatile headspace for absorption to take place, and provides improved 

retention at the mid-high molecular weight range of volatiles to give insight into a wider 

variety of potential urine biomarkers.  The pre-concentration and autosampler method was 

dictated by CombiPAL Cycle Composer software (version 1.6.0, CombiPAL) and the GC/MS 

system was controlled using MS Workstation System Control software (version 8, Bruker). 
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All non-functional materials that come into contact with the samples via the fittings and 

components in the system are glass, stainless steel, brass, aluminium, or 

polytetrafluoroethylene (PTFE), and the whole system was fully pre-conditioned 

beforehand. This allows for a negligible effect on the samples by most system artefacts or 

contamination. 

3.2.2. Experimental Method 

Urine samples used in the GC/MS had been collected by medical staff at the University 

Hospital of Coventry and Warwickshire (UHCW) using 30 mL sterilised polypropylene screw 

top containers, and stored frozen at -80 ⁰C within walk-in freezers. Storage time within 

these freezers ranged between 0 – 2 years before selection for analysis.   

Transfer of samples from hospital freezers to a -20 ⁰C laboratory freezer occurred within a 

1-hour period, an analysis took place within 1 week of transfer to this secondary storage 

location. They were thawed at a temperature of 5⁰C overnight before 5mL aliquots were 

transferred into 10mL glass vials, which were then sealed using aluminium crimp tops fitted 

with PTFE septa. This allowed an equal ratio of headspace volume and liquid sample 

volume (both 5 mL), which was consistent with techniques used in other studies in Section 

2.3. The internal diameter of the vials was 15 mm, giving an area of sample/air interface of 

approximately 47.1 mm2. The samples were aliquoted using a Gilson Pipetman P D-10mL 

pipette with individual sterilised polypropylene disposable tips. 

All experimental methods involved headspace generation by individual sample incubation 

using an on-board heated incubator included in the CombiPAL autosampler.  Liquid and 

heaspace samples were transported around the system by the autosampler arm, which 

includes a 24 ga syringe-style end with one of the two pre-concentration methods fitted. 

The ITEX experimental method had vials kept at a temperature of 50⁰C for a period of 5 
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minutes in order to release the dissolved volatiles and gases, before being trapped in the 

ITEX-loaded syringe by extracting  (and subsequently replacing) 500 uL of vial headspace a 

total of 15 times.  The syringe was sent to the injector and the ITEX trap was heated to 

250⁰C for 5 minutes, causing the sample to be released into the front injector port to the 

column upon syringe injection. The SPME method begins with the syringe puncturing the 

vial septa and exposing the absorbent fibre to the headspace for 5 minutes after initial 

incubation at 50⁰C.  The turgid fibre is then retracted before insertion into the front 

injector port, where it is exposed and heated to 250⁰C for 5 minutes in order to release the 

headspace sample for analysis.  Blank vials filled with laboratory air were run in between 

each sample vial in order to identify and eliminate peaks that were products of the 

laboratory environment or the system itself. 

After each sample injection occurred the GC column was held at a temperature of 50⁰C for 

a period of 1 minute, before being heated at a steady ramp rate of 20⁰C per minute to a 

maximum of 280⁰C and finally held for another 2.5 minutes. The analytes contained in the 

headspace sample were thus separated from each other within the retentive column in 

terms of their molecular mass and electrostatic polarity, and sent to the Mass 

Spectrometer individually in separate time windows.  The molecules were then bombarded 

with electrons, which caused them to break apart and form a group of ions that are 

characteristic of each individual species.  The final detector analysed these ions to form a 

spectrum of different ion masses that came out of the column at each 50ms timeframe 

throughout the sample run. 

3.2.3. Data Analysis Method 

The data produced by the GC/MS control software for each sample is in the form of a 

chromatogram displaying Total Ion Count (TIC) over the entire run, with a linked mass 

spectrum showing the relative intensity of ion masses detected with each measurement. 
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These can be navigated and studied within the software, and TIC peaks cross-compared to 

previously-established reference standards found in the 2011 National Institute of 

Standards and NIST Library. The comparison involves giving a score to each reference based 

on the degree of success its spectrum has in forward- and reverse-fitting the spectrum 

found in the actual sample. This provides some insight into the chemicals that are 

candidates for producing each peak found in a sample run through the GC/MS system.  

Each chromatogram was manually studied to find peaks that were found to be present in 

urine headspace samples while not appearing in air blanks run before and after each 

sample. For each peak found in this way, a report file in XPS format was produced giving 

the mass spectrum for the peak as well as that of the top 3 scoring chemicals from the NIST 

database. The TIC peaks of each sample were ordered into similar time windows, marked 

by the disease group that the patient fell into.  Particular bands of peaks were chosen as 

significant based on either having an overall incidence of 30% or higher in all urine samples, 

or on having an incidence of 30% or higher in at least one group along with deviations of at 

least 10% between one group and the full test population. The rates for the disease groups 

that were 10% lower and 10% higher than that of the full sample set were indicated by 

colour code (red for low, green for high). These peaks of significance were investigated 

further, with the top 3 scorers for each given a rating based on its score and tallied in a full 

list of all candidate chemicals for each peak timeframe. This analysis was proposed to 

clarify the identity of the constituents of urine headspace in an environment where a large 

degree of individual sample variation can be found. 

3.3. Results 

3.3.1. System Artefact Peaks 

There are a number of peaks present in all samples and blanks, which can be attributed to 

artefacts of the actual column and system.  The retention times, maximum ion count and 

mass spectra of these peaks described below are all common to every sample and blank 
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run through this instrument, and so can be eliminated from consideration when 

investigating the volatile contents of urine headspace. Figures 3.1 and 3.2 illustrate the 

output of typical blank samples run after urine samples that did not contain a high enough 

concentration of any volatiles to produce any saturation, using ITEX and SPME pre-

concentration techniques. These highlight the artefact peaks without confusing them for 

any genuine peaks produced by a sample. 

 

Figure 3.1: Example of chromatogram of a blank air sample run with ITEX pre-concentration 

The two different methods produce a variation in relative scale of these artefact peaks, but 

they can be seen to have identical retention times.  This can be a measure of the relative 

success that the pre-concentration techniques have at absorbing compounds of various 

molecular masses. It can be seen that ITEX has a better compound retention at the lower 

mass ranges, while the SPME fibre’s retention is greatest at medium-large compounds and 
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then sharply trails off. There is a regular time gap between the peaks, indicating that their 

molecular masses will increase incrementally and giving clues to their origin as differently-

sized fragments of the same regular matrix structure. 

 

Figure 3.2: Example of chromatogram of a blank air sample run with SPME pre-

concentration 

The earliest peak to be observed in these chromatographs, which can be attributed to 

system artefacts, is at approximately 3.39 minutes (Figure 3.3).  The mass spectra of peaks 

found in this region have relatively low molecular mass ranges compared with the others 

found at later retention times. NIST library cross-referencing yields the most common likely 

candidate compound to be Dimethyl-Silanediol, which contains a combination of carbon, 

silicon and alcohol groups. 
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Figure 3.3: Example of the mass spectrum of an artefact peak found at 3.39 minutes 

The next artefact peak is produced at approximately 5.14 minutes and has a mass spectrum 

with much more prominent peaks at relative masses above 200 (Figure 3.4). Cross-

referencing with the NIST library reveals the most likely candidate compound to be 

Octamethyl-Cyclotetrasiloxane.  The molecule has a circular central structure of silicon and 

oxygen atoms, with outstretching methyl groups surrounding it.  This reveals a greater 

wealth of information on the internal structure of the column, as the siloxane group could 

help to retain other molecules from within a larger matrix. The previous silanediol 

compound found at 3.34 minutes could represent fragments of the cyclic siloxane group 

found within these molecules that have broken off to form stable alcohol groups. 
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Figure 3.4: Example of the mass spectrum of an artefact peak found at 5.14 minutes 

The reminder of the mass spectra for these artefact peaks can be found in Appendix 1, and 

show similar patterns and candidate molecules to those described in this section, but with 

sequentially increasing molecular masses. 

3.3.2. Sample Variation 

The data gathered from the urine headspace samples on the GC-MS incorporates many 

barriers to an even interpretation and comparison, not least of which was a large degree of 

variation in the relative dilutions of samples due to particular patients’ water intake.  This 

did not seem to affect any specific compound singly, but made it very difficult to find many 
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common peaks with a high degree of confidence. 

 

Figure 3.5: Example chromatogram of a typical urine sample 

To demonstrate the effect described above, Figure 3.5 shows the chromatogram produced 

by a typical urine sample with a reasonable dilution level for analysis. In addition to the 

peaks associated with system artefacts, there are several other distinctive peaks, for 

example at the 4.5, 7.2, 8.0 and 9.5 minute marks.  Figure 3.6 shows, by contrast, a sample 

with very few distinctive peaks aside from that at 9.5 minutes.  This is caused by an excess 

of water being dispelled in the patient’s urine, making for heavily diluted samples to be 

captured and stored for analysis.  The delicacy of the liquid phase storage medium for 

volatile compounds and the limited volume collected for analysis made it infeasible to 

attempt to decrease the dilution of these samples by evaporating or otherwise removing 

water from the urine, without mitigating risk of losing volatile content.  
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Figure 3.6: Example chromatogram of a heavily-diluted urine sample 

In addition, particular constituents of the recent diet of some patients caused large sets of 

unique peaks to be produced in their samples.  Figure 3.7 is one example of this, where 

peaks such as limonene and levomenthol have come out of one sample due to the 

proposed consumption of fruit teas.  Large peaks such as these have the potential to 

saturate the detector and mask other peaks that were actually produced by the patients’ 

metabolomic processes. 

 

 



Volatile Content of Urine Samples by Gas Chromatography – Mass Spectrometry 

90 
 

 

Figure 3.7: Example chromatogram of a urine sample with unique dietary peaks 

These complications in the sample preparation have not allowed for any quantitative 

analysis of peaks found from the urine headspace samples.  Therefore, chromatogram 

peaks have simply been measured and compared using their percentage of incidence found 

within samples of each disease group, and significant “common” peaks described below are 

labelled as such because of their high incidence levels in the sample set as a whole. 

3.3.3. Common Urine Peaks 

There have been several common peaks found in the urine samples as a whole, and most 

of these show a significant degree of variation between disease groups to indicate some 

potential links between changes in metabolomic processes and the various disease states.  

In addition, the ITEX and SPME pre-concentration techniques yielded differences in 

retention levels across the range of molecular masses picked up by the GC-MS.  This causes 
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some common peaks of both techniques to overlap each-other, while others are found 

exclusively using a particular pre-concentration method.  

The retention times for common chromatogram peaks are detailed in Table 3.2, along with 

the top candidate chemicals as found by NIST classification. The table also includes the 

incidence rate for peaks within each of the individual disease groups and the full group of 

all urine samples. There was a wide range of variation in incidence rates within the group of 

peaks analysed, which resulted in higher levels of confidence in some chemical 

classifications as compared to others. The earliest peak to be prominently found in most 

urine samples using ITEX pre-concentration was measured at approximately 1.74 minutes, 

and is extremely consistent throughout all disease groups in its high percentage of 

incidence.  These can be found in Table 3.2 where it shows incidence levels of 90-100% in 

nearly all groups, with a slightly decreased level in polyps patients only.  By contrast, 

another peak that occurred with a reasonable incidence was found at a retention time of 

2.83 minutes.  However, examples of this set of peaks were much less likely to be found in 

any particular sample, as by the percentages of incidence between 0% and 30% shown in 

Table 3.2.  The NIST classification tallying put forward two molecules that have the 

potential to have caused these peaks, but this result was much less clear than for the 

previous peak due to the large number of other compounds that were also classified in 

single cases at this retention time.  This lack of clarity in classification may have been partly 

caused by the small GC peak size as compared to the background sample noise, which 

caused the system artefact noise to be wrongly identified as relatively important within the 

mass spectra of these peaks and used in the classification. 
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Table 3.2: List of top three tallied NIST classifications for chromatogram peaks (chosen 

candidates in bold) and rates of incidence (low in red, normal in black, high in green) 
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Table 3.2: List of top three candidate NIST classifications for chromatogram peaks (chosen 

candidates in bold) and rates of incidence (low in red, normal in black, high in green) 

Examples of the mass spectra relating to some of the peaks are described In Sections 

3.3.3.1 – 3.3.3.4, in order to highlight the main features of the data. Mass spectra for the 

remainder of the common peaks found in urine headspace by both ITEX and SPME pre-

concentration techniques can be found in Appendix 1. 
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3.3.3.1. ITEX Pre-concentrated Peak at 1.74 Minutes 

Figure 3.8 displays a typical mass spectrum associated with the GC peaks produced at 1.74 

minutes, which had major components at relative masses of 44 and 58 and tended to have 

very little variation between samples. This consistency, along with the high incidence rate 

within all samples (as shown in Table 3.2), provides a high confidence level in the 

classification of these peaks as Acetone. 

 

Figure 3.8: Example mass spectrum of an ITEX peak found at 1.74 minutes 

3.3.3.2. ITEX Pre-concentrated Peak at 4.56 Minutes 

Classification by NIST library produced reasonably conclusive results on the identity of the 

molecule causing these peaks, with 4-Heptanone and 2,4-dimethyl-3-pentanone both 

giving high tallies (as seen in Table 3.2).  These molecules have very similar groups to each 

other and an identical molecular weight, which makes it very difficult to distinguish 

between them.  The typical mass spectrum shown in Figure 3.9 shows high ion counts at 
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relative masses of  43, 71 and 114, which are consistent spectra produced by both of these 

candidate chemicals.  

 

Figure 3.9: Example mass spectrum of an ITEX peak found at 4.56 minutes 

3.3.3.3. SPME Pre-concentrated Peak at 4.54 Minutes 

The mass spectra associated with these peaks are consistent with those found using ITEX 

pre-concentration, with components found at relative masses of 43, 71 and 114 (illustrated 

by Figure 3.10).  Cross-referencing with NIST library entries has yielded similar candidate 

molecules in 2,4-dimethyl-3-Pentanone and 4-Heptanone, adding confidence to their 

potential as causes for these peaks. These results correlate very well with those shown in 

Section 3.3.3.4, which also classify peaks in the region of 4.55 minutes as being produced 

by these molecules. 
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Figure 3.10: Example mass spectrum of a SPME peak found at 4.54 minutes 

3.3.3.4. SPME Pre-concentrated Peak at 9.76 Minutes 

There is very good agreement between mass spectra associated with these peaks, an 

example of which is shown in Figure 3.11.  The major spectrum component for these is 

found at a relative mass of 191, with other components appearing at many regular points 

including 57, 74, 105, 128, et cetera.  This correlates well with the large degree of allyl and 

phenyl fragmentation that could be seen in all of the top three NIST classification 

candidates, which are all of type dimethylethyl-Phenol.  These only vary from each other in 

the relative positions of the branching ethyl and methyl groups, and constitute the 

overwhelming majority of classifications. 
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Figure 3.11: Example mass spectrum of a SPME peak found at 9.76 minutes 

3.3.3.5. Unclassified Peaks 

There were a large number of GC peaks found by this method that did not give any distinct 

classification upon cross-referencing with the standard mass spectra in the NIST library. 

These peaks were generally presented at very low overall ion counts, and so had a 

significant level of system noise introduced to their spectra.  In many cases, this lack of 

clarity was exacerbated by an overall incidence rate of 30% or lower in all urine samples.  

This resulted in very little coherence in the NIST classifications, presenting no significant 

leaders in potential candidate molecules.  The top suggested candidates had a distinct lack 

of coherence in terms of molecular structure, usually in addition to a molecular weight that 

was inconsistent with the area of the chromatogram at which they had presented. These 

unclassified peaks, their level of incidence for each disease group and their top three 

candidate molecules are listed in Appendix 1. 
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3.4. Discussion and Conclusions 

3.4.1. Metabolic and Dietary Links 

A full list of the potential compounds found with reasonable confidence by these two 

combined GC-MS techniques is summarised in Table 3.3. There have been a number of 

studies that have used gas chromatography-mass spectrometry techniques to analyse the 

volatile contents of human urine in the past.  Studies by Wahl et al (2) and Mills et al (3) 

both support the findings of many of the volatile organic compounds classified in this work, 

employing cryogenic and SPME methods for pre-concentration, respectively. Table 3.3 

details the cases where these studies have identified similar if not identical compounds 

(marked in green if present), including a range of ketone, aromatic and sulphide 

compounds. The investigation by Mills et al. concludes that a large range of metabolic 

products are transferred to urine and may be released into volatile headspace for analysis, 

and that a GC-MS system with a PDMS-based SPME fibre is suitable to profile volatile 

compounds in investigations relating to metabolic disturbances.  

Volatile Compound Wahl et al. Mills et al. 

Acetone   

2-Pentanone   

4-Heptanone   

1,3,5,7-Cyclooctatetraene   

Allyl Isothiocyanate   

Oxime-, methoxy-phenyl-   

1,3-Propanediamine   

Carvone   

Ethanone, 1,1'-(1,4-phenylene)bis   

Phenol, 2,4-bis(1,1-dimethylethyl)-   

Table 3.3: List of candidate volatiles found in this study and their presence in the results of 

Wahl et al. (2) and Mills et al. (3), with presence indicated by shading cells green 

 
A number of the volatiles identified by this investigation have been found to contribute to 

the metabolic processes within the lower gastro-intestinal tract by previous studies. 

Acetone has been shown to contribute to pH regulation within the mammalian system, and 
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also to have the potential to be used as an additional fuel to aid metabolic processes in the 

liver (4).  Higher levels of acetone have been found to be produced under fasting conditions 

or if the subject has diabetes.  Other studies have shown that acetone may also be 

produced by oxidation of fatty acids by gut bacteria, and have thus been linked to glucose 

levels in the blood (5).   

2-Pentanone has been found to occur naturally within fruits, vegetables and fermented 

foods, and has also been found to increase within faeces after the consumption of 

symbiotic foods such as yoghurts and honey (6).  It has also been found, along with 4-

heptanone and 2,4-bis(1,1-dimethylethyl)-phenol, in previous GC-MS based studies as a 

common urinary volatile metabolite. Of these 3 compounds, 4-heptanone was found more 

exclusively within the samples of healthy control groups over those of leukaemia, 

colorectal and lymphoma cancer patients in this study (7).The presence of 4-heptanone in 

human urine has also been shown to be caused by the oxidation of 2-ethylhexanoic acid by 

many plasticisers including di-(2-ethylhexyl)-phthalate (8).  1,3,5,7-Cyclooctatetraene has 

not been noted in studies investigating the products of metabolic processes, but has been 

found in fermented wheat germ after 40 days of germination at room temperature (9).  

This provides a potential connection with the metabolic products being absorbed in the 

gut. Allyl isothiocyanate is a commonly-known constituent chemical of cruciferous 

vegetables, and is generally added to food products as a flavour additive and preservative 

(10).  However, it has also been found to inhibit the growth of many strains of harmful 

intestinal bacteria, thus affecting the gut population and potentially preventing 

inflammatory intestinal disease (11). Myxobacteria such as Sorangium cellulosum, which is 

found in the gut and in human faeces, have been observed producing methoxy-phenyl-

oxime heavily (12).  The compound itself has also been identified in the volatile content of 

IBS patients in a recent study on the subject (13).   Polyamines such as 1,3-propanediamine 
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have been found to be essential components for many bacterial processes (14), and have 

also been detected within the human gut in previous studies (15). Carvone is well known as 

a food additive and natural product in mint, but has also been shown to inhibit the growth 

of fungal and bacterial microbes (16). 

Compounds with phenyl and ethanone groups have been found in both human faeces and 

urine (17), in addition to being linked to breast cancer specifically through breath sample 

volatiles in a 2006 study (18). However, the specific molecule 1,1'-(1,4-phenylene)bis-

Ethanone is not mentioned specifically in literature. 2,4-bis(1,1-dimethylethyl)-Phenol has 

been mentioned in a long list of volatile and heavier phenols discovered in palm (19), seed 

(20) and olive oils (21) by GC-MS, which have also been observed to be excreted in human 

urine (22).  In addition, these compounds have also been linked to interactions between 

gut bacteria metabolism and host physiology (23), giving potential for a connection 

between gut pathology and the presence of oils in the host’s diet leading to these phenols 

being found in the urine.   

3.4.2. Disease Incidence of Common Peaks 

Table 3.4 displays a list of all disease states represented in the urine samples analysed by 

GC-MS, with the compounds that had an abnormal incidence level in each group. There is a 

large variety of inferences that could be made on the diet or the gut microflora population 

of members of each group.  However, a series of more thorough metabolomic 

investigations is required to separate the contributing sources of each compound from the 

complex inter-dependant relationship between diet and gut bacteria. For example, the low 

incidence of 2-Pentanone in Inflammatory Bowel and Coeliac Disease patients could be 

caused by the avoidance of probiotic foods in their diet, but this link cannot be made 

confidently without greater knowledge of the patients diet and background.  Therefore, the 
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observed abnormalities in incidence rate of these candidate compounds can only be listed 

in this study. 

Colorectal Cancer 

High Incidence Low Incidence 

1,3,5,7-Cyclooctatetraene Oxime-, methoxy-phenyl- 

 1,3-Propanediamine 
 

Irritable Bowel Syndrome 

High Incidence Low Incidence 

Isothiocyanate  

1,3,5,7-Cyclooctatetraene  

Phenol, 2,4-bis(1,1-dimethylethyl)-  
 

Inflammatory Bowel Disease 

High Incidence Low Incidence 

1,3-Propanediamine Phenol, 2,4-bis(1,1-dimethylethyl)- 

4-Heptanone 1,3,5,7-Cyclooctatetraene 

 2-Pentanone 

 

Healthy Volunteers 

High Incidence Low Incidence 

Oxime-, methoxy-phenyl- Ethanone, 1,1'-(1,4-phenylene)bis 

 1,3,5,7-Cyclooctatetraene 

 1,3-Propanediamine 

 

Colorectal Polyps 

High Incidence Low Incidence 

 Phenol, 2,4-bis(1,1-dimethylethyl)- 

 Oxime-, methoxy-phenyl- 

 1,3,5,7-Cyclooctatetraene 

 4-Heptanone 

 Acetone 

 

Coeliac Disease 

High Incidence Low Incidence 

1,3-Propanediamine Phenol, 2,4-bis(1,1-dimethylethyl)- 

Oxime-, methoxy-phenyl- 2-Pentanone 

1,3,5,7-Cyclooctatetraene  

 
Table 3.4: Compounds found at abnormal rates of incidence within samples of each disease 

group 

3.4.3. Conclusions and Future Work 

This investigation has resulted in a total of 294 urine samples from subjects in 6 different 

disease states being run through the Bruker Scion SQ GC-MS system, with either an ITEX or 

SPME pre-concentration method for greater yield of constituent chemicals.  A variety of 
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consistent GC peaks were found between the majority samples, some of whose incidence 

rates that varied significantly between different disease groups. The mass spectrum from 

each one of these peaks was cross-referenced with standards from the NIST library and the 

top three classifications for consistent sets were tallied.  This methodology has yielded a 

total of 10 likely candidate constituent chemicals of urine volatile content.  Each of these 

compounds has been previously shown to have links with common components of the 

modern diet and/or gut bacteria populations.  While greater detail can be seen in the 

changes in incidence rates between disease groups, there is little that can be inferred solely 

from this data without further experimentation. 

However, in general the investigation could not extend far beyond an indication that 

volatile groups are present in urine headspace and that these seem to have some element 

of commonality between large numbers of samples. Only a small number of chemicals 

were identified by this work, and their low and inconsistent incident rates make them 

unreliable as biomarkers for any disease state. A high variation in colour saturation of urine 

samples was observed during the course of the study, which could be due to large 

differences in patient water excretion causing dilution to be inconsistent throughout the 

set. 

Individual experiments should ideally be performed for each candidate compound, which 

control dietary and other environmental variables in order to properly ascertain the 

sources of these incidence rates in reference to disease.  A great deal of support can also 

be added to these findings by running chemical standards of each likely candidate through 

the same GC-MS system to ensure that they are indeed presented at the same retention 

time.  Finally, full quantitative analysis could not be completed on these samples because 

of the wide variation in the pH, salt concentration, and water dilution level of the urine 

samples.  These three factors will confound the quantity of any volatiles contained within 
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the urine sufficiently to limit this study to only qualitative analysis. However, a further 

study where the samples are saturated with salt and neutralised in pH so as to remove the 

effect of the first two environmental variables. This will allow some measure of 

quantitative analysis to be completed while the rate of diffusion of volatiles into the sample 

headspace will at least have been made constant. 
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4. Commercial Electronic Noses for 
Detection of Colorectal Cancer 
4.1. Scope and Objectives 

It was decided to begin comparative investigation of electronic nose technologies in 

detecting chemical changes between urine samples of healthy and diseased individuals 

using devices that are well-established and currently available comercially. Commercial 

electronic noses have already been shown to be able to detect odour changes for a wide 

range of applications, including food monitoring (1, 2) and explosives detection (3, 4).  

There were two commercial electronic nose technologies available for study - the 

AlphaMOS Fox 4000 (France) electronic nose and the Owlstone Lonestar (UK) Field 

Asymmetric Ion Mobility Spectrometer (FAIMS). 

It was proposed that urine samples should be used as the test biological media due to an 

increased patient acceptability rate compared to use of stool samples (5), as well as better 

storage stability when compared to breath samples (6). The test cohort included known 

patients of CRC as well as controls that encompass both individuals known to be healthy, 

and those known to be suffering from a non-inflammatory lower gastro-intestinal disease 

such as IBS.  This provided a test criteria that illustrates the ability of the commercial 

instruments to distinguish CRC from disease states that are either non-symptomatic, or 

those that seem similar in symptoms without further evidence.  

4.2. Fox 4000 Electronic Nose 

4.2.1. Methods and Materials 

The Fox 4000 system (7) comprises a fully integrated CombiPAL HS-100 auto-sampler with 

2.5 mL gas syringe. The air supply for the Fox 4000 is provided by a Parker Balston HPZA-

7000 Zero Air Generator, with a gas purity requirement of <0.05 ppm concentration of total 
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hydrocarbons and capable of supplying multiple machines with a total flow rate capacity of 

up to 7 L/min. 

The electronic nose is composed of an array of 18 electro-resistive metal oxide gas sensors 

with sensitivities in the parts-per-million to parts-per-billion range. Five of the first sensors 

have been doped in P-type and as such have an excess of electron charge carriers that are 

transferred to a target chemical. This interaction manifests itself as an increase in electrical 

resistance. The metal oxide semiconductor sensors that are constructed from platinum and 

titanium oxides give them an N-type response to sensitive chemicals by having a detriment 

of electron charge carriers. These were taken from targets and reduce the resistance of the 

sensors. These sensors are housed in a total of three chambers that are connected on the 

sample flow path in series with each-other. A time offset in their response to samples is 

present, which is compensated for and removed by the post-processing algorithm. A 

description of the names and types of each sensor in the Fox 4000 are included in Table 

4.1. 
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Classes Name Doping Type 

Chromium – 
Titanium 

based 

LY2/LG N 

LY2/G P 

LY2/AA P 

LY2/GH P 

LY2/gCTl P 

LY2/gCT P 

Titanium 
based 

T30/1 N 

T70/2 N 

T40/2 N 

T40/1 N 

TA/2 N 

Platinum 
based 

PA/2 N 

P30/1 N 

P40/2 N 

P30/2 N 

P10/1 N 

P10/2 N 

P40/1 N 

Table 4.1: List and description of sensors included in the Fox 4000 electronic nose (7) 

The auto-sampler allowed for the carriage of two racks of samples, as well as incubation of 

up 6 samples and injection into a port at the top of the machine using the installed 

Hamilton Gastight 1200 uL gas syringe.  The specific sensors in the Fox 4000 were chosen in 

order to detect the presence of a wide range of gases and volatile compounds, making it a 

versatile overall system.  The raw output of voltage changes across these sensors is 

processed by hardware housed within the machine, before being transferred via serial 

communication to the custom-made AlphaSoft program (AlphaMOS v12.36) on a desktop 

PC and saved into grouped data files.  This data can then be viewed from the PC software, 

or exported into a text format that can be analysed by separate data analysis package.  This 

same program also allows the user to control most of the variables involved in the process 

of sample preparation and injection through the instrument, including temperatures 
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(sample and sensor chamber), flow rates and the timing for incubation, injection and 

sensor detection. A photo of the machine is shown in Figure 4.1. 

 

Figure 4.1: Photograph of the Fox 4000 in the laboratory 

4.2.2. Urine Samples 

Urine samples from pre-diagnosed patients of CRC and IBD were recruited from those 

being treated at the University Hospital of Coventry and Warwickshire. A total of 93 patient 

samples were collected, with 38 patients with CRC, 36 with IBS, and 19 volunteers recruited 

from healthy staff members. The CRC patients were characterised as such by a “gold 

standard” of positive colonoscopy discovery of carcinomas with a diameter of over 8 mm, 

while IBS patients were characterised by diagnosis from a display of confirmed symptoms 

without any detectable pathology, inflammatory or otherwise. Healthy volunteers were 

only characterised by their lack of diagnosis for any digestive diseases.  Suitable ethical 

approval has been agreed on for samples of this nature, with the Ethical Approval Number 
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09/H1211/38.   The demographics of the samples for the Fox 4000 study are shown in 

Table 4.2. Once collected, these urine samples were stored under similar conditions to 

those detailed in Section 3.2.2. 

 CRC IBS Controls 

Number 38 36 19 

Mean Age 70 48 41 

Male % 70 11 70 

Mean BMI 27 28 24 

Current Smokers 6.7% 10% 6.7% 

Alcohol - average units per week 7.3 2 9.2 

Table 4.2: Patient demographics for urine sample cohort run through the Fox 4000 

4.2.3. Experimental Methods 

4.2.3.1. Method Development 

Some initial comparative tests were conducted by previous students in order to find 

reasonable values for some of the controllable variables on the Fox 4000. The sample 

temperature on the Fox 4000 was varied from 40 ⁰C at intervals of 10 ⁰C, up to a maximum 

of 90 ⁰C in one study using volunteer urine samples, showing a shift in Discriminant 

Function results with increasing sample temperature.  Overall group variability increased 

with temperature as well; it was hypothesised that this was due to a higher number of 

volatile compounds being released.  However, the humidity levels of the samples also 

increased with temperature.  As the prerogative of this study was to limit variation within 

groups while trying to maximise inter-group changes, a lower overall temperature of 40-50 

⁰C was chosen.  The optimisations of other variables were investigated in similar studies, 

resulting in a decided sample volume of 5mL, injection volume of 1000uL, and incubation 

time of 5 minutes. Please see Figure 4.1 for description of the Fox 4000 setup. 
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4.2.3.2. Proposed Method 

Chemical standards were used to verify sensor performance at regular intervals throughout 

the lifetime of the Fox 4000. An example of this verification for benchmarking sensitivity to 

three volatile solutions can be seen in Section 4.2.5. Samples were made by taking reagent 

grade acetone, 1-propanol and iso-propanol and dissolving them each in a separate volume 

of water, to the respective concentrations of 0.1%, 0.1% and 0.05%. 1 mL aliquots of these 

solutions were transferred into a total of 10 glass vials of 10 mL internal volume, with 3 

each of acetone and iso-propanol and 4 of 1-propanol.  

These were crimp sealed with septum lid for use in the Fox 4000, and loaded into the first 

10 positions in the HS-100 autosampler rack. A particular diagnostic method was used to 

run these samples through the Fox 4000, though its execution in terms of machine 

conditions is very similar to the method described for the urine samples as detailed later in 

this section. Each sample was individually heated for 5 minutes at 40 oC in order to produce 

sufficient headspace (similar to the FAIMS method).  1 mL of this headspace was extracted 

and introduced to the sensor array at a flow rate of 150 mL/min for 180 seconds. The 

corresponding responses were measured and sent to the AlphaSoft software on PC.  Purge 

cycles, where sensors are heated to 150 oC in the presence of clean dry air, were also run 

after each headspace sample as part of the instrument’s standard autosampling routine for 

returning the sensor output to baseline. 

Urine samples were initially thawed overnight at 5 oC in a laboratory refrigeration unit, and 

then divided into separate 5 mL aliquots for analysis in each of the instruments employed 

in this study. One 5 mL aliquot was pipetted into a 10 mL glass vial and sealed with a crimp 

lid for analysis using the Fox 4000.  These aliquots were arranged in groups of 20 onto 

sampling racks for use with the HS-100 autosampler, including examples of all disease 

groups dispersed randomly in each group in order to prevent a false classification based on 
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sensor drift during the course of the study. Each group of samples was also run for 3 

repeats through the system in order to collect the maximum amount of volatile 

information. The method used within the Fox 4000 for each sample was identical to that 

described above for the reference samples. 

Figure 4.2 illustrates an example of the raw sensor output of the Fox 4000 sensors upon 

introduction to a urine sample, in terms of the change in resistance over the baseline.  The 

negative initial peaks from the N-type devices and the positive from the P-types can be 

seen, as well as the overall trend back to original resistance values after the sample has 

been washed away. These response measurements are where the features are extracted 

for combining to form the discriminant functions of a Linear Discriminant Analysis (LDA) 

plot. It can be seen that the response level of the sensors varies a great deal, even in 

proportion to their baseline resistance values.  This shows a variety of different sensitivities 

to the gaseous and volatile groups present in the urine headspace samples.  The level of 

response to the samples gives an indication of the suitability of each sensor to 

distinguishing between disease groups, but is not necessarily definitive as even a minute 

response from a particular sensor may be a distinctive feature for a group of samples. 
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Figure 4.2: Raw sensor output data from a urine headspace sample 

4.2.4. Statistical Methods 

For the electronic nose analysis, the raw data was extracted using Alphasoft and exported 

as tab delimited text files for processing, to be analysed in Multisens Analyzer (JLM 

Innovations, Germany). The reference data was analysed using a classification technique 

named Principle Component Analysis, which takes a number of features from the sensor 

outputs and uses them as individual components for separation.  Any particular feature 

that can be extracted from an individual sensor output could be used as a component, such 

as the maximum value or area underneath the curve.   

The urine data was classified using a more complex method named Linear Discriminant 

Analysis, a technique which actively aims to increase clustering of distinct groups rather 

than passively presenting data. Features are also extracted from sensor outputs in this 

method.  The first of these used in this example was “Sig-base3” or the maximum deviation 

of the signal to the baseline in the response curve, averaged over three values. It is 

described in Equation 4.1, where x is the response and the baseline is assumed to be the 
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values taken at the earliest point i. The maximum area underneath the sensor output curve 

(“AreaMax”) is also extracted as used for separation, and is described in Equation 4.2 with x 

once again being the response over the whole of the curve (point i from 1 to imax). The final 

feature used is the time taken t for the response x to reach maximum and then decay to 

half of that value (“T50”) shown in Equation 4.3.  
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Each of these features was ranked in terms of their ability to maximise separation between 

distinct disease groups and minimise spread within them. They were each multiplied by a 

unique conversion factor proportional to their scores in the above ranking, and then a 

number of the converted features were combined to create (n-1) discriminant functions 

(where n is the number of disease groups). The classification was then drawn up as a (n-1)-

dimensional graph, with the ‘x’ and ‘y’-value of each sample being their scores for the two 

discriminant functions. The summing function for features to create a discriminant function 

“g(x)” is shown in Equation 4.4, where w0 is an initial offset, xi is the ‘ith’ feature used in the 

function, ‘wi’ is its loading factor (as determined by its importance in separation of different 

groups) and ‘d’ is the total number of features used in the function.  
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A 3-group LDA classification was made for all of the disease groups in this study, including 

CRC, IBS and healthy volunteers. A 2-group classification was also made for the CRC and IBS 

samples as this gives a reasonable reflection of a situation presented in the clinical setting, 

with individual patients coming in complaining of similar symptoms. 

Individual samples were then removed from the actively-clustered ‘training set’ and re-

introduced as unknowns to test their distinction as CRC samples against the negative 

controls of IBS. This second classification was achieved by passively executing the same 

discriminant function calculations on them. These individual unknowns were then re-

classified using a (n-1) K-nearest neighbour (KNN) method, which assigns the unknown a 

group based on the groups of the three known samples that are closest to it. This re-

classification method was repeated for every individual sample in the study, with 

subsequent re-introduction as a known in the “training set”. The sensitivity and specificity 

were then calculated for this technique, by first comparing the re-classified disease group 

assigned to the introduced unknown to the original group to which it actually belongs. This 

comparison would yield a result for each individual sample as a “true positive” (TP), “false 

positive” (FP), “false negative” (FN) or “true negative” (TN) depending on its actual class 

and the one that it had been re-assigned to as an unknown. The numbers of each of these 

markers were tallied, with the totals being used to calculate sensitivity and specificity of 

the LDA classification to CRC detection using Equations 4.5 and 4.6 below.   
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4.2.5. Volatile Sample Results 

The results of the volatile reference data are shown below, with graphs showing PCA scores 

of the 1 mL acetone, 1-propanol and iso-propanol samples. Subsets of these samples were 

analysed that were run through the Fox 4000 on the 8th May 2013 (black), the 4th April 2014 

(red), and the 23rd April 2015 (green), with approximately 1 year time periods between 

them. The average sensor responses to each of the volatiles at each year-point was 

calculated and arranged into polar plots, which show their ability to produce unique 

response upon introduction of different volatile groups. Also, the variations between the 

plots on these graphs can give an indication on how the sensors have drifted over the 

course of the 2-year time period. Figure 4.3 shows a degree of drift from all of the sensor 

response to acetone, with some extreme examples such as T30/1 and T70/2. Both of these 

examples show a particularly heavy drift between 2014 and 2015. Many other sensors, 

such as P10/1, PA/2 and P30/1, seem to have drifted away from their 2013 levels after the 

first year, before later returning to these original baselines. 
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Figure 4.3: Average sensor responses to acetone between 4th May 2013 and 23rd April 2015 

Figure 4.4 shows the average sensor response data to isopropanol across the same time 

period, with a reasonably different response profile to that shown in Figure 4.4. However, 

the sensors present a very similar set of drifts year-to-year to the above, with variation that 

looks to be proportional to response magnitude. Once again, T30/1 and T70/2 have 

changes in response which are uni-directional and extreme, while other sensors seem to 

have shifted back and forth over the course of the 2-year period. 
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Figure 4.4: Average sensor responses to isopropanol between 4th May 2013 and 23rd April 

2015 

Finally, the average responses of the sensors to 1-propanol from 2013 to 2015 are 

displayed on the polar plot in Figure 4.5. The levels shown in this figure are very similar to 

those shown in Figure 4.4 for isopropanol, with only very subtle differences that can be 

seen in sensors such as T70/2 and P40/2. This is to be expected, as the two chemicals in 

question have an identical composition with a variation found in their molecular structure. 

Once again, similar trends can be seen to those described above for Figures 4.4 and 4.5. 

These findings add empirical evidence to the premise that different volatiles and gases will 

produce unique response patterns from the sensors. However, support is also given to the 
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fact that the sensors have drifted in a significant manner over the course of a 3-year period. 

This highlights the need for accurate baseline readings with standard samples at regular 

intervals in order for any parallels to be made between samples across any month-year 

scale time period. 

 

Figure 4.5: Average sensor responses to 1-propanol between 4th May 2013 and 23rd April 

2015 

4.2.6. Urine Sample Results 

The full 3-group LDA plot for these samples on the Fox 4000 is shown in Figure 4.6, with 

CRC samples shown as black circles, IBS as red triangles and volunteers as green squares. A 

total of 30 features were used for this classification, which is significantly less than the 
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samples included in the relevant disease groups in order to maintain some statistical 

viability. The groups in this plot are not very well-defined, with some degree of clustering 

but with a large amount of overlap in the space occupied by more than one disease state. 

The poor definition of distinct groups is characterised in the centre of this plot, where there 

are many outliers that a located very near to several other samples from different disease 

groups. This large spread within groups could be expected in the volunteer samples, as it 

has been noted in previous studies by this research group that the variation in the healthy 

state is actually much wider than in any disease (8). This wide variation in sample output is 

also an expected quality in the IBS samples, as the disease itself is merely a collection of 

symptoms relating to abnormal function of the gastro-intestinal tract with no known 

underlying linked root cause. The classifications of samples in this disease group have not 

been isolated to a single type of IBS, such as constipation-based (IBS-C), diarrhoea-based 

(IBS-D) and alternating (IBS-A) symptoms. The wide variety in response characteristics from 

CRC samples is most unexpected in the classification in Figure 4.6, and extends far into the 

central areas of the two other disease groups with very little distinction from them. 

However, all three disease states do occupy a mildly discriminate location within the LDA 

plot. 

The loadings of individual features in the overall discriminant functions for this LDA 

classification were analysed to gain insight into which of the sensors were most 

instrumental in separating the three disease groups from each-other.  The highest 

contributor to this separation by far was the “T50” time of the P-type device LY2/G, which 

was multiplied by factors of 37.4 and 7.63 higher than the nearest runner-up in 

contributing to separation on Discriminant Function 1 and 2, respectively. This sensor is 

sensitive to almost all volatile compounds, indicating that the total concentration of 

chemicals is higher in some disease states than others. The next largest contributors to LDA 
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separation were the “Sig-base3” features of LY2/AA, LY/gCT, T40/1 and TA/2, which include 

a pair of both P-type and N-type devices each. Most of these had a slightly greater 

contribution to Discriminant Function 2, but were all instrumental in achieving a form of 

separation in this classification. Features that did not contribute in any meaningful way to 

separation included the “T50” values for all of the other sensors in the array aside from 

P10/2, P30/1 and TA/2, and so these were removed from the classification in order to 

optimise the number of features included. A number of “AMax” values were also omitted 

from the scores in the classification, including those from LY2/G, LY2/AA, LY2/GH, LY2/gCTI, 

LY2/gCT, P10/1, P40/1, T70/2, PA/2, and P40/2. This list consists of a variety of both P- and 

N-type sensors. 

 

Figure 4.6: LDA plot of CRC against IBS and volunteer samples run through the Fox 4000 
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Figure 4.7 shows a 2-group LDA classification using only the IBS and CRC samples run 

through the Fox 4000, illustrated as a box plot showing the quartiles and outlier samples 

are located for each group on a single discriminant function. This was used as a major 

contributing factor in deciding the performance of this electronic nose in suitability for 

application, as this accurately reflects a clinical decision that must be made on patients 

entering with similar symptoms. A poor level of distinction can be seen on this Figure for 

this classification as well, with the outliers of both groups overlapping into the median 

values of each-other, and a large number of CRC samples extending along the entire 2-

dimensional region occupied by the IBS samples. Similar to the previous classification 

shown in Figure 4.6 there is an unexpectedly wide variation in the response to CRC samples 

in this study. The variation in CRC is significantly larger than that shown by the IBS samples, 

which would already be expected to be substantial due to the issues in its clinical 

classification described above.  
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Figure 4.7: LDA plot of CRC against IBS samples run through the Fox 4000 

The poor degree of separation and clustering of the disease states in the 2-group 

classification is reflected in the sensitivity and specificity to CRC against IBS determined by 

re-classification of samples into this same classification.  The re-classifications and 

calculations were undertaken in the manner described above in Section 4.2.4. The overall 

sensitivity to CRC was found to be 54.1% with an associated specificity of 48.6%, which is 

shown to be particularly poor from the proximity of these levels to the 50% seen by 

random chance events. Previous studies have shown a better degree of separation 

between similar groups when the sample size in each class was smaller, such as one 2013 

study conducted by this research group of CRC, volunteer and ulcerative colitis samples (9). 

However, the performance of these sensors in separation of urine samples in these two 

groups is clearly not very significant when the sample sizes are scaled up further.  
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The poor re-classification success rate described above is associated with the average 

response of each sensor when presented with a CRC and IBS sample and the difference 

between these, as is illustrated as a polar plot in Figure 4.8.  It can be seen that the average 

peak response is very similar from all sensors to a sample belonging to either of these 

disease groups. The only significant change that can be seen on Figure 4.8 is from P30/1, 

which must have been highly variant within groups as well due its lack of inclusion in the 

most significant contributing features in group distinction described above.  

 

Figure 4.8: Polar plot of average response from each sensor to CRC and IBS samples 

The low success rate for re-classification could be attributed to a lack of focus on the 

response to biologically-produced gases and volatiles in sensor sensitivities within the Fox 
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4000.  This electronic nose has been designed for versatility in detection of volatiles 

present in a wide variety of different applications (7), and the design has not been tailored 

to maximise distinction of biological media. The results in Section 4.2.5 also show 

experimental proof of long-term drift of the sensors, which could be associated with 

degradation in their sensitivity to particular gases and volatiles. This set of samples was run 

through the Fox 4000 in October and November of 2013, which is very early on in the 

timescale of the data shown in Section 4.2.5. However, the Fox 4000 had been in operation 

since 2011, and so there would likely have been previous degradation of sensors. 

Degradation of the urine samples must also be considered as a potential cause for the lack 

of distinction between the three disease states. The samples used in this investigation were 

collected over the course of a number of years, which could introduce a variation in 

degradation level within disease groups even at a storage temperature of -80 ⁰C. However, 

due to the slow rate of collection for these urine samples from a lack of donor patients, it 

was necessary to use the samples that were available for these investigations. 

4.3. Owlstone Lonestar FAIMS 

4.3.1. Methods and Materials 

The FAIMS system incorporated an Owlstone Lonestar detection unit, as well as an ATLAS 

sampling unit and mass flow control (MFC) unit in order to accurately control the sample 

preparation variables (pictured in Figure 4.9). The air supply for all of these is from the 

same Zero Air Generator as desricbed in Section 4.2.1. The Lonestar itself has a radioactive 

Ni-63 source, which bombards sample gases so that they can be ionised and sent into the 

detection chamber (10). The detection plates run sweeps of voltage intensity and take 

readings, which are then arranged into a single, 52,224-point 3-dimensional matrix from 

within a Labview-based software program.  These matrix files are also saved onto the in-
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built computer housed in the Lonestar, where they can be exported into usable formats for 

analysis.  Similar to the Fox 4000, users can also control a wide variety of parameters using 

the software such as split and make-up flow ratios, as well as temperatures of the sample 

chamber and transfer lines. Figure 4.9 shows a labelled photograph of the FAIMS system, 

with brief descriptions of the units involved and what their functions are. The FAIMS 

method development and urine-based diagnostic investigations were completed in 

conjunction with other members of the FAMISHED research groups, as acknowledged in 

the resulting paper published in PLOS ONE (11).

 

Figure 4.9: Labelled photograph of the Owlstone Lonestar setup in the laboratory 

4.3.2. Urine Samples 

The cohort of samples used for characterising the Lonestar only included a total of 83 

known CRC patients and 50 healthy volunteer controls, the majority of which are separate 

from those used in the Fox study. This variation in sample populations, along with the 

difference in time between the executions of these two studies, means that they must be 

considered as separate investigations for the purposes of comparison. These samples were 
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collected under the same ethical approval as mentioned in Section 4.2.2. The demographics 

of the samples for the Lonestar urine samples are in Table 4.3.  Frozen storage methods for 

these samples are similar to those described in Section 3.2.2. 

 CRC Controls 

Number 83 50 

Mean Age 68 47 

Male % 64 42 

Mean BMI 27 26 

Current Smokers 6% 1.5% 

Alcohol – average units per week 5.3 3.8 

Table 4.3: Patient demographics for urine sample cohort run through the Owlstone 

Lonestar FAIMS 

4.3.3. Experimental Methods 

4.3.3.1. Method Development 

Similar intial studies were done with the Lonestar to determine experimental method 

variables, with optimal values for sample incubation coming in line with what was found for 

the Fox 4000.  In addition, a short investigation was performed to discover the minimum 

split ratio between sample air flow and that of make-up air, as there had been previous 

issues with system contamination when the full 2L/min required for the IMS unit was sent 

over the sample.  This resulted in an optimal sample air flow of 500 mL/min, incorporating 

a 3:1 split between sample and make-up. Please see Figure 4.9 for description of the 

Lonestar setup. 

4.3.3.2. Proposed Method 

A similar 5 mL aliquot to that described in Section 4.2.3.2 was transferred into a 22 mL glass 

vial by pipette for analysis in the Lonestar FAIMS (Owlstone) and placed in the ATLAS 

sampling system attached to the instrument. The sample was then heated to 40 oC for a 

period of 5 minutes to produce a reasonable headspace of volatiles. This headspace was 
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extracted, mixed with a make-up flow of clean air at a ratio of 1:3, and run through a 

Lonestar FAIMS using an attached ATLAS sampling unit (see Figure 4.9). The headspace of 

each sample was used to produce three full matrices of FAIMS data from the instrument, 

and blanks of clean, dry air were run both before and after each urine sample to ensure 

that the baseline response was returned. 

The raw output of the Lonestar comes in the form of a pair of 3-dimensional matrices that 

originate from the output of the positive and negative terminals of the ion mobility 

spectrometer. Figure 4.10 shows an example of the positive terminal array matrix produced 

by introduction of a CRC patient urine sample. Initial sample introduction yields the results 

shown in the lower half of the Figure, without any real separation of the ions. As the level 

of dispersion field increases, however, different distinctive groups of gases and volatiles are 

separated into individual “plumes” based on their mobility (a characteristic determined by 

their charge and mass). Each of the urine samples will have a set of three matrices that 

were taken from consecutive runs of measurement directly after each-other. It was found 

that the 2nd of these matrices produced the greatest separation of classes in the 

subsequent classification plots, and so must provide the largest amount of relevant 

information for distinction of CRC patients from controls. 
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Figure 4.10: Raw data from the Lonestar FAIMS for a colorectal cancer patient 

4.3.4. Statistical Methods 

FAIMS data was processed in a custom LabVIEW program (Ver 2012, National Instruments, 

USA) using a method named Fisher Discriminant Analysis (FDA; a pre-classified linear 

technique). The positive and negative ion matrices for each scan were concatenated and 

joined to make a single 52,224 element array to be used in the analysis algorithm. These 

were then transformed using a Daubechies D4 wavelet in order to compress the 

information from the original large array into a more useable format. Features in the 

resulting transformed array, which was now suitable for discrimination, were then 

identified. For each feature, the class scatter (Σσi)
2 and the between class scatter: 

(σμ)2/(Σσi)
2, were calculated and then thresholds set to identify variables for analysis. (σ i: 

the standard deviation of the dimension in question within the class i, and σμ was the 

standard deviation of the means of the dimension under test between classes). These were 

used as the input to an FDA algorithm. 
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Different thresholds were then set for within class scatter and between class scatter and 

the variables that were within these thresholds were then used for data processing by FDA. 

In order to determine the sensitivity and specificity of the method to detecting CRC 

samples, one sample was removed from the original set, the remaining samples were re-

analysed, and then this single sample was re-introduced as an unknown. Re-classification 

was attempted based on the FDA weights using a K-Nearest-Neighbour routine. The actual 

calculation of sensitivity and specificity was completed using Equations 4.5 and 4.6 shown 

above, similar to the method used in the Fox 4000 study. This exploration identified groups 

of common variables in the parameter space where re-classification exceeded that which 

would be expected from random re-classification (three standard deviations from the 

mean). The most successful variables for re-classification were used in the resulting 

proposed classification in Section 4.3.5. For more details on the analysis, please see the 

original publication by Covington et al that used this technique (8). 

4.3.5. Urine Sample Results 

The 2-group FDA classification of CRC patients against healthy controls is illustrated in 

Figure 4.11, with the CRC samples in brown and the controls in green. There is a small 

degree of overlap between the two groups included, with some scatter seen in the healthy 

control samples coming into the region that the CRC class occupies in particular. However, 

overall there is a reasonable degree of clustering in both the disease and healthy state, and 

they generally occupy different areas of the discriminant function.  
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Figure 4.11: FDA plot of CRC against healthy control samples run through the Lonestar 

The positive results of the FDA classification seen in Figure 4.11 are reflected in the success 

of re-classification of introduced unknowns from both groups using the KNN method.  The 

overall sensitivity and specificity of the Lonestar method for distinguishing CRC urine 

samples from healthy controls were 88% and 60%, respectively. The lower level of 

specificity is somewhat expected by the fact that the control samples had some wide 

outliers compared to those for CRC, and it has been previously shown by this research 

group that the range of urine volatile output in healthy samples has a wider variety than 

that of any disease group (8). However, these results show that the FAIMS method for 

distinguishing CRC from healthy controls is very effective. A full direct comparison cannot 

be made between this study and that using the Fox 4000 due to the lack of IBS controls. 
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Future studies with this technology must include a disease control (ideally IBS) that has 

more clinical relevance for patients coming in complaining of similar symptoms. 

4.4. Conclusions and Further Work 

A total of 93 urine samples from patients of CRC and IBS, as well as healthy individuals, 

were successfully run through the Fox 4000 commercial electronic nose instrument.  A 

number of reference samples of volatile solutions were also run through the Fox 4000 in 

repeated batches over the course of two years.  These reference sample runs showed that 

a degree of long-term drift in response of sensors was experienced by the instrument over 

the two-year collection period, potentially leading to degradation in sensitivity to some/all 

gaseous and volatile chemicals.  

Resulting 2-group and 3-group LDA classifications produced from the disease urine sample 

data show lack of clear distinction between the scores for the different groups, with a large 

degree of overlap and spread. A high variation in controls and IBS was shown as expected, 

but a much higher variation in response to CRC samples was not expected from these 

results. This led to very poor performance of the LDA plot to re-classify samples that were 

taken out from the LDA ‘training set’ and introduced again as unknowns. The sensitivity and 

specificity of distinguishing CRC samples against IBS controls were a very poor 54% and 

48%, respectively. 

Another study involving the Owlstone Lonestar commercial FAIMS instrument was also 

completed, using a total of 83 CRC and 50 healthy volunteer urine samples (11). A 2-group 

FDA classification was produced from the response data to the urine samples, which 

showed very impressive distinction between the groups with very little overlap.  Re-

classification using a similar KNN technique to the Fox 4000 study yielded a sensitivity and 

specificity of 88% and 60% for distinguishing CRC from healthy controls. 
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This investigation highlights a need for new technology with more directed sensitivities to 

biologically-produced gases and volatiles in order to better distinguish between biological 

disease states. There is a large portion of the population of commercially-available gas 

sensor technologies that have not been included in electronic nose systems at present, 

with much more potential for tailoring the sensors to the clinical application than is 

included in the Fox 4000. Other forms of gas-phase separation techniques may also be used 

to improve distinction of disease groups (such as chromatography) provided they are 

robust and repeatable enough to be used with urine headspace samples.  

The number of samples included in this study is still relatively small compared to the 

populations of CRC or IBS sufferers in the UK (12) (13), and so there is a requirement to 

include greater numbers of samples for all disease states in future studies. The use of 

samples from ideal control groups for comparison (such as IBS patients or healthy 

volunteers) was limited during this investigation due to the precious nature of the samples. 

Care was needed to ensure that sufficient urine samples were available for all studies 

within the research group, but this situation resulted in an inability to directly compare the 

Owlstone Lonestar FAIMS to the other technologies included here. Therefore, additional 

investigation is required on the Lonestar FAIMS instrument to include samples from IBS 

patients or another disease group in order to show the success of CRC distinction against a 

control group that will be seen in clinic. There must be a continuing effort to ensure that 

sample collection dates are within 12 months of each-other in order to maintain stability of 

the urine volatile and gas content, despite the difficulty in collection numbers within that 

timescale. 
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5. Development and Construction of 
the WOLF 4.1 Desktop Electronic 
Nose 
5.1. Requirements and Objectives 

The commercial instruments that have been tested in previous chapters highlight the 

effectiveness of both systems that use metal oxide/conductive polymer sensors in an array, 

and those that employ ion mobility spectrometry in distinguishing between groups of urine 

headspace samples.  However, these techniques do not detect the full range of potential 

urine headspace content effectively, as ion mobility spectrometry is insensitive to low 

molecular weight gases and electro-resistive sensors do not have a sufficiently unique 

response to different sizes of molecule. Therefore, a more complete comparison of 

techniques must include an instrument that incorporates other technologies into its 

sensing element, which are able to differentiate between varying molecular weight 

chemicals more effectively.  The sensors should be able to detect changes in chemical 

concentration at a resolution in the range of ppm or even ppb in order to compare 

reasonably to the instruments already included. It is also a major priority for this system to 

be sensitive to as large a range of gases and volatiles that are known to be regulated 

biologically as possible, and so included sensors had a variety of target gases between 

them.  

There is an absence of commercially available electronic noses that include sensors that are 

not electro-resistive but have both a comparable resolution and appropriate resilience to 

the temperature and humidity of the urine headspace. There was also an opportunity to 

tailor some design aspects of current systems to the clinical environment, most notably in 

simplifying the interface for users and incorporating more into a single physical enclosure 

to save space.  It was concluded that a new system would be developed and built as a test 
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platform so that other sensing techniques may be included in the comparison for the 

medical diagnostic application. 

5.2. System Overview 

The control system for the instrument being constructed, denoted the “WOLF 4.1”, 

incorporates many parts of other desktop electronic noses such as the Fox 4000 (as 

described in Chapter 4), with the majority of these elements housed within a single chassis. 

Figure 5.1 shows a diagram of the components in the flow path of the instrument, including 

many that are external to the chassis for executing a repeatable sampling method. There 

are a number of sensors and actuators listed in the flow diagram on the bottom half of 

Figure 5.1 that are either housed in the single gas chamber for introduction to the sample, 

or are incorporated into the air flow lines. These are each attached to some form of signal 

processing circuitry, including analogue-digital converters (ADC) or operation amplifiers, 

whose outputs will be read by a pair of data acquisition boards from National Instruments. 

These boards communicate with a built-in single board PC, which has a Windows XP 

operating system and National Instruments software installed for central control of the 

system. This instrument was built as a test platform for the electro-chemical and optical 

sensors housed inside, and so has a simple and flexible design to maximise the range of 

gaseous samples that can be introduced. 

The airflow system within the WOLF 4.1 was designed to allow significant control over the 

samples being introduced into the machine, while maintaining versatility so that a variety 

of introduction techniques could be used.  It can be seen in Figure 5.1 that a very 

straightforward method is used to send incoming gas/volatile mix samples directly through 

to the sensor chamber once it is entering the machine, while more complex introduction is 

implemented externally.  The variables being controlled by the system are the pressure and 

flow rate of incoming air into the instrument, and the time for which the samples are 
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introduced to the sensors.   Incoming air pressure and flow are controlled externally to the 

WOLF 4.1 instrument, using a manual pressure regulator and flow controller (green in the 

diagram). The actual flow rate is determined by the AWM 3300V flow meter described in 

Section 5.3.2. The flow meter is located after the chamber in order to minimise the effect 

on the samples before being observed by the gas sensor array. An electronic valve at the 

inlet to the instrument controls the sampling time of the system, and is coloured in yellow 

on Figure 5.1. 

 

Figure 5.1: System block diagram for the WOLF 4.1 electronic nose 

The basis for the control and measurement algorithm is also shown in a flow diagram on 

the bottom half of Figure 5.1, with indication on which sections are implemented in 
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hardware and which are dictated by the user or control software. The responses of the 

sensors (coloured in teal on the flow diagram) were sent through sensor drive and signal 

processing circuitry which implement the algorithm shown by Figure 5.1 as described in 

Section 5.3.3. 

A program has been developed in LabVIEW for this application that implements the 

sampling control algorithm and processes the incoming sensor data further for storage in 

text files.  The front panel of the program (shown in Figure 5.2) allows users to change 

testing variables such as the duration of sample tests, sample repeats and purge times 

afterwards. The program also allows users to monitor the raw sensor outputs and 

environmental factors both during and between experiments to ensure operation within 

acceptable limits, as seen in the centre and right side of Figure 5.2.   

 

Figure 5.2: Front End of the LabVIEW control software for the WOLF 4.1 

5.3. Sensor Technology 

The basis of this new instrument is the chemical sensor array; the decisions as to what 

should be included are integral to optimising how effective it may be at detecting diseases.  
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Optical sensors are limited in the range of chemicals that can be detected (1) and do not 

overlap with electro-chemical cells in sensitivity. Therefore, these two types of device were 

combined together in order to maximise the cross-sensitivity and detection range of the 

overall system. 

5.3.1. Gas Sensor Array 

The gas sensing element consists of an array of 13 sensors, which employ a range of 

different sensing techniques.  This total includes 8 amperometric electro-chemical sensors 

(Alphasense Ltd.), two NDIR optical devices (Clairair Ltd.) and a single photo-ionisation 

detector (Mocon). This group includes almost the entire range of electro-chemical sensors 

that were commercially available from Alphasense at the time of construction, in order to 

test a sufficient range using this sensing technique. These sensors are each constructed 

within a cylindrical package that includes all the physical components required for the 

detection method. While each of these sensors is designed to target a single gas at 

competitive sensitivities when compared with metal oxides (detailed in Table 5.1 with gas 

sensitivities shown from AlphaSense reports (2)), they are also capable of detecting a large 

variety of different gas and volatile compounds. This set of sensors has been chosen to 

combine the detection of a number of specific gases believed to be medically significant 

(such as CO2 and methane), while also having a broad range of overlapping cross-

sensitivities. The PID-tech Plus photo-ionisation detector made by Baseline-MOCON has 

been included in the array to give an indication as to the total quantity of gas and volatile 

molecules passing through the chamber during a sample run. In this manner, the WOLF 4.1 

system attempts to maximise the amount of information collected on the bio-signature of 

an individual, thereby making it more applicable to the characterisation and distinction of 

disease states. 
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Table 5.1: List of sensor manufacturers, mechanisms, and target gases included in the 

array 

5.3.2. Environmental Sensing 

There are a number of monitors for environmental factors within the machine that affect 

the response of the sensors. Two such factors are the temperature and humidity of the 

sample chamber, for which the electro-chemical sensors will have some response to.  The 

SHT15 sensor from Sensirion (pictured in Figure 5.3) (3) measures both of these conditions 

in a small surface-mount package. 

  

Manufacturer (Sensing 
Technique) Gas Sensor (target gas) Sensitivity Range 

Alphasense Ltd. 
(Electro-chemical Cell) 

CO-BX (Carbon Monoxide) 2,000 ppm 

H2S-B1 (Hydrogen Sulfide) 200 ppm 

NH3-B1 (Ammonia) 50 ppm 

O3-B4 (Ozone) 0.1 ppm 

SO2-BF (Sulfur Dioxide) 100 ppm 

NO2-B1 (Nitrogen Dioxide) 20 ppm 

NO-B1 (Nitric Oxide) 250 ppm 

ETO-B1 (Ethylene Oxide) 100 ppm 

O2-A2 (Oxygen) 15 - 25% 

CO-BX (Carbon Monoxide) 2,000 ppm 

H2S-B1 (Hydrogen Sulfide) 200 ppm 

Clairair Ltd. 
(Non-Dispersive  Infrared 
Optical) 

Cirius 1 (Methane) 0 – 5% 

Cirius 3 (Carbon Dioxide) 0 – 10% 

MOCON  
(Photo-ionisation Detector) 

10.6 eV piD-TECH Plus (Black) 2,000 ppm 
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Figure 5.3: 3-Dimensional diagram of the SHT15 temperature/humidity sensor (3) 

Flow rate through the machine was monitored by an AWM3300V mass flow meter from 

Honeywell (4). The unit includes an electronic transduction module that reads flow rates 

from the inlet (P1) to the outlet (P2) in the range of 0 – 1000 ml/min. 

5.3.3. Sensor Drive 

The electronic interface between the sensor array and the control PC is included in the 

printed circuit boards (PCBs) in the WOLF 4.1, and comprise a variety of sub-systems 

described below. Each single sensor is plugged into an individual PCB that contains control 

electronics for converting the raw detection response into an analogue voltage signal so 

that it can be easily integrated into the data acquisition architecture.  For the electro-

chemical sensors this is accomplished by commercial Individual Sensor Boards (ISBs) 

produced by Alphasense (5). 

These control boards maintain the potential between the working and counter electrodes, 

the biasing on a reference electrode to induce reduction/oxidation of the target, and 

measuring current for conversion of the ampero-metric signal into analogue voltage. Most 

of this is achieved using the circuit design shown in Figure 5.4, which has no biasing 

included (6). The current supply that drives the actual cell reaction in this circuit is 
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operational amplifier (op amp) IC2, which also has its inverting input attached to the 

reference electrode to ensure output potential is always high. The JFET Q1 will enter a high 

impedance state to “enable” the sensor, after which the circuit will strive for the working 

electrode to reach the potential of the reference electrode. Finally, IC1 is a sensing op amp 

that converts the working electrode current to a voltage signal using an appropriate R load. 

Some of the sensors included in the array (such as NO-B1) include a bias voltage applied to 

the control op amp ground, in order to tune the sensitivity of the cell to other ranges of 

chemicals. The ISBs are also dual-channel with an auxiliary electrode on the sensors, which 

is exposed to environmental effects such as temperature change but not to any analytes 

(5). 

  

Figure 5.4: Potentiostatic circuit for driving an electro-chemical sensor (6) 

The Clairair optical sensors are also controlled using a commercially-produced PCB called 

Cirius X, which has an on-board temperature/pressure monitor and drive for the infrared 

sources (7).  The Mocon photo-ionisation detector includes a circuit for converting to 

analogue voltage within the physical cylindrical package, so that in-house constructed 

break-out PCB was all that was required (8). The above control measures remove the 

effects of environmental effects that the detectors are sensitive to, thus allowing for ppm- 
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and ppb-level resolution to be possible. The actual detection principles for all of the sensors 

included in the WOLF 4.1 are detailed in Chapter 2.  

A single voltage input channel is used for processing the response of each individual sensor 

aside from the AlphaSense devices, which required dual channels. These were used for the 

working and auxiliary outputs of a single sensor, and were given appropriately-tuned gain 

resistors in matching pairs for each channel. 

5.4. Final Construction 
All of the components of the WOLF 4.1 are housed in an H2 Classic Silent PC case from 

NZXT. The interior structure of the system is illustrated in Figure 5.5, with the sensor 

housing chamber shown at the bottom and the data acquisition (DAQ) interfacial PCBs and 

in-built Windows PC above. The circuit boards were fastened to the PC using structural 

aluminium bars that spanned along the interior sides of the case, as seen in Figure 5.5. The 

sensor chamber and flow meter were fastened to the grille on the bottom of the case, with 

valves and external connectors fastened to the Peripheral Component Interconnect (PCI) 

slot in the back of the case as is usual for desktop PC connection. The power supplies from 

Tracopower were housed at the front of the machine, where a pair of large circulation fans 

aid in thermal energy management. 
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Figure 5.5: Photograph of the interior of the WOLF 4.1 

Once the WOLF 4.1 was fully constructed, it was connected to an external monitor, 

keyboard and mouse and setup in the laboratory where there was an external air and 

power supply. Figure 5.6 shows photographs of the exterior of the system and user 

interface for the LabVIEW software as configured for laboratory use. 

 

Figure 5.6: Photograph of the user interface and exterior of the WOLF 4.1 
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5.5. Experimental Testing of WOLF 4.1 with Single-Volatile 

Samples 

5.5.1. Introduction 

The electro-chemical and optical sensors included in the array of the WOLF 4.1 were 

designed to detect specific target gases, and chosen based on the links between their 

targets and biological output media. Therefore, a reasonable level of confidence was 

already present in the ability of the sensors to detect the trapped gaseous content of urine. 

However, there was very little known regarding the sensitivities of any of the sensors to 

volatile groups. Sensors using NDIR techniques are unlikely to detect any chemicals outside 

of their absorption range due to the selectivity of the technology (1). However, there was 

potential seen in the electro-chemical sensors to detect a wide range of volatiles that could 

react in the electrical bias conditions setup by the sensors (2). Therefore, initial testing was 

conducted on the WOLF 4.1 with a variety of different short-chain organic compounds, 

which were dissolved in aqueous solution at a range of concentrations on the ppm scale. 

This would verify that a distinction can be made between the disease groups, and thus 

allow development of an experimental method before utilising patient urine samples. 

5.5.2. Methods and Materials 

An experimental method was setup for the WOLF 4.1 by use of a Dri-Block® DB-2D (Techne) 

heater to allow the release of headspace from samples based on aqueous solutions. A flow 

of clean dry air supplied by the Zero Air Generator described in Section 4.2.1 was regulated 

and then split into two channels, one of which was sent into the sample with a valve to cut 

off flow in between sample runs. A check valve was included in the sample channel before 

re-joining with the other “make-up” flow path, which prevents a sudden increase in air 

pressure and flow rate upon introduction of a sample to minimise the effect on sensor 

response.  A custom heating block was machined to hold 30 mL universal sample 
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containers, and fitted into the heater before being brought to a temperature of 40 ± 0.1 oC.  

Sample aliquots held in 30 mL universal sample containers (in conjunction with standard 

containers used in the medical field) with customised caps that included bulkhead fittings 

to allow air flow. 

Initially, a variety of different short-chain organic compounds with different functional 

groups (such as ketone, ester, alcohol and aromatic) were dissolved in aqueous solution at 

a range of concentrations on the ppm scale. The full list of these compounds is given in 

Table 5.2. These were used to determine the cross-sensitivities of the WOLF 4.1 sensors to 

these chemical standards.  

The standards were produced by first taking a 250 mL capped glass container and pipetting 

100 mL of de-ionised water into it using a Gilson Pipetman D10mL pipette and sterile PTFE 

disposable tips. An appropriate volume of a particular volatile (usually in the range of 20 – 

100 µL) was added to the water using a Glison Pipetman D200 pipette, followed by sealing 

and inverting the mixture for approximately 5 minutes to allow dissolution to occur. A 5 mL 

sample of the resulting solution was then transferred by D10mL pipette to the 30 mL 

universal container. The solutions began the headspace production stage immediately after 

this, with no gap for volatile content to escape. It should be noted, however, that the 

concentrations in ppm discussed in Section 5.5.3 are all in terms of volume in water. 

Therefore, these results can be used to determine sensitivity of the WOLF 4.1 sensors but 

cannot be used to directly compare against other instruments tested using single volatile 

samples made from other methods, such as in Section 6.6.3. 

The 5 mL samples were heated to 40 ± 0.1 oC for 5 minutes in order to build up headspace 

and then introduced into the WOLF 4.1.  The sample headspace was sent into the 

instrument for 5 minutes at a total flow rate of 300 mL/min with a sample flow rate of 150 
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mL/min. The incoming air to the machine was regulated to 0.2 bar to avoid damage to the 

internal components. The relative humidity and any volatiles introduced by the sample 

were then purged from the pneumatic system using clean air for another 10 minutes at a 

flow rate of 300 mL/min. This process was repeated three times for each sample. The 

sequence of solution concentrations tested was randomised to mitigate the chances that a 

long-term response drift would allow for fabrication of response change with increasing 

concentration. 

Chemical 
Group Ketone Alkyl Ester 

Primary 
Alcohol 

Secondary 
Alcohol Aromatic 

Compound 
Included Acetone 

Ethyl 
Acetate 

Propan-1-
ol 

Propan-2-
ol Toluene 

Table 5.2: Volatile groups tested in aqueous solution to determine WOLF sensor 

sensitivities 

5.5.3. Results and Discussion 

The results of the initial experiments with aqueous solutions of individual volatile 

compounds revealed various relationships between sensor responses and concentration.  

However, the presence of each individual compound evoked responses from a different set 

of sensors within the array, which will be described in detail in the following sections. The 

responses were corrected by the baseline values, and averaged over the full introduction 

period in order to add clarity to the patterns presented below. Some of the sensor 

responses varied at a much larger scale than others, and so two graphs are shown for each 

volatile type: one that shows the full sensor array response and highlights the high variance 

sensors, and another that only includes the low variance sensors. This allows for clearer 

examination of all sensor responses, regardless of their relative scale. Individual sensors are 

labelled using their manufactured target gas; their part numbers can be found in the list 

shown in Chapter 6. 
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5.5.3.1. Acetone Sample Results 

The average responses of the all sensors in the array to the acetone samples at 

concentrations of 0 – 100 ppm are shown in Figure 5.7. The response changes in this graph 

are dominated by that of the photo-ionisation detector (PID), which also looks to be 

decreasing with increasing concentration. This is reasonable as the PID sensor is a fairly 

accurate measure of the total volatile content of the sample. Other sensor responses are 

relatively smaller, and so are not clear on this diagram. 

 

Figure 5.7: High variance average sensor response to acetone  

Figure 5.8 shows the low variance responses to acetone at a 0 – 100 ppm concentration 

range within the sensor array. There seems to be a negative gradient in the responses of 

sensors such as ammonia (NH3), ozone (O3) and ethylene oxide (ETO), whereas many of 

the other sensors do not look to be responding more to increasing concentration. A 

number of sensors have sharp offsets between 0 and 20 ppm, which is likely due to an 
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increase in environmental humidity in the samples as the 0 ppm baseline sample used dry 

air. 

 

Figure 5.8: Low variance average sensor response to acetone  

5.5.3.2. Ethyl Acetate Sample Results 

The full sensor array response to ethyl acetate samples in concentrations of 0 – 100 ppm is 

shown in Figure 5.9, which highlights the large response change in the PID sensor to this 

volatile as well. Some variation can be seen in the remainder of the sensors, but there is 

little clarity at this scale. 
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Figure 5.9: High variance average sensor response to ethyl acetate  

Figure 5.10 shows the smaller-scale response changes in a subset of the sensors on the 

WOLF 4.1 when introduced to samples of ethyl acetate at concentrations of 0 – 100 ppm. 

There are a number of higher variance sensors, such as carbon monoxide (CO), methane 

(CH4) and hydrogen sulphide (H2S), which do not show any relationship between 

concentration of sample and response. This could be due to an increasing humidity level 

within the machine, as samples were not run in order of increasing concentration to avoid 

the false identification of a relationship. These partially mask the small but proportional 

response of the nitrogen dioxide (NO2) sensor. There also seems to be some response to 

ethyl acetate from the carbon dioxide (CO2) sensor. There do not seem to be many other 

sensors that respond well to this ester. Again, many of the sensor responses have sharp 

gradients between 0 and 20 ppm samples, most likely due to the change in humidity. 
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Figure 5.10: Low variance average sensor response to ethyl acetate 

5.5.3.3. Propan-1-ol Sample Results 

The baseline-corrected full array response to samples with concentrations of propan-1-ol 

from 0 to 100 ppm is shown in Figure 5.11, and includes a very high variance response from 

the CO sensor. This does look to be proportional with concentration rate, but this could 

also be the product of increasing humidity within the system, as a similar trend is seen in 

the CO2 sensor as shown in Figure 5.12. Little else can be seen in the graph in Figure 5.11 

aside from the branching of sensor response from 0 to 20 ppm, which is again likely to be a 

product of humidity inclusion. 
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Figure 5.11: High variance average sensor response to propan-1-ol 

There is a clearer picture of sensor sensitivity to propan-1-ol concentration in the low 

variance sensor subset shown in Figure 5.12. As mentioned above, the CO2 sensor looks to 

be responding proportionally to volatile concentration but with a sharp drop between 80 

and 100 ppm. This feature, as well as the similarity between the response patterns of CO2 

and CO, indicates that they could both be a symptom of a confounding humidity factor. 

There does look to be a large group of sensors whose response is varying in relation to the 

concentration of propan-1-ol present, including ETO, NH3, NO2 and CH4. The PID sensor 

also looks to have a proportional response, but with a heavy offset introduced between 0 

and 10 ppm concentrations. 
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Figure 5.12: Low variance average sensor response to propan-1-ol 

5.5.3.4. Propan-2-ol Sample Results 

Figure 5.13 shows the baseline-corrected responses of all sensors in the array to increasing 

concentrations of propan-2-ol, within the range of 0 – 100 ppm. At the smaller scale some 

sensors appear to be increasing in response with concentration, but this isn’t clear due to a 

very high variance and erratic response from the CO sensor. There is also a non-

proportional response from the H2 sensor, which is removed from the low variance subset 

for this set of results. 
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Figure 5.13: High variance average sensor response to propan-2-ol 

The low variance response subset of sensors for propan-2-ol samples in the 0 – 100 ppm 

concentration range is shown in Figure 5.14. The sensors whose average responses look to 

be changing in relation to the propan-2-ol concentration include ETO, CH4, and to a lesser 

extent SO2, NH3 and H2S. All of the sensors once again seem to be heavily affected by 

humidity levels, as shown by the large offset seen between 0 and 20 ppm. 
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Figure 5.14: Low variance average sensor response to propan-2-ol 

5.5.3.5. Toluene Sample Results 

Figure 5.15 shows the responses of the full array of WOLF 4.1 sensors to toluene samples 

with a concentration varying between 0 and 100 ppm. This graph is dominated by the large 

response changes seen from the O3 sensor, which includes an initial offset between 0 and 

20 ppm (likely caused by differences in environmental humidity) and then a steep 

decreasing level of response with increasing toluene concentrations. There appear to be 

relationships between concentration and the response of the CO, CO2 and H2 sensors that 

are consistent throughout the full range of concentration. A proportional change in 

response of the PID sensor to the levels of toluene in the samples until the 100 ppm 

concentration is reached, whereby the response sharply returns to baseline level.  
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Figure 5.15: High variance average sensor response to toluene 

The low variance subset of sensors for toluene samples are shown in Figure 5.16, with 

many of the previously-discussed responses removed in order to clarify some of those with 

very gradual consistent gradients. The sensor that looks most promising in terms of 

proportional response to toluene concentration is NH3, with no other discernible 

correlation with any other sensors in this array for this volatile. 
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Figure 5.16: Low variance average sensor response to toluene 

5.6. Conclusions 

An electronic nose instrument was successfully designed and constructed, using an array of 

13 gas sensors based on electro-chemical, infrared optical and photo-ionisation 

technologies. These sensors are recent releases from manufacturers and have not yet been 

included into other electronic nose instruments. Therefore, this new instrument represents 

a group of technologies that have not been compared experimentally within this forum 

until now. All sub-systems included in the WOLF 4.1 are controlled using a built-in single-

board PC with installed LabVIEW 2013 software. The control and sensor data is processed 

using a pair of data acquisition units from National Instruments Ltd and electronic 

hardware that was designed in-house. The airflow system through the instrument is simple 

and flexible, to maximise its ability to adapt to the experimental method required. It was 

constructed as a test platform to qualify the new sensors included, with extra additions 

required before it could enter into clinical use. 
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The initial experiments using single volatile aqueous solutions has shown a reasonable 

degree of cross-sensitivity from the electro-chemical and optical sensors to ppm-level 

concentrations, with correlations being presented from slightly different subsets for each 

volatile.  This gives further confirmation of a likely response change due to the chemicals 

released from urine headspace, and potentially a degree of separation between disease 

states. However, there was also a large confounding factor of environmental humidity 

variation and retention within these results. Manifestations of this humidity issue include a 

disproportionate initial offset between 0 and 20 ppm concentrations in all cases, and some 

high variance noise within the responses of many sensors. This made the relative responses 

of the sensors difficult to interpret within this dataset. Some variation in the humidity of 

samples is representative of what will be experienced by the system when urine headspace 

samples are introduced, greater care is needed to control humidity in future 

experimentation. The results of these experiments was one of the events which led to the 

development of the humidity and volatile testing rig used to verify the sensitivity of sensors 

in the WOLF 3.1 instrument, as described in Section 6.4. While this rig produces volatile 

standards with concentrations more directly relevant to sensor sensitivity, they cannot be 

compared directly to the results in this chapter. 

This initial testing also allowed for individual tuning of sensor response gains before the 

introduction of urine samples and the development of an experimental method for 

headspace samples from 5 mL aqueous solutions, in order to maximise the potential for 

successful distinction in subsequent experimentation. Some of the sensors (such as NH3 for 

example) had responses that were consistently small in scale relative to other sensors, but 

showed a sensitivity to many volatiles that was magnified using a higher gain. 
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Parallel experimental testing to that conducted with the commercial electronic noses 

(Chapter 4) was needed to compare the utility of the sensor technologies included in them. 

This work is completed in Chapter 7. 
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6. Development and Construction of 
the WOLF 3.1 GC/E-Nose 
Instrument 
6.1. Requirements and Objectives 

This project has so far included a number of different commercial electronic nose 

instruments and the development of a new e-nose, incorporating a wide variety of 

different sensing technologies into the comparative study. There has also been 

experimentation with a GC-MS instrument, which has provided a degree of insight into the 

actual chemical composition of the gas and volatile headspace of urine.  The GC-MS 

achieves this by combining the chromatographic separation of headspace components, 

followed by identification by the mass spectrometer. It was therefore proposed that a 

more efficient distinction of samples may be achieved using a combination of a gas 

chromatograph element to separate out gas/volatile components in the temporal range 

with a sensor array to separate them by the combination of sensor sensitivities.  

The sensors to be used for the array in this new instrument must include a good diversity in 

order to capture and distinguish the largest number of potential chemical groups.  They 

must also hold a very small internal volume in order to be effective after the 

chromatograph element. This is due to the very low flow rates that are possible through 

gas chromatograph columns, causing the separation of the chemical components to be lost 

if they are allowed to re-combine while travelling slowly through a large volume (1). The 

gas chromatograph column must be able to effectively separate chemicals in the gas and 

volatile range, in order to provide some temporal distinction between the contents of urine 

headspace. It must also have a moderate degree of polarity, in order to affect both polar 

and non-polar compounds.  
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The control system around these two elements also has a large number of requirements in 

order to maintain the environmental conditions necessary for effective separation and 

detection. The temperature and humidity of the sensors should be closely monitored, as 

their response will be highly affected by these two factors (2).  In addition, the inlet 

pressure and temperature of a gas chromatograph column dictates the flow rate and 

degree of separation through it at any given point (3). Thus the separation of chemicals 

through the chromatograph element must be monitored indirectly through measurement 

of both temperature and pressure, and the careful control of one of these.  It has been 

decided to employ “temperature-controlled separation”, by keeping the inlet pressure 

constant while the temperature is varied through a tightly-controlled system in order to 

avoid varying the flow rate past the sensors and causing their responses to be affected (4). 

Flow rate through the system must also be carefully controlled, while the pressure must be 

maintained at a level to allow chromatography separation to occur.  There must finally be a 

method by which the headspace samples can be introduced to the separation and sensing 

elements, and then switched to a supply of background air supply. 

6.2. System Overview 

The sensing and GC elements required an overarching control system to provide a suitable 

sampling method and to maintain optimal environmental conditions for separation and 

detection.  A summary of the control method is shown in Figure 6.1, with a combined 

diagram of airflow and block diagram of sensors/transducers and control algorithms. The 

airflow system is shown in the top left corner, with blue lines pointing to locations of the 

components listed in the control algorithm below. The weightings and offsets applied to 

the comparators in this diagram have not been included for clarity, but were developed 

individually by empirical testing of each control loop. The temperature and humidity of the 

gas sensors affect their baseline response levels and subsequent sensitivity to chemicals 
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(2), and so were carefully monitored with changes limited throughout sample introduction. 

The separation from the GC column is dependent on the pressure and temperature 

experienced through its interior (3), and so were also carefully controlled in order to 

achieve a reasonable distinction. 

6.2.1. Airflow Sub-system 

The initial input of clean, dry air came in from the Supply Port and traveled through an MFC 

before splitting between make-up and sample flow (as shown in Figure 6.1).  The make-up 

air passed into a second MFC, while the sample flow exited the machine at the Sample 

Outlet Port at a calculated flow rate equal to the value of the first MFC (total flow) minus 

that of the second (make-up flow). Thus the flow rate through a sample could be controlled 

while minimising the chance of any humidity or volatiles reaching the internal components 

of an MFC. This path flows across a volatile or headspace sample that is external to the 

instrument, picking up the released gases and volatiles before returning into the 

instrument at the Sample Inlet Port.  The Sample Introduction Valve controlled the entry of 

headspace volume into the instrument, and the timeframe that it is open was tuned to 

balance a low temporal resolution of the GC separation with high sensor response levels. 

Any sample introduced into the system mixes with any make-up air flow in a linear mixing 

chamber (represented by a T-piece in Figure 6.1), and then entered the GC column to be 

separated according to molecular weight and polarity.  Finally, the separated compounds 

passed through the sensor chambers before being expelled out of the Exhaust Outlet Port. 

The flow rate of air and sample headspace through the instrument was controlled in an 

open-circuit manner from the system perspective. This is due to the close circuit loop 

embedded in the MFCs themselves, but the system makes regular checks that the output 

voltage of the MFCs is within range and similar to demand. Valves were used to attenuate 

the flow rate through the MFCs to a proportional point between the minimum and 
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maximum flow rates, in this case 0 to 300 ml/min.  The device would then read back the 

actual flow value that was being achieved and convert this back to another 0 to 5 V signal. 

 

Figure 6.1: Illustration of the airflow system layout and the control algorithm used for the 

WOLF 3.1 

6.2.2. Chromatography Sub-system 

The control of gas chromatography is a fine balance of pressure and temperature that 

pushes moluecules through the column. A constant pressure of 1 bar was found to give the 

best results alongside careful control of the temperature to help accelerate differently-

sized molecules through to the sensors. This is known as “temperature-controlled 

separation”, and should avoid an increasing flow rate past the sensors affecting their 

response. This is achieved using the opposing action of a length of Nickel-Chromium wire to 

heat the column, and a fan to cool it by drawing room-temperature air across it. Finally, a 

method for introducing a sample of urine headspace was developed to allow enough 

volume into the instrument to be measured by the sensors without limiting the temporal 
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resolution of the GC column. This was achieved by creating a difference in flow rate 

between the two MFCs and opening the sample introduction valve, which forced the 

remaining flor to pass through the sample and back into the instrument for analysis. 

Throughout the course of sample analysis, the temperature of the GC column was also very 

carefully controlled according to the temperature program stored in the GC method array.  

The measurement of the actual temperature of the column and the update of the setpoint 

for heating it was updated every 200 ms, in order to be able to form a very responsive 

control loop around these variables. A pair of offsets was then applied to this value based 

on the measured temperature values taken by the thermocouple circuit. They incorporate 

both proportional and integral elements into the control loop, with maxima and minima 

chosen based on the values that provided the most stable output with optimisation of 

response time and overshoot/instability, taken from a large number of trials in adjusting 

these values.  The resulting precision of this control loop was approximately 2 – 3 0C when 

running the temperature programs being used in Sections 6.6.3.2 and 7.2.2.2, which 

featured time periods when temperature was constant and other when it rose by 

approximately 0.13 0C per second. 

The feedback loop for temperature control required two main physical elements, the 

heating element by which to enact the control onto the column from the processor, and a 

sensor to feed the actual temperature information back. The assembly of these two with 

the GC column formed a cohesive temperature management system, as shown in Figure 

6.2 with a length of column and heater wire (depicted as a single coil of tubing) wrapped 

around a large metal pipe.  This large thermal mass was used to better distribute the heat 

from the Nickel-Chromium (NiCr) wire across the whole of the column area.  However, in 

order to secure these components to the rest of the case additions would have to be made 

to this design. 
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Figure 6.2: Model of the GC temperature control assembly in the WOLF 3.1 (NiCr wire and 

thermocouple wrapped around hollow bar) 

Another form of temperature control actuation was created by the addition of a Multicomp 

MC36260 5 V fan with a DC brushless motor, also seen in Figure 6.2 located at the edge of 

the GC system’s thermal mass. The fan was lined up with the internal diameter of a hollow 

steel bar which formed the thermal mass, so that it could effectively pull cool air through it 

while pushing heat out of vents in the WOLF 3.1 case. This action was particularly useful 

when cooling down the whole assembly more quickly following analysis (5).  

The temperature sensing element comes in the form of a type K thermocouple in a long 

wire form factor (6).  This thermocouple has a maximum temperature of 320 ᴼC, meaning 

that it will not be damaged by overheating the NiCr wire.  

6.2.3. Micropacked Column 

The GC element that was used in the instrument was a 1 m long HayeSep R micropacked 

column with a 100/120 mesh and a 1.00 mm internal diameter (7).  This column is made for 
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separating out gases and light volatiles with organic chemical groups, with a mild degree of 

polarity on the Hayesep R material and the mesh and length providing reasonable 

separation for C1 – C6 organic compounds. An example chromatogram of the separation of 

C1 – C3 compounds that can be achieved with this column with helium carrier gas in a full 

size GC instrument is illustrated in Figure 6.3. It has a rated temperature range up to 250 

⁰C, and an outside diameter of 1/16” that allows for easy connection to standard Swagelok 

compression fittings.  The recommended inlet pressure rating for this column is 30-45 psi, 

or approximately 2 – 3 bar (8). 

 

Figure 6.3: Chromatogram of HAYESEP R micropacked column separation of MAPP gases (9) 

6.2.4. User Interface 

The entire user interface for the WOLF 3.1 is operated using a 3.2” touchscreen (10). This 

GUI divides all potential activity on the instrument into three levels of control: basic 

running of samples based on the default method, development of the method by changing 
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timing and heating variables, and testing the base electronic circuitry and IC for fault 

diagnosis and resolution. Analysis can be run continuously by an unskilled user, while the 

higher levels allow for method development, maintenance and troubleshooting to be 

performed by those with more technical experience. This allows for easier introduction into 

the clinical setting, where everyday users may not be very experienced. 

6.3. Sensor Technology 

Sensors that have an extremely small form factor were required for this instrument in 

order to minimise dead volume within the gas sensor array. This is to maintain a good 

degree of the separation of chemicals coming from the GC column outlet even at the low 

flow rates produced. The only sensors that were deemed compact enough for this 

application were micro-hotplate metal oxide sensors, which are already currently produced 

by a small number of commercial manufacturers.  These have separated heater and 

sensitive layers that are independent of the sensor itself, so that the sensitive layers can be 

brought to the correct temperature for performance without adversely affecting the 

response by electrical interference.  The small form factor also allows for very rapid and 

low power heating and response times from this type of sensor. The full range of sensors 

included in the array on the WOLF 3.1 is shown in Table 6.1. 

Manufacturer Gas Sensor (target gas) Sensitivity Range 

SGX Sensortech MiCS-2614 (Ozone) 10 - 1,000 ppm 

  MiCS- 4514 (Nitrogen Dioxide) 0.05 - 5 ppm 

  MiCS- 4514 (Carbon Monoxide) 1 - 1,000 ppm 

  MiCS-5914 (Ammonia) 0.1 - 100 ppm 

AppliedSensors GmbH AS-MLV-P (VOCs) 0.1 - 100 ppm 

Table 6.1: List of sensor manufacturers, mechanisms, and target gases included in the array 
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6.3.1. E2V MICS Sensors 

The manufacturers SGX Sensortech (previously E2V Sensors) produce a range of low cost 

(sub £10 each) micro-hotplate gas sensors in the MICS range (11) that have a very small 

form factor of just 7.5 x 5.0 mm as shown in Figure 6.4.  The sensor design consists of one 

basic N-type and P-type sensing layer, with specific sensitivities of these materials being 

harnessed by individual sensors employing different filters on the inlet of the physical 

casings. The range of sensors chosen to be used in this new instrument include the MICS- 

4514, 5914 and 2614 variants; the first of these contains one N-type and one P-type sensor 

that employ the same filter, and the others are single sensor packages. These three devices 

represent a single N-type and three versions of the P-type material with separate filters 

attached, giving manufacturer-tested sensitivities to carbon monoxide, nitrogen dioxide, 

ammonia and ozone, respectively.  These will have sensitivities to many compounds that 

are known to be biologically-produced (12), duplicating some of those included in the 

previous WOLF 4.1 instrument, and shows a good overview of the variety of this sensor 

range for comparative test. 

 

Figure 6.4: SGX Sensortech MICS sensor body (11) 

The electronic control requirements for these sensors are reasonably straightforward, with 

a DC voltage supply used to provide adequate heating and power to the sensitive layer. An 

example of these circuits is displayed in Figure 6.5, for the dual sensor MICS-4514 in this 
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case. The voltage across the load resistors RLOAD_RED and RLOAD_OX can provide a 

simple bridge method for high resolution analogue measurement of the sensor resistance 

changes.  These load resistors must have a value that is low enough to maximise sensitivity 

of the circuit to the sensor changes, while not going past a minimum value that could 

overload the voltage measurement equipment.  The minimum acceptable resistance for 

RLOAD of all of the MICS sensors is provided on their datasheets as 820 Ω (11), and in order 

to avoid overloading the load resistance used in the measurement circuitry was 1 kΩ. 

 

Figure 6.5: Typical MICS sensor heating and measurement circuits (11) 
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6.3.2. AppliedSensors AS_MLV_P Sensors 

Another sensor that was chosen for use in the instrument was the AS-MLV-P from 

Appliedsensors GmbH (13).  It was developed specifically to detect volatile organic 

compounds and is a much higher-end product in terms of quality and precision. A P-type 

sensing material is housed on a larger PCB in a 9.0 mm diameter canister-style package, 

with a total PCB area of 13.2 x 17.5 mm.  This size (shown in Figure 6.6) is larger than the 

previously-described MICS sensors, but with a consistently low dead volume within the 

canister.   

 

Figure 6.6: Appliedsensor AS-MLV-P sensor body (13) 

The circuit board layout in Figure 6.7 displays the very small actual sensor size of 

approximately 2 mm2, and the pinout locations of each of the sensing and heater pins 

allowing for surface mount and through-hole connection to the board. These simple 

dimensions will make the interface for a chamber to hold these sensors uncomplicated to 

produce.  The electrical connections for this sensor are similar to those shown in Figure 6.5 

for the MICS sensor, aside from the much higher sensing resistance of the AS-MLV-P 

requiring a larger value for the RLOAD resistor (611 kΩ was used in place of 1 kΩ). 
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Figure 6.7: Appliedsensor AS-MLV-P sensor circuit layout (13) 

6.3.2.1. Sensor Chambers 

The sensor chambers developed for this instrument were required to fully house the 

sensors within a sealed flow path where samples could be introduced to them and then 

pass by and flush away.  Due to the complicated and low resolution accuracy that would be 

required to machine such low volume chambers for these small form factor sensors, it was 

decided to print them on a highly accurate 3D-printing platform.  Models of the desired 

chambers were developed on 3D computer-aided design (CAD) studio Solidworks (Dassault 

Systemes Solidworks Corp). The model for the chamber holding the four MICS sensors is 

illustrated in Figure 6.8. The chambers were designed to hold a PCB, with two sensors each 

soldered to them, on either side and fastened together using long 2.5 mm diameter screws.  

Figure 6.8 shows deeper square depressions made to house physical bodies of the MICS 

sensors, with shallow 10 mm diameter circular depressions around them to hold N-Buna 

rubber O-rings used to seal around the outside of the sensors.   

When the ends of this chamber are threaded and attached to pneumatic fittings, this 

assembly would be able to expose the open sensing holes in the sensors to any gases 

travelling through the 3 mm diameter flow channel in the centre of the chamber. The total 
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volume of the flow channel and sensor interiors in the chamber is approximately 0.42 mL, 

which is a volume that should completely pass through to the outlet in 1.26 seconds at 20 

ml/min chamber flow rate. 

 

Figure 6.8: Scaled Solidworks model of the MICS sensor chamber 

Chambers were designed for both MICS and AS-MLV-P sensors, and were subsequently 

made into prototypes by Envisiontec Micro DSP printer.  The Micro DSP had a sufficient 

build volume to fully actualise these small chambers, and provided an impressive resolution 

of 50 µm (14) which minimised the chance of inaccuracies to cause issues with fitting or 

sealing.  This printer employs a light projection technique to cure a liquid epoxy into 

complex shapes of hard, inflexible material.  Due to the high Young’s modulus of the 

resulting E-shell © epoxy produced from the curing process, the chambers were reasonably 

fragile and prone to breaking if handled incorrectly.  The material could also degrade in 

temperatures over 180 ⁰C, creating a potent odour that could over-saturate sensors. 

However, these temperatures were not experienced by the chambers within the proposed 

environment during any of the experimentation undertaken, and the advantage in 
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producing these complex shapes and features at such resolution and speed outweighed 

these drawbacks. 

 

Figure 6.9: Photographs of fully assembled sensor chambers for the WOLF 3.1 

The final prototypes of the 3D-printed chambers were attached to simple breakout PCBs 

for the appropriate sensors to connect them to a measurement board via ribbon cable, and 

sealed using O-rings and M2.5 nuts and bolts.  The ends of the chambers’ central flow 

channels were threaded and attached to 1/8th inch Swagelok fittings for connection to the 

wider airflow system. Figure 6.9 shows examples of the final chambers with fitted PCBs and 

fittings, which were used to test the sensitivities of the sensors and later implemented into 

the full instrument design. 

6.3.3. Environmental Monitoring 

The environment within the instrument was monitored by measuring the temperature, 

humidity and pressure at specific key points within the gas flow path through the 

instrument.  The first of the devices used to monitor environmental conditions in the 

sensor chambers was the SHT15 temperature and humidity sensors from Sensirion 

(Sensirion AG, Switzerland) (shown in Section 5.3.2). This is a compact surface-mount 

sensor that can stably measure humidity and temperature down to a resolution of 0.05 % 

relative humidity and 0.01 ⁰C respectively.  
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The other environmental monitoring sensor used in the instrument is a MPXM2053GS on-

board pressure sensor from Freescale Semiconductor. This surface-mount sensor can 

measure the relative pressure at a range of 0 to 50 kPa from the top nozzle and outputs a 

proportional analogue voltage signal between 0 and 40 mV (15). This was used to monitor 

the pressure in the gas flow lines before the gas chromatography element, as the flow rate 

and degree of separation through it will be determined chiefly by the temperature of the 

column and the pressure difference across it.  

6.4. Full Assembly 
Once the models were created for each individual component, they were added and 

duplicated in a full assembly Solidworks model to represent the sum total of parts in the 

whole system. These were arranged in a physical configuration that held them efficiently 

within a cuboid volume with dimensions that would be preferred for a case, but with 

sufficient space between components such that pneumatic and electrical connections 

could be fit in between them.  Using this volume as a rough reference, a number of 

different candidate cases were found that would most likely house the whole system 

within them with some extra margin to mitigate risk.  The final decision for the chosen case 

involved consideration of the cost, availability and suitability of the options. This concluded 

with a brushed aluminium enclosure made by Nobsound and normally used for high 

definition audio equipment, with external dimensions of 221.5 x 150 x 311 mm. 
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Figure 6.10: Full assembly Solidworks model for the WOLF 3.1 system 

This enclosure was found to have more than ample volume to fit all of the required 

components, and was composed of panels on all sides that could be individually removed 

to easily perform maintenance and modifications on the instrument.  Solidworks models 

were made of all of the required panels and fastening pieces of the enclosure, and were 

included in the full assembly of the whole system.  The internal components were then 

placed inside the enclosure such that they could all be fit and fastened to its bottom or side 

panels, to ensure that this case was indeed suitable for housing the full system. The final 

assembly drawing is shown above in Figure 6.10, and also includes holes cut into the final 

enclosure to house the external USB sockets, power connections, bulkhead Swagelok 

fittings and the CTE32 touchscreen.  The side and top panel models of the enclosure have 

been removed in order to better view the internal assembly of the system. 
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Figure 6.11: Final implementation of the WOLF 3.1 with exposed interior 

Figure 6.11 shows the implementation of the full system based on the design detailed in 

the Solidworks full assembly model.  The pneumatic and electrical connections have been 

fitted here, but the mixing chamber was omitted due to air pressure testing underway at 

the time.  The overall positions of components are very similar to those proposed in the 

model, due to the acrylic structural plates being designed directly from it and the suitable 

amount of space left for internal connections.  This also minimised the amount of re-

prototyping that was required during construction and testing, thus drastically reducing the 

final build time for the instrument.  The final construction also provides a large amount of 

space in the rear of the assembly, in order to fit the necessary pneumatic components and 

fittings required for an internally pumped system.  These additions would be essential for 

use in locations without access to an external air supply, such as primary health centres. 

Figure 6.12 illustrates the final implementation of the instrument in operation with the full 

set of enclosure panels fitted. 
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Figure 6.12: Final implementation of the WOLF 3.1 in operation 

6.5. Development and Construction of a Humidity Generator 

for the Sensor Testing Rig 

6.5.1. Requirements and Objectives 

New electronic nose instruments have been developed to discriminate between different 

disease states based on the gaseous emissions from urine samples. The sensors used in 

these instruments were designed to detect gases, and so the sensitivity of each sensor to 

many common gases was generally tested explicitly by the commercial manufacturers (16). 

However, volatiles are much less widely tested by sensor manufacturing companies. 

Therefore, the sensitivities of these sensors have to be tested in-house to ensure their 

suitability to the application before being tested with urine samples. This testing must be 

undertaken using a controlled method in order to ensure the accuracy and repeatability of 

these experiments. The instruments must be tested with a variety of volatiles with different 

active molecular groups, at a range of concentrations and humidity levels. The ranges of 

volatile concentration and relative humidities must be representative of levels seen from 

the headspace of urine samples (after heating). Individual sets of conditions within the two 

ranges must be maintained for minute-to-hour time periods with a reasonable resolution 
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and repeatability. The test system must ideally be automated in order to maximise its 

repeatability and add convenience of testing without constant monitoring. 

There are many factors relevant in the production of accurate and repeatable volatile 

concentrations from stable standard samples that would make it very difficult and time-

consuming to develop a test system completely. Therefore, it was decided to purchase a 

commercial volatile testing rig to be used for this purpose. Owlstone Inc. produces the 

OVG-4 high accuracy calibration gas generator, which uses permeation tubes to create 

highly accurate volatile concentration samples (17). A cased testing rig system named the 

GEN-SYS is also produced by Owlstone, which can provide 24 V DC power, clean air supply 

and RS-485 communications to up to three modular rack units (such as the OVG-4) that fit 

inside it (17). There is also a humidity unit available from Owlstone, but in order to 

minimise costs it was decided to develop an in-house built humidity generation unit to 

operate alongside the OGV-4 in one of the modular slots in the GEN-SYS testing rig. This 

module must be able to accurately and repeatable produce air flows of relative humidity 

concentrations from 0 to 90%, and at flow rates of up to 200 – 300 mL/min in order to 

provide most commercial electronic nose instruments their required conditions for 

samples. The commercially-produced modules compatible with the GEN-SYS use RS-485 

communication, controlled externally from a laptop PC for automated testing. The 

developed humidity unit must be contained in a modular rack case identical to the units 

produced by Owlstone, along with the same 24 V power supply, rear compressed air 

supply, and RS-485 communication capabilities. The GEN-SYS also includes a water bubbler 

that is held in a holster on the side of the rig, which the developed unit must be able to use 

for generating air at the humidity levels stated above.  
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6.5.2. Control and Measurement System for Humidity Unit 

The purpose of the pneumatics system is to provide a single airflow output with a range of 

humidities.  A bottle was provided with the OVG unit to be used to bubble air through a 

volume of water for humidifying the output. The bottle contains two ports attached to a 

modified lid that connect using Swagelok, including an inlet with an internal bubbler 

attached to push the airflow underneath the water line.  Therefore, external fittings should 

be included in the design to push some flow through the bottle.  A number of internal 

environmental conditions must also be monitored in order to have an effective picture of 

the effects of different actuation. The chief factor to be measured is humidity, but other 

conditions such as temperature and internal pressure are also helpful in order to 

understand what is occurring within the machine. Finally, information on all of the 

measurement and actuation states of the components should be communicated to both 

the user and external devices, such as the control PC for the OVG rig. Each of these 

operations is done by one of the electronic circuits present within the humidity generator. 

All of the processes of actuation, measurement and communication must have the 

possibility to be undertaken simultaneously, and managed effectively by the system.  It was 

proposed that the simplest way of keeping track of all of these operations is for them to be 

controlled by a single central processing unit.  Some internal memory was required as well, 

in order to store a number of internal variables for control functionality, and to send some 

of these back through RS485 communication.   

The proposed system design is shown in Figure 6.13, including the flowpath diagram on the 

top half linking to a representation of the control and measurement algorithm on the 

bottom half. The flow paths diverging from the clean air supply are each controlled by one 

Brooks 5850TR mass flow controller (MFC – coloured green). There is also an extra in-line 

valve in place just before the MFCs and just before the final outlet, in order to halt any 
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forward or back-pressure in the system when flow rate is zero through either/both of the 

paths (coloured yellow). One of these controlled flow paths passes through an outlet port, 

through the bubbler to add water vapour to the air, and back in through the inlet port on 

the bottom face of the diagram. Both of these flow paths, one that has been humidified 

and one that hasn’t, meet within a mixing chamber and the humidity is measured (coloured 

teal). This measured humid air path is then sent to the final machine outlet port, to be 

combined with outlets from the other units to provide external systems with testing 

standards.  

The user inputs to the humidity system are a pair of set-point values to aim for, in the form 

of total flow rate and relative humidity of air through the final outlet port (“to Analyser” in 

Figure 6.13). Resolution of these set-points is currently 1 mL/min and 1 %RH, respectively. 

A calculation is made to convert these into a proposed flow rate for the dry and humid flow 

paths. Closed loop control of total flow rate against the user-defined set-point is 

maintained by measurement of the calculated sum of the rates through both of the MFCs. 

Meanwhile, humidity is controlled by measuring at the end of the mixing chamber by an 

appropriate sensor with the value set by the user. The 5850TR MFC has an accuracy of 

±3.00 mL/min and a repeatability of ±0.75 mL/min, which are both within a suitable range 

for reasonably accurate operation (18). 
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Figure 6.13: Diagram of the airflow pathways and control algorithm of the humidity rig 

control system 

There are a number of environmental conditions that need to be monitored on the 

humidity rig so that the user can ensure that the system is operating normally. The most 

relevant of these is humidity – it is important to have a measurement device that is 

independent of the airflow system to ensure that the output air from the rig has the 

correct concentration of water vapour. Internal air temperature is also a relevant 

environmental metric, as this could be a factor affecting the response of the sensors that 

the rig is testing.  Both of these conditions are measured by the same element, the SHT15 

temperature/humidity sensor from Sensirion shown in Section 5.3.2 (19). The SHT15 has a 

maximum resolution of 0.4 %RH, accuracy of ±2.0 %RH and repeatability of ±0.1 %RH, 

which is reasonable for measurement in the humidity control loop considering variations in 

urine sample humidity (as described in detail in Section 7.1.3). 



Development and Construction of the WOLF 3.1 GC/E-Nose Instrument 

184 
 

Another useful environmental condition to monitor is internal pressure in the air lines, as 

this can help determine whether there is a change in the flow path such as a leak 

(constituting a drop in pressure) or blockage (which could manifest as a rise or drop in 

pressure). The pressure in the mixing chamber of the rig is measured by the Freescale 

MPXM2053GS 0 – 50 kPa pressure sensor (15). The pressure values do not require a large 

amount of accuracy (similar to temperature), as it is not part of the control algorithm but is 

helpful to the user to ensure the rig’s safe operation. The algorithms for the control 

processes operating within the humidity unit (shown in Figure 6.13) were translated in to 

‘C’ or Arduino ‘C++’ languages and programmed onto the Arduino Due’s SAM3X chip. 

6.5.3. Assembly and Integration 

The choice of components and design of the overall structure by Solidworks modelling was 

followed by the final physical assembly of the humidity unit in the machined enclosure, and 

integration with the overall testing rig.   

The assembled unit was put in place as shown in Figure 6.14. All connections to the overall 

rig come in from the rear of the unit (17). The inlet and outlet of a water bubbler is 

connected to the bottom two Swagelok connectors on the front panel of the humidity unit, 

with the top bulkhead used to connect the final output of the unit onto the wider testing 

rig pneumatic connection.  
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Figure 6.14: Photograph of the assembled full testing rig 

The RS-485 communications socket at the rear of the testing rig is connected to an adaptor 

to convert the signal format to USB and sent to the external control PC. This interacts with 

the units in the testing rig using software developed in LabVIEW 2014 by James Covington, 

which is built around a core program designed to communicate with Eurotherm 3216 

temperature controllers and supplied by Owlstone (17). The fully integrated software 

allows a user to either manually control actuation of the volatile and humidity generation 

units, or define an automated test where volatile concentrations and humidity levels will be 

sent to the device under test at accurately controlled time periods. A number of indicators 

for flow rates, temperature and humidity of the units and output are shown on the front 

screen, and are taken from value sent to the PC via RS-485 communication. 
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6.6. Experimental Testing of GC/E-Nose WOLF 3.1 with Single 

Volatile Samples 

6.6.1. Introduction 

The LDA urine distinction results from the WOLF 4.1 shown in Section 8.2.4 indicated that 

an electronic nose-based diagnostic solution could be possible. However, the sensitivity 

and specificity levels produced by sensor array alone did not compare favourably against 

current clinical techniques. A new system was proposed that could offer improved 

capability for volatile/gas distinction over the previously-tested instruments by employing a 

gas chromatography (GC) pre-separation method. This technology uses a tubed column 

filled with a chemically-retentive matrix, which can effectively separate mixed gas phase 

chemicals according to molecular weight and polarity. Separation by GC has been found to 

be very effective in revealing unique features of the content of urine headspace in Chapter 

3. The addition adds a temporal element to the response of each sensor to all gases or 

volatiles, and so a smaller number of sensors may be required to distinguish samples with 

different mixtures. 

To this end a new GC/electronic nose instrument was developed in-house for the purpose 

of distinguishing between digestive disease groups - again by using the volatile content of 

urine headspace samples, and denoted the WOLF 3.1 (described in Chapter 7). As per the 

WOLF 4.1, this new system needed to be validated with known chemical standards in order 

to evaluate its performance in its designed application. The main reasons for this initial 

testing are: to check whether the sensors respond to samples of volatile chemicals with a 

range of functional groups in manners that are distinctive to one another, and to ensure 

that these groups are also retained effectively by the GC column to separate their 

responses from each-other within a reasonable timeframe for clinical diagnostic 

requirements.  
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The experiments to test for sensor response must be performed across a range of 

concentrations for each individual volatile, in order to determine the relationship between 

response level and amount of sample being introduced to the sensors. The effect of 

relative humidity of the sample supply being sent on the sensors must also be investigated, 

as the metal oxide sensors included in the WOLF 3.1 are known to be highly affected by 

environmental humidity (6, 7, 20 + 21). Therefore, the response of the sensors at each 

volatile concentration must also be tested at a range of relative humidity levels that 

includes what is seen from urine headspace samples as seen in previous commercial 

studies (Chapter 4). The relative humidity levels tested must also be comprehensive 

enough to gain sufficient understanding in the relationship between sensor response and 

environmental humidity. 

The GC retention testing must include runs with a similar number and scope of volatiles as 

the response tests described in Section 5.5.2, and across a similar range of concentrations. 

The water content of the samples will be retained by the column similar to other sample 

constituents and will likely be introduced separately to the target volatiles, and so the 

relative humidity level will not factor greatly into the response of these tests. Therefore, an 

appropriate level of relative humidity will be chosen that is similar to that seen in a typical 

urine headspace sample, and be used across all tests in this section. This round of 

experimentation will also have the additional purpose of allowing for development of an 

appropriate machine method to be used on the WOLF 3.1 when running urine samples. 

Conditions to be determined by this method development include: the flow rate 

characteristics through the instrument, the baseline, sample introduction and purge times, 

and the GC temperature program to be used to effective separation of different volatile 

groups. 
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6.6.2. Materials and Methods 

The WOLF 3.1 was used in all of the tests described in this section, without the GC column 

attached for the sensor sensitivity tests and in its final full construction for the GC retention 

testing. The pneumatic system for the WOLF 3.1 is shown in Figure 6.15, which includes the 

original compressed air inlet to the machine at the top left port, sample supply and inlet on 

the middle and bottom left, and the machine exhaust on the bottom right. The air supply 

entering the left inlet was provided by the same Zero Air Generator described in Section 

4.2.1. The volatile testing rig being used to provide accurate volatile samples already feeds 

from a compressed air supply, and it was not possible for it and the WOLF 3.1 to 

communicate to each-other. Therefore, care had to be taken with all of these tests as to 

which of the machines was in full control of sample introduction and which was taking on a 

passive role for supply or measurement. 

 

Figure 6.15: Schematic of the pneumatic system in the WOLF 3.1 

The supply of volatile concentrations and humidity levels for testing the WOLF 3.1 were all 

given by the volatile testing rig. The central unit in the rig uses permeation tubes to supply 

an accurate concentration of a single volatile at a specified flow rate at its outlet (located in 

the centre of the unit and pictured with tubing connected to it), and was developed by 

Owlstone (22). The right-most unit uses an external bubbler that is normally connected to 

the bottom two ports on its front to provide air supply at a stable relative humidity and 
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specified flow rate to its outlet (located on the top port along the right side of its front 

face). The outlets of these two units were connected together using a 1/8” Swagelok 3-way 

connector and sent to the sample inlet of the WOLF 3.1 to provide sample supply. 

The volatile testing rig was controlled by an external PC running the LabVIEW 2014 

program based on a core developed by Owlstone (23), and expanded to fit this actual 

application in-house. This software allows a user to control the units in the testing rig 

manually from the front-end display pictured in Figure 6.16. There is also an option to set 

up a test sequence that may be run automatically without user input, from a separate 

tabular section of the program. The software controls the flow rates, humidity and 

calculated volatile concentration from the two units according to the test sequence 

previously setup, and then monitors and displays measured values in numerical and graph 

form.  

 

Figure 6.16: LabVIEW PC control front-end of the volatile testing rig 
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Single tests were executed, each at a specified volatile concentration and humidity, in 

order to ensure that timing was constant throughout testing and that any offset were not 

introduced between these runs. The volatile rig outlet was allowed to run straight to a 

laboratory exhaust port for a period of a few minutes before sample introduction to ensure 

that the specified concentration and humidity conditions had propagated to the end of the 

outlet tubing. In all tests the combined flow rate for the volatile test rig outlet and those in 

the WOLF 3.1 were all set to the same value, to prevent any back-up of pressure causing 

complications to the test or damage to the machines. Note that the concentrations of 

single volatile samples produced by this rig are in terms of volume in air, and so are the 

concentrations actually being experienced by the sensors. While this is an effective method 

for testing the sensitivity of the sensors, these results cannot be directly compared with 

responses of other instruments in this investigation to single volatile samples being made 

using another method (such as in Section 5.5.3). 

6.6.2.1. Method Development 

Initial method development was carried out with just the sensors being tested and then 

with GC retention tests. This was done to ensure that all relevant chemical information was 

being captured, distinction between different samples was represented and that the tests 

could be completed in a timeframe that would be clinically acceptable.  For sensor 

sensitivity tests, a range of different flow rates were attempted in order to balance what 

was thought to be the resulting GC flow rate and the unsaturated response from the 

sensors. The general expectation of the resolution of sensors (6, 7, 20, 21) and the volatile 

concentrations present in urine headspace samples (24) led to the concentrations being 

chosen for test. 

The GC retention test method contained a much larger set of condition variables that 

needed to be specified before full execution could be completed. The flow rate that could 
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be achieved through the GC was first required in order to continue with further testing. 

Once this was measured and set, an appropriate temperature program needed to be 

specified for detection of the target volatiles in a timeframe that was acceptable as 

compared to other electronic nose applications. Initially, programs that involved single 

constant temperatures including 60⁰C and 80⁰C were used. While these methods would 

have given very accurate measurement of response to gases and very light volatiles, the 

timescale required to provide this would be an hour or more with the current GC column. 

In addition, the larger volatile groups being sent through from some samples may remain 

retained in the column until a subsequent sample is introduced. However, when these 

single constant temperatures were increased to higher levels such as 120 – 160 ⁰C, the 

level of temporal discrimination seen between different light volatiles was negligible.  

Experimentation using a few initial urine samples determined that 100 seconds of 

introduction time gave a good level of response while maintaining some degree of 

separation. This was calculated by understanding the volumes between the headspace 

sample and the flow path to the GC column shuttered by the inlet valve. The tubing used in 

the WOLF 3.1 has an internal diameter of 1.59 mm, and the length from the sample 

headspace to the inlet valve in the experimental setup was approximately 250 mm. Adding 

in the internal volumes of the in-line fittings and the valve itself, this leaves a total volume 

from the sample to the inlet of 1.09 mL. The volume of headspace within the sample (12mL 

from the vial size minus the liquid sample volume) must be added to this total to make 

13.09 mL of headspace that must be sent past into the GC column. This would take a total 

of approximately 39.3 seconds to reach past the GC column, and so the sample 

introduction time must be at least this time period to send the entire headspace volume 

through the GC column if total headspace volume transfer could be assumed. However, the 

sample outlet and inlet lines were adjacent at the top of the vial cap, leaving the possibility 
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of a flow path to be created across the top of the headspace volume without pulling in the 

volatile content closest to the liquid urine. This means that it could take considerably 

longer to remove the entire volatile headspace from the vial from turbulent flow, and so 

the introduction time was increased by a factor of approximately 2.5. 

The next temperature methods used in development included an initial constant low 

temperature followed by a controlled rise up to a maximum, and finally a constant high 

temperature stage.  Several variables were adjusted across a range of values, including 

initial and final temperatures, as well as the times to hold each and ramp between them. 

The reasonable ranges used for each of the variables were found by drawing upon 

technical resources from the GC column manufacture Restek (25), and from previous 

studies completed by Richard Sacks in the development of GC-based instruments and 

temperature control methods (26). The final proposed method detailed in Section 8.3.2.2 

balances a significant level of discrimination between the different volatile groups under 

test, the potential to capture a wider molecular weight range of gases and volatiles, and an 

acceptable length of analysis time. It was also discovered through initial sample trials and 

further review of Richard Sacks studies that the sample introduction period must also be 

very carefully tuned in order to avoid overlap of volatile retention times through the GC 

and over-saturation of sensors. This was also tested at a range of values, before optimising 

volatile discrimination and clarity of response separation from urine samples using the 

proposed introduction time period. 

6.6.2.2. Proposed Experimental Method 

6.6.2.2.1. Sensor Sensitivity Testing Method 

The WOLF 3.1 was used as a passive measurement unit in the sensor sensitivity tests. 

Sensor measurements started approximately two minutes before an automated test 



Development and Construction of the WOLF 3.1 GC/E-Nose Instrument 

193 
 

sample introduction method began on the volatile test rig. These measurements continued 

throughout the volatile rig method and for a short while afterwards. These experiments 

were performed in a total time of 760 seconds, with instrument initial baseline set to 1 

second and final purge time of 10 seconds. The compressed air supply inlet and the sample 

supply port on the instrument were closed with 1/8” Swagelok end pieces, and the sample 

inlet was connected to the outlets of the volatile and humidity supplies of the testing rig. 

The humidity levels were initially introduced to the WOLF 3.1 sensors to provide an initial 

baseline for 300 seconds, and then the volatile concentration was supplied for 150 seconds 

to establish a new stable response level. A final purge of 300 seconds was then executed by 

the volatile testing rig to remove the volatile from the sensor chambers. The total flow rate 

of air sent through to the WOLF 3.1 was 100 mL/minute.  

A total of four volatile samples were used to determine sensor sensitivity including 

acetone, ethanol, toluene and valeraldehyde, which each have a different molecular 

weight, polarity and functional chemical group. Relative humidity levels of the background 

air of the samples were in the range of 0 – 20% with steps of 5%. The sample 

concentrations tested included steps of 10, 20, 50 and 100 ppm to capture a reasonable 

range of concentrations seen from urine headspace samples (22). For each of the test runs 

at a specified volatile concentration and relative humidity, the final stable response level 

seen at the end of the 150-second sample introduction period was taken from the test data 

for each sensor. These values were plotted on two sets of separate graphs, to determine 

the relationships of sensor response against the both the relative humidity and the specific 

volatile concentration supplied from the volatile rig. 

6.6.2.2.2. GC Retention Testing Method 

In the GC retention tests, the WOLF 3.1 was used to control the sample introduction to the 

GC and sensor elements, while the volatile testing rig was setup as a passive supply unit.  
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The rig was set to simply supply a specified humidity and volatile concentration level for a 

specified period of time. The compressed air supply inlet port on the instrument was 

connected to the laboratory air supply, while the sample supply port was kept closed with a 

1/8” Swagelok end connector. The total test time for GC retention was 1500 seconds, and 

was set to emulate the actual clinical test time for urine samples. An initial baseline was set 

for the first 300 seconds, after which the sample was introduced to the inlet of the GC 

column for 100 seconds.  A period of 980 seconds where only dry air was provided to the 

system then took place. This was done so that the introduced sample could travel through 

the column and be sent across the sensors. During 1080 seconds, which included the 

sample introduction and response periods, a temperature program was run on the GC with 

an initial temperature of 80 ⁰C held for 120 seconds. The temperature was started on a 

controlled ramp for 780 seconds from 80 ⁰C to a final temperature of 180 ⁰C, which is then 

held for an additional 180 seconds.  Once the response data had been gathered, a final 

purge of 300 seconds was instigated at 180 ⁰C through the column and sensors in order to 

remove any leftover sample in the system. The flow rate sent through the GC column was 

50 mL/minute at all points throughout the tests. 

The same four volatile compounds were used in this test as in the sensor sensitivity testing 

in Section 8.3.3.2.1, at a range of concentrations covering 10 to 50 ppm. These were all 

introduced at a relative humidity of 5%, as this is similar to the level seen by the WOLF 4.1 

study shown in Section 8.1 from urine headspace samples. The water vapour that causes 

the humidity levels in these samples will also be separated from the volatile portions, and 

so the relationship between the responses of volatiles at different humidity levels is not 

required for the full system.  The resulting response traces were then plotted against 

measurement time in order to determine the regions of time where different volatiles were 

sent from the column outlet and introduced to the sensors. 
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6.6.3. Results and Discussion 

6.6.3.1. Sensor Sensitivity Tests 

A number of tests were completed with only the sensor array connected in the pneumatic 

system, in order to test their sensitivities to volatile groups without the GC element. A total 

of four volatile groups were used as standards, including acetone, ethanol, toluene and 

valeraldehyde (or pentanal). For each of the individual tests, a single volatile sample (at a 

specified relative humidity) was supplied from the testing rig described in Chapter 4. The 

background humidity was first supplied at the start of testing during the “Baseline” stage, 

with the actual volatile being introduced after 300 seconds at the “Sample” stage, which 

lasted a further 150 seconds. Finally the sample is removed and then a 300-second “Purge” 

occurs. This test method was repeated for  sample concentrations of 10, 20, 50 and 100 

ppm and relative humidities in the range of 0 – 20% in steps of 5%. These conditions were 

chosen by encompassing the range of relative humidities that could be produced from a 

urine headspace sample when heated up to 10 minutes, and a reasonable range of volatile 

concentrations that are well above the sensor resolutions, but lower than estimated 

saturation levels. 

Each of these tests produced a text file with a column of response data from each sensor 

and a timestamp for each recorded value. The final resting level of the sensor response at 

the end of “Sample” (at 450 seconds) was taken from each sensor’s response at each 

humidity and concentration, and plotted as graphs showing the relationship of these values 

with the relative humidity across a single concentration. Separate graphs were also plotted 

showing the relationship between sensor response and volatile concentration across the 

full range of relative humidity. These results are shown in this section, with the response 

changes used to indicate the level of sensitivity of the sensors to both humidity and volatile 

concentrations. 
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Sensor response traces shown in the remainder of Section 6.6.3 all have associated colours 

as detailed in Table 6.2. 

Sensor Name CO NH3 H2S O3 AS-MLV-P 

Response Colour Black Red Green Yellow Blue 

Table 6.2: Corresponding response colours for WOLF 3.1 sensors in Section 6.6.3 

6.6.3.1.1. Acetone Sensor Test 

Figure 6.17 shows the variation in sensor response to 10 ppm acetone concentrations at a 

range of relative humidity levels between 0 and 20%. A strong positive correlation between 

humidity and response level can be easily seen in many of the plots, particularly in the CO 

sensor with a minor variation seen in the O3 sensor. Very little change is seen in both the 

NH3 and H2S sensors, which could be potentially due to saturation of the sensor. 

 

Figure 6.17: Graph of the relationship between sensor response and relative humidity at 10 

ppm acetone concentration 
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The relationships between acetone concentration of samples and sensor response at 

relative humidity levels ranging from 0-20% inclusive are shown in Figure 6.18. There is a 

positive increase in responses from the CO, O3 and AS-MLV-P sensors with increasing 

concentrations of acetones, with little to no change from the remaining devices throughout 

the full range. A number of variations in response can be seen with increasing humidity. In 

particular, the offset voltage of the CO and O3 sensors can be seen to have a positive 

correlation with humidity, but the overall gradient of response change over concentration 

does not seem to change. The H2S sensor seems to be overloaded in all of these examples 

of introduction to acetone. 
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Figure 6.18: Graphs showing the relationship between sensor responses and 10 – 100 ppm 

concentrations of acetone at relative humidity levels of 0%, 5%, 10%, 15% and 20% 

6.6.3.1.2. Ethanol Sensor Test 

Figure 6.19 displays the response characteristics of the sensors with increasing sample 

concentration of ethanol, within the specified 0-20% humidity level range. It can be seen 

that the CO and NH3 sensors only exhibit a very small or non-existent change in response 

with ethanol concentration within the 10 – 100 ppm range. However, the remaining 
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sensors show a strong positive correlation with ethanol concentration. The change in 

response of the H2S sensor is particularly extreme at higher humidity levels, while be 

somewhat erratic at lower concentrations throughout the full humidity range. 

 

 

 

Figure 6.19: Graphs showing the relationship between sensor responses and 10 – 100 ppm 

concentrations of ethanol at relative humidity levels of 0%, 5%, 10%, 15% and 20% 
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6.6.3.1.3. Toluene Sensor Test 

The response characteristics of the sensors after introduction to 10 – 100ppm 

concentrations of toluene are seen in Figure 6.20. The erroneous behaviour seen in the H2S 

and AS-MLV-P sensors is due to the order in which tests, at particular sample 

concentrations, were executed. These two sensors seem to have some hysteresis to their 

response to samples, as reflected by their increasing response to temporally consecutive 

tests. However, AS-MLV-P and CO sensors still show some positive correlation between 

toluene concentration and final body resistance. 
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Figure 6.20: Graphs showing the relationship between sensor responses and 10 – 100 ppm 

concentrations of toluene at relative humidity levels of 0%, 5%, 10%, 15% and 20% 
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6.6.3.1.4. Valeraldehyde Sensor Test 

Figure 6.21 illustrates the response of the sensors to concentrations of valeraldehyde in the 

range of 10 – 100 ppm at the relative humidity levels of 0 and 5%. Once again, it can be 

seen that there is a strong positive correlation between concentration and the final 

response voltage of the CO and AS-MLV-P sensors, with a weak relationship with the O3 

sensor. The H2S sensor seems to be saturated by these concentrations and humidity levels 

at this flow rate, while the NH3 sensor does not respond again. 

 

Figure 6.21: Graphs showing the relationship between sensor responses and 10 – 100 ppm 

concentrations of valeraldehyde, at relative humidity levels of 0% and 5% 

6.6.3.2. GC Retention Tests 

Once it had been proven that the micro hotplate metal oxide sensors proposed for the 

system would respond to a range of different volatiles, the GC element was added to 

introduce pre-separation. Prior to this, the GC had to be conditioned within the WOLF 3.1 

system without the sensors attached in order to provide a smooth baseline to the 

responses to volatile samples. This process involved maintaining a heat of 100 ⁰C for a 

period of 2 hours in order to remove any artefacts of the environment from the retentive 

elements of the column. The same volatiles were used in this set of experiments as the 

sensor-only tests shown in Section 6.6.3.1. The CO sensor response was found to be 
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constantly saturated at the maximum of 4950 mV throughout all GC tests, probably due to 

the low maximum flow rate through the GC of 50 mL/min at the pressure given at the mass 

flow controller outputs. Therefore, the response of this sensor was not included on the 

graphs for these tests. 

6.6.3.2.1. Acetone GC Test 

Acetone samples were first introduced to the system at concentrations of 10, 20 and 50 

ppm and at a relative humidity of 5%, which is within the range seen in urine headspace 

(Section 6.6.2). The results of these experiments are shown in Figure 6.22, with the 

consecutive graphs corresponding to increasing concentration. The response to humidity 

and air elements can be seen at the 950-second mark of all of the graphs, which is common 

to all of the samples run through the WOLF 3.1. There is also an area of response from the 

H2S, O3 and AS-MLV-P sensors at approximately 1300 seconds, which increases across the 

three graphs as concentration of acetone increases. The sensor population that responds in 

this area and the positive correlation with acetone concentration in samples provides 

strong evidence that this is the response of the sensors to acetone.  
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Figure 6.22: Graphs of WOLF 3.1 sensor response to acetone concentrations of 10 ppm, 20 

ppm and 50 ppm at 5% relative humidity 

6.6.3.2.2. Ethanol GC Test 

Samples that included concentrations of ethanol of 10, 20 and 50 ppm were individually 

introduced to the system at 5% relative humidity in a similar manner to the acetone 

samples described above (Section 6.6.3.2.1). The results of these are illustrated in Figure 

6.23, with increasing concentration of ethanol used in the samples in the same order as 

described previously. These show a similar response to air gases and humidity at 950 

seconds. In addition, there is also a response pattern shown at a similar starting time 

period of 1300 seconds to the acetone results. This response is seen in the same three 

sensors as acetone as well, including the H2S, O3 and AS-MLV-P. While at lower 

concentrations this response pattern is frustratingly difficult to distinguish from the 

acetone samples, the 50 ppm samples yielded a wider dual response peak in the case of 
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this second volatile. This indicates that ethanol is not distinctive from acetone at 

concentrations of 20 ppm or lower, but may be distinguished at concentrations higher than 

this. This is supported by the fact that ethanol and acetone are similar molecules in terms 

of size and polarity, and have similar retention times in other GC-based methods (25).   

 

Figure 6.23: Graphs of WOLF 3.1 sensor response to ethanol concentrations of 10 ppm, 20 

ppm and 50 ppm at 5% relative humidity 

6.6.3.2.3. Toluene GC Test 

Samples with concentrations of toluene of 10, 20 and 50 ppm were introduced into the 

system at a relative humidity of 5% in order to determine retention time of the GC column 

for the WOLF 3.1. The three graphs shown in Figure 6.24 illustrate the results of these 

experiments, with an increasing order of sample toluene concentration on consecutive 

graphs. There is a similar response of all sensors to the background air and humidity gases 



Development and Construction of the WOLF 3.1 GC/E-Nose Instrument 

206 
 

at approximately 950 seconds. Another area of response begins at 1300 seconds as seen at 

all concentrations, with a gradual increase that ends beyond the 1500-second mark.  This 

response is actually seen in all of the sensors, which is most visually apparent in the final 

graph corresponding to a sample concentration of 50 ppm. It is also seen that the peak 

response is reached on the H2S and O3 sensors before the end of the tests at the 

concentration at least, but that response is still increasing on the NH3 and AS-MLV-P sensor 

lines. This provides evidence that it would be beneficial to increase GC pressure, accelerate 

the temperature increase in the GC method, or lengthen the time that the system is left at 

its final high temperature in order to capture more of this response data. These changes 

have been shown to increase the retention measurement range of other GC-based systems 

(27). While some adjustment is needed to the final GC method, this response pattern is 

different to that of acetone and ethanol sensors in terms of both sensor population and 

retention time. This means that distinction of toluene-like chemical groups from those 

similar to ethanol and acetone can be achieved with this system. 
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Figure 6.24: Graphs of WOLF 3.1 sensor response to toluene concentrations of 10 ppm, 20 

ppm and 50 ppm at 5% relative humidity 

6.6.3.2.4. Valeraldehyde GC Test 

Valeraldehyde (or pentanal) samples were run through the instrument with concentrations 

of 10, 20 and 50 ppm and a relative humidity of 5%, similar to those of the other volatiles. 

Figure 6.25 shows a set of three graphs showing increasing concentrations of valeraldehyde 

on consecutive plots. Along with the response from humidity and air gases seen in all 

samples at 950 seconds, there is a general response shown across the full region of the 

graphs. This becomes more obvious when concentrations of 20 or 50 ppm are introduced 

the system, though is also somewhat apparent at 10 ppm. The region of response begins 

with a peak at approximately 325 seconds, and continues up in ramped fashion throughout 

the GC temperature method. These results give evidence to show that aldehydes such as 

valeraldehyde are not retained as effectively by the GC column as compared to other 
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chemical groups. The sensors responding to valeraldehyde in these tests include the O3, 

NH3 and AS-MLV-P sensors, with H2S sensor response remaining relatively constant for the 

full range of concentrations. This data highlights a very distinctive response of the system 

to aldehyde groups, including peaks in particular areas of retention time from a unique 

group of sensors. 

 

Figure 6.25: Graphs of WOLF 3.1 sensor response to valeraldehyde concentrations of 10 

ppm, 20 ppm and 50 ppm at 5% relative humidity 

6.7. Conclusions 

A new instrument that incorporates a micro-packed gas chromatography column for 

separating gases and volatiles with an array of micro-hotplate metal oxide gas sensors was 

successfully designed and constructed. The sensors are held within 3D-printed chambers 

that were designed to seal their sensitive filter layer in the sample flow path while soldered 
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onto bespoke PCBs. The instrument is controlled by an application-driven C-based software 

program. The data processing electronic hardware and pneumatic system were also 

designed and assembled in-house.  

A large body of testing has been completed on the WOLF 3.1 using four separate volatile 

compounds with different functional chemical groups. The scale of this experimentation 

includes the measurement of sensor response characteristics across a range of 

concentrations of each volatile, and a range of different relative humidity levels, both with 

and without the GC element providing temporal separation. This has provided a good 

degree of understanding the scales of response of the sensors and the level of retention 

that can be achieved by the GC column, and illustrated the ability of the instrument to 

distinguish between these volatile groups using these two factors as a metric. An 

experimental method for the analysis of gaseous samples with a constituent volatile and 

gas mix (including a representative humidity) has also been developed for the WOLF 3.1, 

which balances a timescale that allows sufficient chemical separation without becoming 

inappropriate for clinical triage use. These results are a direct measure the sensitivity of the 

sensors to volatiles of a particular concentration, but cannot be directly compared with the 

results of Section 5.5. 

It has been noted that a more ideal solution could be achieved in terms of volatile 

separation and response with a method that would take a longer time. However, this was 

not pursued due to the impact on the sample analysis time that is already 25 minutes long. 

A substantial amount of further experimentation could be done with the volatile testing rig 

to better characterise the responses of the WOLF 3.1 on a much wider range of chemicals, 

in terms of molecular weight and functional group. Mixes of volatiles with known 

concentrations could also be run through the instrument to better understand the 

separation that can be achieved with the current method or others. However, this 
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constitutes a large body of work and could not be completed within the scope of this 

investigation. 

This system represents a combination of separation and sensing elements that have not 

been used within commercially-available instruments as of yet. This will be helpful to add 

to comparative experimental results using other technologies, to understand its relative 

suitability to the clinical application of detecting colorectal cancer (covered in Chapter 7). 

The WOLF 3.1 was designed in a relatively portable form factor, to demonstrate its 

potential for use within a primary healthcare centre. 
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7. Experimental Testing of WOLF 4.1 
and WOLF 3.1 

Two new electronic nose instruments were developed for the purpose of detecting 

colorectal cancer from the gaseous and volatile content of urine headspace samples. Both 

the WOLF 4.1 and WOLF 3.1 were fitted with state-of-the-art sensors, which have not been 

employed in commercial electronic noses to date. A significant amount of experimental 

testing was performed on these instruments to compare them with the commercial 

instruments included in this investigation. Descriptions of the methods used and the results 

found from these experimental studies are detailed in this chapter. 

7.1. WOLF 4.1 Colorectal Cancer Distinction from Healthy and 

Diseased Controls 

After gaining insight on how known volatile groups affected the response of the WOLF 4.1 

sensors, testing of the machine’s diagnostic capabilities on biological samples was 

undertaken using urine from patients of colorectal cancer and irritable bowel syndrome, 

along with healthy subjects. 

7.1.1. Methods and Materials 

Urine samples were collected from pre-diagnosed patients recruited at the University 

Hospital of Coventry and Warwickshire, including a total of 39 suffering from CRC and 35 

from IBS. In addition, 18 additional healthy controls were tested (Ethical Approval Number: 

09/H1211/38).  Table 7.1 shows the demographics of each patient group. All cases of CRC 

(adenocarcinoma) were confirmed on colonoscopy and histology. The demographics do 

show a variation in some factors, including gender and age.  However, these are indicative 

of the average demographics of patients found within the disease groups.  For example, IBS 

sufferers are much more likely to be female, and CRC patients are only very rarely under 



Experimental Testing of WOLF 4.1 and WOLF 3.1 

215 
 

the age of 60. All samples were collected alongside urine “dipstick” tests were conducted 

to rule out the presence of infection, diabetes or renal disease.  Urine samples were stored 

frozen at -80 ± 0.1 oC within two hours of being collected, and then defrosted overnight at 

5 ± 0.1 oC before experimental testing. These were run through an identical experimental 

method to the volatile solutions as described in Section 5.5.2, with 5 mL aliquots running 

with initial headspace build-up at 40 ± 0.1 oC for 5 minutes followed by another 5 minutes 

of sample introduction. Clean air was then run through the instrument directly after each 

sampleintroduction step for 10 minutes. This was also repeated three times per sample, 

again to ensure that a full profile of volatile and gaseous content of each was being 

measured. 

 CRC IBS Controls 

Number 39 35 18 

Mean Age 70 48 41 

Male % 70 11 70 

Mean BMI 27 28 24 

Current Smokers 6.7% 10% 6.7% 

Alcohol - average units per week 7.3 2 9.2 

Table 7.1: Patient demographics for urine sample cohort run through the WOLF 4.1 

7.1.2. Statistical Analysis 

Statistical analysis was undertaken using multivariate techniques common to electronic 

noses. First, features were extracted from the raw data based on the baseline-corrected 

voltage changes averaged over three points (Sig-Base3), the response integrals from the 

start of response to the maximum response (AreaMax) and the times for the sensor 

responses to return from maximum to 50% of that value (T50). The equations 4.1-4.3 were 

used to calculate these three features in respective order, as described in Section 4.2.4. The 

remainder of the statistical methods for processing the extracted features into an LDA plot 

and then qualifying it are also equivalent to those described in this section. This resulted in 
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an assessment based on sensitivity and specificity of Colorectal Cancer against the relevant 

controls. 

7.1.3. Results and Discussion 

 

Figure 7.1: Voltage signals produced by the ISBs of a subset of WOLF 4.1 sensors from a 

urine sample 

Figure 7.1 shows the change in analogue voltage outputs from a subset of the most 

responsive sensors upon the introduction of a urine headspace sample into the WOLF 4.1. 

There is generally a positive change in current produced from these sensors, which is 

expected considering an increase in analytes causes a larger ionic current within the cells.  

These responses are at least partially produced by an increase in humidity from the 

headspace sample, which rises from a baseline of approximately 6.8% to around 14%.  



Experimental Testing of WOLF 4.1 and WOLF 3.1 

217 
 

However, individual sensor responses vary between different samples independently of 

humidity levels, proving the presence and detection. 

 

Figure 7.2:  Radial plot of the average baseline-corrected response of all 13 WOLF 4.1 

sensors to CRC (full line) and IBS (dashed line) urine samples 

The baseline-corrected change in output voltage of the WOLF 4.1 sensors to IBS and CRC 

samples (with all responses averaged) is shown in Figure 7.2. This highlights both the 

overall similarities in response to all urine samples and the more subtle variations used to 

find distinction between these two disease groups. There is generally a positive change in 

current produced from these sensors, which is expected considering an increase in analytes 
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causes a larger ionic current within the cells.  These responses are at least partially 

produced by an increase in humidity from the headspace of the sample (with approximate 

changes from 6.8% to 14%).  However, individual sensor responses vary between different 

samples independently of humidity levels, proving the presence and detection of gases and 

volatile groups. 

 

Figure 7.3: LDA classification separating all three sample groups of CRC, IBS and healthy 

controls (Ctl) 

Figure 7.3 shows a full classification of all three sample groups from which a degree of class 

distinction can be seen. However, there is also a large amount of inter-class overlap and 

intra-class spreading in this diagram. The spread shown in IBS is in agreement with its 

pathological circumstances as a widely-variable collection of symptoms rather than a well-
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characterised disease state. The healthy control group also shows a larger variation in 

response, again supporting the results of previous investigations where this feature is 

particularly highlighted as compared to any disease group (1).  A potential area for further 

study would be to investigate the three common subsets of IBS: IBS-D, IBS-C, and IBS-A to 

evaluate potential differences. The mean and average absolute deviations of the disease 

classes for each discriminant function in this LDA classification are shown in Table 7.2.  

  Disease Groups CRC IBS Volunteer 

Discriminant 
Function 1 

Mean Score  1.544 -1.001 -1.241 

Average Deviation from the Mean 0.791 0.820 0.737 

Discriminant 
Function 2 

Mean Score  0.071 -0.842 1.630 

Average Deviation from the Mean 0.831 0.791 0.845 

Table 7.2: Average discriminant function scores for 3-group LDA classification 

The LDA classification using only CRC and IBS groups is shown in Figure 7.4. This is the 

classification that most accurately represents the problem to be solved when patients 

enter a primary healthcare centre complaining of symptoms. Reasonable separation 

between the two groups is demonstrated as well as good clustering of similarly-classed 

samples, particularly in the case of CRC.   
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Figure 7.4: Box plot of LDA classification separating IBS and CRC sample groups 

The basis for measuring the diagnostic merit of this method was the re-classification of 

individual samples that were taken out of the main “training set” one-by-one and re-

introduced as unknowns.  The system attempted to successfully choose the class for each 

unknown sample using an (n-1) K-nearest-neighbour algorithm for estimating from which 

group it likely belonged.  Employing this technique, a sensitivity and specificity from this 

classification were found to be 78% and 79%, respectively.  These compare favourably to 

other non-invasive screening techniques such as Faecal Occult Blood and Faecal 

Immunochemical Testing (FIT), with success measures that are similar or higher than what 

has been discovered in diagnostic review studies (2). The mean and average absolute 

deviations in discriminant function scores of both disease classes in this LDA classification 

are shown in Table 7.3. 
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  Disease Groups CRC IBS 

Discriminant 
Function 1 

Mean Score 1.459 -1.082 

Average Deviation from the Mean 0.717 0.845 

Table 7.3: Average discriminant function scores for 2-group LDA classification 

This initial training set of samples has established an effective set of LDA discriminant 

functions for distinguishing between CRC and IBS within this pilot cohort.  A degree of 

individual variation was found in the profile of responses for urine samples in the same 

disease, which correlates with findings in other similar investigations (3). The sensitivities 

found in this study were much better than those shown with the Fox 4000, but were 

surpassed by those found using the Owlstone Lonestar FAIMS unit.  This suggests that 

there may insufficient overall concentration of volatiles within the sensitive range of the 

chemically-driven sensors to compete with the measurement of the physical property of 

ion mobility, which provides very low resolution and a detection range only limited by ion 

mass and charge. 

7.1.4. Conclusions 

A cohort of 92 total urine samples have been run through the WOLF 4.1 system, based on 

state-of-the-art sensors and control hardware being driven by custom LabVIEW software 

interface. This new system was successfully tested to prove the sensitivity of the sensors to 

common volatile organic groups. LDA plots produced from the WOLF 4.1 urine data show a 

reasonable separation of all three groups included in this study, although there is a degree 

of inter-group overlapping due to a significant number of outliers.  However, particularly 

well-clustered groups are shown when distinguishing colorectal cancer from irritable bowel 

syndrome.  Re-classification of single unknown samples into this latter case produced 78% 

sensitivity and 79% specificity for detecting CRC, which accurately represents a situation 

requiring this new diagnostic tool within the clinical setting.  
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7.2. WOLF 3.1 Colorectal Cancer Distinction from Healthy and 

Diseased Controls 

7.2.1. Introduction 

Once the response of the sensors on the WOLF 3.1 had been characterised for a variety of 

different volatile groups and the level of distinction between them was found to be 

reasonable, testing was required to apply this distinction level to a diagnostic application. 

The most appropriate sample framework for these tests would be a population of urine 

samples including those from patients of target disease, CRC against controls of IBS. The 

experimental and statistical methods used to characterise the validity of this instrument 

must also be designed to emulate the comparative experiments run on the WOLF 4.1 and 

commercial machines as closely as possible to allow for a direct comparison to be made. 

The number of samples used in this investigation must also be at a similar level in order to 

maintain its statistical relevance when comparing to the other parallel studies with 25 - 50 

samples per group. The clinical relevance of the proposed application has been explained in 

Chapter 2. 

7.2.2. Materials and Methods 

This set of experiments used the WOLF 3.1 GC/electronic nose developed in-house as 

described in Chapter 6 to use as the basis for classifying a set of urine samples from CRC 

and IBS patients. The pneumatic system is described in Section 6.6.2, and required a clean 

air supply from the laboratory (as described in Section 4.2.1) to be connected to the air 

supply port on the right hand side of the front face. Samples were connected to the centre 

and left side ports on the front of the machine, and the exhaust port at the rear was 

connected to a laboratory air exhaust line to remove the waste gas and volatile mix from 

the immediate area. The proposed experimental method for these test runs was 
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programmed into the instrument from the touchscreen at the front, using the menu 

system detailed in Chapter 6. 

Urine samples were brought to a temperature suitable for developing a headspace using a 

Dri-Block® DB-2D (Techne) heater with an adapted insert for holding the 22 mL vials used in 

this experiment. 

7.2.2.1. Urine Samples 

Urine samples were collected from pre-diagnosed patients recruited at the University 

Hospital of Coventry and Warwickshire, including a total of 26 CRC and 23 IBS patients 

(Ethical Approval Number: 09/H1211/38). Table 7.4 shows the demographics of each 

group. All cases of CRC (adenocarcinoma) were confirmed on colonoscopy and histology. 

All samples were collected alongside urine “dipstick” tests were conducted to rule out the 

presence of infection, diabetes or renal disease.   

 CRC IBS 

Number 26 23 

Mean BMI 28 25 

Current Smokers 7.7% 17.4% 

Alcohol - average units per week 9.5 4.1 

Table 7.4: Patient demographics for urine sample cohort run through the WOLF 3.1 

7.2.2.2. Experimental Method 

Urine samples were stored frozen at -80 oC within 2 hours of being collected, and then 

defrosted overnight at 5 oC before experimental testing. Each sample was individually 

divided into 10 mL aliquots and pipetted into 22 mL screw lid glass vials for analysis. A 

modified screw lid was attached with a 1/8” Swagelok inlet and outlet port for attaching to 

the WOLF 3.1 and an added nitrile O-ring for holding the required internal pressure. The 

components of the modified lid were heated at 60 oC for 4 hours prior to analysis in order 
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to remove any environmental volatile compounds being released from them. This lid was 

connected to the sample supply and inlet ports on the instrument, and the vial was placed 

into the Dri-Block® DB-2D heater insert held at a temperature of 40 oC for a period of 5 

minutes, so that a sufficient headspace could be developed above the actual urine sample.  

The WOLF 3.1 analysis method was started up simultaneously to the placement of the 

sample vial in the heater with a 300 second initial baseline time, so that sample 

introduction would occur at the correct time in terms of headspace development. The 

actual method run in the WOLF 3.1 was identical to that developed during single volatile 

testing as described in detail in Section 6.6.2.2.2 (GC heating method) and Section 6.6.2.1 

(sample introduction and flow rates). This experimental method took a total of 25 minutes 

for each sample to be run through the instrument, with air blanks run in between each 

urine sample. This was done to ensure that all remaining artefacts of the previous samples 

had been purged before a new sample was run, thus avoiding sample cross-contamination.  

CRC and IBS samples were run in random groups allocated to each day of test, to avoid 

introducing an artificial separation of groups due to sensor drift or environmental changes 

across the experimental run time. The responses of all sensors from a single sample run 

were saved along with timestamps in tab delimited text files on the on-board SD card in the 

WOLF 3.1, with each file including a set of headers showing information on method 

conditions and sensors included. 

7.2.2.3. Statistical Method 

Statistical analysis was undertaken using multivariate techniques common to electronic 

noses. First, features were extracted from the raw data processed by the pre-classified 

technique Linear Discriminant Analysis, using Multisens Analyzer as a commercial software 

package (JLM Innovation, Germany).  A wide variety of LDA classifications were attempted 

for distinguishing CRC samples from IBS controls using the data collected from the WOLF 
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3.1. The process began with dividing the raw responses of the sensors into slices of time 

length between 100 and 400 seconds. A class was set to each sample based on their 

disease state, and two or three features were extracted from some of their response slices. 

The number of features extracted depended on the full number of slices that were being 

used, in order to make a full set of features that were less than the number of samples 

included in the study for statistical validity. The LDA classification that achieved the highest 

success in sensitivity of CRC within a population of IBS controls used 100 second slices of 

the original sensor responses, and extracted features of “Sig-base3” and “Average” values. 

The definition of the feature “Sig-base3” is described in Section 4.2.4, and that of 

“Average” is shown in Equation 7.4 below: 

            
∑   

    
   

    
 (7.4) 

Similar to Section 7.1.2, the remainder of the statistical methods for processing the 

extracted features into an LDA plot and then qualifying it are equivalent to those described 

in Section 4.2.4. This resulted in an assessment based on sensitivity and specificity of 

Colorectal Cancer against the relevant controls. 

7.2.3. Results and Discussion 

Individual urine headspace samples of CRC and IBS patients were introduced to the 

machine after being allowed to develop for 5 minutes, which is 100 seconds after the start 

of the baseline. An example of the raw sensor response results from a single CRC sample is 

shown in Figure 7.5, which was run on an extended GC method of time length 2500 

seconds, in order to further separate the individual peaks for better visual representation. 

While the response is dominated by the peaks in all sensors associated with the air gases 

and humidity sent from the sample, there are a large number of different peaks that can be 
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picked out from individual sensors or distinctive sets. These unique responses generally 

appear after the humidity peak, which is expected as the column is designed to better 

retain the volatile groups of larger relative size than gaseous water. However, there are 

some variations in response earlier than this due to the inability of the column to retain 

chemical groups with a less significant polarity (4). 

 

Figure 7.5: WOLF 3.1 sensor response to a CRC urine headspace sample (CRC232) 

Figure 7.6 shows an example of the raw sensor responses from the WOLF 3.1 system after 

introduction of an IBS urine headspace sample. This sample was also run on an extended 

2500-second GC method in order to improve visualisation of the temporal separation of 

responses due to retention. A number of unique responses can be seen along the graph 

both before and after the humidity peak seen at 1050 seconds, which include different 

populations of sensors for each. These are also markedly different from the responses seen 

in the CRC sample, giving support to the idea that statistically-valid distinction between 

these two groups can be achieved by this method. 
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Figure 7.6: WOLF 3.1 sensor response to an IBS urine headspace sample (IBS150) 

Figure 7.7 illustrates a box plot of the 2-group LDA classification of CRC and IBS samples 

using time slices of 100 seconds and extraction of “Sig-base3” and average value for each.  

There is generally a very good distinction between the disease groups, with no overlap seen 

in any of the samples in this population. There is also a promising level of clustering among 

samples in both groups. However, it is still unexpected that there is a greater spread in CRC 

samples as compared with IBS, as the nature of IBS as a collection of conditions based on 

widely-variable symptoms would have predicted the opposite to be true. The storage 

conditions and relative age of the CRC samples could potentially be causing this larger 

spread, as the variety in the sample age in the population is greater than that of the IBS 

samples (5).  
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Figure 7.7: LDA classification of CRC and IBS samples from WOLF 3.1 data 

The high level of distinction between the CRC and IBS samples shown in Figure 7.7 is greatly 

supported by the results of re-classification using a KNN-based method on the associated 

classification.  The sensitivity and specificity of distinguishing CRC from IBS controls using 

this technique are 92% and 77% respectively. This level of sensitivity to CRC in particular is 

higher than is found from running urine headspace samples through any of the other 

commercial or developed machines included in this study. This is also a higher sensitivity 

than can be currently achieved using current clinical triage methods of immuno-chemical 

tests on patient stool samples (4, 5). The specificity of the technique is less impressive, but 

in the application of clinical triage the exclusion of a larger number of patients that have 

the non-inflammatory IBS is less critical than inclusion of potential CRC sufferers. 
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Figure 7.8: Mean values of “Sig-base3” for CRC and IBS samples across 20 included time 

slices 

Both Figure 7.8 and Figure 7.9 show polar plots of the average feature values of CRC and 

IBS samples from each of the 20 slices included in the 2-group classification. The first of 

these figures illustrates the values produced by the “Sig-base3” feature calculation, while 

the latter shows the “average” feature for the time slices. The large difference in scales of 

the features included in the two polar plots makes it more obvious where the differences 

are in “Sig-base3” features than in “Average”. However, a large number of these features 

on both plots show a significant variation in average response between the two disease 

groups. This provides evidence to show that many of the features were instrumental in 
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distinguishing between CRC and IBS samples. The effectiveness of temporal separation of 

gases and volatile groups by GC is also shown by the large change in variation between 

disease groups amongst the slices of time within the responses. 

 

Figure 7.9: Mean values of “Average” for CRC and IBS samples across 20 included time 

slices 

7.2.4. Conclusions and Future Work 

A population of 49 urine samples from CRC and IBS patients have been successfully run 

through the WOLF 3.1, following from successful trials with single volatile samples. The 25-

minute experimental method run internally on the instrument has been proven to 
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distinguish between distinct volatile groups, and the external experimental and statistical 

techniques were designed with a parallel comparison with the other urine cohort 

experiments in mind. LDA classification of these samples has yielded a method that shows 

very good clustering of both of the disease groups with no overlapped scatter. Resulting 

KNN re-classification of introduced unknowns into the main training set has revealed an 

impressive distinction level of CRC against IBS controls, with a resultant 92% sensitivity and 

77% specificity. These results compare favourably against the other instruments tested 

comparatively in this study, and in studies performed by other groups. 

This initial pilot investigation was useful in proof-of-concept of the diagnostic potential of 

this GC-electronic nose instrument, a more comprehensive study with larger sample 

populations is required to fully establish it as an effective method. Different digestive 

diseases may be introduced into the range of those run through the machine, either as 

controls against CRC detection or as separate target diseases. A great deal of more work 

could be done on developing a more appropriate GC method for the instrument using 

actual urine samples to maximise disease classification. After further optimisation of the 

experimental technique, prospective studies could be undertaken to indicate whether the 

WOLF 3.1 is capable of predicting the development of digestive disease in the future. 
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8. Conclusions and Further Work 
The aim of this project has been to investigate electronic nose technologies for use as a 

point-of-care diagnostic tool to aid in the initial triage detection of colorectal cancer, 

against symptomatic and healthy controls. The current clinical diagnostic situation for 

lower gastro-intestinal diseases highlights that patients of lower gastro-intestinal diseases 

can exhibit a wide variety of overlapping symptoms. These conditions can be easily 

confused with each other, and the only current diagnostic options with a consistent 

sensitivity and specificity involve highly invasive and costly endoscopic techniques. Review 

of electronic nose and sensing technologies revealed omissions of suitable sensor 

technologies in the range of commercially-available instruments. The current literature 

includes a number of indirect reviews of different electronic nose technologies, some of 

which conclude that current technologies could be viable for clinical use. However, direct 

experimental comparisons between different sensing techniques for a particular 

application are rare.  

The contents of urine headspace samples taken from 294 patients of a variety of lower 

gastro-intestinal diseases were analysed by gas chromatograph/mass spectrometer. A total 

of 10 candidate volatile compounds have been found to be common in a large majority of 

these samples (listed in Table 8.1), with each having been previously reported to be linked 

to diet and/or gut bacteria.  
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Volatile Compound 

Acetone 

2-Pentanone 

4-Heptanone 

1,3,5,7-Cyclooctatetraene 

Allyl Isothiocyanate 

Oxime-, methoxy-phenyl- 

1,3-Propanediamine 

Carvone 

Ethanone, 1,1'-(1,4-phenylene)bis 

Phenol, 2,4-bis(1,1-dimethylethyl)- 

Table 8.1: List of volatile chemicals found in urine headspace by GC-MS in this study 

A comparative experimental study has been completed for a cohort of four electronic nose 

instruments, each making use of a different range of sensor technologies. An experimental 

testing rig was setup to produce accurate concentrations of single volatiles within a 

gaseous sample with a controlled environmental humidity. The humidity portion of the rig 

was developed in-house, and interfaced with control software to form an automated 

system for accurately testing electronic nose instruments. The single volatile samples 

produced by the rig were used to verify the sensitivity of the sensor technologies under 

test. 

These instruments were each tested with a similarly-sized cohort of urine samples from the 

disease states of colorectal cancer, irritable bowel syndrome and healthy. The experimental 

methods used with all of them were designed to be parallel to each-other in every way 

possible in order to provide an accurate comparison. Where possible, a full 3-group linear 

discriminant analysis classification was made for all disease group samples run through a 

single instrument. However, the key metric for performance in detection of cancer was the 

sensitivity and specificity of a 2-group classification, in most cases comparing CRC and IBS 

samples. 
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The first two of these are commercially available, and make use of an electro-resistive 

sensor array (Fox 4000 from Alpha MOS Ltd.) and field asymmetric ion mobility 

spectrometry (Lonestar from Owlstone Ltd.) as their respective sensing elements. The Fox 

4000 performed very poorly in distinguishing colorectal cancer from controls of IBS, 

achieving a sensitivity of 54% and specificity of 48%. Only CRC patient and healthy 

volunteer data could be used from the Lonestar, for which the LDA classification yielded a 

sensitivity and specificity to the target of 88% and 60% respectively. 

The other two instruments were developed and constructed in-house, and use different 

combinations of sensing elements commercially-available as individual packages. The first 

of these was based on an array of electro-chemical and optical sensors, and was built to 

house a built-in PC to allow a degree of portability within the clinical environment. This 

“WOLF 4.1” system was first tested with a series of single volatile samples at a range of 

ppm-level concentrations in order to test the sensitivity of its sensors to common volatile 

groups, with reasonable success in the case of most sensors. A cohort of urine headspace 

samples was then run through it, including the same disease groups used with the 

commercial instruments. A two-group LDA classification yielded a 78% sensitivity and 79% 

specificity for distinction of CRC against IBS controls, which is significantly higher than the 

results shown by the Fox 4000. 

The last instrument to be developed and tested was a combined gas 

chromatography/electronic nose instrument that used a micropacked column for pre-

separation before analysis with an array of micro-hotplate metal oxide sensors. The “WOLF 

3.1” was housed in a portable desktop unit, with an on-board microcontroller and 

touchscreen system for independent use when provided with mains power supply. Initial 

testing with single volatile samples showed promise in terms of separation of volatiles by 

GC and sensitivity of the sensors. Testing was also done against a full urine cohort in this 
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case, with samples of the same three disease states included. When testing for distinction 

of CRC against IBS controls, this technique yielded a sensitivity of 92% and a specificity of 

77%. The sensitivity for the WOLF 3.1 in particular is considerably higher than the other 

instruments tested in this study, and is at an equal or higher level compared to non-

invasive diagnostic techniques that are currently used in clinical practice.  

Table 8.2 compares the four electronic noses tested in this investigation against the 

deliverables originally stated in Chapter 1. All machines used urine as a sample medium, 

which makes them all non-invasive techniques with a relatively high expected patient 

acceptance level (as discussed in Chapter 2). The Fox 4000 has clear shortcomings in terms 

of sensitivity and specificity to colorectal cancer. It is also a large (roughly 0.5 cubic metres) 

desktop machine that must have an uninterrupted supply of clean dry air, giving it issues 

with portability and the ability to function as a stand-alone device. The WOLF 4.1 is an 

improvement when compared to the Fox 4000 in sensitivity and specificity, but the reliance 

on clean air supply and external computing power for these two machines is essentially the 

same giving the WOLF 4.1 similar portability issues (dimensions 215 x 466 x 520 mm). The 

software was also designed with highly technical end users in mind, causing the current 

machine to require assumed knowledge that is unsuitable for clinical staff. The Lonestar 

provides an improved sensitivity and specificity to disease in a smaller package (383 x 262 x 

195 mm) than the previous two instruments. However, the Lonestar also has very limited 

methodology options in terms of sampling and airflow without the peripheral equipment 

equipment detailed in Chapter 4, which have the same air supply and space requirements 

as the WOLF 4.1 and Fox 4000. It has also currently only been tested against healthy 

controls and so is not directly comparable to the other machines. The WOLF 3.1 provides 

the best match to the list of deliverables, including the highest degree of sensitivity and a 

comparable specificity. Its dimensions (221.5 x 150 x 311 mm) give it a good degree of 
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portability and its touchscreen interface can be operated independently by non-skilled 

users. One area that could be improved is the ability for it to perform statistical analysis on 

its own, but the hardware capability is already in-built to achieve this following further 

development of control software. This initial data shows promise for the suitability of 

GC/electronic nose instruments for aiding in triage and diagnosis of potential colorectal 

cancer patients within a point-of-care,  primary healthcare environment. 

Deliverables 
AlphaMOS 
Fox 4000 

Owlstone 
Lonestar WOLF 4.1 WOLF 3.1 

Technologies used 
18 metal 

oxides 
FAIMS 

10 ampero-
metric, 3 
optical 

GC, 5 metal 
oxides 

Deliverables     

Sufficient sensitivity to detect patients 
that are suffering from colorectal 

cancer 
54% 88%* 78% 92% 

Sufficient specificity to screen out 
patients not suffering from colorectal 

cancer 
48% 60%* 79% 77% 

Ability to be used as a stand-alone 
device 

Needs air 
supply + 

external PC 

Needs air 
supply, 
external 
analysis 

Needs air 
supply + 

regulation 

Needs air 
supply 

Non-invasive technique Yes - urine Yes - urine Yes - urine Yes - urine 

Use of ‘acceptable’ medium for 
analysis 

Yes - urine Yes - urine Yes - urine Yes - urine 

Reasonable degree of portability 
Desktop w/ 
external PC 

Portable, 
large setup 
peripherals 

Desktop w/ 
external 
monitor 

Portable 

Low technical knowledge required for 
analysis 

No for 
statistics 

No for 
statistics 

No 
No for 

statistics 

Relative low cost per treatment 
compared to colonoscopy 

Scale-
dependent 

Scale-
dependent 

Scale-
dependent 

Scale-
dependent 

Reasonable analysis time ~10 minutes ~20 minutes ~10 minutes ~25 minutes 

Ability to be serviced and maintained 
easily 

Not tested Not tested Not tested Not tested 

Ability to store patient data for later 
use and updates 

Yes Yes Yes Yes 

Robust design that cannot be easily 
damaged by contact 

Not tested Not tested Not tested Not tested 

Table 8.2: Comparison of the tested electronic noses against original deliverables 
 * sensitivity/specificity of Lonestar not directly comparable 
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8.1. Recommendations and Further Work 

The GC-MS analysis was only qualitative in nature due to a wide variation in a number of 

different environmental factors between all samples. Conditions such as pH and salt 

concentration should be controlled using experimental pre-processing techniques for GC-

MS, so that full quantitative analysis can be done to give much more clarity to the urine 

content data. The GC-MS also has a limitation in sensitivity that caused difficulty in 

accurately detecting the urine headspace content, which was improve to some degree 

through the use of pre-concentration techniques such as ITEX and SPME.  

Contamination of samples by additional compounds in the environment can occur during 

collection, while be put into storage (in addition to cross-contamination), and when being 

aliquoted for analysis. The results of this investigation could be improved through the use 

of air monitoring systems and barriers between individual samples and users (such as by 

using gloves) in order to minimise the risk of contamination. There are other confounding 

factors on the analysis urine samples that cannot be controlled, including the level of water 

dilution in the samples. This effect occurs naturally as subjects will have varying levels of 

excess water to be excreted over time. The effect of this could be minimised in future work 

by lengthening headspace generation times to ensure that sufficient volatiles are present in 

all samples for suitable distinction.  

The technologies combined together in the electronic nose instruments included in the 

study are by no means exhaustive; there are a large number of different permutations that 

could be considered. The combination of gas chromatography with a metal oxide sensor 

array was the most successful technique in this study, and so its use as a pre-separation 

technique for other sensing technologies such as ion mobility spectrometry or an 

amperometric sensor array could also achieve high diagnostic value.  
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The Owlstone Lonestar only had useful data for colorectal cancer and healthy volunteer 

samples, but it would be much more coherent to have another dataset include IBS samples 

to give a better picture of clinical relevance. The choice of sensors on the “WOLF 4.1” 

instrument was based on the newest range of available electro-chemical and small optical 

sensors on the market. However, some of them did not respond with any reasonable 

sensitivity to the volatile markers in either the standard or urine samples. This list of 

sensors included in the array could be reduced without much effect on the overall 

sensitivity of the system, and those omitted could be replaced with sensors that may 

contribute to a greater extent. The single volatile samples used to determine sensitivity of 

the sensors in the WOLF 4.1 had concentrations calculated in volume of water, which did 

not result in a direct measure of sensor sensitivity. This led to the employment of a volatile 

standard generation rig to produce set concentrations in air on the WOLF 3.1; in future 

studies this rig could also be used on the WOLF 4.1 in order to directly compare the 

sensitivities of the two sensing methods. 

The WOLF 3.1 produced the highest sensitivity and specificity levels as compared to the 

other electronic noses being tested, but there are a number of improvements that could 

still be made to its operation. The instrument’s electronic hardware has the capability to 

complete statistical analysis on-line, and an algorithm could be implemented in its software 

for future studies. Different combinations of sensors could also be tested in its array to 

investigate their diagnostic potential in conjunction with GC separation. Finally, a pumped 

pneumatic system could be better developed and tested in the WOLF 3.1 to prepare it for 

fully stand-alone usage in clinic. 

There was also no exact overlap of samples run through all four instruments, although the 

experimental methods used were as similar as they could be. A more definitive parallel 

comparative experiment can be conducted with a single cohort of urine samples with 



Conclusions and Further Work 

240 
 

separate aliquots being run through all machines, now that they are all fully developed. 

Further investigation could be undertaken to see the ability of the instruments to stage the 

disease progression using urine headspace samples, and to differentiate between different 

groups of diseases (including IBDs, for example). Finally, the sample numbers run through 

all of the instruments are currently at a very small scale, and their true sensitivities and 

specificities to colorectal cancer may be very different from the values shown here. There is 

scope for scaling up the size of cohorts run through the candidate WOLF 3.1 instrument, so 

that a more accurate picture of its diagnostic potential can be ascertained. 
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Appendix 1: Additional GC-MS 
Chromatograms and Mass Spectra 

 

Figure 3.5: Example of the mass spectrum of an artefact peak found at 6.48 minutes 

 

Figure 3.6: Example of the mass spectrum of an artefact peak found at 7.81 minutes 
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Figure 3.7: Example of the mass spectrum of an artefact peak found at 9.00 minutes 

 

Figure 3.8: Example of the mass spectrum of an artefact peak found at 10.04 minutes 
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Common Peak Mass Spectra in Urine Samples 

 

Figure 3.13: Example mass spectrum of an ITEX peak found at 2.83 minutes 

 

Figure 3.14: Example mass spectrum of an ITEX peak found at 2.95 minutes 
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Figure 3.16: Example mass spectrum of an ITEX peak found at 4.70 minutes 

 

Figure 3.17: Example mass spectrum of an ITEX peak found at 5.30 minutes 
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Figure 3.18: Example mass spectrum of an ITEX peak found at 5.37 minutes 

 

Figure 3.19: Example mass spectrum of an ITEX peak found at 9.75 minutes 
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Figure 3.21: Example mass spectrum of a SPME peak found at 4.67 minutes 

 

Figure 3.22: Example mass spectrum of a SPME peak found at 4.75 minutes 
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Figure 3.23: Example mass spectrum of a SPME peak found at 5.31 minutes 

 

Figure 3.24: Example mass spectrum of a SPME peak found at 7.95 minutes 
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Figure 3.25: Example mass spectrum of a SPME peak found at 9.53 minutes 

 

  Peak at 5.37 minutes 

Tally Scores Top Three Candidate Chemicals 

9 1,2-Ethanediamine, N,N'-dimethyl- 

8 Acetaldehyde 

7 Ethylamine, 2-(adamantan-1-yl)-1-methyl- 

Sample Set: Rates of Incidence within Set 

Full Set 22.6% 

CRC 8.3% 

IBS 29.8% 

V 28.2% 

CO 18.4% 

CLD 15.4% 

Table 1: List of top three tallied NIST classifications for ITEX peaks at 5.37 minutes and rates 

of incidence (low in red, normal in black, high in green) 
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  Peak at 6.63 minutes 

Tally Scores Top three Candidate Chemicals 

22 1H-Pyrrole, 2,5-dihydro-1-nitroso- 

20 Nonanal 

14 
 8,9,9,10,10,11-Hexafluoro-4,4-dimethyl-3,5-
dioxatetracyclo[5.4.1.0(2,6).0(8,11)]dodecane 

Sample Set: Rates of Incidence within Set 

Full Set 42.1% 

CRC 61.7% 

IBS 49.1% 

V 35.2% 

CO 5.3% 

CLD 50.0% 

Table 2: List of top three tallied NIST classifications for ITEX peaks at 6.63 minutes and rates 

of incidence (low in red, normal in black, high in green) 

 

 

  Peak at 6.71 minutes 

Tally Scores Top three Candidate Chemicals 

17 4-tert-butylamphetamine 

17 Amphetamine 

12 2,4-Bis(diazo)adamantane 

Sample Set: Rates of Incidence within Set 

Full Set 25.8% 

CRC 30.0% 

IBS 21.1% 

V 15.5% 

CO 28.9% 

CLD 34.6% 

Table 3: List of top three tallied NIST classifications for ITEX peaks at 6.71 minutes and rates 

of incidence (low in red, normal in black, high in green) 
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  Peak at 6.89 minutes 

Tally Scores Top three Candidate Chemicals 

9 Ethyne, fluoro- 

8 N-carbobenzyloxy-l-tyrosyl-l-valine 

7 Amphetamine 

Sample Set: Rates of Incidence within Set 

Full Set 25.0% 

CRC 16.7% 

IBS 24.6% 

V 28.2% 

CO 21.1% 

CLD 42.3% 

Table 4: List of top three tallied NIST classifications for ITEX peaks at 6.89 minutes and rates 

of incidence (low in red, normal in black, high in green) 

 

 

 

  Peak at 7.33 minutes 

Tally Scores Top three Candidate Chemicals 

13 1-Ethyl-1(1-cyclobutylidenethyl)cyclobutane 

12 3-Nonyn-2-ol 

11 Cyclohexanol, 1-methyl-4-(1-methylethyl)- 

Sample Set: Rates of Incidence within Set 

Full Set 33.7% 

CRC 13.3% 

IBS 29.8% 

V 31.0% 

CO 36.8% 

CLD 69.2% 

Table 5: List of top three tallied NIST classifications for ITEX peaks at 7.33 minutes and rates 

of incidence (low in red, normal in black, high in green) 
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  Peak at 7.64 minutes 

Tally Scores Top three Candidate Chemicals 

14 2-Propenoic acid, 3-[2-(aminocarbonyl)phenyl]- 

12 Benzeneethanamine, 4-chloro-α-methyl- 

12 Benzofuran, 4,7-dimethyl- 

Sample Set: Rates of Incidence within Set 

Full Set 50.0% 

CRC 70.0% 

IBS 42.1% 

V 42.3% 

CO 36.8% 

CLD 26.9% 

Table 6: List of top three tallied NIST classifications for ITEX peaks at 7.64 minutes and rates 

of incidence (low in red, normal in black, high in green) 

 

 

 

  Peak at 8.51 minutes 

Tally Scores Top three Candidate Chemicals 

5 2,5-Pyrrolidinedione, 1-penta-3,4-dienyl- 

5 4-Hydroxy-3-methylacetophenone 

5 Cyclopropyl carbinol 

Sample Set: Rates of Incidence within Set 

Full Set 18.7% 

CRC 21.7% 

IBS 21.1% 

V 11.3% 

CO 0.0% 

CLD 38.5% 

Table 7: List of top three tallied NIST classifications for ITEX peaks at 8.51 minutes and rates 

of incidence (low in red, normal in black, high in green) 
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  Peak at 8.68 minutes 

Tally Scores Top three Candidate Chemicals 

13 Pentane-2,4-dione, 3-(1-adamantyl)- 

11 2-n-butyladamantane 

11 2-Methyl-2-butyl-1,3-benzodioxole 

Sample Set: Rates of Incidence within Set 

Full Set 15.1% 

CRC 1.7% 

IBS 17.5% 

V 14.1% 

CO 15.8% 

CLD 30.8% 

Table 8: List of top three tallied NIST classifications for ITEX peaks at 8.68 minutes and rates 

of incidence (low in red, normal in black, high in green) 

 

 

 

  Peak at 8.79 minutes 

Tally Scores Top three Candidate Chemicals 

12 Ethanedial, dioxime 

8 3,3-Dimethyl-4-methylamino-butan-2-one 

5 1-Octadecanamine, N-methyl- 

Sample Set: Rates of Incidence within Set 

Full Set 13.5% 

CRC 8.3% 

IBS 3.5% 

V 7.0% 

CO 28.9% 

CLD 26.9% 

Table 9: List of top three tallied NIST classifications for ITEX peaks at 8.79 minutes and rates 

of incidence (low in red, normal in black, high in green) 
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  Peak at 9.83 minutes 

Tally Scores Top three Candidate Chemicals 

18 Ethanone, 1-[4-(1-hydroxy-1-methylethyl)phenyl]- 

12 Benzeneethanol, α-methyl-3-(1-methylethyl)- 

10 1-(3,5-Dimethyl-1-adamantanoyl)semicarbazide 

Sample Set: Rates of Incidence within Set 

Full Set 18.3% 

CRC 11.7% 

IBS 26.3% 

V 8.5% 

CO 10.5% 

CLD 38.5% 

Table 10: List of top three tallied NIST classifications for ITEX peaks at 9.83 minutes and 

rates of incidence (low in red, normal in black, high in green) 

 

 


