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ELECTRONIC DENSITY OF STATES FOR INCOMMENSURATE
LAYERS∗

DANIEL MASSATT† , MITCHELL LUSKIN† , AND CHRISTOPH ORTNER‡

Abstract. We prove that the electronic density of states (DOS) for two-dimensional incommen-
surate layered structures, where Bloch theory does not apply, is well-defined as the thermodynamic
limit of finite clusters. In addition, we obtain an explicit representation formula for the DOS as an
integral over local configurations. Next, based on this representation formula, we propose a novel
algorithm for computing electronic structure properties in incommensurate heterostructures, which
overcomes limitations of the common approach to artificially strain a large supercell and then apply
Bloch theory.
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1. Introduction. Bloch theory provides an elegant solution for describing the
electronic structure of periodic materials. However, there has been a lot of focus re-
cently on the study of incommensurate layers of two-dimensional (2D) crystal struc-
tures [18, 19]. In the absence of periodicity, computing the electronic structure of
such materials becomes more challenging.

A common approach to approximate the electronic properties of such a system is
to artificially strain it to obtain periodicity on a large supercell and then apply Bloch
theory to this periodic system [4, 9, 10, 13, 18]. Commensurate approximations to
an incommensurate system are computationally expensive, and their approximation
error is unclear. Here we introduce a new method for computing a class of observables
derived from the density of states for multilayer incommensurate heterostructures
without requiring an artificial strain in the system.

To approximate an observable of an infinite incommensurate system, we approx-
imate local lattice site contributions to the observable. We observe that a site is
uniquely defined by its local geometry. Using an equidistribution theorem, there is
a predictable distribution of local geometries and hence site contributions. Conse-
quently, we can express observables in incommensurate heterostructures in terms of
an integral over a unit cell, in a fashion rather similar to Bloch theory. This unit
cell classification of local configurations is related to Bellisard’s noncommutative Bril-
louin zone for aperiodic solids [1]. Prodan used the Bellisard formalism to compute
electronic properties for periodic materials with on-site defects modeled by a tight-
binding model [15]. Here we consider the density of states and related observables for
incommensurate multilayers.
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While the methodology is in principle generic, our derivation and analysis focuses
on tight-binding models, which are commonly employed for computing the electronic
structure of 2D materials [2, 8]. We consider the density of states and related ob-
servables for incommensurate multilayers. We use Chebyshev polynomial methods
to approximate the density of states as a function [6, 14, 16, 17, 21], and from this
function any observable can be computed.

Outline. In section 2 we introduce the results for the bilayer case and briefly
discuss their extension to the multilayer case. In section 2.1 we introduce incommen-
surate systems and the equidistribution result. In section 2.2 we specify the details
of our model problem, and in section 2.3 we show how to compute the local density
of states. In section 2.4 we prove the infinite system is well posed and express the
observables as an integral over local observables.

In section 3 we describe an approximation scheme and present numerical results.
In section 3.1 we discuss the integral discretization. In section 3.2 we introduce a
Chebyshev kernel polynomial method, and in section 3.4 we present numerical results.
In section 4 we present the details of the proofs.

2. Main results.

2.1. Incommensurate heterostructures. Consider two periodic atomic sheets
in parallel 2D planes separated by a constant distance. Each individual sheet can be
described as a Bravais lattice embedded in R2 by neglecting the out of plane distance.
This coordinate is not relevant for classifying the aperiodicity and will be incorporated
in section 2.2. For sheet j ∈ {1, 2}, we define the Bravais lattice

Rj = {Ajn : n ∈ Z2},

where Aj is a 2× 2 invertible matrix. We define the unit cell for sheet j as

Γj = {Ajα : α ∈ [0, 1)2}.

Each individual sheet is trivially periodic, since

Rj = Ajn+Rj for n ∈ Z2.

However, the combined system R1 ∪ R2 need not be periodic (Figure 1(a)). (Note
that here R1 ∪R2 is only considered to describe geometry, not as an indexing of the
atoms as it would have the failure of identifying the origins from each lattice.)

Since we are interested in aperiodic systems, we consider incommensurate systems,
which we define next.

Definition 2.1. Lattices L1 and L2 are incommensurate if

v + L1 ∪ L2 = L1 ∪ L2 ⇔ v =

(
0
0

)
.

We define the reciprocal lattice of Rj as

R∗j :=
{

2π(A−1
j )∗n : n ∈ Z2

}
.

We will use the following assumption.

Assumption 2.1. The dual lattices R∗1 and R∗2 are incommensurate.
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478 DANIEL MASSATT, MITCHELL LUSKIN, AND CHRISTOPH ORTNER

sheet 2
sheet 1

(a) An incommensurate hexagonal bilayer.
Sheet 1 is rotated by θ = 6◦ relative to sheet
2.

mod2(R1)

R1

R2

sheet 1
sheet 2

(b) mod2(R1) is the shift of the first lattice rel-
ative to the second lattice.

Fig. 1. Visualization of incommensurate bilayer geometry.

(a) Incommensurate cell (b) Commensurate cell approximation

Fig. 2. (A) Two lattices (spheres and lines) that are incommensurate. (B) The sphere lattice
is slightly rotated to obtain a commensurate cell approximation.

Since the majority of material simulation tools rely on periodicity, the most com-
mon method at present to simulate incommensurate layers is to adjust one of the two
layers slightly in order to make the system commensurate on some larger supercell
(Figure 2). In contrast we take advantage of an equidistribution of local geometries.

To parameterize the local geometries, we define the modulation operator modj :
R2 → Γj on sheet j for position u ∈ R2:

modj(u) := u+Rj , where Rj ∈ Rj such that u+Rj ∈ Γj .

Then the relative shift of site R1 ∈ R1 is mod2(R1) ∈ Γ2 (See Figure 1(b)). The local
geometry of site R1 ∈ R1 is defined by

R1 ∪R2 −R1 = R1 ∪ (R2 −R1) = R1 ∪ (R2 −mod2(R1)).

Hence, the local geometry is determined by the relative shift mod2(R1). The same
argument holds for relative configurations around a site on sheet two. A fundamental
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idea in this method is that the distribution of mod1(R2) ∈ Γ1 and mod2(R1) ∈ Γ2

are uniform in the sense of Theorem 2.1 below.
We let

Br = {y ∈ R2 : |y| < r} for r > 0.

For j ∈ {1, 2}, we let Pj be the transposition, that is, P1 = 2 and P2 = 1.

Theorem 2.1. Consider R1 and R2 incommensurate lattices embedded in R2

(i.e., satisfying Assumption 2.1). Then for g ∈ Cper(ΓPj ), we have

(2.1)
1

#Rj ∩Br
∑

`∈Rj∩Br
g(`)→ 1

|ΓPj |

∫
ΓPj

g(b)db, as r →∞.

In particular, local geometries around sheet 1 sites can be parameterized by Γ2,
while local geometries around sheet 2 sites can be parameterized by Γ1.

Theorem 2.1 suggests the following strategy for defining and computing electronic
structure properties in incommensurate heterostructures: (1) split an observable into
local contributions from each atomic site (we will employ the local density of states);
(2) employ Theorem 2.1 to demonstrate that the thermodynamic limit from finite
clusters exist (observe that (2.1) is a sum over a finite cluster); (3) use the right-hand
side of (2.1) to compute the limit quantity.

2.2. Tight-binding model. Electronic structure is governed by solutions to
the Schrödinger eigenproblem. It is typically approximated using methods such as
the Kohn–Sham DFT (KS-DFT) model or the Hartree–Fock approximation [8, 12].
For systems in the thousands of atoms, however, the standard KS-DFT calculation
becomes intractable. The tight-binding (TB) model applies further approximations
and as a result can treat larger systems ranging in the millions of atoms.

Let Ai denote the set of indices of orbitals associated with each unit cell of sheet
i. We assume that Ai are finite and that A1∩A2 = ∅. Then the full degree of freedom
space is

Ω = (R1 ×A1) ∪ (R2 ×A2).

The interaction between orbitals indexed by Rα,R′α′ ∈ Ω is denoted by hαα′(R−R′),
where hαα′ ∈ C(R2). Although the sheets have a vertical displacement between them,
this distance is constant and hence can be encoded into hαα′ (using the assumption
that A1 ∩ A2 = ∅). We will further use the following assumption.

Assumption 2.2. Orbital interactions hαα′ are uniformly continuous on R2 and
decay exponentially, that is, ∀α, α′ ∈ A1 ∪ A2

|hαα′(x)| ≤ Ce−γ̃|x| for x ∈ R2.

This applies in most scenarios, since in most tight-binding models the orbitals
are tightly bound around the atomic sites [8] or are exponentially decaying. We then
formally define a matrix H such that

HRα,R′α′ = hαα′(R−R′).
This is an infinite matrix, and hence the eigenproblem

Hψ = Eψ

for ψ ∈ CΩ cannot be solved directly. Instead, we will define a class of observables
for the infinite system by first defining them for finite subsystems and then passing
to the limit in section 2.4.
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For Ω̃ ⊂ Ω with #Ω̃ = n the associated Hamiltonian is H̃ = (Hij)i,j∈Ω̃ ∈Mn(C),
where Mn(C) denotes the set of n × n Hermitian matrices over C. The density of
states for Ω̃ can be defined via its action on test functions, or, observables g, by

D[H̃](g) =
1

n
Tr[g(H̃)], g ∈ C(R).

(We will later slightly extend the space of observables.) For example, we can consider
the bond energy D[H̃](UT ), where UT (ε) = εFT (ε) and FT (ε) = (1 + e(ε−µ)/kT )−1 is
the Fermi function. Formally, the value of the observable for the infinite system Ω is
the limit of D[H̃](g) as Ω̃ ↑ Ω.

For future reference we remark that, since H is defined in terms of the lattices Rj
and the hopping functions hαα′ , we will say “H satisfies Assumptions 2.2 and 2.1” to
mean that “R1, R2 satisfy Assumption 2.1 and hαα′ satisfy Assumption 2.2.”

2.3. Local density of states. The next step is to define the local density of
states distribution, which will allow us to identify local site contribution to an observ-
able. Consider a finite subsystem Ω̃ ⊂ Ω with associated Hamiltonian H̃ ∈ Mn(C);
then the local density of states (LDoS) distribution is defined as

Dk[H̃](g) = [g(H̃)]kk, k ∈ Ω̃, g ∈ C(R).

Note that
1

n

∑
k∈Ω̃

Dk[H̃](g) = D[H̃](g).

This reformulation puts us very close to the setting of Theorem 2.1. It remains to
control the dependence of Dk[H̃](g) on Ω̃, which we will achieve in the next section
by fixing k and letting Ω̃ ↑ Ω while controlling the error.

Toward that end we now specify a sequence of local degree of freedom spaces,

Ωr =

[[
R1 ∩Br

]
×A1

]
∪
[[
R2 ∩Br

]
×A2

]
for r > 0;

see also Figure 3. For r > 0 and b ∈ ΓPj we define Hr,j(b) ∈M|Ωr|(C) by

[Hr,j(b)]Rα,R′α′ = hαα′
(
b(δα∈APj − δα′∈APj ) +R−R′

)
for Rα,R′α′ ∈ Ωr. Physically, Hr,j(b) describes a cluster of radius r of the bilayer
system in which the sheet Pj is shifted by b. If the LDoS is well-defined in the
thermodynamic limit, we expect it to be approximated by the local cluster around
the site of interest, i.e.,

D0α[Hr,j(modPj (R))] ≈ DRα[H], Rα ∈ Rj ×Aj

in a suitable weak sense. Since the two layers are incommensurate, the set of shifts b
that occur in this way are dense. Hence, we consider the local density of states

(2.2) Dα[Hr,j(b)] := D0α[Hr,j(b)] for α ∈ Aj

for arbitrary shifts b.
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sheet 1
sheet 2
origin

Fig. 3. All the sites in Ωr for a hexagonal bravais lattice. The central site for sheet 1 is
highlighted.

2.4. Thermodynamic limit. We now consider the limit as r →∞ of the LDoS,
which will allow us to define the DoS for the infinite system. Let

E[H] := sup
r>0, j∈{1,2}

[
sup
b∈Γj

‖Hr,j(b)‖2
]
<∞,

where ‖H̃‖2 := supψ∈Cn\{0} ‖H̃ψ‖2/‖ψ‖2 for H̃ ∈ Mn(C). E[H] is finite because of
the exponential localization from Assumption 2.2. Then the local density of states
distribution will be supported on the interval

S[H] = [−E[H], E[H]].

Since the spectrum is only defined on S[H], we are only interested in observables
g ∈ C(S[H]). We supply this space with the norm

‖g‖∞ := sup
x∈S[H]

|g(x)| for g ∈ C(S[H]).

For U ⊂ C, we define the distance

d(U, S[H]) = inf
z∈U,z′∈S[H]

|z − z′|.

This is a bound on the distance between U and the spectrum. To pass to the limit in
the LDoS and later in the DoS, we narrow down admissible test functions. We define

Λd̃ :=
{
g ∈ C(R) | g admits an analytic extension to {z ∈ C : d(z, S[H]) < d̃}

}
.

Then our admissible test functions are

Λ :=
⋃
d̃>0

Λd̃.

While we consider the thermodynamic limit on the space Λ, we afterward extend to
g ∈ C(S[H]) using the fact that Λ is dense in C(S[H]).
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Theorem 2.2. (1) Suppose that H satisfies Assumptions 2.1 and 2.2. Then, for
α ∈ Aj, there exists a function Dα[H] : ΓPj × C(S[H])→ C such that, for g ∈ Λ,

Dα[Hr,j(b)](g)→ Dα[H](b, g) as r →∞.

(The distribution Dα[H](b, g) is the local density of states for the infinite system.)
(2) The map g 7→ Dα[H](b, g) is a bounded linear functional, more precisely,∣∣Dα[H](b, g)

∣∣ ≤ ‖g‖∞ for g ∈ C(S[H]).

(3) There exist constants C, γ′ > 0 such that, for d̃ > 0 and g ∈ Λd̃,

|Dα[H](b, g)−Dα[Hr,j(b)](g)| ≤ Cd̃−6 sup
d(z,S[H])<d̃

[
|g(z)|e−γ′d̃r

]
.

We next analyze the regularity of the map b 7→ Dα[H](b, g) for fixed g, which will
allow us to integrate with respect to b.

Theorem 2.3. Suppose hαα′ ∈ Cn(R2) for n ∈ N ∪ {0,∞}, ∂mb1∂m
′

b2
hαα′ is uni-

formly continuous for m + m′ ≤ n, and there exist constants Cmm′ , γmm′ > 0 such
that

|∂mb1∂m
′

b2 hαα′(r)| ≤ Cmm′e−γ
′
mm′r.

Then, for α ∈ Aj and g ∈ Λ,

Dα[H](·, g) ∈ Cnper(ΓPj ).

Our next objective is to rigorously define the density of states distribution for
the infinite incommensurate bilayer system H. Taking a sequence of finite incom-
mensurate clusters surrounded by a vacuum that grow toward infinity and combining
our results on the equidistribution of local configurations with the convergence of the
local density of states we obtain the following representation formula.

Theorem 2.4. Suppose that H satisfies Assumptions 2.1 and 2.2. Then there
exists a bounded linear functional D[H] : C(S[H])→ C such that, for g ∈ Λ, we have

D[Hr,j(0)](g)→ D[H](g) as r →∞ for j = 1, 2.

Further, we have an explicit expression for the limit D[H](g) in terms of the LDoS
operators:

(2.3) D[H](g) = ν

2∑
j=1

∑
α∈Aj

∫
ΓPj

Dα[H](b, g)db,

where

ν =
1

|A2| · |Γ1|+ |A1| · |Γ2|
.

Note that the right-hand side of (2.3) is well-defined for g ∈ Λ by using Theorem 2.2
and Theorem 2.3.

This suggests a natural approximation to the DoS using the LDoS operators,

ν

2∑
j=1

∑
α∈Aj

∫
ΓPj

Dα[Hr,j(b)](g)db.
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Theorem 2.5. Suppose that H satisfies Assumptions 2.1 and 2.2. If g ∈ Λd̃, then
we have the explicit error bound on the LDoS approximation∣∣∣∣D[H](g)− ν

2∑
j=1

∑
α∈Aj

∫
ΓPj

Dα[Hr,j(b)](g)db

∣∣∣∣ ≤ Cd̃−6 sup
d(z,S[H])<d̃

[
|g(z)|e−γd̃r

]
,

where C, γ are independent of r, d̃, and g.

Proof. This follows trivially from Theorem 2.2.

Remark 2.1. The finite systems employed in the thermodynamic limit are defined
by the matrices Hr,j(0) for j = 1, 2. They represent finite incommensurate clusters
surrounded by a vacuum. Since the boundary Hamiltonian entries are not chosen by
DFT calculations or experimental values they will not be accurate. However, as long
as the boundary coefficients satisfy Assumption 2.2, the limit of the density of states
D[Hr,j(0)] will be independent of the choice of boundary terms.

Remark 2.2. For the sake of convenience, we have chosen a circular shape for
the approximating domains. Weaker requirements can be readily formulated, e.g.,
domains Ω̃ should contain balls centered at the origin with radii growing to infinity,
while at the same time keeping a suitable bound on the surface area to volume ratio.

Remark 2.3. The Riesz–Markov–Kakutani representation theorem states that the
dual space of the continuous compact functions are the Radon measures. Since all our
density of states and local density of states operators are continuous linear functionals
over the space of compact continuous functions, they are all Radon measures.

Remark 2.4. This methodology can easily be extended to three or more incom-
mensurate layers, but at the cost of higher dimensional integration, since one must
integrate over all relative shifts between the different layers. The local density of
states, on the other hand, where there is no integration, can be easily analyzed for
multiple layers without adding much to the cost.

3. Numerical simulations.

3.1. Quadrature. To compute the integrals occuring in Theorem 2.5 numeri-
cally, we can use the smoothness properties from Theorem 2.3, which can be strength-
ened further by assuming analyticity on hαα′ .

Theorem 3.1. Assume hαα′ is analytic and satisfies Assumption 2.2. Let

Sj =

{
Aj

(
i1/Ndisc

i2/Ndisc

)
: 0 ≤ i1, i2 < Ndisc

}
be the uniform discretization sample points. Then we have∣∣∣∣∣∣ |ΓPj |N2

disc

∑
b∈SPj

∑
α∈Aj

Dα[H](b, g)−
∑
α∈Aj

∫
ΓPj

Dα[H](b, g)db

∣∣∣∣∣∣
≤ Cd̃−1 sup

d(z,S[H])<d̃

[
|g(z)|e−γ′′d̃Ndisc

]
for some γ′′ > 0.

Remark 3.1. In practice, hαα′ has a finite cutoff and hence cannot be analytic.
However, we can think of it as an approximation to an “exact” analytic h̄αα′ . Pre-
asymptotically, it is therefore useful to treat hαα′ as if it were itself analytic.
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3.2. Kernel polynomial method approximation. A complete eigensolve on
Hr,j(b) for each quadrature point b is computationally expensive, with scaling O(r6).
Instead we use a Chebyshev kernel polynomial method (KPM) to compute the density
of states [21]. This method scales as O(r2), where the constant depends on the desired
accuracy. It yields the density of states operator as a smooth function from which
multiple observables can then be computed.

Lemma 3.1. Assume that H satisfies Assumptions 2.2 and 2.1 and that f ∈ C(R×
R;C) and g ∈ Λ; then∫

D[H]
(
f(ε, ·)

)
g(ε)dε = D[H]

(∫
f(ε, ·)g(ε)dε

)
.

Proof. This result follows immediately from Remark 2.3 and Fubini’s theorem.

We note that |D[H](g)| ≤ ‖g‖∞, and hence

(3.1)

∣∣∣∣D[H]

(∫
f(ε, ·)g(ε)dε

)
−D[H](g)

∣∣∣∣ ≤ ∥∥∥∥∫ f(ε, ·)g(ε)dε− g
∥∥∥∥
∞
.

Note that this bound trivially extends from Λ to C(S[H]). Moreover, if f(ε, e) ≈
δ(ε− e), then the smooth function

Df (ε) := D[H](f(ε, ·)) ≈ D[H]

in the sense of (3.1). We now choose a convenient f .
Recall that the Chebyshev polynomials are a basis defined recursively by

(3.2) T0(e) = 1, T1(e) = e, and Tn+1(e) = 2eTn(e)− Tn−1(e).

The polynomials are orthogonal in the sense that∫ 1

−1

1

π
√

1− e2
Tn(e)Tm(e)de =

1 + δ0n
2

δnm.

An approximation to the shifted delta function δ(e− ε), at ε ∈ (−1, 1), is given by

χ̂p(ε, e) =
1

π
√

1− ε2

∑
m≤p

gpmTm(ε)Tm(e), e, ε ∈ (−1, 1),

where

gpm = (2− δm0)
(p−m+ 1) cos( πmp+1 ) + sin( πmp+1 ) arctan( π

p+1 )

p+ 1

are the so-called Jackson coefficients designed to remove the Gibbs phenomenon [21].
To approximate the density of states on the interval S[H] = [−E[H], E[H]], we

rescale
χp(ε, e) := ηχ̂p(ηε, ηe), e, ε ∈ (−1/η, 1/η),

where η is a positive constant selected so that E[H] ≤ 1/η.
We approximate D[H] by

Dχp(ε) = ν

2∑
j=1

∑
α∈Aj

∫
ΓPj

Dα[H](b, χp(ε, ·))db
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and subsequently approximate the integrand Dα[H](b, χp(ε, ·)) by

Dα[Hr,j(b)](χp(ε, ·)) = [χp(ε,Hr,j(b))]0α,0α

=
η

π
√

1− (ηε)2

∑
m≤p

gpmTm(ηε)
[
ηTm(Hr,j(b))

]
0α,0α

.
(3.3)

Note that for all ε, the calculation requires the same [Tm(ηHr,j(b))]0α,0α coefficients,
which is the core of our Algorithm A.

Algorithm A: Approximate DoS

Step 1: Choose quadrature parameter Ndisc ∈ N and domain truncation radius
r > 0. For each j ∈ {1, 2} and b ∈ SPj construct the matrix Hr,j(b).

Step 2: Let ei ∈ R|Ωr| such that [ei]j = δij is the ith coordinate vector. Using the
recursion (3.2) we compute, for α ∈ Aj ,

v0 = e0α

v1 = ηHr,j(b)e0α

store: [T0(ηHr,j(b))]0α,0α = e0α · v0 and [T1(ηHr,j(b)]0α,0α = e0α · v1

for loop: 1 ≤ m ≤ p− 1

vm+1 = 2ηHr,j(b)vm − vm−1

store: [Tm+1(ηHr,j(b))]0α,0α = e0α · vm+1

This yields the coefficients [Tm(ηHr,j(b))]0α,0α for (3.3).

Step 3: Compute the expression

Dα[Hr,j(b)](χp(ε, ·)) =
η

π
√

1− (ηε)2

∑
m≤p

gpmTm(ηε)[Tm(ηHr,j(b))]0α,0α.

This yields a local density of states approximation, which is interesting in its own
right.

Step 4: The total density of states approximation is obtained by evaluating

D(ε) :=
ν

N2
disc

2∑
j=1

∑
α∈Aj

∑
b∈SPj

|ΓPj | · Dα[Hr,j(b)](χp(ε, ·))

for all desired ε.

The approximation error for the output D(ε) of Algorithm A is estimated in the
following result.
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Theorem 3.2. Suppose that H satisfies Assumptions 2.1 and 2.2, and then for
g ∈ Λd̃,∣∣∣∣D[H](g)−

∫
D(ε)g(ε)dε

∣∣∣∣
≤ Cd̃−6 sup

d(z,S[H])<d̃

[
|g(z)|e−γd̃r

]
︸ ︷︷ ︸

Truncation Error

+ Cd̃−1 sup
d(z,S[H])<d̃

[
|g(z)|e−γ′d̃Ndisc

]
︸ ︷︷ ︸

Discretization Error

+C ′
∥∥∥∥g − ∫ χp(ε, ·)g(ε)dε

∥∥∥∥
∞︸ ︷︷ ︸

Kernel Polynomial Method Error

.

Here γ, γ′ > 0 are independent of the choice of d̃.

Proof. The truncation error follows from Theorem 2.2, the discretization error
from Theorem 3.1, and the kernel polynomial error from (3.1).

Remark 3.2. If we do not assume that hαα′ is analytic and use hαα′ ∈ Cn0 (R2)
instead, the discretization error above is replaced with the standard periodic dis-
cretization error [20, Theorem 1], but the bound does not give the dependence of
Ndisc on d̃.

3.3. Convergence rates. We briefly discuss a heuristic to choose the approxi-
mation parameters p,Ndisc ∈ N and r > 0. In practice, one is interested in calculating
the density of states at a point or in calculating an observable D[H](g) for g ∈ Λd̃.

For the first case, we note that χp acts similar to a Gaussian approximation to
the identity of width proportional to p−1 [21] with well preserved regularity because
of the Jackson coefficients. For analytic purposes, we can therefore consider

(3.4) χp(ε, e) ∼ φp(ε− e),

for
φp(e) =

p√
2π3

e−(ep/π)2

as demonstrated in [21]. An approximation of the density of states at a given energy
point ε is given by D[H](χp(ε, ·)) ∼ D[H](φp). To approximate D[H](χp(ε, ·)), we
consider the error bounds in Theorem 3.2. We have

truncation error ∼ d̃−2 sup
d(z,S[H])<d̃

[
|χp(ε, z)|e−γd̃r

]
.

If we let d̃ ∼ p−1 and we use (3.4), we have supd(z,S[H])<p−1 [χp(ε, z)] ∼ p. Then

truncation error ∼ p3e−γp
−1r.

Therefore r ∼ p log(p). The same argument holds for the discretization error, yielding

(3.5) r ∼ Ndisc ∼ p log(p)

Suppose the density of states is a Lipschitz continuous function, i.e.,

D[H](g) =

∫
DoS(ε)g(ε)dε,
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where DoS has Lipschitz constant M . Then we can estimate

|DoS(ε)−D[H](χp(ε, ·)| ≤Mp−1,

where we have used that χp(ε, ·) acts like a Gaussian with width proportional to p−1.
We then obtain

|D(ε)−DoS(ε)| ≤ C ′
(
pe−γ

′ Ndisc
p + p2e−γ

r
p +Mp−1

)
.

If the constants in (3.5) are chosen sufficiently small, we have

(3.6) |D(ε)−DoS(ε)| ≤ (M + C)p−1,

where C > 0 is independent of smoothness properties of DoS.
If the DoS is C2 at a point ε of interest, then we may expect even stronger

convergence. Using that D(ε) ∼
∫

DoS(e)φp(ε− e)de, we can do a Taylor expansion
up to the second order around ε for |e| � 1 to obtain

DoS(ε+ e) = DoS(ε) + eDoS′(ε) +O(e2).

This gives

|DoS(ε)−D(ε)| =
∣∣∣∣DoS(ε)−

∫
φp(e)

(
DoS(ε) + eDoS′(ε) +O(e2)

)
de

∣∣∣∣ .
Using that

∫
eφp(e) = 0, we get

(3.7) |D(ε)−DoS(ε)| ≤ Cp−2.

For the second case, when the observable g ∈ Λ is fixed (no polynomial degree
approximation parameter p), we have in principle exponential decay of the error in r
and Ndisc. This seems to imply that it would be optimal to calculate the observable
directly using an eigensolve, thus avoiding the slower decay in p. However, the decay
rate in r is strongly coupled to the value of d̃ from Theorem 2.2, which is fairly small
for interesting observables. Therefore, the involved matrices are typically quite large,
rendering direct eigensolves impractical.

3.4. Numerical results. We test our approximation scheme using a tight-
binding model for twisted bilayer graphene [5] with a relative twist angle of 6◦. We
fix an α ∈ A1 and then verify numerically the following two results:

1. As predicted in Theorem 2.2, Dα[Hr,1(b)](χp(ε, ·)) → Dα[H](b, χp(ε, ·)) as
r →∞ with exponential rate proportional to p−1: see Figure 4.

2. As predicted by Theorem 3.2 and (3.7), D → DoS pointwise as p, r,Ndisc →∞
with quadratic rate: see Figure 5.

Furthermore, we demonstrate the practicality of Algorithm A by reproducing
twisted bilayer effects in the density of states of two stacked graphene sheets with
a relative twist of 6◦ as predicted in [5] (see Figure 6). We included the DoS for
monolayer graphene for comparison. The conical region near the −.6 energy region
is called the Dirac cone. When the two layers interact, the curve splits near the cone
tip (the Dirac point) forming two Van Hove singularities (VHS) on either side of the
tip. In practice the VHS needs higher resolution. We will explore how to achieve high
resolutions in a future work.
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Fig. 4. Relative error of Dα[Hr,1(0)](χp(0, ·)) converging to Dα[H](χp(0, ·)) for increasing
values of p. Here the reference value is taken at r = 250.

p-value
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100
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Slope -2

Fig. 5. Relative error of D(0) → DoS(0) pointwise, where r and Ndisc scale as in (3.5). The
slope is −1.98 ≈ −2, as predicted in (3.7). Here the reference value is taken at p = 196 with
proportional choice of Ndisc and r. The ratio in (3.5) is chosen such that the first point corresponds
to p = 60, r = 20, and Ndisc = 2.

4. Proofs. To attain bounds on the density of states objects, we will use resol-
vent bounds as introduced in [3]. We denote C a contour around S[H], which contains
the spectrum. We can write for Ω̃ ⊂ Ω finite, H̃ ∈M|Ω̃|(C), k ∈ Ω, and g analytic

[g(H̃)]kk =
1

2πi

∮
C
g(z)[(z − H̃)−1]kkdz.
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Fig. 6. Approximation of the DoS using Algorithm A with r = 180, p = 700, and Ndisc = 4.
We can see VHS forming near the Dirac Point, agreeing with theoretical results [5]. We include the
test function (χp(ε, ·)), which is to scale in the E-axis, but not in the DoS-axis.

We will then rely on decay estimates for [(z − H̃)−1]kk as Ω̃ ↑ Ω. We will vary our
choice of C to tune the error bounds.

4.1. Proof of Theorem 2.1. Although this result is conceptually close to the
equidistribution theorem [22], our specific statement of the result seems to be unavail-
able. Hence we prefer to give a complete proof. Without loss of generality, we let
j = 1 and hence Pj = 2. Then we wish to show for g ∈ Cper(Γ2), we have

1

#R1 ∩Br
∑

`∈R1∩Br
g(`)→ 1

|Γ2|

∫
Γ2

g(b)db.

We let Vr = #Z2 ∩A−1
1 Br. We then wish to show for g ∈ Cper(Γ2) that

(4.1)
1

Vr

∑
n∈Z2

⋂
A−1

1 Br

g(A1n)→ 1

|Γ2|

∫
Γ2

g(b)db.

Since C∞per(Γ2) is dense in Cper(Γ2), we assume g ∈ C∞per(Γ2). On expanding g
into Fourier modes, it suffices to show (4.1) for an arbitrary fourier mode g(x) =

e2πim·A−1
2 x, where m ∈ Z2.

If m = (0, 0), then the left-hand side and right-hand side of (4.1) are 1.
For m 6= (0, 0), the right-hand side of (4.1) vanishes, so we need to prove that

1
Vr

∑
n∈Z2

⋂
A−1

1 Br
g(A1n)→ 0 as r →∞. We first rewrite

1

Vr

∑
n∈Z2

⋂
A−1

1 Br

g(A1n) =
1

Vr

∑
n∈Z2

⋂
A−1

1 Br

e2πimtA−1
2 A1n =

1

Vr

∑
n∈Z2

⋂
A−1

1 Br

e2πia·n,

where a = (a1, a2) = mtA−1
2 A1. If both a1 and a2 were rational, then this would
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contradict Assumption 2.1, since

(A−1
1 )∗n+ (A−1

2 )∗m = (0, 0)

for n,m ∈ Z2 if and only if n = m = (0, 0). Hence we assume, without loss of
generality, that a2 /∈ Q.

Let c > 0 such that

n ∈ Z2
⋂
A−1

1 Br ⇒ n1 ∈ [−cr, cr].

Moreover, for n1 ∈ [−cr, cr] ∩ Z2 let f−(n1), f+(n1) ∈ Z2 such that (n1, n2) ∈
Z2
⋂
A−1

1 Br if and only if f−(n1) ≤ n2 ≤ f+(n1).
We can now compute

1

Vr

∑
n∈Z2

⋂
A−1

1 Br

e2πia·n =
1

Vr

∑
n1∈[−cr,cr]∩Z2

e2πia1n1

f+(n1)∑
n2=f−(n1)

e2πia2n2

=
1

Vr

∑
n1∈[−cr,cr]∩Z2

e2πia1n1
e2πia2(f−(n1)+1) − e2πia2(f+(n1)+1)

1− e2πia2
.

Since a2 is irrational, 1− e2πia2 6= 0, and hence we can estimate∣∣∣∣∣∣ 1

Vr

∑
n∈Z2

⋂
A−1

1 Br

e2πia·n

∣∣∣∣∣∣ ≤ 4cr

|1− e2πia2 |Vr
≤ Cr−1,

which vanishes in the limit r → ∞, as required. This completes the proof of Theo-
rem 2.1.

4.2. Proof of Theorem 2.2. Recall that

Λ :=
⋃
d̃>0

Λd̃.

In particular, note that Λ is dense in C(S[H]), in the sense that for any f ∈ C(S[H])
and ε > 0, there exists g ∈ Λ such that

‖g|S[H] − f‖∞ < ε.

This will be useful for extending the density of states operators from Λ to C(S[H]).

Lemma 4.1. Suppose H̃ ∈Mn(C), and y : {1, 2, . . . , n} → R2 such that

|H̃k`| ≤ Ce−γ̃|y(k)−y(`)|

for some γ̃ > 0. Suppose that there exists N ∈ N, r′ > 0 such that for all x ∈ R2,
|#{y(j) : y(j) ∈ Br′(x)}| < N . Then there exists γ > 0 such that, for all z ∈ C,
dist(z, S[H]) ≥ d̃/2, ∣∣∣[(z − H̃)−1]k`

∣∣∣ ≤ C ′d̃−1e−γ(1+κ)d̃|y(k)−y(`)|.

Here C ′ and γ are dependent on γ̃, N, r′, and C, and κ > 0, κ� 1.
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origin
sheet 2
sheet 1

r0

r

r0 � |R(`)|

r0 � |R(k)|

|R(`) � R(k)|
|R(`)|

|R(k)|

Fig. 7. For given sites ` and k, we plot the relevant distances in solid lines and system radii
in dotted lines for considering resolvent error in Lemma 4.2.

Proof. This is a version of [3, Lemma 2.2]. Note that we don’t include a lower
bound on the distance between sites y(j). We do not need this condition since we don’t
allow singularities in our coupling functions h(x). This is reasonable for interlayer
terms since x → 0 does not correspond to orbitals moving arbitrary close together,
as we assumed a fixed distance between the sheets. As for intralayer, the orbitals are
fixed on the Bravais lattice.

In particular, the previous lemma applies to the matrices Hr,j(b). To apply it we
will set y = R, where in the following we define

R : Ω→ R2, R(Rα) = R.

For the next lemma, recall the definition of Hr′,j(b) from (2.2).

Lemma 4.2. Suppose that H satisfies Assumptions 2.2 and 2.1. Let Ω̃ ⊂ Ω be a
set of indices and H̃j(b) be the matrix defined over Ω̃ with shift b relative to sheet j,
that is,

[H̃j(b)]Rα,R′α′ = hαα′
(
b(δα∈APj − δα′∈APj ) +R−R′

)
.

We let k = Rα and ` = R′α′. Suppose that r′ > 0 such that Ωr′ ⊂ Ω̃ and d̃ > 0
such that d(z, S[H]) > d̃. Then∣∣∣∣[(z − H̃j(b))

−1
]
k`
−
[
(z −Hr′,j(b))

−1
]
k`

∣∣∣∣
≤ Cd̃−6 min

{
e−γd̃|R(k)−R(`)|, r′e−γd̃max{r′−|R(k)|,r′−|R(`)|}

}
,

where C and γ are independent of Ω̃ and r′ (see Figure 7).
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Proof. We define the matrix H̃r′

j (b) ∈M|Ω̃|(C) such that

[H̃r′

j (b)]k` =

{
Hr′,j(b) if k, ` ∈ Ωr′

0 otherwise.

We note

(z − H̃j(b))
−1 − (z − H̃r′

j (b))−1 = (z − H̃j(b))
−1(H̃j(b)− H̃r′

j (b))(z − H̃r′

j (b))−1.

Now [H̃j(b)− H̃r′

j (b))]ts is only nonzero if t or s /∈ Ωr′ . We use the definition

Ω̃ \ Ωr′ := {x : x ∈ Ω̃, x /∈ Ωr′}.
From Lemma 4.1, we have

|[(z − H̃j(b))
−1]st| ≤ C̃d̃−1e−γd̃(1+κ)|R(s)−R(t)|

and
|[(z − H̃r′

j (b))−1]st| ≤ C̃d̃−1e−γd̃(1+κ)|R(s)−R(t)|.

Therefore, we obtain the bound∣∣∣[(z − H̃j(b))
−1 − (z − H̃r′

j (b))−1]k`

∣∣∣
≤
∑
t∈Ω̃

∑
s∈Ω̃\Ωr′

∣∣∣[(z − H̃j(b))
−1]kt[H̃j(b)− H̃r′

j (b)]ts[(z − H̃r′

j (b))−1]s`

∣∣∣
+
∑
s∈Ω̃

∑
t∈Ω̃\Ωr′

∣∣∣[(z − H̃j(b))
−1]kt[H̃j(b)− H̃r′

j (b)]ts[(z − H̃r′

j (b))−1]s`

∣∣∣
≤ Cd̃−2

∑
t∈Ω̃

∑
s∈Ω̃\Ωr′

e−γd̃(1+κ)(|R(k)−R(t)|+|R(t)−R(s)|+|R(s)−R(`)|)

+ Cd̃−2
∑
s∈Ω̃

∑
t∈Ω̃\Ωr′

e−γd̃(1+κ)(|R(k)−R(t)|+|R(t)−R(s)|+|R(s)−R(`)|).

Here we consider one of the terms on the right-hand side. First, we observe∑
t∈Ω̃

e−γd̃(1+κ)(|R(k)−R(t)|+|R(t)−R(s)| ≤ C ′
∫
R2

e−γd̃(1+κ)(|R(k)−y|+|y−R(s)|)dy.

Using alternative elliptic coordinates, letting a = 1
2 |R(k)−R(s)|, we get∑

t∈Ω̃

e−γd̃(1+κ)(|R(k)−R(t)|+|R(t)−R(s)|)

≤ Ca2

∫ 1

−1

∫ ∞
1

σ2 − τ2√
(σ2 − 1)(τ2 − 1)

e−2aγd̃(1+κ)σdσdτ

≤ C ′a2

(∫ ∞
0

(σ + 1)2√
σ(σ + 2)

e−2aγd̃(1+κ)σ

)
dσe−2aγd̃(1+κ)

≤ C ′′a2

(∫ 1

0

σ−1/2e−2aγd̃σdσ +

∫ ∞
1

σe−2aγd̃σdσ

)
e−2aγd̃(1+κ)

≤ C ′′′(a3/2d̃−1/2 + d̃−2)e−2aγd̃(1+κ)

≤ C ′′′(|R(k)−R(s)|3/2d̃−1/2 + d̃−2)e−γ(1+κ)d̃|R(k)−R(s)|

≤ C ′′′′d̃−2e−γd̃|R(k)−R(s)|.
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We find some κ0 such that (1 +κ0)2 < (1 +κ). Then using the above argument twice
using κ0 in place of κ, we have∑

t∈Ω̃

∑
s∈Ω̃\Ωr′

e−γd̃(1+κ)(|R(k)−R(t)|+|R(t)−R(s)|+|R(s)−R(`)|) ≤ C̃d̃−4e−γd̃|R(k)−R(`)|.

Alternatively, if we use it once, then we obtain∑
t∈Ω̃

∑
s∈Ω̃\Ωr′

e−γd̃(1+κ)(|R(k)−R(t)|+|R(t)−R(s)|+|R(s)−R(`)|)

≤ C ′′′d̃−2
∑

s∈Ω̃\Ωr′

e−γd̃(|R(k)−R(s)|+|R(s)−R(`)|)

≤ C̃ ′d̃−2

∫
|y|>r′

e−γd̃(|R(k)−y|+|R(`)−y|)dy

≤ C̃ ′d̃−2

∫
|y|>r′

e−γd̃|x−y|dy, for x = R(k) or x = R(`)

≤ C̃ ′d̃−2

∫
|y|>r′

e−γd̃(|y|−|x|)dy.

Therefore, we deduce that∑
t∈Ω̃

∑
s∈Ω̃\Ωr′

e−γd̃(1+κ)(|R(k)−R(t)|+|R(t)−R(s)|+|R(s)−R(`)|)

≤ C̃ ′′d̃−4r′e−γmax{d̃(r′−|R(k)|),d̃(r′−|R(`)|)}.

Finally, we can conclude that∣∣∣[(z − H̃j(b))
−1]k` − [(z −Hr′,j(b))

−1]k`

∣∣∣
≤ C ′d̃−6 min{e−γd̃|R(k)−R(`)|, r′e−γd̃max{|r′−|R(k)|,r′−|R(`)|}}.

Lemma 4.2 shows that the resolvent difference is bounded by the site distances
from the edge of the first cutoff region (the circle with radius r′) and the distance
between the two sites. This is consistent with Lemma 4.1.

Let C be a contour around S[H] such that d̃/2 < d(C, S[H]) < d̃. By Lemma 4.2,
we have for g ∈ Λd̃ and r < r′ that

|Dα[Hr,j(b)](g)−Dα[Hr′,j(b)](g)|

=

∣∣∣∣ 1

2πi

∮
C
g(z)

(
[(z −Hr,j(b))

−1]0α,0α − [(z −Hr′,j(b))
−1]0α,0α

)
dz

∣∣∣∣
≤ C ′d̃−6r′ sup

z∈C
|g(z)|e−γd̃r′ .

Hence {Dα[Hrn,j(b)]}n is a Cauchy sequence for rn → ∞, which therefore has some
limit Dα[H](b, g). Dα[H] is linear in g, since each element of the Cauchy sequence is
linear. Further, we have the error bound

|Dα[H](b, g)−Dα[Hr,j(b)](g)| ≤ C ′d̃−6r sup
z∈C
|g(z)|e−γd̃r.

Since the linear functional Dα[Hr,j(b)] is bounded by ‖Dα[Hr,j(b)]‖ ≤ 1 we also
obtain that Dα[H](b, ·) is a bounded linear functional and so has a unique extension
to a bounded linear functional on the space C(S[H]).

This completes the proof of Theorem 2.2.
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4.3. Proof of Theorem 2.3.

Lemma 4.3. Suppose hαα′ ∈ Cn(R2) for n ∈ N ∪ {∞} and ∂mb1∂
m′

b2
hαα′ is uni-

formly continuous for m+m′ ≤ n. We further assume the decay estimate

(4.2) |∂mb1∂m
′

b2 hαα′(x)| ≤ Cmm′e−γ
′
mm′ |x|.

Then for k = 0α and d({z}, S[H]) > 0, we have b 7→ [(z −Hr,j(b))
−1]kk ∈ Cnper(ΓPj )

for all b ∈ R2 and fixed r > 0, and we have the limit

b 7→ lim
r→∞

[(z −Hr,j(b))
−1]kk ∈ Cnper(ΓPj )

for all b ∈ R2. Furthermore, for all b ∈ R2, z 7→ [(z − Hr,j(b))
−1]kk is analytic in

C \ S[H].

Proof. We will only consider the derivative ∂b1 ; the treatment of higher (and
lower) order derivatives follow the same line of argument but are more cumbersome.
We drop the subscript of γ′10 for brevity. Let k = 0α for some α ∈ Aj , and then

∂b1 [(z −Hr,j(b))
−1]kk =

∑
s,`∈Ωr

[(z −Hr,j(b))
−1]ks[∂b1Hr,j(b)]s`[(z −Hr,j(b))

−1]`k.

Lemma 4.2 implies that, for r > r′ > 0,

R(r, r′, k, s) :=

∣∣∣∣[(z −Hr,j(b))
−1]ks − [(z −Hr′,j(b))

−1]ks

∣∣∣∣
≤ C min{e−γ|R(k)−R(s)|, r′e−γmin{r′−|R(k)|,r′−|R(s)|}},

where C and γ are independent of r. Since we are trying to define the limit and are
not interested in the convergence rate, we let d̃ = 1 in our use of Lemma 4.2. Note
also that, for s, ` ∈ Ωr′ , we have

∂b1 [Hr,j(b)]s` = ∂b1 [Hr′,j(b)]s`.

Recalling that R(k) = R(0α) = 0 and employing (4.2), we estimate∣∣∂b1 [(z −Hr,j(b))
−1]kk − ∂b1 [(z −Hr′,j(b))

−1]kk
∣∣

≤ C
( ∑
s,`∈Ωr′

(
R(r, r′, k, s)e−γ|R(`)−R(k)| +R(r, r′, `, k)e−γ|R(s)−R(k)|)|∂b1 [Hr,j(b)]s`|

+
∑

s∈Ωr,`∈Ωr\Ωr′

∣∣∣∣[(z −Hr,j(b))
−1]ks[∂b1Hr,j(b)]s`[(z −Hr,j(b))

−1]`k

∣∣∣∣
)

≤ C ′
( ∑
s,`∈Ωr′

(
R(r, r′, k, s)e−γ|R(`)| +R(r, r′, `, k)e−γ|R(s)|)e−γ′|R(s)−R(`)| + r′e−γr

′

)
.

Here the bound on the second term comes from the same argument as in Lemma 4.2.
We then have∣∣∂b1 [(z −Hr,j(b))

−1]kk − ∂b1 [(z −Hr′,j(b))
−1]kk

∣∣
≤ C ′′r′

∑
s,`∈Ωr′

e−γ(r′−|R(s)|)−γ|R(`)|−γ′|R(s)−R(`)| + C ′r′e−γr
′

≤ C ′′′r′2
∑
s∈Ωr′

e−γ(r′−|R(s)|)−min{γ,γ′}|R(s)| + C ′r′e−γr
′

≤ C̃e−γ′′r′

for any choice of γ′′ < min{γ, γ′}, where C̃ depends on the choice of γ′′.
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Therefore, as rn → ∞, ∂b1 [(z − Hrn,j(b))
−1]kk forms a Cauchy sequence and in

particular has a limit

L1(b) := lim
r↑∞

∂b1 [(z −Hr,j(b))
−1]kk.

Likewise, using that [(z −Hr,j(b))
−1
kk forms a Cauchy sequence, we define

L(b) := lim
r↑∞

[(z −Hr,j(b))
−1]kk.

We need to show that ∂b1L exists and satisfies

∂b1L = L1.

We denote for fixed r > 0

Resr(b) = [(z −Hr,j(b))
−1]kk.

Since ∂b1hαα′ is uniformly continuous there exists a modulus of continuity ω such that
|∂b1h(b) − ∂b1h(b′)| ≤ ω(|b − b′|). We then observe that, for ε > 0, ε � |Im(z)|, and
e1 = (1, 0)

δHr = Hr,j(b+ ε)−Hr,j(b) = O(εω(ε)),

where the remainder is r-independent. Then we have

1

ε

(
Resr(b+ εe1)− Resr(b)

)

=
1

ε

(z −Hr,j(b))
−1

∑
n≥0

(δHr(z −Hr,j(b))
−1)n − 1


kk

=
1

ε

(z −Hr,j(b))
−1
∑
n≥1

(δHr(z −Hr,j(b))
−1)n


kk

.

Using the `2 norm, we have∣∣∣∣1ε(Resr(b+ εe1)− Resr(b)
)∣∣∣∣ ≤ 1

ε
‖(z −Hr,j(b))

−1‖2
∑
n≥1

‖δHr‖n2‖(z −Hr,j(b))
−1‖n2

≤ O

∑
n≥1

|Im(z)|−1−nεn−1ω(ε)n


≤ O(|Im(z)|−1ω(ε)).

This bound is independent of r. Hence

1

ε

(
[L(b+ εe1)− L(b)

)
= L1(b) +O(ω(ε)).

Letting ε→ 0 shows that L ∈ C(1,0)
per (Γj) and ∂b1L = L1, which is the desired result.

Continuity of L1 with respect to b follows the same argument. Analyticity with
respect to z follows from [7, section 5.2].

Theorem 2.3 follows immediately from Lemma 4.3.
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4.4. Proof of Theorem 2.4. Without loss of generality, let j = 1. Fix g ∈
Λ, r > 0 and η < 1. Then we have

D[Hr,1(0)](g) =
1

|Ωr|
∑
k∈Ωr

Dk[Hr,1(0)](g)

=
1

|Ωr|

 ∑
k∈Ωr\Ωηr

Dk[Hr,1(0)](g) +
∑
k∈Ωηr

Dk[Hr,1(0)](g)

 .

We define A : Ω → A1 ∪ A2 such that A(Rα) = α. By Lemma 4.2, we have for
k = Rα ∈ Ωηr and α ∈ Aj that

|Dk[Hr,1(0)](g)−Dα[H](modPj ◦R(k), g)| ≤ C sup
z∈C
|g(z)|e−γr(1−η).

The site k is at least a distance r(1− η) from the boundary of Ωr.
Consider the distribution

D[H](g) = ν

2∑
j=1

∑
α∈Aj

∫
ΓPj

Dα[H](b, g)db.

Since the integrand is continuous with respect to b (see Theorem 2.3) the integration
is well-defined. We now estimate

|D[H](g)−D[Hr,1(0)](g)|

≤

∣∣∣∣∣∣ 1

|Ωr|
∑

k∈Ωr\Ωηr
Dk[Hr,1(0)](g)

∣∣∣∣∣∣
+

∣∣∣∣∣∣D[H](g)− 1

|Ωηr|
2∑
j=1

∑
Rα∈Ωηr:α∈Aj

Dα[H](modPj (R), g)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

|Ωηr|
2∑
j=1

∑
Rα∈Ωηr:α∈Aj

Dα[H](modPj (R), g)

− 1

|Ωηr|
∑
k∈Ωηr

Dk[Hr,1(0)](g)

∣∣∣∣∣∣
+

(
1− |Ωηr||Ωr|

)
1

|Ωηr|

∣∣∣∣∣∣
∑
k∈Ωηr

Dk[Hr,1(0)](g)

∣∣∣∣∣∣ .
The first and fourth terms are easily seen to be bounded by O(1−η2). For the second
term, we let

Ωjηr = {Rα : Rα ∈ Ωηr, α ∈ Aj}.
Then

1

|Ωηr|
2∑
j=1

∑
Rα∈Ωηr:α∈Aj

Dα[H](modPj (R), g) =
1

|Ωηr|
2∑
j=1

∑
Rα∈Ωjηr

Dα[H](modPj (R), g).
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We then use
|Ω1
ηr|

|Ω2
ηr| →

|Γ2|·|A1|
|Γ1|·|A2| , |Ωηr| = |Ω

1
ηr|+ |Ω2

ηr|, and Theorem 2.1 to get

1

|Ωηr|
2∑
j=1

∑
Rα∈Ωηr:α∈Aj

Dα[H](modPj (R), g)→ D[H](g),

and hence the second term goes to zero as r → ∞. Finally, the third term can be
estimated by∣∣∣∣∣∣ 1

|Ωηr|
2∑
j=1

∑
Rα∈Ωηr:α∈Aj

Dα[H](modPj (R), g)

− 1

|Ωηr|
∑

Rα∈Ωηr

DRα[Hr,1(0)](g)

∣∣∣∣∣∣ ≤ C sup
z∈C
|g(z)|e−γr(1−η).

Therefore if we choose a pair of sequences (ηj), (rj) such that ηj ↑ 1, rj ↑ ∞, and
rj(1− ηj)→∞, we conclude that

D[Hr,1(0)](g)→ D[H](g).

Since D[H] is a bounded linear functional, it can be extended as before to be a
bounded linear functional over C(S[H]).

4.5. Proof of Theorem 3.1. We denote z̃ = (z̃1, z̃2) ∈ C2. Let z ∈ C. Then if
c > 0 is sufficiently small and Im(z̃1), Im(z̃2) ∈ (−c, c), we have

‖z −Hr,j(z̃)‖2 > 0,

and hence
∮
C g(z)[(z − Hr,j(z̃))

−1]0α,0α is analytic at z̃ satisfying Im(z̃1), Im(z̃2) ∈
(−c, c). We pick a contour C enclosing S[H] such that d̃/2 < d(C, S[H]) < d̃ and then
chose c = κd̃ for κ > 0 sufficiently small and independent of d̃ such that

‖Hr,j(z̃)−Hr,j(Re(z̃))‖ < d̃/4

by analyticity of Hr,j (see Figure 8). To see that we still maintain analyticity of
(z −Hr,j(z̃))

−1 for this choice of c and z ∈ C, we note that it suffices to show

‖z −Hr,j(z̃)‖2 > d̃/4.

However,

‖z −Hr,j(z̃)‖2 ≥ ‖z −Hr,j(Re(z̃))‖2 − ‖Hr,j(Re(z̃))−Hr,j(z̃)‖2 > d̃/4.

Hence, we have analyticity. Since
∫
C g(z)[(z − Hr,j(z̃))

−1]0α,0αdz is analytic with
respect to z̃, we can apply Theorem 9.28 of [11] twice, with respect to b1 and b2, to
deduce ∣∣∣∣∣∣

∫
ΓPj

∮
C
g(z)[(z −Hr,j(b))

−1]0α,0αdbdz −
|ΓPj |
N2

disc

∑
b∈SPj

∑
α∈Aj

Dα[H](b, g)

∣∣∣∣∣∣
< Cd̃−1 sup

d(z,S[H])<d̃

[
|g(z)|e−γ′′d̃Ndisc

]
for some C > 0 independent of r. The result follows.

5. Conclusion. The main result of this work, Theorem 2.4, is a representation
formula for the thermodynamic limit of the electronic structure of incommensurate
layered heterostructures. The result is reminiscent of Bellisard’s noncommutative
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c

S[H]

d̃

C
C

Fig. 8. The highlighted region shows the region R× (−c, c) enclosing S[H]. The contour C has
a distance to S[H] bounded above by d̃ and below by d̃/2. We also have c ∼ d̃.

Brillouin zone for aperiodic solids [1], replacing on-site randomness with a number-
theoretic equidistribution theorem.

Crucially, our representation formula lends itself to numerical approximation. In
section 3 we formulate, and analyze at a heuristic level, an efficient kernel polynomial
method to approximately compute the density of states in twisted bilayer graphene.
This preliminary exploration provides not only quantitative confirmation of our an-
alytical results but also demonstrates the utility of our approach for applications to
real material models.
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