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ABSTRACT

Context. Coronal rain composed of cool plasma condensations falling from coronal heights is a phenomenon occurring in footpoint-
heated coronal loops as a result of thermal instability. High-resolution coronal rain observations suggest that condensations move with
less than free-fall speed and can sometimes undergo longitudinal oscillations.
Aims. We investigate the evolution and dynamics of plasma condensations in a gravitationally stratified coronal loop.
Methods. We carried out 2.5 dimensional magnetohydrodynamic simulations of a cool plasma condensation in a gravitationally
stratified coronal loop and analysed its evolution, kinematics, and the evolution of the forces acting on the condensation. We further
propose a one-dimensional analytical model of the condensation dynamics.
Results. The motion of plasma condensations is found to be strongly affected by the pressure of the coronal loop plasma. Maximum
downward velocities are in agreement with recent coronal rain observations. A high coronal magnetic field or low condensation mass
can lead to damped oscillatory motion of the condensations that are caused by the pressure gradient force and magnetic tension force
that results from bending of the magnetic field in the lower part of the coronal loop. Period and damping scaling time of the oscillatory
motion seen in the simulations are consistent with values predicted by the model.
Conclusions. The combined effect of pressure gradients in the coronal loop plasma and magnetic tension force that results from
changes in magnetic field geometry can explain observed sub-ballistic motion and longitudinal oscillations of coronal rain.
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1. Introduction

Coronal loop plasma can be thermally unstable and subject to
formation of cool and dense condensations (Field 1965). The-
rmal instability is likely to occur in loops with heating con-
centrated at the footpoints. If the thermal conduction along
the loop is not efficient enough, the radiation losses near
the loop top overcome the heating input, resulting in the
onset of a thermally unstable regime (Antiochos et al. 1999;
Karpen et al. 2001). Coronal rain is a phenomenon occurring
in such footpoint-heated coronal loops as a result of catas-
trophic cooling. It consists of cool plasma condensations that
are formed near the loop top and fall towards the solar sur-
face, guided by the magnetic field lines. High-resolution so-
lar observations show that the motion of coronal rain blobs
is significantly sub-ballistic (e.g. Antolin & Verwichte 2011;
Antolin & Rouppe van der Voort 2012; Kohutova & Verwichte
2016), suggesting that forces other than gravity have an impor-
tant effect on its dynamics and evolution.

The formation and evolution of plasma condensations have
been addressed by a number of numerical studies using 1D hy-
drodynamic simulations. The thermal instability onset and coro-
nal rain formation in a coronal loop with footpoint-concentrated
heating typically depends on the spatial distribution of the heat-
ing input and often occurs in periodically repeating limit cycles
(Müller et al. 2003, 2004). Using a 1D approach, the pressure ef-
fects are found to have a strong influence on the motion of the
individual coronal rain blobs, often counteracting the effect of
gravity (Antolin et al. 2010; Oliver et al. 2014) in the case of a

compressed plasma below the condensation, providing net up-
ward pressure gradient force. Conversely, if a plasma condensa-
tion is moving in a low-pressure region, such as in the wake of a
previously formed condensation, this can result in motion that is
faster than free-fall (Müller et al. 2005).

The 1D hydrodynamic simulations modelling the evolution
along a single field line neglect the effect of the finite magnetic
field, however, as all of the plasma is confined below the con-
densation, and therefore 1D simulations likely overestimate the
decelerating effects of coronal loop plasma pressure gradients.
The effect of the finite magnetic field on the coronal rain evolu-
tion is only properly accounted for when using multidimensional
magnetohydrodynamical (MHD) models.

Siphon flows due to local pressure variations can also have
strong effect on the motion and morphology of coronal rain con-
densations, as shown by 2D MHD studies of coronal rain forma-
tion and evolution (Fang et al. 2013, 2015).

Using 2D MHD simulations, Mackay & Galsgaard (2001)
investigated the evolution of a density enhancement in the con-
text of cool prominence material. The density enhancement was
found to rebound multiple times in this setup, which was ex-
plained as a two-step process: a deceleration phase caused by the
pressure build-up below the enhancement, and a rebound phase
caused by the restoring action of the Lorentz force, stressing the
importance of the effect a finite magnetic field can have on the
evolution of plasma condensations. Similar longitudinal oscilla-
tions of cool condensations can be seen in coronal rain obser-
vations (Kohutova & Verwichte 2016; Verwichte et al. 2017) as

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A23, page 1 of 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/80791434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1051/0004-6361/201629912
http://www.aanda.org
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0


A&A 602, A23 (2017)

well as in prominences (e.g. Jing et al. 2003; Zhang et al. 2012;
Luna et al. 2014).

We model the evolution of a cool plasma condensation in
a realistically stratified atmosphere that includes a cool high-
density chromosphere, a transition region layer, and a hot
corona. We choose our problem setup to be representative for
small coronal rain condensations that are typically formed in
thermally unstable loops as a result of catastrophic cooling. The
geometry of the problem is therefore set up to reflect the coro-
nal loop geometry, accounting for the reduced effective gravity
due to the semicircular shape of the loop. We furthermore anal-
yse condensation trajectories, velocities, and accelerations in or-
der to be able to compare them to recent high-resolution coro-
nal rain observations. Finally, we propose an analytical model
for the condensation dynamics in order to explain the oscillatory
behaviour of the plasma condensations and compare it with the
numerical findings.

2. Numerical model

We solve the nonlinear MHD equations using Lare2d (Arber
et al. 2001) assuming neutral fully conductive plasma and in-
cluding gravity and shock viscosity. We use the ideal equation
of state. Thermal conduction and radiative transport are not in-
cluded in the energy equation. We introduce a rectangular sim-
ulation domain with the extent −30 Mm 6 x 6 30 Mm in hor-
izontal direction and −120 Mm 6 y 6 120 Mm in the vertical
direction with 512 × 2048 resolution. The coronal loop is mod-
elled as a straight slab along the y-direction. We adopt the vari-
able s to describe the position along the loop from one foot-
point to the other, that is, s = y + 120 Mm. Thus, the loop has a
length of 240 Mm. The density variation between the loop and
the background medium in the x-direction is given by the sym-
metric Epstein profile (Nakariakov & Roberts 1995):

ρ(x) = ρe + (ρi − ρe) sech2
( x
a

)
, (1)

where ρe and ρi are external and internal densities, respectively,
and a = 3 Mm is the loop scale width. We assume a constant den-
sity contrast ρi/ρe = 10 throughout the whole domain. In order
for the setup to be representative of a semicircular coronal loop
with both footpoints anchored to the photosphere, the effective
gravity geff is determined assuming a semicircular coronal loop
of length L and varies with the coordinate along the loop s as

geff(s) = g� cos
(
πs
L

)
, (2)

such that it equals zero at the loop top in the centre of the do-
main and g� = 274 m s−2 at the loop footpoints at the top and
bottom domain boundaries (Fig. 1). The temperature is constant
in the x-direction. In the vertical direction we create a realis-
tic temperature variation representative of an atmosphere con-
sisting of a cool chromosphere, transition region layer and hot
corona by adopting a smoothed step function temperature pro-
file (Cargill et al. 1997):

T (s) =
1
2

(Tcor + Tph) +
1
2

(Tcor − Tph) tanh
(

h(s) − st

∆s

)
, (3)

with photospheric temperature Tph = 6 × 103 K, coronal tem-
perature Tcor = 106 K, st = 4 Mm, ∆s = 1 Mm and h(s) =
L
π

sin πs
L . The temperature variation controls the pressure scale

height H(s):

H(s) =
kbT (s)
mgeff

· (4)
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Fig. 1. Initial effective gravity, density, and temperature profiles as a
function of s at x = 0.

The density profile for the non-isothermal stratified atmosphere
is then determined by numerically solving for a hydrostatic pres-
sure balance:

p(s) = p0 exp

−∫ h(s)

0

cos
(
πs′
L

)
ds′

H(s′)

 , (5)

ρ(s) =
mp(s)
kbT (s)

· (6)

The density stratification in the initial configuration is calculated
using a footpoint density of ρ0 = 6.5 × 10−7 kg m−3. This re-
sults in the densities in the upper region of the loop of the or-
der of 10−11 kg m−3, which are representative of real coronal
densities. The top and bottom boundaries are fixed to create a
line-tied loop, and the boundary conditions along the vertical di-
rection are symmetric (i.e. gradients are set to 0). The plasma
condensation is superimposed on the background density and
temperature profiles as follows. A 2D Gaussian enhancement
is added to the equilibrium density profile and is positioned at
x0 = 0 Mm and s0 = 100 Mm, that is, below the loop apex, of
width σ = 0.5 Mm and height ρblob = rbc ρbg(x0, s0), with rbc
being the density contrast between the peak blob density and the
density of the background loop plasma ρbg at the same position.
We surround the condensation with a low-temperature region to
maintain the plasma pressure balance and to prevent rapid ini-
tial expansion of the condensation in the vertical direction (the
expansion in the transverse direction is counteracted by the mag-
netic Lorentz force). A grid convergence study using a grid with
1024 × 4096 resolution has been carried out in order to check
the convergence of the numerical results.

3. Blob evolution and kinematics

The evolution and kinematics of the plasma condensation, or
blob, is analysed in detail for a magnetic field strength ranging
from 20 G to 100 G and for three values of the initial density
contrast between the condensation and the coronal loop plasma
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Fig. 2. Evolution of the density profile along the bottom half of the loop
plotted every 280 s during the first 500 time steps.
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Fig. 3. Time-distance plot of the density along s at x = 0 for the
rbc = 103, B = 100 G case.

rbc = 102, 103, and 104 corresponding to peak blob densities of
2.5 × 10−9, 2.5 × 10−8, and 2.5 × 10−7 kg m−3, respectively. The
corresponding plasma-β ranges from 0.01 to 0.3.

The evolution of the density profile of the blob during the
first 5600 s is shown in Fig. 2 for the B = 100 G, rbc = 103 case.
This leads to an initial decrease of the blob density and to the
emission of sound waves, most clearly seen in the case of rbc =
104. As the condensation falls, it develops an elongated tail as a
result of the differential component of the effective gravity acting
along the finite longitudinal extent of the blob. This elongation
of the plasma condensations is in line with recent high-resolution
coronal rain observations (e.g. Antolin & Verwichte 2011;
Antolin & Rouppe van der Voort 2012; Kohutova & Verwichte
2016). The build-up of the density near the leading edge of
the blob is further enhanced during the deceleration phase that
occurs as the blob approaches the transition region (Fig. 2). Here
the blob can be seen to rebound multiple times. When the blob
hits the transition region, a rebound shock occurs that results in
further sound wave emission. For low magnetic field strengths,
the impact of the blob is accompanied by the ejection of chromo-
spheric material since the finite plasma-β in the transition region
and below does not restrict the transverse motion of the plasma.
Except for heating the plasma along the blob edges, the over-
all temperature of the blob stays approximately constant during
its downward motion. The temperature of the plasma below the
blob increases as it is being compressed, whereas the plasma in
the wake of the blob cools down. After the first rebound, the
blob temperature slightly increases as a result of rebound shock
dissipation.

The trajectory of the plasma condensation is determined by
finding the position of the maximum in blob density along the
vertical direction at each time step. This is subsequently used
to deduce the evolution of the vertical velocity and acceleration.
Two types of motion depending on the magnetic field strength
and blob density are observed: a purely downward motion with
the blob hitting the transition region, or damped oscillatory mo-
tion with the blob rebounding multiple times and eventually

settling in an equilibrium position in the corona (Fig. 4). Higher
magnetic field strengths lead to greater heights of the rebound
points and greater heights of the equilibrium positions around
which the blob oscillates. In addition, increasing the blob density
leads to a decrease of the rebound point height and to a greater
number of condensations reaching the surface. Similarly, Fig. 5
shows that the maximum downward velocity increases with in-
creasing blob density and decreasing magnetic field strength. For
rbc = 102, the rebound motion occurs for all values of magnetic
field strengths. For rbc = 103, purely downward motion occurs
at low magnetic field strengths, while for rbc = 104, no rebound
motion is observed.

For the lowest blob density, the blob motion shows distinct
acceleration and deceleration phases: during the first ∼300 s
the blob accelerates downwards, afterwards it decelerates to
t ∼ 1000 s, followed by another acceleration phase lasting up to
t ∼ 1500 s and so forth, with the maximum values of the down-
ward velocity ranging from 23 km s−1 to 45 km s−1 depending
on the magnetic field strength.

The distinction between acceleration and deceleration phases
is similarly clear for higher blob densities. There the maximum
values of downward velocities are much higher, ranging from
107 km s−1 to 130 km s−1. The motion is sub-ballistic only in
the case of lowest blob density, in the other two cases before the
rebound, the blob falls approximately with free-fall speed. For
the highest blob density, the effect of the varying magnetic field
strength on the motion of the blob is negligible.

The motion of the coronal rain blobs deduced from
high-resolution solar observations is mostly sub-ballistic with
only few extreme cases (e.g. Antolin & Verwichte 2011;
Antolin & Rouppe van der Voort 2012; Kohutova & Verwichte
2016). When we consider the significant effect that the peak blob
density was found to have on its motion, the broad distribution of
the blob velocities typically seen in the observations is therefore
likely due to variations in masses of individual condensations.
The extreme cases of observed velocities are likely caused by
the variations in the plasma pressure across the coronal loop, for
instance, when one blob travels in a wake of another, it can be
siphoned into the region of the low pressure left behind by the
first blob, which results in a motion that is faster than free fall
(Müller et al. 2005).

4. Force balance analysis

In order to determine the relative influence of the individual
forces on the motion and evolution of the plasma condensation,
the vertical components of the gravitational force ρgeff , pressure
gradient force −∇p, magnetic pressure force −∇B2/2µ0, and
magnetic tension force (B · ∇)B/µ0 were calculated inside the
loop and averaged in the transverse direction to obtain the lon-
gitudinal dependence. The evolution of the force balance during
the first 5600 s is shown for the rbc = 103, B = 100 G case in
Fig. 6.

For a rebounding blob, the force balance evolves as
expected according to the conceptual model proposed by
Mackay & Galsgaard (2001). As the condensation falls, it com-
presses the coronal loop plasma below it, leading to a build-up
of the pressure gradient. For a high magnetic field strength (low
plasma-β), the plasma is confined by the magnetic field, and as it
expands below the blob, it pulls the magnetic field lines with it.
The magnitude of the magnetic field strength therefore decreases
and plasma moves away from the centre of the loop, as demon-
strated by the positive divergence of the plasma velocity (Fig. 7).
This results in a net upward magnetic tension force as shown in

A23, page 3 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629912&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629912&pdf_id=3


A&A 602, A23 (2017)

40
50
60
70
80
90
100

h
(M

m
)

rbc=102

0

20

40

60

80

100
rbc=103

0

20

40

60

80

100
rbc=104

20 G
30 G
40 G
60 G
100 G

−50
−40
−30
−20
−10

0
10
20

v
(k
m

s−
1
)

−150

−100

−50

0

50

100

−140
−120
−100
−80
−60
−40
−20

0
20

0 3000 6000 9000 12000
t (s)

−80
−60
−40
−20

0
20
40
60

a
(m

s−
2
)

0 3000 6000 9000 12000
t (s)

−200
−100

0
100
200
300
400
500

0 3000 6000 9000 12000
t (s)

−200
−100

0
100
200
300
400

Fig. 4. Height (top), velocity (middle), and acceleration (bottom) profiles of the condensation for different values of blob density contrast and
magnitude of the magnetic field strength. The dotted line shows the free-fall height and velocity profiles.
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Fig. 5. Dependence of the equilibrium height (left), maximum downward velocity (centre), and average period of blob oscillations (right) on the
magnitude of the magnetic field strength for various blob densities.

Fig. 6 before the first rebound at t ∼ 1500 s. The blob rebounds
upwards, and as a result of the lower pressure below the blob, the
plasma now moves towards the centre of the loop, which leads to
a negative plasma velocity divergence. The field lines return to
their original position, and the magnitude of the magnetic field
strength increases (Fig. 7). This occurs multiple times until the
blob eventually settles in an equilibrium position. The bending
of the magnetic field lines is shown in Fig. 8.

In the case of weak magnetic field, the plasma-β in the tran-
sition region is high enough to allow the plasma below the blob
to be displaced sideways, which prevents the pressure build-up.
Hence no rebound motion occurs, and the blob falls directly to-
wards the solar surface.

It should be noted that the initial uniform magnetic field con-
figuration used here leads to a zero magnetic pressure gradi-
ent. However, in an expanding flux tube configuration, this is no
longer the case. In this case, the magnetic pressure gradient force
would have an additional decelerating effect and would there-
fore lead to lower downward velocities and greater equilibrium
height of the oscillating blobs. Similarly, neglecting thermal con-
duction very likely affects the morphology of the cool conden-
sations without significantly affecting the condensation dynam-
ics. Given that the thermal conduction acts predominantly along
the magnetic field lines, the only relevant exchange of energy

will occur in the vertical direction. It is therefore not sufficient
to remove significant amounts of thermal energy from the com-
pressed underlying plasma, which would lead to large changes
in plasma pressure.

We further focus on the damped oscillatory motion of the
plasma blob. The period of the individual rebound phases varies
strongly with the blob density, while the dependence on the mag-
netic field magnitude is weak (Fig. 4). We therefore propose an
analytical model for the period of the blob oscillations assum-
ing a high β limit when the transverse motion of the plasma is
prevented by the strong magnetic field in the vertical direction.
We model a falling rain blob as a piston problem, where the rain
blob is a piston compressing gas below it. We use a 1D model
with s as the spatial coordinate along the loop. The rain blob has
a fixed length 2∆s and its centre of mass is located at the position
sb(t). Its equation of motion is

m
d2sb

dt2 = −mg(sb) −
[
pu(sb+∆s) − pd(sb−∆s)

]
A, (7)

where m is the blob mass, A is the effective cross-section of the
blob, and g(s) is the solar gravitational acceleration along a semi-
circular loop, that is, g(s) = g� cos(πs/L). It is measured at the
blob’s centre of mass. In order to be able to solve the problem
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analytically, in the subsequent steps we neglect the stratification
of the plasma. pd(sb−∆s) is the plasma pressure of the plasma
below the blob, measured at the lower interface with the blob
at s = sb−∆s; pu(sb +∆s) is the plasma pressure of the plasma
above the blob, measured at the upper interface with the blob at
s = sb+∆s.
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Fig. 8. Bending of the magnetic field lines below the condensation at
t = 1523 s for the rbc = 103, B = 100 G case.

The blob is in equilibrium at position s0. We assume that
there is no exchange of mass between the background plasma.
Subsequently, the plasma masses above and below are con-
served, and we may write the equilibrium densities as

ρu0 =
Mu

(L−s0−∆s)A
, ρd0 =

Md

(s0−∆s)A
· (8)

This allows us to rewrite the equilibrium pressures as

pd0 =
kBTd0Md

m̃(s0−∆s)A
, pu0 =

kBTu0Mu

m̃(L−s0−∆s)A
· (9)
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Then, the equilibrium position of the blob is the solution of the
transcendental equation

g� cos
(
πs0

L

)
= −

kBTu0Md

m̃(L−s0−∆s)m
+

kBTd0Mu

m̃(s0−∆s)m
· (10)

We introduce the lower density scale height H and sound
speed CSd defined as

H =
kBTd0

m̃g�
, CSd =

√
γkBTd0

m̃
, (11)

and the following dimensionless variables

θ0 =
πs0

L
, ∆θ =

π∆s
L
, θ1 = π − ∆θ,

h =
πH
L
, ν =

Tu0

Td0
· (12)

Subsequently, Eq. (10) may be rewritten in dimensionless form
as

cos θ0 =
Md

m
h

(θ0 − ∆θ)
+

Mu

m
νh

(θ0 − θ1)
· (13)

We linearise the equation of motion by considering small am-
plitude oscillations around the equilibrium position s0, found by
solving Eq. (10), such that s = s0 + s1 with |s1| � L. Hence,

m
d2s1

dt2 = −m
dg
ds

(s0) s1

−

[
∂pu0

∂s
(s0+∆s) −

∂pd0

∂s
(s0−∆s)

]
s1 A

−
[
pu1(s0+∆s) − pd1(s0−∆s)

]
A, (14)

where p1 is the linear perturbation of plasma pressure. The linear
plasma displacement parallel to the equilibrium magnetic field ξ
is governed by

ρ0
∂2ξ

∂t2 = −
∂p1

∂s
, (15)

where ρ0 is the equilibrium plasma density, which we assumed to
be uniform. Furthermore, this displacement satisfies the bound-
ary conditions

ξ(0, t) = 0, ξ(s0−∆s, t) = s1(t), ξ(s0)+∆s, t) = s1(t), (16)

and is allowed to propagate in the upper region. We find

ξ(s, t) =

 s1(t) sin(kd s)
sin(kd(s0−∆s) 0 ≤ s ≤ s0 − ∆s

s1(t) exp(iku s)
exp(iku(s0+∆s)) s ≥ s0 + ∆s,

(17)

where kd and ku are the wave numbers in the lower and upper
regions, respectively. The corresponding pressure perturbation
is found from Eq. (15):

p1(s, t) =

 d2 s1
dt2

1
kd

Md
(s0−∆s)A

cos(kd s)
sin(kd(s0−∆s))

d2 s1
dt2

i
ku

Mu
(L−s0−∆s)A

exp(iku s)
exp(iku(s0+∆s)) ·

(18)

Equations (9) and (18) are substituted into Eq. (14):

d2s1

dt2 =
πg�
L

sin
(
πs0

L

)
s1

−
Md

m
kBTd0

m̃
s1

(s0−∆s)2

+
Md

m
1
kd

1
(s0−∆s)

cot(kd(s0−∆s))
d2s1

dt2

−
Mu

m
kBTu0

m̃
s1

(L−s0−∆s)2

−
Mu

m
i

ku

1
(L−s0−∆s)

d2s1

dt2 , (19)

for which normal mode solutions of the form s1(t) ∼ exp(−iωt)
are sought. Equation (19) then turns into a dispersion relation for
ω. We introduce the additional dimensionless variables

Ω =
ωH
CSd

, Kd = kdH, Ku = kuH
√
ν. (20)

Equation (19) becomes in dimensionless form

Ω2 =
h
γ

[
− sin θ0 +

Md

m
h

(θ0−∆θ)2 +
Mu

m
νh

(θ0−θ1)2

]

+ Ω2h

 Md

m

cot
(

Kd(θ0−∆θ)
h

)
Kd(θ0−∆θ)

+ i
Mu

m

√
ν

Ku(θ0−θ1)

 · (21)

Here <e(ω) determines the angular frequency of the blob os-
cillations and −1/=m(ω) sets the e-folding time for the damp-
ing due to wave radiation. Lastly, a dispersion relation is re-
quired in the two plasma regions to be able to connect Kd and
Ku with ω. For a slow magnetoacoustic sausage mode, we find k
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Table 1. Blob oscillation parameters

rbc B(G) Md/m Mu/m s0sim (Mm) s0A (Mm) Psim (s) PA (s)

102 20 3.73 7.55 47 ± 4 103 ± 7 3497 ± 100 2344 ± 100
102 30 3.00 4.86 60 ± 4 116 ± 10 3245 ± 100 2805 ± 200
102 40 3.13 4.83 64 ± 4 120 ± 10 3139 ± 70 2830 ± 200
102 60 3.16 4.59 68 ± 4 123 ± 7 3080 ± 40 2869 ± 200
102 100 3.35 4.82 72 ± 4 123 ± 6 3055 ± 10 2818 ± 300
103 100 0.31 1.81 19 ± 1 40 ± 6 1538 ± 200 1393 ± 200

Notes. Blob equilibrium positions and average oscillation periods determined from the simulation (s0sim, Psim) and using the analytical model (s0A,
PA) for different values of blob density and magnetic field strength.

in each region, defined by the solution to the dispersion relation
(Edwin & Roberts 1983):

κis

(ω2 − v2
Aik

2)

I′0(κisa)
I0(κisa)

=

(
ρ0es

ρ0is

)
κes

(ω2 − v2
Aek2)

K ′0(κesa)
K0(κesa)

, (22)

with the squared radial wave number

κ2
ps =

(ω2 −C2
Spsk

2)(ω2 − v2
Apk2)

(C2
Sps + v2

Ap)(ω2 − c2
Tpsk

2)
, (23)

where a =
√

A/π is the loop cross-section radius, vA the Alfvén
speed, cT the tube speed, and s ∈ {d, u}, p ∈ {i, e}. index i (e)
refers to internal (external) conditions to the loop. The den-
sity contrast and Alfvén speed are assumed to be identical in
the lower and upper regions. I0(x) and K0(x) are the modified
Bessel functions of the first and second kind, respectively. We
further note that the oscillation seen in the simulations is es-
sentially a slow magnetoacoustic sausage mode. We solve for
the fundamental radial mode with the phase speed in the inter-
val [cT, cS]. For ka � 1 the solution is approximately k ≈ ω/CTi.
This is also true for a slab geometry as used in the numeri-
cal simulations. Furthermore, for the range of values of density,
temperature, and magnetic field strength, the tube speed varies
from the sound speed by less than 10%. Therefore, it is reason-
able to describe the mode with the dispersion relation of a one-
dimensional acoustic mode with k = ω/CSi. Then, Kd = Ku = Ω.
Equation (21) is solved numerically together with the equilib-
rium Eq. (13) and the corresponding dispersion relation. We
solve Eqs. (13) and (21) for a range of loop-to-rain mass ratios.
There is a discontinuity in the solution for the equilibrium posi-
tion of blob from one loop leg to the other in the case of a high
mass of plasma that is confined below the blob and a low mass of
the plasma in the rest of the loop (Fig. 9). This discontinuity then
further propagates into the solutions for <e(ω) and =m(ω), re-
sulting in discontinuity in the gradient. This is not likely to occur
in a real gravitationally stratified loop that is initially symmetric,
however, unless there is a direct mass injection occurring into
one loop leg alone. We further focus on the behaviour of the os-
cillation parameters in limit cases. In high M/m limit (no coronal
rain) both<e(ω) and =m(ω) increase linearly with M/m. In low
M/m limit (no coronal plasma) <e(ω) decreases with

√
M/m

while =m(ω) remains constant (Fig. 10). Assuming realistic val-
ues of the loop-to-rain mass ratio are of the order of 1–10, the
corresponding solutions for <e(ω) and =m(ω) are of the order
of 0.001, or equivalently 1000 s for the period and damping scal-
ing time.

The comparison of blob oscillation periods determined from
the simulation and periods predicted by the analytical model is
shown in Table 1. We determine the loop-to-rain mass ratios

10-1
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101

102

ℜe
(ω
)H
/C

S

Mu/m=1 Md/m=1

10-2 10-1 100 101 102

Md/m

10-2

10-1

100

101
ℑm

(ω
)H
/C

S

10-2 10-1 100 101 102

Mu/m

Fig. 10. Horizontal (left) and vertical (right) cuts trough plots of the
dependence of the angular frequency on the loop-to-rain mass ratio.
Dashed lines mark the limit cases.

(serving as an input for the analytical model) from the final sim-
ulation snapshot at t = 11 200 s, which we assume to be the best
representation of the equilibrium state. The blob mass is deter-
mined by integrating the plasma density between blob bound-
aries, and the mass of the coronal loop plasma above and be-
low the blob is determined by integrating the density between
the blob boundary and loop footpoints while excluding the high-
density chromosphere layer. Estimates of uncertainties in the pa-
rameters predicted by the analytical model are determined as-
suming 20% uncertainty on the position of blob boundaries. The
agreement between the two is best for higher blob density and
for high values of the magnetic field strength. This is as ex-
pected given the limitations of the analytical model. It should
be noted that the analytical model considerably overestimates
the height of the equilibrium position in the case of the lowest
blob density. The equilibrium position predicted by the analyt-
ical model is heavily dependent on the input loop-to-rain mass
ratios. In the low-density case, these are inherently more difficult
to determine accurately from the simulation because we lack a
well-defined upper boundary of the plasma blob. Here the elon-
gated tail of the blob accounts for a higher fraction of the total
blob mass than in the higher density cases. The low-density blob
is also more sensitive to sound waves that are reflected from the
boundaries (the analytical model neglects the presence of the up-
per domain boundary and assumes a radiating solution above the
blob). The validity of the analytical periods and damping times
in the rbc = 102 case is therefore also limited.

Similarly, the agreement between the analytical model and
the simulation is worse for cases with lower magnetic field
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strength when the plasma below the blob is less constrained in
the transverse direction and hence allowed to expand, whereas
the model explicitly assumes a constant loop cross-section. This
also means that while the blob oscillates, transfer of plasma can
occur from the lower loop leg to the region above the blob, thus
invalidating the assumption of a piston-like behaviour. How-
ever, when we use the values corresponding to the case with
B = 100 G and rbc = 103, which best adheres to assumptions
made by the analytical model, this results in the predicted period
of 1393 s and a damping scaling time of 1695 s, which corre-
sponds to about three clearly observable oscillation periods. This
is in good agreement with the simulation results.

5. Discussion and conclusions

We carried out 2.5 MHD simulations of the dynamics of cool
plasma condensations in a gravitationally stratified coronal loop.
The motion and evolution of plasma condensations were found
to be strongly affected by the pressure of the coronal loop
plasma, and the pressure gradients can be high enough to account
for the lower-than-free-fall speed of the coronal rain even in fi-
nite magnetic field cases. The fastest downward velocities are
in agreement with recent coronal rain observations. High coro-
nal magnetic field strength or a low mass of the condensations
can lead to oscillatory motion consisting of multiple rebounds
damped through sound wave emission, with the condensation
eventually settling in an equilibrium position supported by the
pressure of the underlying plasma. Rebounding of the conden-
sation is due to a combined effect of the pressure gradient force
and the magnetic tension force that results from bending of the
magnetic field lines in the lower part of the coronal loop. The
period and damping scaling time of the oscillatory motion are
consistent with values determined using an analytical model for
the balance of forces that act on the condensation.

Although the majority of coronal rain condensations are ob-
served to fall directly towards the solar surface, the individual
blobs are sometimes observed to longitudinally oscillate up and
down before falling (Kohutova & Verwichte 2016). This loss of
equilibrium has not been accounted for in our simulations and
could be due to the change in mass of the coronal loop plasma
that supports the blob or due to presence of other condensa-
tions. It should further be noted that in the non-equilibrium sce-
nario, siphon flows caused by pressure differences in the loop
can significantly affect the motion of the condensations, some-
times completely overriding the effects of the plasma pressure
gradient and magnetic tension force addressed here.

The analytical model also highlights the fact that the dynam-
ics of the plasma condensations (i.e. presence or lack of os-
cillatory motion and oscillation parameters) is determined by
the loop-to-rain mass ratio. There is still considerable uncer-
tainty about what fraction of the total mass of the coronal loop
plasma condenses into coronal rain after catastrophic cooling
takes place; current estimates of the loop-to-rain mass ratio from
observations are in the order of 1–10 (Antolin et al. 2015). These
estimates are subject to the spatial resolution limits of the instru-
ments, however, it is therefore likely that a significant fraction of
the condensation mass remains undetected.

The longitudinal oscillations of the coronal rain blobs
were typically observed in transversely oscillating coronal
loops (Kohutova & Verwichte 2016; Verwichte et al. 2017). This
means that the action of the ponderomotive force that is
due to transverse oscillations should be taken into account
(Terradas & Ofman 2004). It has been proposed that the pon-
deromotive force can in fact affect the motion of the coronal
rain condensations; however, typical amplitudes of the trans-
verse loop oscillations are not sufficient to fully explain the ob-
served oscillatory motion and sub-ballistic fall rates of coronal
rain on their own (Verwichte et al. 2017). The ponderomotive
force may still play a non-negligible role in the condensation dy-
namics, however, in addition to the effects of the coronal plasma
pressure gradients and magnetic field effects addressed in this
work. This is further supported by the fact that the oscillatory
behaviour of coronal rain is usually observed near the loop top,
and it suggests that the force that counteracts the motion un-
der the gravity has a maximum near the loop apex, whereas the
pressure gradient force was found to have greatest effect on the
condensations in the lower part of the loop legs. The dynamics
of plasma condensations in a transversally oscillating loop will
be addressed in detail in future work.
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