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Limiting Concept Spread in Environments with Interacting
Concepts
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ABSTRACT
The propagation of concepts in a population of agents is a
form of influence spread, which can be modelled as a cas-
cade from an initial set of individuals. In real-world envi-
ronments there may be many concepts spreading and inter-
acting. Previous work does not consider utilising concept
interactions to limit the spread of a concept. In this paper
we present a method for limiting concept spread, in envi-
ronments where concepts interact and do not block others
from spreading. We define a model that allows for the inter-
actions between any number of concepts to be represented
and, using this model, develop a solution to the influence
limitation problem, which aims to minimise the spread of
a target concept through the use of a secondary inhibiting
concept. We present a heuristic, called maximum probable
gain, and compare its performance to established heuristics
for manipulating influence spread in both simulated small-
world networks and real-world networks.

CCS Concepts
•Computing methodologies → Multi-agent systems;

General Terms
Algorithms, Experimentation

Keywords
Influence spread; Influence limitation; Opinion propagation;
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1. INTRODUCTION
In many environments it is possible for strategies, con-

cepts or infections to spread within a population. The na-
ture of propagation is determined by the interactions be-
tween individuals. Populations of autonomous entities are
complex systems, meaning that the net effects of propaga-
tion are hard to predict or influence despite being due to
individual behaviour. Such propagation is a form of influ-
ence spread, which can be modelled as a cascade from a set
of initial individuals [11].
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Insight gained by understanding how to control cascades
in abstract populations has many applications, such as in-
forming epidemic control, viral marketing, and understand-
ing convention emergence in multi-agent systems. For exam-
ple, characterising the spread of disease aids in identifying
at risk groups, enabling containment efforts to be focused
to avoid wider spread. Understanding how ideas propagate
can inform viral marketing or identify influential individuals.
The key enabler is being able to identify the set of individ-
uals who can help spread an idea or product, or who can
restrict future spreading (e.g. through their vaccination).

Several models have been developed to characterise in-
fluence spread [5, 11], along with techniques to maximise
spread [2]. These models represent a population as a net-
work, with individuals being represented as nodes and edges
representing the influence that can travel from one individ-
ual to another. Existing models of influence spread typically
assume that only a single concept exists, or that concepts are
blocking, preventing an individual from activating multiple
concepts [8, 9]. However, individuals in real world environ-
ments can have many concepts active simultaneously. Fur-
thermore, these concepts can interact, affecting the strength
with which they spread between individuals.

Not every concept that can spread in a population is desir-
able or beneficial, for example a disease or rumour, and we
may wish to limit its spread. Previous investigations assume
blocking concepts, selecting nodes that are either immunised
against the undesirable concept or chosen as seeds for a sec-
ondary blocking concept. While the use of blocking concepts
is reasonable in an epidemiology context, as immunisation
is often effective, it is less generally applicable, for exam-
ple in limiting the spread of rumours or opinions. Instead,
we assume that individuals can activate multiple interacting
concepts, that affect the ability of other concepts to spread.

Minimising the spread of a target concept, through the
selection of a seed set for a secondary inhibiting concept, is
known as the influence limitation problem. Previous inves-
tigations have focused on finding nodes present on a high
number of shortest paths [24], or nodes connecting com-
munities [4]. In environments where concepts are blocking,
selecting these nodes prevents the undesirable concept from
utilising the most influential network paths. However, when
concepts merely inhibit each other, the blocking of a path
cannot be guaranteed and such methods are less effective. If
a node is on many shortest paths, but is not near to the start
of the target concept’s cascade, it is unlikely to encounter the
target concept, and so cannot help to limit concept spread.
Where concepts interact, the likelihood of a node to activate



the target concept, and the expected gain from that activa-
tion, must be considered when attempting to limit spread.

In this paper, we focus on an adaptation of the influence
limitation problem, where concepts can interact. We present
a model of concept interactions and propose the maximum
probable gain heuristic, measuring its effectiveness against
established methods. Furthermore, we investigate the effect
of response time, by attempting to limit the spread of a con-
cept at different stages of a cascade. The evaluation focuses
on synthetic small-world networks, as many real-world net-
works exhibit small-world properties [3, 18], and on selected
real-world networks from the Stanford SNAP project.

2. RELATED WORK
Many influence spread problems are sub-modular, and a

greedy approach is often effective in approximating the op-
timal solution [4, 11]. Hill climbing can be used to select the
node that provides the largest incremental increase to the
performance of the current seed set [6, 7, 11]. However, for
real-world problem sizes, this approach is often intractable,
since it has a time complexity of O(n3) or higher [21]. De-
spite this, hill climbing is often used as a baseline when new
influence spread models are defined. Methods to efficiently
evaluate the performance increase from selecting a node have
been proposed, notably, the degree discount heuristic [2].

Some greedy approaches can be made tractable, such as
the Greedy Viral Stopper (GSV) algorithm, for environ-
ments in which ‘correct’ and ‘incorrect’ information propa-
gates, with the correct information superseding incorrect [19].
While typically intractable, if we divide the network into
communities [1], the GSV algorithm can be performed on in-
dividual communities efficiently and the solutions combined.

Methods for influence limitation typically assume that
concepts block. Fan et al. propose using nodes that con-
nect one community within a network to another, known as
bridge ends [4]. Similarly, Li et al. select nodes identified
as ‘protector’ nodes, whose immunization against an unde-
sired concept protects nodes identified as bridge ends con-
necting to other communities [15]. Other methods have also
been proposed that remove edges between communities [17].
While protecting bridge ends can limit the spread of a con-
cept, it becomes less effective when path blocking cannot be
guaranteed. Measuring the betweeness of nodes is also an
effective, but computationally expensive, approach [24].

Kotnis and Kuri propose a solution where individuals can
be trained, at a cost based on their degree and the qual-
ity of training, to be better at deciding if information is a
rumour [13]. For a given budget, having more low qual-
ity trained individuals produces better results than having
fewer individuals with higher quality training. This model
assumes a single cascade, but discusses the possibility of
other messages affecting the spread of a rumour.

A related problem, selecting a group of nodes and improv-
ing their ability to spread a target concept, is discussed by
Liontis and Pitoura [16]. Only the selected nodes have this
improved spreading ability, which cannot be passed on to
neighbouring nodes. This approach is based on the PMIA
algorithm for influence spread, proposed by Wang et al.,
which considers nodes likely to activate a concept, and the
expected activations gained from that node’s influence [23].
Liontis and Pitoura focus on boosting concepts, but these
techniques may also prove effective for inhibiting concepts.

An individual’s opinions can affect the concepts they adopt

or spread. These opinions can be represented through net-
work and node attributes, as in the adaptation of the linear
threshold model proposed by Kaur and He [10]. Each edge
has two separate influence strengths, representing a posi-
tive and negative opinion respectively. Similarly, a node has
both a positive and negative threshold. A node will activate
the opinion that first exceeds its corresponding threshold.
Nodes with high positive influence are selected to block the
negative opinion from being further spread. Stitch et al.
present another method of representing opinions, by assign-
ing an attitude score to individual nodes [22]. Nodes with a
high attitude score are more likely to spread negative word-
of-mouth, even if they have been mostly exposed to positive
opinions, and vice versa for nodes with low attitude scores.
Both of these models again utilise the blocking assumption.

Budak et al. propose the highest infectees heuristic that,
for environments with ‘good’ and ‘bad’ cascades, gives re-
sults comparable to greedy hill climbing. This heuristic as-
sumes knowledge of the ‘bad’ cascade’s seed set, and simu-
lates a large number of cascades using that seed set. Nodes
are ranked by the number of simulations in which they be-
came infected with the ‘bad’ cascade, and are selected as
seeds for the ‘good’ cascade in descending order.

Others have focused on modifying edges in the network,
rather than selecting nodes to block the spread of a concept.
Li et al. proposed reducing the edge weight to limit the rate
of transmission [14]. The weight of an edge is expressed as
a function of the degree of its end points, and the trans-
mission rate between two nodes is proportional to the edge
weight. The use of inflammation immunization, which re-
duces edge weight by a chosen factor, is shown to be effective
in this model and may translate well to real-world scenarios.
Notably, the reduction of edge weights lowers the transmis-
sion weight while not compromising network efficiency as a
whole. Conversely, the bond percolation approach suggested
by Kimura et al. curbs the spread of an infection but, by re-
moving links, damages the network structure and in turn,
the ability of the network to transmit other concepts [12].

3. CONCEPT INTERACTION MODEL
To model complex concept interaction, we propose a model

for concept interaction based on that presented by Sanz et
al. [20], extended to be applicable to any number of con-
cepts. We focus on the Independent Cascade Model (ICM),
due to its widespread use in previous work. In the ICM,
newly activated nodes make one attempt to spread the con-
cept to each of their neighbours, with a probability, p, of
success [5]. Although we define propagation and influence
strength in terms of the ICM, the model for concept inter-
action is more generally applicable.

We assume that an environment consists of nodes in a
network. Each node, v, has a set of incoming neighbours,
N i

v, and outgoing neighbours, No
v , where N i

v can influence v,
and v can influence No

v . These sets are not necessarily dis-
joint and may be equivalent in some environments, allowing
directed and undirected graphs to be represented. The set
of active concepts for node v at time j is Cj

v .
We must also define how the concepts active on a node

affect interactions with other concepts. The concepts al-
ready active on a node will affect its ability to spread and
adopt future concepts. For each node, v, we represent the
adopting context and the spreading context. The function
Contextv,jadopt(c) describes how the concepts active on v at



time j affect the chance of v adopting concept c, while
Contextv,jspread(c) describes how the concepts active on v
modify v’s chance to spread concept c.

When nodes interact, the spread of a concept can be af-
fected by other concepts active on both the infector and the
receiver. The concept relationship function CRspread(c, c′)
describes the effect of c′ on the chance of c being successfully
activated on a receiver node, when an infector spreading c
also has c′ active. Similarly, the concept relationship func-
tion, CRadopt(c, c

′), describes how c′ affects the chance of c
being adopted by a receiver with c′ active.

These functions describe the relationship, positive or neg-
ative, between any two concepts. A concept relationship
function with a positive value defines a boosting relationship,
a negative value defines an inhibiting relationship, while 0
implies that the concepts do not affect each other. Concept
relationship functions are used when evaluating the adopting
or spreading context of a node, and are node independent.

Some concepts may prevent others from spreading to a
node, which is known as blocking. Each concept c has an
excluded set, Xc, of concepts it blocks. No concept in Xc

can activate on a node with c already active.
The ability of a concept to propagate from one node to

another is dependent on the strength of the influence one
node exerts on the other. The influence strength, Icm,n(j),
that node m can exert on node n at time j for concept c,
captures this. If Icm,n(j) = 0, then m cannot influence n
with respect to concept c.

For this work, we define Icm,n(j) = p for any pair of nodes

such that m ∈ N i
n and p is the chance of infection. In each

timestep, each node that activated a concept in the previous
timestep can attempt to spread that concept to each of its
neighbours. To consider concept interaction, we define the
concept relationship functions, as follows:

CRadopt(c, c
′) = CRspread(c, c′) = r

where r ∈ [0, 1] is a feature of the environment that repre-
sents the extent to which concept c′ affects concept c. With
this definition, c is affected by c′ in the same way when c′

is active on either the infector or the receiver. For a given
concept, c, we must define how its interacts with the context
of a node, v, at time j. The adopting and spreading contexts
for concept c are defined as:

Contextv,jadopt(c) = 1 +
∑

c′∈Ct
v\c

CRadopt(c, c
′)

Contextv,jspread(c) = 1 +
∑

c′∈Ct
v\c

CRspread(c, c′)

Here, we sum the contribution of the corresponding concept
relationship function for each concept already active on the
node. We add 1 to this sum, allowing the context functions
to scale the strength of the influence. Finally, we define
how these context functions affect the influence exerted on
a receiver by an infector. For a node v, the contextual influ-
ence, CIcw,v(j), exerted by incoming neighbour w in relation
to concept c at timestep j is defined as:

CIcw,v(j) = Icw,v(j)× Contextv,jadopt(c)× Context
w,j
spread(c)

The influence strength is weighted by the adopting context
of the receiver and the spreading context of the infector.

4. INFLUENCE SPREAD LIMITATION
Previous work has focused on blocking concept spread,

typically allowing a node to have a maximum of one concept
active [4, 10, 15, 22]. For the influence limitation problem,
we aim to select the seed set for a secondary inhibiting con-
cept to minimise the spread of a primary target concept. We
do not assume blocking concepts, and so require a method
of selection that uses inhibiting concepts effectively.

At the start of an influence cascade, a set of nodes will
begin with a concept active, which can then spread to other
nodes. This initial set of nodes is known as the seed set for
that concept. Selecting seed nodes for a concept in order to
limit the spread of another concept requires consideration
of a node’s position in the network in relation to nodes that
have the target concept active. Nodes that are closer to
target concept nodes will be more likely to encounter the
target concept. Typically, in the ICM, each successive round
of a cascade infects fewer nodes than the previous round due
to the relatively low probability of infection, and in turn has
fewer chances to spread the concept to new nodes. This
means that early rounds are when a concept maximises its
spread, and so limiting early spread is likely to be effective.

To limit spread we should focus on nodes that have a high
expected value to the target concept, such as nodes with a
high degree, or those present on the shortest path to more
central nodes. Infecting these nodes with the inhibiting con-
cept will lower the expected gain of the target concept, and
the influence limitation problem becomes a case of maximis-
ing that loss of expected gain.

Aiming to maximise the spread of the inhibiting concept
may also prove effective. By maximising the spread of the
inhibiting concept, we aim to maximise the number of nega-
tive interactions with the target concept, inhibiting its abil-
ity to spread. In the remainder of this section we describe an
established influence maximisation heuristic, namely degree
discount, and our proposed influence limitation heuristic,
called Maximum Probable Gain.

4.1 Degree Discount
Degree discount has been shown to be an efficient method

of influence maximisation, approaching the performance of
the greedy algorithm [2]. It relies on calculating the expected
nodes gained from adding a node to the seed set. When a
node is selected as a seed, the expected gain of selecting its
neighbours is lowered. Additionally, those neighbours now
have a chance to be activated in the first round of a cascade.
The heuristic therefore weights the degree of a node based
on these factors, updating the value for any neighbour of
the node being added to the seed set. Nodes are initially
ranked by degree, and when a node is added to the seed
set its neighbours have their degree set to dv − 2tv − (dv −
tv) ∗ tv ∗ p, where dv is the original degree, tv is the number
of neighbours in the seed set and p is the probability of
infection. This calculation is based on the expected benefit
of such nodes (details of its derivation can be found in [2]).

4.2 Maximum Probable Gain
Typically, heuristics to limit influence spread select nodes

based on the assumption that they block the target concept,
and as such focus on nodes that are likely to be encountered
or that link groups of nodes together. Intuitively, under the
blocking assumption, the aim is to remove paths that the
target concept could travel, limiting its spread. However,



without the blocking assumption, a focus on these nodes
may not be the best approach.

Without the blocking assumption, the local influence of a
node is more important. We wish to select locally influential
nodes, that can spread the inhibiting concept and minimise
the spread of the target concept. This is similar to betwee-
ness, and selecting nodes with high betweeness means that
they are likely to be encountered by the target concept and
to reach a higher number of nodes. However, betweeness is
expensive and requires the calculation of a large number of
shortest paths. As such, we need an alternative method.

To maximise the chance of interactions between the two
concepts, we should focus on nodes more likely to be reached
by the target concept. By inhibiting the ability of a node to
spread, we also lower the chance of its neighbours activat-
ing the target concept. Therefore, the higher the expected
gain in target concept activations of a node, the greater the
impact to the spread of the target concept if that node acti-
vates the inhibiting concept. As such, the aim of the Maxi-
mum Probable Gain (MPG) heuristic is to select nodes that
are likely to activate the target concept, and provide a high
number of expected activations for it.

To calculate a node’s viability as a seed node for the in-
hibiting concept, we set a threshold for exploration, θ. From
any node, we consider only nodes that can be reached with
a probability higher than θ.

We define the set St as the set of nodes with the target
concept, t, active. Each node n ∈ St has a set of reach-
able nodes, Rn, which contains all nodes with a probability
of being reached more than, or equal to, θ. The probabil-
ity of a concept to reach node m from n is the propagation
probability, p(n,m), which can be calculated recursively us-
ing the most probable path from n to m, MPP(n,m). This
is the path with the highest chance of traversal, which can
be calculated for a neighbourhood of nodes relatively sim-
ply. MPP(n,m) is an ordered set, with length l, of nodes,
{n0, n1..., nl−1}, where n0 = n and nl−1 = m. Thus, for a
given node, ni ∈ MPP(n,m) we define p(n, ni) as:

p(n, ni) = p(n, ni−1)× p(ni−1, ni) (1)

where p(n, n) = 1.
We can calculate MPP(n,m), where m ∈ Rn, as we con-

struct the Rn set, through a snowball sampling method.
Starting at n, we sample each neighbour, v, and calculate
their p(n, v). Since we are looking at one hop neighbours,
this is also their most probable path, MPP(n, v). We add
each v such that p(n, v) < θ to Rn and then explore their
neighbours. We then calculate their propagation probability
and most probable path. Each node v with p(n, v) < θ is
added to Rn, before exploring their neighbours. If a node w
is encountered multiple times, we choose the neighbour that
results in the highest propagation probability, and define
MPP(n,w) as:

MPP(n,w) ={MPP(n, v)

+ w|∀m ∈ N i
w ∧m ∈ Rn : p(n, v) ≥ p(n,m)}

(2)

where N i
w is the set of incoming neighbours of node w.

The process continues until we can add no more nodes that
have a propagation probability above θ. Since probability
decreases with each hop, all paths to each node in Rn that
could possibly have a propagation probability above θ are

explored. If we re-consider a node when we encounter it
again, we will eventually find the most probable path for
all nodes in Rn. Furthermore, if a node, w has the target
concept, t, already active then p(n,w) = 0 and we do not
add it to Rn and so do not explore w’s neighbour nodes.

We wish to find the nodes that are most likely to be
reached by the target concept, and so we consider each node
in the Rn sets for all n ∈ St. We wish to find the proba-
bility that a node, v will activate the target concept from
any possible source, n ∈ St. This is known as v’s activation
probability, ap(v), defined as:

ap(v) =
∑

n∈St,v∈Rn

p(n, v) (3)

That is, the sum of the propagation probability to v from
each node in St that can reach v. With the activation prob-
ability calculated, we must now consider a node’s expected
gain if it activates the target concept.

To do this, for a node v that is a member of at least one Rn

set, where n ∈ St, we construct Rv, using the same method
as before. Again, we focus on the target concept and, if a
node has the target concept already active we do not add
it to Rv and do not explore its neighbours. We can find
the expected number of nodes that will activate the target
concept, E(v), if v activates the target concept by totalling
the propagation probability of nodes in Rv:

E(v) =
∑

w∈Rv

p(v, w) (4)

If a node has both the target and inhibiting concepts ac-
tive, its expected gain will lower by a proportion determined
by the strength of the inhibiting relationship. The higher the
expected gain, the higher the loss of infections for the target
concept, and as such we desire nodes with a high E(v).

The expected gain of a node is weighted by the probability
it will activate the target concept, to help identify influential
nodes. This weighted expected gain for a node v, WE(v),
represents the value of v to the spread of the target concept:

WE(v) = E(v)× ap(v) (5)

We select the node with the highest WE(v) value as a
seed node for the inhibiting concept, as it represents a node
likely to interact with the target concept and presents a high
possible gain for the target concept.

If we select a node v to be a seed node for the inhibit-
ing concept, its target concept activation probability will
change, and similarly for its outgoing neighbours. The ex-
pected gain for v’s incoming neighbours will also change. As
such, we update two groups of nodes.

First, for any node w such that v ∈ Rw, we must update
E(w). This involves considering the effect of the inhibit-
ing concept on not only the propagation probability of our
chosen node, v, but any nodes m where v ∈ MPP (w,m).
As such, we must recalculate E(w) using the new chance of
infection, which takes the relationship between the two con-
cepts into account. For a nodem, such that v ∈MPP (w,m),
we replace the original value of p(w,m) with pt(w,m), which
will include the concept context between v and its preced-
ing and proceeding nodes in the path. The context functions
can scale p(w,m) to calculate pt(w,m), due to p(w,m) being



Table 1: Experimental parameters.

Parameter Values

Graph Size (nodes)
1000, 5000, 10000, 25000,

50000, 100000
Clustering Exponent 0.25, 0.75

Seed Set Size 10, 25, 50, 100, 250, 500
CR function values -0.2, -0.4, -0.6, -0.8, -1
Burn-in Timesteps 0, 2, 5

calculated through a series of multiplications:

pt(w,m) =p(w,m)× Context
wi−1,j

spread(t)× Contextwi,j
adopt(t)

× Contextwi,j
spread(t)× Context

wi+1,j

adopt (t)

(6)

where t is the target concept, j is the current timestep, and
v = ni ∈ MPP(n,m). The updated propagation probabili-
ties are used to recalculate E(w) as before.

Second, any node m such that v ∈ MPP(n,m), where n ∈
St, will have its activation probability, ap(m), affected by v
being chosen to activate the inhibiting concept. We subtract
the original p(n,m) for all n where v ∈ MPP(n,m) from
ap(m) and add pt(n,m), calculated as above. If pt(n,m)
falls below θ, then we remove it from Rn and do not include
pt(n,m) in m’s updated ap(m) calculation. If this causes
ap(m) = 0, then we do not consider m any further.

With this update, we can recalculate WE(v) for all nodes
and select the new highest valued node, then update the
required nodes. We repeat this until the seed set for the
inhibiting concept has reached its desired size.

5. EXPERIMENTAL SETUP
We wish to evaluate the effectiveness of our proposed

heuristic, Maximum Probable Gain, for providing a solu-
tion to the influence minimisation problem against heuristics
used to maximise the spread of an inhibiting concept. For
this work, we assume θ = 0.001, to allow for the exploration
of the local neighbourhood of a node in the MPG heuristic.

The primary target concept has a randomly selected seed
set in all our experiments. We use the following heuristics
to select a seed set for our secondary inhibiting concept:

• Random nodes – nodes are chosen randomly

• Highest Degree – we select nodes with highest degree

• Single Discount – nodes with the highest degree that
do not connect to a previously chosen seed are selected

• Degree Discount – nodes with the highest 1-hop ex-
pected gain are selected

• Maximum Probable Gain (MPG) – nodes likely to ac-
tivate target concept, with high expected gain, are se-
lected

We evaluate our heuristics using a variety of ‘burn-in’
times, to explore the impact of response time on effective-
ness. The primary target concept will spread for a given
number of timesteps, referred to as the ‘burn-in’, before we
introduce the secondary inhibiting concept and select seeds
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Figure 1: Mean activations of the target concept given the
heuristic used to select the inhibiting concept, for small-
world networks of 25000 nodes, with a clustering coefficient
of 0.75, a seed set of 100 nodes and no burn in time.

for it. If the burn-in is too long, the primary concept will
have completed its cascade by the time we introduce our
second concept, and so influence minimisation will be inef-
fective. Therefore, we focus on short burn-in times.

Furthermore, we test a range of inhibiting relationship
strengths. This allows us to determine if different strategies
may be more viable at different levels of inhibition.

Simulated small-world networks are used to evaluate the
performance of our heuristic, with a range of sizes and two
different clustering components, 0.25 and 0.75. These are
generated using the Kleinberg small world generator pro-
vided in the JUNG graph framework1. We also run tests on
selected Stanford SNAP project networks2, namely DBLP,
CA-CondMat and soc-Epinions1, to evaluate the perfor-
mance of the heuristic on real-world network topologies. The
experimental parameters are given in Table 1.

6. RESULTS
MPG performs best with no burn-in, as shown in Ta-

ble 2 where we see a significant difference between the per-
formance of MPG and other heuristics. The other, degree
based, heuristics are consistently outperformed by MPG, re-
gardless of seed set size or network clustering coefficient.
Further, we note that for the larger networks displayed in
Table 2, the performance difference of MPG compared to
others begins to extend beyond the range of MPG’s stan-
dard deviation. In the results displayed in Table 2, there is
a statistically significant difference between the performance
of MPG and other heuristics (p < 0.05), with our certainty
increasing as the seed set size increases. We observe no sig-
nificant difference between the performance of the degree
based heuristics, with their expected ranges overlapping sig-
nificantly. Seed set size impacts performance more than net-
work size, with MPG performing similarly for the same seed
set sizes across different networks. Furthermore, clustering

1http://jung.sourceforge.net/
2http://snap.stanford.edu/data
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Figure 2: Mean activations of the target concept given the
heuristic used to select the inhibiting concept, for small-
world networks of 25000 nodes, with a clustering coefficient
of 0.75, a seed set of 100 nodes and a burn in of 5 timesteps.

coefficient has minimal impact on heuristic performance. In
all cases, despite the clustering coefficient tripling, we see no
significant impact to performance.

As the burn-in time increases, there is a significant impact
in the performance of the MPG heuristic. Figure 1 shows
its performance with no burn-in, and Figure 2 presents the
performance for a 5 timestep burn-in, highlighting this ef-
fect. With higher burn-in times, the difference in perfor-
mance between the heuristics decreases, until at a burn-in of
5 timesteps they are nearly identical. The expected ranges of
each heuristic also begin to converge, and while with larger
seed sets we still see MPG outperforming the other heuristics
with a low burn-in, at higher burn-in times there is no statis-
tically significant difference between the performance of any
heuristic (p > 0.5 in all cases). In Figure 2, the results vary
by a maximum of 1.2 nodes, which is much smaller than the
range of 30 shown in Figure 1. The reason for this perfor-
mance impact appears to be that, after the first 3 timesteps,
activations begin to plateau, as seen in Figure 3. Introduc-
ing a secondary inhibiting concept will naturally be less ef-
fective when the primary concept is reaching the end of its
cascade, regardless of the strategy used. In particular, the
approach of MPG, which attempts to find nodes with high
expected gain and inhibit their ability to spread the target
concept, is less effective when a cascade is nearing its end, as
there will be fewer activations, reducing the importance of
expected gain. Overall, lower burn-in times result in better
MPG performance, with no difference between performance
at the highest burn-in times.

Thus far we have focused on the larger networks used in
our evaluation, however in smaller networks, and smaller
seed sets, we still see a statistically significant difference
in the performance of MPG compared to the other degree
based heuristics. Across all network sizes, it can be seen that
MPG performs best with a low burn-in, becoming less effec-
tive as the burn-in increases. The performance difference
scales with network size, as seen by comparing Figure 4 and
Figure 1, although seed set size is also a factor, as discussed
above. Figure 5 demonstrates that a high burn-in results in
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Figure 3: Mean activations of the target concept each
timestep in a 25000 node small-world network (0.75 cluster-
ing exponent), for varying heuristics and burn-in (BI) times
for introducing the inhibiting concept, and a CR relationship
of -1 and seed set of 500 nodes.

no significant difference between heuristics for smaller net-
works. A high burn-in results in erratic performance within
a narrow range for all heuristics, and this range only mini-
mally increases with network size.

While our discussion in this paper mainly focuses on small-
world networks, we also evaluated the performance of MPG
for a small set of scale-free networks for comparison. In
scale-free networks, all non-random heuristics performed at
a similar level. It is only in scale-free networks with a non-
zero burn-in time that a statistically significant result is
observed, with MPG being outperformed by degree based
heuristics. This further highlights the importance of burn-
in time. We also note that in scale-free networks, the target
concept can spread much further than in similar small-world
networks. For scale-free networks with 25000 nodes, and a
seed set of 100 nodes, the target concept achieves an aver-
age of 389 nodes with the least effective heuristic, random
selection. Alternatively, in small-world networks of the same
network and seed set size the target concept gains 218 acti-
vations when using random selection.

Part of the reason for this reduction in performance could
be linked to the degree distribution of the different networks.
The MPG heuristic focuses on finding nodes with a high ex-
pected cost, that are likely to be activated by the target
concept, typically nodes of high degree or the neighbours
of those nodes. Due to the existence of hub nodes within
scale-free networks, this can result in many seed nodes fo-
cused on blocking the target concept from the same node,
which is still likely to activate the target concept because of
its extremely high degree. High degree nodes are less vul-
nerable to inhibiting effects, as they will be exposed to the
target concept enough times that the activation probability
remains high. If a majority of our resources are focused on
hub nodes, which in a 25000 node network may include up
to 6 nodes with more than 500 edges each, smaller clusters
of highly connected nodes can activate and spread the tar-
get concept unimpeded. Furthermore, there is a high chance



Table 2: Average infections for the target concept for small-world networks, with no burn-in and a CR strength of -1, with
standard deviation in brackets, and the best performing heuristic in bold.

Network
Size

Clustering
Exponent

Seed Set
Size

MPG
Degree

Discount
Single Discount Degree

10K 0.25 10 Seeds 19.88 (5.71) 21.63 (6.39) 21.73 (6.44) 21.74 (6.46)
10K 0.25 25 Seeds 48.23 (8.94) 54.33 (10.1) 54.6 (10.43) 54.45 (10.54)
10K 0.25 50 Seeds 97.01 (13.17) 108.16 (14.12) 107.71 (14.16) 107.88 (13.95)
10K 0.75 10 Seeds 19.57 (5.48) 22.06 (6.4) 21.78 (6.4) 21.78 (6.43)
10K 0.75 25 Seeds 48.95 (9.12) 54.03 (10.47) 54.72 (10.26) 54.37 (10.5)
10K 0.75 50 Seeds 97.81 (13.28) 107.77 (14.39) 108.21 (14.83) 107.98 (14.17)
25K 0.25 100 Seeds 196.17 (16.91) 218.26 (18.59) 218.71 (19.71) 218.13 (19.68)
25K 0.25 250 Seeds 477.96 (29.03) 527.64 (30.84) 527.4 (31.53) 528.88 (30.69)
25K 0.25 500 Seeds 924.11 (39.33) 1005.3 (40.94) 1007.34 (40.4) 1007.11 (39.46)
25K 0.75 100 Seeds 195.53 (17.04) 218 (19.33) 217.75 (17.96) 217.7 (18.56)
25K 0.75 250 Seeds 476.78 (28.14) 527.74 (30.88) 526.58 (30.11) 528.58 (30.12)
25K 0.75 500 Seeds 926.95 (35.66) 1008.87 (40.34) 1007.51 (39.1) 1006.26 (38.15)
50K 0.25 100 Seeds 199.03 (18.17) 220.93 (19.62) 220.66 (19.77) 220.93 (19.79)
50K 0.25 250 Seeds 487.13 (28.19) 541.93 (32.733) 541.96 (33.94) 541.58 (33.92)
50K 0.25 500 Seeds 954.39 (38.48) 1053.61 (43.77) 1053.82 (43.87) 1052.27 (44.89)
50K 0.75 100 Seeds 197.37 (17.55) 219.29 (19.54) 220.23 (19.5) 220.35 (19.8)
50K 0.75 250 Seeds 485.69 (30.17) 540.7 (32.74) 541.18 (31.91) 541.1 (32.48)
50K 0.75 500 Seeds 954.79 (38.74) 1055.72 (43.79) 1054.37 (43.68) 1054.72 (41.29)
100K 0.25 100 Seeds 197.88 (19.52) 221.83 (20.93) 221.8 (20.84) 221.45 (19.87)
100K 0.25 250 Seeds 491.21 (29.61) 548.68 (33.08) 548.47 (32.84) 548.44 (33.39)
100K 0.25 500 Seeds 974.5 (42.95) 1079.57 (47.63) 1080.02 (47.32) 1079.74 (45.82)
100K 0.75 100 Seeds 196.83 (17.52) 221.07 (19.41) 221.72 (19.33) 221.68 (19.6)
100K 0.75 250 Seeds 490.74 (28.78) 549.35 (33.95) 549.02 (32.9) 549.17 (33.46)
100K 0.75 500 Seeds 971.04 (40.17) 1079.89 (44.8) 1079.78 (46.07) 1079.64 (46)

of a hub node activating the target concept regardless and
spreading it to its neighbours. Comparatively, in a small-
world network of 25000 nodes, we see on average a majority
(more than 18000) of nodes have a degree of 5 or 6. This
more balanced degree distribution avoids the situation where
one node is significantly increasing the expected activations
of many, allowing for more influence paths to be affected.

We also evaluated the performance of MPG using real-
world network topologies. While these networks have small-
world properties, they are not pure small-world networks, as
is the case for the synthetic networks considered above. We
would therefore expect to see a reduction in the performance
of MPG. As in the synthetic networks, we see that a non-zero
burn-in time removes the difference in performance and that
MPG begins to be less effective, becoming comparable to, or
sometimes worse than, other heuristics. Additionally, when
compared to synthetic networks, the inhibiting relationship
strength has a larger impact on the performance of MPG.

Table 3 shows the performance of different heuristics, when
the inhibiting relation is strongest. We see a varied perfor-
mance of the MPG heuristic within these networks. Cluster-
ing coefficient is important, as the network that MPG per-
forms least effectively in is also the network with the lowest
clustering exponent, namely soc-Epinions1. This relates to
MPG’s ability to perform well in small-world networks, as
they typically have a high clustering exponent. Looking at
the CA-CondMat network, we see the impact of diameter
and average degree. The CA-CondMat network has both
a higher average degree, and lower diameter than DBLP,
which significantly affects the performance of MPG. We see

in the DBLP network that MPG performs significantly bet-
ter than other heuristics, while it performs inconsistently in
CA-CondMat. A node with a higher degree has more paths
available to spread a concept, and will have a higher num-
ber of expected activations. If a network has low diameter,
the average path to any other node is shorter. Together,
these factors create an environment similar to that created
by scale-free networks, where resources are spent on a node
that is likely to activate the target concept anyway. This
may also help to explain why MPG performs comparatively
worse in CA-CondMat with a higher number of seed nodes,
as the target concept will also be wider spread, and MPG
will still spend the majority of its resources on any nodes
with hub-like properties. MPG performs well in the DBLP
network as it is closest to a pure small-world network.

Furthermore, we see that the impact of the inhibiting rela-
tionship is greater in real-world networks than the synthetic
networks. Particularly within the DBLP network, where we
see the greatest difference in the performance of MPG and
other heuristics. At a CR strength of −0.6, we still see a
significant difference, but at −0.4 this diminishes. With a
CR strength of −0.2 the difference is minimal, sometimes
only 30 nodes, with a standard deviation of 300. This shows
that there is no major difference between the heuristics when
the inhibiting relationship is weak, even in a network that
is favourable towards the use of MPG.

Overall, we see that MPG performs best in small-world
networks, with no burn-in time. In these environments,
MPG consistently, significantly, outperforms degree based
heuristics. With a high burn-in time, all heuristics per-



Table 3: Average infections for the target concept for real-world networks, with no burn-in and a CR strength of -1, with
standard deviation in brackets, and the best performing heuristic in bold.

Network Nodes Edges
Seed Set

Size
MPG Degree Discount Single Discount Degree

DBLP 317080 1049866 100 695.68 (341.04) 1076.65 (335.48) 1102.83 (318.76) 1161.06 (389.88)
DBLP 317080 1049866 250 1117.76 (252.22) 1710.72 (283.72) 1773.45 (281.41) 1954.52 (381.47)
CA-

CondMat
23133 186936 100 367.31 (70.26) 415 (63.26) 439.66 (74.06) 440.62 (82.92)

CA-
CondMat

23133 186936 250 722.86 (75.84) 676.51 (55.69) 699.74 (69.06) 735.29 (65.65)

soc-
Epinions1

75879 508837 100 469.36 (123.01) 324.14 (71.84) 320.57 (72.06) 324.51 (71.96)

soc-
Epinions1

75879 508837 250 938.72 (162.6) 575.31 (73.9) 580.86 (71.29) 584.92 (71.17)
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Figure 4: Mean activations of the target concept given the
heuristic used to select the inhibiting concept, for small-
world networks of 5000 nodes, with a clustering coefficient
of 0.75, a seed set of 10 nodes and no burn-in.

formed at a similar level, due to the inhibiting concept be-
ing introduced as the target concept’s cascade is ending.
In scale-free networks, we see no heuristic significantly per-
forming better than others. MPG is outperformed in scale-
free networks when the burn-in time is higher, showing that
concept maximisation heuristics for the inhibiting concept
should be used in those cases. Real-world network tests fur-
ther show the importance of burn-in time, with lower burn-
in times again resulting in better performance for the MPG
heuristic. The inhibiting relationship strength is more im-
portant in real-world networks, with MPG performing bet-
ter as it becomes stronger, and the MPG heuristics favours
networks with strong small-world properties.

7. CONCLUSIONS
In this paper, we introduce the influence limitation prob-

lem, where we aim to limit the spread of a target concept
through the use of a secondary inhibiting concept. We pro-
pose the maximum potential gain (MPG) heuristic as a so-
lution to this problem, and evaluate its effectiveness against
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Figure 5: Mean activations of the target concept given the
heuristic used to select the inhibiting concept, for small-
world networks of 5000 nodes, with a clustering coefficient
of 0.75, a seed set of 10 nodes and a burn-in of 5 timesteps.

influence maximisation techniques. Our evaluation focused
on small-world networks, but also explored a small set of
scale-free networks and selected real-world networks. We
have shown that MPG performs significantly better than
other heuristics in small-world environments with no burn-
in time. Burn-in time was shown to be a significant factor in
the performance of MPG, with higher burn-in resulting in
no statistically significant difference between the heuristics
in small-world environments.

In the future, we wish to evaluate the performance of MPG
in order to place a secondary boosting concept, enabling us
to evaluate MPG for indirect influence maximisation. Since
the heuristic aims to find nodes with a high expected poten-
tial, and utilise the inhibiting relationship to lower it, it may
also be effective if we aim to increase that potential. In addi-
tion, we also wish to investigate the performance of MPG in
more complex network environments, including multi-layer
networks, representing the different social networks an indi-
vidual may belong to.
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