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Urban Analytics and
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Quantifying scenic areas
using crowdsourced data

Chanuki Illushka Seresinhe,
Helen Susannah Moat and Tobias Preis
Warwick Business School, University of Warwick, UK; The Alan Turing Institute, UK

Abstract

For centuries, philosophers, policy-makers and urban planners have debated whether aesthetically

pleasing surroundings can improve our wellbeing. To date, quantifying how scenic an area is has

proved challenging, due to the difficulty of gathering large-scale measurements of scenicness. In

this study we ask whether images uploaded to the website Flickr, combined with crowdsourced

geographic data from OpenStreetMap, can help us estimate how scenic people consider an area to

be. We validate our findings using crowdsourced data from Scenic-Or-Not, a website where users

rate the scenicness of photos from all around Great Britain. We find that models including

crowdsourced data from Flickr and OpenStreetMap can generate more accurate estimates of

scenicness than models that consider only basic census measurements such as population

density or whether an area is urban or rural. Our results provide evidence that by exploiting

the vast quantity of data generated on the Internet, scientists and policy-makers may be able to

develop a better understanding of people’s subjective experience of the environment in which

they live.
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Introduction

Does living in picturesque areas improve people’s wellbeing? Philosophers, psychologists,
urban planners and policy-makers have deliberated over this question for years, but have
been hindered by the lack of data on the beauty of our environment. For many years, it has
been possible to obtain large-scale data sets on objective measures of the environment, such
as distances to parks or coastal areas, the proportion of green land cover and population
density. However, such measures do not reveal people’s subjective experience of either built
or natural environments.

While several studies reveal a connection between human wellbeing and greenspace (de
Vries et al., 2003; Kardan et al., 2015; Maas et al., 2006, 2009; MacKerron andMourato, 2013;
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Mitchell and Popham, 2007, 2008; Sugiyama et al., 2010; van den Berg et al., 2010;
White et al., 2013), they also expose counterintuitive results. For example, Mitchell and
Popham (2007) suggest that ill health in low-income suburban neighbourhoods is
positively correlated with greater greenspace. This surprising result may be due to the fact
that the greenspace was aesthetically displeasing and thus not amenable to physical activity
(Giles-Corti et al., 2005; Kaczynski et al., 2008; Sugiyama et al., 2010).

Traditionally, time consuming and costly large-scale surveys have been the only method
of eliciting information about the scenicness of an area. While more automated methods of
eliciting beauty of the environment using data from Geographic Information Systems (GIS)
are promising (Bishop and Hulse, 1994; Grêt-Regamey et al., 2007; Palmer, 2004; Schirpke
et al., 2013), in the past these analyses have only been carried out on a small scale, possibly
due to a reliance on survey data to validate their findings.

Today, we have a new source of information on how humans perceive their environment:
the vast quantity of data uploaded to the Internet. Increasingly, this online activity is being
geographically tagged, which has already lead to a range of fascinating insights into our
interactions with our surrounding environment (Batty, 2013; Botta et al., 2015; Casalegno
et al., 2013; Dunkel, 2015; Dykes et al., 2008; Girardin et al., 2008; Gliozzo et al., 2016;
Goodchild, 2007; Graham and Shelton, 2013; Haklay et al., 2008; King, 2011; Lazer et al.,
2009; Moat et al., 2014; O’Brien et al., 2014; Preis et al., 2013; Seresinhe et al., 2015, 2016;
Stadler et al., 2011; Sui et al., 2013; Tenerelli et al., 2016; Vespignani, 2009; Wood et al.,
2013; Zaltz Austwick et al., 2013). For instance, to investigate whether such data can help us
understand the relationship between aesthetics and human wellbeing, Seresinhe et al. (2015)
consider data from Scenic-Or-Not, a website that crowdsourced ratings of scenicness for 1
km grid squares of Great Britain. Their analysis of these ratings reveals that residents of
more scenic environments in England report better health, even when taking core
socioeconomic indicators of deprivation, such as income, into account. They find that
such differences in reports of health can be better explained by the scenicness of the local
environment than by measurements of greenspace alone. These results suggest that the
aesthetics of the environment may have greater practical consequences than previously
believed.

The volume of Scenic-Or-Not ratings is considerable: to date, over 1.5 million ratings
have been collected for over 200,000 locations in the UK. However, if it were possible to
measure scenicness on a global scale, what might this reveal about wellbeing around the
world? Photographs uploaded to image sharing websites such as Flickr cover a much
greater area at greater density. Here, we begin to investigate whether data from Flickr
could be used to estimate scenicness ratings for any location without the requirement of
gathering new Scenic-Or-Not ratings. Geotagged Flickr images have already been shown to
be of value in identifying people’s preferences for specific places (Girardin et al., 2008;
Gliozzo et al., 2016; Tenerelli et al., 2016; Wood et al., 2013). We envisage that we might
be able to capture the scenicness of an area through Flickr data, as people might share
more photos of places they find to be picturesque, or may reveal the scenicness of an area
through descriptions they add to the shared image. We also explore data from
OpenStreetMap, an editable Wiki world map created by thousands of volunteers
(Haklay, 2010; Neis and Zipf, 2012), from people with local knowledge to GIS
professionals. We ask whether images uploaded to Flickr, combined with crowdsourced
geographic data on OpenStreetMap, can help us determine which geographic areas people
consider to be scenic.

We build a base model to estimate how scenic an area is using measures of population
density, number of residents, and urban, suburban or rural categories. We then explore to

2 Environment and Planning B: Urban Analytics and City Science 0(0)



what extent crowdsourced data from Flickr and OpenStreetMap can help improve our base
model. We identify which crowdsourced variables can add power to our model using a
statistical learning method. Finally, we investigate whether models including
crowdsourced variables can generate more accurate estimates of scenicness than our base
model comprising measurements of population and area category alone.

Data and methodology

Census and environment data

In our base model, we investigate whether data on population density, number of residents,
and urban, suburban or rural categories can be used to estimate scenicness.

Data on population density and number of residents have been extracted through the
2011 Census for England and Wales (Office for National Statistics, 2012) and Scotland’s
Census 2011 (National Records of Scotland, 2012). We conduct our analyses on the level
of Lower Layer Super Output Areas (LSOAs), which are defined by the Office for National
Statistics for statistical analyses. LSOAs are geographic areas ranging from 0.018 to 684
square km, containing between 983 and 8,300 residents (1,500 on average).

We use data on urban and rural classifications of LSOAs (Office for National Statistics,
2013; Scottish Government, 2012) to explore the role urban, suburban or rural areas might
play in the scenicness of an area. For the purposes of this study, ‘urban’ LSOAs in England
and Wales are defined using the category ‘Urban Major Conurbation’ (Office for National
Statistics, 2013). The remaining urban categories are deemed suburban. ‘Urban’ LSOAs in
Scotland are defined using the category ‘Large Urban Areas’ and ‘suburban’ LSOAs are
defined using the categories ‘Other Urban Areas’, ‘Accessible Small Towns’, and ‘Remote
Small Towns’ (Scottish Government, 2012).

Flickr and OpenStreetMap data

In our extended models, we include measures derived from all publicly available Flickr
photographs uploaded in 2013 that were geotagged as being located in Great Britain.
Data on Flickr images were retrieved from Flickr’s Application Programming Interface
(see https://www.flickr.com/services/api/flickr.photos.search.html) throughout 2014. In
order to ensure that the photographs were taken outdoors, we exclude images that were
taken in buildings using crowdsourced data from OpenStreetMap. OpenStreetMap data on
Buildings, Points of Interests and Natural Points of Interest were retrieved from GeoFabrik
(2016, http://www.geofabrik.de/) where data were last updated on 20 July 2016.

From the 3,549,000 Flickr images we have available for our analysis, we identify 427,727
images located inside buildings and exclude them from our analysis. However, it is possible
that the data from OpenStreetMap do not always correctly identify building locations. For
example, Haklay (2010) and Zielstra and Hochmair (2013) observe that the OpenStreetMap
road network data might not always be complete. To gain further insight into whether
photos were taken in outdoor locations, we therefore test a random sample of 10,000
images using the Places Convolutional Neural Network (CNN) (Zhou et al., 2014). The
Places CNN has been trained on around 2.5 million images to detect 205 scene categories,
which in turn can be classified as indoor categories or outdoor categories. The labels of the
top five predicted place categories can therefore be used to check if the given image has been
taken indoors or outdoors with more than 95% accuracy (Zhou et al., 2014). Using this
method, we find that 23% of images classified as being outdoors using the OpenStreetMap
building data are classified as indoor images using Places CNN. When we evaluate image
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classifications in urban, suburban and rural areas separately, we find more mismatches
between the OpenStreetMap and Places CNN classifications in urban and suburban areas
than in rural areas. In urban areas, 35% of images classified as outdoor images using
OpenStreetMap data are classified as being indoor images using Places CNN. In suburban
areas, the corresponding figure is 24%, in comparison to 14% in rural areas. We discuss the
potential implications of this classification mismatch in ‘Discussion’ section.

Scenic-Or-Not data

We use data from Scenic-Or-Not to determine how accurately our model using Flickr and
OpenStreetMap data is able to predict scenic areas. Scenic-Or-Not presents users with random
geotagged photographs of Great Britain, which visitors can rate on an integer scale 1–10,
where 10 indicates ‘very scenic’ and 1 indicates ‘not scenic’. Each image, sourced from
Geograph, represents a 1 km grid square of Great Britain. The Scenic-Or-Not data set
comprises 217,000 images covering nearly 95% of the 1 km grid squares of Great Britain.
We retrieved data on scenicness ratings by accessing the Scenic-Or-Not website (http://scenic.
mysociety.org/) on 2 August 2014. The Scenic-Or-Notwebsite uses photographs sourced from
Geograph (http://www.geograph.org.uk/). We only include images in our analysis that have
been rated more than three times. We then aggregate these ratings on the level of LSOA.

Identifying scenic images

When uploading images to Flickr, photographers commonly choose to include additional
textual data such as a title, description and tags (e.g. ‘scenic’, ‘sky’, ‘city’) to describe the
image. We attempt to determine which images could be considered ‘scenic’ by evaluating this
textual data associated with each Flickr photograph. We deem a photograph as ‘scenic’ if
there is a mention of ‘scenic’ or a similar word in this textual metadata.

To determine which words we should consider as similar to scenic, we build a word2vec
model (Radim and Petr, 2010, Mikolov et al., 2013). A word2vec model is a model that is
constructed by processing a large corpus of text, in order to build a representation of the
semantic meaning of each word on the basis of the contexts in which it appears. Here, we
process the full Wikipedia corpus, using the latest data as of 14 July 2016 retrieved from
https://dumps.wikimedia.org/enwiki/latest/. Having constructed this model, we are able to
query it in order to identify words that have a similar meaning to any word of interest, such
as ‘scenic’. We classify a word as being similar if the similarity between the words is more
than 0.5 according to the constructed word2vec model. We first search for words similar to
‘scenic’, for which three words are returned: ‘picturesque’, ‘scenery’ and ‘hiking’. We then
search again for these three words to identify further similar words, where the model returns
words such as ‘birdwatching’, ‘landscape’ and ‘unspoilt’. Table 1 lists all the words identified
by this approach.

In order to identify images that the textual information suggests might be scenic, we
search the title, description and tags, using a regular expression for the word ‘scenic’ (e.g.
\bscenic\b) and, separately, for the word ‘scenic’ or words similar to ‘scenic’ (e.g.
\b(scenicWpicturesqueWbirdwatchingWlandscape)\b) The expression ‘\b’ allows us to search for
whole words only. In this process, we count only a single occurrence of ‘scenic’ (or a word
similar to ‘scenic’) even if it has ‘scenic’ (or a word similar to ‘scenic’) mentioned several
times in the metadata. We then have two different measures for each image: (1) whether the
textual data mentions ‘scenic’, or (2) whether the textual data mentions ‘scenic’ or a word
similar to ‘scenic’.
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Estimating scenic areas

We build a base model to help us determine how scenic an area is, using the measures of
population density, number of residents, and whether an area is categorised as urban,
suburban or rural.

When working with spatial data, it is reasonable to assume that observations in
neighbouring areas may be more or less alike simply due to their proximity, and hence
may exhibit autocorrelation (Bivand et al., 2013; Harris et al., 2005). We confirm this by
first carrying out a Moran’s I test, which measures whether spatial autocorrelation is present
in the data. Due to the spatial autocorrelation revealed by this test (as reported in more
detail below), it is not appropriate to run a simple linear regression analysis, as spatial
dependencies would exist in the error term. Hence, we run our analysis using a
conditional auto regressive (CAR) model as detailed below.

We then explore to what extent crowdsourced data from Flickr and OpenStreetMap can
help improve our base model. We identify which crowdsourced variables can add power to
our model using a statistical learning method as explained below.

Table 1. Identifying words similar to ‘scenic’.a

Words identified as similar to ‘scenic’

backdrops quaint

backpacking riverway

birdwatching rustic

breathtaking sceneries

bucolic scenery

bushwalking snowmobiling

gorge snowshoeing

greenery surroundings

hikers tourist

hiking trails

hillwalking tranquil

idyllic trekking

landscape unspoiled

landscapes unspoilt

parks vistas

picnicking wilderness

picturesque

aTo determine which words we should consider as similar to scenic, we build

a word2vec model (Radim and Petr, 2010, Mikolov et al., 2013). A word2vec

model is a model which is constructed by processing a large corpus of text, in

order to build a representation of the semantic meaning of each word on the

basis of the contexts in which it appears. Having constructed this model, we

are able to query it in order to identify words that have a similar meaning to

any word of interest, such as ‘scenic’. We classify a word as being similar if the

similarity between the words is more than 0.5 according to the constructed

word2vec model. We first search for words similar to ‘scenic’, for which three

words are returned: ‘picturesque’, ‘scenery’ and ‘hiking’. We then search

again for these three words to identify further similar words, where the

model returns words such as ‘birdwatching’, ‘landscape’ and ‘unspoilt’.

Table 2 lists all words we identify with this approach.
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Finally, we investigate whether models including crowdsourced variables can generate
more accurate estimates of scenicness than our base model comprising measurements of
population and area category alone, by comparing the Akaike weights (AICw) of each model.

CAR model

Initially proposed by Besag and colleagues (Besag, 1974; Besag et al., 1991), the CAR model
captures spatial dependence between neighbours through an adjacency matrix of the areal
units.

The CAR model quantifies the spatial relationship in the data by including a conditional
distribution in the error term ei. The conditional distribution of ei is thus represented as

eijej�i � N
X
j�i

cijejP
j�i cij

,
�2eiP
j�i cij

 !

where ej�i is the vector of error terms for all neighbouring areas of i; and cij denotes
dependence parameters used to represent the spatial dependence between the areas.

Using statistical learning to identity candidate variables

We use the statistical learning method of cross-validation (Hastie et al., 2009; James et al.,
2013) to identify candidate variables to use in our scenic estimation models using
crowdsourced data. We randomly partition the observations in our data set into a 60/40
split where 60% of the data are used as the training set and 40% of the data are used as the
validation set. We ensure that each partitioned data set has an equal split of urban,
suburban, and rural areas. We fit new models on the training data set including all the
variables in our base model (population density, number of residents, and urban,
suburban or rural categories) plus every combination of all the crowdsourced variables we
have identified, as listed in Table 2. We then fit these models to estimate responses for the
observations on the validation set. We then compare the resulting validation test error rates,
as measured by Root Mean Square Errors (RMSE). We choose two candidate models for
estimating scenicness by choosing those with the lowest RMSEs.

Akaike weights

In order to determine which model best estimates scenicness, we calculate the AICw,
following the method proposed by Wagenmakers and Farrell (2004), as the AIC values
themselves are challenging to interpret on their own. We derive AICws, by first
identifying the model with the lowest AIC. For each model, we then calculate an AIC
difference, by determining the difference between the lowest AIC and the model’s AIC.
We next determine the relative likelihood of each model, following the method described
in Wagenmakers and Farrell (2004). To calculate the AICws, we normalise these likelihoods,
such that across all models they sum to one. The resulting AICws can be interpreted as the
probability of each model given the data.

Results

A comparison of the quantity of Flickr photographs taken (Figure 1(a)) with a map of scenic
ratings of images from Scenic-Or-Not (Figure 1(b)) indicates that areas with a high density of
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photos – which tend to be highly populated areas such as London and Manchester – are
rated as being the least scenic. On the other hand, highly scenic areas, such as Scotland, have
a low density of Flickr photographs taken. This indicates that population density may be a
significant factor for estimating the scenicness of an area.

This also leads us to suppose that whether an area is urban, suburban or rural may also
play a part in scenic ratings. Furthermore, Scotland, which is rated as highly scenic, is known
for its beautiful rural settings. We therefore explore to what extent urban, suburban and
rural areas affect scenic ratings.

We build our first model to determine how scenic an area is, drawing on these objective
measurements: population density, number of residents, and urban, suburban or rural
categories. As noted in the Methods section, spatial data may exhibit autocorrelation,
where nearby observations may have similar values, and thereby violate the assumption
made in linear regression that observations are independent. To test whether
autocorrelation exists, we first build a linear regression model. A Moran’s I test on the
residuals of the linear regression model confirms that the model exhibits significant spatial
autocorrelation in the residuals (Moran’s I¼ 0.127, p< 0.001, N¼ 15,188). We therefore
build a CAR model (as described in ‘Methods’ section) that takes spatial autocorrelation
into account (Bivand et al., 2013; Harris et al., 2005).

The results of the CAR model analysis reveal that low population density is associated
with areas of high scenicness (b¼�0.285, p< 0.001, N¼ 15,188) and the lower the number
of residents in an LSOA, the greater the scenicness (b¼�0.0001, p< 0.001, N¼ 15,188). We

Table 2. Crowdsourced variables considered in our analysis.a

Variable Method used to calculate measures

photos Number of Flickr photographs taken per LSOA

photographers Number of Flickr photographers per LSOA

photos.pop Number of Flickr photographs divided by population density per LSOA

photographers.pop Number of Flickr photographers divided by population density per LSOA

photos.hec Number of Flickr photographs divided by area of LSOA measured in hectares

photographers.hec Number of Flickr photographers divided by area of LSOA measured in hectares

photographers.POI Number of Flickr photographers divided by number of POI per LSOA

photographers.natural Number of Flickr photographers divided by number of natural POIs per LSOA

photos.POI Number of Flickr photographs divided by number of POI per LSOA

photos.natural Number of Flickr photographs divided by number of natural POI per LSOA

photos.travel Number of Flickr photographs taken by travel photographers per LSOA

photographers.travel Number of Flickr travel photographers per LSOA

photos.scenic Number of images with the word ‘scenic’ per LSOA

photos.scenic.similar Number of images with the word ‘scenic’ or word similar to ‘scenic’ per LSOA

photos.scenic.prop Number of Flickr images with the word ‘scenic’ divided by number of Flickr

images uploaded per LSOA

photos.scenic.similar.prop Number of images with the word ‘scenic’ or word similar to ‘scenic’ divided by

number of Flickr images per LSOA

aWe use the statistical learning method of cross-validation (Hastie et al., 2009; James et al., 2013) to identify candidate

variables to use in our scenic estimation models using crowdsourced data. We randomly partition the observations in our

data set into a 60/40 split where 60% of the data are used as the training set and 40% as the validation set. We fit our

model on the training set including all the variables in our base model (population density, number of residents, and urban,

suburban and rural categories) and all the crowdsourced variables we have identified as being possible contenders to

estimate scenicness, as listed above. We then choose the best candidate explanatory variables using the validation data set.
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Figure 1. The relationship between Flickr photographs and ratings of scenicness from Scenic-Or-Not in

Great Britain. (a) We create a density plot of all Flickr photographs uploaded in 2013, geotagged as being

taken in Great Britain. In order to ensure that the photographs have been taken outdoors, we exclude

images that were taken in buildings. Buildings are identified using crowdsourced data from OpenStreetMap.

Inspection of the map indicates that most images are taken in areas of high population density such as

London and Manchester. (b) The Scenic-Or-Not data set comprises 217,000 images, sourced from Geograph,

covering nearly 95% of the 1 km grid squares of Great Britain. We calculate the mean scenic rating of all

Scenic-or-Not photographs at the level of English Lower Layer Super Output Areas (LSOAs) and depict these

ratings using quantile breaks. Examination of the two maps indicates that while the major cities have a higher

density of photos, they are also rated as the least scenic. On the other hand, Scotland is rated as highly scenic

while the density of photos remains low. This suggests that population density needs to be taken into

account in the analysis. (c) An individual photographer may take several photographs of an area. While this

may reveal individual preferences, we are primarily interested in the collective perception of scenicness. We

therefore calculate the mean number of Flickr photographers for each LSOA and depict these ratings using

quantile breaks. Visual inspection of these maps reveals that measures of the number of Flickr photographers

per LSOA correspond well with scenic ratings from Scenic-Or-Not.
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also find that urban and suburban areas are associated with reduced scenicness (urban
b¼�0.260 p< 0.001, N¼ 15,188; suburban b¼�0.083, p< 0.001, N¼ 15,188).

We now explore to what extent crowdsourced data from Flickr and OpenStreetMap can
add additional explanatory power to our base model. First, we investigate whether the
quantity of geotagged images uploaded to Flickr may be a proxy for visual preference of
an area. As we are interested in the perception of outdoor environments rather than indoor
environments, we also use crowdsourced data from OpenStreetMap to determine where
buildings are located, and use this data on to exclude Flickr images that have been taken
inside buildings.

We note factors that may affect the quantity of Flickr images besides the scenicness of an
area, and take a number of steps to correct for these issues in our analysis. First of all, we
account for the fact that one photographer may take several photographs of an area. While
this may reveal individual preference for an area, this may not reveal collective preference for
an area. We therefore consider only the quantity of Flickr photographers for each LSOA, as
we are primarily interested in the collective perception of scenicness.

Next, we consider the various reasons for people taking Flickr photographs. For example,
people typically upload photographs to Flickr when they want to share a memory of an
event or an activity such as a birthday party (Purves et al., 2011), or they might share
pictures of themselves (commonly known as ‘selfies’). People might also add valuable
information related to a photograph if they are motivated to share the image with the
wider public (Nov et al., 2008). We therefore attempt to mitigate the potential biases in
the uploaded Flickr photographs, as well as identify a stronger signal of scenic images by the
following approaches: (1) we attempt to identify travel photographers and (2) we attempt to
identify scenic images.

We hypothesise that Flickr photographs taken by photographers that travel are more
likely to reveal scenic preferences. We therefore count the number of LSOAs in which each
Flickr photographer has taken photos. We find the mean number of LSOAs in which
someone has taken a photograph is eight. We therefore deem a Flickr photographer a
‘travel photographer’ if they have taken photographs in more than eight LSOAs.

We also attempt to identify which images are scenic using textual data people have
added to describe the image, as explained in more detail in ‘Methods’ section. We classify
an image as scenic if there is a mention of ‘scenic’ or a word similar to ‘scenic’ in this
textual metadata. We then count the number of images classified as scenic for each
LSOA. We also include the count of images classified as scenic divided by all the images
uploaded per LSOA, which gives us the proportion of images classified as scenic uploaded
per LSOA.

Finally, we correct for a variety of characteristics that may affect the quantity of images
uploaded in each LSOA: land area, quantity of points of interest (POI) and quantity of
natural features. As LSOAs vary dramatically in size – between 1 hectare to 67,280 hectares
in our analysis – and people may take more pictures in larger LSOAs, we consider to which
extent hectares affect the number of Flickr photographs taken. Certain POI, particularly
tourist attractions, such as the London Eye, Big Ben and Edinburgh Castle attract large
numbers of images (Antoniou et al., 2010). This could distort the signal of whether or not the
photographer considers the location scenic. We therefore consider how the quantity of POI
in each LSOA influence the number of Flickr photographs taken. OpenStreetMap also has
data on how many natural POI exist in each LSOA. As natural POI may be associated with
scenicness, we also consider how many Flickr images are taken considering how many
natural POI occur in each LSOA.

Seresinhe et al. 9



We can now test whether models that include crowdsourced variables perform better than
a base model that only includes the objective measurements (population density, number of
residents, and urban, suburban or rural categories). Table 2 lists all the crowdsourced
variables that we test.

Using a statistical learning approach (as specified in the Methods section), we identify two
candidate models that include crowdsourced data: (1) A simple Flickr model that, in
addition to the base model, includes the number of Flickr photographers in each LSOA
divided by the number of POI in that LSOA (variable: photographers.POI); and (2) an
extended Flickr model that, in addition to the simple Flickr model, includes the number
of images classified as scenic per LSOA (variable: photos.scenic.similar).

As in our previous analysis, we build these two candidate Flickr CAR models. In the
simple Flickr model, we find that a greater number of Flickr photographers, adjusted by
POI, is significantly associated with higher ratings of scenicness (b¼ 0.095, p< 0.001,
N¼ 15,188). In the extended Flickr model, we also find that a greater number of Flickr
photographers, adjusted by POI, is significantly associated with higher ratings of
scenicness (b¼ 0.092, p< 0.001, N¼ 15,188). In addition, we find that the number of
images with the word ‘scenic’ or a word similar to ‘scenic’ is significantly associated with
higher ratings of scenicness (b¼ 0.001, p< 0.001, N¼ 15,188).

Finally, in order to determine whether models including crowdsourced variables can
perform better than the models that only include objective measurements, we rank all
three models – the base model, the simple Flickr model, and the extended Flickr model –
in terms of their Akaike Information Criterion (AIC) value. This provides a measure of the
model fit given a set of data. In order to compare the fit of the models to each other, AIC
values are transformed to AICw following the method proposed by Wagenmakers and
Farrell (2004). These weights can be interpreted as the probability of each model given
the data, as described in the ‘Methods’ section. This model comparison indicates that
models including crowdsourced geographic data from Flickr and OpenStreetMap provide
more accurate estimates of the scenicness of an area than models that only include objective
measurements such as population density and whether an area is urban, suburban or rural
(Table 3).

Using the most probable model, the extended Flickrmodel, we further investigate how the
ranked estimates of the scenicness of an area compare to the ranked actual measures of the
scenicness of an area in different settings (Figure 2). We find that our model is most
successful at estimating the scenicness of an area in rural settings (urban: s¼ 0.216,
p< 0.001, N¼ 1,060; suburban: s¼ 0.225, p< 0.001, N¼ 2,567; rural: s¼ 0.363, p< 0.001,
N¼ 2,449, Kendall’s rank correlation).

Discussion

Our findings suggest that crowdsourced data from sources such as Flickr and
OpenStreetMap have the potential to reveal information about how people interact with
their environment. Specifically, we find that models using crowdsourced data can generate
more accurate estimates of scenicness than models comprising only traditional statistics such
as population density or whether an area is urban or rural. Our results provide evidence that
measures of images uploaded to Flickr do indeed contain information that can inform
estimates of how scenic an area is.

However, while the improvement is significant, the effect size is not large. As our sample
analysis of 10,000 Flickr images indicated that around 23% of the images deemed as outdoor
images might in fact be indoor images, these might be adding uncertainty to our results.
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Table 3. The performance of different models for estimating scenic ratings.a

Base model Simple Flickr model Extended Flickr model

Log of population density �0.285*** �0.274*** �0.270***

All residents 0.000*** 0.000*** 0.000***

Suburban �0.083*** �0.087*** �0.088***

Urban �0.260*** �0.26*** �0.263***

photographers.POI 0.095*** 0.092***

photos.scenic.similar 0.001***

No of observations 15,188 15,188 15,188

AIC 43,045 42,850 42,830

AICd 215 20 0

AICw <0.001 <0.001 >0.999

aRegression coefficients for CAR models estimating scenic ratings based on the validation data set (*p< 0.05, **p< 0.01,

***p< 0.001). The set of observations are randomly partitioned into a 60/40 split, where 60% of the data are used as the

training set and 40% as the validation set. Each partitioned data set has an equal split of urban, suburban and rural areas.

The analysis is carried out at the level of Lower Layer Super Output Areas (LSOAs). The simple Flickr model includes an

additional variable: the number of images taken by unique photographers divided by the number of points of interest

(photographers.POI). The extended Flickr model includes a further additional variable: the number of images with the

word ‘scenic’ or word similar to ‘scenic’ per LSOA (photos.scenic.similar). Here, we present the results of evaluating the

models on the entire data set. In order to determine which model offers the best estimation power, we rank all three in

terms of their AIC values. In order to compare the fit of the models to each other, AIC values are transformed to Akaike

weights (AICw) following the method proposed by Wagenmakers and Farrell (2004). We find that the extended Flickr

model with the additional crowdsourced geographic variables has the greatest estimation power. These results provide

evidence that models including crowdsourced data have greater power to estimate the scenicness of an area.
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Figure 2. Ranked estimated scenic ratings versus ranked actual scenic ratings broken down by urban,

suburban and rural areas. Estimated scenic ratings are generated on a test data set using the best Flickr

model. The set of observations is randomly partitioned into a 60/40 split, where 60% of the data are used as

the training set and 40% as the validation set. The models are fit using the training data set, and the best Flickr

model is chosen based on the estimations on the validation data set. Estimated and actual ratings are ranked

and rescaled such that the lowest rank (most scenic area) is given the value 0, and the highest rank (least

scenic area) is given the value 1. Rescaled ranks are then plotted using a 2D kernel density estimation. Visual

analysis and a statistical analysis of the correlation between these ranks suggests that our model generates

better estimates of the ranking of scenic ratings in rural areas than in suburban and urban areas (urban:

s¼ 0.216, p< 0.001, N¼ 128,161; suburban: s¼ 0.225, p< 0.001, N¼ 128,161; rural: s¼ 0.363, p< 0.001,

N¼ 128,161, Kendall’s rank correlation).
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We found no evidence in support of our hypothesis that travel photographers would give
us a useful metric of the scenicness of an area. Visual analysis of the photographs uploaded
by the most prolific Flickr travel photographers reveals that many of them use Flickr for
curated content such as bus and train spotting (an observation also reported by Gliozzo
et al., 2016). If the primary motivation of many of the photographers on Flickr is only to
post content on a particular subject, then this would distort the estimate that Flickr data may
provide of the scenicness of an area.

We aim to mitigate this effect by only including images that we identify as being related to
scenicness through our analysis of textual data associated with each image. While this
approach improves our results, the overall impact from this approach still is not strong
enough to dramatically improve our scenicness estimates.

Finally, we consider why the performance of our analysis is worse in urban and suburban
areas. Our analysis focuses on images with locations that OpenStreetMap data indicated
have been taken outside buildings. However, we find that a neural network trained to extract
information from images of outdoor and indoor environments, Places CNN (Zhou et al.,
2014), produces different classifications for some of these images. Specifically, when
analysing a sample of 10,000 images classified as outdoor using OpenStreetMap data, we
find that Places CNN classifies 35% of the images taken in urban areas and 24% of the
images taken in suburban areas as indoor images. In rural areas, only 14% of the images
classified as outdoor images using OpenStreetMap data are classified as indoor images with
Places CNN. We suggest that higher building density in urban and suburban areas may
mean that higher location accuracy is required to avoid misclassification between indoor and
outdoor locations, such that a greater proportion of misclassifications is to be expected. This
problem is likely to be exacerbated due to reduced functionality of GPS location technology
in built-up areas. OpenStreetMap data can also suffer from lack of positional accuracy and
lack of completeness (Haklay, 2010; Zielstra and Hochmair, 2013). Urban and suburban
areas may be more likely to have buildings that have yet to be added to the OpenStreetMap
buildings data. Our OpenStreetMap data on POI may also contain a great deal of
uncertainty, particularly in urban and suburban areas where there are likely to be a
greater number of POI and thus a higher chance of inaccuracies. Furthermore, we note
that Scenic-Or-Not ratings are provided on a 1 km grid square basis. At the same time
urban and suburban LSOAs are likely to be smaller than rural LSOAs: rural LSOAs
range from 2 to 67,280 hectares; suburban LSOAs range from 4 to 5,362 hectares; and
urban LSOAs range from 1 to 4,804 hectares. Information on the scenicness of urban and
suburban areas may therefore be lower in quality, due to a lower number of scenicness
ratings per LSOA.

Conclusion

We investigate whether the vast quantity of data uploaded to the Internet could help us
identify which areas of Great Britain people consider to be scenic. We analyse data from
geotagged images uploaded to Flickr, combined with crowdsourced geographic data from
OpenStreetMap, in order to see if such data can provide improvements of scenic estimations.
We validate our findings using the website Scenic-Or-Not, which crowdsources ratings of
scenicness in Great Britain. We find that models including crowdsourced geographic data
from Flickr and OpenStreetMap do provide more accurate estimates of the scenicness of an
area than models using objective geographical data alone, although the improvement is only
modest. Using a statistical learning approach, we identify the following crowdsourced
variables as those that most improve estimates of scenicness: (1) the quantity of unique
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Flickr photographers, taking into account the number of POI (as obtained through
OpenStreetMap data) in each LSOA and (2) the number of images with the word ‘scenic’
or a word similar to ‘scenic’ per LSOA.

We also find that models drawing on data from Flickr and OpenStreetMap produce more
accurate estimates of scenicness in rural neighbourhoods than in urban and suburban areas.
This may be due to the plurality of reasons for which people upload photographs in urban
and suburban neighbourhoods: for instance, creating a memory of an event such as a
birthday party or a sporting event. Urban and suburban LSOAs are also likely to contain
a greater number of unidentified indoor images in our analysis as such areas are more likely
to contain buildings that may either be missing from the OpenStreetMap data or for which
the OpenStreetMap data is positionally inaccurate. Similarly, functionality of GPS location
technology used to locate photographs is likely to be reduced in urban and suburban areas.
Finally, our urban and suburban scenic ratings may be less accurate than those in rural
areas, due to the presence of smaller LSOAs which contain fewer Scenic-Or-Not images in
urban and suburban areas. Further research will need to be conducted in order to mitigate
these factors.

Nonetheless, analysis of crowdsourced data does seem to provide valuable information on
how people perceive their everyday environments. Our results suggest that by exploiting data
gathered from our everyday interactions with the Internet, scientists and policy-makers alike
may be able to develop a better understanding of people’s subjective experience of the
environment in which they live.
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